JP2014067745A - 光電変換装置の製造方法 - Google Patents

光電変換装置の製造方法 Download PDF

Info

Publication number
JP2014067745A
JP2014067745A JP2012209844A JP2012209844A JP2014067745A JP 2014067745 A JP2014067745 A JP 2014067745A JP 2012209844 A JP2012209844 A JP 2012209844A JP 2012209844 A JP2012209844 A JP 2012209844A JP 2014067745 A JP2014067745 A JP 2014067745A
Authority
JP
Japan
Prior art keywords
light absorption
absorption layer
layer
photoelectric conversion
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012209844A
Other languages
English (en)
Inventor
Nobuhiro Kobayashi
信裕 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012209844A priority Critical patent/JP2014067745A/ja
Publication of JP2014067745A publication Critical patent/JP2014067745A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】 表面にCl元素がドープされた光吸収層上に金属硫化物を含むバッファ層がヘテロ接合された光電変換装置を、容易にかつ良好に作製する。
【解決手段】 光電変換装置11の製造方法は、下部電極層2上に光吸収層3を形成する工程と、加熱した光吸収層3上に金属塩化物およびチオアミド系化合物を含む原料溶液を被着することによって光吸収層3上に金属硫化物を含むバッファ層4を形成するとともに光吸収層3の内部に塩素を拡散させる工程とを具備する。
【選択図】 図1

Description

本発明は、光吸収層上に金属硫化物を含むバッファ層をヘテロ接合した光電変換装置の製造方法に関するものである。
太陽光発電等に使用される光電変換装置として、CISやCIGS等の金属カルコゲナイドから成る光吸収層上にIn等の金属硫化物から成るバッファ層が形成されたものがある。このような光電変換装置は、例えば特許文献1に記載されている。
光電変換装置は光電変換効率の向上が常に要求されている。特許文献2では、p型の金属カルコゲナイドから成る光吸収層の表面部にCl元素をドープして表面部をn型化することによって、pn接合性を向上させている。Cl元素を光吸収層にドープする方法としては、p型の金属カルコゲナイドをCl元素と同時に蒸着法によって成膜する方法、あるいは、p型の金属カルコゲナイドから成る光吸収層をHClガス雰囲気で加熱する方法が用いられている。
特開2003−282909号公報 特開平06−244442号公報
しかしながら、特許文献2の金属カルコゲンナイドをCl元素と同時に蒸着法で成膜する方法では、良好な多結晶体を得ることが困難である。また、特許文献2のHClガス雰囲気で光吸収層を加熱する方法では、光吸収層をHClガス雰囲気で加熱する工程が必要となり、工程を簡略化するのが困難である。また、HClガスによって光吸収層の表面がエッチングされるため、光吸収層の表面が荒れる傾向がある。そのため、光吸収層上にバッファ層を良好に形成するのが困難である。
本発明は、上記課題に鑑みてなされたものであり、表面にCl元素がドープされた光吸収層上に金属硫化物を含むバッファ層がヘテロ接合された光電変換装置を、容易にかつ良好に作製することを目的とする。
本発明の一実施形態に係る光電変換装置の製造方法は、下部電極層上に光吸収層を形成する工程と、加熱した前記光吸収層上に金属塩化物およびチオアミド系化合物を含む原料溶液を被着することによって前記光吸収層上に金属硫化物を含むバッファ層を形成するとともに前記光吸収層の内部に塩素を拡散させる工程とを具備する。
上記一実施形態によれば、表面にCl元素がドープされた光吸収層上に金属硫化物を含むバッファ層がヘテロ接合された光電変換装置を、容易にかつ良好に作製することができる。
本発明の一実施形態に係る光電変換装置の製造方法を用いて作製した光電変換装置の実施の形態の一例を示す斜視図である。 図1の光電変換装置の断面図である。 光電変換装置の製造途中の様子を模式的に示す断面図である。 光電変換装置の製造途中の様子を模式的に示す断面図である。 光電変換装置の製造途中の様子を模式的に示す断面図である。 光電変換装置の製造途中の様子を模式的に示す断面図である。 光電変換装置の製造途中の様子を模式的に示す断面図である。 光電変換装置の製造途中の様子を模式的に示す断面図である。 光電変換装置の製造途中の様子を模式的に示す断面図である。 本発明の一実施形態に係る光電変換装置の製造方法を用いて作製した光電変換装置の光吸収層部分の元素分析結果を示すグラフである。 CBD法を用いてバッファ層を形成した光電変換装置の光吸収層部分の元素分析結果を示すグラフである。
以下、本発明の一実施形態に係る光電変換装置の製造方法について、図面を参照しながら詳細に説明する。なお、図面においては同様な構成および機能を有する部分については同一符号が付されており、下記説明では重複説明が省略される。また、図面は模式的に示されたものであり、各図における各種構造のサイズおよび位置関係等は正確に図示されたものではない。
<(1)光電変換装置の構成>
図1は、本発明の一実施形態に係る光電変換装置の製造方法を用いて作製した光電変換装置11の一例を示す斜視図である。図2は、図1の光電変換装置11のXZ断面図である。なお、図1から図9には、光電変換セル10の配列方向(図1の図面視左右方向)をX軸方向とする右手系のXYZ座標系が付されている。
光電変換装置11は、基板1の上に複数の光電変換セル10が並設された構成を有している。図1では、図示の都合上、2つの光電変換セル10のみが示されているが、実際の光電変換装置11には、図面のX軸方向、或いは更に図面のY軸方向に、多数の光電変換セル10が平面的に(二次元的に)配列されている。
各光電変換セル10は、下部電極層2、光吸収層3、バッファ層4、上部電極層5、および集電電極7を主に備えている。光電変換装置11では、上部電極層5および集電電極7が設けられた側の主面が受光面となっている。また、光電変換装置11には、第1〜3溝部P1,P2,P3といった3種類の溝部が設けられている。
基板1は、複数の光電変換セル10を支持するものであり、例えば、ガラス、セラミックス、樹脂、または金属等の材料で構成されている。具体例として、例えば、基板1として、1〜3mm程度の厚さを有する青板ガラス(ソーダライムガラス)が用いられてもよい。
下部電極層2は、基板1の一主面の上に設けられた導電層であり、例えば、モリブデン(Mo)、アルミニウム(Al)、チタン(Ti)、タンタル(Ta)、または金(Au)等の金属、あるいはこれらの金属の積層構造体からなる。また、下部電極層2は、0.2〜1μm程度の厚さを有し、例えば、スパッタリング法または蒸着法等の公知の薄膜形成方法によって形成される。
光吸収層3は、下部電極層2の+Z側の主面(一主面とも言う)の上に設けられた、p型の導電型を有する半導体層であり、1〜3μm程度の厚さを有している。光吸収層3は
、金属硫化物を含むバッファ層4と電気的な接合をして光電変換層を形成できる半導体層であればよい。このような光吸収層3としては、例えば、II−VI族化合物やI−III−VI
族化合物、I−II−IV−VI族化合物等の金属カルコゲナイドを主として含んだものが採用され得る。なお、金属カルコゲナイドとは、金属元素とカルコゲン元素との化合物である。また、カルコゲン元素とは、VI−B族元素(16族元素ともいう)のうち、S、Se、Teをいう。また、金属カルコゲナイドを主として含む半導体層とは、金属カルコゲナイドを70mol%以上含む半導体層のことをいう。
II−VI族化合物は、II−B族元素(12族元素ともいう)とVI−B族元素との化合物である。また、I−III−VI族化合物は、I−B族元素(11族元素ともいう)とIII−B族元素(13族元素ともいう)とVI−B族元素との化合物である。また、I−II−IV−VI族化合物は、I−B族元素とII−B族元素とIV−B族元素(14族元素ともいう)とVI−B族元素との化合物である。
I−III−VI族化合物としては、例えば、CuInSe(二セレン化銅インジウム、
CISともいう)、Cu(In,Ga)Se(二セレン化銅インジウム・ガリウム、CIGSともいう)、Cu(In,Ga)(Se,S)(二セレン・イオウ化銅インジウム・ガリウム、CIGSSともいう)等が挙げられる。なお、光吸収層3は、複数層の積層体であってもよく、例えば、薄膜のCIGSS層を表面層として有するCIGS層にて構成されていてもよい。光吸収層3がI−III−VI族化合物を含む場合、硫化インジウム
を含むバッファ層4と同様に、光吸収層3がIII−B族元素およびVI−B族元素を含むた
め、光吸収層3とバッファ層4との電気的な接合がより良好となる。
また、I−II−IV−VI族化合物としては、例えば、CuZnSnS(CZTSともいう)、CuZnSn(S,Se)(CZTSSeともいう)、およびCuZnSnSe(CZTSeともいう)等が挙げられる。また、II−VI族化合物としては、例えば、CdTe等が挙げられる。
バッファ層4は、光吸収層3にヘテロ接合した半導体層である。バッファ層4は、光吸収層3の導電型とは異なる導電型(ここではn型の導電型)を有していてもよい。なお、導電型が異なる半導体とは、伝導担体(キャリア)が異なる半導体のことである。上記のように光吸収層3の導電型がp型である場合、バッファ層4の導電型は、n型またはi型であってもよい。
バッファ層4は、例えば、硫化カドミウム(CdS)や硫化インジウム(In)、硫化亜鉛(ZnS)等の金属硫化物を含んでいる。バッファ層4は、これらの金属硫化物に加えて、金属水酸化物や金属酸化物を含んだ混晶化合物半導体であってもよい。そして、電流の損失が低減される観点から言えば、バッファ層4は、1Ω・cm以上の抵抗率を有するものとすることができる。なお、バッファ層4は、例えばケミカルバスデポジション(CBD)法等で形成される。
また、バッファ層4は、光吸収層3の一主面の法線方向に厚さを有する。この厚さは、例えば5〜200nmに設定される。
上部電極層5は、バッファ層4の上に設けられた、n型の導電型を有する透明導電膜であり、光吸収層3において生じた電荷を取り出す電極である。上部電極層5は、バッファ層4よりも低い抵抗率を有する物質によって構成されている。上部電極層5には、いわゆる窓層と呼ばれるものも含まれ、この窓層に加えて更に透明導電膜が設けられる場合には、これらが一体の上部電極層5とみなされても良い。
上部電極層5は、禁制帯幅が広く且つ透明で低抵抗の材料を主に含んでいる。このような材料としては、例えば、ZnO、InおよびSnO等の金属酸化物半導体等が採用され得る。これらの金属酸化物半導体には、Al、B、Ga、In、Sn、SbおよびF等の元素が含まれても良い。このような元素が含まれた金属酸化物半導体の具体例としては、例えば、AZO(Aluminum Zinc Oxide)、GZO(Gallium Zinc Oxide)、I
ZO(Indium Zinc Oxide)、ITO(Indium Tin Oxide)、FTO(Fluorine tin Oxide)等がある。
上部電極層5は、スパッタ法、蒸着法、または化学的気相成長(CVD)法等によって、0.05〜3.0μmの厚さを有するように形成される。ここで、光吸収層3から電荷が良好に取り出される観点から言えば、上部電極層5は、1Ω・cm以下の抵抗率と、50Ω/□以下のシート抵抗とを有するものとすることができる。
バッファ層4および上部電極層5は、光吸収層3が吸収する光の波長領域に対して光を透過させ易い性質(光透過性とも言う)を有する素材によって構成され得る。これにより、バッファ層4と上部電極層5とが設けられることで生じる、光吸収層3における光の吸収効率の低下が低減される。
また、光透過性が高められると同時に、光電変換によって生じた電流が良好に伝送される観点から言えば、上部電極層5は、0.05〜0.5μmの厚さとなるようにすることができる。
集電電極7は、Y軸方向に離間して設けられ、それぞれがX軸方向に延在している。集電電極7は、導電性を有する電極であり、例えば、銀(Ag)等の金属からなる。
集電電極7は、光吸収層3において発生して上部電極層5において取り出された電荷を集電する役割を担う。集電電極7が設けられれば、上部電極層5の薄層化が可能となる。
集電電極7および上部電極層5によって集電された電荷は、第2溝部P2に設けられた接続導体6を通じて、隣の光電変換セル10に伝達される。接続導体6は、例えば、図2に示されるように集電電極7のY軸方向への延在部分によって構成されている。これにより、光電変換装置11においては、隣り合う光電変換セル10の一方の下部電極層2と、他方の集電電極7とが、第2溝部P2に設けられた接続導体6を介して電気的に直列に接続されている。なお、接続導体6は、これに限定されず、上部電極層5の延在部分によって構成されていてもよい。
集電電極5は、良好な導電性が確保されつつ、光吸収層3への光の入射量を左右する受光面積の低下が最小限にとどめられるように、50〜400μmの幅を有するものとすることができる。
<(2)光電変換装置の製造方法>
図3から図9は、光電変換装置11の製造途中の様子をそれぞれ模式的に示す断面図である。なお、図3から図9で示される各断面図は、図2で示された断面に対応する部分の製造途中の様子を示す。
まず、図3で示されるように、洗浄された基板1の略全面に、スパッタ法等を用いて、Mo等からなる下部電極層2を成膜する。そして、下部電極層2の上面のうちのY方向に沿った直線状の形成対象位置からその直下の基板1の上面にかけて、第1溝部P1を形成する。第1溝部P1は、例えば、YAGレーザー等によるレーザー光を走査しつつ形成対象位置に照射することで溝加工を行なう、スクライブ加工によって形成することができる
。図4は、第1溝部P1を形成した後の状態を示す図である。
第1溝部P1を形成した後、下部電極層2の上に、光吸収層3を形成する。光吸収層3は、スパッタリング法、蒸着法などのいわゆる真空プロセスによって形成可能であるほか、いわゆる塗布法あるいは印刷法と称されるプロセスによって形成することもできる。塗布法あるいは印刷法と称されるプロセスは、光吸収層3の構成元素の錯体溶液を下部電極層2の上に塗布し、その後、乾燥・熱処理を行うプロセスである。図5は、光吸収層3を形成した後の状態を示す図である。
光吸収層3を形成した後、光吸収層3の上にバッファ層4を形成する。図6はバッファ層4を形成した後の状態を示す図である。バッファ層4は以下のようにして作製する。まず、光吸収層3を100〜350℃に加熱する。光吸収層3の加熱は、例えば、光吸収層3が形成された基板1をホットプレート上に載置する等の方法で行なうことができる。
そして、この加熱した光吸収層3上に、金属塩化物およびチオアミド系化合物を含む原料溶液を被着する。原料溶液の被着は、例えば、スプレー塗布等の方法で行なうことができる。原料溶液は、0.0001〜0.3Mの金属塩化物および0.0001〜0.5Mチオアミド系化合物を、水やアルコール類等の溶媒に溶解したものを用いることができる。なお、溶媒を容易に気化させることができるという観点から、原料溶液の溶媒として、メタノールやエタノール、プロパノール等を用いてもよい。原料溶液に用いる金属塩化物としては、InClやZnCl、CdCl等を用いることができる。また、チオアミド系化合物とは、チオアミド基を有する化合物である。原料溶液に用いるチオアミド系化合物としては、例えば、チオ尿素やチオアセトアミド等を用いることができる。
このような原料溶液を加熱した光吸収層3に被着することによって、光吸収層3上に金属硫化物を含むバッファ層4が良好に生成するとともに、Cl元素が光吸収層3の内部に良好に拡散する。よって、製造工程が容易になるとともに良好なヘテロ接合を有する光電変換装置11を作製することが可能となる。
図10は、表面に上記の方法でバッファ層4を形成した光吸収層3を、バッファ層4側からエッチングしながらSIMS(Secondary Ion Mass Spectrometry)によってCl元
素の分析を行なった結果である。図10において、横軸は光吸収層3のバッファ層4側の表面からの深さを示しており、縦軸はCl元素の原子数を示している。なお、図10で用いた光吸収層3はCIGSであり、その光吸収層3を210℃に加熱しながら、その表面に、エタノールに0.12MのInClと0.38Mのチオアセトアミドとを溶解した原料溶液をスプレー塗布で被着することによってバッファ層4を作製した。このような方法を用いることにより、図10に示すように、光吸収層3の表面部ほどCl元素濃度が高くなっており、光吸収層3の表面部に良好にCl元素がドープされていることがわかる。
一方、図11は、表面にCBD(Chemical Bath Deposition)法によってバッファ層を形成した光吸収層のSIMS分析の結果である。なお、図11で用いた光吸収層3はCIGSであり、その光吸収層3を、水に0.0027MのInClと0.0063Mのチオアセトアミドとを溶解したCBD溶液に浸漬することによってバッファ層を作製した。このようにCBD法を用いてバッファ層を形成した場合は、図11に示すように、光吸収層の表面部のCl元素の濃度は低く、図10のようなCl元素の濃度勾配はほとんど形成されていない。
図10および図11の結果より、光吸収層3を加熱しながら原料溶液を光吸収層3の表面に被着してバッファ層4を形成する方法を用いることによって、Cl元素を光吸収層3の表面部に良好にドープできることがわかる。
上述したバッファ層4の作製方法として、以下のような条件を用いてもよい。例えば、バッファ層4の生成時にCl元素がHCl等となって気化するのを低減して、Cl元素の光吸収層3への拡散をより良好に行なうという観点からは、光吸収層3上に原料溶液を被着する際の光吸収層3の温度を250℃以下にしてもよい。このような比較的低温でのバッファ層4の形成を良好に行なうという観点から、原料溶液に用いるチオアミド系化合物としてチオアセトアミドを用いてもよい。
また、Cl元素の光吸収層3への拡散をより良好に行なうという観点からは、光吸収層3としてI−III−VI族化合物を主として含むとともにIII−B族元素に対するVI−B族元素のモル比が2未満のものを用いてもよい。これにより、VI−B族元素の欠乏部にCl元素が入りやすくなる。
バッファ層4を形成した後、バッファ層4の上に上部電極層5を形成する。上部電極層5は、例えば、Snが含まれた酸化インジウム(ITO)等を主成分とする透明導電膜であり、スパッタリング法、蒸着法、またはCVD法等で形成することができる。図7は、上部電極層5を形成した後の状態を示す図である。
上部電極層5を形成した後、上部電極層5の上面のうちのY方向に沿った直線状の形成対象位置からその直下の下部電極層2の上面にかけて、第2溝部P2を形成する。第2溝部P2は、例えば、スクライブ針を用いたメカニカルスクライブ加工を用いて形成できる。図8は、第2溝部P2を形成した後の状態を示す図である。第2溝部P2は、第1溝部P1よりも若干X方向(図中では+X方向)にずれた位置に形成する。
第2溝部P2を形成した後、集電電極7および接続導体6を形成する。集電電極7および接続導体6については、例えば、Ag等の金属粉が樹脂バインダー等に分散している導電性を有するペースト(導電ペーストとも言う)を、所望のパターンを描くように印刷し、これを固化することで形成できる。図9は、集電電極7および接続導体6を形成した後の状態を示す図である。
集電電極7および接続導体6を形成した後、上部電極層5の上面のうちの直線状の形成対象位置からその直下の下部電極層2の上面にかけて、第3溝部P3を形成する。第3溝部P3の幅は、例えば、40〜1000μm程度とすることができる。また、第3溝部P3は、第2溝部P2と同様に、メカニカルスクライブ加工によって形成できる。このようにして、第3溝部P3の形成によって、図1および図2で示された光電変換装置11を製作したことになる。
なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良などが可能である。
1:基板
2:下部電極層
3:光吸収層
4:バッファ層
5:上部電極層
6:接続導体
7:集電電極
10:光電変換セル
11:光電変換装置

Claims (4)

  1. 下部電極層上に光吸収層を形成する工程と、
    加熱した前記光吸収層上に金属塩化物およびチオアミド系化合物を含む原料溶液を被着することによって前記光吸収層上に金属硫化物を含むバッファ層を形成するとともに前記光吸収層の内部に塩素を拡散させる工程と
    を具備する光電変換装置の製造方法。
  2. 前記光吸収層上に前記原料溶液を被着する際に前記光吸収層を加熱する温度を250℃以下にする、請求項1に記載の光電変換装置の製造方法。
  3. 前記チオアミド系化合物としてチオアセトアミドを用いる、請求項2に記載の光電変換装置の製造方法。
  4. 前記光吸収層としてI−III−VI族化合物を主として含むとともにIII−B族元素に対するVI−B族元素のモル比が2未満のものを用いる、請求項1乃至3のいずれかに記載の光電変換装置の製造方法。
JP2012209844A 2012-09-24 2012-09-24 光電変換装置の製造方法 Pending JP2014067745A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012209844A JP2014067745A (ja) 2012-09-24 2012-09-24 光電変換装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012209844A JP2014067745A (ja) 2012-09-24 2012-09-24 光電変換装置の製造方法

Publications (1)

Publication Number Publication Date
JP2014067745A true JP2014067745A (ja) 2014-04-17

Family

ID=50743887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012209844A Pending JP2014067745A (ja) 2012-09-24 2012-09-24 光電変換装置の製造方法

Country Status (1)

Country Link
JP (1) JP2014067745A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044423A (ja) * 2019-09-12 2021-03-18 国立研究開発法人産業技術総合研究所 太陽電池
JP2023002584A (ja) * 2018-03-13 2023-01-10 ファースト・ソーラー・インコーポレーテッド アニーリング材料およびアニーリング材料を用いて光起電力素子をアニールするための方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023002584A (ja) * 2018-03-13 2023-01-10 ファースト・ソーラー・インコーポレーテッド アニーリング材料およびアニーリング材料を用いて光起電力素子をアニールするための方法
JP2021044423A (ja) * 2019-09-12 2021-03-18 国立研究開発法人産業技術総合研究所 太陽電池
WO2021049358A1 (ja) * 2019-09-12 2021-03-18 国立研究開発法人産業技術総合研究所 太陽電池
JP7389457B2 (ja) 2019-09-12 2023-11-30 国立研究開発法人産業技術総合研究所 太陽電池

Similar Documents

Publication Publication Date Title
JP2014067745A (ja) 光電変換装置の製造方法
JP5837196B2 (ja) 光電変換装置の製造方法
JP5451899B2 (ja) 光電変換装置
JP5964683B2 (ja) 光電変換装置の製造方法
EP2876692A1 (en) Solar cell and method for manufacturing the same
JP2015191931A (ja) 光電変換装置の製造方法
JP5791802B2 (ja) 光電変換装置の製造方法
JP6162592B2 (ja) 光電変換装置の製造方法
JP2015149393A (ja) 光電変換装置の製造方法
JP2014090009A (ja) 光電変換装置
JP2015176890A (ja) 光電変換装置の製造方法
JP2015153950A (ja) 光電変換装置の製造方法
JP2014022562A (ja) 光電変換装置の製造方法
JP2013236043A (ja) 光電変換装置の製造方法
JP2014127580A (ja) 光電変換装置の製造方法
JP2012156423A (ja) 光電変換装置の製造方法
JP2015211107A (ja) 光電変換装置の製造方法
JP2015095591A (ja) 光電変換装置
JP2015070020A (ja) 光電変換装置の製造方法
JP2015126005A (ja) 光電変換装置
JP2014103200A (ja) 光電変換装置の製造方法
JP2014165207A (ja) 光電変換装置
JP2015122389A (ja) 光電変換装置
JP2012231070A (ja) 光電変換装置および光電変換装置の製造方法
JP2014116585A (ja) 光電変換装置の製造方法