WO2021049358A1 - 太陽電池 - Google Patents

太陽電池 Download PDF

Info

Publication number
WO2021049358A1
WO2021049358A1 PCT/JP2020/032889 JP2020032889W WO2021049358A1 WO 2021049358 A1 WO2021049358 A1 WO 2021049358A1 JP 2020032889 W JP2020032889 W JP 2020032889W WO 2021049358 A1 WO2021049358 A1 WO 2021049358A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cell
solar cell
type
polycrystalline
Prior art date
Application number
PCT/JP2020/032889
Other languages
English (en)
French (fr)
Inventor
慈郎 西永
武芳 菅谷
武彦 永井
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2021049358A1 publication Critical patent/WO2021049358A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell, for example, a technique applicable to a multi-junction solar cell in which a plurality of solar cells having different band gaps are joined.
  • Non-Patent Document 1 includes (1) lattice-matched type, (2) forward-stacked lattice-mismatched type, and (3) reverse-stacked lattice-mismatched type as structures of a monolithic solar cell using a compound semiconductor material. It is stated that.
  • Non-Patent Document 1 describes a structural example in which an InGaP-based top cell, a GaAs-based middle cell, and an InGaAs-based bottom cell are used as a reverse-stacked lattice-mismatched solar cell.
  • Non-Patent Document 2 describes that a semiconductor material made of a single crystal CIS (CuInSe 2 ) is used for the bottom cell as a structural example of a reverse-stacked lattice mismatch type solar cell.
  • Non-Patent Document 3 describes a polycrystalline CIGS (CuIn 1-x) formed separately from this solar cell with respect to a single crystal solar cell in which a GaInP-based top cell and a GaAs-based middle cell are continuously formed monolithically.
  • a mechanical stack type solar cell in which a bottom cell using Ga x Se 2) is bonded with conductive nanoparticles is disclosed.
  • Patent Document 1 describes a single crystal solar cell in which a GaInP-based top cell and a GaAs-based middle cell are continuously formed in a monolithic manner, and InGaAsP formed separately from the solar cell.
  • a mechanical stack type solar cell in which a single crystal solar cell having a bottom cell of the system is bonded with a transparent conductive adhesive is disclosed.
  • a solar cell is composed of a solar cell that converts the light energy of sunlight into electrical energy.
  • sunlight includes light having various light energies, and the light having energy equal to or higher than the band gap of the solar cell can be absorbed by the solar cell and converted into electric energy. ..
  • light having an energy smaller than the band gap of the solar cell is not absorbed by the solar cell.
  • the semiconductor material constituting the first solar cell having a large bandgap and the semiconductor material constituting the second solar cell having a small bandgap are different from each other in that lattice mismatch occurs or the crystal structure is different. Often.
  • multi-junction solar cells for example, it is being studied to mechanically join a plurality of solar cells having different band gaps to each other by using conductive nanoparticles or a transparent conductive adhesive.
  • a multi-junction solar cell can be realized regardless of the lattice mismatch between a plurality of solar cells having different band gaps.
  • multi-junction solar cells that monolithically form multiple solar cells with different band gaps can be mass-produced while maintaining the mechanical strength of the joints, compared to multi-junction solar cells with a mechanical stack structure. It may be easily realized.
  • a monolithic multi-junction solar cell it is necessary to overcome the problem of lattice mismatch between a plurality of solar cells having different band gaps.
  • As a method of overcoming this problem of lattice mismatch it is conceivable to form a buffer layer between a plurality of solar cells by gradually changing the lattice constant to absorb the lattice mismatch.
  • a new step for forming the buffer layer must be added, which leads to complication of the manufacturing process of the multi-junction solar cell and an increase in the manufacturing cost.
  • the buffer layer is omitted in the monolithic multi-junction solar cell, which is superior to the multi-junction solar cell having a mechanical stack structure in that mass production can be easily realized while maintaining the mechanical strength of the joint.
  • the solar cell in one embodiment has a first single crystal cell having a first light absorbing layer including a single crystal layer having a first band gap, and a polycrystalline layer having a second band gap smaller than the first band gap.
  • a polycrystalline cell having a second light absorbing layer including the above, and a first tunnel bonding layer for bonding the first single crystal cell and the polycrystalline cell are provided.
  • (A) is a diagram showing a band structure of "CIGS” alone and a band structure of "InP” alone, and (b) is a pn junction in which "n-type InP” and “p-type CIGS” are brought into contact with each other. It is a figure which shows the band structure at the time of forming. It is a figure which shows the device structure of the sample prepared for verifying the characteristic of a solar cell.
  • (A) is a graph showing the current-voltage characteristics of the solar cell, and (b) is a table showing the solar cell parameters. It is a graph which shows the relationship between the wavelength of the light incident on the solar cell, and the external quantum efficiency in the solar cell which is "sample A”.
  • FIG. 1 It is a schematic diagram which shows the specific structural example of a multi-junction solar cell. It is a flowchart which shows the manufacturing process of the multi-junction solar cell in embodiment. It is sectional drawing which shows the manufacturing process of the multi-junction solar cell in embodiment. It is sectional drawing which shows the manufacturing process of the multi-junction solar cell following FIG. It is sectional drawing which shows the manufacturing process of the multi-junction solar cell following FIG. It is sectional drawing which shows the manufacturing process of the multi-junction solar cell following FIG. It is a graph which shows the relationship between the lattice constant and electron affinity in the candidate material of an emitter layer.
  • the term “solar cell” refers to at least a window layer, an emitter layer in contact with the window layer, a base layer forming a pn junction between the emitter layers, and a backside electric field in contact with the base layer. It shall refer to a cell containing a layer.
  • This "solar cell” includes, for example, a “top cell”, a “middle cell”, and a “bottom cell” in a multi-junction solar cell having a laminated structure of a "top cell”, a "middle cell", and a “bottom cell”. included.
  • the window layer and the emitter layer are made of the same conductive semiconductor material.
  • the base layer and the backside electric field layer are made of the same conductive semiconductor material.
  • the bandgap of the window layer is larger than the bandgap of the emitter layer.
  • the bandgap of the backside electric field layer is larger than the bandgap of the base layer.
  • the "light absorption layer” is defined as a layer that absorbs light in a predetermined wavelength range, and includes at least a base layer among the constituent elements of the "solar cell".
  • the "light absorption layer” may include not only the base layer but also both the base layer and the emitter layer.
  • the "light absorption layer” referred to in the present specification does not include the window layer and the back electric field layer having a bandgap larger than that of the emitter layer and the base layer.
  • the "single crystal cell” means a “solar cell” in which the "light absorption layer” is composed of a single crystal layer.
  • the “polycrystalline cell” is defined as a “solar cell” in which at least a part of the "light absorption layer” is composed of the polycrystalline layer.
  • a “solar cell” in which at least the base layer is composed of a polycrystalline layer a “solar cell” in which both the base layer and the emitter layer are composed of a polycrystalline layer, and a “solar cell” in which the base layer is a polycrystalline layer.
  • a “solar cell” in which the emitter layer is composed of an amorphous layer also corresponds to the "polycrystalline cell” referred to in the present specification.
  • the "polycrystalline cell” also includes a cell having a single crystal layer in an additional structure other than the base layer, for example, the window layer formed on the emitter layer is a single crystal layer. ..
  • the "tunnel junction layer” refers to a pn junction layer formed by bringing a degenerate n-type semiconductor layer and a degenerate p-type semiconductor layer into contact with each other.
  • the "degenerate n-type semiconductor layer” is a semiconductor layer to which a donor is added at a high concentration, and means a semiconductor layer in which the Fermi level has entered the inside of the conduction band.
  • the "degenerate p-type semiconductor layer” is a semiconductor layer to which an acceptor is added at a high concentration, and refers to a semiconductor layer in which the Fermi level has entered the inside of the valence band.
  • FIG. 1 is a diagram for explaining the basic idea in the present embodiment, and is a conceptual diagram showing an example of a laminated structure of a multi-junction solar cell using a group III-V compound semiconductor material.
  • the multi-junction solar cell according to the present embodiment shown in FIG. 1 has a monolithically formed top cell, a middle cell, and a bottom cell, and the top cell and the middle cell are connected by a first tunnel junction layer, while being connected to the middle cell.
  • the bottom cells are connected by a second tunnel junction layer.
  • the top cell is composed of, for example, an InGaP-based single crystal cell, and the band gap (Eg) of the top cell is about 1.9 eV.
  • the middle cell is composed of, for example, a GaAs-based single crystal cell, and the band gap of the middle cell is about 1.42 eV.
  • the bottom cell is composed of, for example, a polycrystalline cell rather than a single crystal cell, and the band gap of the bottom cell is about 1.0 eV to 1.1 eV.
  • the basic idea in the present embodiment is that the top cell and the middle cell are composed of a single crystal cell, while the bottom cell is a polycrystalline cell, as shown in FIG. It is an idea composed of cells.
  • the top cell, middle cell, and bottom cell are composed of single crystal cells using a group III-V compound semiconductor material, for example, lattice matching between the top cell and middle cell can be realized, while the middle cell and bottom cell can be realized. It becomes difficult to realize lattice matching with. That is, it is possible to realize a single crystal cell having a band gap of about 1.0 eV to 1.1 eV in a group III-V compound semiconductor material by using, for example, "InGaAs".
  • InGaAs has a different lattice constant from “GaAs” that constitutes the middle cell, and “InGaAs” and “GaAs” form a lattice mismatch system. Therefore, the top cell and the middle cell can be continuously formed monolithically, but it is difficult to continuously form the middle cell and the bottom cell monolithically.
  • the basic idea of the present embodiment is to configure the bottom cell from a polycrystalline cell.
  • the bottom cell is formed as a polycrystalline cell having grain boundaries even if the lattice constant of the bottom cell is significantly different from the lattice constant of the middle cell. That is, according to the basic idea in the present embodiment, since the bottom cell is not formed as a single crystal cell, the lattice mismatch between the bottom cell and the middle cell does not become apparent, and the bottom cell and the single crystal, which are polycrystalline cells, do not become apparent. It is possible to continuously form a middle cell, which is a cell, in a monolithic manner.
  • the basic idea in the present embodiment is that the lattice mismatch between the polycrystalline cell and the single crystal cell does not become a problem. Then, when the basic idea in the present embodiment is adopted, since the lattice mismatch does not become apparent as a problem, the top cell, the middle cell, and the bottom cell can be continuously formed in a monolithic manner.
  • the top cell, the middle cell, and the bottom cell are continuously formed monolithically without using a buffer layer for alleviating the inconsistency between the middle cell and the bottom cell.
  • the basic idea in the present embodiment is a useful technical idea in that a monolithic multi-junction solar cell can be realized without complicating the manufacturing process.
  • it is possible to suppress the complexity of the manufacturing process of the multi-junction solar cell and the increase in the manufacturing cost.
  • the present inventor is studying for embodying the basic idea in the above-described embodiment. In the following, first, the examination items examined by the present inventor in order to embody the basic idea in the present embodiment will be described.
  • the present inventor has focused on a semiconductor material called "CIGS".
  • the chemical formula of this "CIGS” is Cu c In 1-x Ga x S y Se 2-y .
  • the polycrystalline "CIGS” can be used as the polycrystalline cell constituting the bottom cell.
  • CdS cadmium sulfide
  • a group III-V semiconductor material is used for the top cell and middle cell of the multi-junction solar cell in the present embodiment, but when “Cd” is diffused in the group III-V semiconductor material, As a result of "Cd” functioning as an acceptor in the III-V semiconductor material, the performance of the top cell and the middle cell as a solar cell is deteriorated. Furthermore, since heat treatment is applied when forming a monolithic multi-junction solar cell, "Cd” is diffused from the emitter layer even inside the polycrystalline "CIGS” that constitutes the light absorption layer of the bottom cell. To do. Then, the "Cd” diffused inside the polycrystalline "CIGS” functions as a donor.
  • the function of the p-type semiconductor layer is suppressed when "Cd” that functions as a donor diffuses into the light absorption layer that is the p-type semiconductor layer. That is, if "Cd” is diffused in the light absorption layer, the performance of the solar cell is deteriorated even in the bottom cell. Therefore, it should be avoided to use "CdS" as the emitter layer of the bottom cell in the monolithic multi-junction solar cell, and it is necessary to consider a new material to replace "CdS".
  • FIG. 2 is a diagram showing a typical configuration example of the bottom cell.
  • the bottom cell has a back surface electric field layer, a base layer formed on the back surface electric field layer, an emitter layer formed on the base layer, and a window layer formed on the emitter layer.
  • the back electric field layer and the base layer are composed of a p-type semiconductor layer, while the emitter layer and the window layer are composed of an n-type semiconductor layer.
  • a pn junction is formed at the boundary between the base layer and the emitter layer.
  • the window layer is made of a material having a bandgap larger than that of the emitter layer
  • the back surface electric field layer is made of a material having a bandgap larger than that of the base layer.
  • each of the base layer and the backside electric field layer composed of the p-type semiconductor layer is composed of polycrystalline "p-type CIGS".
  • the content of "Ga” contained in the "p-type CIGS” constituting the base layer is lower than the content of "Ga” contained in the "p-type CIGS” constituting the back surface electric field layer. ..
  • the content of "In” contained in the "p-type CIGS” constituting the base layer is higher than the content of "In” contained in the "p-type CIGS” constituting the back surface electric field layer. ..
  • the band gap of the back electric field layer can be made larger than the band gap of the base layer.
  • CdS is generally used as the emitter layer composed of the n-type semiconductor layer in order to form a pn junction between the base layer and the emitter layer.
  • CdS it should be avoided to use "CdS” as the emitter layer of the bottom cell of the multi-junction solar cell, and it is necessary to use a new material instead of "CdS”. ..
  • GaAs can be mentioned as a material that complies with this design guideline.
  • n-type GaAs it has been clarified that when “n-type GaAs” is used as the emitter layer of the bottom cell, the solar cell characteristics of the bottom cell are deteriorated.
  • FIG. 3A is a diagram showing a band structure of "CIGS” alone and a band structure of "GaAs” alone.
  • “Ec” indicates the lower end of the conduction band
  • “Ev” indicates the upper end of the valence band.
  • the energy difference between “Ec” and “Ev” corresponds to the band gap.
  • the energy difference between the vacuum level and "Ev” corresponds to the electron affinity.
  • the band gap of "CIGS” is 1.0 eV to 1.1 eV.
  • the band gap of "GaAs” is 1.4 eV. Therefore, it can be seen that the bandgap of "GaAs” is larger than the bandgap of "CIGS”.
  • the electron affinity of "CIGS” is 4.3 eV, while the electron affinity of "GaAs” is 4.1 eV, and the electron affinity of "GaAs” is "CIGS". It is smaller than the electron affinity of.
  • the electron affinity of the material constituting the emitter layer of the bottom cell and the electron affinity of the material constituting the base layer of the bottom cell are substantially equal. This is because, for example, if the electron affinity of the emitter layer is smaller than the electron affinity of the base layer, it becomes difficult for electrons to flow from the base layer, which is a p-type semiconductor layer, to the emitter layer, which is an n-type semiconductor layer. This is because the short-circuit current, which is one of the characteristics, is reduced.
  • the conduction band (Ec) becomes a discontinuous junction, and the open circuit voltage, which is one of the characteristics of the solar cell, becomes small. Therefore, in order to improve the characteristics of the solar cell, it is desirable to select the material constituting the emitter layer so that the electron affinities are substantially equal.
  • FIG. 3B is a diagram showing a band structure when a "n-type GaAs" and a "p-type CIGS" are brought into contact with each other to form a pn junction.
  • a barrier is formed in the boundary region of the pn junction because the electron affinity of "GaAs” is smaller than the electron affinity of "CIGS".
  • the barrier obstructs the flow of electrons from the conduction band of "p-type CIGS" to the conduction band of "n-type GaAs".
  • the electrons excited in the conduction band of the base layer made of "p-type CIGS” by light absorption exist at the interface between the base layer made of "p-type CIGS” and the emitter layer made of "n-type GaAs". It becomes easy to be trapped in the binding center, and the photocurrent as a solar cell decreases. That is, since the lattice constant difference between "GaAs” and “CIGS” is smaller than the lattice constant difference between "InP" and “CIGS” described later, less rearrangement occurs and good epitaxial growth can be realized. Good solar cell characteristics may not be obtained due to the barrier caused by the difference between the electron affinity of "GaAs" and the electron affinity of "CIGS".
  • design guideline for selecting a material that constitutes the emitter layer of the bottom cell in order to obtain good solar cell characteristics it has an electron affinity that is almost equal to the electron affinity of "CIGS" that constitutes the base layer of the bottom cell. It can be seen that the design guideline of adopting the material as the emitter layer of the bottom cell is desirable.
  • the present inventor has newly found "InP” as a material constituting the emitter layer of the bottom cell based on this design guideline.
  • FIG. 4A is a diagram showing a band structure of "CIGS” alone and a band structure of "InP” alone. Focusing on the electron affinity in FIG. 4A, the electron affinity of "CIGS” is 4.3 eV, whereas the electron affinity of "InP” is 4.3 eV, and the electron affinity of "InP” is also 4.3 eV. Is equivalent to the electron affinity of "CIGS".
  • FIG. 4B is a diagram showing a band structure when a "n-type InP" and a "p-type CIGS" are brought into contact with each other to form a pn junction.
  • FIG. 4 (b) since the electron affinity of "InP” is equivalent to the electron affinity of "CIGS", it can be seen that a barrier is not formed in the boundary region of the pn junction. As a result, the scattering and recombination of electrons due to the barrier are less likely to occur, and as a result, the electrons excited in the conduction band of the base layer made of "p-type CIGS" by light absorption are the emitter layer made of "n-type InP". Diffuses with high efficiency.
  • the emitter layer of the bottom cell is based on the design guideline that a material having an electron affinity substantially equal to the electron affinity of "CIGS" constituting the base layer of the bottom cell is adopted as the emitter layer of the bottom cell. Is composed of "n-type InP".
  • the verification results of a solar cell using "p-type CIGS” for the base layer and "n-type InP" for the emitter layer will be described.
  • the verification results of a solar cell in which "p-type CIGS" is used for the base layer and "n-type GaAs” is used for the emitter layer will also be described.
  • FIG. 5 is a diagram showing a device structure of a sample prepared for verifying the characteristics of a solar cell.
  • the sample 10 is formed on, for example, a substrate 12 on which an electrode 11 made of gold-indium (Au-In) is formed, a base layer 13 formed on the substrate 12, and a base layer 13. It is composed of an electric field layer 14, a transparent conductive layer 15 formed on the electric field layer 14, and a grid electrode 16 formed on the transparent conductive layer 15.
  • Au-In gold-indium
  • the base layer 13 and the electric field layer 14 are composed of polycrystalline "CIGS".
  • the transparent conductive layer 15 is made of "ZnO (zinc oxide)”.
  • the grid electrode 16 is made of "Al (aluminum)”.
  • the substrate 12 is composed of an n-type InP substrate or an n-type GaAs substrate.
  • the sample 10 in which the substrate 12 is composed of an n-type InP substrate is referred to as "Sample A”
  • the sample 10 in which the substrate 12 is composed of an n-type GaAs substrate is referred to as "Sample B”.
  • Sample A corresponds to a solar cell using "p-type CIGS” for the base layer and “n-type InP” for the emitter layer.
  • Sample B corresponds to a solar cell using "p-type CIGS” for the base layer and "n-type GaAs” for the emitter layer.
  • Sample A is produced as follows. That is, the substrate 12 made of an n-type InP substrate is washed with an organic solvent and an alkaline cleaning solution, and then introduced into a molecular beam epitaxy device (MBE (Molecular Beam Epitaxy) device). Then, after degassing at 300 ° C. in a high vacuum, the substrate 12 is heated to 480 ° C. in an atomic hydrogen atmosphere to remove the oxide film. Next, the temperature of the substrate 12 is set to 500 ° C., and a base layer 13 made of “CIGS” having a thickness of 1.0 ⁇ m is formed on the substrate 12 by simultaneous vapor deposition.
  • MBE molecular beam epitaxy
  • an electric field layer 14 made of “CIGS” having a thickness of 0.5 ⁇ m is formed on the base layer 13.
  • the transparent conductive layer 15 is formed on the electric field layer 14.
  • the transparent conductive layer 15 can be formed from “ZnO” having a thickness of 0.3 ⁇ m to which aluminum (Al) is added, for example, by using a sputtering method.
  • the grid electrode 16 is formed on the transparent conductive layer 15.
  • the grid electrode 16 is made of, for example, aluminum (Al), and can be formed, for example, by using a thin-film deposition method.
  • the solar cell which is "Sample A" can be produced.
  • sample B can be produced in almost the same manner as “Sample A”.
  • the difference between the method for producing “Sample B” and the method for producing “Sample A” is that an n-type GaAs substrate is used as the substrate 12 and that the substrate 12 is composed of an n-type GaAs substrate under an atomic hydrogen atmosphere. Is a point of removing the oxide film by heating to 560 ° C.
  • the other steps in the method for producing “Sample B” are the same as the other steps in the method for producing "Sample A”.
  • the solar cell which is "Sample B" can be produced.
  • FIG. 6A is a graph showing the current-voltage characteristics of the solar cell.
  • the solid line shows the current-voltage characteristics of "Sample A”
  • the broken line shows the current-voltage characteristics of "Sample B”.
  • the solar cell parameters are shown for each of "Sample A" and “Sample B". Specifically, the solar cell parameters are conversion efficiency, open circuit voltage, short circuit current and curve factor.
  • the current-voltage characteristic of “Sample A” is the current-voltage characteristic of the solar cell.
  • the conversion efficiency is "2.2%”
  • the open circuit voltage (Voc) is “0.32V”
  • the short-circuit current density (Jsc) is "12. It can be seen that it functions as a solar cell because the curve factor is "0.56” and "0 mA / cm 2".
  • FIG. 6A it can be seen that the current-voltage characteristic of "Sample B” does not realize the current-voltage characteristic of the solar cell.
  • the conversion efficiency is "0.0%”
  • the open circuit voltage (Voc) is “0.0V”
  • the short circuit current density (Jsc) is "0. It can be seen that the curve factor is "-" (unmeasurable) at "0 mA / cm 2" and the cell is not functioning as a solar cell.
  • FIG. 7 is a graph showing the relationship between the wavelength of light incident on the solar cell and the external quantum efficiency in the solar cell which is “Sample A”. As shown in FIG. 7, in “Sample A”, it can be seen that light absorption occurs in a long wavelength region longer than 850 nm. This result indicates that "CIGS”, which is the base layer of “Sample A”, functions as a light absorption layer, and confirms that "Sample A” sufficiently functions as a bottom cell of a multi-junction solar cell. Has been done.
  • the basic idea in the present embodiment is monolithic without using a buffer layer by forming a multi-junction solar cell with a laminated structure of a single crystal cell and a polycrystalline cell via a tunnel junction layer.
  • the point is that a multi-junction solar cell can be realized.
  • it is important to make the polycrystalline cell a solar cell having good solar cell characteristics.
  • the polycrystalline cell has a base layer and an emitter layer that are in contact with each other to form a pn junction, but in order to give the polycrystalline cell good solar cell characteristics, a semiconductor material constituting the base layer It is important to select the semiconductor material of the base layer and the semiconductor material of the emitter layer so that the electrical affinity of the above is equal to that of the semiconductor material constituting the emitter layer. For example, considering the adoption of a polycrystalline cell as the bottom cell of a multi-junction solar cell, the band gap can be adjusted so that light in the long wavelength range can be absorbed, and sufficient solar cell characteristics can be obtained even with polycrystalline cells. Therefore, it is useful to adopt a polycrystalline "p-type CIGS" as the base layer of the bottom cell.
  • a material having an electron affinity substantially equal to the electron affinity of the "p-type CIGS" constituting the base layer of the bottom cell is adopted as the emitter layer of the bottom cell.
  • the material of the emitter layer will be selected based on the design guideline.
  • the present inventor has newly adopted a polycrystalline "n-type InP” as the emitter layer of the bottom cell based on the above-mentioned design guideline.
  • a solar cell (“Sample A”) that employs polycrystalline “p-type CIGS” for the base layer and polycrystalline “n-type InP” for the emitter layer, it is a good solar cell. It is supported by the above-mentioned verification results that the characteristics can be obtained.
  • the basic idea in the present embodiment is to adopt a laminated structure of a single crystal cell and a polycrystalline cell via a tunnel junction layer, and pay attention to the matching of electron affinity for the constituent materials of the polycrystalline cell. It can be seen that this is an excellent technical idea in that a monolithic multi-junction solar cell can be realized while giving good solar cell characteristics to the polycrystalline cell.
  • the fact that a monolithic multi-junction solar cell can be realized while giving good solar cell characteristics to the polycrystalline cell means that the manufacturing cost of the multi-junction solar cell can be ensured while ensuring the performance of the multi-junction solar cell. Means that can be reduced. From this, it can be seen that the basic idea in the present embodiment has excellent technical significance in terms of both improving the performance of the solar cell and reducing the manufacturing cost of the solar cell.
  • FIG. 8 is a schematic diagram showing a specific configuration example of a multi-junction solar cell.
  • the multi-junction solar cell 1000 has a support substrate 100, a back electrode 101 formed on the support substrate 100, a bottom cell 200 formed on the back electrode 101, and a tunnel junction formed on the bottom cell 200. It has a layer 300 and a middle cell 400 formed on the tunnel junction layer 300. Further, the multi-junction solar cell 1000 includes a tunnel junction layer 500 formed on the middle cell 400, a top cell 600 formed on the tunnel junction layer 500, and an n-type GaAs layer (contact) formed on the top cell 600. It has a layer 118) and a surface electrode 119 formed on the contact layer 118.
  • the top cell 600 is composed of a single crystal cell. Specifically, the top cell 600 is formed on the back surface electric field layer 114, the base layer 115 formed on the back surface electric field layer 114, the emitter layer 116 formed on the base layer 115, and the emitter layer 116. It is composed of a window layer 117.
  • the backside electric field layer 114 is composed of "p-type AlInP”
  • the base layer 115 is composed of "p-type InGaP”.
  • the band gap of the "p-type InGaP" constituting the base layer 115 is about 1.9 eV.
  • the emitter layer 116 is composed of "n-type InGaP"
  • the window layer 117 is composed of "n-type AlInP”.
  • Each layer of the top cell 600 configured in this way is formed by using, for example, the MOVPE method (metal-organic vapor phase epitaxy), the MBE method (Molecular Beam Epitaxy), or the HVPE method (Hydride Vapor Phase Epitaxy). be able to.
  • the "light absorption layer" of the top cell 600 includes a base layer 115 and an emitter layer 116.
  • the middle cell 400 is composed of a single crystal cell. Specifically, the middle cell 400 includes a back surface electric field layer 108, a base layer 109 formed on the back surface electric field layer 108, an emitter layer 110 formed on the base layer 109, and a window formed on the emitter layer 110. It is composed of layer 111.
  • the backside electric field layer 108 is made of "p-type InGaP”
  • the base layer 109 is made of "p-type GaAs”.
  • the band gap of the “p-type GaAs” constituting the base layer 109 is about 1.42 eV.
  • the emitter layer 110 is made of "n-type GaAs"
  • the window layer 111 is made of "n-type AlInP”.
  • Each layer of the middle cell 400 configured in this way can be formed by using, for example, the MOVPE method, the MBE method, or the HVPE method.
  • the "light absorption layer" of the middle cell 400 includes a base layer 109 and an emitter layer 110.
  • the tunnel junction layer 500 is composed of a laminated structure of a degenerate n-type semiconductor layer and a degenerate p-type semiconductor layer. Specifically, as shown in FIG. 8, the tunnel junction layer 500 is a pn junction of an “n-type InGaP layer 112” having a high carrier concentration and a “p-type AlGaAs layer 113” having a high carrier concentration. Consists of joining.
  • Each layer constituting the tunnel junction layer 500 can also be formed by using, for example, the MOVPE method, the MBE method, or the HVPE method.
  • the bottom cell 200 is composed of a polycrystalline cell.
  • the bottom cell 200 includes a back surface electric field layer 102, a base layer 103 formed on the back surface electric field layer 102, an emitter layer 104 formed on the base layer 103, and a window formed on the emitter layer 104. It is composed of layer 105.
  • the back surface electric field layer 102 is composed of "p-type CIGS”
  • the base layer 103 is also composed of "p-type CIGS”.
  • the band gap of the "p-type CIGS" constituting the base layer 103 is about 1.0 eV to 1.1 eV.
  • the emitter layer 104 is composed of "n-type InP"
  • the window layer 105 is composed of "n-type InGaP”.
  • the "light absorption layer" of the bottom cell 200 includes the base layer 103 and the emitter layer 104.
  • the middle cell 400 and the bottom cell 200 are joined by a tunnel junction layer 300.
  • the middle cell 400 and the bottom cell 200 are electrically connected in series by a tunnel junction layer 300.
  • the tunnel junction layer 300 is composed of a laminated structure of a degenerate n-type semiconductor layer and a degenerate p-type semiconductor layer.
  • the tunnel junction layer 300 is a pn junction of an "n-type GaAs layer 106" having a high carrier concentration and a "p-type GaAs layer 107" having a high carrier concentration. Consists of joining.
  • Each layer constituting the tunnel junction layer 300 can also be formed by using, for example, the MOVPE method, the MBE method, or the HVPE method.
  • the window layer 105 is composed of a single crystal layer because it is lattice-matched with the "n-type GaAs" of the tunnel junction layer 300.
  • the emitter layer 104 in contact with the window layer 105 is composed of "n-type InP” and has a lattice mismatch with the "n-type GaAs" constituting the window layer 105. From this, the emitter layer 104 composed of "n-type InP” becomes polycrystalline.
  • the emitter layer 104 made of "n-type InP” forms a pn junction with the base layer 103 made of "p-type CIGS".
  • the emitter layer 104 can also be formed by using, for example, the MOVPE method, the MBE method, or the HVPE method.
  • the base layer 103 is made of a p-type compound semiconductor material, and has a thickness of, for example, 0.5 ⁇ m to 5.0 ⁇ m.
  • the base layer 103 has a calcopyrite structure composed of Group I elements, Group III elements, and Group VI elements.
  • the Group I element is copper (Cu)
  • the Group III element is indium (In) and / or gallium (Ga)
  • the Group VI element is sulfur (S) and / or selenium (Se). is there.
  • the base layer 103 of the bottom cell 200 is composed of "CIGS".
  • the composition of "CIGS” is 0 ⁇ x ⁇ 1, assuming that the molar ratio of indium (In) and gallium (Ga) is 1-x: x, and the band gap of the base layer 103 is 1.0 eV or more. In order to make it about 1.1 eV, it is desirable that x is 0 or more and 0.2 or less.
  • the polycrystalline "CIGS” that constitutes the base layer is said to be “Cu deficient” when the molar ratio of "Cu” and Group III elements ("In” and “Ga") is c: 1. On the other hand, when c becomes larger than 1, it becomes “Cu excess”.
  • c is 1 or less from the viewpoint of increasing the hole density and suppressing the thermal diffusion of "Cu ions" into the top cell 600 and the middle cell 400.
  • the back surface electric field layer 102 of the bottom cell 200 is made of a p-type compound semiconductor material, and has a thickness of, for example, 0.5 ⁇ m to 2.0 ⁇ m.
  • the backside electric field layer 102 is composed of polycrystalline "CIGS", and preferably contains "Cu” and "Se” and "In” and / or “Ga” as Group III elements.
  • As the composition of the polycrystalline "CIGS” constituting the backside electric field layer 102 where the molar ratio of indium (In) and gallium (Ga) is 1-x: x, x is 0.3 or more and 0. It is desirable that it is 6 or less.
  • the band gap of the back surface electric field layer 102 becomes 1.2 eV or more and 1.4 eV or less, and the band gap of the back surface electric field layer 102 becomes larger than the band gap of the base layer 103.
  • each manufacturing method of the base layer 103 and the back electric field layer for example, a vacuum vapor deposition method, a sputtering method + a seleniumization method can be used.
  • a method for producing the base layer 103 and the back electric field layer a multiple vacuum deposition method, an MBE method, a MOVPE method, a sputtering method, or the like can be used.
  • the back surface electrode 101 that contacts the back surface electric field layer 102 of the bottom cell 200 preferably contains "In” in order to ensure ohmic contact between the back surface electric field layer 102 and the back surface electrode 101.
  • "Au (gold)” can be used for the back surface electrode 101. Therefore, for example, the back surface electrode 101 can be composed of "Au-In", and can be formed by using, for example, a thin-film deposition method or a heat diffusion method.
  • the support substrate 100 is electrically joined to the back surface electrode 101.
  • the support substrate 100 can be composed of, for example, an insulating inorganic substrate having electrodes or a flexible substrate having electrodes.
  • the multi-junction solar cell 1000 As described above, the multi-junction solar cell 1000 according to the present embodiment is configured.
  • the top cell 600 made of a single crystal cell and the middle cell 400 made of a single crystal cell are lattice-matched, and the difference in lattice constant between the light absorption layer of the top cell 600 and the light absorption layer of the middle cell 400 is It is 0.5% or less.
  • the middle cell 400 made of a single crystal cell and the bottom cell 200 made of a polycrystalline cell are lattice-mismatched, and the difference in lattice constant between the light absorption layer of the middle cell 400 and the light absorption layer of the bottom cell 200 is 2. % Or more.
  • the middle cell 400 and the bottom cell 200 are lattice-mismatched, but since the bottom cell 200 is composed of a polycrystalline cell instead of a single crystal cell, the middle cell 400 Lattice mismatch between the bottom cell 200 and the bottom cell 200 is not a problem. Therefore, according to the present embodiment, the top cell 600 composed of a single crystal cell, the tunnel junction layer 500 composed of a single crystal structure, the middle cell 400 composed of a single crystal cell, the tunnel junction layer 300 composed of a single crystal structure, and polycrystal.
  • the bottom cell 200 composed of cells can be formed monolithically (integrally).
  • the multi-junction solar cell 1000 is configured as described above, and the operation of the multi-junction solar cell 1000 will be described below with reference to FIG.
  • the “n-type AlInP” of the top cell 600 is irradiated with sunlight.
  • the "n-type AlInP” functions as a window layer 117 and has at least translucency with respect to visible light and infrared light, which are the main components of sunlight. From this, sunlight passes through "n-type AlInP”.
  • the sunlight transmitted through the "n-type AlInP” is incident on the inside of the top cell 600 located in the lower layer of the "n-type AlInP".
  • the "n-type GaAs” and the “p-type GaAs” have a band gap of 1.42 eV, they have a light energy smaller than 1.9 eV and 1.42 eV or more of sunlight. Light is absorbed. Specifically, the electrons existing in the valence band of "GaAs" (“n-type GaAs” and “p-type GaAs”) receive the light energy supplied from sunlight and are excited to the conduction band. As a result, electrons are accumulated in the conduction band and holes are generated in the valence band.
  • the middle cell 400 when the middle cell 400 is irradiated with sunlight, electrons are excited in the conduction band of "GaAs" by light having a light energy smaller than 1.9 eV and 1.42 eV or more. At the same time, holes are generated in the valence band of "GaAs".
  • the conduction band of the "n-type GaAs” that constitutes one of the pn junctions is at a position where the energy is electronically lower than the conduction band of the "p-type GaAs” that constitutes the other of the pn junctions. From this, the electrons excited in the conduction band move to the "n-type GaAs", and the electrons are accumulated in the "n-type GaAs".
  • the base layer 103 "p-type CIGS" has a band gap of about 1.0 eV to 1.1 eV, it is smaller than 1.42 eV and 1.0 eV to 1 of sunlight.
  • Light with a light energy of .1 eV or higher is absorbed.
  • the electrons existing in the valence band of the light absorption layer receive the light energy supplied from sunlight and are excited to the conduction band. As a result, electrons are accumulated in the conduction band and holes are generated in the valence band.
  • the light having a light energy smaller than 1.42 eV and 1.0 eV to 1.1 eV or more causes electrons in the conduction band of the light absorption layer. Is excited and holes are generated in the valence band of the light absorption layer. As a result, electrons are accumulated in the base layer 103 of the light absorption layer, while holes existing in the valence band are accumulated in the emitter layer 104 of the light absorption layer. As a result, a voltage (V1) is generated between the base layer of the light absorption layer and the emitter layer of the light absorption layer.
  • the top cell 600 and the middle cell 400 are connected in series by the tunnel junction layer 500, and the middle cell 400 and the bottom cell 200 are connected in series by the tunnel junction layer 300. That is, the top cell 600, the middle cell 400, and the bottom cell 200 are connected in series.
  • a voltage (V1), a voltage (V2), and a voltage (V3) combined is generated in the multi-junction solar cell 1000 composed of the top cell 600, the middle cell 400, and the bottom cell 200 connected in series.
  • a voltage (V1), a voltage (V2), and a voltage (V3) combined is generated.
  • V1 a voltage
  • V2 voltage
  • V3 voltage
  • the multi-junction solar cell 1000 it is possible to absorb not only light having a large light energy contained in sunlight but also light having a small light energy and convert it into electric energy, thereby improving the photoelectric conversion efficiency. be able to. That is, according to the multi-junction solar cell 1000, since it is possible to use light having a small light energy that cannot be used by a single solar cell, it is excellent in that the utilization efficiency of sunlight can be improved.
  • FIG. 9 is a flowchart showing a manufacturing process of the multi-junction solar cell according to the present embodiment.
  • FIGS. 9 to 13 are schematic cross-sectional views showing a manufacturing process of the multi-junction solar cell according to the present embodiment.
  • the manufacturing process of the multi-junction solar cell according to the present embodiment will be described with reference to FIGS. 9 to 13.
  • a sacrificial layer 121 is formed on a semiconductor substrate 120 made of a GaAs substrate (S101 in FIG. 9).
  • the sacrificial layer 121 is made of, for example, "AlAs”.
  • the contact layer 118 is formed on the sacrificial layer 121 (S102 in FIG. 9).
  • the contact layer 118 is made of, for example, "n-type GaAs”.
  • the first tunnel junction layer (tunnel junction layer 500) is formed on the top cell 600, and the middle cell 400 is formed on the first tunnel junction layer.
  • a second tunnel junction layer (tunnel junction layer 300) is formed on the middle cell 400.
  • the window layer 105 is formed on the second tunnel junction layer (S103 in FIG. 9).
  • the window layer 105 is composed of, for example, "n-type InGaP". All the layers up to this point are formed of a single crystal layer. Further, the layer formed by the steps up to this point can be formed by using the MOVPE method, the MBE method, and the HVPE method.
  • the emitter layer 104 is formed on the window layer 105 (S104 in FIG. 9).
  • the emitter layer 104 is composed of, for example, a polycrystalline "n-type InP".
  • the emitter layer 104 formed in this step can be formed by using the MOVPE method, the MBE method, the HVPE method, or the sputtering method.
  • the base layer 103 is formed on the emitter layer 104 (S105 in FIG. 9).
  • the base layer 103 is composed of, for example, a polycrystalline “p-type CIGS”.
  • This polycrystalline "p-type CIGS” can be formed by using a multi-element vacuum deposition method, an MBE method, a MOVPE method, a sputtering method, or the like, and the thickness thereof is, for example, 0.5 ⁇ m to 3.0 ⁇ m. Degree.
  • simultaneous vapor deposition using "Cu”, “In”, “Ga”, and “Se” can be used as the evaporation source. ..
  • the composition ratio of "Ga” with respect to the entire Group III element may be gradient in the thickness direction of "p-type CIGS".
  • the band gap of the back surface electric field layer 102 can be made larger than the band gap of the base layer.
  • the composition ratio of "In” and “Ga” can be controlled by the evaporation rate of the evaporation source and the molecular beam intensity.
  • the back surface electrode 101 is formed on the back surface electric field layer 102 (S106 in FIG. 9).
  • the back surface electrode 101 can be composed of, for example, "Au-In".
  • the back surface electrode 101 and the support substrate 100 are bonded together (S107 in FIG. 9).
  • the constituent material of the support substrate 100 may be, for example, a metal, a resin, or a semiconductor.
  • a lightweight flexible substrate is used as the support substrate 100, a flexible multi-junction solar cell can be finally manufactured.
  • the semiconductor substrate 120 is separated (S108 in FIG. 9). Specifically, in order to separate the semiconductor substrate 120 from the laminated structure, the semiconductor substrate 120 is separated by a sacrificial layer 121 formed between the semiconductor substrate 120 and the contact layer 118. Therefore, in the manufacturing process of the multi-junction solar cell in the present embodiment, the semiconductor substrate 120 can be separated from the laminated structure without damaging the solar cell (top cell + middle cell + bottom cell).
  • the thickness of the laminated structure is reduced to about 10 ⁇ m or less, the elasticity is improved and it becomes difficult to crack.
  • the method for manufacturing a multi-junction solar cell according to the present embodiment it is possible to manufacture a multi-junction solar cell that is hard to break. Therefore, according to the method for manufacturing a multi-junction solar cell according to the present embodiment, it is possible to reduce the weight and increase the efficiency of the multi-junction solar cell.
  • a surface electrode 119 is formed on the contact layer 118 (S109 in FIG. 9). As described above, a multi-junction solar cell can be manufactured.
  • the top cell and the middle cell are composed of a single crystal cell
  • the bottom cell is composed of a polycrystalline cell.
  • the bottom cell composed of polycrystalline cells includes a base layer composed of "p-type CIGS" and an emitter layer composed of "n-type InP".
  • a design guideline for selecting a material constituting the emitter layer of the bottom cell a material having an electron affinity equivalent to the electron affinity of "CIGS" is adopted for the emitter layer of the bottom cell.
  • the emitter layer of the bottom cell not only "n-type InP” but also a material having an electron affinity equivalent to that of "CIGS” can be used.
  • the emitter layer of the bottom cell instead of “InP”, “Cu (In, Ga) Se 2 (CuIn 1-x Ga x Se 2 )", indium gallium arsenide (InGaAs), indium gallium phosphate (InGaP). ), Indium arsenide (InAsP), indium gallium arsenide (InGaAsP), indium sulfide (In 2 S 3 ) and the like can be used.
  • FIG. 14 is a graph showing the relationship between the lattice constant and the electron affinity in the candidate material of the emitter layer.
  • "CIGS” having a band gap of about 1.0 eV to 1.1 eV is used as the base layer of the bottom cell, and the electron affinity of this polycrystalline "CIGS” is 4.3 eV. Yes (see FIGS. 3 and 4). Therefore, among the candidate materials for the emitter layer shown in FIG. 14, a material having an electron affinity equivalent to the electron affinity (4.3 eV) of the polycrystalline "CIGS" may be used for the emitter layer.
  • the "electron affinity equivalent to the electron affinity of 4.3 eV” can be, for example, “electron affinity of 4.2 eV to 4.4 eV".
  • the material contained in the dot region shown in FIG. 14 is desirable as a candidate material for the emitter layer.
  • the material included in the dot region shown in FIG. 14 include “InP” and “In 2 S 3 ”. Since the crystal structure of "In 2 S 3 " is orthorhombic and the lattice mismatch with "GaAs", it becomes polycrystalline when used as an emitter layer. This "In 2 S 3 " has an electron affinity of 4.25 eV and a band gap of 2.9 eV.
  • the candidate material for the emitter layer needs to have an electron affinity equivalent to that of the polycrystalline "CIGS" (4.3 eV).
  • the band gap of the material constituting the emitter layer of the bottom cell is larger than the band gap of the material constituting the base layer of the bottom cell. This is because, for example, as shown in FIG. 8, of the emitter layer 104 and the base layer 103 of the bottom cell 200, the emitter layer 104 is closer to the incident side of the light, but the base layer is more than the emitter layer 104 of the bottom cell 200. This is because it is desirable to absorb light at 103 from the viewpoint of increasing the photocurrent.
  • the band gap of the emitter layer 104 is smaller than the band gap of the base layer 103, the light incident on the bottom cell 200 from the emitter layer 104 side is absorbed by the emitter layer 104 before reaching the base layer 103. Is. Therefore, it is desirable that the bandgap of the emitter layer 104 is larger than the bandgap of the base layer 103.
  • the emitter layer 104 when light is absorbed by the emitter layer 104, electron-hole pairs are generated in the emitter layer 104, which is an n-type semiconductor layer, and holes among the generated electron-hole pairs are p-type semiconductor layers.
  • the photocurrent moves to the back surface electrode 101 via the base layer 103. That is, when light is absorbed in the emitter layer 104, holes are responsible for the photocurrent.
  • the base layer 103 when light is absorbed in the base layer 103, electron-hole pairs are generated in the base layer 103, which is a p-type semiconductor layer, and the electrons among the generated electron-hole pairs are the n-type semiconductor layer.
  • the photocurrent moves to the emitter layer 104. That is, when light is absorbed in the base layer 103, the bearer of the photocurrent is an electron.
  • the mobility of electrons is larger than the mobility of holes, it is desirable to use electrons as the bearer of the photocurrent from the viewpoint of increasing the photocurrent.
  • the material used for the emitter layer 104 of the bottom cell 200 is a material having an electron affinity equivalent to the electron affinity (4.3 eV) of the polycrystalline "CIGS" and the polycrystalline "CIGS". It is desirable that the material has a larger bandgap than.
  • FIG. 15 is a graph showing the relationship between the lattice constant and the band gap when the composition of "InGaAsP" is changed.
  • the lattice constant and the band gap are changed by changing the composition of “InGaAsP”. Therefore, in “InGaAsP", by changing the composition, it is possible to obtain a material suitable for the emitter layer 104 of the bottom cell 200.
  • "InGaAsP" can be adopted for the emitter layer 104. That is, within the range of the shaded area shown in FIG. 15, a material having an electron affinity of 4.2 eV or more and 4.4 eV or less and a band gap of 1.0 eV or more is realized.
  • FIG. 16 shows the desirable compositions of “In a Ga 1-a P”, “In a Ga 1-a As”, “In As b P 1-b ” and “In a Ga 1-a As b P 1-b”. It is a table showing. As shown in FIG. 16, the composition of “In a Ga 1-a P” is 0.7 ⁇ a ⁇ 1.0, and that of “In a Ga 1-a As” is 0.15 ⁇ a ⁇ . By setting the composition to 0.3, it becomes a material suitable for the emitter layer 104. Similarly, in “In As b P 1-b “, the composition is 0.0 ⁇ b ⁇ 0.05, and in "In a Ga 1-a As b P 1-b ", in the shaded area of FIG. By adopting the composition shown, it becomes a material suitable for the emitter layer 104.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

多接合太陽電池の性能を確保しながら、多接合太陽電池の製造コストを削減する。多接合太陽電池は、少なくとも、第1バンドギャップを有する単結晶セル(ミドルセル)と、第1バンドギャップよりも小さな第2バンドギャップを有する多結晶セル(ボトムセル)と、単結晶セルと多結晶セルとを接合するトンネル接合層とを備える。

Description

太陽電池
 本発明は、太陽電池に関し、例えば、バンドギャップの異なる複数の太陽電池セルを接合した多接合太陽電池に適用して有効な技術に関する。
 非特許文献1には、化合物半導体材料を使用したモノリシック型の太陽電池の構造として、(1)格子整合型、(2)順積み格子不整合型、(3)逆積み格子不整合型があることが記載されている。そして、非特許文献1には、逆積み格子不整合型の太陽電池として、InGaP系のトップセルと、GaAs系のミドルセルと、InGaAs系ボトムセルとを使用する構造例が記載されている。
 非特許文献2には、逆積み格子不整合型の太陽電池の構造例として、ボトムセルに単結晶のCIS(CuInSe)からなる半導体材料を使用することが記載されている。
 非特許文献3には、GaInP系のトップセルとGaAs系のミドルセルとをモノリシックに連続形成した単結晶の太陽電池に対して、この太陽電池とは別に形成した多結晶のCIGS(CuIn1-xGaSe)を使用したボトムセルを導電性ナノ粒子で貼り合せたメカニカルスタック型の太陽電池が開示されている。
 特開2004-319934号公報(特許文献1)には、GaInP系のトップセルとGaAs系のミドルセルとをモノリシックに連続形成した単結晶の太陽電池に対して、この太陽電池とは別に形成したInGaAsP系のボトムセルを有する単結晶の太陽電池を透明導電性接着剤で貼り合せたメカニカルスタック型の太陽電池が開示されている。
シャープ技報 第100号・2010年2月 28-31頁 A.W.Walker et. al., International Journal of Photoenergy, Vol.2014 Article ID 913170, 10pages K.Makita et. al., 29th European Photovoltaic Solar Energy Conference and Exhibition(EU PVSEC 2014),(2014) pp 1427-1429
特開2004-319934号公報
 太陽電池は、太陽光の光エネルギーを電気エネルギーに変換する太陽電池セルから構成されている。ここで、太陽光には、様々な光エネルギーを有する光が含まれており、太陽電池セルのバンドギャップ以上のエネルギーを有する光は、太陽電池セルに吸収されて電気エネルギーに変換することができる。一方、太陽光のうち、太陽電池セルのバンドギャップよりも小さいエネルギーを有する光は、太陽電池セルに吸収されない。
 したがって、太陽電池の光電変換効率を向上させるためには、太陽光に含まれる様々な光エネルギーを利用することが重要である。この点に関し、例えば、互いにバンドギャップの異なる複数の太陽電池セルを積層配置して、太陽電池の光電変換効率を高める技術がある。すなわち、バンドギャップの大きな第1太陽電池セルと、バンドギャップの小さな第2太陽電池セルとを接合して多接合太陽電池を構成する技術がある。この技術によれば、太陽光のうち光エネルギーの大きな光は、第1太陽電池セルで吸収される。一方、太陽光のうち光エネルギーの小さな光は、第1太陽電池セルを透過して、第2太陽電池セルで吸収される。この結果、多接合太陽電池によれば、太陽光に含まれる光エネルギーの大きな光とともに光エネルギーの小さな光も吸収して電気エネルギーに変換することができるため、光電変換効率を向上させることができる。
 ここで、例えば、バンドギャップの大きな第1太陽電池セルを構成する半導体材料と、バンドギャップの小さな第2太陽電池セルを構成する半導体材料とは異なり、格子不整合が生じたり、結晶構造が異なることが多い。
 この点に関し、多接合太陽電池では、例えば、導電性ナノ粒子や透明導電性接着剤によって、互いにバンドギャップの異なる複数の太陽電池セルを機械的に接合することが検討されている。この場合、互いにバンドギャップの異なる複数の太陽電池セルの間の格子不整合に関係なく、多接合太陽電池を実現できる。ただし、このようなメカニカルスタック型の多接合太陽電池では、接合部の機械的強度の維持しながら大量生産に適した接合工程の実現が必要とされるが、乗り越えるべきハードルが高いのが現状である。
 これに対し、互いにバンドギャップの異なる複数の太陽電池セルをモノリシックに形成する多接合太陽電池では、メカニカルスタック構造の多接合太陽電池に比べて、接合部の機械的強度を維持しながら大量生産を容易に実現できる可能性がある。ただし、モノリシック型の多接合太陽電池では、互いにバンドギャップの異なる複数の太陽電池セルの間の格子不整合の問題を克服する必要がある。この格子不整合の問題を克服する方法として、格子定数を徐々に変化させて格子不整合を吸収するバッファ層を複数の太陽電池セルの間に形成することが考えられる。ただし、このようなバッファ層を形成する技術では、バッファ層を形成する工程を新たに追加しなければならず、多接合太陽電池の製造工程の複雑化と製造コストの上昇を招くことになる。
 したがって、メカニカルスタック構造の多接合太陽電池に比べて、接合部の機械的強度を維持しながら大量生産を容易に実現できる観点から優位性のあるモノリシック型の多接合太陽電池において、バッファ層を省略しながらも、格子不整合に起因する多接合太陽電池の性能低下を抑制できることが望まれている。
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 一実施の形態における太陽電池は、第1バンドギャップを持つ単結晶層を含む第1光吸収層を有する第1単結晶セルと、第1バンドギャップよりも小さな第2バンドギャップを持つ多結晶層を含む第2光吸収層を有する多結晶セルと、第1単結晶セルと多結晶セルとを接合する第1トンネル接合層とを備える。
 一実施の形態によれば、多接合太陽電池の性能を確保しながら、多接合太陽電池の製造コストを削減することができる。
実施の形態における基本思想を説明する図であって、III-V族化合物半導体材料を使用した多接合太陽電池の積層構造例を示す概念図である。 ボトムセルの代表的な構成例を示す図である。 (a)は、「CIGS」単体のバンド構造と「GaAs」単体のバンド構造を示す図であり、(b)は、「n型GaAs」と「p型CIGS」とを接触させてpn接合を形成した場合のバンド構造を示す図である。 (a)は、「CIGS」単体のバンド構造と「InP」単体のバンド構造を示す図であり、(b)は、「n型InP」と「p型CIGS」とを接触させてpn接合を形成した場合のバンド構造を示す図である。 太陽電池特性を検証するために作製した試料のデバイス構造を示す図である。 (a)は、太陽電池セルの電流電圧特性を示すグラフであり、(b)は、太陽電池パラメータを示す表である。 「試料A」である太陽電池セルにおいて、太陽電池に入射される光の波長と外部量子効率との関係を示すグラフである。 多接合太陽電池の具体的な構成例を示す模式図である。 実施の形態における多接合太陽電池の製造工程を示すフローチャートである。 実施の形態における多接合太陽電池の製造工程を示す断面図である。 図10に続く多接合太陽電池の製造工程を示す断面図である。 図11に続く多接合太陽電池の製造工程を示す断面図である。 図12に続く多接合太陽電池の製造工程を示す断面図である。 エミッタ層の候補材料において、格子定数と電子親和力との関係を示すグラフである。 「InGaAsP」の組成を変化させた場合の格子定数とバンドギャップとの関係を示すグラフである。 「InGa1-aP」と「InGa1-aAs」と「InAs1-b」と「InGa1-aAs1-b」の望ましい組成を示す表である。
 実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。
 <用語の定義>
 本明細書において、「太陽電池セル」とは、少なくとも、窓層と、窓層と接触するエミッタ層と、エミッタ層との間でpn接合を形成するベース層と、ベース層と接触する裏面電界層とを含むセルを言うものとする。この「太陽電池セル」には、例えば、「トップセル」と「ミドルセル」と「ボトムセル」との積層構造からなる多接合太陽電池において、「トップセル」と「ミドルセル」と「ボトムセル」のそれぞれが含まれる。
 ここで、窓層とエミッタ層とは同じ導電型の半導体材料から構成されている。同様に、ベース層と裏面電界層とは同じ導電型の半導体材料から構成されている。
 そして、窓層のバンドギャップは、エミッタ層のバンドギャップよりも大きい。同様に、裏面電界層のバンドギャップは、ベース層のバンドギャップよりも大きい。
 本明細書において、「光吸収層」とは、所定の波長域の光を吸収する層として定義され、「太陽電池セル」の構成要素のうちの少なくともベース層を含む。ただし、「光吸収層」は、ベース層だけでなく、ベース層とエミッタ層の両方を含む場合もある。ただし、本明細書でいう「光吸収層」には、エミッタ層やベース層よりもバンドギャップの大きな窓層と裏面電界層は含まれない。
 本明細書において、「単結晶セル」とは、「光吸収層」が単結晶層から構成されている「太陽電池セル」を言うものとする。一方、「多結晶セル」とは、少なくとも「光吸収層」の一部が多結晶層から構成されている「太陽電池セル」を言うものとする。例えば、少なくともベース層が多結晶層から構成されている「太陽電池セル」や、ベース層とエミッタ層の両方が多結晶層から構成されている「太陽電池セル」や、ベース層が多結晶層から構成され、かつ、エミッタ層がアモルファス層から構成されている「太陽電池セル」も、本明細書でいう「多結晶セル」に該当する。また、「多結晶セル」には、例えば、エミッタ層の上に形成される窓層が単結晶層であるなどのようにベース層以外の付加的な構造に単結晶層を有するセルも含まれる。
 本明細書において、「トンネル接合層」とは、縮退したn型半導体層と縮退したp型半導体層とを接触させることにより形成されるpn接合層をいうものとする。ここで、「縮退したn型半導体層」とは、高濃度にドナーが添加された半導体層であり、フェルミ準位が伝導帯の内部に入り込んでいる半導体層をいう。一方、「縮退したp型半導体層」とは、高濃度にアクセプタが添加された半導体層であり、フェルミ準位が価電子帯の内部に入り込んでいる半導体層をいう。
 <実施の形態における基本思想>
 図1は、本実施の形態における基本思想を説明する図であって、III-V族化合物半導体材料を使用した多接合太陽電池の積層構造例を示す概念図である。
 図1に示す本実施の形態における多接合太陽電池は、モノリシックに形成されたトップセルとミドルセルとボトムセルとを有し、トップセルとミドルセルは、第1トンネル接合層で接続される一方、ミドルセルとボトムセルは、第2トンネル接合層で接続されている。
 ここで、トップセルは、例えば、InGaP系の単結晶セルから構成されており、トップセルのバンドギャップ(Eg)は、1.9eV程度である。また、ミドルセルは、例えば、GaAs系の単結晶セルから構成されており、ミドルセルのバンドギャップは、1.42eV程度である。さらに、ボトムセルは、例えば、単結晶セルではなく、多結晶セルから構成されており、ボトムセルのバンドギャップは、1.0eV~1.1eV程度である。このように構成されているモノリシック型の多接合太陽電池において、本実施の形態における基本思想は、図1に示すように、トップセルとミドルセルとを単結晶セルから構成する一方、ボトムセルを多結晶セルから構成する思想である。
 例えば、モノリシック型の多接合太陽電池を実現する観点からは、トップセルとミドルセルとボトムセルのすべてを単結晶セルから形成することが望ましい。ところが、III-V族化合物半導体材料を使用してトップセルとミドルセルとボトムセルのすべてを単結晶セルから構成すると、例えば、トップセルとミドルセルとの格子整合を実現することができる一方、ミドルセルとボトムセルとの格子整合を実現することが困難となる。つまり、III-V族化合物半導体材料でバンドギャップが1.0eV~1.1eV程度の単結晶セルを実現することは、例えば、「InGaAs」を使用することで実現できる。ところが、「InGaAs」は、ミドルセルを構成する「GaAs」と格子定数が相違して、「InGaAs」と「GaAs」は格子不整合系を構成することになる。したがって、トップセルとミドルセルとはモノリシックに連続形成することができるが、ミドルセルとボトムセルとはモノリシックに連続形成することが困難となる。
 そこで、本実施の形態の基本思想は、ボトムセルを多結晶セルから構成しようとするものである。この場合、たとえ、ボトムセルの格子定数がミドルセルの格子定数と大幅に相違しても、ボトムセルは、粒界を有する多結晶セルとして形成される。すなわち、本実施の形態における基本思想によれば、ボトムセルを単結晶セルとして形成するわけではないことから、ボトムセルとミドルセルとの格子不整合は顕在化せず、多結晶セルであるボトムセルと単結晶セルであるミドルセルとをモノリシックに連続形成することができる。
 このように、単結晶セルと単結晶セルとをモノリシックに積層形成する際には、単結晶セル間の格子整合が重要となる一方、多結晶セルと単結晶セルとをモノリシックに積層形成する際には、多結晶セルと単結晶セルとの間の格子不整合が問題点とならない点に着目した思想が本実施の形態における基本思想である。そして、本実施の形態における基本思想を採用すると、格子不整合が問題点として顕在化しないことから、トップセルとミドルセルとボトムセルとをモノリシックに連続形成することができる。
 特に、本実施の形態における基本思想によれば、ミドルセルとボトムセルとの間の不整合を緩和するためのバッファ層を使用しなくても、トップセルとミドルセルとボトムセルとをモノリシックに連続形成することができる。このため、本実施の形態における基本思想は、製造工程を複雑化せずにモノリシック型の多接合太陽電池を実現できる点で有用な技術的思想である。このように、本実施の形態における基本思想を採用することにより、多接合太陽電池の製造工程の複雑化と製造コストの上昇を抑制できる。
 ただし、本実施の形態における基本思想を具現化するためには、ボトムセルを多結晶セルから構成しても、ボトムセルが太陽電池セルとして充分に機能することが重要である。この点に関し、本発明者は、上述した本実施の形態における基本思想を具現化するための検討を行なっている。以下では、まず、本実施の形態における基本思想を具現化するために本発明者が検討した検討事項について説明する。
 <本発明者が検討した検討事項>
 一般的に太陽電池セルを単結晶セルから構成する場合には、高性能の太陽電池を実現できる。一方、太陽電池セルを多結晶セルから構成すると、太陽電池の性能が著しく低下することが知られている。したがって、ボトムセルを多結晶セルから構成する場合、ボトムセルの太陽電池セルとしての性能を確保することが困難であるように思われる。
 この点に関し、本発明者は、「CIGS」と呼ばれる半導体材料に着目している。この「CIGS」の化学式は、CuIn1-xGaSe2―yである。ここで、c≦1であり、0≦x≦1であり、0≦y≦2である。
 この「CIGS」を使用した太陽電池セルにおいては、単結晶の「CIGS」から太陽電池セルを構成する場合だけでなく、多結晶の「CIGS」から太陽電池セルを構成する場合においても、充分実用性に耐え得る性能を確保できることが知られている。したがって、本実施の形態における基本思想を実現するにあたって、ボトムセルを構成する多結晶セルとして、多結晶の「CIGS」を使用することができる。
 ただし、本発明者は、多接合太陽電池のボトムセルとして、多結晶の「CIGS」を使用する場合、留意すべき検討事項が存在することを見出したので、以下に、この点について説明する。例えば、多結晶の「CIGS」を光吸収層(ベース層)として使用する太陽電池において、光吸収層と接触するエミッタ層には、「CdS(硫化カドミウム)」が使用されることが多い。しかしながら、このエミッタ層に使用される「CdS」に含まれる「Cd(カドミウム)」がモノリシック型の多接合太陽電池の性能に悪影響を及ぼすことを本発明者は見出した。具体的に、本実施の形態における多接合太陽電池のトップセルやミドルセルには、III-V族半導体材料が使用されているが、このIII-V族半導体材料中に「Cd」が拡散すると、III-V族半導体材料において「Cd」がアクセプタとして機能する結果、トップセルおよびミドルセルの太陽電池セルとしての性能を低下させることになる。さらに、モノリシック型の多接合太陽電池を形成する際には、熱処理が加えられることから、ボトムセルの光吸収層を構成する多結晶の「CIGS」の内部にも、エミッタ層から「Cd」が拡散する。そして、多結晶の「CIGS」の内部に拡散した「Cd」は、ドナーとして機能する。ここで、光吸収層は、p型半導体層から構成されることから、p型半導体層である光吸収層にドナーとして機能する「Cd」が拡散するとp型半導体層の機能が抑制される。つまり、光吸収層に「Cd」が拡散すると、ボトムセルにおいても太陽電池の性能を低下させることになる。したがって、モノリシック型の多接合太陽電池におけるボトムセルのエミッタ層として、「CdS」を使用することは回避すべきであり、「CdS」に替わる新規な材料を検討する必要がある。
 <ボトムセルの構成>
 図2は、ボトムセルの代表的な構成例を示す図である。
 図2において、ボトムセルは、裏面電界層と、裏面電界層上に形成されたベース層と、ベース層上に形成されたエミッタ層と、エミッタ層上に形成された窓層とを有する。
 ここで、裏面電界層とベース層はp型半導体層から構成されている一方、エミッタ層と窓層は、n型半導体層から構成されている。これにより、ボトムセルにおいては、ベース層とエミッタ層との境界にpn接合が形成されることになる。そして、窓層は、エミッタ層よりもバンドギャップの大きな材料から構成され、かつ、裏面電界層は、ベース層よりもバンドギャップの大きな材料から構成されている。このようにして、本実施の形態におけるボトムセルが構成されている。
 次に、ボトムセルを構成する材料について説明する。
 本実施の形態において、p型半導体層から構成されるベース層および裏面電界層のそれぞれは、多結晶の「p型CIGS」から構成されている。このとき、ベース層を構成する「p型CIGS」に含まれる「Ga」の含有率は、裏面電界層を構成する「p型CIGS」に含まれる「Ga」の含有率よりも低くなっている。言い換えれば、ベース層を構成する「p型CIGS」に含まれる「In」の含有率は、裏面電界層を構成する「p型CIGS」に含まれる「In」の含有率よりも高くなっている。これにより、裏面電界層のバンドギャップをベース層のバンドギャップよりも大きくすることができる。なぜなら、「CIGS」においては、「Ga」の含有率が高くなればなるほどバンドギャップが大きくなるからである。言い換えれば、「CIGS」においては、「In」の含有率が高くなればなるほどバンドギャップが小さくなるからである。そして、ベース層に「p型CIGS」を使用する場合、ベース層とエミッタ層との間でpn接合を形成するために、n型半導体層から構成されるエミッタ層としては、「CdS」が一般的に使用されるが、上述した理由から、多接合太陽電池のボトムセルのエミッタ層として「CdS」を使用することは回避すべきであり、「CdS」に替わる新規な材料を使用する必要がある。
 <ボトムセルのエミッタ層に使用する材料の検討>
 まず、ボトムセルのエミッタ層に使用する材料を選定する際の設計指針として、ミドルセルと格子整合する材料を選択することが考えられる。なぜなら、この設計指針によれば、ミドルセルとボトムセルのエミッタ層との間の格子不整合を抑制できるからである。
 この点に関し、この設計指針に沿う材料としては、「GaAs」を挙げることができる。しかしながら、本発明者の検討によると、ボトムセルのエミッタ層として「n型GaAs」を使用すると、ボトムセルの太陽電池特性が低下することが明らかになった。
 以下では、この点について説明する。
 図3(a)は、「CIGS」単体のバンド構造と「GaAs」単体のバンド構造を示す図である。図3(a)において、「Ec」は伝導帯の下端を示す一方、「Ev」は価電子帯の上端を示している。このとき、「Ec」と「Ev」とのエネルギー差がバンドギャップに該当する。一方、真空準位と「Ev」との間のエネルギー差が電子親和力に該当する。
 まず、図3(a)において、バンドギャップに着目すると、「CIGS」のバンドギャップは、1.0eV~1.1eVである。一方、「GaAs」のバンドギャップは、1.4eVである。したがって、「GaAs」のバンドギャップは、「CIGS」のバンドギャップよりも大きいことがわかる。続いて、電子親和力に着目すると、「CIGS」の電子親和力は、4.3eVであるのに対し、「GaAs」の電子親和力は、4.1eVであり、「GaAs」の電子親和力は、「CIGS」の電子親和力よりも小さくなっている。
 ここで、ボトムセルの太陽電池特性を良好にするためには、ボトムセルのエミッタ層を構成する材料の電子親和力と、ボトムセルのベース層を構成する材料の電子親和力とがほぼ等しいことが望ましい。なぜなら、例えば、ベース層の電子親和力に比べて、エミッタ層の電子親和力が小さいと、p型半導体層であるベース層からn型半導体層であるエミッタ層に電子が流れにくくなる結果、太陽電池の特性の1つである短絡電流が減少するからである。一方、ベース層の電子親和力に比べて、エミッタ層の電子親和力が大きいと、伝導帯(Ec)が不連続な接合となり、太陽電池の特性の1つである開放電圧が小さくなるからである。したがって、太陽電池特性を向上するためには、電子親和力がほぼ等しくなるように、エミッタ層を構成する材料を選択することが望ましいことになる。
 この点に関し、図3(a)に示すように、ボトムセルのエミッタ層として「GaAs」を採用すると、この「GaAs」の電子親和力は、ボトムセルのベース層を構成する「CIGS」の電子親和力よりも小さいことから、良好な太陽電池特性を得られない可能性がある。特に、「GaAs」の電子親和力が「CIGS」の電子親和力よりも小さいことに起因して、「n型GaAs」をボトムセルのエミッタ層とするとともに、「p型CIGS」をボトムセルのベース層としてpn接合を形成すると、バンド構造にバリアが形成される結果、良好な太陽電池特性が得られないことが定性的に理解できる。
 以下に、この点について説明する。
 図3(b)は、「n型GaAs」と「p型CIGS」とを接触させてpn接合を形成した場合のバンド構造を示す図である。図3(b)に示すように、「GaAs」の電子親和力が「CIGS」の電子親和力よりも小さいことに起因して、pn接合の境界領域にバリアが形成されることがわかる。これにより、バリアによって「p型CIGS」の伝導帯から「n型GaAs」の伝導帯への電子の流れが阻害される。すなわち、光吸収によって「p型CIGS」からなるベース層の伝導帯に励起された電子は、「p型CIGS」からなるベース層と「n型GaAs」からなるエミッタ層との界面に存在する再結合中心にトラップされやすくなり、太陽電池としての光電流が減少する。つまり、「GaAs」と「CIGS」の格子定数差は、後述する「InP」と「CIGS」の格子定数差よりも小さいため、転位の発生が少なく良好なエピタキシャル成長を実現することができる一方、「GaAs」の電子親和力と「CIGS」の電子親和力の相違に起因するバリアによって、良好な太陽電池特性を得ることができない可能性がある。このように、ボトムセルのエミッタ層として「n型GaAs」を採用しても、良好な太陽電池特性が得られない可能性があることを定性的に理解できる。つまり、良好な太陽電池特性を得る観点からは、ボトムセルのエミッタ層を構成する材料を選定する設計指針として、ミドルセルと格子整合するとともに、ボトムセルのベース層を構成する「p型CIGS」との格子定数とほぼ一致する材料を選択する基準は不充分であることがわかる。具体的には、良好な太陽電池特性を得るために、ボトムセルのエミッタ層を構成する材料を選定する設計指針として、ボトムセルのベース層を構成する「CIGS」の電子親和力とほぼ等しい電子親和力を有する材料をボトムセルのエミッタ層として採用するという設計指針が望ましいことがわかる。
 そこで、本発明者は、この設計指針に基づいて、ボトムセルのエミッタ層を構成する材料として、「InP」を新規に見出した。
 以下では、ボトムセルのエミッタ層を構成する材料として「InP」を採用することにより、良好な太陽電池特性が得られることを定性的に説明する。
 図4(a)は、「CIGS」単体のバンド構造と「InP」単体のバンド構造を示す図である。図4(a)において、電子親和力に着目すると、「CIGS」の電子親和力は、4.3eVであるのに対し、「InP」の電子親和力も、4.3eVであり、「InP」の電子親和力は、「CIGS」の電子親和力と同等であることがわかる。
 図4(b)は、「n型InP」と「p型CIGS」とを接触させてpn接合を形成した場合のバンド構造を示す図である。図4(b)に示すように、「InP」の電子親和力が「CIGS」の電子親和力と同等であることから、pn接合の境界領域にバリアが形成されないことがわかる。これにより、バリアに起因する電子の散乱や再結合が起こりにくくなる結果、光吸収によって「p型CIGS」からなるベース層の伝導帯に励起された電子は、「n型InP」からなるエミッタ層に高効率で拡散する。このことは、太陽電池としての光電流が多くなることを意味する。このことから、ボトムセルのエミッタ層を構成する材料として「n型InP」を採用すると、良好な太陽電池特性を得ることができることを定性的に理解できる。そして、「n型InP」を多結晶から構成することにより、ボトムセルのエミッタ層として「n型InP」を採用する場合でも、ミドルセルとボトムセルとの格子不整合は問題点として顕在化しない。このように本実施の形態では、ボトムセルのベース層とエミッタ層の両方を多結晶から構成している。これにより、本実施の形態では、ボトムセルを太陽電池セルとして機能させながら、多接合太陽電池をモノリシックに連続形成することができる。
 <検証結果>
 上述したように、本実施の形態では、ボトムセルのベース層を構成する「CIGS」の電子親和力とほぼ等しい電子親和力を有する材料をボトムセルのエミッタ層として採用するという設計指針に基づき、ボトムセルのエミッタ層を「n型InP」から構成している。以下では、ベース層に「p型CIGS」を使用し、かつ、エミッタ層に「n型InP」を使用した太陽電池セルについての検証結果を説明する。なお、比較対象として、ベース層に「p型CIGS」を使用し、かつ、エミッタ層に「n型GaAs」を使用した太陽電池セルについての検証結果も説明する。
 図5は、太陽電池特性を検証するために作製した試料のデバイス構造を示す図である。
 図5において、試料10は、例えば、金-インジウム(Au-In)からなる電極11が形成された基板12と、基板12上に形成されたベース層13と、ベース層13上に形成された電界層14と、電界層14上に形成された透明導電層15と、透明導電層15上に形成されたグリッド電極16から構成されている。
 ここで、ベース層13および電界層14は、多結晶の「CIGS」から構成されている。また、透明導電層15は、「ZnO(酸化亜鉛)」から構成されている。さらに、グリッド電極16は、「Al(アルミニウム)」から構成されている。
 一方、基板12は、n型InP基板あるいはn型GaAs基板から構成されている。特に、基板12をn型InP基板から構成する試料10を「試料A」と呼び、基板12をn型GaAs基板から構成する試料10を「試料B」と呼ぶことにする。
 「試料A」は、ベース層に「p型CIGS」を使用し、かつ、エミッタ層に「n型InP」を使用した太陽電池セルに対応する。一方、「試料B」は、ベース層に「p型CIGS」を使用し、かつ、エミッタ層に「n型GaAs」を使用した太陽電池セルに対応する。
 「試料A」は、以下のようにして作製される。すなわち、n型InP基板からなる基板12を有機溶剤とアルカリ洗浄液によって洗浄した後、分子線エピタキシー装置(MBE(Molecular Beam Epitaxy)装置)に導入する。そして、高真空中において300℃の脱ガス処理を行なった後、原子状水素雰囲気下において、基板12を480℃に加熱して酸化膜を除去する。次に、基板12の温度を500℃にして、厚さ1.0μmの「CIGS」からなるベース層13を同時蒸着によって基板12上に成膜する。このとき、「In」と「Ga」のモル比(In:Ga=1-x:x)をx=0.1にするとともに、「Cu」と「III族元素」のモル比(Cu:III族元素=c:1)をc=0.9とし、「NaF」を添加することにより、「CIGS」のホール濃度を1016/cm程度とする。続いて、厚さ0.5μmの「CIGS」からなる電界層14をベース層13上に成膜する。このとき、「In」と「Ga」のモル比を1-x:xとしてx=0.4にするとともに、「Cu」と「III族元素」のモル比をc=0.9とする。その後、電界層14上に透明導電層15を形成する。透明導電層15は、例えば、スパッタリング法を使用することにより、アルミニウム(Al)を添加した厚さが0.3μmの「ZnO」から形成することができる。そして、透明導電層15上にグリッド電極16を形成する。このグリッド電極16は、例えば、アルミニウム(Al)から構成されており、例えば、蒸着法を使用することにより形成することができる。
 以上のようにして、「試料A」である太陽電池セルを作製することができる。
 なお、「試料B」も「試料A」とほぼ同様にして作製することができる。「試料B」の作製方法において、「試料A」の作製方法と相違する点は、基板12としてn型GaAs基板を使用する点と、原子状水素雰囲気下において、n型GaAs基板からなる基板12を560℃に加熱して酸化膜を除去する点である。「試料B」の作製方法におけるその他の工程は、「試料A」の作製方法におけるその他の工程と同様である。
 以上のようにして、「試料B」である太陽電池セルを作製することができる。
 図6(a)は、太陽電池セルの電流電圧特性を示すグラフである。
 図6(a)に示す太陽電池セルの電流電圧特性において、実線は「試料A」の電流電圧特性を示している一方、破線は「試料B」の電流電圧特性を示している。
 また、図6(b)においては、「試料A」と「試料B」のそれぞれについて太陽電池パラメータが示されている。具体的に、太陽電池パラメータは、変換効率と開放電圧と短絡電流と曲線因子である。
 図6(a)において、「試料A」の電流電圧特性は、太陽電池セルとしての電流電圧特性が実現されていることがわかる。特に、図6(b)に示すように、「試料A」では、変換効率が「2.2%」、開放電圧(Voc)が「0.32V」、短絡電流密度(Jsc)が「12.0mA/cm」、曲線因子が「0.56」であり、太陽電池セルとして機能していることがわかる。
 一方、図6(a)において、「試料B」の電流電圧特性は、太陽電池セルとしての電流電圧特性を実現していないがわかる。特に、図6(b)に示すように、「試料B」では、変換効率が「0.0%」、開放電圧(Voc)が「0.0V」、短絡電流密度(Jsc)が「0.0mA/cm」、曲線因子が「-」(測定不能)であり、太陽電池セルとして機能していないことがわかる。
 これらの結果は、図3および図4に示すバンド構造による説明と整合する。すなわち、図6(a)および図6(b)に示す検証結果から、ベース層を構成する「CIGS」の電子親和力とほぼ等しい電子親和力を有する材料をエミッタ層として採用するという設計指針に基づいてエミッタ層の材料を選定することにより、良好な太陽電池特性を有する太陽電池セルを実現することができることが裏付けられている。
 さらに、図7は、「試料A」である太陽電池セルにおいて、太陽電池に入射される光の波長と外部量子効率との関係を示すグラフである。図7に示すように、「試料A」では、光吸収が850nmよりも長い長波長域で生じていることがわかる。この結果は、「試料A」のベース層である「CIGS」が光吸収層として機能していることを示しており、「試料A」が多接合太陽電池のボトムセルとして充分に機能することが裏付けられている。
 <設計指針の小括>
 以上のことから、本実施の形態における基本思想は、トンネル接合層を介した単結晶セルと多結晶セルとの積層構造で多接合太陽電池を形成することにより、バッファ層を使用することなくモノリシックな多接合太陽電池を実現できる点にある。そして、このような構造を有する多接合太陽電池を実現するにあたっては、多結晶セルを良好な太陽電池特性を有する太陽電池セルとすることが重要である。このとき、多結晶セルは、互いに接触してpn接合を形成するベース層とエミッタ層とを有するが、多結晶セルに良好な太陽電池特性を持たせるためには、ベース層を構成する半導体材料の電気親和力とエミッタ層を構成する半導体材料の電気親和力とが同等になるように、ベース層の半導体材料とエミッタ層の半導体材料とを選定することが重要である。例えば、多接合太陽電池のボトムセルとして多結晶セルを採用することを考えると、長波長域の光を吸収できるようにバンドギャップを調整可能な点と多結晶でも充分な太陽電池特性が得られる点などから、ボトムセルのベース層として多結晶の「p型CIGS」を採用することが有用である。そして、ボトムセルのベース層として多結晶の「p型CIGS」を採用する場合、ボトムセルのベース層を構成する「p型CIGS」の電子親和力とほぼ等しい電子親和力を有する材料をボトムセルのエミッタ層として採用するという設計指針に基づいてエミッタ層の材料を選定することになる。この点に関し、本発明者は、上述した設計指針に基づき、ボトムセルのエミッタ層として多結晶の「n型InP」を新規に採用するに至っている。そして、ベース層に多結晶の「p型CIGS」を採用し、かつ、エミッタ層に多結晶の「n型InP」を採用した太陽電池セル(「試料A」)によれば、良好な太陽電池特性が得られることが上述した検証結果から裏付けられている。
 このことから、本実施の形態における基本思想は、トンネル接合層を介した単結晶セルと多結晶セルとの積層構造を採用し、かつ、多結晶セルの構成材料を電子親和力の一致に着目して決定することにより、多結晶セルに良好な太陽電池特性を持たせながら、モノリシックな多接合太陽電池を実現することができる点で優れた技術的思想であることがわかる。そして、多結晶セルに良好な太陽電池特性を持たせながら、モノリシックな多接合太陽電池を実現することができるということは、多接合太陽電池の性能を確保しながら、多接合太陽電池の製造コストを削減することができることを意味する。このことから、本実施の形態における基本思想は、太陽電池の性能の向上と太陽電池の製造コストの削減とを両立する点で優れた技術的意義を有していることがわかる。
 <多接合太陽電池の具体的な構成>
 次に、本実施の形態における基本思想を具現化した多接合太陽電池について説明する。
 図8は、多接合太陽電池の具体的な構成例を示す模式図である。
 図8において、多接合太陽電池1000は、支持基板100と、支持基板100上に形成された裏面電極101と、裏面電極101上に形成されたボトムセル200と、ボトムセル200上に形成されたトンネル接合層300と、トンネル接合層300上に形成されたミドルセル400とを有する。さらに、多接合太陽電池1000は、ミドルセル400上に形成されたトンネル接合層500と、トンネル接合層500上に形成されたトップセル600と、トップセル600上に形成されたn型GaAs層(コンタクト層118)と、コンタクト層118上に形成された表面電極119とを有する。
 トップセル600は、単結晶セルから構成されている。具体的に、トップセル600は、裏面電界層114と、裏面電界層114上に形成されたベース層115と、ベース層115上に形成されたエミッタ層116と、エミッタ層116上に形成された窓層117から構成されている。例えば、裏面電界層114は、「p型AlInP」から構成され、ベース層115は、「p型InGaP」から構成されている。特に、トップセル600においては、ベース層115を構成する「p型InGaP」のバンドギャップが1.9eV程度となっている。また、例えば、エミッタ層116は、「n型InGaP」から構成され、窓層117は、「n型AlInP」から構成されている。このように構成されているトップセル600の各層は、例えば、MOVPE法(metal-organic vapor phase epitaxy)やMBE法(Molecular Beam Epitaxy)やHVPE法(Hydride Vapor Phase Epitaxy)を使用することにより形成することができる。なお、トップセル600の「光吸収層」は、ベース層115とエミッタ層116とを含む。
 ミドルセル400は、単結晶セルから構成されている。具体的に、ミドルセル400は、裏面電界層108と、裏面電界層108上に形成されたベース層109と、ベース層109上に形成されたエミッタ層110と、エミッタ層110上に形成された窓層111から構成されている。例えば、裏面電界層108は、「p型InGaP」から構成され、ベース層109は、「p型GaAs」から構成されている。特に、ミドルセル400においては、ベース層109を構成する「p型GaAs」のバンドギャップが1.42eV程度となっている。また、例えば、エミッタ層110は、「n型GaAs」から構成され、窓層111は、「n型AlInP」から構成されている。このように構成されているミドルセル400の各層は、例えば、MOVPE法やMBE法やHVPE法を使用することにより形成することができる。なお、ミドルセル400の「光吸収層」は、ベース層109とエミッタ層110とを含む。
 次に、トップセル600とミドルセル400とは、トンネル接合層500によって接合されている。具体的に、トップセル600とミドルセル400とは、トンネル接合層500によって電気的に直列接続されている。このトンネル接合層500は、縮退したn型半導体層と縮退したp型半導体層との積層構造から構成されている。具体的には、図8に示すように、トンネル接合層500は、高濃度のキャリア濃度を有する「n型InGaP層112」と高濃度のキャリア濃度を有する「p型AlGaAs層113」とのpn接合から構成される。このトンネル接合層500を構成する各層も、例えば、MOVPE法やMBE法やHVPE法を使用することにより形成することができる。
 続いて、ボトムセル200は、多結晶セルから構成されている。具体的に、ボトムセル200は、裏面電界層102と、裏面電界層102上に形成されたベース層103と、ベース層103上に形成されたエミッタ層104と、エミッタ層104上に形成された窓層105から構成されている。例えば、裏面電界層102は、「p型CIGS」から構成され、ベース層103も、「p型CIGS」から構成されている。特に、ボトムセル200においては、ベース層103を構成する「p型CIGS」のバンドギャップが1.0eV~1.1eV程度となっている。また、例えば、エミッタ層104は、「n型InP」から構成され、窓層105は、「n型InGaP」から構成されている。このとき、ボトムセル200の「光吸収層」は、ベース層103とエミッタ層104とを含む。
 そして、ミドルセル400とボトムセル200とは、トンネル接合層300によって接合されている。具体的に、ミドルセル400とボトムセル200とは、トンネル接合層300によって電気的に直列接続されている。このトンネル接合層300は、縮退したn型半導体層と縮退したp型半導体層との積層構造から構成されている。具体的には、図8に示すように、トンネル接合層300は、高濃度のキャリア濃度を有する「n型GaAs層106」と高濃度のキャリア濃度を有する「p型GaAs層107」とのpn接合から構成される。このトンネル接合層300を構成する各層も、例えば、MOVPE法やMBE法やHVPE法を使用することにより形成することができる。
 ボトムセル200において、窓層105は、トンネル接合層300の「n型GaAs」と格子整合していることから単結晶層から構成されている。一方、この窓層105と接触するエミッタ層104は、「n型InP」から構成されており、窓層105を構成する「n型GaAs」と格子不整合となる。このことから、「n型InP」から構成されるエミッタ層104は、多結晶となる。「n型InP」からなるエミッタ層104は、「p型CIGS」から構成されるベース層103とpn接合を形成する。このとき、エミッタ層104を構成する「n型InP」の電子親和力とベース層を構成する「p型CIGS」の電子親和力とが一致することから、高効率な太陽電池を実現することができる。エミッタ層104も、例えば、MOVPE法やMBE法やHVPE法を使用することにより形成できる。
 ボトムセル200において、ベース層103は、p型の化合物半導体材料から構成されており、例えば、厚さが0.5μm~5.0μmである。このベース層103は、I族元素、III族元素およびVI族元素からなるカルコパイライト構造を有する。ここで、例えば、I族元素が銅(Cu)であり、III族元素がインジウム(In)および/またはガリウム(Ga)であり、VI族元素が硫黄(S)および/またはセレン(Se)である。
 このようにボトムセル200のベース層103は、「CIGS」から構成されている。「CIGS」は、その組成として、インジウム(In)とガリウム(Ga)とのモル比を1-x:xとすると、0≦x≦1であり、ベース層103のバンドギャップを1.0eV~1.1eV程度にするためには、xは、0以上0.2以下であることが望ましい。
 ベース層を構成する多結晶の「CIGS」は、「Cu」とIII族元素(「In」および「Ga」)のモル比をc:1とすると、cが1以下では、「Cu欠乏」となる一方、cが1よりも大きくなると「Cu過剰」となる。ここで、多結晶の「CIGS」において、ホール密度を増大させるとともに、トップセル600およびミドルセル400への「Cuイオン」の熱拡散を抑制する観点から、cは1以下であることが望ましい。
 次に、ボトムセル200の裏面電界層102は、p型の化合物半導体材料から構成されており、例えば、厚さが0.5μm~2.0μmである。この裏面電界層102は、多結晶の「CIGS」から構成されており、「Cu」および「Se」と、III族元素として、「In」および/または「Ga」を含むことが望ましい。裏面電界層102を構成する多結晶の「CIGS」は、その組成として、インジウム(In)とガリウム(Ga)とのモル比を1-x:xとすると、xは、0.3以上0.6以下であることが望ましい。これにより、裏面電界層102のバンドギャップが1.2eV以上1.4eV以下となり、裏面電界層102のバンドギャップは、ベース層103のバンドギャップよりも大きくなる。
 なお、裏面電界層102においても、「Cu」とIII族元素(「In」および「Ga」)のモル比をc:1とする場合、ホール密度を増大させるとともに、トップセル600およびミドルセル400への「Cuイオン」の熱拡散を抑制する観点から、cは1以下であることが望ましい。
 ベース層103および裏面電界層のそれぞれの製造方法としては、例えば、真空蒸着法、スパッタリング法+セレン化法を使用することができる。具体的に、ベース層103および裏面電界層のそれぞれの製造方法としては、多元真空蒸着法、MBE法、MOVPE法、スパッタリング法などを使用することができる。
 続いて、ボトムセル200の裏面電界層102と接触する裏面電極101は、裏面電界層102と裏面電極101とのオーミック接触を確保するために、「In」を含むことが望ましい。また、裏面電極101は、「Au(金)」を使用することもできる。したがって、例えば、裏面電極101は、「Au-In」から構成することができ、例えば、蒸着法や熱拡散法を使用して形成することができる。
 支持基板100は、裏面電極101と電気的に接合される。この支持基板100は、例えば、電極を有する絶縁性無機基板や電極を有するフレキシブル基板から構成できる。
 以上のようにして、本実施の形態における多接合太陽電池1000が構成されている。
 ここで、単結晶セルからなるトップセル600と単結晶セルからなるミドルセル400とは、格子整合しており、トップセル600の光吸収層とミドルセル400の光吸収層の間の格子定数差は、0.5%以下である。一方、単結晶セルからなるミドルセル400と多結晶セルからなるボトムセル200とは、格子不整合となっており、ミドルセル400の光吸収層とボトムセル200の光吸収層の間の格子定数差は、2%以上である。
 このように本実施の形態における多接合太陽電池1000では、ミドルセル400とボトムセル200とが格子不整合しているが、ボトムセル200が単結晶セルではなく多結晶セルから構成されているため、ミドルセル400とボトムセル200との間の格子不整合は問題とならない。このため、本実施の形態によれば、単結晶セルからなるトップセル600と単結晶構造からなるトンネル接合層500と単結晶セルからなるミドルセル400と単結晶構造からなるトンネル接合層300と多結晶セルからなるボトムセル200とをモノリシック(一体的)に形成することができる。
 <多接合太陽電池の動作>
 多接合太陽電池1000は、上記のように構成されており、以下では、図8を参照しながら、多接合太陽電池1000の動作について説明する。
 まず、図8において、トップセル600の上方から可視光や赤外光を含む太陽光が照射されると、トップセル600の「n型AlInP」に太陽光が照射される。このとき、「n型AlInP」は窓層117として機能し、少なくとも太陽光の主成分である可視光や赤外光に対して透光性を有する。このことから、太陽光は、「n型AlInP」を透過する。次に、「n型AlInP」を透過した太陽光は、「n型AlInP」の下層に位置するトップセル600の内部に入射される。具体的には、太陽光は、「n型InGaP」と、「n型InGaP」と「p型InGaP」との境界領域に形成されているpn接合部と、「p型InGaP」に入射する。このとき、「n型InGaP」と「p型InGaP」は、1.9eV程度のバンドギャップを有することから、太陽光のうち、1.9eV以上の光エネルギーを有する光は吸収される。具体的には、「InGaP」(「n型InGaP」と「p型InGaP」)の価電子帯に存在する電子が、太陽光から供給される光エネルギーを受け取って伝導帯に励起される。これにより、伝導帯に電子が蓄積されるとともに価電子帯に正孔が生成される。このようにして、トップセル600に太陽光が照射されることにより、太陽光に含まれる1.9eV以上の光エネルギーを有する光によって、「InGaP」の伝導帯に電子が励起されるとともに、「InGaP」の価電子帯に正孔が生成される。そして、pn接合部の一方を構成する「n型InGaP」の伝導帯は、pn接合部の他方を構成する「p型InGaP」の伝導帯よりも電子的に見てエネルギーが低い位置にある。このことから、伝導帯に励起された電子は、「n型InGaP」に移動して、「n型InGaP」に電子が蓄積される。一方、価電子帯に存在する正孔は、「p型InGaP」に移動して、「p型InGaP」に正孔が蓄積する。この結果、「p型InGaP」と「n型InGaP」との間に電圧(V3)が生じる。
 一方、太陽光のうち、1.9eVよりも小さな光エネルギーを有する光は、トップセル600で吸収されずに、トップセル600を透過する。これにより、図8において、太陽光のうち、1.9eVよりも小さな光エネルギーを有する光は、トンネル接合層500を介してトップセル600の下層に配置されているミドルセル400に入射する。具体的に、太陽光のうち、1.9eVよりも小さな光エネルギーを有する光は、窓層として機能する「n型AlInP」を介して、「n型GaAs」と、「n型GaAs」と「p型GaAs」との境界領域に形成されているpn接合部と、「p型GaAs」に入射する。このとき、「n型GaAs」と「p型GaAs」は、1.42eVのバンドギャップを有することから、太陽光のうち、1.9eVよりも小さく、かつ、1.42eV以上の光エネルギーを有する光は吸収される。具体的には、「GaAs」(「n型GaAs」と「p型GaAs」)の価電子帯に存在する電子が、太陽光から供給される光エネルギーを受け取って伝導帯に励起される。これにより、伝導帯に電子が蓄積されるとともに価電子帯に正孔が生成される。このようにして、ミドルセル400に太陽光が照射されることにより、1.9eVよりも小さく、かつ、1.42eV以上の光エネルギーを有する光によって、「GaAs」の伝導帯に電子が励起されるとともに、「GaAs」の価電子帯に正孔が生成される。そして、pn接合部の一方を構成する「n型GaAs」の伝導帯は、pn接合部の他方を構成する「p型GaAs」の伝導帯よりも電子的に見てエネルギーが低い位置にある。このことから、伝導帯に励起された電子は、「n型GaAs」に移動して、「n型GaAs」に電子が蓄積される。一方、価電子帯に存在する正孔は、「p型GaAs」に移動して、「p型GaAs」に正孔が蓄積する。この結果、「p型GaAs」と「n型GaAs」との間に電圧(V2)が生じる。
 これに対し、太陽光のうち、1.42eVよりも小さな光エネルギーを有する光は、ミドルセル400で吸収されずに、ミドルセル400を透過する。これにより、図8において、太陽光のうち、1.42eVよりも小さな光エネルギーを有する光は、トンネル接合層300を介してミドルセル400の下層に配置されているボトムセル200に入射する。具体的に、太陽光のうち、1.42eVよりも小さな光エネルギーを有する光は、窓層105である「n型InGaP」を介して、エミッタ層104である「n型InP」と、ベース層103である「p型CIGS」と、「n型InP」と「p型CIGS」との間のpn接合部とからなる光吸収層に入射する。このとき、ベース層103である「p型CIGS」は、1.0eV~1.1eV程度のバンドギャップを有することから、太陽光のうち、1.42eVよりも小さく、かつ、1.0eV~1.1eV以上の光エネルギーを有する光は吸収される。具体的には、光吸収層の価電子帯に存在する電子が、太陽光から供給される光エネルギーを受け取って伝導帯に励起される。これにより、伝導帯に電子が蓄積されるとともに価電子帯に正孔が生成される。このようにして、ボトムセル200に太陽光が照射されることにより、1.42eVよりも小さく、かつ、1.0eV~1.1eV以上の光エネルギーを有する光によって、光吸収層の伝導帯に電子が励起されるとともに、光吸収層の価電子帯に正孔が生成される。この結果、光吸収層のベース層103に電子が蓄積される一方、価電子帯に存在する正孔は、光吸収層のエミッタ層104に正孔が蓄積する。この結果、光吸収層のベース層と光吸収層のエミッタ層との間に電圧(V1)が生じる。
 ここで、トップセル600とミドルセル400は、トンネル接合層500によって直列接続されているとともに、ミドルセル400とボトムセル200は、トンネル接合層300によって直列接続されている。つまり、トップセル600とミドルセル400とボトムセル200は、直列接続されていることになる。この結果、直列接続されているトップセル600とミドルセル400とボトムセル200からなる多接合太陽電池1000には、電圧(V1)と電圧(V2)と電圧(V3)とを合わせた電圧が生じる。そして、例えば、表面電極119と裏面電極101との間に負荷を接続すると、表面電極119から負荷を通って裏面電極101に電子が流れる。言い換えれば、裏面電極101から負荷を通って表面電極119に電流が流れる。このようにして、多接合太陽電池1000を動作させることにより、負荷を駆動することができる。
 このようにして、多接合太陽電池1000によれば、太陽光に含まれる光エネルギーの大きな光とともに光エネルギーの小さな光も吸収して電気エネルギーに変換することができるため、光電変換効率を向上させることができる。つまり、多接合太陽電池1000によれば、単一の太陽電池では利用することができない光エネルギーの小さな光も利用することができることから、太陽光の利用効率を向上できる点で優れている。
 <多接合太陽電池の製造方法>
 続いて、多接合太陽電池1000の製造方法について図面を参照しながら説明する。
 図9は、本実施の形態における多接合太陽電池の製造工程を示すフローチャートである。
 図10~図13は、本実施の形態における多接合太陽電池の製造工程を示す模式的な断面図である。以下では、図9~図13を使用して、本実施の形態における多接合太陽電池の製造工程について説明することにする。
 まず、図10に示すように、例えば、GaAs基板からなる半導体基板120上に犠牲層121を形成する(図9のS101)。この犠牲層121は、例えば、「AlAs」からなる。次に、犠牲層121上にコンタクト層118を形成する(図9のS102)。このコンタクト層118は、例えば、「n型GaAs」から構成される。
 続いて、コンタクト層118上にトップセル600を形成した後、トップセル600上に第1トンネル接合層(トンネル接合層500)を形成し、この第1トンネル接合層上にミドルセル400を形成する。その後、ミドルセル400上に第2トンネル接合層(トンネル接合層300)を形成する。そして、第2トンネル接合層上に窓層105を形成する(図9のS103)。窓層105は、例えば、「n型InGaP」から構成される。ここまでの層は、すべて単結晶層で形成される。また、ここまでの工程で形成される層は、MOVPE法、MBE法、HVPE法を使用することにより形成することができる。
 次に、窓層105上にエミッタ層104を形成する(図9のS104)。エミッタ層104は、例えば、多結晶の「n型InP」から構成される。この工程で形成されるエミッタ層104は、MOVPE法、MBE法、HVPE法、スパッタリング法を使用することにより形成することができる。
 続いて、図11に示すように、エミッタ層104上にベース層103を形成する(図9のS105)。このベース層103は、例えば、多結晶の「p型CIGS」から構成される。この多結晶の「p型CIGS」は、多元真空蒸着法、MBE法、MOVPE法、スパッタリング法などを使用することにより形成することができ、例えば、その厚さは、0.5μm~3.0μm程度である。ここで、例えば、化合物半導体層として「p型CIGS」を形成する場合には、蒸発源として「Cu」、「In」、「Ga」、「Se」を使用した同時蒸着を使用することができる。また、この際、「NaF」を供給することにより、「p型CIGS」に「Na」が添加されることになる。この結果、「p型CIGS」のキャリア濃度を増大させることができ、これによって変換効率の向上を図ることができる。さらに、「Cu」とIII族元素とのモル比(c:1)において、cを1未満とする条件で「p型CIGS」を成膜することにより、エミッタ層とベース層と間のヘテロ界面の高品質化と、トップセル600およびミドルセル400への「Cu」の熱拡散とを抑制することができる。例えば、c=0.9とすることができる。
 なお、「p型CIGS」の成膜工程において、「p型CIGS」の厚さ方向にIII族元素全体に対する「Ga」の組成比に勾配を持たせるようにしてもよい。ベース層103を構成する「p型CIGS」においては、「In」と「Ga」とのモル比を1-x:xとした場合、x=0.0~0.2程度とする。一方、ベース層103上に形成される裏面電界層102も、「p型CIGS」から構成されるが、x=0.3~0.6程度とする。これにより、裏面電界層102のバンドギャップをベース層のバンドギャップよりも大きくすることができる。ここで、「In」と「Ga」との組成比は、蒸発源の蒸発速度や分子線強度によって制御することができる。
 次に、裏面電界層102上に裏面電極101を形成する(図9のS106)。この裏面電極101は、例えば、「Au-In」から構成することができる。その後、例えば、導電性接着剤を使用することにより、裏面電極101と支持基板100とを貼り合せる(図9のS107)。支持基板100の構成材料は、例えば、金属や樹脂や半導体であってもよい。さらには、支持基板100として、軽量なフレキシブル基板を採用すれば、最終的にフレキシブルな多接合太陽電池を製造することができる。
 続いて、図12に示すように、半導体基板120を分離する(図9のS108)。具体的に、半導体基板120を積層構造体から分離するためには、半導体基板120とコンタクト層118との間に形成されている犠牲層121で分離する。このことから、本実施の形態における多接合太陽電池の製造工程では、太陽電池セル(トップセル+ミドルセル+ボトムセル)を傷つけることなく、積層構造体から半導体基板120を分離することができる。ここで、積層構造体の厚さが10μm以下程度に薄くなると、伸縮性が向上して割れにくくなる。このため、本実施の形態における多接合太陽電池の製造方法によれば、割れにくい多接合太陽電池を製造できる。このため、本実施の形態における多接合太陽電池の製造方法によれば、多接合太陽電池の軽量化および高効率化を図ることができる。
 その後、図13に示すように、コンタクト層118上に表面電極119を形成する(図9のS109)。以上のようにして、多接合太陽電池を製造することができる。
 <変形例>
 実施の形態では、トップセルとミドルセルとボトムセルとを積層した多接合太陽電池において、トップセルとミドルセルとを単結晶セルから構成する一方、ボトムセルを多結晶セルから構成している。そして、多結晶セルから構成されるボトムセルは、「p型CIGS」から構成されるベース層と、「n型InP」から構成されるエミッタ層とを含んでいる。ここで、ボトムセルのエミッタ層を構成する材料を選定するための設計指針としては、「CIGS」の電子親和力と同等の電子親和力を有する材料をボトムセルのエミッタ層に採用するものである。このことから、ボトムセルのエミッタ層として、「n型InP」に限らず、「CIGS」の電子親和力と同等の電子親和力を有する材料を使用することができる。例えば、ボトムセルのエミッタ層としては、「InP」に替えて、「Cu(In、Ga)Se(CuIn1-xGaSe)」、砒化インジウムガリウム(InGaAs)、燐化インジウムガリウム(InGaP)、砒化燐化インジウム(InAsP)、砒化燐化インジウムガリウム(InGaAsP)、硫化インジウム(In)などを使用できる。
 図14は、エミッタ層の候補材料において、格子定数と電子親和力との関係を示すグラフである。ここで、実施の形態では、バンドギャップが1.0eV~1.1eV程度の「CIGS」をボトムセルのベース層として使用しており、この多結晶の「CIGS」の電子親和力は、4.3eVである(図3および図4参照)。したがって、図14に示されるエミッタ層の候補材料のうち、多結晶の「CIGS」の電子親和力(4.3eV)と同等の電子親和力を有する材料をエミッタ層に使用すればよいことになる。具体的に、本明細書において、「4.3eVの電子親和力と同等である電子親和力」は、例えば、「4.2eV~4.4eVの電子親和力」とすることができる。これにより、例えば、図14に示されるドット領域に含まれる材料がエミッタ層の候補材料として望ましいことになる。図14に示されるドット領域に含まれる材料としては、「InP」や「In」を挙げることができる。なお、「In」は結晶構造が斜方系であり、かつ、「GaAs」との間で格子不整合となるため、エミッタ層として使用する場合に多結晶となる。この「In」は、電子親和力が4.25eVであり、かつ、バンドギャップが2.9eVである。
 このようにエミッタ層の候補材料としては、多結晶の「CIGS」の電子親和力(4.3eV)と同等の電子親和力を有する材料である必要がある。
 さらに、ボトムセルで発生する光電流を増加させる観点から、ボトムセルのエミッタ層を構成する材料のバンドギャップは、ボトムセルのベース層を構成する材料のバンドギャップよりも大きいことが望ましい。なぜなら、例えば、図8に示すように、ボトムセル200のエミッタ層104とベース層103のうち、光の入射側に近いのは、エミッタ層104であるが、ボトムセル200のエミッタ層104よりもベース層103で光を吸収させることが、光電流を増加させる観点から望ましいからである。すなわち、ベース層103のバンドギャップよりもエミッタ層104のバンドギャップが小さいと、エミッタ層104側からボトムセル200に入射された光がベース層103に届く前に、エミッタ層104で吸収されてしまうからである。このため、エミッタ層104のバンドギャップは、ベース層103のバンドギャップよりも大きいことが望ましいのである。
 ここで、ボトムセル200のエミッタ層104よりもベース層103で光を吸収させることが、光電流を増加させる観点から望ましい理由について説明する。
 例えば、エミッタ層104において光が吸収される場合、n型半導体層であるエミッタ層104において電子・正孔対が発生するが、発生した電子・正孔対のうちの正孔がp型半導体層であるベース層103を介して裏面電極101に移動して光電流が流れる。すなわち、エミッタ層104において光が吸収される場合、光電流の担い手は正孔である。
 これに対し、ベース層103において光が吸収される場合、p型半導体層であるベース層103において電子・正孔対が発生し、発生した電子・正孔対のうちの電子がn型半導体層であるエミッタ層104に移動して光電流が流れる。すなわち、ベース層103において光が吸収される場合、光電流の担い手は電子である。
 このとき、電子の移動度は、正孔の移動度よりも大きいので、光電流の担い手を電子とするほうが光電流を増加させる観点から望ましいのである。以上の理由から、ボトムセル200のエミッタ層104よりもベース層103で光を吸収させることが、光電流を増加させる観点から望ましい。このため、エミッタ層104のバンドギャップをベース層103のバンドギャップよりも大きくすることが望ましいのである。したがって、ベース層103のバンドギャップは、1.0eV~1.1eV程度であることから、エミッタ層104のバンドギャップは、1.0eV~1.1eV程度よりも大きいことが望ましい。
 以上のことから、ボトムセル200のエミッタ層104に採用する材料としては、多結晶の「CIGS」の電子親和力(4.3eV)と同等の電子親和力を有する材料であり、かつ、多結晶の「CIGS」よりもバンドギャップの大きな材料であることが望ましい。
 図15は、「InGaAsP」の組成を変化させた場合の格子定数とバンドギャップとの関係を示すグラフである。図15に示すように、「InGaAsP」の組成を変化させることにより、格子定数とバンドギャップが変化することがわかる。したがって、「InGaAsP」においては、組成を変化させることにより、ボトムセル200のエミッタ層104に適した材料とすることができる。具体的には、図15の斜線領域に示す組成によれば、「InGaAsP」をエミッタ層104に採用することができる。つまり、図15に示す斜線領域の範囲内においては、電子親和力が4.2eV以上4.4eV以下で、かつ、バンドギャップが1.0eV以上である材料が実現される。
 図16は、「InGa1-aP」と「InGa1-aAs」と「InAs1-b」と「InGa1-aAs1-b」の望ましい組成を示す表である。図16に示すように、「InGa1-aP」においては、0.7≦a≦1.0の組成とし、「InGa1-aAs」においては、0.15≦a≦0.3の組成とすることにより、エミッタ層104に適した材料となる。同様に、「InAs1-b」においては、0.0≦b≦0.05の組成とし、「InGa1-aAs1-b」においては、図15の斜線領域に示される組成とすることにより、エミッタ層104に適した材料となる。
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 10 試料
 11 電極
 12 基板
 13 ベース層
 14 電界層
 15 透明導電層
 16 グリッド電極
 100 支持基板
 101 裏面電極
 102 裏面電界層
 103 ベース層
 104 エミッタ層
 105 窓層
 106 n型GaAs層
 107 p型GaAs層
 108 裏面電界層
 109 ベース層
 110 エミッタ層
 111 窓層
 112 n型InGaP層
 113 p型AlGaAs層
 114 裏面電界層
 115 ベース層
 116 エミッタ層
 117 窓層
 118 コンタクト層
 119 表面電極
 200 ボトムセル
 300 トンネル接合層
 400 ミドルセル
 500 トンネル接合層
 600 トップセル
 1000 多接合太陽電池

Claims (10)

  1.  第1バンドギャップを持つ第1単結晶層を有する第1単結晶セルと、
     前記第1バンドギャップよりも小さな第2バンドギャップを持つ第1多結晶層を有し、かつ、第1トンネル接合層によって前記第1単結晶セルと接合する多結晶セルと、
     を備える、太陽電池。
  2.  請求項1に記載の太陽電池において、
     前記多結晶セルは、前記第1多結晶層からなるベース層を含む、太陽電池。
  3.  請求項2に記載の太陽電池において、
     前記多結晶セルは、第2多結晶層からなるエミッタ層を含み、
     前記ベース層と前記エミッタ層とによってpn接合が形成される、太陽電池。
  4.  請求項3に記載の太陽電池において、
     前記ベース層を構成する材料の電子親和力と前記エミッタ層を構成する材料の電子親和力とは同等である、太陽電池。
  5.  請求項2~4のいずれか1項に記載の太陽電池において、
     前記ベース層の材料は、CuIn1-xGaSe2―yである、太陽電池。
  6.  請求項3または4に記載の太陽電池において、
     前記エミッタ層の材料は、InP、In、InGa1-aP、InGa1-aAs、InAs1-b、InGa1-aAs1-b、CuIn1-xGaSeのいずれかを含む、太陽電池。
  7.  請求項1~6のいずれか1項に記載の太陽電池において、
     前記第1単結晶セルと前記多結晶セルと前記第1トンネル接合層は一体的に形成されている、太陽電池。
  8.  請求項1~7のいずれか1項に記載の太陽電池において、
     前記太陽電池は、前記第1バンドギャップよりも大きな第3バンドギャップを持つ第2単結晶層を有し、かつ、第2トンネル接合層によって前記第1単結晶セルと接合する第2単結晶セルを含む、太陽電池。
  9.  請求項8に記載の太陽電池において、
     前記第1単結晶層と前記第2単結晶層の間の格子定数差は、0.5%以下であり、
     前記第1単結晶層と前記第1多結晶層の間の格子定数差は、2%以上である、太陽電池。
  10.  請求項1~9のいずれか1項に記載の太陽電池において、
     前記第1多結晶層は、前記第2バンドギャップよりも大きなエネルギーを有する光を吸収する光吸収層である、太陽電池。
PCT/JP2020/032889 2019-09-12 2020-08-31 太陽電池 WO2021049358A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-166102 2019-09-12
JP2019166102A JP7389457B2 (ja) 2019-09-12 2019-09-12 太陽電池

Publications (1)

Publication Number Publication Date
WO2021049358A1 true WO2021049358A1 (ja) 2021-03-18

Family

ID=74864302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032889 WO2021049358A1 (ja) 2019-09-12 2020-08-31 太陽電池

Country Status (2)

Country Link
JP (1) JP7389457B2 (ja)
WO (1) WO2021049358A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327889A (ja) * 2003-04-28 2004-11-18 Sharp Corp 化合物太陽電池およびその製造方法
US20050183766A1 (en) * 2004-02-25 2005-08-25 Kazuo Nakajima Multi-element polycrystal for solar cells and method of manufacturing the same
JP2012182340A (ja) * 2011-03-02 2012-09-20 Sanyo Electric Co Ltd 化合物半導体及び太陽電池
JP2014067745A (ja) * 2012-09-24 2014-04-17 Kyocera Corp 光電変換装置の製造方法
JP2018534785A (ja) * 2015-11-20 2018-11-22 ベイジン チュアング テクノロジー カンパニー リミテッド 2接合型薄膜ソーラーセルアセンブリおよびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3837114B2 (ja) 1999-03-05 2006-10-25 松下電器産業株式会社 太陽電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327889A (ja) * 2003-04-28 2004-11-18 Sharp Corp 化合物太陽電池およびその製造方法
US20050183766A1 (en) * 2004-02-25 2005-08-25 Kazuo Nakajima Multi-element polycrystal for solar cells and method of manufacturing the same
JP2012182340A (ja) * 2011-03-02 2012-09-20 Sanyo Electric Co Ltd 化合物半導体及び太陽電池
JP2014067745A (ja) * 2012-09-24 2014-04-17 Kyocera Corp 光電変換装置の製造方法
JP2018534785A (ja) * 2015-11-20 2018-11-22 ベイジン チュアング テクノロジー カンパニー リミテッド 2接合型薄膜ソーラーセルアセンブリおよびその製造方法

Also Published As

Publication number Publication date
JP7389457B2 (ja) 2023-11-30
JP2021044423A (ja) 2021-03-18

Similar Documents

Publication Publication Date Title
TWI441343B (zh) 反向變質多接面太陽能電池中異質接面子電池
TWI488316B (zh) 反向質變之多接面太陽能電池之替代基板
EP2709166B1 (en) Group-IV solar cell structure using group-IV heterostructures
US20090272438A1 (en) Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell
US20100093127A1 (en) Inverted Metamorphic Multijunction Solar Cell Mounted on Metallized Flexible Film
US10490684B2 (en) Method for producing a compound photovoltaic cell
US9691930B2 (en) Fabrication of solar cells with electrically conductive polyimide adhesive
TWI583012B (zh) 化合物半導體太陽能電池及其製造方法
US20100006136A1 (en) Multijunction high efficiency photovoltaic device and methods of making the same
US20100095998A1 (en) Low resistance tunnel junctions for high efficiency tanden solar cells
Pakhanov et al. State-of-the-art architectures and technologies of high-efficiency solar cells based on III–V heterostructures for space and terrestrial applications
US20070137700A1 (en) Development of an electronic device quality aluminum antimonide (AISb) semiconductor for solar cell applications
JP2019515510A (ja) 金属ディスク・アレイを備えた積層型太陽電池
JP5481665B2 (ja) 多接合型太陽電池
WO2016104711A1 (ja) 太陽電池
JP2011077295A (ja) 接合型太陽電池
US20220037547A1 (en) Photovoltaic Cell With an Aluminium-Arsenic and Indium-Phosphorous Based Heterojunction, Associated Multi-Junction Cell and Associated Method
WO2021049358A1 (ja) 太陽電池
JP5669228B2 (ja) 多接合太陽電池およびその製造方法
Lackner et al. Status of four-junction cell development at fraunhofer ISE
KR102175147B1 (ko) 태양 전지 및 이의 제조 방법
US20160013336A1 (en) Compound-semiconductor photovoltaic cell and manufacturing method of compound-semiconductor photovoltaic cell
US20140069493A1 (en) Photovoltaic device
JP2013172072A (ja) 2接合太陽電池
KR20240022562A (ko) 전자기 방사선을 전기 에너지로 변환하기 위한 적어도 하나의 광기전 전지의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20863171

Country of ref document: EP

Kind code of ref document: A1