JP2013536511A - 電源から電力を抽出するためのスイッチング回路および関連方法 - Google Patents

電源から電力を抽出するためのスイッチング回路および関連方法 Download PDF

Info

Publication number
JP2013536511A
JP2013536511A JP2013524988A JP2013524988A JP2013536511A JP 2013536511 A JP2013536511 A JP 2013536511A JP 2013524988 A JP2013524988 A JP 2013524988A JP 2013524988 A JP2013524988 A JP 2013524988A JP 2013536511 A JP2013536511 A JP 2013536511A
Authority
JP
Japan
Prior art keywords
switching
power system
switching circuit
power
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013524988A
Other languages
English (en)
Inventor
アンソニー ジェイ. ストラタコス,
マイケル ディー. マクジムシー,
イリヤ ジェルゴビッチ,
アレクサンダー イキアニコフ,
ミナシアンス, アーティン デル
カイウェイ ヤオ,
デイビッド ビー. リクスキー,
マルコ エー. ズニガ,
アナ ボリサブレビッチ,
Original Assignee
ボルテラ セミコンダクター コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボルテラ セミコンダクター コーポレイション filed Critical ボルテラ セミコンダクター コーポレイション
Publication of JP2013536511A publication Critical patent/JP2013536511A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/102Modifications for increasing the maximum permissible switched voltage in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/12Modifications for increasing the maximum permissible switched current
    • H03K17/122Modifications for increasing the maximum permissible switched current in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/14Modifications for compensating variations of physical values, e.g. of temperature
    • H03K17/145Modifications for compensating variations of physical values, e.g. of temperature in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/693Switching arrangements with several input- or output-terminals, e.g. multiplexers, distributors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/106Parallel operation of dc sources for load balancing, symmetrisation, or sharing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0036Means reducing energy consumption
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0054Gating switches, e.g. pass gates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Electrical Variables (AREA)
  • Photovoltaic Devices (AREA)
  • Inverter Devices (AREA)
  • Electronic Switches (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

電力システムは、N個の電源およびN個のスイッチング回路を含む。Nは、1よりも大きい整数である。各スイッチング回路は、前記N個の電源それぞれに電気的に接続された入力ポートと、出力ポートと、導電状態と非導電状態との間で切り替わるように適合され、これにより前記入力ポートから電力を前記出力ポートへと転送する第1のスイッチングデバイスとを含む。前記N個のスイッチング回路の出力ポートは、負荷へと電気的に直列接続され、これにより出力回路を確立する。前記N個のスイッチング回路はそれぞれ、前記出力回路の相互接続インダクタンスを前記スイッチング回路の一次エネルギー貯蔵インダクタンスとして用いる。
【選択図】なし

Description

本出願は、米国仮特許出願シリアル番号第61/375,012号(出願日:2010年8月18日)に対する優先権を主張する。本出願は、米国特許出願番号第13/211,985号(出願日:2011年8月17日)の継続でもある。米国特許出願番号第13/211,985号(出願日:2011年8月17日)は、米国仮特許出願シリアル番号第61/375、012(出願日:2010年8月18日)に対する優先権を主張する。本出願は、米国特許出願番号第13/211,997号(出願日:2011年8月17日)の継続でもある。米国特許出願番号第13/211,997号(出願日:2011年8月17日)は、米国仮特許出願シリアル番号第61/375,012号(出願日:2010年8月18日)に対する優先権を主張する。本出願は、米国特許出願番号第13/212,013号(出願日:2011年8月17日)の継続でもある。米国特許出願番号第13/212,013号(出願日:2011年8月17日)は、米国仮特許出願シリアル番号第61/375,012号(出願日:2010年8月18日)に対する恩恵を主張する。本明細書中、上記した出願それぞれを参考のため援用する。
太陽電池セルによって生成される電圧は、電流、セル動作状態、セル物理特性、セル欠陥および電池照明と共に変動する。図1に示すような太陽電池セルの数学的モデルは、出力電流を以下のようにモデル化する。
Figure 2013536511
方程式1.
式中、
=光生成電流
=直列抵抗
SH=シャント抵抗
=逆飽和電流
n=ダイオード理想係数(理想ダイオードの場合1)
q=素電荷
k=ボルツマン定数
T=絶対温度
I=セル端子における出力電流
V=セル端子における電圧
シリコンの場合、25℃において、kT/q=0.0259ボルト。
典型的なセル出力電圧は低く、セル製造に用いられる材料のバンドギャップに依存する。セル出力電圧が、シリコンセルの場合、0.5ボルトに過ぎず、電池の充電または殆どの他の負荷の駆動に必要な電圧を遙かに下回る場合がある。このような低電圧に起因して、セルは典型的には直列接続されて、モジュールまたはアレイを形成する。モジュールまたはアレイの出力電圧は、単一のセルによって生成される出力電圧よりもずっと高い。
現実世界における太陽電池セルの場合、1つ以上の微細欠陥があることが多い。このようなセル欠陥に起因して、モジュール内のセル間において、直列抵抗R、シャント抵抗RSHおよび光生成電流Iのミスマッチが発生し得る。さらに、多様な理由(例えば、木の陰、鳥の糞によるセルまたはモジュールの陰、ゴミ、泥、他の影響)に起因して、電池照明も太陽電池セルシステム内のセルによって異なり得、モジュール内のセルによっても異なり得る。これらの明るさにおけるミスマッチは、日によって違い、1日のうちの時間帯によって異なり得る(なぜならば、日中は陰がモジュール上を移動し、セル上の陰の原因になっているゴミまたは泥が雨で流れ落ちる場合があるからである)。
方程式1から、出力電圧はゼロ出力電流において最大となり、出力電流Iの増加とともに出力電圧Vは非線形に低下する。図2は、連続照明における光起電装置から引き出された電流の増加による影響を示す。連続照明下において電流Iが増加するのと共に電圧Vはゆっくりと低下するが、電流Iが増加して光電流Iに近い出力電流まで増加すると、出力電圧Vは急速に落下する。同様に、電流上昇による影響が電圧Vの低下によって打ち消されるまで、セル出力、つまり電流および電圧の積が電流Iの増加と共に増加する。その直後、セルから引き出された電流Iがさらに増加すると、出力Pは急速に低下する。そのため、所与の照明について、各セル、モジュールならびにセルおよびモジュールのアレイは、最大出力点(MPP)を有する。最大出力点(MPP)は、装置からの出力が最大化される電圧および電流の組み合わせを示す。温度および照明ならびによって光生成電流ILの変化と共に、セル、モジュールまたはアレイのMPPが変化する。また、セル、モジュールまたはアレイのMPPは、要素(例えば、セル、モジュールまたはアレイの陰影および/または経年劣化)によっても影響を受け得る。
最大出力点追跡(MPPT)コントローラの利用により、太陽電池セルを最大出力点またはその近隣において動作させることができる。MPPTコントローラは、入力に接続された光起電装置のためのMPP電圧および電流を決定する装置であり、光起電装置をMPPにおいて維持するための実効インピーダンスを調節する装置である。MPPTコントローラは典型的には、光起電装置電圧および電流を複数の動作点において測定し、電圧および電流測定からの各動作点における出力を計算し、MPPに最も近い動作点を決定する。
複数の太陽電池セルが相互に電気的に接続されている場合、複数の太陽電池セルをMPPにおいて動作させることが困難な場合がある。例えば、図3は、4つの太陽電池セルが直列ストリング状に電気的に接続されている様子を示す。ダイオードD1〜D3または他の回路を用いることなく、セルはそれぞれ、同一電流を搬送する必要がある。なぜならば、上記したモジュールまたはアレイのセル間においてパラメータ(例えば、光生成電流I、有効シャント抵抗RSH、直列抵抗、および/または温度)の変動があった場合、ストリング内の1つのセルCstrong用の最大出力点出力電流がストリング内の別のセルCweak用の最大出力点出力電流Iweakを大きく上回る可能性が出てくるからである。一定条件下のいくつかのアレイにおいて、CstrongがMPP電流において動作している場合、CweakはMPP電流を超える電流を受け、その結果、Cweakに損傷が発生し得る。Cweakは逆バイアスにもなり得、その場合、発電をするのではなく電力を消費するか、または、同一ストリング内のより発電量の多いセルからの電流流れを遮断する。このような場合における正味の影響として、直列ストリング内の発電量のより少ないセルの性能により、パネルまたはパネルの直列ストリングからの出力が限定される点がある。
いくつかの従来のソーラーパネルにおいては、図3に示すように、モジュール、セル、またはセルグループ、レベルにおいて、バイパスダイオードD1、D2およびD3が設けられる。これらのバイパスダイオードにより、過剰な順電流に起因する弱セルCweakへの損傷を回避することができる。また、バイパスダイオードにより、Cweakの逆バイアシングが回避され、ストリング内のより高出力セルからの電流流れが遮断されるが、同じバイパスダイオードを使用する同一グループ内の低出力セルと他の任意のセルとがバイパスされると、Cweakおよびそのグループ内のセルから発生する任意の出力が失われる。さらに、より高出力のセルからの一定出力が順電圧低下に起因してダイオード内において消散する。図3に示すように、いくつかのモジュールでは個々のセル上にバイパスダイオード(例えば、D2)が設けられていてもよく、その一方で、他のモジュールまたはシステムでは、個々のセル上ではなくセルグループ上、またはモジュール全体上にダイオード(例えば、D1)が設けられていてもよい。今日の市場における多くの結晶シリコンモジュールにおいては、約12セルの「6ボルト」区域上にバイパスダイオードが設けられている。
図40に示すような他のシステムが公知である。このシステムにおいては、パネル毎に、DC−DC変換器4002またはDC−ACマイクロインバータが分散配置されており、これにより図40に示すように共通出力加算高電圧バス4004を駆動する。各変換器4002は、それぞれが多数の太陽電池セル4008を有するソーラーモジュール4006からの出力を、モジュール4006によって生成可能な任意の電圧および電流において(および恐らくはモジュールのMPPにおいて)受信し、出力を変換し、出力を高電圧出力加算バス4004上へと出力する。ここでモジュールはもはや直列に接続されていないため、1つのモジュールによる低出力は、高性能モジュールによる発電と干渉しない。さらに、低性能モジュールによる可能な発電はバス上に加算され、無駄になることはない。
分散型のパネル毎の電圧変換器アーキテクチャにおける問題として、このようなアーキテクチャの場合、パネルレベルにおいてはMPP達成を支援するものの、個々のセルレベルにおいては機能しない点がある。例えば、単一のセルのパネルに亀裂が入った場合または部分的陰影が発生した場合であっても、パネル全体は、残りのセルからの出力全てを送達することはできない。製造変動、汚染差、および経年劣化および損傷および陰影を通じてセル間にミスマッチが発生する場合もある。米国特許出願公開番号第2009/0020151号において、DC出力加算バスまたはAC出力加算バスを並列駆動するローカル変換器の様々な利用法についての提案がある。
さらに別の代替例について、米国特許出願公開番号第2008/0236648において開示がある。同文献において、太陽電池セルグループからの出力を各MPPTDC−DC変換器へと供給することにより、全DC−DC変換器アレイを通じて、各変換器における電圧において一定の電流を生成する。電圧は、取り付けられた光起電装置から入手可能な出力に依存する。DC−DC変換器の出力は、直列接続される。
また、多接合太陽電池セル内の複数の接合部を各最大出力点において作動させることが困難である場合もある。多接合太陽電池セルには、2つ以上の異なる種類の接合部が垂直方向に積層され、各接合部は、異なる波長の光に反応するように適合される。例えば、2つの接合部を有する太陽電池セルは典型的には、上接合部および下接合部を有する。上接合部は、バンドギャップの大きな材料で構成されているため、比較的短い好ましい波長および比較的高電圧における最大出力点を有する。下接合部は、より低いバンドギャップを有するため、比較的長い好ましい波長および比較的低電圧における最大出力点を有する。
多接合光起電装置のセルは、形成時において電気的に直列接続されることが多く、セル間から導体が引き出されることはない。このような構造を用いた場合、セルへの接続が簡潔となる一方、直列接続された光起電装置のミスマッチにより出力が制限され得るという非効率も同じ理由で発生し得る。有効出力電流は、積層セルの最低電流出力によって決定される。このような状況は、受信光の色または波長分布の変動ならびに積層セルの種類および効率の差によって悪化する。また、バイパスデバイス(例えば、ダイオード)が無い限り、過度の順電流に起因して多接合セルの所与の接合部が損傷を受ける可能性もある。
多接合光起電装置については、接合部間境界への低抵抗電気接点を備えた積層セル、および別個に設けられた接合部を含む積層セルを含め、研究が進んでいる。例えば、以下の文献を参照されたい:McDonald、「多接合セルの性能比におけるスペクトル効率の増減(Spectral Efficiency Scaling of Performance Ratio for Multijunction Cells)」、第34回IEEE太陽光発電専門家会議(Photovolatic Specialist Conference)、2009年、p.1215−1220。
実施形態において、電力システムは、N個の電源およびN個のスイッチング回路を含む。ここで、Nは、1よりも大きい整数である。各スイッチング回路は、N個の電源それぞれに電気的に接続された入力ポートと、出力ポートと、第1のスイッチングデバイスとを含む。第1のスイッチングデバイスは、導電状態と非導電状態との間で切り替わるように適合され、これにより入力ポートから電力を出力ポートへと転送する。N個のスイッチング回路の出力ポートは、負荷へと電気的に直列接続され、これにより出力回路を確立する。N個のスイッチング回路はそれぞれ、スイッチング回路の一次エネルギー貯蔵インダクタンスとして出力回路の相互接続インダクタンスを用いる。
実施形態において、電力システムは、N個の電源と、N個のスイッチング回路とを含む。Nは、1よりも大きい整数である。各スイッチング回路は、N個の電源それぞれに電気的に接続された入力ポートと、出力ポートと、第1のスイッチングデバイスとを含む。第1のスイッチングデバイスは、導電状態と非導電状態との間で切り替わるように適合され、これにより入力ポートから電力を出力ポートへと転送する。N個のスイッチング回路はそれぞれ、少なくとも入力ポートおよびN電源それぞれの直列接続から形成された各入力回路の相互接続インダクタンスをスイッチング回路の一次エネルギー貯蔵インダクタンスとして用いる。
実施形態において、電力システムは、N個の光起電装置およびN個のスイッチング回路を含む。Nは、1よりも大きい整数である。各スイッチング回路は、N個の光起電装置それぞれに電気的に接続された入力ポートと、出力ポートと、第1のスイッチングデバイスとを含む。第1のスイッチングデバイスは、導電状態と非導電状態との間で切り替わるように適合され、これにより入力ポートから電力を出力ポートへと転送する。N個のスイッチング回路の出力ポートは、負荷へと電気的に直列接続され、これにより出力回路を確立する。システムは、システム制御デバイスをさらに含む。システム制御デバイスは、(1)出力回路に電気的に直列接続されたトランジスタと、(2)出力回路内を流れる電流の大きさを示す電流感知信号を生成するように構成された電流感知サブシステムと、(3)トランジスタおよび電流感知サブシステムと通信する制御サブシステムとを含む。制御サブシステムは、出力回路内を流れる電流を制御するための電流感知信号に少なくとも部分的に基づいてトランジスタを制御するように、構成される。
実施形態において、電力システムは、電気的に直列接続された第1の電源および第2の電源を含む。第1の電源は、第1の値を有する最大電流を生成することができ、第2の電源は、第2の値を有する最大電流を生成することができる。第2の値を有するは、第1の値よりも小さい。システムは、最大出力点追跡を行うことが可能な第1のスイッチング回路および第2のスイッチング回路をさらに含む。第1の電源および第2の電源ならびに第1のスイッチング回路および第2のスイッチング回路は電気的に接続され、これにより、第1のスイッチング回路および第2のスイッチング回路は、第1の電源および第2の電源双方から抽出された電力量を少なくとも実質的に最大化するように、集合的に動作可能である。
実施形態において、電力システムは、N個の光起電ストリングを含む。Nは、1よりも大きい整数である。各光起電ストリングは、複数の光起電装置と、ストリングオプティマイザに電気的に直列接続された出力ポートを備える複数のDC/DC変換器とを含む。各DC/DC変換器は、複数の光起電装置それぞれから抽出された電力を少なくとも実質的に最大化するように適合され、各ストリングオプティマイザは、共通バスによって各ストリングとインターフェースをとるように適合される。
実施形態において、電力システムは、N個の光起電ストリングを含む。Nは、1よりも大きい整数である。各光起電ストリングは、複数の光起電装置と、複数のDC/DC変換器とを、ストリングインバータに電気的に直列接続された出力ポートと共に含む。各DC/DC変換器は、複数の光起電装置それぞれから抽出された電力を少なくとも実質的に最大化するように適合され、各ストリングインバータは、各ストリングが共通交流バスとインターフェースをとるように適合される。
実施形態において、電力システムは、N個のスイッチング回路を含む。Nは、1よりも大きい整数である。各スイッチング回路は、入力ポートと、第1の出力端子および第2の出力端子を含む出力ポートと、導電状態と非導電状態との間で切り換えられるように適合された第1のスイッチングデバイスとを含む。N個のスイッチング回路の出力ポートは、負荷と電気的に直列接続され、これにより出力回路を確立する。各スイッチング回路は、第1のスイッチングデバイスを導電状と非導電状態との間で切り換えるように適合され、これにより、スイッチング回路の第1の動作モードにおいて入力ポートからの電力を出力ポートへと転送させる。各スイッチング回路は、スイッチング回路の第2の動作モードにおいて第1の出力端子および第2の出力端子をシャントさせるように適合される。
実施形態において、電力システムは、光起電装置およびスイッチング回路を含む。スイッチング回路は、(1)光起電装置に電気的に接続された入力ポートと、(2)負荷への電気的接続のための出力ポートと、(3)第1のスイッチングデバイスであって、第1のスイッチングデバイスは、導電状態と非導電状態との間で切り替わるように適合され、これにより入力ポートから電力を出力ポートへと転送する、第1のスイッチングデバイスと、(4)第1のスイッチングデバイスを導電状態と非導電状態との間で切り換えさせるように適合されたコントローラであって、切り換えは、負荷へと送達される電力量を少なくとも実質的に最大化させる200キロヘルツを超える周波数において行われる、コントローラとを含む。
実施形態において、N個の電源から電力を抽出するためのシステムは、N個のスイッチング回路を含む。Nは、1よりも大きい整数である。各スイッチング回路は、(1)N個の電源それぞれへの電気的接続のための入力ポートと、(2)負荷への電気的接続のための出力ポートと、(3)導電状態と非導電状態との間で切り換えて入力ポートからの電力を出力ポートへと転送するように構成された第1のスイッチングデバイスと、(4)第1のスイッチングデバイスの切り換えを制御して、スイッチング回路の入力ポートに電気的に接続されたN個の電源それぞれから抽出された電力量を少なくとも実質的に最大化するように構成されたコントローラとを含む。システムは、少なくとも1つのさらなるスイッチングデバイスをさらに含む。少なくとも1つのさらなるスイッチングデバイスは、N個のスイッチング回路のうち少なくとも2つの出力ポートを直列または並列に電気的に接続するように、構成される。
実施形態において、電力システムは、電気的に並列接続されたN個の光起電ストリングを含む。Nは、1よりも大きい整数である。各ストリングは、複数の光起電装置と、複数のスイッチング回路とを含む。各スイッチング回路は、(1)複数の光起電装置それぞれに電気的に接続された入力ポートと、(2)出力ポートと、(3)入力ポートを介して電気的に直列接続された第1のスイッチングデバイスおよび第2のスイッチングデバイスとを含む。第2のスイッチングデバイスはまた、出力ポートを介して電気的に接続される。第2のスイッチングデバイスは、第1のスイッチングデバイスが非導電状態であるとき、出力ポートを通じた電流経路を提供するように適合される。出力ポートは、N個の光起電ストリングそれぞれにおいて電気的に直列接続される。スイッチング回路はそれぞれ、回路の相互接続インダクタンスを用いる。回路は、スイッチング回路の一次エネルギー貯蔵インダクタンスとして出力ポートを含む。
1つの太陽電池セルモデルを示す。 電圧および電力を1つの太陽電池セルのための電流の関数としてグラフを示す。 太陽電池セルの1つの直列ストリングを示す。 実施形態よる、電源からの電力抽出のための、スイッチング回路を含む1つの電力システムを示す。 実施形態による、電源から電力を抽出するためのバック型スイッチング回路を含む1つの電力システムを示す。 実施形態による、電源から電力を抽出するためのバック型スイッチング回路を含む別の電力システムを示す。 実施形態による、電源から電力を抽出するための、変圧器が接続されたスイッチング回路を含む、別の電力システムを示す。 実施形態による、スイッチング回路のための1つのコントローラを示す。 実施形態による、スイッチング回路を用いて電源から電力を抽出するための1つの方法を示す。 実施形態による、電源に接続されたスイッチング回路についての、スイッチングノード電圧対デューティサイクルの平均値のグラフを示す。 実施形態による、電源に接続されたスイッチング回路についての、スイッチングノード電圧対デューティサイクルの平均値のグラフを示す。 実施形態による、電源に接続されたスイッチング回路についての、スイッチングノード電圧対デューティサイクルの平均値のグラフを示す。 実施形態による、電源に接続されたスイッチング回路についての、スイッチングノード電圧対デューティサイクルの平均値のグラフを示す。 実施形態による、電源に接続されたスイッチング回路についての、スイッチングノード電圧対デューティサイクルの平均値のグラフを示す。 実施形態による、スイッチング回路のための別のコントローラを示す。 実施形態による1つのサンプリング回路を示す。 図5のスイッチング回路の一実施形態の動作モードの状態図である。 実施形態による、電源からの電力抽出のための、スイッチング回路を含む別の電力システムを示す。 実施形態による、電源からの電力抽出のための、昇圧形スイッチング回路を含む1つの電力システムを示す。 実施形態による、電源からの電力抽出のための、直列接続されたスイッチング回路の並列接続ストリングを含む電力システムを示す。 実施形態による、電源からの電力抽出のための、並列接続スイッチング回路の直列接続ストリングを含む電力システムを示す。 実施形態による、電源からの電力抽出のための、ダイオードおよびスイッチング回路を含む電力システムを示す。 実施形態による、電源からの電力抽出のための、システム制御デバイスおよびスイッチング回路を含む電力システムを示す。 実施形態による1つのシステム制御デバイスを示す。 実施形態による1つの集積回路チップを示す。 実施形態による1つのフリップチップ集積回路を示す。 実施形態による、複数のバック型スイッチング回路を含む1つの集積回路チップを示す。 実施形態による、複数の昇圧形スイッチング回路を含む1つの集積回路チップを示す。 実施形態による、複数のバック型スイッチング回路を含む、1つの構成可能な集積回路チップを示す。 実施形態による、1つの動的にサイズ決めされる電界効果トランジスタを示す。 実施形態による1つの光起電システムを示す。光起電システムは、共通基板上に配置された太陽電池セルおよび集積回路チップを含む。 実施形態による1つの光起電システムを示す。光起電システムは、光起電装置上に配置された光起電装置および集積回路チップを含む。 実施形態による1つの光起電システムを示す。光起電システムは、共通リードフレーム上に配置された光起電装置および集積回路チップを含む。 実施形態による、複数の光起電パネルを含む1つの電力システムを示す。このシステムにおいて、各パネルは、パネルの光起電装置から電力を抽出するための複数のスイッチング回路を含む。 多接合太陽電池セル用途における、図27の集積回路チップの実施形態を示す。 実施形態による電力システムを示す。電力システムに含まれるスイッチング回路は、通常動作時において各電源から電力供給を受ける。 図36の電力システムのスイッチング回路の出力電圧のグラフを示す。 図7のスイッチング回路の別の実施形態を示す。 図5のスイッチング回路の別の実施形態の動作モードの状態図である。 従来技術の光起電システムを示す。 相互接続インダクタンスを含む図4の電力システムの実施形態を示す。 相互接続インダクタンスを含む図5の電力システムの実施形態を示す。 相互接続インダクタンスを含む図6の電力システムの実施形態を示す。 相互接続インダクタンスを含む図7の電力システムの実施形態を示す。 図7の電力システムの実施形態を示す。このシステムにおいて、スイッチング回路はフォワード型トポロジーを有する。 図19の電力システムの実施形態を示す。このシステムは、相互接続インダクタンスを含む。 図20の電力システムの実施形態を示す。このシステムは、相互接続インダクタンスを含む。 実施形態による電力システムを示す。このシステムは、電源からの電力抽出のために、直列接続されたバックブースト型スイッチング回路の並列接続ストリングを含む。 実施形態による1つの電力システムを示す。このシステムは、ストリングオプティマイザを含む。 図49のストリングオプティマイザの一実施形態を示す。 図49のストリングオプティマイザの別の実施形態を示す。 相互接続インダクタンスを用いた図34の電力システムの実施形態を示す。 実施形態による1つのスイッチングノード電圧フィルタリングサブシステムを示す。 実施形態による1つの電流測定サブシステムを示す。 実施形態による電力システムを示す。電力システムは、多接合太陽電池セルから抽出された電力を最大化させるように構成される。 図55の電力システムの素セルの一実施形態を示す。 実施形態による電力システムを示す。電力システムは、バック型MPPT変換器の並列ストリングを含む。 実施形態による降圧および昇圧形MPPT変換器を示す。 実施形態による光起電システムを示す。光起電システムは、ストリングオプティマイザを含む。 実施形態による別の光起電システムを示す。この光起電システムは、図59のものに類似するが、1つ以上のストリングを含み、ローカルMPPTDC/DC変換器は含まない。 実施形態による光起電システムを示す。 実施形態による別の光起電システムを示す。 実施形態による別の素セルを示す。 実施形態による素セルを示す。素セルは、バックブースト型変換器を含む。 実施形態による素セルを示す。素セルは、2つのMPPTDC/DC変換器を含み、MPPTDC/DC変換器の出力ポートは電気的に直列接続される。 図65の素セルの別の実施形態である。 実施形態による素セルを示す。素セルは、昇圧形およびバック型MPPT変換器を含む。 実施形態による素セルを示す。素セルは、2つの積層MPPTDC/DC変換器を含む。 実施形態による素セルを示す。素セルは、バックブースト型MPPTDC/DC変換器を含む。 実施形態による光起電システムを示す。光起電システムは、分割スペクトル光起電装置を含む。
本明細書中開示されるのは、非線形電力曲線を有する電源(例えば、光起電装置、バッテリまたは燃料電池セル)から抽出された電力量の最大化を支援するために利用することが可能なシステムおよび方法である。このようなシステムおよび方法は、例えば、典型的な従来の解決法よりもより簡単および/または低コストであり、これにより、セル毎のMPPTを可能にする。従来のMPPT解決法の場合、このようなセル毎のMPPTは、コストおよび複雑性に起因して、従来のMPPT解決法では実現することができないことが多かった。例示的明瞭性の目的のために、図面中の特定の要素は縮尺通りに描かれていない場合がある点に留意されたい。特定のアイテムについて例示する場合、必ず()内の参照符号を用いて説明する(例えば、電源402(1))。一方、()無しの参照符号は任意のそのようなアイテムを指す(例えば、電源402)。
図4は、1つの電力システム400を示す。電力システム400は、N個の電源402を含む。Nは、1よりも大きい整数である。電源402は、例えば光起電装置(例えば、個々の太陽電池セル、1つ以上の多接合太陽電池セルの個々の接合部、または複数の電気的に接続された太陽電池セル(例えば、電気的に直列接続されかつ/または並列接続された複数の太陽電池セル)を含むグループ)であり、集光素子を備えていてもよく、備えていなくてもよい。いくつかの実施形態において、電源402は、1つ以上の光起電パネルの光起電装置または光起電パネルのサブモジュールであり、各サブモジュールは、電気的に直列接続されおよび/または並列接続された複数の太陽電池セルを含む光起電パネルのサブセットである。例えば、いくつかの実施形態において、各電源402は、1つ以上の行および/または列の直列組み合わせとして配置された光起電パネル内の太陽電池セルである。電源402の他の例を挙げると、燃料電池セルおよび電池がある。
システム400は、N個のスイッチング回路404をさらに含む。各スイッチング回路404は、各電源402に接続された入力ポート406と、負荷に電気的に接続された出力ポート408とを含む。以下にさらに説明するように、各スイッチング回路404は、各電源402から抽出されて負荷へと送達される電力量を少なくとも実質的に最大化させるように構成される。そのため、スイッチング回路404は、各電源402を少なくとも実質的にその最大出力点において動作させるように構成される。
出力ポート408は、負荷410(例えば、インバータ)に電気的に直列接続されて、閉回路(本明細書中以下出力回路412と呼ぶ)を形成する。各出力ポート408および負荷410は、この直列接続に起因して、同じ出力回路電流Ioを搬送する。出力回路412は、例えば1つ以上の別個のインダクタから得られたインダクタンス(単一のインダクタ416として模式的に示す)を有する。1つ以上の別個のインダクタは、スイッチング回路404の内部かつ/または外部に設けられ、出力回路412に電気的に直列接続される。あるいは、出力回路インダクタンス416は、主にまたは完全に相互接続インダクタンスによって構成される。相互接続インダクタンスは、配線または他の導体(例えば、コンポーネント(例えば、出力ポート408、負荷410)を接続して出力回路412を形成する母線)のインダクタンスである。例えば、図41に示す電力システム4100は、システム400の実施形態であり、出力回路412のインダクタンスは、相互接続インダクタンス4102を含む。
各スイッチング回路404は、各第1のスイッチングデバイス418を含む。第1のスイッチングデバイス418は、導電状態と非導電状態との間で切り替わるように構成され、これにより入力ポート406からの電力を出力ポート408へと転送する。よって、第1のスイッチングデバイス418を「制御スイッチ」としてみなすことができる。なぜならば、第1のスイッチングデバイス418の動作は、入力ポート406から出力ポート408への電力転送を制御するように変更されるからである。スイッチングデバイスの導通時間と非導通時間との間の比は、スイッチングデバイスのデューティサイクル(D)と呼ばれることが多い。本文書において、スイッチングデバイスの例を非限定的に挙げると、バイポーラ接合トランジスタ、電界効果トランジスタ(例えば、N型またはP型金属酸化膜半導体電界効果トランジスタ(MOSFET)(例えば、横方向拡散金属酸化膜半導体トランジスタ(LDMOS)、接合電界効果トランジスタ、金属半導体電界効果トランジスタ)、絶縁ゲートバイポーラ接合トランジスタ、サイリスタ、またはシリコン制御整流器がある。
第1のスイッチングデバイス418は典型的には、少なくとも20kHzの周波数において切り替わり、これにより、スイッチング電流によるコンポーネント移動に起因して発生した音が人間による感知が可能な周波数範囲を超える。より低いスイッチング周波数ではなく高いスイッチング周波数(例えば、少なくとも20kHz)においてスイッチングデバイス418を作動させることにより、(1)より小型のエネルギー貯蔵コンポーネント(例えば、入力および負荷における出力回路412のインダクタンスおよびフィルタコンデンサ)の利用ならびに/または(2)リップル電流およびリップル電圧の大きさの低減もより容易になる。
さらに、20kHzよりもずっとより高い周波数でスイッチングデバイス418を動作させることにより、負荷410に送達される電力を最大化させると有利であり得る。詳細には、各スイッチング回路404内への入力電流は、リップル成分を有する。リップル成分は、各電源402の効率を低下させる。詳細には、リップル電流の大きさが大きいほど、最大出力点に対応する大きさのRMS電流を電源402から提供することが困難になる。そのため、スイッチング周波数を増加させることにより、電源402効率を増加させることができる。なぜならば、リップル電流の大きさは、スイッチング周波数の増加と共に低下することが多いからである。しかし、スイッチング周波数が増加した場合、スイッチング回路404におけるスイッチング損失が増加することが多い。そのため、負荷410へと送達される電力合計を最大化させるための最適スイッチング周波数範囲があることが多い。スイッチング回路404および電源402の特定の実施形態において、第1のスイッチングデバイス418のスイッチング周波数が約500kHz〜800kHzであるとき、最大電力転送が発生する。スイッチングデバイス418を高周波数(例えば、少なくとも200kHz)で動作させた場合も、比較的小型の低コストかつ/または信頼性のある入力コンデンサおよび/または出力コンデンサ(例えば、多層セラミックコンデンサ)の利用が可能となる。例えば、特定の実施形態において、スイッチング周波数を充分に高くすることにより、スイッチングデバイススイッチングから発生したリップル電流を主に多層セラミックコンデンサによってフィルタリングする。これとは対照的に、従来のMPPTシステムはずっと低いスイッチング周波数で動作することが多く、そのため、比較的大型の、高コストかつ信頼性の無い入力コンデンサおよび出力コンデンサ(例えば、電解コンデンサ)の利用が必要となる。
特定の実施形態において、第1のスイッチングデバイス418はそれぞれ、各固定周波数において切り替わり、ポート406および408間の電力転送は、パルス幅変調(PWM)によって制御される。PWMにおいて、入力ポート406と出力ポート408との間の電力転送を制御させるように、第1のスイッチングデバイス418のデューティサイクルを変化させる。しかし、いくつかの実施形態において、電力転送(例えば、低電力動作状態時)を制御するように、第1のスイッチングデバイス418のスイッチング周波数を変化させる。このような場合、固定周波数で動作させるよりも、異なる周波数で動作させた方が効率が良い。1つの例示的な可変周波数動作モードとして、パルス周波数変調(PFM)がある。パルス周波数変調(PFM)においては、ポート406からポート408への電力転送を制御するように、スイッチング周波数を変化させる。
スイッチング回路404をPWMによって制御する特定の実施形態において、各第1のスイッチングデバイス418のスイッチング遷移は、他のスイッチングデバイス418それぞれのスイッチング遷移と位相がずらされ、これにより、各スイッチング回路404によって生成されたリップル電流により、他のスイッチング回路404それぞれによって生成されたリップル電流が少なくとも部分的に無効化される。例えば、3つのスイッチング回路404がPWMによってそれぞれ制御される特定の実施形態において、各第1のスイッチングデバイス418のターンオンは、他の第1のスイッチングデバイス418それぞれのターンオンから120度だけずらされる。あるいは、いくつかの実施形態において、スイッチング周波数を意図的に緩く制御することにより、スイッチング回路404間においてスイッチング周波数が異なる可能性を高くし、これにより、複数のスイッチング回路404を同時に切り換えることに起因するリップルおよび過渡電流の低減を支援する。例えば、N個のスイッチング回路404の出力ポート408が電気的に直列接続される場合、各スイッチング回路404のスイッチング周波数が(同時に切り換えられる場合よりも)ランダム化されると、出力電流Ioのリップルの大きさがNの平方根の倍数だけ低減する。いくつかの実施形態において、スイッチング回路404間においてスイッチング周波数を少なくとも10パーセントだけ変化させることにより、多くの場合におけるスイッチング周波数の有効ランダム化の達成を支援する。このようなスイッチング周波数の緩やかな制御は、例えば公差仕様が緩いコンポーネントを用いる(例えば、公差が1%であるレジスタの代わりに公差が20%であるレジスタを用いる)ことにより、達成される。
各スイッチング回路404は、さらなるスイッチングデバイスまたはダイオードをさらに含む。さらなるスイッチングデバイスまたはダイオードにより、第1のスイッチングデバイス418が非導電状態であるときに出力電流Ioに第1のスイッチングデバイス418を迂回させるためのバイパス経路が得られる。例えば、図4の実施形態において、ダイオード419は、各出力ポート408と電気的に並列接続されて、バイパス経路を提供する。ダイオード419は、例えば、順電圧低下を最小化するショットキーダイオードである。いくつかの実施形態において、ダイオード419の代替または補強として第2のスイッチングデバイスを用いて、バイパス経路中の損失を(ダイオード419を単独で用いた場合よりも)低減させる。例えば、ダイオード419は、出力ポート408と電気的に並列接続されたトランジスタのボディーダイオードであり得る。別の例として、別個の第2のスイッチングデバイスをダイオード419と電気的に並列接続させてもよい。
各スイッチング回路404は、中間スイッチングノード420をさらに含む。中間スイッチングノード420は、導電状態と非導電状態との間で切り替わる第1のスイッチングデバイス418に少なくとも部分的に起因して、少なくとも2つ異なる電圧レベルの間を転移する。いくつかの実施形態において、中間スイッチングノード420は、図4に示すように各第1のスイッチングデバイス418へと直接電気的に接続される。他の実施形態において、1つ以上のコンポーネント(例えば、変圧器(図示せず))は、中間スイッチングノード420を各第1のスイッチングデバイス418から分離させる。変圧器が接続されたスイッチング回路の一例について、図7を参照して説明する。
各スイッチング回路404は、コントローラ422をさらに含む。コントローラ422は、各電源402から抽出された電力量を(例えば第1のスイッチングデバイス418のデューティサイクルの調節によって)少なくとも実質的に最大化させるように、第1のスイッチングデバイス418の切り換えを制御する。詳細には、出力回路電流Ioは多様な要素(例えば、負荷410の変化)に起因して経時的に変動し得るものの、コントローラ422は、電流Ioの変動速度よりもずっと高速で動作する。そのため、第1のスイッチングデバイス418のデューティサイクルの連続的変化間において出力回路電流Ioはほぼ一定であるとみなすことができ、スイッチング回路出力電力の変化は、スイッチング回路出力電圧Voの平均値(Vo_avg)に主に起因することが多い。なぜならば、出力電力は、電流IoおよびVo_avgの積だからである。電源402から抽出された電力は、スイッチング回路出力電力からスイッチング回路404中の損失を減算した値と同一である。そのため、コントローラ422は、Vo_avgを少なくとも実質的に最大化させるように、第1のスイッチングデバイス418のデューティサイクルを調節する。Vo_avgを最大化させることにより、スイッチング回路出力電力と、各電源402から抽出された電力とが少なくとも実質的に最大化される。
いくつかの実施形態において、出力電圧Voは本質的にDC電圧であり、コントローラ422は、Voの直接的監視により、Vo_avgを決定する。しかし、スイッチング回路404の多くの実施形態において出力フィルタは用いられず、スイッチング回路404の出力電圧はスイッチング電圧Vyと同じである。スイッチング電圧Vyは、中間スイッチングノード420と、母線424との間の電圧である。このような実施形態において、コントローラ422は、Vo_avgを示すスイッチングノード電圧Vyの平均値(Vy_avg)を最大化させることにより、Vo_avgを最大化させる。母線424は、スイッチング回路404の構成に応じて、正または負の母線であり得る。母線424が負の母線である実施形態(例えば、下記の図6の実施形態)において、Vyは、図4に示すように中間スイッチングノードから母線への電圧である。しかし、基準ノードが正の母線である実施形態(例えば、以下の図5の実施形態)において、Vyは、母線から中間スイッチングノードへの電圧である。
よって、各スイッチング回路402は、Vo_avgを最大化させることにより(例えば、Vo_avgを示すVy_avgを最大化させることにより)、各電源402から抽出された電力量を少なくとも実質的に最大化させる。この際、第1のスイッチングデバイス418のデューティサイクルにおける連続的変化間においてIoが本質的に不変であるとみなす。このようなMPPT機能においては出力計算は不要であるため、これにより、従来のMPPTシステムにおいて必要となることが多いような、スイッチング回路404において電力計算ハードウェア、ファームウェアおよび/またはソフトウェアを用いて電圧および電流の積を決定する必要が無くなることが理解されるべきである。そのため、スイッチング回路404の特定の実施形態は、典型的な従来のMPPTコントローラよりもより簡単かつ/または低コストとなり得、これにより、セル毎におけるMPPTが可能となる。このようなセル毎におけるMPPTは、従来のMPPTコントローラにおいてはコストおよび複雑性に起因して実際的ではないことが多かった。
しかし、スイッチング回路404においてはMPPT実現のための電流測定または電力計算機能は不要であるものの、このような機能はスイッチング回路404中から除外されないことが認識されるべきである。例えば、スイッチング回路404の別の実施形態は、負荷410に起因して出力回路電流Ioが高速変化する用途において、電圧測定および電流測定双方を用いることで、より高精度のMPPTの達成および/またはMPPTの実現が可能となる。別の例として、スイッチング回路404のいくつかの実施形態は、逆電流遮断によって過電流防止および/またはダイオードエミュレーションを達成する電流測定回路を含み得る。
上述したように、コントローラ422は、出力回路電流Ioの変化速度よりもずっと高速で動作する。詳細には、デューティサイクルは所与のパーセンテージだけ変化するため、Ioは、通常の動作範囲の大きさに相対してより小さなパーセンテージだけ(理想的にはずっと小さなパーセンテージだけ)変化する。このような関係は、デューティサイクルにおける連続的変化間において変化する限られた可能性をIoが有するよう、比較的大きな値の出力回路412インダクタンスの利用によってかつ/またはデューティサイクルを比較的高速で変化させることにより促進される。しかし、電源402のMPPを最も高精度に追跡するために、デューティサイクルは、デューティサイクル変化後に過渡電流が落ち着く速度よりもずっと高速で変化すべきではない。詳細には、デューティサイクルが変化すると、電源402の有効抵抗および電源402のバイパスキャパシタンス(図示せず)に依存する時定数との共鳴が得られる。負荷410が少なくともほぼ一定の電流負荷である実施形態において、出力回路412は大きなインダクタンス値を持つ必要はない点に留意されたい。
スイッチング回路404の特定の実施形態は、2つ以上の動作モードを有する。このような実施形態は、最大出力点追跡スイッチングモード(MPPTスイッチングモード)を含む。MPPTスイッチングモードでは、スイッチング回路404は、各電源402から抽出された電力量を少なくとも実質的に最大化させるように、上述したように動作する。しかし、このような実施形態は、1つ以上のさらなる動作モードを有する(例えば、トライステートモード)。このようなさらなる動作モードは、各電源402の出力がスイッチング回路404を適切に動作させるには低すぎる場合(例えば、ダイオード419上のバイパストランジスタをオンにするには電源402の出力が低すぎる場合)、典型的にはスイッチング回路404によって利用される。トライステートモードで動作するスイッチング回路404は、オフにされる(すなわち、その第1のスイッチングデバイス418はオンにされない)が、それでも、スイッチング回路は、スイッチング回路をバイパスするためのIo用経路を提供し、これにより、他のスイッチング回路404は負荷410へと電力供給することができる。このようなバイパス経路は、スイッチング回路404内のダイオード419によって提供され得る。例えば、特定の実施形態において、第1のスイッチングデバイス418は電界効果トランジスタを含み、トランジスタのボディーダイオードは、スイッチング回路がオフにされると、Io用バイパス経路を提供する。いくつかの実施形態において、ダイオード419は、低電圧低下バイパス経路を提供するショットキーダイオードである。
スイッチング回路404のいくつかの実施形態は、バイパスモードを含む。有意の電力を負荷410へ提供するためには各電源402の出力が低すぎるが、コントローラ422を動作させるための充分な電力が利用可能であるとき、バイパスモードは典型的には、スイッチング回路によって利用される。バイパスモードにおいて、コントローラ422に起因して、スイッチングデバイスがダイオード419と並列にIo用バイパス経路を提供する。あるいは、通常はゼロ電圧でオンであるスイッチングデバイス(例えば、デプレションモードトランジスタ)をダイオード419と並列に配置するかまたはダイオード419の代替として用いることにより、低電圧低下バイパス経路を提供し、これにより(電源402の出力がコントローラ422を動作させるには低すぎる状況においても)バイパスモードが可能となり、これにより、トライステートモードが不要となる。バイパスモードが利用可能であるとき、バイパスモードはトライステートモードよりも好適であることが多い。なぜならば、ターンオン時のスイッチングデバイス上の電圧低下は、ダイオードの順電圧低下よりも低いことが多いからである。スイッチング回路404がバイパスモードにおいて動作可能である他の例を以下に挙げる:(1)入力ポート406と出力ポート408との間で転送される電力が閾値を下回る場合、(2)入力ポート406内への電流大きさが閾値を下回る場合、(3)出力ポート408から流出する電流が閾値を超える場合、(4)スイッチング回路404の温度が閾値を超える場合、(5)入力ポート406上の電圧大きさが閾値を下回る場合、および/または(6)入力ポート406上の電圧大きさが閾値を超える場合。スイッチング回路動作モードのさらなる例について、図17を参照して以下に説明する。
システム400のいくつかの実施形態において、負荷上の電圧Vloadが、負荷によって出力電流Ioを伝導させるための最小値であることが負荷410において必要である。このような負荷の例を挙げると、バッテリ充電システムおよびいくつかのグリッドタイインバータがある。このような実施形態において、複数のスイッチング回路404は任意選択的に同期され、これにより、第1のスイッチングデバイス418が初期に同時にターンオンし、これにより、Vloadは、負荷410が出力電流Ioを伝導させるのに必要な閾値へと上昇する。
スイッチング回路404の特定の実施形態は、さらなる特徴を含む(例えば、過熱防止、過電圧防止および/または過電流防止)。例えば、特定の実施形態において、コントローラ422は、過熱状態に応答して、スイッチング回路404の温度の監視およびスイッチング回路の停止またはスイッチング回路のバイパスモードでの動作を行うように、適合される。別の例として、いくつかの実施形態において、コントローラ422は、入力電圧の大きさが閾値を超えた場合、入力ポート406上の入力電圧大きさの監視およびスイッチング回路の停止を行うように動作可能である。別の例として、いくつかの実施形態において、コントローラ422は、スイッチング回路404から得られた電流大きさを制限するように、第1のスイッチングデバイス418の動作を制御するように適合される。
以下、スイッチング回路404の特定の例およびその用途について説明する。しかし、スイッチング回路404は、以下に説明する構成以外の構成を持ち得ることが理解されるべきである。
図5に示す1つの電力システム500は、N個の電源502(例えば、光起電装置または燃料電池セル)と、N個の電気スイッチング回路504(Nは、1よりも大きい整数である)とを含む。スイッチング回路504は、図4のスイッチング回路404の実施形態であり、各スイッチング回路504は、入力ポート506および出力ポート508を含む。各入力ポート506は、第1の入力端子510および第2の入力端子512を含む。第1の入力端子510および第2の入力端子512はそれぞれ、各電源502の負の端子514および正の端子516へと電気的に接続される。第1の入力端子510および負の端子514は、負の入力ノード518の一部を形成し、第2の入力端子512および正の端子516は、正の入力ノード520の一部を形成する。各出力ポート508は、第1の出力端子522および第2の出力端子524を含む。第1の出力端子522は、(図4の中間スイッチングノード420に類似する)中間スイッチングノード526へと電気的に接続され、各第2の出力端子524は、正の入力ノード520へと電気的に接続される。各出力ポート508は、負荷528(例えば、インバータ)へと電気的に直列接続されて、閉回路を形成する(本明細書中、以下、出力回路530と呼ぶ)。
スイッチング回路504は、バック型トポロジーを有する。詳細には、各スイッチング回路504は、第1のスイッチングデバイス532を含む。第1のスイッチングデバイス532は、図4の第1のスイッチングデバイス418に類似する。第1のスイッチングデバイス532は、第1の入力端子510と、中間スイッチングノード526との間に電気的に接続される。各スイッチング回路504は、第2のスイッチングデバイス534と、コントローラ536とをさらに含む。コントローラ536は、第1のスイッチングデバイスならびに第2のスイッチングデバイス532および534の動作を制御するように構成される。第2のスイッチングデバイス534は、第2の入力端子512と、中間スイッチングノード526との間に電気的に接続される。別の実施形態において、第2のスイッチングデバイス534の代わりに、ダイオード(例えば、ショットキーダイオード)が用いられる。ダイオードは、順バイアスを受けたときに電流がダイオードを通じて中間スイッチングノード526から正の入力ノード520へと流れるように、接続される。
スイッチング回路504は、従来のバック型トポロジーと比較して逆構成である。すなわち、スイッチング回路504の出力(端子522、524)は、(従来のバック型トポロジーにおける中間スイッチングノード526と負の入力ノード518との間ではなく)正の入力ノード520と中間スイッチングノード526との間に電気的に接続される。その結果、第2のスイッチングデバイス534ではなく第1のスイッチングデバイス532が制御スイッチとして機能する。スイッチング回路504は、スイッチングノード電圧Vy5を有する。正の入力ノードまたは正の母線520と中間スイッチングノード526との間のスイッチングノード電圧Vy5は、図4のスイッチングノード電圧Vyに類似する。スイッチング回路504はまた、出力端子524および522上の出力電圧Vo5を有する。各スイッチング回路504(例えば、図5に示すようなもの)のための出力フィルタを含まない実施形態において、Vy5は、Vo5と同じである。Vo5_avgは、Vo5の平均値であり、第1のスイッチングデバイス532のデューティサイクルに比例する。第1のスイッチングデバイス532がオフされると、第2のスイッチングデバイス534は、(図4のIoに類似する)出力回路電流Io5の経路を提供する。詳細には、出力回路530中のインダクタンス540の存在に起因して第1のスイッチングデバイス532がオンにされると、電流Io5は上昇する。コントローラ536が第1のスイッチングデバイス532をオフにすると、インダクタンス540により、電流Io5が瞬時に変化することがインダクタンス540によって回避される。よって、電流Io5がゼロに到達するかまたは第1のスイッチングデバイス532が再度オンになるまで、第2のスイッチングデバイス534がオンにされて、電流Io5を下降させるための経路が得られる。よって、第1のスイッチングデバイス532および第2のスイッチングデバイス534が協働して、入力ポート506からの電力を出力ポート508へと転送させる。
いくつかの用途において、逆形のバック型トポロジーのスイッチング回路504は、非逆形のバック型トポロジーよりも好適である場合がある。詳細には、多数の用途において、Vo5_avgが電源502の電圧に近くなり、その結果デューティサイクルが大きくなることが理解される。このような状況において、スイッチングデバイスが相補型MOSFETである場合、第1のスイッチングデバイス532の代わりに第2のスイッチングデバイス534を制御スイッチとすることが望ましい。なぜならば、第1のスイッチングデバイス532をN型MOSFETとして実行する方が、第2のスイッチングデバイス534をN型MOSFETとして実行するよりも簡単であることが多いからである。N型MOSFETは一般的にはP型MOSFETよりも好適である。なぜならば、N型MOSFETは一般的には、類似のP型MOSFETよりもチャネル抵抗が低いからである。
図5の実施形態において、スイッチング変換器504は、個々のエネルギー貯蔵インダクタを含まない。その代わりに、スイッチング変換器504は、出力回路530中のエネルギー貯蔵インダクタンス540を共有し、Vo5は、大きなAC成分を有する。インダクタンス540を単一のインダクタとして模式的に図示しているが、インダクタンス540は、1つ以上の別個のインダクタおよび/または出力回路530を形成するコンポーネント(例えば、出力ポート508)を接続させるワイヤまたは他の導体の相互接続インダクタンスを含み得る。いくつかの実施形態において、インダクタンス540は、主な相互接続または完全相互接続インダクタンスを含む。別個のインダクタの代わりに相互接続インダクタンスを用いることにより、電力システム500のコストおよび/またはサイズの低下が可能となる。例えば、図42に示す電力システム4200は、システム500の実施形態である。インダクタンス540は、電力システム4200では相互接続インダクタンス4202を含む。第1のスイッチングデバイス532および第2のスイッチングデバイス534は、例えば、相互接続インダクタンスを一次エネルギー貯蔵インダクタンス540として用いることが可能な位にスイッチング周波数が充分に高くなるように、構成される。別の実施形態において、1つ以上のスイッチング回路504は、1つ以上の別個のインダクタ(図示せず)を含む。これらの1つ以上の別個のインダクタ(図示せず)は、スイッチングノード電圧Vy5がVo5と異なるように、出力端子522および524と電気的に直列接続される。
図5の実施形態において、スイッチング回路504はまた、個々の出力端子524および522上の出力フィルタコンデンサを含まない。その代わりに、スイッチング回路回路504は、共通出力フィルタキャパシタンス542を共有する。共通出力フィルタキャパシタンス542は、負荷528と電気的に並列接続された1つ以上のコンデンサを示す。しかし、スイッチング回路504が自身の出力フィルタコンデンサを含む場合も除外されず、このようなコンデンサは、共通出力フィルタコンデンサ542に加えてまたは共通出力フィルタコンデンサ542の代わりに含まれ得る。スイッチング回路504が自身の出力フィルタコンデンサを含まない場合、スイッチング回路も自身の出力インダクタを含む必要がある。例えば、各スイッチング回路は、各出力インダクタおよび出力フィルタコンデンサを含み得る。各出力インダクタおよび出力フィルタコンデンサは典型的には、共通出力フィルタコンデンサ542に加えて小さなキャパシタンスを有する。
電源502の特性に応じて、各電源502上のコンデンサ544が必要となり得る。例えば、電源502が光起電装置である場合、コンデンサ544は一般的には、スイッチング回路504からのリップル電流に起因して光起電装置性能が劣化する事態を回避することが要求される。光起電用途において、コンデンサ544の所望の値を決定するためには、光起電装置効率と、MPPTの高速調節との間のトレードオフが必要となることが多い。詳細には、コンデンサ544の値を大きくすることにより、光起電装置性能が促進され、コンデンサ544の値を小さくすることにより、コントローラ536のより高速な動作が促進されることが多い。第1のスイッチングデバイスならびに第2のスイッチングデバイス532および534のスイッチング周波数も、リップル電流大きさを低減させるように増加させることができ、これにより光起電装置性能が促進される。コンデンサ544がスイッチング回路504の外部に設けられた様子が図示されているが、コンデンサをスイッチング回路504と一体化させてもよい。
コントローラ536は、スイッチングノード電圧Vy5の平均値の変化に応答して第1のスイッチングデバイス532のデューティサイクルを変化させ、これによりVo5_avgを最大化させる。図4の電力システム400と同様に、コントローラ536は、出力電流Io5の予測される変化よりもずっと高速で動作する。そのため、出力電流Io5は、デューティサイクルの連続的変化間において本質的に不変のままであり、コントローラ536は、Vo5_avgを最大化させることにより、電源502から抽出された電力を少なくとも実質的に最大化させる。しかし、Vo5が本質的にDC電圧であるようにスイッチング回路504が出力インダクタおよびコンデンサを含む場合、コントローラ536をVo5を直接監視および最大化するように構成してもよい点に留意されたい。
さらに以下に説明するように、スイッチング回路504のいくつかの実施形態は、第2のスイッチングデバイス534がシャント出力端子522および524へと連続的に伝導するように構成され、これにより、電源502から生成される電力が小さいかまたはゼロである場合、出力ポート508がシャントされ、電源502の周囲の電流Io5のためのシャントまたはバイパス経路が得られる。例えば、電源502が陰に起因して発電量の低い光起電装置である場合、このようなスイッチング回路504の実施形態に起因して、第2のスイッチングデバイス534は連続的に伝導し、これにより光起電装置を通過する電流が回避され、これにより、光起電装置中の電力損失および光起電装置への損傷可能性が回避される。電源502をダイオードではなく第2のスイッチングデバイス534によってバイパスすることにより、電力システム500の効率を向上させることが可能となる点に留意されたい。なぜならば、第2のスイッチングデバイス534は典型的には、ダイオードよりも順電圧低下が低いからである。
図6に示す1つの電力システム600は、電力システム400の別の実施形態である。システム600は、図5のシステム500に類似するが、システム600のスイッチング回路は、逆形のバック型トポロジーではなく、標準的な(非逆形)バック型トポロジーを有する。システム600は、N個の電源602と、各電源602に電気的に接続された各スイッチング回路604とを含む。Nは、1よりも大きい整数である。各スイッチング回路604は、入力ポート606を含む。入力ポート606は、第1の入力端子610および第2の入力端子608を含む。第1の入力端子610および第2の入力端子608はそれぞれ、電源602の正の端子614および負の端子612へと電気的に接続される。第2の入力端子608および負の端子612は、負の入力ノード616の一部を形成し、第1の入力端子610および正の端子614は、正の入力ノード618の一部を形成する。各スイッチング回路604は、出力ポート620をさらに含む。出力ポート620は、第1の出力端子622および第2の出力端子624を含む。第1の出力端子622は、負の入力ノード616へと電気的に接続され、第2の出力端子624は、中間スイッチングノード626へと電気的に接続される。出力ポート620は、負荷628(例えば、インバータ)と電気的に直列接続されて、出力回路630を形成する。
出力回路630は、インダクタンス632を含む。インダクタンス632は、単一のインダクタとして模式的に示しているが、出力回路630を形成するコンポーネント(例えば、出力ポート620)を接続させるワイヤまたは他の導体の1つ以上の別個のインダクタおよび/または相互接続インダクタンスを示し得る。例えば、図43に示す電力システム4300は、システム600の実施形態である。インダクタンス632は、電力システム4300では相互接続インダクタンス4302を含む。特定の実施形態において、スイッチング回路604は、エネルギー貯蔵インダクタンスのために、相互接続インダクタンスに主にまたは完全に依存する。
各スイッチング回路604は、第1のスイッチングデバイス634と、第2のスイッチングデバイス636とを含む。第1のスイッチングデバイス634は、第2の入力端子608と、中間スイッチングノード626との間に電気的に接続される。第2のスイッチングデバイス636は、中間スイッチングノード626と、第1の入力端子610との間に電気的に接続される。コントローラ638は、第1のスイッチングデバイス634および第2のスイッチングデバイス636の動作を制御する。第1のスイッチングデバイス634および第2のスイッチングデバイス636は、協働して入力ポート606からの電力を出力ポート620へと転送させる。図5のスイッチング回路504とは対照的に、第2のスイッチングデバイス636はスイッチング回路604内の制御スイッチであり、コントローラ638は、第2のスイッチングデバイス636のデューティサイクルを変化させることにより、入力ポート606と出力ポート620との間の電力転送を制御する。第2のスイッチングデバイス636が非導電状態にあるとき、第1のスイッチングデバイス634は、出力回路電流Io6用の経路を提供する。順バイアスを受けたときに電流がダイオードを通じて負の入力ノード616から中間スイッチングノード626へと流れるように接続されたダイオードを、第1のスイッチングデバイス634の代わりに任意選択的に用いる。スイッチング回路604は、中間スイッチングノード626と、負の入力ノードまたは負の母線616との間のスイッチングノード電圧Vy6を有する。スイッチング回路604が出力フィルタを含まない実施形態(例えば、図6に示すようなもの)において、スイッチングノード電圧Vy6は、スイッチング回路出力電圧Vo6と同じである。
スイッチング回路604は、図5のスイッチング回路504と同様に動作する。詳細には、コントローラ638は、Vo6(1)の平均値が少なくとも実質的に最大化するように、第2のスイッチングデバイス636のデューティサイクルを調節する。コントローラ638は、出力回路630を通過する電流Io6の変化速度よりもずっと高速に、第2のスイッチングデバイス636のデューティサイクルを変化させる。そのため、Vo6_avgを少なくとも実質的に最大化させることにより、スイッチング回路604の出力電力と、電源602から抽出された電力とが最大化される。スイッチング回路604に出力フィルタが含まれない実施形態において、コントローラ638は、Vy6の平均値を最大化させることにより、Vo6_avgを間接的に最大化させる。スイッチング回路604が出力フィルタを含みVo6が本質的にDC電圧である実施形態において、コントローラ638は、Vo6を任意選択的にあるいは直接的に監視し、Vo6を最大化させる。
図4を参照して上述したように、スイッチング回路404のいくつかの実施形態は、変圧器を含む(例えば、電気的絶縁および/または各電源からの電圧の逓増または逓減を可能にするためのもの)。例えば、図7に示す1つの電力システム700は、電力システム400の実施形態である。電力システム700において、スイッチング回路は、絶縁トポロジーを有する。システム700は、N個の電源702と、スイッチング回路704とを含む。Nは、1よりも大きい整数である。各スイッチング回路704は、各電源702へと電気的に接続された入力ポート706を含み、各スイッチング回路704は、出力ポート708を含む。出力ポート708は、負荷710(例えば、インバータ)と電気的に直列接続されて、閉回路を形成する(以下、本明細書中、出力回路712と呼ぶ)。各スイッチング回路704は、各出力電圧Vo7の平均値(Vo7_avg)を最大化することにより、各電源702から抽出された電力量を少なくとも実質的に最大化させる。いくつかの実施形態において、スイッチングノード電圧の平均値を最大化することにより、Vo7_avgを最大化する。
各スイッチング回路704は、可変電圧利得を用いた絶縁トポロジーを有する。詳細には、各スイッチング回路は、各電力変圧器716と、絶縁境界720を横断する通信サブシステム718とを含む。コントローラ722は、図示のように絶縁境界720の一次側724上に配置され得る。あるいは、コントローラ722は、絶縁境界720の二次側726上に配置され得る。通信サブシステム718は、コントローラ722によって用いられて、(例えば、スイッチングノード電圧の感知および/または1つ以上のスイッチングデバイス(図示せず)の制御のために)絶縁境界720上を通信する。通信サブシステム718をオプトカプラとして図示しているが、通信サブシステム178は、他の形態もとり得る(例えば、パルス変圧器、スイッチトキャパシタのネットワーク、または類似の絶縁通信デバイス)。電気的絶縁が不要である実施形態(例えば、電圧レベル変換を可能にするために変圧器716のみを用いる実施形態)において、通信サブシステム718を無くすことが可能である。
いくつかの実施形態において、スイッチング回路704は、出力上にインダクタが必要なトポロジーを有する。このようなトポロジーの例を非限定的に挙げると、フォワード型トポロジー、ハーフブリッジ型トポロジー、およびフルブリッジ型トポロジーがある。このような実施形態において、スイッチング回路704中の出力インダクタの代わりにまたはスイッチング回路704中の出力インダクタに加えて、出力回路712のインダクタンス714を任意選択的に用いることができる。インダクタンス714を単一のインダクタとして模式的に図示しているが、インダクタンス714は、出力回路712を形成するためのワイヤまたは他の導体を接続するコンポーネント(例えば、出力ポート708)の複数の別個のインダクタおよび/または相互接続インダクタンスを含み得る。例えば、図44に示す電力システム4400は、システム700の実施形態である。インダクタンス714は、電力システム4400では相互接続インダクタンス4402を含む。
システム700の別の実施形態において、スイッチング回路は、出力インダクタが不要であるトポロジー(例を非限定的に挙げると、フライバック型トポロジー、逆型ハーフブリッジ型トポロジー、逆型フルブリッジ型トポロジー、および電流供給トポロジー)を有する。このようなトポロジーにおいて、負荷710がキャパシタンスを含む場合(例えば、負荷710がインバータである場合の入力キャパシタンスを含む場合)、出力回路712の相互接続インダクタンスは、このようなキャパシタンスと共に有利に機能して、さらなるフィルタを形成する。
図45に示す1つの電力システム4500は、電力システム700の実施形態である。スイッチング回路704は、電力システム4500ではフォワード型トポロジーを有する。システム4500は、N個の電源4502と、各電源4502へと電気的に接続された各スイッチング回路4504とを含む。Nは、1よりも大きい整数である。各スイッチング回路4504は、第1の入力端子4508および第2の入力端子4510を含む入力ポート4506を含む。第1の入力端子4508および第2の入力端子4510はそれぞれ、電源4502の負の端子4512および正の端子4514へと電気的に接続される。第1の入力端子4508および負の端子4512は、負の入力ノード4516の一部を形成し、第2の入力端子4510および正の端子4514は、正の入力ノード4518の一部を形成する。各スイッチング回路4504は、出力ポート4520をさらに含む。出力ポート4520は、第1の出力端子4522および第2の出力端子4524を含む。出力ポート4520は、負荷4526(例えば、インバータ)と電気的に直列接続されて、閉回路を形成する(本明細書中以下、出力回路4528と呼ぶ)。
各スイッチング回路4504は、変圧器4530を含む(例えば、電源4502と負荷4526との間の電気的絶縁の提供および/または電源4502の電圧の逓減または逓増を行うもの)。例えば、変圧器4530を用いて出力ポート4520における電圧を逓増させて、電流Io45および関連付けられた電流導通損失の大きさを逓減させる。変圧器4530の一次巻線4532は、第2の入力端子4510と、第1のスイッチングノード4534との間に電気的に接続される。第1のスイッチングデバイス4536、図4の第1のスイッチングデバイス418と同様であり、第1のスイッチングノード4534と、第1の入力端子4508との間に電気的に接続される。コントローラ4538は、第1のスイッチングデバイス4536の動作を制御する。
絶縁変圧器4530の二次巻線4540は、第1の出力端子4522と、第1のダイオード4542の陽極との間に電気的に接続される。第1のダイオード4542の陰極は、第2の出力端子4524へと電気的に接続される。フリーホイーリングダイオード4544は、第1の出力端子と、第2の出力端子4522および4524との上に電気的に接続される。別の実施形態において、ダイオード4542および4544のうち1つ以上の代わりに各スイッチングデバイスを用いて、導通損失を逓減する。コントローラ4538が第1のスイッチングデバイス4536をオンにすると、電流が二次巻線4540および第1のダイオード4542内を流れる。コントローラ4538が第1のスイッチングデバイス4536をオフにすると、第1のスイッチングデバイス4536が再度オンになるかまたはIo45がゼロへ低下するまで、出力回路電流Io45は、フリーホイーリングダイオード4544内を流れる。
スイッチング回路4504は、図5および図6のスイッチング回路504および604と同様にそれぞれ動作する。詳細には、コントローラ4538は、第1のスイッチングデバイス4536のデューティサイクルを調節して、Vo45の平均値を少なくとも実質的に最大化する。Vo45の平均値は、フリーホイーリングダイオード4544上の電圧である。コントローラ4538は、出力回路4528内を通過する電流Io45が変化し得る速度よりもずっと高速で、第1のスイッチングデバイス4536のデューティサイクルを変化させる。そのため、Vo45_avgを少なくとも実質的に最大化させることにより、スイッチング回路4504出力電力と、電源4502から抽出された電力とが最大化される。スイッチング回路4504内に出力フィルタが含まれない実施形態において、コントローラ4538は、スイッチングノード電圧Vy45の平均値を最大化させることにより、Vo45_avgを最大化させる。スイッチングノード電圧Vy45の平均値は、二次巻線4540からの整流パルス状電圧である。スイッチング回路4504内に出力フィルタが含まれ、Vo45が本質的にDC電圧である実施形態において、コントローラ4538は、Vo45の監視および最大化を交互に行う。
図45の実施形態において、各スイッチング回路4504は、出力回路4548のインダクタンス4548をエネルギー貯蔵インダクタンスとして利用する。インダクタンス4548を模式的に単一のインダクタとして図示しているが、インダクタンス4548は、出力回路4528を形成するためにコンポーネント(例えば、出力ポート4520)を接続しているワイヤまたは他の導体のインダクタンスから得られた複数の別個のインダクタおよび/または相互接続インダクタンスを含む。
入力ポート4506と、出力ポート4520との間(およびよって電源4502と、負荷4526との間に)電気的絶縁が必要な実施形態において、コントローラ4538は、入力ポート4506または出力ポート4520のうち1つに対して電気的に参照され、他方から電気的に絶縁される。例えば、コントローラ4536は、入力ポート4506に対して電気的に参照され、出力ポート4520から電気的に絶縁される。このような実施形態において、コントローラ4538は典型的には、フィードバック信号(例えば、スイッチングノード電圧Vy45を感知するためのもの)を、オプトカプラ、パルス変圧器、スイッチトキャパシタのネットワークまたは類似の絶縁通信デバイスを介して受信する。別の例として、コントローラ4538は、出力ポート4520へと電気的に参照され、入力ポート4506から電気的に絶縁される。このような実施形態において、コントローラ4538は典型的には、パルス変圧器、オプトカプラ、スイッチトキャパシタのネットワーク、または類似の絶縁通信デバイスを介して第1のスイッチングデバイス4536を駆動する。
図38に示すスイッチング回路3800は、スイッチング回路4504の実施形態である。スイッチング回路3800において、(図45のポート4506および4520に類似する)入力ポート3802と出力ポート3804との間が電気絶縁される。スイッチング回路3800において、コントローラ3806は、図45のコントローラ4538に類似しており、入力ポート3802へと電気的に参照され、絶縁境界3808上からのフィードバック情報をオプトカプラ3810を介して受信する。
図8は、制御回路またはコントローラ800を示す。コントローラ800は、図4〜7図のコントローラ422、536および638または722それぞれの1つの可能な実施形態である。簡潔さのため、コントローラ800については、図5の電力システム500の文脈のみにおいて説明する。しかし、コントローラ800は、他のスイッチング回路の実施形態においても適合可能であることが理解されるべきである。
コントローラ800は、スイッチングノード電圧(例えば、Vy5)または(出力電圧がDC電圧である場合は)スイッチング回路出力電圧(例えば、Vo5)を受信するための入力802および804を含む。コントローラ800は、スイッチングノード電圧のAC成分を減衰させるためのフィルタ806を任意選択的に含む。フィルタ806はまた、いくつかの実施形態においてサンプリング回路(図示せず)を含む。別の実施形態において、アナログ/デジタル変換器回路によって生成されるデジタル信号は、入力802および804の電圧の平均値のサンプルを示す。フィルタ806の出力またはフィルタ806が存在しない場合の入力802および804は、制御信号生成器808によって受信される。制御信号生成器808は、信号810を生成する。信号810は、1つ以上のスイッチングデバイス(例えば、第1のスイッチングデバイス532)をオンまたはオフにして、スイッチング回路出力電圧の平均値(例えば、Vo5_avg)を最大化するための信号である。いくつかの実施形態において、信号810は、2つ以上の別個の信号を含む。ここで、各信号は、各スイッチングデバイスに対応する。ドライバ回路812は、信号810に応答して、1つ以上のスイッチングデバイスを駆動する。例えば、第1のスイッチングデバイス532および第2のスイッチングデバイス534が電界効果トランジスタであるスイッチング回路504(図5)の場合、ドライバ回路812は、信号810に応答して、トランジスタのゲートを駆動する。
コントローラ800は、コントローラ800を作動させるための電力を受信するための1つ以上のバイアス電源ポートをさらに含む。特定の実施形態において、コントローラ800は、電源502からの電力を受信するためのバイアス電源ポート814を含む。このような実施形態において、コントローラ800は、電源502から少なくとも部分的に電力供給され、これにより、別の電源は不要となる。コントローラ800は、1つ以上のスイッチング回路504の出力からの(例えば、負荷528上のノード546および548間からの)電力を受信するための第2のバイアス電源ポート816を含むように構成することも可能である。このような実施形態において、例えば、ドライバ回路812は先ず電源502から電力供給を受け、その後、スイッチング回路504が動作可能となった後、スイッチング回路504からの出力によって電力供給を受ける。直列接続されたスイッチング回路504のストリング上の電圧からのコントローラ800への電力供給が望ましい理由としては、このような電圧は電源502の電圧よりも高いことが多く、高電圧により、スイッチングデバイス(例えば、第1のスイッチングデバイス532および第2のスイッチングデバイス534)の制御が促進されるからである。特定の実施形態において、コントローラ800は、バイアス電源ポート814および816に加えてまたはバイアス電源ポート814および816の代わりにバイアス電源ポート818を含む。バイアス電源ポート818は、別の電源820(例えば、エネルギー貯蔵デバイス(例えば、バッテリ)または補助電源からの電力を受け取るためのものである。例えば、電源820は、バッテリ(例えば、再充電可能なバッテリ)であり得、電源502の電圧がコントローラ800を作動させるのには低すぎる場合に、コントローラ800を作動させる。いくつかの実施形態において、1つの電源820は、複数のコントローラ800へと電力供給する。さらに他の実施形態において、コントローラ800は、一連の積層された2つ以上の電源502によって電力供給され得、これにより、各コントローラが単一電源のみを有するMPPを追跡する場合においても、充分な電圧が得られる。
特定の実施形態において、コントローラ800は、コントローラ電源822をさらに含む。コントローラ電源822は、1つ以上のバイアス電源ポート(例えば、ポート814、816および818)によって受信されたコントローラ800のコンポーネント(例えば、ドライバ回路812および/または制御信号生成器808)用の電力を変換または制御する。例えば、コントローラ電源822は、スイッチトキャパシタ変換器または線形レギュレータを含み得る。スイッチトキャパシタ変換器または線形レギュレータは、N型電界効果トランジスタのゲートの駆動に用いられる、電源502からのドライバ回路812用の電圧を上昇または下降させる。別の例として、コントローラ電源822は、信号生成器808を制御するための良好に調整された電源を提供するための調整器を含み得る。
コントローラ800のいくつかの実施形態は、SYNCH端子822をさらに含む。SYNCH端子822は、2つ以上の場合におけるコントローラ800の動作を同期させるために用いられる。例えば、SYNCH端子822を用いて、コントローラ800の場合間におけるシフトゲート駆動信号を同期および位相シフトさせることができる。別の例として、SYNCH端子822を用いて、スイッチング回路の起動を同期させることができ、これにより、複数のスイッチング回路制御スイッチが起動時において同時に伝導することで、システム出力電圧をシステム負荷に必要なレベルまで増加させる。特定の実施形態において、SYNCH端子822は、別の電源によって駆動される別のスイッチング回路の1つ以上の端子に接続される。
本明細書中記載されるスイッチング回路コントローラ(例えば、図4〜図7それぞれのコントローラ422、536および638または722)の特定の実施形態は、連続的にサンプリングされるスイッチングノード電圧の平均値の変化に応答して、スイッチングデバイスのデューティサイクルを調節することができる。このような実施形態において、デューティサイクルは、例えば2つ以上の連続サンプリングされた平均スイッチングノード電圧値の数学的組み合わせに基づいて(例えば、連続サンプリングされた2つの平均スイッチングノード電圧値間の符号および/または大きさの差に基づいて)変化される。例えば、図9は、スイッチングノード電圧の連続サンプリングされた値の平均値の変化に基づいて、スイッチング回路を用いて電源から電力を抽出するための1つの方法900を示す。方法900について図5の電力システム500および図8のコントローラ800を参照して説明しているが、方法900は、このような実施形態に限定されない。
ステップ902において、変換器中間スイッチングノードと基準ノードとの間の電圧の平均値をサンプリングする。このようなステップの一例としてフィルタ回路806(図8)があり、スイッチングノード電圧Vy5の平均値を決定し、平均値をサンプリングする(図5)。ステップ904において、ステップ902において決定されたサンプリング平均値と、事前に決定されたサンプリング平均値とを比較する。例えば、制御信号生成器808は、フィルタ806からの最新のサンプリング平均値と、フィルタ806からの以前のサンプリング平均値とを比較し得る。決定ステップ906において、ステップ904の結果が評価される。最新のサンプリング平均値が以前のサンプリング平均値よりも高い場合、ステップ908において、制御スイッチのデューティサイクルを第1の方向に変更する。第1の方向は、デューティサイクルが以前に変更された方向と同じ方向である。最新のサンプリング平均値が以前のサンプリング平均値よりも高くない場合、ステップ910において、制御スイッチのデューティサイクルを第2の方向に変更する。第2の方向は、デューティサイクルが以前に変更された方向と反対の方向である。ステップ906〜910の一例として、デューティサイクルが以前に2つの最新サンプリング平均値間において増加されていた場合かつVy5の最新サンプリング平均値がVy5以前のサンプリング平均値よりも高い場合、制御信号生成器808は、第1のスイッチングデバイス534のデューティサイクルを増加させる。逆に、デューティサイクルが以前に2つの最新サンプリング平均値間において増加されておりかつVy5の最新サンプリング平均値がVy5の以前のサンプリング平均値よりも低い場合、制御信号生成器808は、第1のスイッチングデバイス534のデューティサイクルを低減させる。いくつかの実施形態において、デューティサイクルの変化のサイズは、常に実質的に同じである。他のいくつかの実施形態において、デューティサイクルの変化のサイズは、2つ以上の連続サンプル間の大きさの差の関数に少なくともなるように、構成することができる。さらに他の実施形態において、サンプリング平均値のより長い履歴を用いて、デューティサイクル変化のサイズを決定する。
図10〜図14は、電源502から抽出された電力量を少なくとも実質的に最大化させるためのスイッチング回路504の実施形態と共に用いられる1つの例示的方法900を示す。図10〜図14はそれぞれ、Vyの平均値と、例示的な電源502(例えば、光起電装置)へと電気的に接続されたスイッチング回路504の実施形態のデューティサイクルとの関係を示すのグラフである(Vyは、出力電力を示す)。各スイッチング回路504は、デューティサイクルDmpを有する。デューティサイクルDmpは、所与の1組の動作状態下におけるスイッチング回路の最大出力に対応する。既述したように、スイッチング回路の出力を最大化させると、スイッチング回路の入力ポートへと電気的に接続された電源から抽出された電力も少なくとも実質的に最大化される。図10〜図14の説明において、デューティサイクルとは、第1のスイッチングデバイス532のデューティサイクルを指す。
制御信号生成器808がデューティサイクルをD1からD2へと増加させ、制御信号生成器808が(Vy5の平均値の連続サンプルの比較に基づいて)Vy5の平均値(Vy5_average)が増加したと決定したものと仮定する。このようなVy5_averageの増加は、スイッチング回路504の動作点が図10中の矢印1002に示すように出力電力曲線を右上方向に移動したことを示す。デューティサイクルが最後に(D1からD2へと)変化したことに起因して出力増加が発生したため、制御信号生成器808は再度デューティサイクルを同一方向に変更して、出力をさらに増加させようと試みる。詳細には、制御信号生成器808は、デューティサイクルをD2からD3へとインクリメントし、このような変化に起因してスイッチング回路504の動作点が(図11中の矢印1102に示すように)さらに出力電力曲線を上方に移動したと決定する。そのため、制御信号生成器808は再度デューティサイクルを(今回はD3からD4へと)インクリメントして、出力をさらに増加させようと試みる。
デューティサイクルをD3からD4へとインクリメントさせた後、制御信号生成器808は、Vy5_averageが低減したと決定する。そのため、スイッチング回路504の動作点は、図12中の矢印1202によって示すようにデューティサイクルがD3からD4へと移動したことに起因して、出力電力曲線を下方に移動する。そのため、制御信号生成器808は、次にデューティサイクルを反対方向に変更(すなわち、デューティサイクルを低減)して、出力電力曲線を逆方向に登らせようとする。詳細には、制御信号生成器808は、デューティサイクルをD4からD5へデクリメントし、その結果Vy5_averageが増加したと決定する。そのため、デューティサイクルがD4からD5へと低下すると、スイッチング回路504の動作点は(図13の矢印1302に示すように)出力電力曲線を逆方向に登るように移動する。よって、制御信号生成器808はデューティサイクルを再度D5からD6へとデクリメントし、その結果(図14の矢印1402に示すように)Vy5_averageおよび出力電力が低下したと決定する。
次に、制御信号生成器808は、デューティサイクルをインクリメントして、出力電力曲線を逆方向に登らせようとする。制御信号生成器808は、デューティサイクルをインクリメントによって継続的に調節して、Vy5_averageの最大化およびよって出力電力の最大化を試みる。制御信号生成器808がデューティサイクル変化に起因して出力電力変化が指定量を下回ると決定した場合、スイッチング回路504は少なくとも出力電力曲線の最大値近くにおいて動作していると結論付けることができる。その後、制御信号生成器808は、デューティサイクルの調節を停止し、スイッチング回路504を現在の動作状態で動作させる。しかし、制御信号生成器808は、適宜デューティサイクルに介入することもでき、Vy5_averageの変化を評価して、スイッチング回路504が未だ最大出力点近隣において動作しているかを決定することができる。スイッチング回路504がもはや最大出力点近隣で動作していない場合、制御信号生成器808は再度デューティサイクルをインクリメントにより調節して、Vy5_averageの最大化を試みる。他の特定の実施形態において、制御信号生成器808は、デューティサイクルがDmpに近い場合であっても、デューティサイクルの調節を継続し得る。これにより、デューティサイクルがDmpへと近づき、効率損失が小さくなる。
方法900をスイッチング回路404と共に用いることにより、グローバルMPPTの必要性が無くなる。例えば図10〜図14を参照して示すように、各スイッチング回路の電力対電圧曲線および電力対電流曲線は典型的には、単一のローカル最大出力点と共に良好に挙動する。単一のローカル最大出力点は、スイッチング回路のグローバル最大出力点でもある。そのため、方法900を実行するスイッチング回路404を含むシステムは典型的には単一の最大出力点を有し、これにより、グローバルMPPTの必要性が無くなり、簡潔性および低コストが促進される。また、複数の最大出力点を用いていないため、グローバル最大出力点よりも低いローカル最大出力点においてMPPTシステムが立ち往生する可能性が無くなる。
方法900において、デューティサイクルは、各ステップ時における量と同じだけ変更しなくてもよい。例えば、特定の実施形態において、スイッチング回路504が出力電力曲線上において比較的低い点で動作している場合、デューティサイクルを比較的大きな量だけ変更する。一方、出力電力曲線上において比較的高い点で動作している場合、デューティサイクルがを比較的小さな量だけ変更する。特定の実施形態において、制御信号生成器808は、制御回路504出力電力曲線上において動作している位置を、Vy5_averageの変化の大きさに基づいて推定する。Vy5_averageが大きく変化している場合、スイッチング回路504が出力電力曲線上において急峻な領域上で動作していることを示す場合が多く、これにより低出力電力を示す。一方、Vy5_averageが小さく変化している場合は、スイッチング回路504が出力電力曲線上において比較的平坦な領域で動作していることを示す場合が多く、これにより比較的高出力電力を示す。また、いくつかの実施形態において、以前に決定された最大出力点動作状態を用いて、現在の最大出力点動作状態をより迅速に発見することが理解される。例えば、電力を上昇させる手順の後、最大電力動作に以前に対応していた値までデューティサイクルを初期設定するように制御信号生成器808を構成することができる。
さらに、いくつかの実施形態において、コントローラ起動時刻は、スイッチング回路の電源を投入した後コントローラ800がデューティサイクル制御を開始する時刻である。各スイッチング回路がデューティサイクルを異なる時刻に調節する可能性が高くなるように、コントローラ起動時刻を緩やかに制御する。このように、個々のスイッチング回路間においてデューティサイクル調節を有効ランダム化することにより、複数のスイッチング回路に起因して発生する大過渡電流によってデューティサイクルが同時調節される可能性の低減が支援される。例えば、いくつかの実施形態において、例えば緩やかな公差値を有するコンポーネントを用いることにより、コントローラ起動時刻を個々のコントローラ800間において少なくとも10パーセントだけ異ならせる。
サンプリングを支持するコントローラ800のいくつかの実施形態において、中間スイッチングノードにおける電圧をサンプリングする速度を、ΔI/IがΔD/Dよりも小さくなるように、充分に高速にする。(1)ΔIは、中間スイッチングノードにおける電圧の平均値の第1の連続サンプルと第2の連続サンプルと間の(例えば、Vy5_averageの連続サンプル間の)、出力ポートから出て行く電流の変化である(例えば、図5のIo5の変化)。第2のサンプルは第1のサンプルの後に発生する。(2)I=Imax−Imin、(3)Imaxは、出力ポートから出て行く電流の最大予測値である(例えば、Io5の最大予測値)、(4)Iminは、出力ポートから出て行く電流の最小予測値である(例えば、Io5の最小予測値)、(5)ΔDは、中間スイッチングノードにおける電圧平均値の第1の連続サンプルと第2の連続サンプルとの間の制御スイッチングデバイス(例えば、スイッチングデバイス532)のデューティサイクルの変化である。(6)Dは、制御スイッチングデバイスの最大予測デューティサイクルと最小予測デューティサイクルとの間の差である。
上述したように、本明細書中記載されるスイッチング回路コントローラの特定の実施形態は、スイッチングノード電圧の平均値の連続サンプルの変化に応答して、スイッチングデバイスデューティサイクルを調節する。図15は、制御信号生成器1500を示す。制御信号生成器1500は、このような様態で動作するように構成された制御信号生成器808(図8)の実施形態である。制御信号生成器1500については、簡潔性のために電力システム500のみを参照して説明するが、制御信号生成器1500は、他のスイッチング回路の実施形態にも適合可能である。
制御信号生成器1500は、フィルタおよびサンプリングサブシステム1502を含む。フィルタおよびサンプリングサブシステム1502は、スイッチングノード電圧Vy5のフィルタリングおよびサンプリングを定期的に行う。そのため、サブシステム1502は、図8中の任意選択フィルタ806の代わりに用いられる。サブシステム1502は、値POWER(k)およびPOWER(k−1)を出力する。値POWER(k)およびPOWER(k−1)はそれぞれ、Vy5のフィルタリング値およびサンプリング値である。このような値が「POWER」として指定されている理由は、スイッチング回路出力電流Io5はVy5の連続サンプリング間において本質的に不変であるため、これらの値は相対的スイッチング回路出力電力を示すからである。POWER(k)は、Vy5の最新のフィルタリング値およびサンプリング値を示し、POWER(k−1)は、Vy5の直前のフィルタリング値およびサンプリング値を示す。上述したように、特定の実施形態において、各サンプリング期間の開始を緩く制御することにより、個々のスイッチング回路間のデューティサイクル調節を有効にランダム化する。
いくつかの実施形態において、サブシステム1502は、アナログ/デジタル変換器を含む。POWER(k)およびPOWER(k−1)は、デジタル信号である。しかし、多くの実施形態において、POWER(k)およびPOWER(k−1)は、サブシステム複雑性を低減するためにアナログ信号であることが理解される。例えば、図16は、フィルタおよびサンプリングサブシステム1600を示す。フィルタおよびサンプリングサブシステム1600は、サブシステム1502をアナログ出力信号と共に用いる1つの可能な実施形態である。サブシステム1600は、POWER(even)およびPOWER(odd)の2つの出力を生成する。POWER(even)およびPOWER(odd)は、フィルタリングされたVy5の連続サンプルである。例えば、所与のサイクルにおいて、POWER(even)はPOWER(k)を示し得、POWER(odd)はPOWER(k−1)を示し得る。この場合、次のサイクルにおいて、POWER(even)はPOWER(k−1)を示し、POWER(odd)は最新のサンプルPOWER(k)を示す。
特定の実施形態において、サブシステム1600は、Vy5をフィルタリングする1つのRCフィルタを含む。第1のフィルタは、出力POWER(even)用にVy5をフィルタリングするレジスタ1602およびコンデンサ1604を含む。第2のフィルタは、出力POWER(odd)用にVy5をフィルタリングするレジスタ1602およびコンデンサ1606を含む。よって、これら2つのフィルタはそれぞれレジスタ1602を共有するが、各フィルタが各コンデンサ1604および1606を含むことにより、フィルタリング機能およびサンプリング機能を共通コンデンサに備えることが可能となる。各フィルタは、例えば、第1のスイッチングデバイス532の期間よりも長い時定数を有する。典型的には、各フィルタは、数個のスイッチング回路スイッチングサイクル(例えば、第1のスイッチングデバイス532および第2のスイッチングデバイス534の数サイクル)のオーダーの時定数を有する。サブシステム1600は、スイッチ1608および1610をさらに含む。スイッチ1608および1610は、Vy5のフィルタリング値をサンプリングするように、相補的に動作する。スイッチ1608および1610は典型的には、スイッチング回路504のスイッチング周波数よりもずっと低い速度で切り替わる(例えば、1/10未満の速度で切り替わる)。コンデンサ1604は、Vy5のサンプリング値およびフィルタリング値を出力POWER(even)のために保存し、コンデンサ1606は、Vy5のサンプリング値およびフィルタリング値を出力POWER(odd)のために保存する。よって、POWER(even)およびPOWER(odd)は、あるいはコンデンサ1604および1606からサンプリングされる。
制御信号生成器1500(図15)は、比較回路1504をさらに含む。比較回路1504は、POWER(k)およびPOWER(k−1)の比較と、デューティサイクルをインクリメントまたはデクリメントするかの決定と、出力信号1506の提供とを行うように構成される。出力信号1506は、デューティサイクルをインクリメントまたはデクリメントするかを示す。詳細には、POWER(k)がPOWER(k−1)よりも高い場合、デューティサイクルの最終変化に起因して出力電力が上昇し、そのため比較回路1504から出力信号1506が提供される。出力信号1506は、デューティサイクルを同様の様態で変更すべき旨を示す。例えば、POWER(k)がPOWER(k−1)よりも高く、デューティサイクルがサイクルk−1からサイクルkへとインクリメントした場合、信号1506は、デューティサイクルをさらにインクリメントすべき旨を示す。逆に、POWER(k)がPOWER(k−1)よりも低い場合、デューティサイクルの最終変化に起因して出力電力が低下し、そのため比較回路1504は出力信号1506を提供する。出力信号1506は、デューティサイクルを逆の様態で変更すべき旨を示す。例えば、POWER(k)がPOWER(k−1)よりも低くかつデューティサイクルがサイクルk−1からサイクルkへとインクリメントされた場合、信号1506は、デューティサイクルをデクリメントすべき旨を示す。
信号1506は、電荷ポンプ回路1508内に接続される。電荷ポンプ回路1508は、所望のデューティサイクルを示す出力信号1510を生成する。電荷ポンプ回路1508は、信号1506に応答してデューティサイクルをインクリメントまたはデクリメントし、デューティサイクルが信号1506に応答して均等なインクリメントで変更されるように、構成されることが多い。しかし、デューティサイクルの各インクリメントまたはデクリメントのサイズは、均等である必要ではない。例えば、あるいは、受動型のスイッチトキャパシタ積分器を電荷ポンプ1508の代わりに用いてもよい。信号1510は、PWM回路1512へと接続される。PWM回路1512は、信号1510に応答してPWM信号1514を生成する。特定の実施形態において、デューティサイクルを急峻にではなく徐々に変化させることにより、デューティサイクル変化に起因して発生する出力段階の誘導素子および容量性素子の共鳴の最小化を支援するように、信号1510をフィルタリングする。PWM信号1514は、ドライバ回路(例えば、図8のドライバ回路812)へと接続される。
別の実施形態において、制御信号生成器1500のコンポーネントのうちいくつかまたは全ての代わりに、マイクロコントローラを用いる。マイクロコントローラは、コンピュータにより読み出し可能な媒体上に保存されたソフトウェアおよび/またはファームウェアの形態で命令を実行する。さらに、特定の実施形態において、共通コントローラ(例えば、マイクロコントローラ)を用いて、複数のスイッチング回路を制御する。共通コントローラは、複数のスイッチング回路の同期動作を促進し得る。例えば、各スイッチング回路の制御スイッチのターンオンまたはターンオフを他の制御スイッチから位相シフトさせることにより、リップル電流大きさを低減するように、共通コントローラを構成する。別の例として、共通コントローラを用いて、複数のスイッチング回路の起動を同期させることにより、複数の制御スイッチを起動時において同時に伝導させる。共通コントローラは、共通コントローラの制御対象であるスイッチング回路から(例えば、光アイソレータを介して)任意選択的に電気的に絶縁される。
図53は、フィルタリングサブシステム5300を示す。フィルタリングサブシステム5300は、スイッチングノード電圧の平均値を生成するために利用することが可能なフィルタリングサブシステムの別の例である。簡潔性のため、フィルタリングサブシステム5300についてスイッチング回路504(図5)の文脈のみにおいて説明しているが、フィルタリングサブシステム5300は、本明細書中開示される他のスイッチング回路とも利用可能なように適合可能である。
フィルタリングサブシステム5300は、1組の入力端子5302および5304を含む。1組の入力端子5302および5304は、スイッチング回路504のノード520および526上からスイッチングノード電圧Vy5を受信する。フィルタリングサブシステム5300は、1組の出力端子5306および5308も含む。1組の出力端子5306および5308は、スイッチングノード電圧Vy5の平均値(Vy5_avg)を出力する。オペアンプ(op−amp)5312と、レジスタ5314および5316と、コンデンサ5318および5320とを含む積分器回路5310は、Vy5とVy5_avgとの間の差を積分する。積分回路5310の出力5322は、サンプルアンドホールド回路5324へと接続される。サンプルアンドホールド回路5324は、スイッチ5326およびコンデンサ5328を含む。スイッチ5326は典型的には、スイッチング回路504と同じスイッチング周波数で切り換えられる。サンプルアンドホールド回路5324の出力5330は、ユニティーゲインバッファ5332によって任意選択的にバッファされ、これによりVy5_avgを生成する。
積分器回路5310は、Vy5_avgを強制的にVy5の平均値に等しくさせ、サンプルアンドホールド回路5324は、積分回路5310の出力5322をフィルタリングする。サンプルアンドホールド回路5324は、サンプリング周波数およびその高調波において、ゼロのシンク関数周波数応答を有する。スイッチング高調波の任意のエイリアシングは、フィルタリングサブシステム5300周囲の負のフィードバックループ5334によって除去される。フィルタリングサブシステム5300は典型的には迅速に整定し、いくつかの場合において、単一のサンプリングサイクルと同じくらいに迅速に整定する場合もある。このような短い整定時間が一般的に望ましい理由として、スイッチング回路504が高周波数においてVy5_avgをサンプリングすることが可能となり、これにより、対応する高周波数においてデューティサイクルを変化させることが可能となり、より高速のMPPTが可能となる点がある。
上述したように、本明細書中開示されるスイッチング回路の特定の実施形態は、複数の動作モードを有する。このような実施形態のうちいくつかにおいて、電気的に接続された電源の出力電圧(例えば、電源402の出力電圧)に少なくとも部分的に基づいて、動作モードを変更する。例えば、図17は、入力ポート506へと電気的に接続された各電源502から主要にまたは完全に動作するスイッチング回路504の一実施形態の動作状態または動作モードの状態図1700を示す。このような実施形態において、動作モードを入力電圧Vinの関数として切り換える。入力電圧Vinは、正の入力ノード520および負の入力ノード518と、出力電流と、温度との間の電圧である。
電力が上昇すると、スイッチング回路はトライステートモード1702に入り、Vinが閾値Loよりも低い状態が続く限り、トライステートモード1702に留まる。VinがLoを下回った場合、Vinは、コントローラ536が信頼性を以て動作するには低すぎる値になる。トライステートモード1702において、第1のスイッチングデバイス532および第2のスイッチングデバイス534がオフにされる。その場合も、第2のスイッチングデバイス534は、トライステートモードにおいて(例えばスイッチングデバイスがMOSFETである場合にはボディーダイオードを介して)電流を伝導させ得、これにより、出力電流Io5のためのバイパス経路を提供する。そのため、光起電装置と並列利用されるバイパスダイオードの代わりにスイッチング回路を利用することが可能となり、これにより、システム部品の合計数およびコストの低減が支援される。あるいは、スイッチング回路の出力ポートと並列してダイオードを配置することにより、スイッチング回路不具合時における冗長性が得られる。
VinがLo以上である場合、スイッチング回路は、トライステートモード1702からバイパスモード1704へと遷移する。バイパスモード1704によって包含される入力電圧の範囲において、Vinは、スイッチング回路504のコントローラ536を信頼性を以て作動させるのに充分に高いが、Vinは、電源502と負荷528との間の有意の電力転送を可能にするほどには充分に高くない。そのため、第1のスイッチングデバイス532および第2のスイッチングデバイス534はデューティサイクルがゼロとなるようにバイパスモードで動作し、その結果第1のスイッチングデバイス532はオフ状態に留まり、第2のスイッチングデバイス534はオン状態に留まり、これにより出力ポート508がシャントされる。そのため、出力回路530中の電流は、スイッチング回路を第2のスイッチングデバイス534を介してバイパスする。第1のスイッチングデバイス532および第2のスイッチングデバイス534がMOSFETである場合、バイパスモードでの動作の方が電流伝導のためのMOSFETボディーダイオードまたは外部ダイオードに依存するよりも高効率である場合が多い。なぜならば、MOSFETのオン状態の順電圧低下は典型的には、ボディーダイオードの順電圧低下よりも低いこからである。いくつかの実施形態において、出力電流Io5が過電流制限閾値(OCL)を超えたとき、Vinが過電圧制限値(OVL)を超えたときおよび/またはスイッチング回路温度(T)が過熱制限値(OTL)を超えたとき、スイッチング回路は、バイパスモード1704でも動作する。
VinがL2以上である場合、スイッチング回路は、MPPTスイッチングモード1706へと遷移する。MPPTスイッチングモード1706は、コントローラ536によって特徴付けられる。コントローラ536は、図10〜図14を参照して上述したようなスイッチング回路出力電力を少なくとも実質的に最大化するように、第1のスイッチングデバイス532のデューティサイクルを調節する。いくつかの実施形態において、バイパスモード1704とMPPTスイッチングモード1706との間にソフト起動モードを設けることにより、出力電圧および/または出力電流のオーバーシュートを回避する必要があり得る。MPPTスイッチングモード1706時においてVinがL1を下回る場合(L1は、Loよりも高くかつL2よりも低い)、スイッチング回路は、バイパスモード1704へ遷移する。スイッチング回路はまた、TがOTLに到達するかまたはIo5がOCLに到達した場合、MPPTスイッチングモード1706からバイパスモード1704へと遷移する。
いくつかの実施形態において、MPPTスイッチングモード1706時においてVinがL2を下回る場合、Vinが回復してL2を上回りかつ通常のMPPTスイッチングが再開するかまたはVinが低下し続けてL1を下回ってスイッチング回路がバイパスモード1704へと遷移するまで、デューティサイクルを任意選択的にゆっくりと低減させる。デューティサイクルをこのようにゆっくりと低減させると、入力電源から引き出されたスイッチング回路の電力および電流が低下することが多い。しかし、このような任意選択の不具合取り扱い手順により、より高速の不具合回復が有利に可能になる。
状態図1700についてスイッチング回路504の文脈において説明しているが、本明細書中記載される他のスイッチング回路を類似の様態で動作するように構成することが可能であることが認識されるべきである。さらに、スイッチング回路504および本明細書中記載される他のスイッチング回路は、状態図1700に示す様態以外の様態で動作するように構成することが可能であることが認識されるべきである。例えば、いくつかの別の実施形態は、過電流または過熱防止を含まない。
上述したように、本明細書中開示されるスイッチング回路の特定の実施形態において、名目的にはゼロ電圧でオンとなるスイッチングデバイス(例えば、デプレションモードトランジスタ)をスイッチングデバイスの代わりに用いるかまたはスイッチングデバイスと並列接続することにより電流バイパスまたはシャント経路を提供し、これによりトライステートモードを不要にする。例えば、スイッチング回路504の特定の実施形態において、第2のスイッチングデバイス534はデプレションモードトランジスタであり、電流を伝導させ、バイパス経路を提供する。バイパス経路は、有意の電力抽出を行うにはVinが低すぎる場合に、出力電流Io5のために用いられる。図39は、このような実施形態のうち1つの状態図3900を示す。状態図3900に示すように、このような実施形態は、トライステートモードを持たないが、電力上昇時においてVinがL2になるまでバイパスモード3902において動作する。他の場合、この実施形態は、図17の状態図1700に示す様態と同様の様態で動作する。
上記した電力システムは、複数のスイッチング回路を含む。複数のスイッチング回路は、負荷に電気的に直列接続された出力ポートを備える。このようなシステムにおいて、デューティサイクルの連続的変化時において出力電流は本質的に一定であり、これにより、スイッチング回路出力電圧の平均値を最大化させることにより、MPPTが達成可能となる。あるいは、相互に電気的に並列接続された複数のスイッチング回路を含む電力システムにおいてMPPTを実現することも可能である。例えば、図18に示す1つの電力システム1800は、N個の電源1802を含む。Nは、1よりも大きい整数である。電源1802は、例えば光起電装置(例えば、個々の太陽電池セル、多接合太陽電池セルの個々の接合部、または複数の電気的に接続された太陽電池セル(例えば、電気的に直列接続されかつ/または電気的に並列接続された太陽電池セル)を含むサブモジュールまたはパネル)を含む。電源1802の他の例を挙げると、燃料電池セルおよび電池がある。
システム1800は、N個のスイッチング回路1804をさらに含む。各スイッチング回路は、各電源1802へと接続された入力ポート1806と、負荷へと電気的に接続された出力ポート1808とを含む。以下にさらに説明するように、各スイッチング回路1804は、各電源1802から抽出されて負荷へと送達される電力量を少なくとも実質的に最大化させるように、構成される。そのため、スイッチング回路1804は、各電源1802を(少なくとも実質的に最大出力点において)動作させるように構成される。出力ポート1808は、負荷1810(例えば、インバータ)と電気的に並列接続されて、閉回路を形成する(本明細書中以下出力回路1812と呼ぶ)。各出力ポート1808および負荷1810は、並列接続に起因して、同じ出力電圧Voを有する。
各スイッチング回路1804は、各第1のスイッチングデバイス1814を含む。各第1のスイッチングデバイス1814は、導電状態と非導電状態との間で切り替わって、入力ポート1806からの電力を出力ポート1808へと転送するように、構成される。第1のスイッチングデバイス1814は典型的には、図4を参照して上述した理由に起因して、少なくとも20kHzの周波数で切り替わる。さらに、図4を参照して上述した理由と同様の理由に起因して、第1のスイッチングデバイス1814が20kHz以上のオーダーの周波数において切り替わった場合、負荷1810への最大電力転送が行われ得る。
第1のスイッチングデバイス1814は、コントローラ1816によって制御される。コントローラ1816は、例えばPWM動作モードおよび/またはPFM動作モードを有する。さらに、スイッチング回路1804がPWMによって制御される特定の実施形態において、各第1のスイッチングデバイス1814のスイッチング遷移は、各他の第1のスイッチングデバイス1814のスイッチング遷移から位相がずらされ、これにより、各スイッチング回路1804によって生成されたリップル電流は、各他のスイッチング回路1804によって生成されたリップル電流を少なくとも部分的に無効化する。例えば、PWMによってそれぞれ制御される2つのスイッチング回路1804を含む特定の実施形態において、各第1のスイッチングデバイス1814のターンオンを、各他の第1のスイッチングデバイス1814のターンオンから180度だけ変位させる。あるいは、いくつかの実施形態において、スイッチング周波数を意図的に緩く制御することにより、個々のスイッチング回路1804間においてスイッチング周波数を変化可能とさせ、これにより、h複数のスイッチング回路1804の同時切り換えに起因するリップルおよび過渡電流の低減を支援する。
各スイッチング回路1804は、電流監視サブシステム1818をさらに含む。電流監視サブシステムは、出力ポート1808から流出する電流の大きさを測定するように構成される。電流監視サブシステム1818を模式的に別個の要素として図示しているが、電流監視サブシステム1818を任意選択的にスイッチング回路1804の別の要素と統合してもよいし、協働させてもよい。例えば、特定の実施形態において、電流監視サブシステム1818は、第1のスイッチングデバイス1814が電流を伝導しているときの第1のスイッチングデバイス1814上の電圧低下を感知することにより、出力ポート1808からの電流の大きさを決定する。
多様な要素(例えば、負荷1810の変化)に起因して出力電圧Voは時間とともに変化し得るが、コントローラ1816は、電圧Voが変化し得る速度よりもずっと高速で動作し得る。そのため、第1のスイッチングデバイス1814のデューティサイクルの連続的変化間において出力電圧Voが一定であるとみなすことができ、そのため、Io_avgが変化した場合にだけ、スイッチング回路出力電力も変化する。なぜならば、出力電力は、電流Io_avgおよびVoの積であるからである。コントローラ1816は、第1のスイッチングデバイス1814のデューティサイクルを調節して、スイッチング回路出力電流Ioの平均値(Io_avg)を少なくとも実質的に最大化させることにより、電源1802から抽出された電力量を少なくとも実質的に最大化させる。Io_avgの最大化により、スイッチング回路出力電力と、電源1802から抽出された電力とが少なくとも実質的に最大化される。電源1802から抽出された電力は、スイッチング回路出力電力からスイッチング回路1804の損失を減算した値と同一である。そのため、コントローラ1816は、Io_avgの最大化により、電源1802から抽出された電力を少なくとも実質的に最大化させる。このようなMPPT機能においては電力計算は不要であるため、スイッチング回路1804においても電力計算のためのハードウェアおよび/またはソフトウェアが不要となることが理解されるべきである。そのため、スイッチング回路1804の特定の実施形態を典型的な従来のMPPTコントローラよりもより簡潔かつ/または低コストとすることが可能となる。しかし、特定の別の実施形態において、例えばより高精度のMPPTの達成および/または負荷1810に起因してVoを高速変化させる用途におけるMPPTの達成のために、スイッチング回路1804は、各出力ポート1808から送達された電力を決定する。
上述したように、コントローラ1816は、出力電圧Voの変化速度よりもずっと高速で動作する。詳細には、デューティサイクルは所与のパーセンテージだけ変化するため、Voも、通常の動作範囲の大きさに相対してより小さなパーセンテージだけ(理想的にはより小さなパーセンテージだけ)変化する。このような関係は、比較的高い値の出力回路キャパシタンス1820の利用および/またはデューティサイクルの連続的変化間におけるVoの変化が限定された範囲内に収まるようにするための、比較的高速でのデューティサイクルの利用により、促進される。しかし、電源1802のMPPを最も正確に追跡するためには、デューティサイクル変化の後に過渡電流が整定する速度よりも高速でデューティサイクルを変化させるべきではない。詳細には、デューティサイクルの変化は、電源1802の有効抵抗および電源1802のバイパスキャパシタンス(図示せず)に依存する時定数と共鳴して発生する。
特定の実施形態において、コントローラ1816は、制御信号生成器が入力として(スイッチングノード電圧または出力電圧ではなく)スイッチング回路電流値(例えば、出力電流値(例えば、図18中のIo))を受信する点を除いて、コントローラ800(図8)の構成と類似の構成を有する。さらに、コントローラ1816の特定の実施形態は、図9の方法900と類似する方法を実行する。しかし、この実施形態においては、スイッチングノード電圧ではなく平均出力電流のサンプルを比較し、平均出力電圧ではなく平均出力電流を最大化させる。
出力回路キャパシタンス1820を負荷1810と並列の単一の別個のコンデンサとして図示しているが、出力回路キャパシタンス1820は、スイッチング回路1804内かつ/または負荷1810内のキャパシタンスを含み得る。特定の実施形態において、出力キャパシタンス1820は、スイッチング回路1804および/または負荷1810の内部にある。
図19は、電力システム1900を示す。電力システム1900は、電力システム1800の実施形態である。この実施形態において、スイッチング回路は、昇圧形トポロジーを有し、負荷へと並列に接続される。システム1900は、N個の電源1902(例えば、光起電装置または燃料電池セル)と、N個の電気スイッチング回路1904(Nは、1よりも大きい整数である)とを含む。スイッチング回路1904は、図18のスイッチング回路1804の実施形態であり、各スイッチング回路1904は、入力ポート1906および出力ポート1908を含む。各入力ポート1906は、第1の入力端子1910および第2の入力端子1912を含む。第1の入力端子1910は、電源1902の負の端子1914へと電気的に接続され、第1の入力端子1910および負の入力端子1914は、負の入力ノード1916の一部を形成する。
システム1900は、インダクタンス1918をさらに含む。インダクタンス1918は、スイッチング回路1904の昇圧形変換器のためのエネルギー貯蔵インダクタとして機能する。図19の例において、インダクタンス1918は、スイッチング回路1904の外部にある。第2の入力端子1912は、中間スイッチングノード1920へと電気的に接続され、インダクタンス1918は、電源1902の正の端子1922と、第2の端子1912との間に電気的に接続される。あるいは、インダクタンス1918は、電源1902の負の端子1914と、第1の入力端子1910との間に電気的に接続され得る。さらに、インダクタンス1918を任意選択的に分割して、2つ以上のインダクタ(例えば、端子1922と端子1912との間に電気的に接続された第1のインダクタ、および端子1914と端子1910との間に電気的に接続された第2のインダクタ)とすることができる。インダクタンス1918を分割して2つ以上のインダクタとする実施形態において、このようなインダクタのうち少なくとも一部を任意選択的に磁気的に結合することにより、インダクタンス合計を増加させる。例えば、図19は、スイッチング回路1904(N)の分割によって得られた、磁気コア1921によって磁気的に結合された2つのインダクタ1919と関連付けられたインダクタンスを示す。
別の実施形態において、インダクタンス1918はスイッチング回路1904の内部にあり、電源1902は入力ポート1906へと直接接続される。例えば、インダクタンス1918は、第2の入力端子1912と、中間スイッチングノード1920との間に電気的に接続され得る。別の例として、インダクタンス1918は、第1の入力端子1910と、負の入力ノード1916との間に電気的に接続され得る。さらに、インダクタンス1918を任意選択的に分割することにより、スイッチング回路1904の内部の2つ以上のインダクタ(例えば、第2の入力端子1912と中間スイッチングノード1920との間に電気的に接続された第1のインダクタ、および第1の入力端子1910と負の入力ノード1916との間に電気的に接続された第2のインダクタ)を得ることができる。インダクタンス1918を分割することにより、スイッチング回路1904の内部に設けられた2つ以上のインダクタとする実施形態において、このような複数のインダクタのうち少なくともいくつかを任意選択的に磁気的に結合することにより、インダクタンス合計を増加させる。
特定の実施形態において、インダクタンス1918は、電源1902を入力ポート1906へと接続する回路の少なくとも部分的な相互接続インダクタンスである。例えば、図46に示す電力システム4600は、電力システム1900の実施形態である。インダクタンス1918は、電力システム4600では相互接続インダクタンス4602を含む。いくつかの実施形態において、スイッチング回路1904は、相互接続インダクタンスを一次エネルギー貯蔵インダクタンスとして用いる。このような相互接続インダクタンスを意図的に最適化することができる。例えば、相互接続ワイヤを螺旋形状にすることにより相互接続インダクタンスを増加させ、これにより、各ワイヤ中の同一方向に電流が流れ、各ワイヤに流れる電流によって生成される各磁束が足し合わされる。このような磁束の加算により、ワイヤによって形成される複数の巻線の二乗だけ、インダクタンスが増加する。そのため、このような配置構成は、インダクタンス1918に磁気コアが含まれ内実施形態において特に有用である。なぜならば、この配置構成により、コアの利用無しにインダクタンスが増加するからである。インダクタンス1918から磁気コアを省略することにより、コストが低減し、大電流時における磁気コア飽和の問題の可能性が無くなる。
各出力ポート1908は、第1の出力端子1924および第2の出力端子1926を含む。第1の出力端子1924は、負の入力ノード1916へと電気的に接続される。各出力ポート1908は、負荷1928(例えば、インバータ)と電気的に並列接続されて閉回路を形成する(本明細書中以下出力回路1930と呼ぶ)。
各スイッチング回路1904は、中間スイッチングノード1920と第1の入力端子1910との間に電気的に接続された第1のスイッチングデバイス1932(第1のスイッチングデバイス1932は、図18の第1のスイッチングデバイス1814に類似する)と、中間スイッチングノード1920と、第2の出力端子1926との間に電気的に接続された第2のスイッチングデバイス1934とを含む。コントローラ1936は、協働して入力ポート1906から出力ポート1908への電力転送を行う第1のスイッチングデバイスならびに第2のスイッチングデバイス1932および1934の動作を制御する。各スイッチング回路1904は、図18の電流測定サブシステム1818に類似する電流測定サブシステム1938をさらに含む。電流測定サブシステム1938を別個の要素として模式的に図示しているが、電流測定サブシステム1938をスイッチング回路1904の別の要素の一部としてもよいし、あるいはスイッチング回路1904の別の要素の一部と協働させてもよい。さらに、電流測定サブシステム1938が出力電流Io19を測定している様子を図示しているが、電流測定サブシステム1938をスイッチング回路1904内への電流(例えば、入力端子1912内への電流)を測定するように構成することも可能である。コントローラ1936は、第1のスイッチングデバイス1932のデューティサイクルを調節して、スイッチング回路出力電流Io19の平均値を少なくとも実質的に最大化させる(Io19_avg)。スイッチング回路出力電圧(Vo19)は、デューティサイクルの連続的変化間において本質的に一定であるため、およびそのため、スイッチング回路出力電力は、Io19_avgの最大化によって最大化される。
第2のスイッチングデバイス1934は、第1のスイッチングデバイス1932がオフであるときにインダクタンス1918内を流れる電流を伝導させる点において、フリーホイーリング機能を行う。換言すると、第2のスイッチングデバイス1934は、第1のスイッチングデバイス1932がオフになったときに第2の入力端子1912から第2の出力端子1926へと流れる電流の経路を提供する。あるいは、第2のスイッチングデバイス1934の代わりにダイオードを用いてもよく、この場合、順バイアス時において、電流はダイオードを通じて中間スイッチングノード1920から第2の出力端子1908へと流れる。
図19の例において、スイッチング回路1904は、共通出力キャパシタンス1940を共有する。共通出力キャパシタンス1940は、負荷1928と並列の1つ以上のコンデンサを示す。スイッチング回路1904内の個々の出力フィルタコンデンサの代わりに共通出力キャパシタンス1940を用いることにより、出力キャパシタンス合計のサイズおよびコストを低減することが可能になる。なぜならば、リップル電流は、キャパシタンスの共通バンクにおいて無効化され得るからである。しかし、スイッチング回路1904が出力コンデンサを含む場合も除外されず、出力回路1930中の寄生インダクタンスが有意である場合、このようなコンデンサが必要な場合もある。例えば、各スイッチング回路1904は、第2のスイッチングデバイス1934上の可能な電圧スパイクを最小化するための各出力コンデンサを含み得る。
電源1902の特性に応じて電源1902上のコンデンサ1942が必要になり得る。例えば、電源1902が光起電装置である場合、スイッチング回路1904からのリップル電流が(光起電装置の接合部キャパシタンスにも関わらず)光起電装置性能を劣化させる事態を回避するために、コンデンサ1942が一般的に必要となる。コンデンサ1942をスイッチング回路1904の外部に設けている様子を図示しているが、コンデンサをスイッチング回路1904内に統合してもよい。
図54は、1つの電流測定サブシステム5400を示す。電流測定サブシステム5400は、スイッチング回路1904のいくつかの実施形態において電流測定サブシステム1938を実行するために用いられる。実施形態において、第1のスイッチングデバイス1932は、電力トランジスタ5402によって実行される。詳細には、サブシステム5400は、出力端子5404上に電流信号を生成する。電流信号は、トランジスタ5402上からの電圧からの出力電流Io19の平均値(Io19_avg)に比例する。
電流測定サブシステム5400は、第1の1組のスイッチ5406および5408を含む。これらの第1のスイッチ5406および5408は、第2の1組のスイッチ5410、5412および5414と相補的に動作する。そのため、スイッチ5406および5408が閉である場合、スイッチ5410、5412および5414は開となり、またこの逆も成り立つ。積分器5416は、トランジスタ5402がオンにされたときの電力トランジスタ5402上の電圧と、基準トランジスタ5418上の電圧との間の差を積分する。トランジスタ5402がオンにされたとき、スイッチ5406および5408は、積分器5416の入力をトランジスタ5402および5418へと接続させる。トランジスタ5402がオフにされると、スイッチ5410および5412は、積分器5416の入力差をゼロにする。
積分器5416の出力5420は、スイッチ5414およびコンデンサ5422を含むサンプルアンドホールド回路へと接続される。サンプルアンドホールド回路の出力5424は、整合相互コンダクタンス段5426および5428へと接続される。相互コンダクタンス段5428は基準トランジスタ5418を駆動し、相互コンダクタンス段5426は出力端子5404を駆動する。端子5404から流れる出力電流はIo19_avg/Kに等しい。Kは、双方のトランジスタがオンにされた時の基準トランジスタ5418の導電率に対する電力トランジスタ5402の導電率の比に等しい。
電力トランジスタ5402上の電圧と、基準トランジスタ5418上の電圧との間の差を積分することにより、サブシステム5400は、スイッチング回路1904のデューティサイクルの変動に対応する。スイッチ5408および5412が用いられていない場合(すなわち、スイッチ5408が連続的にオンでありかつスイッチ5412が連続的にオフである場合)、サブシステム5400は、(Io19_avgの平均値ではなく)電力トランジスタ5402を流れる電流の平均値を測定する。サンプルアンドホールド回路は、積分器5416の出力5420をフィルタリングする。詳細には、サンプルアンドホールド回路は、サンプリング周波数およびその高調波において、ゼロのシンク関数周波数応答を有する。スイッチング高調波の任意のエイリアシングは、積分器5416の周囲の負のフィードバックループ5430によって除去される。
電流測定サブシステム5400は典型的には高速で整定し、場合によっては、単一のサンプリングサイクルと同じくらい高速に整定し得る。このような高速の整定時間が一般的に望ましい理由として、このような高速の整定時間により、スイッチング回路1904がIo19_avgを高周波数でサンプリングことが可能になり、これにより、デューティサイクルを対応する高周波数において変化させるが可能になることで、より高速のMPPTが促進されるからである。
スイッチング回路1804(図18)は、昇圧形トポロジー以外のトポロジーを持ち得る。例えば、スイッチング回路1804は、バック型トポロジー(例えば、図5および図6のトポロジーに類似するもの)、バックブースト型トポロジー、または絶縁トポロジー(例えば、図7のものに類似するもの)を持ち得る。
図4の電力システム400において、スイッチング回路は電気的に直列接続され、図18の電力システム1800において、スイッチング回路は電気的に並列接続される。あるいは、本明細書中開示されるスイッチング回路の実施形態を用いて電力システムを直列接続および並列接続と共に構築することも可能である。例えば、図20に示す電力システム2000は、2つのストリング2002および2004を含む。これら2つのストリング2002および2004は、負荷2006と電気的に並列接続される。別の実施形態において、システム2000は、負荷2006と電気的に並列接続されたさらなるストリングを含む。ストリング2002は、M個の電源2008と、M個の電源2008に電気的に接続された各スイッチング回路2012とを含む。Mは、1よりも大きい整数である。スイッチング回路2012の出力ポートは、相互に電気的に直列接続される。同様に、ストリング2004は、N個の電源2010と、N個の電源2010へと電気的に接続された各スイッチング回路2014とを含む。Nは、1よりも大きい整数である。スイッチング回路2014の出力ポートは、相互に電気的に直列接続される。MおよびNは、同一であってもよいし、同一でなくてもよい。
スイッチング回路2012および2014はそれぞれ、図4のスイッチング回路404の実施形態であり、スイッチング回路2012および2014はそれぞれ、スイッチング回路の出力電圧の平均値を最大化させることにより、各電源2008および2010から抽出された電力量を少なくとも実質的に最大化させる。ストリング2002は、各スイッチング回路2012間において共有される直列インダクタンス2016を含む。ストリング2004は、各スイッチング回路2014間において共有される直列インダクタンス2018を含む。インダクタンス2016および2018を模式的に単一のインダクタとして図示しているが、このようなインダクタは、ストリング2002および2004の回路をそれぞれ形成するコネクタ(例えば、ワイヤまたは母線)の複数の別個のインダクタおよび/または相互接続インダクタンスを含み得る。例えば、図47に示す電力システム4700は、電力システム2000の実施形態である。この実施形態において、インダクタンス2016および2018は、相互接続インダクタンス4702および4704を含む。
電源2008および2010は例えば太陽電池セルであり、各ストリング2002および2004は、いくつかの実施形態における太陽電池セルの1つ以上のモジュールまたはパネルを示す。別の例として、電源2008はそれぞれ、1つの多接合太陽電池セルの単一の接合部を示し得、電源2010はそれぞれ、別の多接合太陽電池セルの単一の接合部を示す。
図21に示す電力システム2100は、2つのストリング2102および2104を含む。2つのストリング2102および2104は、負荷2106へと電気的に直列接続される。ストリング2102および2104は3つの電源2108を含み、各スイッチング回路2110が電源2108へと電気的に接続される。ストリング中の電源の数と、直列接続されるストリング数とは、変更可能である。所与のストリング2102および2104中の各スイッチング回路2110の出力ポートは、相互に電気的に並列接続される。スイッチング回路2110はそれぞれ、図18のスイッチング回路1804の実施形態であり、平均スイッチング回路出力電流を最大化させることにより、電源から抽出された電力量を少なくとも実質的に最大化させるように構成される。一実施形態において、各電源2108は個々の太陽電池セルであり、太陽電池セルのモジュールまたはパネルを形成する。
バック型スイッチング回路の複数のストリングが電気的に並列接続される実施形態において、1つのストリングの動作が最適動作を下回った場合、並列接続ストリングの動作に負の影響が発生し得る。例えば、図57の場合を考えてみる。図57に示す電力システム5700は、2つのストリング5702および5704を含む。これら2つのストリング5702および5704は、DCバス5706へと電気的に並列接続される。DCバス5706は、負荷5708への電力供給を行う。各ストリング5702および5704は、複数の光起電装置5710を含み、各光起電装置5710は、各バック型MPPT変換器5712へと電気的に接続される。ストリング中の各MPPT変換器5712の出力ポートは、電気的に直列接続される。各ストリング5702および5704は、同一ストリング電圧Vstringを持つ必要がある。なぜならば、ストリングは電気的に並列接続されているからである。
理想的条件下において、各光起電装置5710は理想的には、最大出力点におけるセル電流ImpにおいてVmpに等しいセル電圧と整合し、ストリング電流5714がI>Impであるときにおいて各光起電装置5710がMPPにおいて動作する場合、各MPPT変換器5712の出力電圧はV<Vmpである。このような条件下において、各ストリング電流5714がIであるときに、各ストリングのストリング電圧Vstringは4*Vであり、これにより、各ストリング5702および5704は、等しい電力を負荷5708へと送達する。ここで、光起電装置5710(1)および5710(2)から生成されている電力はほとんど無いかまったく無い、残りの光起電装置5710(3)〜5710(8)からはフル電力が生成されていると仮定する。このようなばらばらの出力生成は、例えば、光起電装置5710における異なる陰影または汚れに起因する。
このような条件下において、バック型MPPT変換器5712(1)および5712(2)は、ストリング電流Iにおいて有意な出力電圧を生成することはできない。なぜならば、その各光起電装置5710(1)および5710(2)からはほとんど電力が生成されていないかまったく生成されていないからである。その結果、MPPT変換器5712(1)および5712(2)から生成される出力電圧はほぼゼロボルトとなり、ストリング5702の残りのMPPT変換器5712(3)および5712(4)は継続して出力電圧Vを生成する。そのため、最大の利用可能な電力をストリング5702から抽出するためには、Vstringはほぼ2*Vとなる。
ストリング5704は、4*Vではなく2*Vのストリング電圧で動作する必要もある。なぜならば、ストリング5704は、ストリング電圧2*Vを有するストリング5702へと電気的に並列接続されるからである。そのため、ストリング5704のMPPT変換器5712(5)〜(8)は各光起電装置5710をMPPにおいて継続的に動作させるものの、ストリング電流5714(2)はIではなく2*Iにほぼ等しくなければならず、これにより、MPPT変換器5712(5)〜(8)中およびシステム5700のコンポーネントを接続する多数の導体中の損失が増加する。そのため、ストリング5702の低電力動作により、発電するストリングが低減するだけでなく、残りのシステム5700の効率も低下する。さらに、負荷5708は典型的には最小入力電圧を必要とし、ストリング5702の電圧が過度に低下した場合、ストリングがシステム5700から接続解除され得、任意の電力供給が無くなる。
バック型MPPT変換器の代わりにバックブースト型トポロジーを有するMPPT変換器を用いることにより、バック型MPPT変換器の並列ストリングにおいてこのようにばらばらに出力生成が行われることに起因する問題の可能性を少なくとも部分的に軽減することができる。例えば、図48に示す電力システム4800は、電気的に並列接続された2つのストリング4802および4804を含む。システム4800を改変して、さらなるストリングを含ませることができる。ストリング4802はM個の電源4806を含み、ストリング4804はN個の電源4808を含む。MおよびNはそれぞれ、1よりも大きな整数である。MおよびNは同一であってもよいし、同一でなくてもよい。
各スイッチング回路4810および4812は、各電源4806および4808へと電気的に接続される。各スイッチング回路4810および4812はバックブースト型トポロジーを有するため、その出力電圧Voutは逆の極性を有し、出力電圧Voutの大きさは、入力電圧Vinを上回るか、入力電圧Vinに等しいかまたは入力電圧Vinを下回る。各スイッチング回路4810および4812は、コントローラ4814を含む。コントローラ4814は、各電源4806および4808から抽出された電力が少なくとも実質的に最大化されるように、スイッチングデバイス4816を制御する。各スイッチング回路は、入力コンデンサ4818と、インダクタ4820と、ダイオード4822(これの代わりに別のスイッチングデバイスを用いて効率を上げてもよい)と、出力コンデンサ4824とをさらに含む。ストリング4802および4804の出力により、負荷(例えば、インバータ)への電力供給が行われる。各スイッチング回路4810および4812は各出力コンデンサ4824を備えているため、負荷がインバータであるときに有利である。なぜならば、出力コンデンサ4824により、不具合の起こりやすいインバータ入力キャパシタンスの必要性を低減できるからである。詳細には、インバータは典型的には、高電圧の不具合の起こりやすい電解入力コンデンサを有するが、このような不具合の起こりやすい電解入力コンデンサを、スイッチング回路出力コンデンサ4824によって少なくとも部分的に代替することができる。スイッチング回路出力コンデンサ4824は、いくつかの実施形態において、比較的低電圧でありかつ高信頼性であるセラミックコンデンサである。
いくつかの実施形態において、スイッチング回路4810および4812のスイッチング周波数を緩く制御することにより、スイッチング周波数を個々のスイッチング回路4810および4812間において有効にランダム化させ、これによりリップル低減を支援する。さらに、コントローラ4814の起動時刻を任意選択的に緩く制御することにより、個々のスイッチング回路4810および4812間においてMPPT動作変化を有効にランダム化し、これにより、MPPTに起因する過渡電流の大きさの低減を支援する。
バックブーストトポロジーは、バックトポロジーまたはブーストトポロジー(例えば、図57を参照して上述したバックトポロジー)と比較して向上したダイナミックレンジを有利に有する。所与のストリング電流が最高性能セルのMPP電流を下回る場合、高性能セルを電圧ブーストし、低性能セルを電圧バックする。このような特性により、電源4806および4808によるばらばらの出力生成に起因する問題の軽減を支援することが可能になる。例えば、電源4806(1)の出力電力が低下した場合、ストリング電流Istring1が低下し得、スイッチング回路4810(1)がその電圧利得を増加させて、このような低下を補償し得、これによりVstring1が一定に保持される。そのため、ストリング電圧が電源4806および4808の出力電力に関わらず一定に保持され得、これにより、1つのストリングの電力に変化があっても、他の並列ストリングの動作に影響は出ない。さらに、ストリング電圧を所望のレベルにおいて保持することが可能であるため、ストリングによって電力供給される負荷にとってストリングの電圧低すぎることに起因して、ストリングをシステム4800から接続解除する必要性の可能性が回避される。
図48のバックブースト型MPPT変換器は、バック型MPPT変換器に相対して増加したダイナミックレンジを有利に有するが、そのスイッチングデバイスには、少なくとも変換器入力電圧および変換器出力電圧を加算することによって得られる比較的高い定格電圧が必要となる。さらに、バックブースト型変換器は、不連続の入力電流波形および出力電流波形双方を有しているため、リップル電流のフィルタリングのためには有意な入力および出力キャパシタンスを必要とする。バックブースト型MPPT変換器の代わりに降圧および昇圧形トポロジーを有するMPPT変換器(例えば、図58に示すようなもの)を用いることにより、このような不利点の可能性を低減することができる。詳細には、図58に示すバックアンドブースト型MPPT変換器5800は、入力ポート5801を含む。入力ポート5801は、各電源への電気的接続のための入力端子5802および5804を含む。変換器5800は、出力ポート5805をさらに含む。出力ポート5805は、負荷への電気的接続(例えば、ストリング内の他のMPPT変換器を通じたもの)のための出力端子5806および5808を含む。コントローラ5810は、スイッチングデバイス5812、5814、5816および5818を制御して、入力端子5802および5804へと電気的に接続された電源から抽出された電力量を少なくとも実質的に最大化させる。MPPT変換器5800はまたエネルギー貯蔵インダクタ5820を含み、典型的には入力キャパシタンス5822および出力キャパシタンス5824をさらに含む。
MPPT変換器5800は、バックモードまたはブーストモードで動作し得、これにより、出力電圧Voutは、入力電圧Vinを上回るか、入力電圧Vinに等しくなるかまたは入力電圧Vin未満となり得る。詳細には、VoutをVin未満にする必要がある場合、コントローラ5810は、スイッチングデバイス5816が連続的に閉でありかつスイッチングデバイス5818が連続的に開である状態でスイッチングデバイス5812および5814を制御してVoutを調節することにより、変換器5800をバックモードで動作させる。いくつかの実施形態において、コントローラ5810は、電圧(例えば、出力電圧Vout)またはスイッチングノード電圧Vxの平均値をバックモードにおいて少なくとも実質的に最大化するように、切り換えを制御するように動作することが可能である。逆に、VoutをVinよりも高くする必要がある場合、コントローラ5810は、スイッチングデバイス5812が連続的に閉でありかつスイッチングデバイス5814が連続的に開である状態においてスイッチングデバイス5816および5818を制御してVoutを調節することにより、変換器5800をブーストモードで動作させる。いくつかの実施形態において、コントローラ5810は、ブーストモードにおいて切り換えを制御して電流(例えば、スイッチ5816を通過する平均電流)を少なくとも実質的に最大化させるように、動作可能である。
いくつかの実施形態において、変換器5800のスイッチング周波数を緩く制御することにより、多数の個々の変換器5800間においてスイッチング周波数を有効にランダム化させ、これによりリップル低減を支援する。さらに、コントローラ5810の起動時刻を任意選択的に緩く制御することにより、多数の個々の変換器5800間においてMPPTの動作変化を有効にランダム化させ、これにより、MPPTに起因する過渡電流の大きさの低減を支援する。
バックブースト型変換器(例えば、図48を参照して上述したようなもの)とは対照的に、スイッチングデバイス5812、5814、5816および5818に必要なのは、定格電圧をVinおよびVoutの最大値よりも大きくすることのみであり、VoutはVinの反転極性ではない。さらに、バックブースト型変換器と対照的に、図58のバック型および昇圧形変換器において、入力電流がブーストモードにおいて連続し、出力電流がバックモードにおいて連続する。しかし、図58のバック型および昇圧形変換器を通過する電流経路は、2つの直列スイッチを常に通過する。
バックブースト型MPPT変換器(例えば、図48を参照して説明したもの)およびバックアンドブースト型MPPT変換器(例えば、図58を参照して説明したもの)はそれぞれ、各エネルギー貯蔵インダクタが必要であるという不利点がある。そのため、このようなMPPT変換器は、エネルギー貯蔵インダクタにおいてストリング相互接続インダクタンスを利用することができない。加えて、バックブースト型MPPT変換器およびバックアンドブースト型MPPT変換器の出力電圧範囲は、5812、5814、5816および5818のデバイス電圧ストレス制限によって決定される。そのため、バックブースト型変換器およびバックアンドブースト型変換器は典型的には、過度の出力電圧大きさに起因する変換器損傷を回避するために、出力ポート上に過電圧防止(OVP)を必要とする。さらに、ストリング内の多数の光起電装置に陰影が過多に発生した場合、ストリング電圧を必要値に調節できない場合がある。このような条件下において、バック型MPPT変換器について上述した類似の欠陥が当てはまる。MPPT変換器のストリングへと電気的に並列接続されたストリングオプティマイザを用いることにより、これらの不利点を軽減することができる。
例えば、図49に示す電力システム4900は、複数のストリング4902を含む。これらのストリング4902はそれぞれ、1つ以上の電源4904(例えば、光起電装置)と、各電源4904へと電気的に接続された各ローカルMPPTDC/DC変換器4906とを含む。DC/DC変換器4906は、例えば図4のスイッチング回路404の実施形態であり、各電源4904から抽出された電力量を少なくとも実質的に最大化させる。ストリング4902中の各DC/DC変換器4906の出力は、ストリングオプティマイザ4908と電気的に直列接続される。ストリングオプティマイザ4908は、ストリングと共通DCバス4910との間のインターフェースをとる。DCバス4910は、負荷4912(例えば、インバータ)へと電気的に接続される。特定の別の実施形態において、各ストリングオプティマイザ4908の代わりに各インバータが用いられ、各インバータの出力が共通AC電力バスへと電気的に接続される。
システム4900が2つのストリング4902を含む様子が図示されているが、システム4900は、さらなるストリングを含み得る。各ストリング4902は、同一数の電源4904を含まなくてもよく、各電源4904は同一でなくてよい。例えば、1つの電源4904は単一の太陽電池セルであり得、別の電源4904は、電気的に直列および/または並列接続された太陽電池セル(例えば、光起電パネルの光起電サブモジュール)グループであり得る。
各ストリングオプティマイザ4908は、直列接続されたDC/DC変換器4906(V_total)全て上の出力電圧を共通DCバス4910の電圧(V_bus)へ変換する。そのため、各ストリングオプティマイザ4908により、ストリング4902のMPPTDC/DC変換器4906が(共通DCバス4910に接続された状態で)最適出力電圧で動作することが可能となる。そのため、ストリングオプティマイザ4908を用いることにより、以下の利点のうち1つ以上が可能となる。第1に、ストリングオプティマイザ4908はDC/DC変換器4906とDCバス4910とのインターフェースをとるため、DC/DC変換器4906がストリング電圧を調節する必要が無く、よって比較的簡単な変換器(例えば、バック型変換器)とすることができる。第2に、DCバス4910電圧を負荷4912に合わせて最適化しかつ/または高レベルに調節することにより、DCバス4910の電流大きさの低減が支援される。第3に、負荷4912がインバータである場合、DCバス4910電圧が調節可能であるため、インバータコストの低減および/またはインバータ効率の増加が可能となる。さらに、MPPTはDC/DC変換器4906によって行われるため、インバータにMPPT機能を含める必要は無い。インバータMPPT機能が含まれる場合、グローバルMPPTが不要になるため、複雑性の低減および効率の増加が可能となる。第4に、ストリングオプティマイザ4908の利用により、各ストリング4902からの最大電力を、他のストリングによって拘束されることなく、独立的にDCバス4910へと送達することが可能になる。これとは対照的に、ストリングオプティマイザ4908を含まないシステムにおいて、1つのストリングの動作は、並列接続ストリングの動作特性によって制約を受け得る。第5に、ストリングオプティマイザ4908の利用により、DC/DC変換器4906の特定の実施形態において本質的に一定の電流を各電源4904から引き出すことが可能になり、これにより、DC負荷から電力供給を受けた場合に電源4904の動作効率が最大になる場合において高性能が促進される。
いくつかの実施形態において、負荷4912はバス電圧V_busを調節し、ストリングオプティマイザ4908は別のシステムパラメータを制御する。例えば、ストリングオプティマイザ4908のいくつかの実施形態は、ストリング電流I_stringを調節して、各DC/DC変換器とDCバス4910とインターフェースをとる。I_stringを一定値に維持することにより、DC/DC変換器4906の利用が可能となる。DC/DC変換器4906は、図4を参照して上述したような変換器出力電圧またはスイッチングノード電圧の平均値を最大化することにより、MPPTを行う。I_stringは、例えば、任意の1つの太陽電池セルの最大予測短絡電流よりも高い一定値に設定されるか、または、放射照度(例えば、基準太陽電池セルの短絡電流)と共に変動する値に設定される。別の例として、ストリングオプティマイザ4908の特定の他の実施形態は、ストリング−レベルMPPTを達成するように、パラメータ(例えば、I_stringまたはV_total)を調節する。このようなMPPTは、比較的簡単である。なぜならば、MPPTDC/DC変換器4906は典型的には良好な挙動の電力転送曲線を有することが多く、単一のローカル最大出力点しかないため、グローバルMPPTが不要となるからである。
各ストリングオプティマイザ4908は典型的には、スイッチングDC/DC変換器(例えば、昇圧形変換器)であり、ストリングのインダクタンス4914を利用する。インダクタンス4914を模式的に単一のインダクタとして図示しているが、インダクタンス4914は、複数の別個のインダクタおよび/または導体の相互接続インダクタンス(例えば、ワイヤおよび/または母線)電気的接続DC/DC変換器4906およびストリングオプティマイザ4908を含み得る。特定の実施形態において、インダクタンス4914は、所与のストリング中のストリングオプティマイザ4908およびDC/DC変換器4906双方によって共有される。このような実施形態において、有利なことに、DC/DC変換器4906は、自身のエネルギー貯蔵インダクタンスを持つ必要は無い。いくつかの実施形態において、各ストリングオプティマイザ4908のスイッチング周波数を緩く制御することにより、そのスイッチング周波数を有効にランダム化させる。上述したように、スイッチング周波数のランダム化により、リップル電流大きさの低減が支援される。リップル電流大きさの低減は、負荷4912がインバータである実施形態において特に望ましい。なぜならば、このようなリップル電流低減により、インバータ入力キャパシタンスの低減が可能になるからである。さらに、特定の実施形態において、2つ以上のストリングオプティマイザ4908を同期させることにより、これらのストリングオプティマイザ4908が異相状態で切り替わり、これによりDCバス4910上のリップル低減が支援される。
ストリングオプティマイザ4908のいくつかの実施形態は、さらなる機能を含む(例えば、外部信号(例えば、メンテナンスおよび/または安全目的のためのもの)に応答して、各ストリング4902をDCバス4910から接続解除する能力)。また、特定の実施形態は、過電流防止、逆電流遮断、ならびに/あるいは各ストリング4902の特性(例えば、ストリング温度、ストリング電圧および/またはストリング電流)を監視する能力を含む。
図50に示すストリングオプティマイザ5000は、ストリングオプティマイザ4908の実施形態である。ストリングオプティマイザ5000は、昇圧形トポロジーを有する。ストリングオプティマイザ5000は、スイッチングデバイス5002と、ダイオード5004と、コントローラ5006とを含む。いくつかの実施形態において、ダイオード5004の代わりに別のスイッチングデバイスを用いるか、または、ダイオード5004に加えて別のスイッチングデバイスを用いる。ストリングオプティマイザ5000は、DC/DC変換器4906のストリングへの接続のための入力端子5008をさらに含む。ストリングオプティマイザ5000は、エネルギー貯蔵インダクタンスのためにインダクタンス4914を利用する。エネルギー貯蔵インダクタンスは、上述したように、1つ以上の別個のインダクタおよび/または相互接続インダクタンスであり得る。ストリングオプティマイザ5000は、DCバス4910への接続のための出力端子5010をさらに含む。いくつかの実施形態は、入力キャパシタンス5011も含む。
コントローラ5006は、スイッチングデバイス5002を制御して、DCバス4910の電圧V_busを調節する。詳細には、コントローラ5006は、DCバス4910の電圧を感知する電圧感知部5012と、ストリングオプティマイザ5000によって処理される電流を感知する任意選択電流感知部5014とを含む。いくつかの実施形態において、電流感知部5014は、スイッチングデバイスが電流を伝導しているときのスイッチングデバイス5002上の電圧を感知することにより、電流感知を行う。フィードバック、制御および保護部5016は、電圧感知部5012および電流感知部5014からの信号に応答して、PWM生成器5018を制御する。その後、PWM生成器5018は、スイッチングデバイス5002を駆動して、DCバス4910上の電圧を調節する。いくつかの別の実施形態において、コントローラ5006を改変してスイッチングデバイス5002を動作させ、出力電圧V_bus以外のパラメータ(例えば、入力電流I_stringまたは入力電圧V_total)を調節させる。
いくつかの実施形態において、ストリングオプティマイザ5000は、連続導通モードで動作して、入力リップル電流の大きさを低減する。このような実施形態において、入力キャパシタンス5011を不要にすることができる。特定の実施形態は、動作モードをストリング電流大きさの関数として変化させるように適合される。例えば、一実施形態において、ストリングオプティマイザ5000は、ストリング電流の大きさが大きい連続導通モードで動作し、ストリング電流の大きさが小さい不連続の導通モードで動作し、これにより、広範囲のストリング電流大きさにおいて高効率を達成する。ヒステリシスを用いることにより、連続導通モードと不連続導通モードとの間の変動を回避する。連続導通モード動作は典型的には、ストリング電流大きさの値が大きい場合には不連続の導通モード動作よりも高効率であることが多く、ストリング電流大きさが小さい場合、反対の傾向になることが多い。例えば、SiCダイオード、GaNダイオードまたは高速回復ダイオードをダイオード5004として用いると、高効率連続導通モード動作が促進される。同様に、ダイオード5004に同期型整流器として動作するスイッチングデバイスを追加して、適応型または別の良好に制御されたむだ時間スキームと共に用いた場合、ダイオード5004の逆回復損失を最小化またはさらには回避することが可能になり、これにより、高効率連続導通モード動作が促進される。
図51に示すストリングオプティマイザ5100は、ストリングオプティマイザ4908の別の実施形態である。ストリングオプティマイザ5100は、ストリングオプティマイザ5000(図50)に類似しているが、ストリングオプティマイザ5100は、2つの電力段を含む。これら2つの電力段は、異相状態で動作することにより、DCバス4910上のリップル低減を支援する。詳細には、ストリングオプティマイザ5100は、スイッチングデバイス5102、インダクタ5104およびダイオード5106を含む第1の電力段と、スイッチングデバイス5108、インダクタ5110およびダイオード5112を含む第2の電力段とを含む。コントローラ5114は、スイッチングデバイス5102および5108が異相状態で動作するようにスイッチングデバイス5102および5108を制御することにより、DCバス4910上の電圧を調節する。例えば、特定の実施形態において、スイッチングデバイス5102および5108のスイッチング遷移の位相を180度だけ相互に変位させることにより、DCバス4910上のリップルの低減と、入力電流リップルの低減とを達成し、これにより、入力キャパシタンス5119および/または出力キャパシタンス(図示せず)の必要性を低減または排除する。ストリングオプティマイザ5100は、入力端子5116を介して各ストリングのDC/DC変換器4906へと電気的に接続され、ストリングオプティマイザ5100は、出力端子5118を介してDCバス4910へと電気的に接続される。ストリングオプティマイザ5110は、入力キャパシタンス5119を任意選択的に含む。図50のコントローラ5006と同様に、コントローラ5114は、電圧感知部5120と、任意選択電流感知部5122と、フィードバックと、制御と、保護部5124と、PWM生成器5126とを含む。単一のコントローラ5114は図51の実施形態において双方の電力段を制御しているが、各電力段は、特定の別の実施形態において別個のコントローラによって制御される。さらに、コントローラ5114を改変して、DCバス4910上の電圧V_busではなく他のパラメータを調節するようにしてもよい(例えば、入力電圧または入力電流)。
いくつかの実施形態において、インダクタ巻線5104および5110は、米国特許第6,362,986号(Schultzらに付与)に教示されているように、リップル電流低減のために、共通磁気コアによって磁気的に接続される。本明細書中、同文献を参考のため援用する。別の実施形態において、各電力段が異なるストリング4902するように(すなわち、インダクタ5104が第1のストリングへと接続し、インダクタ5110が第2のストリングへと接続するように)、ストリングオプティマイザ5100を改変する。ストリングオプティマイザ5100は、2つの異なるストリング4902のためのストリングオプティマイザとして機能する。
ストリングオプティマイザ5100のいくつかの別の実施形態は、3つ以上の電力段を含む多相変換器である。電力段のうちいくつかまたは全ては、異相状態で動作し、インダクタのうちいくつかまたは全ては、任意選択的に磁気的に接続される。例えば、1つの特定の別の実施形態は、4つの電力段を含む。この実施形態において、各電力段は、各ストリングのためのストリングオプティマイザとして機能する。別の例として、別の特定の別の実施形態は、4つの電力段を含む。この実施形態において、これらの電力段のうち第1の段および第2の段は、第1のストリングのためのストリングオプティマイザとして機能し、これらの電力段のうち第3の段および第4段は、第2のストリングのためのストリングオプティマイザとして機能する。
図59は、光起電システム内のストリングオプティマイザの別の可能な用途を示す。詳細には、図59に示す光起電システム5900は、N個のストリング5904からなるアセンブリ5902を含む。各ストリング5904は、M個の光起電装置5906を有する。ここで、NおよびMはそれぞれ、1よりも大きな整数である。特定の実施形態において、光起電装置5906は、1つ以上の光起電パネルの一部である。アセンブリ5902は、例えば、単一の追跡デバイス上に収容される。単一の追跡デバイスは、光起電装置5906が太陽に向かって方向付けられるように、太陽の移動を追跡する。いくつかの実施形態において、光起電装置5906は、集光素子を用いた1つ以上の単一のまたは多接合太陽電池セルである。各ストリング5904が同じ数および種類の光起電装置5906を有している様子を図示しているが、光起電装置5906の数はストリング5904間において異なり得、各光起電装置5906は必ずしも同一構成にする必要は無い。
所与のストリング5904の各光起電装置5906は、各ローカルMPPTDC/DC変換器5908へと電気的に接続される。いくつかの実施形態において、DC/DC変換器5908は、スイッチング回路404(図4)である。所与のストリング5904のDC/DC変換器5908の出力は、ストリングオプティマイザ5910へと電気的に並列接続される。ストリングオプティマイザ5910は、図49のストリングオプティマイザ4908に類似する。いくつかの実施形態において、ストリングオプティマイザ5910は、単相ブーストトポロジーストリングオプティマイザである(例えば、ストリングオプティマイザ5000(図50))。いくつかの他の実施形態において、ストリングオプティマイザ5910は多相ブーストトポロジーストリングオプティマイザであり、エネルギー貯蔵インダクタ(例えば、ストリングオプティマイザ5100(図51))の磁気結合を用いるかまたは用いない。ストリングオプティマイザ5910は典型的には、共通筐体5912中に収容される。共通筐体5912中は、アセンブリ5902またはその近隣に配置される。ストリングオプティマイザ5910の一部または全体を共通集積回路チップ(図示せず)の一部としてもよい。アセンブリ5902が追跡デバイス上に収容される実施形態において、筐体5912は典型的には、追跡デバイスの近隣に配置されるが追跡デバイス上には配置されず(例えば、柱または土台に配置され)、これにより、追跡デバイス上の重量を最小化する。ストリングオプティマイザ5910は、共通コントローラ(図示せず)によって任意選択的に制御され、ストリングオプティマイザ5910は、特定の実施形態において相互に異相状態で動作して、DCバス5916上のリップルを低減する。いくつかの実施形態において、所与のストリング5904の各ローカルMPPTDC/DC変換器5908および各ストリングオプティマイザ5910は、共通エネルギー貯蔵インダクタンス5914を共有する。いくつかの実施形態において、共通エネルギー貯蔵インダクタンス5914は、ストリング相互接続インダクタンスから部分的にまたは全体的にになる。ストリングオプティマイザ5910は、MPPT能力を任意選択的に含む。
ストリングオプティマイザ5910の出力により、共通高電圧DCバス5916が集合的に電力供給される。高電圧DCバス5916はインバータ5918に電力供給し、インバータ5918は負荷(例えば、AC電力グリッド5920)へと電力供給する。インバータ5918は、MPPT能力を必ずしも備えていなくてもよい。なぜならば、DC/DC変換器5908および任意選択的にストリングオプティマイザ5910にMPPT能力があるからである。いくつかの実施形態において、DCバス5916を本質的に固定電圧レベルにおいて維持することにより、インバータ構造が簡略化される。いくつかの別の実施形態において、ストリングオプティマイザ5910と、単一の筐体中またはさらには単一の集積回路チップ中のインバータ5918とを組み合わせる。システム5900を改変して、複数のアセンブリ5902を含ませることができる。複数のアセンブリ5902はそれぞれ、複数のストリング5904を含む。各ストリングは、各ストリングオプティマイザ5910を含む。このような実施形態において、所与のアセンブリ5902のためのストリングオプティマイザ5910は典型的には、アセンブリの近隣に配置される(例えば、アセンブリと関連付けられた筐体5912内)。
図60に示す光起電システム6000は、システム5900に類似するが、アセンブリ6002を含む。アセンブリ6002は、少なくともいくつかのストリングを有し、ローカルMPPTDC/DC変換器を用いていない(例えば、ローカルMPPTが全ストリングにおいて不要である用途向けのもの)。アセンブリ6002は、ローカルMPPTDC/DC変換器を含むストリング5904と、ローカルMPPTDC/DC変換器を含まないストリング6004とを双方含む。各ストリング6004内の光起電装置6006は、ストリングオプティマイザ6008へと電気的に接続される。ストリングオプティマイザ6008は典型的には、MPPT能力を有する。いくつかの実施形態は、エネルギー貯蔵インダクタンスのためのストリングオプティマイザ6008によって用いられるインダクタンス6010を含み、インダクタンス6010は、任意選択的にストリング相互接続インダクタンスから部分的または全体的になる。いくつかの別の実施形態において、所与のストリング6004の光起電装置6006は、DCバス5916へと直接接続し、ストリングオプティマイザ6008は用いない。簡潔性のため、システム6000を単一のストリング6004のみと共に図示しているが、他の実施形態においては、さらなるストリング6004が用いられる。さらに、ストリング5904の数も変更可能であり、システム6000のいくつかの別の実施形態は、任意のストリング5904を含まない。
本明細書中開示されるスイッチング回路および/またはストリングオプティマイザのいくつかの実施形態は、他のシステムコンポーネントと通信するように動作可能である。例えば、ストリングオプティマイザ4908のいくつかの実施形態は、DC/DC変換器4906のうち一部または全体へ情報(例えば、起動コマンド、停止コマンドおよび/またはバイパスモード開始コマンド)を通信するように動作することが可能である。DC/DC変換器4906を停止させるかまたはバイパスモードに入らせることにより、緊急時(例えば、火災)の安全を促進するか、または、1つ以上のストリング4902の電源を切ることにより、メンテナンスまたはストリングの取付を促進することが望ましい。同様に、他のコマンドが無い限り、DC/DC変換器を名目的に停止するかまたはバイパスモードにすることにより、全システム電圧をいくつかの安全レベルよりも低いレベルで維持することが望ましい。
別の例として、本明細書中開示されるスイッチング回路の特定の実施形態は、他のスイッチング回路および/またはストリングオプティマイザと通信して、情報(例えば、状態情報、不具合情報、および/または動作モードコマンド)を交換できるように動作することが可能である。例えば、ローカルDC/DC変換器4906(図49)のいくつかの実施形態は、別のDC/DC変換器4906および/またはストリングオプティマイザ4908へ状態情報および/または不具合情報を送るように動作することが可能である。このような不具合情報および状態情報の例を非限定的に挙げると、変換器入力電圧、変換器出力電圧、変換器入力電流、変換器出力電流、変換器入力電力、変換器出力電力、変換器コンポーネント温度、電源4904温度および/または変換器不具合情報がある。いくつかの実施形態において、ストリングオプティマイザ4908がDC/DC変換器4906から不具合信号を受信すると、ストリングオプティマイザ4908は、動作(例えば、ストリングをDCバス4910から接続解除しかつ/またはストリング4902のDC/DC変換器4906に命令して停止させるかまたはバイパスモードに入らせる)を行うことにより、信号に応答する。
スイッチング回路と、他のデバイスとの間の通信信号は、送信側デバイスおよび/または意図される受信側デバイスを特定する情報を任意選択的に含む。例えば、スイッチング回路によって生成された不具合信号は、スイッチング回路を特定するコードを含み得る。別の例として、ストリングオプティマイザから来た、いくつかのスイッチング回路を停止せよとのコマンドは、意図される受信側スイッチング回路を特定するコードを含み得る。
デバイス間において情報を送信するための1つの可能な方法として、ストリングを通過する電流を変調する方法がある。例えば、スイッチング回路404(図4)のいくつかの実施形態は、出力ポート408内を流れる電流を変調して、電流上に通信信号を生成することにより、情報を別のコンポーネント(例えば、別のスイッチング回路またはストリングオプティマイザ)へと転送するように動作することが可能である。別の例として、ストリングオプティマイザ5000(図50)のいくつかの実施形態は、スイッチングデバイス5002を制御してストリング電流I_string上に通信信号を生成することにより、情報をローカルDC/DC変換器4906へ送るように動作することが可能である。その後、本明細書中開示されるスイッチング回路およびストリングオプティマイザの特定の実施形態は、内部を流れる電流上の通信信号を復調または復号化することにより、外部デバイスから情報を受信するように動作することが可能である。例えば、DC/DC変換器4906のいくつかの実施形態は、ストリング電流I_string上の通信信号を復調または復号化することにより、ストリングオプティマイザ4908または別のデバイスからのコマンドを受信するように動作することが可能である。
デバイス(例えば、ストリングオプティマイザおよびスイッチング回路)間の通信のための他の方法も可能である。例えば、システム4900のいくつかの別の実施形態において、DC/DC変換器4906および任意選択的にストリングオプティマイザ4908がデイジーチェーン様態で通信可能な様態で接続される。さらに他の別の実施形態において、DC/DC変換器4906および任意選択的にストリングオプティマイザ4908が、DC/DC変換器のうち一部または全体から電気的に絶縁された単一のバスを介して通信可能にされる。電気的絶縁は、例えば、容量性デバイス、光学デバイスまたは磁気分離デバイスの利用により達成される。他の可能な通信方法を非限定的に挙げると、光学的通信方法および無線通信方法がある。
本明細書中開示されるスイッチング回路の特定の実施形態において、スイッチング回路の出力ポート中において電流が通常の電流流れと反対方向に流れた場合、スイッチング回路および/またはスイッチング回路へ接続された電源(例えば、光起電装置)が損傷を受ける危険性がある。このような危険性を回避するために、スイッチングデバイスの構成を、出力ポート中において電流が単一方向にしか流れることができないようにして、スイッチングデバイスがダイオードをエミュレートする構成にする。例えば、スイッチング回路504、604(それぞれ図5および図6)の特定の実施形態において、コントローラ536および638は、スイッチングデバイス534および634を制御するようにそれぞれ構成され、これにより、出力電流が出力ポート508および620中において1方向のみに流れる。代替的にまたは追加的に、スイッチング回路の出力ポートに対して直列にダイオードを挿入することにより、逆電流が流れる事態を回避する。複数のスイッチング回路が相互接続されてその出力ポートが電気的に直列接続されてストリングを形成している場合、単一のダイオードを直列ストリング内の任意の位置において用いることにより、逆電流が流れる事態を回避することができる。例えば、図22は、電力システム2200の実施形態を示す。電力システム2200は、図4の電力システム400に類似する。システム2200は、N個の電源2202を含む(例えば、光起電装置または複数の光起電装置を含む光起電パネル)。Nは、1よりも大きい整数である。各スイッチング回路2204は、図4のスイッチング回路404の実施形態であり、各電源へ電気的に接続される。スイッチング回路2204の出力ポートは、負荷2206へと電気的に直列接続されて閉回路を形成する(本明細書中以下出力回路2208と呼ぶ)。回路は典型的には、インダクタンス2210を含む。インダクタンス2210を模式的に単一のインダクタとして図示しているが、インダクタンス2210に複数の別個のインダクタおよび/または出力回路2208の相互接続インダクタンスを含めてもよい。出力回路2208はまた、単一のダイオード2212も含み、これにより、スイッチング回路2204の出力ポート内に逆電流が流れる事態を回避する。
システム制御デバイスは、逆電流流れを回避するためのダイオードの代替法として用いることができる。例えば、図23に示す電力システム2300は、電力システム2200(図22)と同じであるが、ダイオード2212の代わりにシステム制御デバイス2302が用いられている。システム制御デバイス2302は、出力回路2208と電気的に直列接続され、ダイオードをエミュレートする(換言すれば、矢印2304によって示される方向に電流が流れるのを制限する)ように動作することが可能である。しかし、システム制御デバイス2302は典型的には、1つ以上のさらなる機能を含み得る(例えば、(1)スイッチとして機能し、出力回路2208をオンデマンドで開く能力、(2)短絡保護を提供する能力および/または(3)電力システム2300の1つ以上の状態を報告する能力)。例えば、電源2202が光起電モジュールの光起電装置である場合、システム制御デバイス2302の実施形態の構成を、情報(例えば、光起電モジュールの温度、モジュール出力電圧(例えば、スイッチング回路2204の直列接続された出力ポート上の電圧2306)および/またはモジュール内を流れる電流2308の大きさ))を報告できるような構成にすることができる。さらに、ストリングオプティマイザについて上述した様態と同様の様態で、システム制御デバイス2302のいくつかの実施形態を、スイッチング回路2204と通信可能なように動作させることができ、これにより、例えばコマンドスイッチング回路2204を起動させるか、停止させるかまたはバイパスモードに入らせ、かつ/またはスイッチング回路2204からの状態または不具合情報を受信することが可能になる。
システム制御デバイス2302は、切り替え可能なデバイス2310(例えば、トランジスタ)、電流2308を測定するように構成された電流測定サブシステム2312、および制御サブシステム2314を含み得る。制御サブシステム2314は、電流測定サブシステム2312からの情報に少なくとも部分的に基づいて、切り替え可能なデバイス2310の動作を制御する。例えば、制御サブシステム2314は、電流測定サブシステム2312からの電流流れ情報を用いて、切り替え可能なデバイス2310にダイオードをエミュレートさせ、これにより逆電流流れを遮断する。
図24に示すシステム制御デバイス2400は、光起電モジュール用途におけるシステム制御デバイス2302の一実施形態である。システム制御デバイス2400は、N個のMPPTデバイス2401のストリング(例えば、スイッチング回路404)と電気的に直列接続される。Nは、1よりも大きい整数である。各MPPTデバイス2401は、各光起電装置2402へと電気的に接続される。MPPTデバイス2401および光起電装置2402は、正の出力2404および負の出力2406を有する光起電モジュールを形成する。別の実施形態において、MPPTデバイス2401を光起電モジュールから省略し、光起電装置2402をシステム制御デバイス2400へと直接的に電気的に直列接続する。
システム制御デバイス2400は、ストリング内を流れる電流2410を制限するトランジスタ2408と、電流2410を測定する電流測定サブシステム2412とを含む。電流測定サブシステム2412は、例えば、図24に示すような電流感知レジスタである。しかし、別の実施形態において、電流測定サブシステム2412は、消散的デバイスを用いることなく電流を測定することにより(例えば、米国特許第6,160,441号および6,445,244号(Stratakosらに付与)に開示されているシステムおよび方法を用いることにより)、より高い効率を達成する。本明細書中、同文献それぞれを参考のため援用する。例えば、いくつかの実施形態において、電流測定サブシステム2412は、トランジスタ2408上の電圧を感知することにより、電流2410を測定する。
システム制御デバイス2400は、制御サブシステム2414をさらに含む。制御サブシステム2414は、電流測定サブシステム2412からの情報に少なくとも部分的に基づいて、トランジスタ2408の動作を制御する。例えば、制御サブシステム2414は、電流測定サブシステム2412からの情報に基づいてトランジスタ2408を制御して、トランジスタ2408にダイオードをエミュレートさせ、これにより逆電流流れを遮断する。別の例として、特定の実施形態において、システム制御デバイス2400は回路遮断器として機能し、電流2410の大きさが例えば短絡に起因して所定の値を超えた場合、コントローラ2414はトランジスタ2408に電流2410の流れを回避させる。いくつかの実施形態において、システム制御デバイス2400は、スイッチとして機能するようにさらに動作可能であり、この場合、スイッチを開けとの信号に応答して、コントローラ2414はトランジスタ2408に電流2410の流れを回避させる。このような機能により、メンテナンス手順時および/または緊急時においてストリングを有効にオフにすることが可能になるため、安全が有利に促進される。これとは対照的に、従来の光起電パネルの場合、オフにすることができない場合が多く、そのため緊急時(例えば、火災またはパネルに接続されたシステムの短絡)においても電力供給が意図に反して継続される。
システム制御デバイス2400の特定の実施形態は、モジュール電圧の監視および報告を行うように動作することが可能である。この実施形態において、モジュール電圧は、正の出力2404と負の出力2406との間の電圧である。例えば、一実施形態において、レジスタ2416および2418の分圧器により、モジュール電圧がコントローラ2414への入力に適したレベルまで低減される。コントローラ2414は、例えば、デジタル報告出力2420を介してまたは専用シリアルバス(図示せず)を通じたシリアル通信を介してモジュール電圧を外部システムへと報告する。デジタル報告出力2420と外部システムとの間の通信は、方法(例えば、無線通信、電力線通信、またはトランジスタ2408を変調して電流2410上に小さな通信信号を生成する方法)により、行われる。コントローラ2414は、例えば、デジタル報告出力2420を介してまたは専用シリアルバス(図示せず)を通じたシリアル通信を介してモジュール電流大きさを外部システムに報告するようにも構成される。
システム制御デバイス2400のいくつかの実施形態は、モジュール温度をデジタル報告2420を介して外部システムへと報告するように、動作可能である。このような実施形態は、温度センサ2422(例えば、絶対温度(PTAT)に比例する信号を提供するセンサ)を含む。信号は、温度情報をコントローラ2414へと提供する。このようなPTATデバイスは、例えば、共通集積回路チップ上においてコントローラ2414と一体化される。あるいは、温度センサ2422は、コントローラ2414の外部に設けられるか、または、さらにはシステム制御デバイス2400の外部に設けられる。
システム制御デバイス2400は典型的には、システム制御デバイス2400の回路への電力供給を行う電源を含む。図24の実施形態において、システム制御デバイス2400は、パネル出力2404および2406から電力供給を受ける線形レギュレータを含む。詳細には、線形レギュレータは、レジスタ2424内を流れる電流を調節するための降下レジスタ2424およびシャント調整器2426を含み、これにより、ノード2428とモジュール出力2406との間の電圧を調節する。
いくつかの実施形態において、トランジスタ2408は、共通集積回路チップ内においてコントローラ2414と一体化される。しかし、多数の実施形態において、トランジスタ2408を別個のデバイスとすることにより、所望の定格電圧の達成と、コントローラ2414へ悪影響を与えるトランジスタ2408からの熱生成に関連する問題の解決とにおいて、トランジスタ2408の選択において柔軟性が得られることが理解される。
上記したスイッチング回路のいくつかの実施形態は、複数の別個の部分によって形成される。しかし、スイッチング回路の特定の実施形態において、複数のスイッチング回路コンポーネントを単一の集積回路パッケージとして一体化するか、または、単一の集積回路上に設ける。このような一体化により、例えば、コンポーネント間の接続の寄生インピーダンスの低減により、スイッチング回路サイズの低減、スイッチング回路コストの低減および/またはスイッチング回路性能の向上が可能になる。本明細書中開示されるスイッチング回路のいくつかの実施形態は、明示的なエネルギー貯蔵インダクタを含まずかつ/または出力コンデンサによりこのような一体化が促進される点に留意されたい。
例えば、図25に示す1つの集積回路チップ2500は、コントローラ800(図8)を用いたスイッチング回路500(図5)の実施形態を形成するために、少なくともいくつかのコンポーネントを含む。詳細には、第1のスイッチングデバイス532および第2のスイッチングデバイス534と、ドライバ回路812とを一体化して、集積回路チップ2500を得る。制御信号生成器808も任意選択的に集積回路2500と一体化させ、これにより、スイッチング回路全体を単一の集積回路チップ内に埋設する。上記したその他のスイッチング回路も、同様に一体化させることが可能である。
制御信号生成器808を含む特定の実施形態において、制御信号生成器808は、集積回路チップ2500の内部にあるVyを監視する。そのため、このような実施形態において、集積回路チップ2500にフィードバックインターフェース端子を設けることは不要であり、集積回路チップ2500にはインターフェース端子を3つだけ設ければよく、これにより、低コストおよび小型パッケージサイズが促進される。
集積回路チップ2500のいくつかの実施形態は、フリップチップ集積回路である。当該分野において公知のように、フリップチップ集積回路において、チップ上のパッドを、隣接するインターポーザー上の対応するパッドへと半田ボールを介して直接接続する。このような構成の場合、チップと、隣接するインターポーザーとの間の接続部のインピーダンスが(コネクタ用のボンドワイヤを用いた構成の場合よりも)低下することが多い。フリップチップ集積回路の例については、米国特許第6,278,264号および6,462,522号(Bursteinらに付与)に記載がある。本明細書中、同文献それぞれを参考のため援用する。図26に示すフリップチップ集積回路2600は、図25のフリップチップ集積回路2500の実施形態である。フリップチップ集積回路2600は、例えば、第1のスイッチングデバイス532および第2のスイッチングデバイス534(図示せず)と、ドライバ回路812(図示せず)とを含む。フリップチップ集積回路2600は、インターポーザー2602(例えば、プリント基板(PCB)へと半田ボール2604によって電気的に接続される。例示を明確にするため、半田ボール2604のうち数個のみを参照符号によって示す。半田ボール2604は集積回路チップ2600もインターポーザー2602へと物理的に接続するが、アンダーフィル材料(図示せず)をチップ2600とインターポーザー2602との間に設けてもよく、これにより、より強固な機械的接続が可能になる。集積回路2500をフリップチップ集積回路以外の形態(例えば、ワイヤボンド接続を含む集積回路の形態)で実行することが可能であることが理解されるべきである。
上記した複数のスイッチング回路を一体化して、単一の集積回路チップとすることも可能である。例えば、スイッチング回路404(図4)またはスイッチング回路1804(図18)のうち2つまたは3つを一体化して、単一の集積回路チップとすることができる。例えば、3つのスイッチング回路を含むチップを用いて、3つの光起電装置モジュールのための単一のチップMPPTを提供することができる。別の例として、2つのスイッチング回路を含む1つのチップを用いて、2つの接合部太陽電池セルのための単一のチップ接合部レベルMPPTを提供することができる。
複数のスイッチング回路を備えたこのようなチップを用いることにより、複数の別個のスイッチング回路に比して利点が得られる。複数のスイッチング回路を備えたチップは典型的には、対応する数の別個のスイッチング回路を用いた場合よりも占有面積が小さいため、複数の別個のスイッチング回路を用いたシステムと比較して、システムサイズの低減、システムコストの低減および/または他のコンポーネントのための自由空間の増加が可能になる。複数のスイッチング回路を備えたチップを含むシステムも典型的には、対応する数の別個のスイッチング回路を備えたシステムと比較して、組み立てにおいてより容易、より高速かつまたはより低コストである。複数のスイッチング回路を一体化して集積回路チップとすることにより、複数の別個のスイッチング回路の場合よりもスイッチング回路コンポーネントが相互に近密配置されることが多くなる。このようにコンポーネントをより近密配置にすることにより、コンポーネント相互接続のインピーダンスが有利に低下することが多く、これによりシステム効率および/または性能が向上する。
図27は、複数のスイッチング回路を一体化して単一の集積回路チップとする一例を示す。詳細には、図27に示す1つの集積回路チップ2700(例えば、フリップチップ集積回路)は、3つのスイッチング回路2702を含む。これら3つのスイッチング回路2702はそれぞれ、スイッチング回路504(図5)の実施形態であり、図27中、破線によって示す。集積回路チップ2700が3つのスイッチング回路回路2702を含む様子を図示しているが、チップ2700は、1よりも多くの任意の数のスイッチング回路2702を含んでよい。さらに、その他のスイッチング回路のうち1つ以上(例えば、図6のスイッチング回路604)を同様に一体化して、単一の集積チップとすることも可能であることが理解されるべきである。
各スイッチング回路2702は、各電源(例えば、光起電装置)への接続のための第1の入力端子2704および第2の入力端子2706を含む。(第1のスイッチングデバイス532に類似する)第1のスイッチングデバイス2708は、第1の入力端子2704と中間スイッチングノード2710との間に電気的に接続され、(第2のスイッチングデバイス534に類似する)第2のスイッチングデバイス2712は、中間スイッチングノード2710と第2の入力端子2706との間に電気的に接続される。図27の実施形態において、第1のスイッチングデバイス2708はN型MOSFETであり、各第2のスイッチングデバイス2712はP型MOSFETである。別の実施形態において、第1のスイッチングデバイス2708および第2のスイッチングデバイス2712一部または全体は、N型LDMOSデバイスまたは他の種類のトランジスタである。各スイッチング回路2702は、(ドライバ回路812に類似する)ドライバ回路2714をさらに含む。ドライバ回路2714は、第1のスイッチングデバイス2708および第2のスイッチングデバイス2712を駆動する。連続スイッチング回路2702は、1つのスイッチング回路2702の正の入力ノード2716と、次のスイッチング回路2702の中間スイッチングノード2710との間の接続により、電気的に接続される。接続は、例えば、チップ金属中において全体的に行ってもよいし、またはチップの比較的導電性の再分配層内において行ってもよく、これにより外部相互接続が低減する。例えば、いくつかの実施形態において、1つ以上の接続は、半導体基板上に形成されたアンダーバンプ金属被覆(UBM)スタックとして少なくとも部分的に実行される。UBMスタックおよび関連方法のいくつかの例について、米国特許第7,989,953号(Jergovicらに付与)に開示がある。本明細書中、同文献を参考のため援用する。別の例として、接続は、半田ボールおよび高導電率導体の下側インターポーザー(例えば、基板またはリードフレーム)を通じて行われ、これにより全体的抵抗が低下する。第1の出力端子2718および第2の出力端子2720はそれぞれ、下スイッチング回路2702の中間スイッチングノード2710と、上スイッチング回路2702の正の入力ノード2716との間に電気的に接続される。
(制御信号生成器808に類似する)制御信号生成器2722はまた、集積回路チップ2700内において任意選択的に一体化される。制御信号生成器2722を下スイッチング回路2702(3)の一部として図示しているが、制御信号生成器2722を異なるスイッチング回路2702の一部としてもよいし、複数のスイッチング回路2702上に分散させてもよいし、各スイッチング回路2702と別個にしてもよい。制御信号生成器2722は、各第1のスイッチングデバイス2708のデューティサイクルを変更することにより、各スイッチング回路2702のスイッチングノード電圧Vy27の平均値を最大化させる。
図28は、単一の集積回路チップ内に一体化された、複数のスイッチング回路の別の例を示す。詳細には、図28に示す集積回路チップ2800は、2つのスイッチング回路2802を含む。2つのスイッチング回路2802はそれぞれ、図19のスイッチング回路1904の実施形態である。スイッチング回路2802を図28中の破線によって示す。別の実施形態において、集積回路チップ2800は、3つ以上のスイッチング回路2802を含む。
各スイッチング回路2802は、第1の入力端子2804および第2の入力端子2806を含む。第1の端子2804は、各電源の負の端子への電気的接続のためのものであり、第2の入力端子2806は、各電源の正の端子へのインダクタを通じた電気的接続のためのものである。集積回路チップ2800は、第1の出力端子2808および第2の出力端子2810をさらに含む。第1の出力端子2808および第2の出力端子2810は、負荷への電気的接続のためのものである。各スイッチング回路2802は、第1の入力端子2804および第2の入力端子2806との間に電気的に接続された(図19の第1のスイッチングデバイス1932に類似する)第1のスイッチングデバイス2812と、第2の入力端子2806と第2の出力端子2810との間に電気的に接続された(図19の第2のスイッチングデバイス1934に類似する)第2のスイッチングデバイス2814をさらに含む。図28の実施形態において、第1のスイッチングデバイス2812はN型MOSFETであり、第2のスイッチングデバイス2814はP型MOSFETである。別の実施形態において、第1のスイッチングデバイス2812および第2のスイッチングデバイス2814はそれぞれ、N型LDMOSトランジスタまたは他の種類のトランジスタである。各スイッチング回路2802のドライバ回路2816は、スイッチング回路の第1のスイッチングデバイス2812および第2のスイッチングデバイス2814を制御する。
制御信号生成器2818はまた、集積回路チップ2800内に任意選択的に一体化される。制御信号生成器2818を下スイッチング回路2802(2)の一部として図示しているが、制御信号生成器2818は、異なるスイッチング回路2802の一部としてもよいし、複数のスイッチング回路2802上に広がっていてもよいし、各スイッチング回路2802と別個にしてもよい。制御信号生成器2818は、各第1のスイッチングデバイス2812のデューティサイクルを変更することにより、各スイッチング回路2802の出力電流Io28のDC成分を最大化させる。
図29は、共通集積回路として一体化された複数のスイッチング回路のさらに別の例を示す。詳細には、図29に示す集積回路チップ2900は、破線によって示される2つのスイッチング回路2902を含む。集積回路チップ2900を改変することにより、さらなるスイッチング回路2902を含ませることができる。集積回路チップ2900は、スイッチ2904および2906をさらに含む。スイッチ2904および2906は、スイッチング回路2902を直列または並列に電気的に接続するためのものである。例えば、スイッチ2904が(図29に示す)A位置にありかつスイッチ2906が開である場合、スイッチング回路2902の出力が電気的に直列接続される。逆に、スイッチ2904がB位置にありかつスイッチ2906が閉である場合、スイッチング回路2902の出力は、電気的に並列接続される。スイッチング回路2902の相互接続は、例えばスイッチング回路の出力電圧組み合わせを必要に応じて最適化するために、直列と並列との間で変化させることができる。集積回路チップ2900を直列と並列との間で変化させることが可能であるため、相互接続により、チップ2900の特定の実施形態を並列用途および直列用途において相互交換可能に用いる利用することも可能になる。
各スイッチング回路2902は、各電源(例えば、光起電装置)への接続のための各第1の入力端子2908および第2の入力端子2910を含む。(第1のスイッチングデバイス532に類似する)第1のスイッチングデバイス2912は、第1の入力端子2908と中間スイッチングノード2914との間に電気的に接続され、(第2のスイッチングデバイス534に類似する)第2のスイッチングデバイス2916は、中間スイッチングノード2914と第2の入力端子2910との間に電気的に接続される。図29の実施形態において、第1のスイッチングデバイス2912はN型MOSFETであり、各第2のスイッチングデバイス2916はP型MOSFETである。別の実施形態において、第1のスイッチングデバイス2912および第2のスイッチングデバイス2916はそれぞれ、N型LDMOSトランジスタまたは他の種類のトランジスタである。各スイッチング回路2902は、ドライバ回路2918をさらに含む。ドライバ回路2918は、第1のスイッチングデバイス2912および第2のスイッチングデバイス2916を駆動する。第1の出力端子2920および第2の出力端子2922はそれぞれ、下スイッチング回路2902の中間スイッチングノード2914と、上スイッチング回路2902の正の入力ノード2924との間に電気的に接続される。
(制御信号生成器808に類似する)制御信号生成器2926はまた、集積回路チップ2900内に任意選択的に一体化される。制御信号生成器2926をスイッチング回路2902と別個のものとして図示しているが、制御信号生成器2926を1つ以上のスイッチング回路2902の一部としてもよい。制御信号生成器2926は、各第1のスイッチングデバイス2912のデューティサイクルを変更することにより、各スイッチング回路2902の出力電力を最大化させる。
上述したように、本明細書中開示されるスイッチング回路において、スイッチングデバイスのデューティサイクルを変更することにより、スイッチング回路出力電力を最大化させる。よって、デューティサイクルの予測範囲はいくつかの用途において既知であるが、回路動作時においてデューティサイクルは変動するため、所与のスイッチング回路は一般的には、特定の値のデューティサイクルに合わせて最適化することができない。そのため、本明細書中開示されるスイッチング回路の特定の実施形態は、1つ以上のスイッチングデバイスを含む。1つ以上のスイッチングデバイスは、動的にサイズ決めされる電界効果トランジスタ(FET)である。このような動的にサイズ決めされるFETはそれぞれ、複数の個々に制御可能な要素であり、電気的に並列接続された構成FETの形態をとり、このような活性の構成FETの数は、FETを動的にサイズ決めするように変更することが可能である。FETの特性は、そのサイズ(すなわち、活性である構成FETの数)を変更することにより、変更することが可能である。例えば、FETサイズを増加させることにより(すなわち、活性である構成FETの数を増加することにより)、FETチャネル抵抗全体を低減することが可能である。しかし、活性である構成FETが多くなるほど、ゲートキャパシタンスおよび関連付けられたスイッチング損失も増大する(各構成FETは、共通ドライバによって駆動されると仮定する)。各デューティサイクルについて、抵抗関連損失およびゲートキャパシタンス関連損失の合計を最小化させる最適FETサイズが存在することが多い。
動的にサイズ決めされるFETを含む実施形態において、例えばFETデューティサイクルの関数としてFETサイズを調節する。例えば、デューティサイクルが大きい場合、FETサイズを大きくすることによりチャネル抵抗を低減する。なぜならば、チャネル抵抗は一般的には、デューティサイクルが大きい場合の有意な損失源となるからである。逆に、デューティサイクルが小さい場合、このような実施形態において、FETサイズを低減することにより、FETゲートキャパシタンスおよび関連付けられたスイッチング損失を低減することができる。なぜならば、スイッチング損失は、低デューティサイクルにおける損失よりもより有意になることが多いからである。いくつかの実施形態において、他のスイッチング回路動作特性(例えば、動的にサイズ決めされるFETまたはスイッチング回路出力電力によって取り扱われる電流の大きさ)に少なくとも部分的に基づいて、FETサイズを調節することが理解される。
図30に示す1つの動的にサイズ決めされるFET3000は、動的にサイズ決めされるFETの1つの例であり、本明細書中開示されるスイッチング回路において利用することができる。例えば、動的にサイズ決めされるFET3000を、スイッチング回路404および1804それぞれ(図4および図18)の第1のスイッチングデバイス418または1814として用いることができる。動的にサイズ決めされるFET3000は、N個の個々に制御可能な要素または構成FET3002を含む。個々に制御可能な要素または構成FET3002は、端子3004と端子3006との間に並列接続される。Nは、1よりも大きい整数である。構成FET3002は、図30の実施形態においてN型MOSFETである。なぜならば、このようなMOSFETのチャネル抵抗は比較的低いからである。しかし、構成FET3002は、他の形態(例えば、P型MOSFET)も取り得る。
各構成FET3002のゲートは、各ドライバ3008によって駆動される。各ドライバ3008は、入力としてのPWM信号3010と、動的FETサイズ決め復号器3014からの活性化信号3012とを受信する。動的FETサイズ決め復号器3014は、複数のFETを決定して、PWM信号3010からの動的にサイズ決めされるFET3000のデューティサイクルに基づいて起動する。一実施形態において、FETサイズ決め復号器3014によって活性化された複数の構成FET3002は、デューティサイクルに線形比例する。別の実施形態において、動的FETサイズ決め復号器3014は、区分的線形伝達関数に従って、構成FET3002を活性化させる。例えば、デューティサイクルが第1の値範囲内である場合、第1の数の構成FET3002を活性化させる。デューティサイクルが第2の値範囲内である場合、第2の数の構成FET3002を活性化させる。
既述したように、本明細書中開示されるスイッチング回路の1つの用途は、光起電装置のためのMPPTを提供することだえる。このようなスイッチング回路の特定の実施形態は、1つ以上の光起電装置を備えた共通パッケージ内に収容され得る。本文書の文脈中において、「共通パッケージ中に収容される」とは、1つ以上のスイッチング回路および1つ以上の光起電装置が共通アセンブリ(例えば、光起電モジュールまたは光起電パネル)の一部となっていることを意味する。このように光起電装置およびMPPT回路を1つにまとめて収容することにより、以下のような恩恵が得られる:(1)光起電システムの部品数が低減するため、より簡潔なシステム取付およびより低いシステム据え付けコストが可能になる、(2)MPPT回路が各光起電装置に密接して設けられるため、システムサイズの低減および/または(3)システム性能が向上する。
例えば、図31に示す1つの光起電システム3100は、太陽電池セル3102と、共通基板3106上に取り付けられた集積回路チップ3104とを含む。基板3106は、例えば、プリント基板、セラミック基板、またはポリイミド基板である。集積回路チップ3104は、太陽電池セル3102へ電気的に接続され、スイッチング回路(例えば、本明細書中開示されるスイッチング回路)のうち1つ以上を含み、これにより太陽電池セル3102のためのMPPTを提供する。集積回路チップ3104は、例えば、集積回路チップ2500(図25)の実施形態であり、図31に示すようなフリップチップ集積回路であり得る。しかし、集積回路チップ3104は、他のパッケージ構成も持ち得る。例えば、特定の別の実施形態において、集積回路チップ3104は、システム3100の1つ以上のコンポーネント(例えば、太陽電池セル3102)へとワイヤーボンディングされる。特定の実施形態において、集積回路チップ3104は、複数のスイッチング回路を含む。複数のスイッチング回路は、基板3106上の複数の個々の太陽電池セル3102のためのMPPTまたは(太陽電池セル3102が多接合デバイスである場合の)太陽電池セル3102の複数の接合部を提供する。このような実施形態において、集積回路チップ3104は、例えば集積回路チップ2700、2800、または2900(図27〜図29)のうちの1つである。
太陽電池セル3102の出力端子に電気的に並列接続された入力コンデンサ3112は、システム3100内に任意選択的に設けられる。いくつかの実施形態は、出力インダクタおよび1つ以上の出力コンデンサも含み得る。このようなコンデンサが存在する場合、コンデンサは典型的には、基板3106上に配置される。光起電システム3100の多くの実施形態は、相互接続インダクタンスまたはシステム3100の外部の別個のインダクタをエネルギー貯蔵インダクタンスとして用いることが理解される。しかし、必要な場合、別個のエネルギー貯蔵インダクタを基板3106上に配置してもよい。いくつかの実施形態は、入射光3110を太陽電池セル3102上に集光するための光学素子3108をさらに含む。特定の実施形態において、システム3100の一部または全体を不動態化材料(例えば、エポキシまたは他の埋め込み用材料)中に埋設することにより、システムを環境的要素(例えば、水分)から保護する。
図32は、光起電システムの別の例を示す。光起電システムは、共通アセンブリ内の光起電装置およびスイッチング回路を含む。光起電システム3200は、光起電装置3202と、集積回路チップ3204とを含む。集積回路チップ3204は、太陽電池セル3202の後面3206上に取り付けられる。後面3206は、前面3208の反対側に設けられる。前面3208は、入射光3210受容する。集積回路チップ3204は、光起電装置3202へと電気的に接続され、1つ以上のスイッチング回路(例えば、本明細書中開示されるスイッチング回路)を含み、これにより光起電装置3202のためのMPPTを提供する。集積回路チップ3204は、図32に示すようなフリップチップ集積回路であり得る。しかし、集積回路チップ3204は、他のパッケージ構成も持ち得る。例えば、いくつかの別の実施形態において、集積回路チップ3204は、光起電装置3202および/または任意選択入力コンデンサ3212へとワイヤーボンディングされる。光起電装置3202は、例えば単一の結晶シリコン太陽電池セルまたは結晶シリコン太陽電池セルのグループである。いくつかの実施形態において、集積回路チップ3204は、光起電装置3202の各太陽電池セルのための個々のMPPTを提供するための複数のスイッチング回路を含む。図31のアセンブリ3100と同様に、入力コンデンサ3212、出力コンデンサ(図示せず)および/またはエネルギー貯蔵インダクタ(図示せず)は、後面3206上に任意選択的に取り付けられる。
図33に示す別の光起電システムは、共通アセンブリ内の光起電装置およびスイッチング回路を含む。詳細には、システム3300は、光起電装置3302と、集積回路チップ3304と、任意選択入力コンデンサ3308とを含む。任意選択入力コンデンサ3308は、共通リードフレーム3306上に取り付けられる。集積回路チップ3304は、光起電装置3302へと電気的に接続され、光起電装置3302のためのMPPTを提供するためのスイッチング回路(例えば、本明細書中開示されるスイッチング回路)のうち1つ以上を含む。集積回路チップ3304は、図33に示すようフリップチップ集積回路であり得る。しかし、集積回路チップ3304は、他のパッケージ構成を持ち得る。例えば、図61に示す光起電システム6100は、図33のシステム3300に類似しているが、集積回路6102を含む。集積回路6102は、ワイヤーボンディング6106を介してリードフレーム6104へと電気的に接続される。集積回路6102は、光起電装置3302のためのMPPTを提供するためのスイッチング回路(例えば、本明細書中開示されるもの)のうち1つ以上を含む。いくつかの実施形態において、ワイヤーボンディング6106のうち少なくともいくつかが、集積回路6102を光起電装置3302へと直接的に接続させる。特定の別の実施形態において、集積回路6102は、テープによる自動ボンディングプロセスにより、リード6104へ電気的に接続される。いくつかの他の実施形態において、リードフレーム6104の代わりに基板(例えば、セラミックまたはポリイミド基板)が用いられる。
図62に示す光起電システム6200は、基板6202と、基板6202上に取り付けられた光起電装置6204と、基板6202へと電気的に接続されたドーターカード6206とを含む。いくつかの実施形態において、ドーターカード6206は、例えばはんだ接合および/またはスルーホールピンにより、図62に示すように基板6202へと機械的に取り付けられる。あるいは、ドーターカード6206は、基板6202に隣接して配置され、ワイヤまたは他の導体により基板6202および/または光起電装置6204へと電気的に接続される。ドーターカード6206は、集積回路チップ6208を含む。集積回路チップ6208は、光起電装置6204のためのMPPTを提供するための1つ以上のスイッチング回路(例えば、本明細書中開示されるスイッチング回路)を含む。集積回路チップ6208がフリップチップパッケージを有する様子が図示されているが、チップ6208は、他のパッケージ種類も持ち得る。ドーターカード6206は、入力コンデンサ6210を任意選択的に含む。入力コンデンサ6210は、光起電装置6204の出力端子と電気的に並列接続される。ドーターカード6206が基板6202から分離された実施形態において、任意選択入力コンデンサ6210は典型的には、ドーターカード6206上において集積回路チップ6208と同じ側に設けられる。
図34に示す電力システム3400は、N個の光起電パネル3402を含む。Nは、1以上の整数である。光起電パネル3402の出力は、負荷3404(例えば、インバータ)へと電気的に直列接続されて、閉回路を形成する(本明細書中以下出力回路3406と呼ぶ)。明示を明確にするために、1つの光起電パネル3402(1)のみの詳細を図34中に図示している。
各光起電パネル3402は、M個の光起電装置3408を含む。Mは、1よりも大きい整数であり、個々の光起電パネル3402間において異なり得る。いくつかの実施形態において、各光起電装置3408は、パネル3402の光起電サブモジュールである。各サブモジュールは、電気的に直列接続されかつ/または電気的に並列接続された複数の太陽電池セルを含む。各サブモジュールは、例えば、パネル3402内において直列接続された太陽電池セルからなる1つ以上の行または列を含む。いくつかの他の実施形態において、光起電装置3408は、異なる形態をとり得る(例えば、単一の太陽電池セルまたは多接合太陽電池セル)。各スイッチング回路3410は、各光起電装置3408へと電気的に接続されて、MPPTを提供する。スイッチング回路3410は、例えば、スイッチング回路404(図4)の実施形態であり、その出力ポートは、電気的に直列接続される。しかし、システム3400は、スイッチング回路404の実施形態の利用に限定されず、システム3400を改変して他の種類のスイッチング回路(例えば、MPPT能力を備えるかまたは備えない従来のバック変換器)を利用することも可能である。
スイッチング回路3410は、主に出力回路3406中のインダクタンス3412を自身のエネルギー貯蔵インダクタンスとして用いる。インダクタンス3412を模式的に単一のインダクタとして図示しているが、インダクタンス3412は、出力回路3406を形成するためにコンポーネントを接続している配線または他の導体からの複数の別個のインダクタおよび/または相互接続インダクタンスを含み得る。しかし、1つ以上のパネル3402は、パネル中のさらなるインダクタンス3416を任意選択的に含み得、これによりスイッチング回路3410の性能が向上する(例えば、インダクタンス3412が最適レベルを下回る場合)。さらに、例えばインダクタンス3416は、図34中に示すようにパネル内の単一の別個のインダクタである。あるいは、さらなるインダクタンス3416は、パネル内の複数の別個のインダクタであり得る(例えば、連続スイッチング回路3410間の接続と直列のもの)。図52に示す電力システム5200は、電力システム3400の実施形態である。スイッチング回路3410は、電力システム5200では相互接続インダクタンス5202を少なくとも自身の一次エネルギー貯蔵インダクタンスとして利用する。
スイッチング回路3410はまた、出力回路キャパシタンス3414を自身の一次出力キャパシタンスとして利用する。しかし、いくつかの実施形態において、1つ以上のパネル3402は、例えばリップル電圧低減のための出力キャパシタンス3418をさらに含む。
光起電装置3408のうち一部または全体の代わりに他の電源(例えば、燃料電池セルまたは電池)を用いるように、システム3400を改変することができる。このような実施形態において、電源およびスイッチング回路3410は、必ずしもパネルの一部でなくてよい。さらに、いくつかの別の実施形態において、スイッチング回路3410および光起電装置3408は、パネルと一体化されない。
図35は、図27の集積回路チップ2700の光起電用途における1つの用途を示す。詳細には、チップ2700の入力ポート3502の第1の入力端子2704および第2の入力端子2706は、多接合太陽電池セル3508の第1の光起電端子3504および第2の光起電端子3506へとそれぞれ電気的に接続される。多接合太陽電池セル3508において、各接合部3510のための端子3504および3506はセルの外に設けられ、これにより、各接合部3510はセル内において電気的に絶縁される。よって、集積回路チップ2700から、各接合部3510のための個々のMPPTが得られる。
特定の別の実施形態において、多接合太陽電池セル3508の代わりに、分割スペクトル光起電装置を用いる。分割スペクトル光起電装置は、2つ以上の別個の光起電装置と、光起電装置のうち少なくともいくつかに対して適切な波長の光を方向付ける光学素子とを含む。各光起電装置は、1つ以上の積層光起電接合部を含む。1つ以上の積層光起電接合部はそれぞれ、特定の波長の光に合わせて最適化される。例えば、図70に示す光起電システム7000は、分割スペクトル光起電装置7002を含む。分割スペクトル光起電装置7002は、集積回路チップ2700へと電気的に接続される。分割スペクトル光起電装置7002は、別個の第1の光起電装置7004、第2の光起電装置7006および第3の光起電装置7008を含む。第1の光起電装置7004、第2の光起電装置7006および第3の光起電装置7008は、集積回路チップ2700の各入力ポートへと電気的に接続される。第1の光起電装置7004は、2つの積層光起電接合部7010および7012と、第2の光起電装置7006および第3の光起電装置7008とを含む。第2の光起電装置7006および第3の光起電装置7008はそれぞれ、単一の各光起電接合部7014および7016を含む。光起電接合部7010、7012、7014および7016はそれぞれ、異なる波長の光に合わせて最適化される。分割スペクトル光起電装置7002内の光学素子(図示せず)により、多様な光起電接合部に対する適切な波長の光の方向付けが支援される。
図55に示す電力システム5500は、多接合太陽電池セルから抽出された電力の最大化を支援するように構成される。システム5500は、N個の多接合太陽電池セル5502を含む。Nは、1よりも大きい整数である。各太陽電池セル5502は、電気的に直列接続された第1の接合部5504、第2の接合部5506および第3の接合部5508と、3つの端子5510、5512および5514とを含む。これら3つの端子5510、5512および5514は、接合部への電気的アクセスのためのものである。端子5510および5514は、3つの接合部全ての直列スタックへの電気的アクセスを提供し、端子5512は、第1の接合部5504と第2の接合部5506との間のノードへの電気的アクセスを提供する。
第1の接合部5504は、いくつかの実施形態においてゲルマニウム製接合部であり、第2の接合部5506および第3の接合部5508よりも高い電流を生成することができる。そのため、3つの接合部全てがさらなる回路無しに単純に直列接続された場合、第1の接合部5504内を流れる電流は、第2の接合部5506および第3の接合部5508の能力によって制限され、下接合部はフル活用されない(すなわち、下接合部は、MPPで動作しない)。しかし、システム5500の回路は、このような問題を部分的または全体的に軽減する。
詳細には、各第1の接合部5504は、各第1のサブ回路または過剰エネルギー抽出器5516へと電気的に接続される。過剰エネルギー抽出器5516は、さらなる回路無しに接合部5504、5506および5508が単に直列動作した場合には得られないさらなるエネルギーを第1の接合部から抽出する。詳細には、各過剰エネルギー抽出器5516は、第1の接合部5504上の電圧V1をブーストしブースト電圧を3つの接合部全ての上の電圧Vcellと並列に適用することにより、自身の各第1の接合部をMPPにおいて動作させる。各第2のサブ回路またはローカルMPPT変換器5518は、各太陽電池セル5502の端子5510および5514上において電気的に接続される。各過剰エネルギー抽出器5516は、各第1の接合部5504から抽出された電力を少なくとも実質的に最大化し、各ローカルMPPT変換器5518は、各太陽電池セル5502の残りの接合部5506および5508から抽出された電力を少なくとも実質的に最大化させる。
各1組の対応する太陽電池セル5502、過剰エネルギー抽出器5516、およびローカルMPPT変換器5518を、素セル5520としてみなすことができる。いくつかの実施形態において、素セル5520の各コンポーネントは、(例えば、図31〜図33のうち1に示す様式と同様の様式で)共通基板上に取り付けられる。さらに、いくつかの実施形態において、過剰エネルギー抽出器5516および対応するローカルMPPT変換器5518は、共通集積回路チップ上に一体化される。
ローカルMPPT変換器5518は、スイッチング回路404(図4)の実施形態であり、その出力ポートは負荷5522と直列接続されて閉回路を形成する(本明細書中以下図55に示すような出力回路5524と呼ぶ)。いくつかの実施形態において、ローカルMPPT変換器5518は、出力回路5524の相互接続インダクタンス5526を図55に示すように自身の一次エネルギー貯蔵インダクタンスとして用いる。代替的にまたは追加的に、ローカルMPPT変換器5518は、1つ以上の別個のインダクタ(図示せず)をエネルギー貯蔵インダクタンスとして用い得る。特定の別の実施形態において、ローカルMPPT変換器は、スイッチング回路1804(図18)の実施形態であり、出力ポートは並列接続される。
図56に示す素セル5600は、図55の素セル5520の実施形態である。素セル5600は、太陽電池セル5502(図55)に類似する3つの接合部太陽電池セル5602と、過剰エネルギー抽出器5604(エネルギー交換器とも呼ぶ)、ローカルMPPT変換器5606とを含む。過剰エネルギー抽出器5604は、昇圧形変換器として動作し、入力ポートは第1の接合部5608上において電気的に接続され、3つの接合部5608、5610および5612全ての直列ストリング上の出力ポートに電気的に接続される。過剰エネルギー抽出器5604は、第1の接合部5608上の電圧V1をブーストして、第1の接合部5608、第2の接合部5610および第3の接合部5612の直列ストリング上の電圧Vcellと同じにする。詳細には、過剰エネルギー抽出器5604は、コントローラ5614と、第1のスイッチングデバイス5616と、インダクタンス5618と、第2のスイッチングデバイス5620と、入力コンデンサ5622と、出力コンデンサ5624とを含む。インダクタンス5618は典型的には1つ以上の低抵抗の別個のインダクタであるが、いくつかの実施形態において、インダクタンス5618は、少なくとも部分的に第1の接合部5608および過剰エネルギー抽出器5604を含む閉回路の相互接続インダクタンスである。第2のスイッチングデバイス5620は、フリーホイーリングデバイスとして機能し、いくつかの実施形態においてダイオードの代わりに用いられるかまたはダイオードに加えて用いられる。
コントローラ5614は、第1のスイッチングデバイス5616のデューティサイクルを制御して、第1の接合部5608から抽出された電力を少なくとも実質的に最大化させる。いくつかの実施形態において、第1のスイッチングデバイス5616はトランジスタによって実行され、図54を参照して説明した回路と同様の回路を用いてトランジスタ上の電圧低下測定することにより、電流5626を感知する。
ローカルMPPT変換器5606は、スイッチング回路504(図5)に類似する。詳細には、ローカルMPPT変換器5606は、コントローラ5628と、第1のスイッチングデバイス5630と、第2のスイッチングデバイス5632とを含む。第2のスイッチングデバイス5632は、任意選択的にダイオードによって代替される。ローカルMPPT変換器5606は、太陽電池セル5602の端子5634および5636上において電気的に並列接続された入力ポートを含む。ローカルMPPT変換器5606は、出力端子5638および5640を含む出力ポートを介して負荷または他の素セルへと電気的に接続される。図5を参照して上述した様式と同様の様式で、コントローラ5628は、第1のスイッチングデバイス5630のデューティサイクルを制御して、出力端子5638および5640上のスイッチングノード電圧Vy56の平均値を少なくとも実質的に最大化させることにより、太陽電池セル5602から抽出された電力を少なくとも実質的に最大化させる。素セル5500のいくつかの実施形態において、コントローラ5614および5628それぞれの代わりに共通コントローラを用いる。共通コントローラは、過剰エネルギー抽出器5604およびローカルMPPT変換器5606双方を制御する。いくつかの実施形態において、スイッチングデバイス5616をスイッチングデバイス5630に対して異相状態で切り換えることにより、リップルを低減する。
図55〜図56を参照して上述した過剰エネルギー抽出器およびローカルMPPT変換器アーキテクチャは、異なる数の接合部を備えた太陽電池セルと共に用いられるように適合させることができる。例えば、4つの接合部を含む太陽電池セルの場合、2つの過剰エネルギー抽出器を用いて、各下側の2つの接合部から抽出された電力を最大化することができ、ローカルMPPT変換器を用いて、残りの2つの上側接合部から抽出された電力を最大化することができる。さらに、2つ以上の過剰エネルギー抽出器が連続接合部のストリングと共に用いられる場合、ストリング内の第1のエネルギー抽出器または最終エネルギー抽出器の利得を1とすることにより、各接合部から抽出された電力を最大化しつつ、第1のエネルギー抽出器または最終エネルギー抽出器を無くすことが可能になるように、エネルギー抽出器電圧利得を構成することが可能である。
図55および図56の電力システムの変更例が可能である。例えば、図63に示す素セル6300は、素セル5600(図56)に類似している。しかし、素セル6300において、下側光起電接合部から抽出されたさらなるエネルギーが(MPPT変換器入力へではなく)素セル出力へと転送される。素セル6300は、3つの接合部太陽電池セル6302を含む。3つの接合部太陽電池セル6302は、太陽電池セル5502(図55)に類似し、第1の直列接続光起電接合部6304、第2の直列接続光起電接合部6306および第3の直列接続光起電接合部6308を含む。素セル6300は、バック型MPPT変換器6310をさらに含む。バック型MPPT変換器6310は、入力ポート6312および出力ポート6314を有する。いくつかの実施形態において、バック型MPPT変換器6310は、別個のエネルギー貯蔵インダクタを含むスイッチング回路504(図5)またはスイッチング回路604(図6)の実施形態である。入力ポート6312は、3つの光起電接合部6304、6306および6308全ての直列組み合わせ上において電気的に接続され、出力ポート6314は、素セル6300上において出力端子6316および6318へと電気的に接続される。出力端子6316および6318は、例えば、他の個々の素セル6300および負荷へ電気的に直列接続される。
素セル6300は、昇圧形MPPT変換器6320をさらに含む。昇圧形MPPT変換器6320は、入力ポート6322および出力ポート6324を含む。入力ポート6322は、第1の光起電接合部6304上において電気的に接続され、出力ポート6324は、バック型MPPT変換器6310と並列に出力ポート6314と電気的に接続される。MPPT変換器6310および6320はそれぞれ、各入力ポート上において電気的に接続された光起電接合部から抽出された電力を少なくとも実質的に最大化させるように動作可能であり、これにより、(1)2つの上側光起電接合部6306および6308の直列組み合わせならびに(2)下側光起電接合部6304それぞれのための有効MPPTを提供する。いくつかの実施形態において、バック型MPPT変換器6310および昇圧形MPPT変換器6320はそれぞれ、相互に異相状態で切り替わり、これによりリップルを最小化する。変換器6310および6320は、1つ以上の共通コンポーネント(例えば、共通コントローラ)を任意選択的に共有し、一体化して単一の集積回路チップとすることができる。
昇圧形MPPT変換器6320は典型的には、昇圧形変換器5604(図56)よりもより低い電圧変換比で動作するため、昇圧形MPPT変換器6320は、昇圧形変換器5604よりもより高い効率およびより低いコンポーネント電圧ストレスを有すると予測される(ただし、その他が等しいと仮定した場合)。しかし、素セル6300のアーキテクチャを得るためには、バック型MPPT変換器6310にローカルエネルギー貯蔵インダクタ(図示せず)を設ける必要がある。
図64に示す別の素セル6400は、直列接続された第1の光起電接合部6404、第2の光起電接合部6406および第3の光起電接合部6408を含む多接合太陽電池セル6402のためのMPPTを提供する。素セル6400は、バックブースト型MPPT変換器6410を提供する。バックブースト型MPPT変換器6410は、入力ポート6412および出力ポート6414を含む。入力ポート6412は、第1の光起電接合部6404上において電気的に接続され、出力ポート6414は、第2の光起電接合部6406および第3の光起電接合部6408の直列組み合わせ上において電気的に接続される。
素セル6400は、バック型MPPT変換器6416をさらに含む。バック型MPPT変換器6416は、入力ポート6418および出力ポート6420を含む。入力ポート6418は、第2の光起電接合部6406および第3の光起電接合部6408上において電気的に接続され、出力ポート6420は、素セル出力端子6422および6424上において電気的に接続される。いくつかの実施形態において、出力端子6422および6424は、他の個々の素セル6400および負荷と電気的に直列接続される。バック型MPPT変換器6416は、例えば、スイッチング回路504(図5)またはスイッチング回路604(図6)の実施形態である。バック型MPPT変換器6416を模式的に別個のデバイスとして図示しているが、変換器6416の特定の実施形態において、出力ポート6420を自身の一次エネルギー貯蔵インダクタンスとして含む出力回路の相互接続インダクタンスが用いられる。
バックブースト型MPPT変換器6410およびバック型MPPT変換器6416はそれぞれ、各入力ポート上において電気的に接続された光起電接合部から抽出された電力量を少なくとも実質的に最大化させるように動作可能であり、これにより、(1)2つの上側光起電接合部6406および6408の直列組み合わせと、(2)下側光起電接合部6404とのための有効MPPTが得られる。変換器6410および6416は、任意選択的に相互に異相状態で切り換えられ、これによりリップルを低減する。変換器6410および6416は、任意選択的に1つ以上の共通コンポーネント(例えば、共通コントローラ)を共有する。変換器6410および6416は、いくつかの実施形態において共通集積回路チップの一部である。
素セル5600および6300(図56および図63)と比較したときの素セル6400の可能な利点として、バック型MPPT変換器6416への入力電圧が、図56および図63の類似の変換器への入力電圧よりも低いことが多い点がある。このような比較的低い入力電圧により、効率的な変換器6416の動作が促進され、また、定格電圧が比較的低いコンポーネントの利用が可能になる。フリップ側においては、バック型MPPT変換器6416内への入力電流は典型的には、変換器6416の入力電圧が比較的低いため、図56および図63の類似の変換器への入力電流よりも高いことが多い。
図65に示す素セル6500は、多接合太陽電池セル6506のためのMPPTを提供する2つのバック型MPPT変換器6502および6504を含む。太陽電池セル6506は、電気的に直列接続された3つの光起電接合部6508、6510および6512を含む。バック型MPPT変換器6502の入力ポート6514は、第1の光起電接合部6508上において電気的に接続され、バック型MPPT変換器6504の入力ポート6516は、第2の光起電接合部6510および第3の光起電接合部6512双方の上において電気的に接続される。バック型MPPT変換器6502および6504の出力ポート6518および6520は、素セル6500の出力端子6522および6524と電気的に直列接続される。出力端子6522および6524は、例えば、さらなる個々の素セル6500および負荷と電気的に直列接続される。
MPPT変換器6502および6504はそれぞれ、各入力ポート上において電気的に接続された光起電接合部から抽出された電力量を少なくとも実質的に最大化させるように動作可能であり、これにより、(1)2つの上側光起電接合部6510および6512の直列組み合わせならびに(2)下側光起電接合部6508それぞれのための有効MPPTが得られる。バック型MPPT変換器6502および6504それぞれを模式的に別個の変換器として図示しているが、いくつかの実施形態において、変換器6502および6504はそれぞれ、出力ポート6518および6520をエネルギー貯蔵インダクタンスとして含む閉回路の相互接続インダクタンスを用いる。変換器6502および6504はそれぞれ、例えば、相互接続インダクタンスをエネルギー貯蔵インダクタンスとして用いるスイッチング回路504(図5)またはスイッチング回路604(図6)の実施形態である。変換器6502および6504は、任意選択的に相互に異相状態で切り換えられ、これによりリップルを低減する。変換器6502および6504は、1つ以上の共通コンポーネント(例えば、共通コントローラ)を共有し得る。いくつかの実施形態において、変換器6502および6504は、共通集積回路チップの一部である。
典型的な実施形態において、第1の光起電接合部6508内を通過する電流の大きさは典型的には、2つの上側光起電接合部6510および6512内を通過する電流の大きさよりも有意に大きい。しかし、出力ポート6518および6520は電気的に直列接続されているため、バック型MPPT変換器6502および6504はそれぞれ、同じ出力電流大きさを持つ必要がある。出力電流大きさは典型的には、第1の接合部6508内を流れる電流の関数である。なぜならば、接合部6508において生成される電流の大きさは比較的大きいからである。その結果、変換器6504の出力ポート6520を流れる電流は典型的には最適値よりも高くなることが多く、これにより変換器6504は50パーセントを下回るデューティサイクルで動作し、変換器の効率が低下する。
素セル6500の別の実施形態は、単一のバック型MPPT変換器のみを含む。例えば、図66に示す素セル6600は、素セル6500(図65)と類似するが、バック型MPPT変換器6502は省略されている。残りのバック型MPPT変換器6504は、第1の光起電接合部6508内を流れる電流と整合する。上述したように、バック型MPPT変換器6504を模式的に別個のデバイスとして図示しているが、変換器6504は、いくつかの実施形態において、相互接続インダクタンスを一次エネルギー貯蔵インダクタンスとして用いる。素セル6600の場合、素セル6500よりも低コストかつより簡単である点において有利である。しかし、素セル6600は、素セル6500と同程度の機能を達成しない場合がある。なぜならば、第1の光起電接合部6508は、素セル内を通過する電流の大きさを制限し得るからである。
図67に示す素セル6700は、素セル6500(図65)に類似するが、下側バック型MPPT変換器の代わりに昇圧形MPPT変換器が用いられている。詳細には、素セル6700は、多接合太陽電池セル6702を含む。多接合太陽電池セル6702は、電気的に直列接続された第1の光起電接合部6704、第2の光起電接合部6706および第3の光起電接合部6708を含む。素セル6700は、昇圧形MPPT変換器6710を含む。昇圧形MPPT変換器6710の入力ポート6712は、第1の光起電接合部6704上において電気的に接続され、バック型MPPT変換器6714の入力ポート6716は、第2の光起電接合部6706および第3の光起電接合部6708上において電気的に接続される。昇圧形変換器6710の出力ポート6718およびバック型変換器6714の出力ポート6720は、素セル出力端子6722および6724と電気的に直列接続される。素セル6700のトポロジーを得るためには、バック型MPPT変換器6714に別個のエネルギー貯蔵インダクタ(図示せず)を設ける必要がある。バック型MPPT変換器6714は、例えば、別個のエネルギー貯蔵インダクタを含むスイッチング回路604(図6)の実施形態である。いくつかの実施形態において、出力端子6722および6724は、さらなる個々の素セル6700および負荷と電気的に直列接続される。MPPT変換器6714および6710はそれぞれ、各入力ポート上において電気的に接続された光起電接合部から抽出された電力量を少なくとも実質的に最大化するように動作可能であり、これにより、(1)2つの上側光起電接合部6706および6708の直列組み合わせならびに(2)下側光起電接合部6704それぞれのための有効MPPTが得られる。変換器6710および6714は、任意選択的に相互に異相状態で切り換えられ、これによりリップルを低減し、変換器6710および6714は任意選択的に1つ以上のコンポーネント(例えば、共通コントローラ)を共有する。変換器6710および6714は、いくつかの実施形態において、共通集積回路チップの一部である。
図68に示す素セル6800は、2つの積層MPPTDC/DC変換器を含む。素セル6800は、多接合太陽電池セル6802を含む。多接合太陽電池セル6802は、第1の光起電接合部6804、第2の光起電接合部6806および第3の電気的に接続された光起電接合部6808を含む。バックブースト型MPPT変換器6810は、入力ポート6812を有する。入力ポート6812は、第1の光起電接合部6804上において電気的に接続される。バックブースト型MPPT変換器の出力ポート6814は、ノード6816と、バック型MPPT変換器6820の入力ポート6818との間において電気的に接続される。ノード6816において、第1の接合部6804および第2の接合部6806は電気的に接続される。入力ポート6818の他端は、光起電接合部6804、6806および6808の直列スタックの上側ノード6822へと電気的に接続される。そのため、入力ポート6818は、第2の光起電接合部6806および第3の光起電接合部6808の直列組み合わせならびにバックブーストされた第1の光起電接合部6804上において電気的に接続される。バック型MPPT変換器6820は、出力ポート6824を含む。出力ポート6824は、素セル出力端子6826および6828上において電気的に接続される。出力端子6828も、上側ノード6822へと電気的に接続される。いくつかの実施形態において、出力端子6826および6828は、さらなる個々の素セル6800および負荷と電気的に直列接続される。バック型MPPT変換器6820を模式的に別個の変換器として図示しているが、いくつかの実施形態において、変換器は、出力ポート6824を一次エネルギー貯蔵インダクタンスとして含む閉回路の相互接続インダクタンスを用いる。いくつかの実施形態において、バック型MPPT変換器6820は、相互接続インダクタンスをエネルギー貯蔵インダクタンスとして用いるスイッチング回路504(図5)の実施形態である。
バックブースト型MPPT変換器6810は、第1の光起電接合部6804から抽出された電力を少なくとも実質的に最大化し、バック型MPPT変換器6820は、2つの上側光起電接合部6806および6808ならびにバックブーストされた第1の光起電接合部6804から抽出された電力を少なくとも実質的に最大化する。そのため、変換器6810および6820は協働して、(1)2つの上側光起電接合部6806および6808の直列組み合わせならびに(2)下側光起電接合部6804それぞれに対し、MPPTを有効に提供する。素セル5600、6300、6400およびおよび6500(図56および図63〜図65)と比較したときの素セル6800の可能な利点として、出力端子6826および6828上の電圧が典型的にはその他の素セルの出力電圧よりも高いため、システム電流全体が低減可能である点がある。変換器6810および6820は任意選択的に相互に異相状態で切り換えられ、変換器6810および6820は、任意選択的に1つ以上のコンポーネント(例えば、共通コントローラ)を共有する。いくつかの実施形態において、変換器6810および6820は、共通集積回路チップの一部である。
図69に示す素セル6900は、2つのバックブースト型変換器6902および6904を含む。2つのバックブースト型変換器6902および6904の出力ポート6906および6908は、素セル出力端子6910および6912と電気的に直列接続される。バックブースト型MPPT変換器6902の入力ポート6914は、第1の光起電接合部6916上において電気的に接続され、バックブースト型MPPT変換器6904の入力ポート6918は、第2の光起電接合部6920および第3の光起電接合部6922双方上において電気的に接続される。第1の光起電接合部6916、第2の光起電接合部6920および第3の光起電接合部6922は、電気的に直列接続され、共通多接合太陽電池セル6924の一部である。
バックブースト型MPPT変換器6902は、第1の光起電接合部6916から抽出された電力を少なくとも実質的に最大化するように動作可能であり、バックブースト型MPPT変換器6904は、第2の光起電接合部6920および第3の光起電接合部6922の直列組み合わせから抽出された電力を少なくとも実質的に最大化するように動作可能である。特定の実施形態において、バックブースト型MPPT変換器6902および6904は、素セル出力端子6910および6912上の一定電圧を協働して維持しつつ、MPPTを行うように動作することが可能である。そのため、素セル6900の直列接続ストリング上の電圧をさらなる回路無しに制御することが可能になる。このような制御は、複数のこのような直列ストリングを電気的に並列接続すべきである場合において特に有利である。
必要ではないが、多くの実施形態において、バックブースト型変換器6902および6904はそれぞれ相互に異相状態で切り換えられ、これによりリップルが最小化されかつ/またはバックブースト型変換器6902および6904は少なくともいくつかの共通コンポーネントを共有することが理解される。さらに、いくつかの実施形態において、変換器6902および6904は、共通集積回路チップの一部である。
図63〜図69を参照して上述したシステムは、異なる数の接合部を有する太陽電池セルと共に利用可能なように適合させることができる。例えば、素セル6900(図69)を改変して4つの接合部太陽電池セルを取り入れることができ、ここで、入力ポート6914および6916はそれぞれ、各一対の直列接続された光起電接合部上において電気的に接続される。
図55、図56および図63〜図69を参照して上述したシステムは、分割スペクトル光起電装置と共に利用可能なように適合させることができる。分割スペクトル光起電装置は、2つ以上の別個の光起電装置と、適切な波長の光を別個の光起電装置へと方向付けるための光学素子とを含む。例えば、電力システム5500(図55)の別の実施形態において、多接合太陽電池セル5502の代わりに、別個の第1の光起電装置および第2の光起電装置、ならびに、適切な波長の光を第1の光起電装置および第2の光起電装置へと方向付ける光学素子を用いる。この別の実施形態において、第1の別個の光起電装置は、多接合太陽電池セル5502の第2の接合部5506および第3の接合部5508に類似する2つの接合部を含み、第2の別個の光起電装置は、セル5502の第1の接合部5504に類似する単一の接合部を含む。
既述したように、本明細書中記載されるスイッチング回路のいくつかの実施形態は、回路へと電気的に接続された各電源(例えば、光起電装置)から電力供給を受けるように構成される。例えば、図36に示す電力システム3600は、N個の電源3602を含む。Nは、1よりも大きい整数である。電源3602は、例えば光起電装置(例えば、光起電アレイ、個々の太陽電池セル、または多接合太陽電池セルの個々の接合部)である。各電源3602は、各スイッチング回路3604へと電気的に接続される。各スイッチング回路3604は、電源3602から抽出された電力量を少なくとも実質的に最大化させるように構成される。各スイッチング回路3604は、通常の動作状態において各電源3602から電力供給を受ける。例示を明確にするため、1つのスイッチング回路3604(1)のみの詳細を図示している。
スイッチング回路3604は、スイッチング回路504(図5)に類似する。詳細には、各スイッチング回路3604は、入力ポート3606と、出力ポート3608と、第1のスイッチングデバイス3610と、第2のスイッチングデバイス3612と、コントローラ3614とを含む。各入力ポート3606は各電源3602へと電気的に接続され、各出力ポート3608は、負荷3616へと電気的に直列接続されて閉回路を形成する(本明細書中以下出力回路3618と呼ぶ)。各スイッチング回路3604において、コントローラ3614は、第1のスイッチングデバイス3610のデューティサイクルを制御して、出力電圧Vo36の平均値を少なくとも実質的に最大化させる。第2のスイッチングデバイス3612は、第1のスイッチングデバイス3610がオフにされたとき、出力電流Io36のための経路を提供する。
各スイッチング回路において、ダイオード3620は、第2のスイッチングデバイス3612と電気的に並列接続される。ダイオード3620の陽極は、中間スイッチングノード3622へと電気的に接続され、ダイオード3620の陰極は、正の入力ノード3624へと電気的に接続される。第1のスイッチングデバイス3610または第2のスイッチングデバイス3612のいずれもオンになっていない場合(例えば、電源3602からの電力がほとんど無い場合またはまったくない場合)、ダイオード3620により、出力回路電流Io36のためのバイパス経路が提供される。特定の実施形態において、ダイオード3620は、第2のスイッチングデバイス3612内に一体化される。例えば、第2のスイッチングデバイス3612がMOSFETである実施形態において、ダイオード3620は、MOSFETのボディーダイオードであり得る。
各スイッチング回路3604は、エネルギー貯蔵デバイス3626(例えば、電荷ポンプ回路)をさらに含む。エネルギー貯蔵デバイス3626は、出力回路3618からのエネルギーを保存する。各スイッチング回路3604において、エネルギー貯蔵デバイス3626は、電源3602からの電力がコントローラ3614を動作させるには不十分である場合、コントローラ3614へ少なくとも部分的に電力供給する。図36の実施形態において、エネルギー貯蔵デバイス3626は、出力回路3618からの電力を入力3628を介して受信する。入力3628は、出力ポート3608の出力端子3630および3632上において電気的に接続される。そのため、このような実施形態において、エネルギー貯蔵デバイス3626により、ダイオード3620上の電圧低下を、コントローラ3614への電力供給を少なくとも部分的に行うことができかつ第2のスイッチングデバイス3612を動作させるだけの充分に高い電圧へと有効に上方変換する。しかし、別の実施形態において、入力3628は、他の様態で(例えば、負荷3616上において)出力回路3618へと電気的に接続される。
特定の実施形態において、コントローラ3614が動作できるだけの電力が電源3602から得られない場合、コントローラ3614は、第2のスイッチングデバイス3612を導電状態で動作させるように構成される。そのため、このような条件下において、出力電流Io36は、ダイオード3620内ではく第2のスイッチングデバイス3612内を通過し、これにより高効率を促進する。なぜならば、第2のスイッチングデバイス3612上の順電圧低下は典型的には、ダイオード3620上の順電圧低下よりもずっと低いことが多いからである。電源3602からの電力供給がほとんど無い場合またはまったく無い場合、エネルギー貯蔵デバイス3626により、コントローラ3614が第2のスイッチングデバイス3612を動作させるために必要なエネルギーが得られる。ダイオード3620上の電圧が所定の期間にわたって所定の閾値を超え、電源3602のバイパス状態が示される場合において、コントローラ3614は、例えば第2のスイッチングデバイス3612を導電状態で動作させるように、構成される。
いくつかの実施形態において、エネルギー貯蔵デバイス3626は、出力回路3618のエネルギーからコンデンサ、インダクタまたはバッテリを定期的に充電し、コンデンサ、インダクタまたはバッテリ内に保存されたエネルギーからコントローラ3614へ電力を供給する。例えば、図36の実施形態において、コンデンサ3634は、出力端子3630および3632から利用可能エネルギーから定期的に充電され、このような充電期間において、ダイオード3620が導電状態にあり、第2のスイッチングデバイス3612は非導電状態である。そのため、電源3602からの電力供給がほとんど無い場合またはまったく無い場合、ダイオード3620および第2のスイッチングデバイス3612は交互に電流を伝導させて、出力電流Io36のためバイパス経路を提供する。
例えば、図37は、スイッチング回路3604(1)の出力電圧Vo36(1)と時間との関係を示すグラフ3700である。時間T_FAULTの前、電源3602(1)は通常動作をしており、スイッチング回路3604(1)は、ピーク値V_NOMINALを有する矩形波出力を生成する。T_FAULTいおいて、電源3602(1)は、(例えば、不具合に起因してまたは(光起電装置である場合は)陰影に起因して)電力提供を停止する。コントローラ3614(1)への電力供給が停止されると、ダイオード3620(1)は、システム3600中の他の電源3602によって生成された負荷電流Io36を伝導させ、その結果出力電圧は−V_DIODEに等しくなる。期間T_CHARGE(1)において、エネルギー貯蔵デバイス3626(1)が充電される(すなわち、エネルギー貯蔵デバイス3626(1)は、ダイオード3620(1)が伝導している間、出力回路3618からのエネルギーを出力端子3630(1)および3632(1)を介して保存する、T_CHARGE(1)の終了時、エネルギー貯蔵デバイス3626(1)は、コントローラ3614(1)が第2のスイッチングデバイス3612(1)を期間T_DISCHARGEの間導電状態で動作させることを可能にし、これにより、第2のスイッチングデバイスの小さな順電圧低下に起因して、出力電圧Vo36(1)はゼロに近くなる。期間T_DISCHARGEが期限切れになると、ダイオード3620(1)が再度伝導状態となる間、エネルギー貯蔵デバイス3626(1)は期間T_CHARGE(2)の間に再度充電される。電源3602(1)が電力提供を再開するかまたは出力電流Io36がゼロへと降下するまで、充電/放電サイクルT_CYCLEが繰り返される。T_DISCHARGEは典型的にはT_CHARGEよりも有意に高いため、第2のスイッチングデバイス3612(1)は典型的にはサイクルT_CYCLEのうち大部分において伝導し、これにより効率的迂回が促進される。詳細には、電源3602(1)からの電力供給が無い場合においてエネルギー貯蔵デバイス3626(1)を利用して第2のスイッチングデバイス3612(1)の動作を可能にすることにより、出力電流Io36の迂回時においておよそT_CHARGE/T_CYCLEだけ損失が低下する。
スイッチング回路3604は、MPPT機能と、電源3602の活性迂回とをどちらとも提供することが理解されるべきである。そのため、スイッチング回路3604を取り入れた電力システムは、効率的迂回を達成するためにさらなるバイパスデバイスを用いる必要が無い点において有利であり、これにより、全体的システムコスト、サイズおよび/または複雑性の低減が可能となる。また、スイッチング回路3604は、さらなるスイッチングデバイスを用いることなく活性迂回を達成すること(詳細には、第2のスイッチングデバイス3612が、低電圧低下バイパス経路としての機能および通常のMPPT動作時における電力転送機能双方を提供すること)も理解されるべきである。
機能の組み合わせ
上記した機能および特許請求の範囲中に記載の機能は、本発明の範囲から逸脱することなく、多様に組み合わせることが可能である。以下の例において、いくつかの可能な組み合わせを例示する。
(A1)電源から電力を抽出するためのスイッチング回路は、以下を含み得る:(1)前記電源への電気的接続のための入力ポート、(2)負荷への電気的接続のための出力ポート、(3)導電状態と非導電状態との間で切り替わって、前記入力ポートからの電力を前記出力ポートへと転送するように構成された第1のスイッチングデバイス、(4)前記第1のスイッチングデバイスが導電状態と非導電状態との間で切り替わるのに少なくとも部分的に起因して、少なくとも2つ異なる電圧レベル間において遷移する中間スイッチングノード、および(5)前記中間スイッチングノードにおける電圧の平均値を最大化するように前記第1のスイッチングデバイスを制御するコントローラ。
(A2)(A1)に記載のようなスイッチング回路において、前記コントローラは、前記中間スイッチングノードにおける前記電圧の平均値を繰り返しサンプリングし、前記中間スイッチングノードにおける前記電圧の平均値の少なくとも2つの連続サンプルに少なくとも部分的に基づいて、前記第1のスイッチングデバイスの切り換えを制御するように適合され得る。
(A3)(A1)または(A2)に記載のようなスイッチング回路において、前記コントローラは、前記中間スイッチングノードにおける前記電圧の平均値の2つの連続サンプル間の差に応答して、前記第1のスイッチングデバイスの切り換えを制御するように適合され得る。
(A4)(A1)〜(A3)に記載のようなスイッチング回路のいずれかにおいて、前記コントローラは、前記中間スイッチングノードにおける前記電圧の平均値の前記2つの連続サンプル間の差の符号に応答して、前記第1のスイッチングデバイスの切り換えを制御するように適合され得る。
(A5)(A1)〜(A4)に記載のようなスイッチング回路のいずれかにおいて、前記コントローラは、前記中間スイッチングノードにおける前記電圧の平均値の前記2つの連続サンプル間の差の大きさに応答して、前記第1のスイッチングデバイスの切り換えを制御するように適合され得る。
(A6)(A1)〜(A3)に記載のようなスイッチング回路のいずれかにおいて、前記コントローラは、前記中間スイッチングノードにおける前記電圧の平均値の前記2つの連続サンプル間の差の符号および大きさ双方に応答して、前記第1のスイッチングデバイスの切り換えを制御するように適合され得る。
(A7)(A1)〜(A6)に記載のようなスイッチング回路のいずれかにおいて、前記コントローラはサンプリング回路を含み得、前記サンプリング回路は、前記中間スイッチングノードにおける前記電圧の平均値の少なくとも2つの連続サンプルを生成するように構成される。
(A8)(A7)に記載のようなスイッチング回路において、前記サンプリング回路は第1のサンプリング回路および第2のサンプリング回路を含み得、前記第1のサンプリング回路は、前記中間スイッチングノードにおける前記電圧の平均値を前記第2のサンプリング回路と異なる時間においてサンプリングするように、適合され得る。
(A9)(A1)〜(A8)に記載のようなスイッチング回路のいずれかにおいて、前記コントローラは、第1のローパスフィルタおよび第2のローパスフィルタを含み得、前記第1のローパスフィルタは、前記中間スイッチングノードにおける前記電圧の平均値を第1のサンプリング回路について生成するように構成され得、前記第2のローパスフィルタは、前記中間スイッチングノードにおける前記電圧の平均値を第2のサンプリング回路について生成するように構成され得る。
(A10)(A9)に記載のようなスイッチング回路において、前記第1のローパスフィルタおよび第2のローパスフィルタはそれぞれ、前記第1のスイッチングデバイスのスイッチング期間よりも大きな各時定数を持ち得る。
(A11)(A9)または(A10)に記載のようなスイッチング回路のいずれかにおいて、前記第1のローパスフィルタおよび第2のローパスフィルタは、少なくとも1つのコンポーネントを共有し得る。
(A12)(A1)〜(A11)に記載のようなスイッチング回路のいずれかにおいて、前記スイッチング回路コントローラの起動時刻は、緩く制御され得る。
(A13)(A1)〜(A12)に記載のようなスイッチング回路のいずれかにおいて、前記コントローラは、前記中間スイッチングノードにおける前記電圧の平均値をサンプリングレートにおいて繰り返しサンプリングするように適合され得、前記サンプリングレートは、前記出力ポートからの電流のパーセンテージ変化が前記中間スイッチングノードにおける前記電圧の平均値の連続サンプル間において前記第1のスイッチングデバイスのデューティサイクルのパーセンテージ変化よりも低くなるように、充分に高速である。
(A14)(A1)〜(A13)に記載のようなスイッチング回路のいずれかにおいて、前記コントローラは、前記中間スイッチングノードにおける前記電圧の平均値をサンプリングレートにおいて繰り返しサンプリングするように構成され得、前記サンプリングレートは、ΔI/IがΔD/Dよりも小さくなるように、充分に高速であり、
ΔIは、前記中間スイッチングノードにおける前記電圧の平均値の第1の連続サンプルと第2の連続サンプルとの間の前記出力ポートからの電流変化であり、前記第2のサンプルは、前記第1のサンプルの後に発生し、
=Imax−Iminであり、
maxは、前記出力ポートからの電流の最大予測値であり、
minは、前記出力ポートからの電流の最小予測値であり、
ΔDは、前記前記中間スイッチングノードにおける前記電圧の平均値の第1の連続サンプルと第2の連続サンプルとの間の前記第1のスイッチングデバイスのデューティサイクルの変化であり、
は、前記第1のスイッチングデバイスの最大予測デューティサイクルと、最小予測デューティサイクルとの間の差である。
(A15)(A1)〜(A14)に記載のようなスイッチング回路のいずれかにおいて、前記コントローラは、前記中間スイッチングノードにおける前記電圧の平均値を周波数において繰り返しサンプリングするように適合され、前記周波数は、前記第1のスイッチングデバイスが導電状態と非導電状態との間において切り替わる周波数よりも低い。
(A16)(A1)〜(A15)に記載のようなスイッチング回路のいずれかにおいて、前記コントローラは、前記中間スイッチングノードにおける前記電圧の平均値を周波数において繰り返しサンプリングするように適合され得、前記周波数は、前記第1のスイッチングデバイスが導電状態と非導電状態との間において切り替わる周波数の10分の1よりも低い。
(A17)(A1)〜(A16)に記載のようなスイッチング回路のいずれかにおいて、前記入力ポートは、第1の入力端子および第2の入力端子を含み得、前記出力ポートは、第1の出力端子および第2の出力端子を含み得、前記第1のスイッチングデバイスは、前記第1の入力端子と、前記中間スイッチングノードとの間で電気的に接続され得、前記スイッチング回路は、前記第2の入力端子と前記中間スイッチングノードとの間に電気的に接続された第2のスイッチングデバイスおよびダイオードからなる群から選択されたデバイスをさらに含み得、前記デバイスは、前記第1のスイッチングデバイスが非導電状態にあるとき、前記第1の出力端子と前記第2の出力端子との間の電流のための経路を提供するように構成され得る。
(A18)(A17)に記載のようなスイッチング回路において、前記第1の出力端子は前記中間スイッチングノードへと電気的に接続され得、前記第2の出力端子は前記第2の入力端子へと電気的に接続され得る。
(A19)(A1)〜(A16)に記載のようなスイッチング回路のいずれかにおいて、前記入力ポートは、第1の入力端子および第2の入力端子を含み得、前記出力ポートは、第1の出力端子および第2の出力端子を含み得、前記第1のスイッチングデバイスは、前記第1の入力端子と、前記中間スイッチングノードとの間に電気的に接続され得、前記スイッチング回路は、それぞれ前記第2の入力端子と前記中間スイッチングノードとの間に電気的に接続された第2のスイッチングデバイスおよびダイオードをさらに含み得、前記第2のスイッチングデバイスおよび前記ダイオードは、前記第1のスイッチングデバイスが非導電状態にあるとき、前記第1の出力端子と前記第2の出力端子との間の電流のための経路を提供するように構成され得る。
(A20)(A1)〜(A16)に記載のようなスイッチング回路のいずれかにおいて、前記コントローラは、前記第1のスイッチングデバイスを制御するように適合され得、これにより、前記スイッチング回路の第1の動作モードにおいて前記中間スイッチングノードにおける前記電圧の平均値が最大化され、前記コントローラは、前記スイッチング回路の第2の動作モードにおいて、前記第1のスイッチングデバイスを非導電状態で連続的に動作させるようにさらに適合され得、前記出力ポートは、第1の出力端子および第2の出力端子を含み得、前記スイッチング回路は、前記第1の出力端子と前記第2の出力端子との間に電気的に接続されたデバイスをさらに含み得、前記デバイスは、前記第1のスイッチングデバイスが非導電状態にあるとき、前記第1の出力端子と前記第2の出力端子との間の電流のための経路を提供するように適合される。
(A21)(A20)に記載のようなスイッチング回路において、前記コントローラは、前記コントローラへ電力供給している電源の電圧の大きさが閾電圧未満であるかまたは閾電圧に等しい場合、前記スイッチング回路を前記第2の動作モードで動作させるようにさらに構成され得る。
(A22)(A20)および(A21)に記載のようなスイッチング回路のいずれかにおいて、前記第1の出力端子と前記第2の出力端子との間に電気的に接続された前記デバイスは、ダイオードを含み得る。
(A23)(A20)〜(A23)に記載のようなスイッチング回路のいずれかにおいて、前記第1の出力端子と前記第2の出力端子との間に電気的に接続された前記デバイスは、デプレションモードトランジスタを含み得る。
(A24)(A1)〜(A16)に記載のようなスイッチング回路のいずれかにおいて、前記出力ポートは、第1の出力端子および第2の出力端子を含み得、前記スイッチング回路は、前記第1の出力端子と前記第2の出力端子との間に電気的に接続された第2のスイッチングデバイスをさらに含み得、前記コントローラは、前記第1のスイッチングデバイスを制御して、前記スイッチング回路の第1の動作モードにおける前記中間スイッチングノードにおける前記電圧の平均値を最大化させるように適合され得、前記コントローラは、前記スイッチング回路の第2の動作モードにおいて前記第2のスイッチングデバイスを導電状態で連続的に動作させるように適合され得る。
(A25)(A24)に記載のようなスイッチング回路において、前記コントローラは、前記コントローラへ電力供給している電源の電圧の大きさが第1の閾値よりも高くかつ第2の閾値以下である場合、前記スイッチング回路を前記第2の動作モードで動作させるようにさらに適合され得る。
(A26)(A24)および(A25)に記載のようなスイッチング回路のいずれかにおいて、前記コントローラは、(1)前記入力ポートから前記出力ポートへと転送された電力が閾値を下回る場合、(2)前記入力ポート内を流れる電流の大きさが閾値を下回る場合、(3)前記第1の出力端子と前記第2の出力端子との間に流れる電流が閾値を超える場合、および(4)前記スイッチング回路の温度が閾値を超える場合からなる群から選択された事態が発生した場合、前記スイッチング回路を前記第2の動作モードで動作させるようにさらに適合され得る。
(A27)(A1)〜(A26)に記載のようなスイッチング回路のいずれかにおいて、前記スイッチング回路はバイアス電源ポートをさらに含み得、前記コントローラは、前記入力ポート上の電圧の大きさが閾値を下回る場合、前記バイアス電源ポートへ電気的に接続された電源から少なくとも部分的に電力供給されるように構成され得る。
(A28)(A1)〜(A27)に記載のようなスイッチング回路のいずれかにおいて、前記第1のスイッチングデバイスは、複数の個々に制御可能なトランジスタ要素を含むトランジスタを含み得、前記個々に制御可能なトランジスタ要素のうち少なくともいくつかは、導電状態と非導電状態との間において個々に切り換えられるように動作可能であり、前記コントローラは、活性数の前記複数の個々に制御可能なトランジスタ要素を前記第1のスイッチングデバイスのデューティサイクルに少なくとも部分的に基づいて制御するように、構成され得る。
(A29)(A1)〜(A28)に記載のようなスイッチング回路のいずれかにおいて、前記スイッチング回路は、さらなるスイッチングデバイスをさらに含み得、前記さらなるスイッチングデバイスは、導電状態と非導電状態との間において切り替わり、かつ、前記第1のスイッチングデバイスと協働して前記入力ポートからの電力を前記出力ポートへと転送させるように構成され、前記さらなるスイッチングデバイスは、複数の個々に制御可能なトランジスタ要素を含むトランジスタを含み得、前記個々に制御可能なトランジスタ要素のうち少なくともいくつかは、導電状態と非導電状態との間において個々に切り換えられるように動作可能であり、前記コントローラは、活性数の前記複数の個々に制御可能なトランジスタ要素を前記第2のスイッチングデバイスのデューティサイクルに少なくとも部分的に基づいて制御するように構成され得る。
(A30)(A1)〜(A29)に記載のようなスイッチング回路のいずれかにおいて、前記コントローラは、前記出力ポート内を電流が単一の方向のみにおいて流れるように、前記スイッチング回路の動作を制御するように構成され得る。
(A31)(A1)〜(A30)に記載のようなスイッチング回路のいずれかにおいて、前記第1のスイッチングデバイスが導電状態と非導電状態との間において切り替わる周波数は、緩く制御され得る。
(A32)(A1)〜(A31)に記載のようなスイッチング回路のいずれかの少なくとも2つのコンポーネントは、共通集積回路チップの一部であり得る。
(A33)(A1)〜(A32)に記載のようなスイッチング回路のいずれか2つ以上の出力ポートは、電気的に直列接続されかつ/または電気的に並列接続され得る。
(A34)光起電装置は、(A1)〜(A32)に記載のようなスイッチング回路のうち任意の1つの入力ポートへと電気的に接続され得る。
(B1)電源から電力を抽出するためのスイッチング回路は、以下を含み得る:(1)前記電源への電気的接続のための入力ポート、(2)負荷への電気的接続のための出力ポートであって、前記出力ポートは、第1の出力端子および第2の出力端子を含む、出力ポート、(3)導電状態と非導電状態との間において切り替わって前記入力ポートからの電力を前記出力ポートへと転送するように構成された第1のスイッチングデバイス、(4)エネルギー貯蔵デバイス、および(5)前記第1のスイッチングデバイスの切り換えを制御して、前記電源から抽出された電力量を少なくとも実質的に最大化させるように構成されたコントローラ。前記スイッチング回路は、前記入力ポートへと電気的に接続された電源からの電力が前記コントローラを動作させるのには不十分でありかつ前記出力ポートにおいて電力が利用可能である場合、以下が行われるように構成され得る:(1)前記第1の出力端子および第2の出力端子を介して利用可能なエネルギーから、前記エネルギー貯蔵デバイスが繰り返し充電され、かつ(2)前記エネルギー貯蔵デバイス中に保存されたエネルギーから前記コントローラが少なくとも部分的に電力供給を受ける。
(B2)(B1)に記載のようなスイッチング回路は、第2のスイッチングデバイスをさらに含み得る。前記第2のスイッチングデバイスは、前記第1のスイッチングデバイスが非導電状態にあるとき、前記第1の出力端子と前記第2の出力端子との間の電流のための経路を提供するように構成される。前記コントローラは、前記コントローラが前記エネルギー貯蔵デバイスから電力供給を受けている場合、前記第2のスイッチングデバイスを導電状態で動作させるように適合され得る。
(B3)(B2)に記載のようなスイッチング回路は、前記第2のスイッチングデバイスと電気的に並列接続されたダイオードをさらに含み得る。
(B4)(B3)に記載のようなスイッチング回路において、前記第2のスイッチングデバイスおよび前記ダイオードは、トランジスタの一部であり得る。
(B5)(B3)および(B4)に記載のようなスイッチング回路のいずれかにおいて、前記スイッチング回路は、前記入力ポートへと電気的に接続された前記電源からの電力が前記コントローラを動作させるのには不十分でありかつ前記出力ポートにおいて電力が利用可能である場合、前記第2のスイッチングデバイスおよび前記ダイオードが前記第1の出力端子と前記第2の出力端子との間において交互に電流を導通させるように、構成され得る。
(B6)(B5)に記載のようなスイッチング回路において、前記第2のスイッチングデバイスは、前記ダイオードよりも長時間にわたって電流を導通させ得る。
(B7)(B1)〜(B6)に記載のようなスイッチング回路のいずれかにおいて、前記入力ポートは第1の入力端子および第2の入力端子を含み得、前記スイッチング回路は中間スイッチングノードをさらに含み得、前記第1のスイッチングデバイスは、前記第1の入力端子と、前記中間スイッチングノードとの間に電気的に接続され得、前記スイッチング回路は第2のスイッチングデバイスをさらに含み得、前記第2のスイッチングデバイスは、前記第2の入力端子と前記中間スイッチングノードとの間に電気的に接続され、前記コントローラは、前記第1のスイッチングデバイスの切り換えを制御して前記第2のスイッチングデバイス上の電圧の平均値を最大化させるように、さらに適合され得る。
(B8)(B1)〜(B7)に記載のようなスイッチング回路のいずれかの少なくとも2つのコンポーネントは、共通集積回路チップの一部であり得る。
(B9)(B1)〜(B8)に記載のようなスイッチング回路のうちいずれか2つ以上の出力ポートは、電気的に直列接続されかつ/または電気的に並列接続される。
(B10)光起電装置は、(B1)〜(B8)に記載のようなスイッチング回路のうちいずれか1つ以上の入力ポートへと電気的に接続され得る。
(C1)少なくとも2つ電源から電力を抽出するためのスイッチング回路は、以下を含み得る:(1)第1の入力ポート、第2の入力ポート、第1の出力ポート、および第2出力ポート、(2)前記第1の入力ポートから前記第2の入力ポートへと電力を転送するように、導電状態と非導電状態との間で切り換えられるように適合された第1のスイッチングデバイスを含む、第1のサブ回路、(3)電力を前記第2の入力ポートから前記出力ポートへと転送するように導電状態と非導電状態との間で切り替わるように構成された第2のスイッチングデバイスを含む第2のサブ回路、および(4)少なくとも前記第1のスイッチングデバイスおよび第2のスイッチングデバイスの切り換えを制御して、前記第1の入力ポート上において電気的に接続された電源および前記第2の入力ポート上において電気的に接続された電源から前記出力ポートへと電気的に接続された負荷へと転送される電力を少なくとも実質的に最大化させるように適合された、コントローラ。
(C2)(C1)に記載のようなスイッチング回路において、前記第1のサブ回路は、mブーストトポロジーを有するスイッチング回路を含み得る。
(C3)(C1)に記載のようなスイッチング回路において、前記第1のサブ回路は、バックブーストトポロジーを有するスイッチング回路を含み得る。
(C4)(C1)〜(C3)に記載のようなスイッチング回路のいずれかにおいて、前記第2のスイッチングデバイスおよび第3のスイッチングデバイスは、前記第2の入力ポート上において電気的に直列接続され得、前記第3のスイッチングデバイスはまた、前記出力ポート上において電気的に接続され得、前記第3のスイッチングデバイスは、前記第2のスイッチングデバイスが非導電状態にあるとき、前記出力ポートを通じた電流経路を提供し得る。
(C5)(C1)〜(C4)に記載のようなスイッチング回路のいずれかにおいて、前記コントローラは、前記第1のスイッチングデバイスおよび第2のスイッチングデバイスを相互に異相状態で切り換えるように、適合され得る。
(C6)(C1)〜(C5)に記載のようなスイッチング回路のいずれかにおいて、前記コントローラは、前記第2のサブ回路のスイッチングノードにおける電圧の平均値を少なくとも実質的に最大化させるように、構成され得る。
(C7)(C1)〜(C6)に記載のようなスイッチング回路のいずれかの少なくとも2つのコンポーネントは、共通集積回路チップの一部であり得る。
(C8)(C1)〜(C7)に記載のようなスイッチング回路のうちいずれか2つ以上の出力ポートは、電気的に直列接続されかつ/または電気的に並列接続され得る。
(C9)各光起電装置は、(C1)〜(C7)に記載のようなスイッチング回路のうちいずれか1つの第1の入力ポートおよび第2の入力ポートへと電気的に接続され得る。
(D1)電源から電力を抽出するためのスイッチング回路は、以下を含み得る:(1)前記電源への電気的接続のための入力ポートおよび負荷への電気的接続のための出力ポート、(2)前記入力ポートを介して電気的に直列接続された第1のスイッチングデバイスおよび第2のスイッチングデバイス、(3)前記出力ポート上において電気的に直列接続された第3のスイッチングデバイスおよび第4のスイッチングデバイス、(4)第1のスイッチングノードと第2のスイッチングノードとの間に電気的に直列接続されたエネルギー貯蔵インダクタであって、前記第1のスイッチングノードは、前記第1のスイッチングデバイスおよび第2のスイッチングデバイスが電気的に接続されるノードであり、前記第2のスイッチングノードは、前記第3のスイッチングデバイスおよび第4のスイッチングデバイスが電気的に接続されるノードであり、および(5)前記第1のスイッチングデバイス、第2のスイッチングデバイス、第3のスイッチングデバイスおよび第4のスイッチングデバイスの動作を制御するコントローラ。前記コントローラは、以下の状態を発生させるように、前記スイッチングデバイスを制御するように適合され得る:(1)前記スイッチング回路の第1の動作モードにおいて、前記第1のスイッチングデバイスおよび第2のスイッチングデバイスならびに前記エネルギー貯蔵インダクタは、集合的にバック変換器として動作して、前記電源から前記負荷への電力転送を少なくとも実質的に最大化させ、(2)前記スイッチング回路の第2の動作モードにおいて、前記第3のスイッチングデバイスおよび第4のスイッチングデバイスならびに前記エネルギー貯蔵インダクタは、集合的にブースト変換器として動作して、前記電源から前記負荷への電力転送を少なくとも実質的に最大化させる。
(D2)(D1)に記載のようなスイッチング回路において、前記コントローラは、以下を行うように適合され得る:(1)前記スイッチング回路の前記第1の動作モードにおいて、前記第3のスイッチングデバイスを導電状態においてそして前記第4のスイッチングデバイスを非導電状態において連続的に動作させるするステップ、および(2)前記スイッチング回路の前記第2の動作モードにおいて、前記第1のスイッチングデバイスを導電状態においてそして前記第2のスイッチングデバイスを非導電状態において連続的に動作させるステップ。
(D3)(D1)または(D2)に記載のようなスイッチング回路のいずれかにおいて、前記コントローラは、前記スイッチング回路の前記第1の動作モードにおいて、前記第1のスイッチングデバイスおよび第2のスイッチングデバイスを少なくとも200キロヘルツの周波数において導電状態と非導電状態との間において切り換えるように適合され得、前記コントローラは、前記スイッチング回路の前記第2の動作モードにおいて、前記第3のスイッチングデバイスおよび第4のスイッチングデバイスを少なくとも200キロヘルツの周波数において導電状態と非導電状態との間において切り換えるように適合され得、前記スイッチング回路は、前記入力ポート上において電気的に接続された多層セラミックコンデンサをさらに含み得る。
(D4)(D1)〜(D3)に記載のようなスイッチング回路のいずれかにおいて、前記コントローラは、前記スイッチング回路の前記第1の動作モードおよび第2の動作モードのうち少なくとも1つにおいて、前記出力ポート上の電圧の平均値を少なくとも実質的に最大化させるように適合され得る。
(D5)(D1)〜(D4)に記載のようなスイッチング回路のいずれかにおいて、前記コントローラは、前記入力ポート上の電圧が閾値を下回った場合、前記スイッチング回路によって前記電源から引き出された電流の大きさを低減させるように適合され得る。
(D6)(D1)〜(D5)に記載のようなスイッチング回路のいずれかの少なくとも2つのコンポーネントは、共通集積回路チップの一部であり得る。
(D7)(D1)〜(D6)に記載のようなスイッチング回路のうちいずれか2つ以上の出力ポートは、電気的に直列接続されかつ/または電気的に並列接続され得る。
(D8)光起電装置は、(D1)〜(D6)に記載のようなスイッチング回路のうちいずれか1つの入力ポートへと電気的に接続され得る。
(E1)電源から抽出された電力量が少なくとも実質的に最大化されるように、前記電源に接続されたスイッチング回路を動作させる方法であって、前記方法は、以下のステップを含む:(1)前記スイッチング回路の中間スイッチングノードにおける電圧の平均値を繰り返し決定するステップ、(2)前記中間スイッチングノードにおける電圧の最新の平均値と、前記中間スイッチングノードにおける電圧の以前の平均値とを比較するステップ、(3)前記最新の平均値が前記以前の平均値よりも高い場合、前記スイッチング回路のスイッチングデバイスのデューティサイクルを第1の方向に調節するステップ、および(4)前記最新の平均値が前記以前の平均値よりも低い場合、前記スイッチングデバイスの前記デューティサイクルを前記第1の方向と反対の第2の方向に調節するステップ。
(E2)(E1)に記載のような方法は、前記電源の出力電圧が第1の閾値を下回った場合、前記スイッチング回路の出力電力を低下させるように前記スイッチングデバイスの切り換えを調節するステップをさらに含む。
(E3)(E1)または(E2)に記載のような方法のうちいずれかは、前記電源の出力電圧が第2の閾値を下回る場合、前記スイッチングデバイスの切り換えを非活性化するステップをさらに含む。
(E4)(E1)〜(E3)に記載のような方法のうちいずれかは、前記電源の出力電圧が第3の閾値を下回る場合、前記スイッチング回路の少なくとも1つのスイッチングデバイスを連続的に導電状態で動作させるステップをさらに含む。
(E5)(E1)〜(E4)に記載のような方法のうちいずれかは、前記電源の出力電圧が第4の閾値を下回る場合、前記スイッチング回路によって前記電源から引き出された電流の大きさを低減させるステップをさらに含み得る。
(E6)(E1)〜(E5)に記載のような方法のうちいずれかは、前記中間スイッチングノードにおける前記電圧の平均値を周波数において繰り返し決定するステップをさらに含み得、前記周波数は、前記スイッチングデバイスが導電状態と非導電状態との間で切り替わる周波数よりも低い。
(E7)(E1)〜(E6)に記載のような方法のうちいずれかは、前記中間スイッチングノードにおける前記電圧の平均値を周波数において繰り返し決定するステップをさらに含み得、前記周波数は、前記スイッチングデバイスが導電状態と非導電状態との間で切り替わる周波数の10分の1よりも低い。
(F1)負荷を含む電源とインターフェースをとるためのスイッチング回路を動作させる方法は、以下のステップを含み得る:(1)前記スイッチング回路の第1の動作モードにおいて、前記スイッチング回路の第1のスイッチングデバイスの切り換えを制御して、前記電源から前記負荷へと転送される電力量を少なくとも実質的に最大化させるステップ、および(2)前記スイッチング回路の第2の動作モードにおいて、前記負荷内を流れる電流を前記スイッチング回路内に流すためのシャント経路を提供するステップ。
(F2)(F1)に記載のような方法は、前記電源の出力電圧が第1の閾値を下回った場合、前記第1の動作モードから前記第2の動作モードへと遷移するステップをさらに含み得る。
(F3)(F1)または(F2)に記載のような方法のうちいずれかは、前記電源と前記スイッチング回路との間を流れる電流の大きさが第2の閾値を下回った場合、前記第1の動作モードから前記第2の動作モードへと遷移するステップをさらに含み得る。
(F4)(F1)〜(F3)に記載のような方法のうちいずれかは、前記電源から前記負荷へと転送される電力の大きさが第3の閾値を下回った場合、前記第1の動作モードから前記第2の動作モードへと遷移するステップをさらに含み得る。
(F5)(F1)〜(F4)に記載のような方法のうちいずれかにおいて、前記スイッチング回路は、前記負荷への電気的接続のための第1の出力端子および第2の出力端子を含み得、前記方法は、前記第1の出力端子および第2の出力端子を前記第2の動作モードにおいてシャントするステップをさらに含み得る。
(F6)(F5)に記載のような方法において、前記シャントするステップは、前記第1の出力端子および第2の出力端子上において電気的に接続された第2のスイッチングデバイスを導電状態で動作させるステップを含み得る。
(F7)(F6)に記載のような方法は、前記第2の動作モードにおいて前記第2のスイッチングデバイスを連続的に導電状態で動作させるステップをさらに含み得る。
(F8)(F1)〜(F7)に記載のような方法のうちいずれかは、前記負荷を含む回路から電力を抽出して、前記第2の動作モードにおいて前記スイッチング回路へ少なくとも部分的に電力供給するステップをさらに含み得る。
(G1)電源から抽出された電力量が少なくとも実質的に最大化されるように、前記電源に接続されたスイッチング回路を動作させる方法は、以下を含み得る:(1)前記スイッチング回路の動作特性を繰り返し決定するステップ、(2)前記動作特性の最新の値と、前記動作特性の以前の値とを比較するステップ、(3)前記動作特性の前記最新の値が前記動作特性の前記以前の値よりも高い場合、前記スイッチング回路に対する最大出力点追跡調節を第1の方向において行うステップ、および(4)前記動作特性の前記最新の値が前記動作特性の前記以前の値よりも低い場合、前記スイッチング回路に対する最大出力点追跡調節を前記第1の方向と反対方向の第2の方向において行うステップ。
(G2)(G2)に記載のような方法において、前記スイッチング回路の前記動作特性は、前記スイッチング回路の中間スイッチングノードにおける電圧の平均値であり得る。
(G3)(G1)または(G2)に記載のような方法のうちいずれかにおいて、前記スイッチング回路に対する最大出力点追跡調節を前記第1の方向において行うステップは、前記スイッチング回路の動作パラメータを第1の所定の量だけ調節するステップを含み得、前記スイッチング回路に対する最大出力点追跡調節を前記第2の方向において行うステップは、前記スイッチング回路の動作パラメータを第2の所定の量だけ調節するステップを含み得る。
(G4)(G1)〜(G3)に記載のような方法のうちいずれかにおいて、前記スイッチング回路に対する最大出力点追跡調節を前記第1の方向において行うステップは、前記スイッチング回路の動作パラメータを第1の量だけ調節するステップを含み得、前記第1の量は、前記動作特性の前記最新の値と前記動作特性の前記以前の値との間の差の関数であり、前記スイッチング回路に対する最大出力点追跡調節を前記第2の方向において行うステップは、前記スイッチング回路の動作パラメータを第2の量だけ調節するステップを含み得、前記第2の量は、前記動作特性の前記最新の値と前記動作特性の前記以前の値との間の前記差の関数である。
(G5)(G1)〜(G4)に記載のような方法のうちいずれかにおいて、前記スイッチング回路に対する最大出力点追跡調節を前記第1の方向において行うステップは、前記スイッチング回路の動作パラメータを第1の量だけ調節するステップをさらに含み得、前記第1の量は、前記スイッチング回路の前記動作特性の1つ以上の履歴値から少なくとも部分的に決定され、前記スイッチング回路に対する最大出力点追跡調節を前記第2の方向において行うステップは、前記スイッチング回路の動作パラメータを第2の量だけ調節するステップを含み得、前記第2の量は、前記スイッチング回路の前記動作特性の1つ以上の履歴値から少なくとも部分的に決定される。
(G6)(G1)〜(G5)に記載のような方法のうちいずれかは、前記スイッチング回路の前記動作特性の前記最新の値と、前記スイッチング回路の前記動作特性の前記以前の値との間の差の大きさが閾値を超えた場合にのみ、前記スイッチング回路に対する最大出力点追跡調節を行ういずれかのステップを行うステップをさらに含み得る。
(G7)(G1)〜(G6)に記載のような方法のうちいずれかは、以前に前記電源の最大出力点に少なくとも実質的に対応していた値に前記スイッチング回路の動作パラメータを初期設定するステップをさらに含み得る。
(G8)(G1)〜(G7)に記載のような方法のうちいずれかは、前記電源の出力電圧が閾値を下回る場合、前記スイッチング回路によって前記電源から引き出された電流の大きさを低減するステップをさらに含み得る。
(H1)スイッチング回路を動作させるための方法であって、前記スイッチング回路は、入力ポートと、出力ポートと、エネルギー貯蔵デバイスと、第1のスイッチングデバイスと、前記出力ポート上において電気的に接続された第2のスイッチングデバイスとを含み、前記方法は、以下のステップを含み得る:(1)前記スイッチング回路の第1の動作モードにおいて、前記第1のスイッチングデバイスの切り換え導電状態と非導電状態との間で制御して、前記入力ポートからの電力を前記出力ポートへと転送するステップ、および(2)前記スイッチング回路の第2の動作モードにおいて、(i)前記出力ポートを含む回路から抽出されたエネルギーを前記エネルギー貯蔵デバイスに蓄積するステップ、および(ii)前記エネルギー貯蔵デバイス中に保存されたエネルギーを用いて、前記第2のスイッチングデバイスを導電状態で動作させるステップ・
(H2)(H1)に記載のような方法は、前記スイッチング回路の前記第2の動作モードにおいて前記蓄積するステップおよび前記用いるステップを交互に行うステップをさらに含み得る。
(H3)(H1)または(H2)に記載のような方法のうちいずれかは、前記スイッチング回路の前記第1の動作モードにおいて、前記第1のスイッチングデバイスの切り換えを制御して、前記入力ポートへと電気的に接続された電源から抽出された電力量を少なくとも実質的に最大化させるステップをさらに含み得る。
(I1)電力システムは、以下を含み得る:(1)N個の電源であって、Nは1よりも大きい整数である、電源と、(2)N個のスイッチング回路。各スイッチング回路は、前記N個の電源それぞれに電気的に接続された入力ポートと、出力ポートと、導電状態と非導電状態との間で切り替わるように適合され、これにより前記入力ポートから電力を前記出力ポートへと転送する第1のスイッチングデバイスとを含む。前記N個のスイッチング回路の出力ポートは、出力回路を確立するように、負荷へと電気的に直列接続され得る。前記N個のスイッチング回路はそれぞれ、前記出力回路の相互接続インダクタンスを前記スイッチング回路の一次エネルギー貯蔵インダクタンスとして用い得る。
(I2)(I1)に記載のような電力システムにおいて、前記N個の電源はそれぞれ、光起電装置であり得る。
(I3)(I2)に記載のような電力システムにおいて、前記光起電装置のうち少なくとも1つは、複数の電気的に接続された太陽電池セルであり得る。
(I4)(I2)または(I3)に記載のような電力システムのうちいずれかにおいて、前記光起電装置のうち少なくとも1つは、多接合太陽電池セルの接合部であり得る。
(I5)(I1)〜(I4)に記載のような電力システムのうちいずれかにおいて、前記N個のスイッチング回路はそれぞれ、コントローラをさらに含み得、前記コントローラは、前記スイッチング回路の前記第1のスイッチングデバイスの切り換えを制御して、記スイッチング回路の入力ポートへと電気的に接続された各光起電装置から抽出された電力量を少なくとも実質的に最大化させるように適合される。
(I6)(I1)〜(I5)に記載のような電力システムのうちいずれかにおいて、前記N個のスイッチング回路それぞれについて:(1)前記入力ポートは、第1の入力端子および第2の入力端子を含み得、(2)前記第1のスイッチングデバイスは、前記第1の入力端子と、中間スイッチングノードとの間において電気的に接続され得、および(3)前記スイッチング回路はデバイスをさらに含み得、前記デバイスは、前記第2の入力端子と前記中間スイッチングノードとの間において電気的に接続されたダイオードおよび第2のスイッチングデバイスからなる群から選択され、前記デバイスは、前記第1のスイッチングデバイスが非導電状態にあるとき、前記出力回路内を流れる電流のための経路を提供するように適合され得る。
(I7)(I5)または(I6)に記載のような電力システムのうちいずれかにおいて、前記N個のスイッチング回路ぞれぞれのコントローラは、前記スイッチング回路の前記中間スイッチングノードにおける電圧の平均値を少なくとも実質的に最大化させるように適合され得る。
(I8)(I5)〜(I7)に記載のような電力システムのうちいずれかにおいて、前記N個のスイッチング回路それぞれのコントローラは、前記スイッチング回路の前記中間スイッチングノードにおける電圧の平均値を繰り返しサンプリングし、前記中間スイッチングノードにおける前記電圧の平均値の少なくとも2つの連続サンプルに少なくとも部分的に基づいて、前記スイッチング回路の前記第1のスイッチングデバイスの切り換えを制御するように適合され得る。
(I9)(I5)〜(I8)に記載のような電力システムのうちいずれかにおいて、前記N個のスイッチング回路それぞれのコントローラの起動時刻は、緩く制御され得る。
(I10)(I5)〜(I9)に記載のような電力システムのうちいずれかにおいて、前記N個のスイッチング回路のうち少なくとも1つのコントローラの起動時刻は、その他のN−1個のスイッチング回路のコントローラの起動時刻と異なり得る。
(I11)(I5)〜(I10)に記載のような電力システムのうちいずれかにおいて、前記N個のスイッチング回路のうち少なくとも1つのコントローラは、前記スイッチング回路の前記スイッチングノードにおける前記電圧の平均値をサンプリングするように適合され得、前記サンプリングは、その他のN−1個のスイッチング回路のコントローラと異なる。
(I12)(I5)〜(I11)に記載のような電力システムのうちいずれかにおいて、前記N個のスイッチング回路それぞれのコントローラは、前記中間スイッチングノードにおける前記電圧の平均値を周波数において繰り返しサンプリングするように適合され得、前記周波数は、前記第1のスイッチングデバイスが導電状態と非導電状態との間において切り替わる周波数よりも低い。
(I13)(I5)〜(I12)に記載のような電力システムのうちいずれかにおいて、前記N個のスイッチング回路それぞれのコントローラは、前記中間スイッチングノードにおける前記電圧の平均値を周波数において繰り返しサンプリングするように適合され得、前記周波数は、前記第1のスイッチングデバイスが導電状態と非導電状態との間で切り替わる周波数の10分の1よりも低い。
(I14)(I5)〜(I13)に記載のような電力システムのうちいずれかにおいて、前記N個のスイッチング回路それぞれのコントローラは、前記中間スイッチングノードにおける前記電圧の平均値を周波数において繰り返しサンプリングするように適合され得、前記周波数は、前記出力ポート上の過渡電流偏位が前記中間スイッチングノードにおける前記電圧の平均値の連続サンプル間において整定するくらいに、充分に緩やかである。
(I15)(I5)〜(I14)に記載のような電力システムのうちいずれかにおいて、前記N個のスイッチング回路それぞれのコントローラは、前記中間スイッチングノードにおける前記電圧の平均値をサンプリングレートにおいて繰り返しサンプリングするように構成され得、前記サンプリングレートは、ΔI/IがΔD/Dよりも小さくなるように、充分に高速であり、
ΔIは、前記中間スイッチングノードにおける前記電圧の平均値の第1の連続サンプルと第2の連続サンプルとの間の前記出力ポートからの電流変化であり、前記第2のサンプルは、前記第1のサンプルの後に発生し、
=Imax−Iminであり、
maxは、前記出力ポートからの電流の最大予測値であり、
minは、前記出力ポートからの電流の最小予測値であり、
ΔDは、前記前記中間スイッチングノードにおける前記電圧の平均値の第1の連続サンプルと第2の連続サンプルとの間の前記第1のスイッチングデバイスのデューティサイクルの変化であり、
は、前記第1のスイッチングデバイスの最大予測デューティサイクルと、最小予測デューティサイクルとの間の差である。
(I16)(I5)〜(I15)に記載のような電力システムのうちいずれかにおいて、前記N個のスイッチング回路それぞれのコントローラは、前記中間スイッチングノードにおける前記電圧の平均値をサンプリングレートにおいて繰り返しサンプリングするように構成され得、前記サンプリングレートは、前記出力ポートからの電流のパーセンテージ変化が、前記中間スイッチングノードにおける前記電圧の平均値の連続サンプル間における前記第1のスイッチングデバイスのデューティサイクルのパーセンテージ変化を下回るように、充分に高速である。
(I17)(I2)〜(I16)に記載のような電力システムのうちいずれかにおいて、前記電源のうち少なくとも1つは、電気的に直列接続された複数の太陽電池セルを含み得る。
(I18)(I2)〜(I17)に記載のような電力システムのうちいずれかにおいて、前記電源のうち少なくとも1つは、光起電パネルの光起電サブモジュールであり得、各光起電サブモジュールは、電気的に直列接続された複数の太陽電池セルを含み得る。
(I19)(I1)〜(I18)に記載のような電力システムのうちいずれかにおいて、前記Nスイッチング回路それぞれの前記第1のスイッチングデバイスが導電状態と非導電状態との間において切り替わる周波数は、緩く制御され得る。
(I20)(I1)〜(I19)に記載のような電力システムのうちいずれかにおいて、各第1のスイッチングデバイスのスイッチング周波数は、各他の第1のスイッチングデバイスのスイッチング周波数と異なり得る。
(I21)(I1)〜(I20)に記載のような電力システムのうちいずれかにおいて、前記N個のスイッチング回路はそれぞれ、各第1のスイッチングデバイスが異相状態で他の第1のスイッチングデバイスと切り替わるように、構成され得る。
(I22)(I1)〜(I21)に記載のような電力システムのうちいずれかは、前記出力回路と電気的に直列接続されたダイオードをさらに含み得る。
(I23)(I1)〜(I22)に記載のような電力システムのうちいずれかにおいて、各出力ポートは、第1の出力端子および第2の出力端子を含み得、各スイッチング回路は、電流が前記第1の出力端子と前記第2の出力端子との間において単一の方向のみにおいて流れるように動作することが可能である。
(I24)(I1)〜(I23)に記載のような電力システムのうちいずれかにおいて、前記N個のスイッチング回路はそれぞれ、第1のスイッチングデバイスが導電状態と非導電状態との間において少なくとも200キロヘルツの周波数において切り替わるように、構成され得る。
(I25)(I1)〜(I24)に記載のような電力システムのうちいずれかは、前記N個のスイッチング回路それぞれの入力ポート上において電気的に接続された少なくとも1つの多層セラミックコンデンサをさらに含み得、前記N個のスイッチング回路それぞれの入力ポート内を流れるリップル電流は、各スイッチング回路の入力ポート上において電気的に接続された前記少なくとも1つの多層セラミックコンデンサによって主にフィルタリングされる。
(I26)(I1)〜(I25)に記載のような電力システム中の前記N個のスイッチング回路のうち任意の1つの少なくとも2つのコンポーネントは、共通集積回路チップの一部であり得る。
(I27)(I1)〜(I25)に記載のような電力システム中の前記N個のスイッチング回路のうち任意の2つの少なくともいくつかのコンポーネントは、共通集積回路チップの一部であり得る。
(J1)電力システムは、N個の電源およびN個のスイッチング回路を含み得る。Nは、1よりも大きい整数である。各スイッチング回路は、以下を含み得る:(1)前記N個の電源それぞれに電気的に接続された入力ポート、(2)出力ポート、および(3)導電状態と非導電状態との間で切り替わるように適合され、これにより前記入力ポートから電力を前記出力ポートへと転送する第1のスイッチングデバイス。前記N個のスイッチング回路はそれぞれ、少なくとも入力ポートおよび前記N電源それぞれの直列接続から形成された各入力回路の相互接続インダクタンスを、前記スイッチング回路の一次エネルギー貯蔵インダクタンスとして用い得る。
(J2)(J1)に記載のような電力システムにおいて、前記N個の電源はそれぞれ、光起電装置であり得る。
(J3)(J1)または(J2)に記載のような電力システムのいずれかにおいて、前記N個のスイッチング回路はそれぞれ、コントローラをさらに含み得る。前記コントローラは、前記スイッチング回路の前記第1のスイッチングデバイスの切り換えを制御して、前記スイッチング回路の入力ポートへと電気的に接続された光起電装置から抽出された電力量を少なくとも実質的に最大化させるように、適合される。
(J4)(J1)〜(J3)に記載のような電力システムのいずれかにおいて、前記N個の電源のうち少なくとも1つは、多接合太陽電池セルの接合部であり得る。
(J5)(J1)〜(J4)に記載のような電力システムのいずれかにおいて、前記N個の電源のうち少なくとも1つは、複数の電気的に接続された太陽電池セルであり得る。
(J6)(J1)〜(J5)に記載のような電力システムのいずれかにおいて、前記N個の電源のうち少なくとも1つは、電気的に並列接続された複数の太陽電池セルであり得る。
(J7)(J1)〜(J6)に記載のような電力システムのいずれかにおいて、前記N個の電源のうち少なくとも1つは光起電パネルの光起電サブモジュールであり得、各光起電サブモジュールは、電気的に直列接続された複数の太陽電池セルを含み得る。
(J8)(J1)〜(J7)に記載のような電力システムのいずれかにおいて、前記N個のスイッチング回路それぞれについて:(1)前記第1のスイッチングデバイスは、前記入力ポート上において電気的に接続され得、および(2)前記スイッチング回路は、前記入力ポートと前記出力ポートとの間に電気的に接続されたダイオードおよび第2のスイッチングからなる群から選択されたデバイスをさらに含み得、前記デバイスは、前記第1のスイッチングデバイスが非導電状態にあるとき、前記入力ポートと前記出力ポートとの間の電流のための経路を提供するように適合され得る。
(J9)(J1)〜(J8)に記載のような電力システムのいずれかにおいて、前記N個のスイッチング回路はそれぞれ、前記スイッチング回路の前記第1のスイッチングデバイスの切り換えを制御して、前記スイッチング回路の前記出力ポート内を流れている電流の平均値を少なくとも実質的に最大化させるように適合され得る。
(J10)(J2)〜(J9)に記載のような電力システムのいずれかにおいて、前記N個のスイッチング回路はそれぞれ、前記スイッチング回路の前記出力ポート内を流れている電流の平均値を繰り返しサンプリングし、前記出力ポート内を流れている電流の平均値の少なくとも2つの連続サンプルに少なくとも部分的に基づいて、前記スイッチング回路の前記第1のスイッチングデバイスの切り換えを制御するように動作可能である。
(J11)(J1)〜(J10)に記載のような電力システムのいずれかにおいて、前記N個のスイッチング回路それぞれのコントローラの起動時刻は、緩く制御され得る。
(J12)(J1)〜(J11)に記載のような電力システムのいずれかにおいて、前記N個のスイッチング回路のうち少なくとも1つのコントローラの起動時刻は、その他のN−1個のスイッチング回路のコントローラの起動時刻と異なり得る。
(J13)(J1)〜(J12)に記載のような電力システムのいずれかにおいて、前記N個のスイッチング回路それぞれについて、コントローラは、前記出力ポート内を流れている電流の平均値を周波数において繰り返しサンプリングするように適合され得、前記周波数は、前記第1のスイッチングデバイスが導電状態と非導電状態との間において切り替わる周波数よりも低い。
(J14)(J1)〜(J13)に記載のような電力システムのいずれかにおいて、コントローラは、前記出力ポート内を流れている電流の平均値を周波数において繰り返しサンプリングするように適合され得、前記周波数は、前記第1のスイッチングデバイスが導電状態と非導電状態との間において切り替わる周波数の10分の1よりも低い。
(J15)(J1)〜(J14)に記載のような電力システムのいずれかにおいて、コントローラは、前記出力ポート内を流れている電流の平均値を周波数において繰り返しサンプリングするように適合され得、前記周波数は、前記出力ポート上の過渡電流偏位が前記出力ポート内を流れている電流の平均値の連続サンプル間において整定するくらいに、充分に緩やかである。
(J16)(J1)〜(J15)に記載のような電力システムのいずれかにおいて、前記Nスイッチング回路それぞれの前記第1のスイッチングデバイスが導電状態と非導電状態との間において切り替わる周波数は、緩く制御され得る。
(J17)(J1)〜(J16)に記載のような電力システムのいずれかにおいて、各第1のスイッチングデバイスのスイッチング周波数は、各他の第1のスイッチングデバイスのスイッチング周波数と異なり得る。
(J18)(I1)〜(J17)に記載のような電力システム中の前記N個のスイッチング回路のうちいずれか1つの少なくとも2つのコンポーネントは、共通集積回路チップの一部であり得る。
(J19)(J1)〜(J17)に記載のような電力システム中の前記N個のスイッチング回路のうちいずれか2つのうち少なくともいくつかのコンポーネントは、共通集積回路チップの一部であり得る。
(K1)電力システムは、N個の光起電装置およびN個のスイッチング回路を含み得る。Nは、1よりも大きい整数である。各スイッチング回路は、前記N個の光起電装置それぞれに電気的に接続された入力ポートと、出力ポートと、導電状態と非導電状態との間で切り替わるように適合され、これにより前記入力ポートから電力を前記出力ポートへと転送する第1のスイッチングデバイスとを含み得る。前記N個のスイッチング回路の出力ポートは、出力回路を確立するように、負荷へと電気的に直列接続され得る。前記システムは、システム制御デバイスをさらに含み得る。前記システム制御デバイスは、以下を含む:(1)前記出力回路に電気的に直列接続されたトランジスタ、(2)前記出力回路内を流れる電流の大きさを示す電流感知信号を生成するように構成された電流感知サブシステム、および(3)前記トランジスタおよび前記電流感知サブシステムと通信する制御サブシステム。前記制御サブシステムは、前記出力回路内を流れる電流を制御するための前記電流感知信号に少なくとも部分的に基づいて前記トランジスタを制御するように、構成される。
(K2)(K1)に記載のような電力システムにおいて、前記制御サブシステムは、前記出力回路内を流れる電流が単一の方向のみに流れるように、前記トランジスタを制御するように動作することが可能である。
(K3)(K1)または(K2)に記載のような電力システムのうちいずれかにおいて、前記制御サブシステムは、少なくとも前記電流感知信号に部分的に基づいて前記トランジスタを制御するようにさらに構成され得、これにより、前記出力回路内を流れる電流の大きさが閾値を超えた場合、前記出力回路内を流れる電流を遮断する。
(K4)(K1)〜(K3)に記載のような電力システムのうちいずれかにおいて、前記制御サブシステムは、前記電力システムの特性を監視し、前記特性を外部システムへ送信するようにさらに構成され得る。
(K5)(K4)に記載のような電力システムにおいて、前記電力システムの前記特性は、前記電気的に直列接続されたN個のスイッチング回路の前記出力ポート上の電圧を含み得る。
(K6)(K4)または(K5)に記載のような電力システムのうちいずれかにおいて、前記電力システムの前記特性は、前記出力回路内を流れる電流の大きさを含み得る。
(K7)(K4)〜(K6)に記載のような電力システムのうちいずれかにおいて、前記電力システムの前記特性は、前記電力システムの1つ以上のコンポーネントの温度を含み得る。
(K8)(K4)〜(K7)に記載のような電力システムのうちいずれかにおいて、前記制御サブシステムは、前記トランジスタを変調して、前記電力システムの前記特性を含む通信信号を生成するように、動作可能である。
(K9)(K4)〜(K8)に記載のような電力システムのうちいずれかにおいて、前記N個のスイッチング回路はそれぞれ、コントローラをさらに含み得、前記コントローラは、前記スイッチング回路の第1のスイッチングデバイスの切り換えを制御して、前記スイッチング回路の入力ポートへと電気的に接続された前記N個の光起電装置のうち各1つから抽出された電力量を少なくとも実質的に最大化させるように、適合される。
(K10)(K1)〜(K9)に記載のような電力システムのうちいずれかにおいて、前記N個の電源のうち少なくとも1つは、多接合太陽電池セルの接合部であり得る。
(L1)電力システムは、以下を含み得る:(1)電気的に直列接続された第1の電源および第2の電源であって、前記第1の電源は、第1の値を有する最大電流を生成することができ、前記第2の電源は、第2の値を有する最大電流を生成することができ、前記第2の値は前記第1の値よりも小さい、第1の電源および第2の電源、および(2)最大出力点追跡を行うことが可能な第1のスイッチング回路および第2のスイッチング回路。前記第1のスイッチング回路および第2のスイッチング回路が集合的に動作可能であることにより、前記第1の電源および第2の電源双方から抽出された電力量が少なくとも実質的に最大化されるように、前記第1の電源および第2の電源ならびに前記第1のスイッチング回路および第2のスイッチング回路が電気的に接続される。
(L2)(L1)に記載のような電力システムにおいて、前記第1の電源および第2の電源はそれぞれ、少なくとも1つの光起電装置を含み得る。
(L3)(L1)または(L2)に記載のような電力システムのうちいずれかにおいて、前記第1の電源は第1の光起電接合部を含み得、前記第2の電源は、電気的に直列接続された第2の光起電接合部および第3の光起電接合部を含み得る。
(L4)(L3)に記載のような電力システムにおいて、前記第1の光起電接合部、第2の光起電接合部および第3の光起電接合部は、共通多接合太陽電池セルの一部であり得る。
(L5)(L1)〜(L4)に記載のような電力システムのうちいずれかにおいて、前記第1のスイッチング回路および第2のスイッチング回路はそれぞれ、以下を含み得る:(1)スイッチングデバイス、および(2)前記スイッチングデバイスの切り換えを制御して最大出力点追跡を行わせるように適合されたコントローラ。前記第1のスイッチング回路の前記スイッチングデバイスは、前記第2のスイッチング回路の前記スイッチングデバイスに対して異相状態で切り替わり得る。
(L6)(L5)に記載のような電力システムにおいて、前記第1のスイッチング回路および第2のスイッチング回路それぞれのコントローラの起動時刻は、緩く制御され得る。
(L7)(L5)または(L6)に記載のような電力システムのうちいずれかにおいて、前記第1のスイッチング回路および第2のスイッチング回路それぞれのスイッチングデバイスのスイッチング周波数は、緩く制御され得る。
(L8)(L1)〜(L7)に記載のような電力システムのうちいずれかにおいて、前記第1のスイッチング回路は、昇圧形トポロジーを有する回路と、前記第1の電源上において電気的に接続された入力ポートとを含み得る。
(L9)(L8)に記載のような電力システムにおいて、前記第1のスイッチング回路は、前記第1の電源および第2の電源の直列組み合わせ上において電気的に接続された出力ポートをさらに含み得、前記第2のスイッチング回路は、前記第1の電源および第2の電源の直列組み合わせ上において電気的に接続された入力ポートを含み得る。
(L10)(L9)に記載のような電力システムにおいて、前記第2のスイッチング回路は、以下をさらに含み得る:(1)前記第2のスイッチング回路の前記入力ポートを介して電気的に直列接続された第1のスイッチングデバイスおよび第2のスイッチングデバイス、および(2)出力ポート。前記第2のスイッチングデバイスはまた、前記出力ポート上において電気的に接続され得、前記第1のスイッチングデバイスが非導電状態にあるとき、前記第2のスイッチング回路の前記出力ポートを通じた電流経路を提供するように適合され得る。前記第2のスイッチング回路は、出力ポートを含む回路の相互接続インダクタンスを前記第2のスイッチング回路の一次エネルギー貯蔵インダクタンスとして用い得る。
(L11)(L8)に記載のような電力システムにおいて、前記第2のスイッチング回路は、バック型トポロジーを有する回路と、入力ポートと、出力ポートとを含み得、前記第2のスイッチング回路の前記入力ポートは、前記第1の電源および第2の電源の直列組み合わせ上において電気的に接続され得る。前記第1のスイッチング回路は、出力ポートをさらに含み得る。前記出力ポートは、前記第2のスイッチング回路の前記出力ポートと電気的に並列接続される。
(L12)(L8)に記載のような電力システムにおいて、前記第2のスイッチング回路は、バック型トポロジーを有する回路と、入力ポートと、出力ポートとを含み得、前記第2のスイッチング回路の入力ポートは、前記第2の電源上において電気的に接続される。前記第1のスイッチング回路は、出力ポートをさらに含み得る。前記出力ポートは、前記第2のスイッチング回路の前記出力ポートとさらに電気的に直列接続される。
(L13)(L1)〜(L7)に記載のような電力システムのうちいずれかにおいて、前記第1のスイッチング回路は、バックブーストトポロジーを有する回路を含み得る。前記回路は、前記第1の電源上において電気的に接続された入力ポートを含む。
(L14)(L13)に記載のような電力システムにおいて、前記第1のスイッチング回路は、前記第2の電源上において電気的に接続された出力ポートをさらに含み得る。前記第2のスイッチング回路は、前記第2の電源上において電気的に接続された入力ポートを含み得る。
(L15)(L14)に記載のような電力システムにおいて、前記第2のスイッチング回路は、以下をさらに含み得る:(1)前記第2のスイッチング回路の前記入力ポートを介して電気的に直列接続された第1のスイッチングデバイスおよび第2のスイッチングデバイス、および出力ポート。前記第2のスイッチングデバイスはまた、前記第2のスイッチング回路の前記出力ポート上において電気的に接続され得、前記第1のスイッチングデバイスが非導電状態にあるとき、前記出力ポートを通じた電流経路を提供するように適合され得る。前記第2のスイッチング回路は、出力ポートを含む回路の相互接続インダクタンスを前記第2のスイッチング回路の一次エネルギー貯蔵インダクタンスとして用い得る。
(L16)(L13)に記載のような電力システムにおいて、前記第1のスイッチング回路は出力ポートをさらに含み得、前記第2のスイッチング回路は、前記第2の電源および前記第1のスイッチング回路の前記出力ポートと電気的に直列接続された出力ポートおよび入力ポートを含み得る。
(L17)(L16)に記載のような電力システムにおいて、前記第2のスイッチング回路は、以下をさらに含み得る:(1)前記第2のスイッチング回路の前記入力ポートを介して電気的に直列接続された第1のスイッチングデバイスおよび第2のスイッチングデバイス、ならびに出力ポート。前記第2のスイッチングデバイスはまた、前記第2のスイッチング回路の前記出力ポート上において電気的に接続され得、前記第1のスイッチングデバイスが非導電状態にあるとき、前記出力ポートを通じた電流経路を提供するように適合される。前記第2のスイッチング回路は、出力ポートを含む回路の相互接続インダクタンスを前記第2のスイッチング回路の一次エネルギー貯蔵インダクタンスとして用い得る。
(L18)(L13)に記載のような電力システムにおいて、前記第1のスイッチング回路は出力ポートを含み得、前記第2のスイッチング回路は、バックブースト型トポロジーを有する回路と、前記第1のスイッチング回路の前記出力ポートと電気的に直列接続された出力ポートと、前記第2の電源上において電気的に接続された入力ポートとを含み得る。
(L19)(L1)〜(L7)に記載のような電力システムのうちいずれかにおいて、前記第1のスイッチング回路および第2のスイッチング回路はそれぞれ、以下を含み得る:(1)入力ポート、(2)出力ポート、ならびに(3)前記入力ポート上において電気的に直列接続された第1のスイッチングデバイスおよび第2のスイッチングデバイス。前記第2のスイッチングデバイスはまた、前記出力ポート上において電気的に接続され得、前記第1のスイッチングデバイスが非導電状態にあるとき、前記出力ポートを通じた電流経路を提供し得る。前記第1のスイッチング回路の入力ポートは、前記第1の電源上において電気的に接続され得、前記第2のスイッチング回路の入力ポートは、前記第2の電源上において電気的に接続され得、前記第1のスイッチング回路の前記出力ポートは、前記第2のスイッチング回路の前記出力ポートと電気的に直列接続され得る。
(L20)(L19)に記載のような電力システムにおいて、前記第1のスイッチング回路および第2のスイッチング回路はそれぞれ、前記第1のスイッチング回路および第2のスイッチング回路の出力ポートを含む回路のインダクタンスを一次エネルギー貯蔵インダクタンスとして用い得る。
(L21)(L1)〜(L20)に記載のような電力システムのうちいずれかにおいて、前記第1のスイッチング回路および第2のスイッチング回路双方のうち少なくともいくつかのコンポーネントは、共通集積回路チップの一部となり得る。
(M1)電力システムは、N個の光起電ストリングを含み得る。Nは、1よりも大きい整数である。各光起電ストリングは、複数の光起電装置およびストリングオプティマイザに電気的に直列接続された出力ポートを備える複数のDC/DC変換器を含み得る。各DC/DC変換器は、前記複数の光起電装置それぞれから抽出された電力を少なくとも実質的に最大化させるように適合され得、各ストリングオプティマイザは、各ストリングと共通バスとの間のインターフェースを提供するように適合され得る。
(M2)(M1)に記載のような電力システムにおいて、各ストリングオプティマイザはブースト変換器を含み得、前記ブースト変換器は、各ストリングと前記共通バスとの間のインターフェースを提供するように適合される。
(M3)(M2)に記載のような電力システムにおいて、各ブースト変換器は、連続導通動作モードで動作するように適合され得る。
(M4)(M2)に記載のような電力システムにおいて、各ブースト変換器は、不連続の導通動作モードで動作するように適合され得る。
(M5)(M2)に記載のような電力システムにおいて、各ストリングオプティマイザのブースト変換器は、以下を行うように適合され得る:(1)前記ストリングオプティマイザの第1の動作モードにおいて連続導通動作モードで動作するステップ、および(2)前記ストリングオプティマイザ第2の動作モードにおいて不連続の導通動作モードで動作するステップ。
(M6)(M2)〜(M5)に記載のような電力システムのうちいずれかにおいて、各ブースト変換器は、各光起電ストリングの回路の相互接続インダクタンスを前記ブースト変換器の一次エネルギー貯蔵インダクタンスとして用い得る。
(M7)(M2)〜(M6)に記載のような電力システムのうちいずれかにおいて、前記ブースト変換器のうち少なくとも1つは、多相ブースト変換器であり得る。
(M8)(M2)〜(M6)に記載のような電力システムのうちいずれかにおいて、前記ブースト変換器のうち少なくとも1つは多相ブースト変換器であり得、2つ以上の相の前記ブースト変換器のエネルギー貯蔵インダクタが磁気結合され得る。
(M9)(M2)〜(M8)に記載のような電力システムのうちいずれかにおいて、前記ブースト変換器のうち少なくとも2つのエネルギー貯蔵インダクタが磁気結合され得る。
(M10)(M2)〜(M9)に記載のような電力システムのうちいずれかにおいて、各ストリングオプティマイザは、導電状態と非導電状態との間で切り換わることにより、前記各ストリングと前記共通バスとの間のインターフェースを提供するように適合された第1のスイッチングデバイスを含み得、各第1のスイッチングデバイスは、各他の第1のスイッチングデバイスに対して異相状態で切り替わり得る。
(M11)(M1)〜(M10)に記載のような電力システムのうちいずれかは、前記共通バスへと電気的に接続されたインバータをさらに含み得る。
(M12)(M11)に記載のような電力システムにおいて、前記インバータは、最大出力点追跡能力を備えない。
(M13)(M11)に記載のような電力システムにおいて、前記インバータは、グローバル最大出力点追跡能力を備えない。
(M14)(M1)〜(M13)に記載のような電力システムのうちいずれかにおいて、前記N個の光起電ストリングは、太陽の移動を追跡するように動作することが可能である追跡デバイス上に配置され得る。
(M15)(M14)に記載のような電力システムにおいて、前記ストリングオプティマイザはそれぞれ、前記追跡デバイスから分離された共通筐体内に収容され得る。
(M16)(M1)〜(M15)に記載のような電力システムのうちいずれかにおいて、前記複数の光起電装置はそれぞれ、単一の太陽電池セルであり得る。
(M17)(M1)〜(M16)に記載のような電力システムのうちいずれかにおいて、前記N個の光起電ストリングは、少なくとも2つ追跡デバイス間において分散配置され得、各追跡デバイスは、太陽の移動を追跡するように動作することが可能である。
(M18)(M1)〜(M16)に記載のような電力システムのうちいずれかにおいて、前記複数の光起電装置はそれぞれ、共通光起電パネルの一部であり得る。
(M19)(M1)〜(M18)に記載のような電力システムのうちいずれかは、前記共通バスへと電気的に接続されたさらなる光起電ストリングをさらに含み得、前記さらなる光起電ストリングは、さらなるストリングオプティマイザと電気的に直列接続された複数の光起電装置を含み得、前記さらなるストリングオプティマイザは、前記さらなる光起電ストリングと前記共通バスとの間のインターフェースを提供するように適合され得る。
(M20)(M1)〜(M19)に記載のような電力システムのうちいずれかにおいて、各ストリングオプティマイザは、前記共通バス上の電圧を調節するように動作可能であり得る。
(M21)(M1)〜(M20)に記載のような電力システムのうちいずれかにおいて、前記ストリングオプティマイザのうち少なくとも1つは、各ストリングを通じて電流を調節するように適合され得る。
(M22)(M21)に記載のような電力システムにおいて、前記ストリングオプティマイザのうち少なくとも1つは、各ストリングを通じて電流を調節して、前記ストリングのうち最も高出力の光起電装置の光生成電流よりも高い電流にするように適合され得る。
(M23)(M21)に記載のような電力システムにおいて、前記ストリングオプティマイザのうち少なくとも1つは、各ストリングを通じて電流を調節して、太陽の放射照度に応じて少なくとも部分的に調節される電流にするように適合され得る。
(M24)(M21)に記載のような電力システムにおいて、前記ストリングオプティマイザのうち少なくとも1つは、各ストリングを通じて電流を調節して、前記ストリングの基準光起電装置の光生成電流に基づいて調節される電流にするように適合され得る。
(M25)(M21)に記載のような電力システムにおいて、前記ストリングオプティマイザのうち少なくとも1つは、各ストリングを通じて電流を調節して、各ストリングから前記共通バスへと転送される電力量を少なくとも実質的に最大化させる電流にするように適合され得る。
(M26)(M1)〜(M25)に記載のような電力システムのうちいずれかにおいて、前記ストリングオプティマイザのうち少なくとも1つは、前記ストリングのDC/DC変換器の直列接続出力ポート上の電圧を調節するように適合され得る。
(M27)(M1)〜(M26)に記載のような電力システムのうちいずれかにおいて、前記ストリングオプティマイザのうち少なくとも1つは、各ストリングから前記共通バスへと転送される電力量を少なくとも実質的に最大化させるように動作することが可能である。
(M28)(M1)〜(M27)に記載のような電力システムのうちいずれかにおいて、前記複数のDC/DC変換器はそれぞれ、複数の光起電装置のうち各1つへと電気的に接続された入力ポートを含み得、第1のスイッチングデバイスおよび第2のスイッチングデバイスは、前記入力ポート上において電気的に直列接続される。前記第2のスイッチングデバイスはまた、前記DC/DC変換器の前記出力ポート上において電気的に接続され得、前記第1のスイッチングデバイスが非導電状態にあるとき、前記出力ポートを通じた電流経路を提供し得る。
(M29)(M1)〜(M28)に記載のような電力システムのうちいずれかにおいて、前記複数のDC/DC変換器はそれぞれ、前記複数のDC/DC変換器の出力ポートを含む回路の相互接続インダクタンスを前記DC/DC変換器の一次エネルギー貯蔵インダクタンスとして用い得る。
(M30)(M1)〜(M29)に記載のような電力システムのうちいずれかにおいて、前記ストリングオプティマイザおよび前記DC/DC変換器のうち少なくとも1つは、情報を交換するように動作可能である。
(M31)(M30)に記載のような電力システムにおいて、前記情報は、ストリングオプティマイザからスイッチング回路へのコマンドを含み得る。
(M32)(M31)に記載のような電力システムにおいて、前記コマンドは、前記スイッチング回路を起動せよとのコマンド、前記スイッチング回路を停止せよとのコマンド、および前記スイッチング回路をバイパスモードにせよとのコマンドからなる群から選択され得る。
(M33)(M30)〜(M32)に記載のような電力システムのうちいずれかにおいて、前記情報は、スイッチング回路状態情報およびスイッチング回路不具合情報からなる群から選択された情報を含み得る。
(N1)電力システムは、N個のスイッチング回路を含み得る。Nは、1よりも大きい整数である。各スイッチング回路は、入力ポートと、第1の出力端子および第2の出力端子を含む出力ポートと、導電状態と非導電状態との間で切り換えられるように適合された第1のスイッチングデバイスとを含み得る。前記N個のスイッチング回路の出力ポートは、出力回路を確立するように、負荷へと電気的に直列接続され得る。各スイッチング回路は、第1のスイッチングデバイスを導電状態と非導電状態との間で切り換えることにより、前記スイッチング回路の第1の動作モードにおいて前記入力ポートからの電力を前記出力ポートへと転送するように適合され得、各スイッチング回路は、前記スイッチング回路の第2の動作モードにおいて第1の出力端子および第2の出力端子をシャントさせるように適合され得る。
(N2)(N1)に記載のような電力システムにおいて、前記N個のスイッチング回路はそれぞれ、コントローラをさらに含み得る。前記コントローラは、前記スイッチング回路の前記第1の動作モードにおいて前記スイッチング回路の前記第1のスイッチングデバイスの切り換えを制御して、前記スイッチング回路の入力ポートへと電気的に接続された電源から抽出された電力量を少なくとも実質的に最大化させるように、適合され得る。
(N3)(N1)および(N2)に記載のような電力システムのうちいずれかにおいて、前記N個のスイッチング回路はそれぞれ、前記スイッチング回路の前記第1の出力端子と前記第2の出力端子との間に電気的に接続された第2のスイッチングデバイスをさらに含み得、前記スイッチング回路の前記第2の動作モードにおいて導電状態で動作するように適合され得る。
(N4)(N1)〜(N3)に記載のような電力システムのうちいずれかにおいて、前記N個のスイッチング回路はそれぞれ、以下からなる群から選択された状況が発生した場合、前記第2の動作モードで動作すするように適合され得る:(1)前記スイッチング回路の入力ポート上の電圧が閾値を下回った場合、(2)前記スイッチング回路の入力ポート上の電圧が閾値を上回った場合、(3)前記入力ポートから前記スイッチング回路の前記出力ポートへと転送された電力が閾値を下回った場合、(4)前記スイッチング回路の入力ポート内を流れている電流の大きさが閾値を下回った場合、(5)前記スイッチング回路の第1の出力端子および第2の出力端子間を流れている電流の大きさが閾値を超えた場合、および(6)前記スイッチング回路の温度が閾値を超えた場合。
(O1)集積回路チップは、以下を含み得る:(1)第1の入力ポートおよび第1の出力ポート、(2)前記第1の入力ポート上において電気的に直列接続された第1のトランジスタおよび第2のトランジスタであって、前記第2のトランジスタはまた、前記第1の出力ポート上において電気的に接続され、前記第1のトランジスタが非導電状態にあるとき前記第1の出力ポート内を流れる電流の経路を提供するように適合される、第1のトランジスタおよび第2のトランジスタ、(3)前記第1のトランジスタおよび第2のトランジスタのゲートを駆動して、前記トランジスタを導電状態と非導電状態との間で切り換えるための第1のドライバ回路、ならびに(4)前記第1のドライバ回路を制御して、前記第1のトランジスタおよび第2のトランジスタスイッチを導電状態と非導電状態との間で切り換えて、前記第1の入力ポートへと電気的に接続された電源から抽出された電力量少なくとも実質的に最大化させるための第1のコントローラ回路。
(O2)(O1)に記載のような集積回路チップは、フリップチップ集積回路チップであり得る。
(O3)(O1)または(O2)に記載のような集積回路チップは、第1の端子、第2の端子および第3の端子をさらに含み得る。前記第1の端子および第2の端子は、前記第1の入力ポートへの電気的インターフェースを提供し、前記第2の端子および第3の端子は、前記第1の出力ポートへの電気的インターフェースを提供する。
(O4)(O1)〜(O3)に記載のような集積回路チップのうちいずれかにおいて、前記第1のコントローラ回路は、以下を行うように動作可能であり得る:(1)前記第1のドライバ回路を制御して、前記第1のトランジスタおよび第2のトランジスタを協働させて、前記第1のコントローラ回路の第1の動作モード時において前記第1の入力ポートからの電力を前記第1の出力ポートへと転送させるステップ、および(2)前記第1のドライバ回路を制御して、前記第1のコントローラ回路の第2の動作モード時において前記第2のトランジスタが前記第1の出力ポートをシャントさせるステップ。
(O5)(O4)に記載のような集積回路チップにおいて、前記第1のコントローラ回路は、以下からなる群から選択された事態が発生した場合、前記第1のコントローラ回路を第2の動作モードで動作させるように適合され得る:(1)前記第1の入力ポート上の電圧が閾値を下回った場合、(2)前記第1の入力ポート上の電圧が閾値を上回った場合、(3)前記第1の入力ポートから前記第1の出力ポートへと転送された電力が閾値を下回った場合、(4)前記第1の入力ポート内を流れている電流の大きさが閾値を下回った場合、(5)前記第1の出力ポート内を流れている電流の大きさが閾値を超えた場合、および(6)前記集積回路チップの1つ以上のコンポーネントの温度が閾値を超えた場合。
(O6)(O1)〜(O5)に記載のような集積回路チップのうちいずれかにおいて、前記第1のコントローラ回路は、前記集積回路チップの1つ以上のコンポーネントの温度が第1の閾値を超えた場合、少なくとも前記第1のトランジスタの切り換えを停止させるように動作することが可能である。
(O7)(O1)〜(O6)に記載のような集積回路チップのうちいずれかにおいて、前記第1のコントローラ回路は、前記第1の入力ポート内を流れている電流の大きさが第2の閾値を超えた場合、少なくとも前記第1のトランジスタの切り換えを停止させるように動作することが可能である。
(O8)(O1)〜(O7)に記載のような集積回路チップのうちいずれかにおいて、前記第1のコントローラ回路は、前記第1の入力ポート上の電圧が閾値を下回った場合、少なくとも前記第1のトランジスタの切り換えを停止するように動作可能である。
(O9)(O1)〜(O8)に記載のような集積回路チップのうちいずれかにおいて、前記第1のコントローラ回路は、前記第1のトランジスタおよび第2のトランジスタが電気的に接続されている中間スイッチングノードにおける電圧の平均値を少なくとも実質的に最大化させるように動作可能である。
(O10)(O1)〜(O9)に記載のような集積回路チップのうちいずれかにおいて、前記第1のコントローラ回路は、中間スイッチングノードにおける電圧の平均値を繰り返しサンプリングし、前記中間スイッチングノードにおける前記電圧の平均値の少なくとも2つの連続サンプルに少なくとも部分的に基づいて、前記第1のトランジスタの切り換えを制御するように動作可能であり、前記中間スイッチングノードは前記第1のトランジスタおよび第2のトランジスタが電気的に接続されるノードである。
(O11)(O1)〜(O10)に記載のような集積回路チップのうちいずれかにおいて、前記第1のコントローラ回路の起動時刻は、緩く制御され得る。
(O12)(O1)〜(O11)に記載のような集積回路チップのうちいずれかにおいて、前記第1のトランジスタが導電状態と非導電状態との間で切り替わる周波数は、緩く制御され得る。
(O13)(O1)〜(O12)に記載のような集積回路チップのうちいずれかは、以下をさらに含み得る:(1)第2の入力ポートおよび第2の出力ポート、(2)前記第2の入力ポート上において電気的に直列接続された第3のトランジスタおよび第4のトランジスタであって、前記第4のトランジスタは、前記第2の出力ポート上において電気的に接続され、前記第3のトランジスタが非導電状態にあるとき、前記第2の出力ポート内を流れる電流の経路を提供するように適合される、第3のトランジスタおよび第4のトランジスタ、ならびに(3)前記第3のトランジスタおよび第4のトランジスタのゲートを駆動して、前記トランジスタを導電状態と非導電状態との間において切り換える第2のドライバ回路、ならびに(4)前記第2のドライバ回路を含む制御して、前記第3のトランジスタおよび第4のトランジスタスイッチを導電状態と非導電状態との間において切り換えて、前記第2の入力ポートへと電気的に接続された電源から抽出された電力量を少なくとも実質的に最大化させる、第2のコントローラ回路。
(O14)(O13)に記載のような集積回路チップにおいて、前記第1のおよび第2のコントローラ回路は、共通コントローラの一部であり得る。
(O15)(O13)〜(O14)に記載のような集積回路チップのうちいずれかにおいて、前記第1の出力ポートおよび第2の出力ポートは、前記集積回路チップ内において電気的に直列接続され得る。
(O16)(O13)〜(O15)に記載のような集積回路チップのうちいずれかにおいて、前記第2のコントローラ回路は、以下を行うように動作可能である:(1)前記第2のドライバ回路を制御して、前記第3のトランジスタおよび第4のトランジスタを協働させて、前記第2のコントローラ回路の第1の動作モードにおいて前記第2の入力ポートからの電力を前記第2の出力ポートへと転送するステップ、および(2)前記第2のドライバ回路を制御して、前記第2のコントローラ回路の第2の動作モードにおいて前記第4のトランジスタに前記第2の出力ポートをシャントさせるステップ。
(O17)(O1)〜(O16)に記載のような集積回路チップのうちいずれか2つ以上の出力ポートは、電気的に直列接続されかつ/または電気的に並列接続され得る。
(O18)光起電装置は、(O1)〜(O16)に記載のような集積回路チップのうちいずれかの入力ポートへと電気的に接続され得る。
(P1)光起電システムは、N個の第1の光起電装置およびN個の集積回路チップを含み得る。Nは、1よりも大きい整数である。各集積チップは、以下を含み得る:(1)第1の入力ポートおよび第1の出力ポート、(2)前記第1の入力ポート上において電気的に直列接続された第1のトランジスタおよび第2のトランジスタであって、前記第2のトランジスタはまた、前記第1の出力ポート上において電気的に接続され、前記第1のトランジスタが非導電状態にあるとき、前記第1の出力ポート内を流れる電流の経路を提供するように適合される、第1のトランジスタおよび第2のトランジスタ、(3)前記第1のトランジスタおよび第2のトランジスタのゲートを駆動して、前記トランジスタを導電状態と非導電状態との間で切り換えるための第1のドライバ回路、ならびに(4)前記第1のドライバ回路を制御して、前記第1のトランジスタおよび第2のトランジスタスイッチを導電状態と非導電状態との間で切り換えて、前記N個の第1の光起電装置の各1つから抽出された電力量を少なくとも実質的に最大化させるための第1のコントローラ回路。
(P2)(P1)に記載のような光起電システムにおいて、前記N個の集積回路チップの前記第1の出力ポートは、出力回路を確立するように、負荷へと電気的に直列接続され得る。
(P3)(P2)に記載のような光起電システムにおいて、各一対の電気的に接続された第1のトランジスタおよび第2のトランジスタは、前記出力回路の相互接続インダクタンスを前記スイッチング回路の一次エネルギー貯蔵インダクタンスとして用いて、スイッチング回路の一部を形成し得る、
(P4)(P1)〜(P3)に記載のような光起電システムのうちいずれかにおいて、Nは3よりも大きく、前記N個の集積回路チップのうち少なくとも2つの第1の出力ポートは電気的に直列接続され得、前記N個の集積回路チップの少なくとも2つの第1の出力ポートは、電気的に並列接続され得る。
(P5)(P1)〜(P4)に記載のような光起電システムのうちいずれかにおいて、前記N個の第1の光起電装置のうち少なくとも2つは、共通光起電パネルの一部であり得る。
(P6)(P1)〜(P5)に記載のような光起電システムのうちいずれかにおいて、前記N個の集積回路チップのうち少なくとも2つは、共通光起電パネルの一部であり得る。
(P7)(P1)〜(P6)に記載のような光起電システムのうちいずれかにおいて、前記N個の第1の光起電装置はそれぞれ、光起電パネルの光起電サブモジュールの一部であり得、各光起電サブモジュールは、複数の電気的に接続された太陽電池セルを含み得る。
(P8)(P7)に記載のような光起電システムにおいて、各光起電サブモジュールの太陽電池セルは、電気的に直列接続され得る。
(P9)(P7)に記載のような光起電システムにおいて、前記光起電パネルは、R行およびC列の太陽電池セルを含み得、RおよびCはそれぞれ、1よりも大きい整数であり、各光起電サブモジュールは、R個の直列接続太陽電池セルを含み得る。
(P10)(P7)に記載のような光起電システムにおいて、前記光起電パネルは、R行およびC列の太陽電池セルを含み得、RおよびCはそれぞれ、1よりも大きい整数であり、各光起電サブモジュールは、X個の直列接続太陽電池セルを含み得、Xは、2およびRの積に等しい。
(P11)(P7)に記載のような光起電システムにおいて、前記光起電パネルは、R行およびC列の太陽電池セルを含み得、RおよびCはそれぞれ、1よりも大きい整数であり、各光起電サブモジュールは、C個の直列接続太陽電池セルを含み得る。
(P12)(P7)に記載のような光起電システムにおいて、前記光起電パネルは、R行およびC列の太陽電池セルを含み得、RおよびCはそれぞれ、1よりも大きい整数であり、各光起電サブモジュールはX個の直列接続太陽電池セルを含み得、Xは、2およびCの積に等しい。
(P13)(P1)〜(P6)に記載のような光起電システムのうちいずれかにおいて、前記N個の第1の光起電装置の少なくとも1つは、単一の太陽電池セルであり得る。
(P14)(P1)〜(P6)または(P13)に記載のような光起電システムのうちいずれかにおいて、前記N個の第1の光起電装置のうち少なくとも1つは、少なくとも2つの電気的に並列接続された太陽電池セルを含み得る。
(P15)(P1)〜(P14)に記載のような光起電システムのうちいずれかは、前記N個の第1の光起電装置のうち少なくとも1つ上の光を集光するための光学素子をさらに含み得る。
(P16)(P1)〜(P15)に記載のような光起電システムのうちいずれかは、前記N個の第1の光起電装置のうち少なくとも2つによって共有される集光素子をさらに含み得る。
(P17)(P1)〜(P16)に記載のような光起電システムのうちいずれかは、前記N個の第1の光起電装置のうち少なくとも1つおよび前記N個の集積回路チップのうち少なくとも1つを封入する材料をさらに含み得る。
(P18)(P1)〜(P4)または(P13)〜(P17)に記載のような光起電システムのうちいずれかにおいて、前記N個の第1の光起電装置のうち少なくとも1つは、多接合太陽電池セルの光起電接合部であり得る。
(P19)(P1)〜(P6)または(P13)〜(P18)に記載のような光起電システムのうちいずれかにおいて、Nは2よりも大きな整数であり得、前記N個の第1の光起電装置は、少なくとも2つ光起電パネル間において共有され得る。
(P20)(P1)〜(P19)に記載のような光起電システムのうちいずれかにおいて、前記N個の集積回路チップのうち少なくとも1つは、以下をさらに含み得る:(1)第2の入力ポートおよび第2の出力ポート、(2)前記第2の入力ポート上において電気的に直列接続された第3のトランジスタおよび第4のトランジスタであって、前記第4のトランジスタはまた、前記第2の出力ポート上において電気的に接続され、前記第3のトランジスタが非導電状態にあるとき、前記第2の出力ポート内を流れる電流の経路を提供するように適合される、第3のトランジスタおよび第4のトランジスタ、(3)前記第3のトランジスタおよび第4のトランジスタのゲートを駆動して、前記トランジスタを導電状態と非導電状態との間で切り換えるための第2のドライバ回路、ならびに(4)前記第2のドライバ回路を制御して、前記第3のトランジスタおよび第4のトランジスタを導電状態と非導電状態との間で切り換えて、前記第2の入力ポートへと電気的に接続された各第2の光起電装置から抽出された電力量を少なくとも実質的に最大化させる第2のコントローラ回路。
(P21)(P1)〜(P20)に記載のような光起電システムのうちいずれかにおいて、前記N個の集積回路チップはそれぞれ、前記N個の第1の光起電装置のうち各1つの上に配置され得る。
(P22)(P21)に記載のような光起電システムにおいて、前記N個の集積回路チップはそれぞれ、前記N個の第1の光起電装置のうち各1つへと電気的に接続されたフリップチップ集積回路チップであり得る。
(P23)(P21)に記載のような光起電システムにおいて、前記N個の集積回路チップはそれぞれ、複数のワイヤーボンディングを介して前記N個の第1の光起電装置のうち各1つへと電気的に接続され得る。
(P24)(P21)〜(P23)に記載のような光起電システムのうちいずれかは各コンデンサをさらに含み得、前記各コンデンサは、前記N個の第1の光起電装置それぞれの上に配置され、前記第1の光起電装置上において電気的に接続される。
(P25)(P1)〜(P20)に記載のような光起電システムのうちいずれかにおいて、前記N個の集積回路チップそれぞれ前記N個の第1の光起電装置は、1つ以上の支持構造上に配置され得る。
(P26)(P25)に記載のような光起電システムにおいて、前記1つ以上の支持構造はそれぞれ、プリント基板基板、セラミック基板、ポリイミド基板および金属リードフレームからなる群から選択され得る。
(P27)(P25)〜(P26)に記載のような光起電システムにおいて、前記N個の集積回路チップはそれぞれ、複数の半田ボールを介して前記1つ以上の支持構造へと電気的に接続されたフリップチップ集積回路チップであり得る。
(P28)(P25)または(P26)に記載のような光起電システムにおいて、前記N個の集積回路チップはそれぞれ、複数のワイヤーボンディングを介して前記1つ以上の支持構造へと電気的に接続され得る。
(P29)(P25)〜(P28)に記載のような光起電システムのうちいずれかはコンデンサをさらに含み得、前記コンデンサは、前記1つ以上の支持構造上に配置され、前記N個の第1の光起電装置のうち少なくとも1つ上において電気的に接続される。
(P30)(P1)〜(P29)に記載のような光起電システムのうちいずれかにおいて、前記N個の集積回路チップそれぞれについて、前記第1のコントローラ回路は、前記第1のトランジスタおよび第2のトランジスタが少なくとも200キロヘルツの周波数において導電状態と非導電状態との間において切り替わるように、構成され得る。
(P31)(P30)に記載のような光起電システムにおいて、前記N個の集積回路チップそれぞれについて、前記第1の入力ポート内を流れているリップル電流を、主に1つ以上の多層セラミックコンデンサによってフィルタリングすることが可能である。
(R1)光起電システムは、少なくとも第1の光起電接合部および第2の光起電接合部ならびに集積回路チップを含む多接合太陽電池セルを含み得る。前記集積回路チップは、以下を含み得る:(1)第1のトランジスタおよび第2のトランジスタ、(2)前記第1のトランジスタおよび第2のトランジスタのゲートを駆動して、前記トランジスタを導電状態と非導電状態との間で切り換えるためのドライバ回路、ならびに(3)前記ドライバ回路を制御して、前記第1のトランジスタおよび第2のトランジスタが導電状態と非導電状態との間において切り替わって、前記第1の光起電接合部および第2の光起電接合部双方から抽出された電力を少なくとも実質的に最大化するためのコントローラ回路。
(R2)(R1)に記載のような光起電システムにおいて、前記第1のトランジスタは、前記第1の光起電接合部へと電気的に接続された入力ポートを含む第1のバック型変換器の一部であり得、前記第2のトランジスタは、前記第2の光起電接合部へと電気的に接続された入力ポートを含む第2のバック型変換器であり得る。
(R3)(R1)に記載のような光起電システムにおいて、前記第1の光起電接合部および第2の光起電接合部は電気的に直列接続され得、前記第1のトランジスタは昇圧形変換器の一部であり得、前記昇圧形変換器は、前記第1の光起電接合部上において電気的に接続された入力ポートと、少なくとも前記第1の光起電接合部および第2の光起電接合部上において電気的に接続された出力ポートとを含み、前記第2のトランジスタはバック型変換器の一部であり得、前記バック型変換器は、少なくとも前記第1の光起電接合部および第2の光起電接合部双方の上において電気的に接続された入力ポートを含む。
(R4)(R1)〜(R3)に記載のような光起電システムのうちいずれかにおいて、前記集積回路チップは、前記多接合太陽電池セル上に配置され得る。
(R5)(R4)に記載のような光起電システムにおいて、前記集積回路チップはフリップチップ集積回路チップであり得、前記フリップチップ集積回路チップは、複数の半田ボールを介して前記多接合太陽電池セルへと電気的に接続される。
(R6)(R4)に記載のような光起電システムにおいて、前記集積回路チップは、複数のワイヤーボンディングを介して前記多接合太陽電池セルへと電気的に接続され得る。
(R7)(R4)〜(R6)に記載のような光起電システムのうちいずれかは、コンデンサをさらに含み得、前記コンデンサは、前記多接合太陽電池セル上に配置され、前記光起電接合部のうち少なくとも1つ上において電気的に接続される。
(R8)(R1)〜(R3)に記載のような光起電システムのうちいずれかにおいて、前記集積回路チップおよび前記多接合太陽電池セルは、支持構造上に配置され得る。
(R9)(R8)に記載のような光起電システムのうちいずれかにおいて、前記支持構造は、プリント基板基板、セラミック基板、ポリイミド基板および金属リードフレームからなる群から選択され得る。
(R10)(R8)または(R9)に記載のような光起電システムのうちいずれかにおいて、前記集積回路チップは、複数の半田ボールを介して前記支持構造へと電気的に接続されたフリップチップ集積回路チップであり得る。
(R11)(R8)または(R9)に記載のような光起電システムのうちいずれかにおいて、前記集積回路チップは、複数のワイヤーボンディングを介して前記支持構造へと電気的に接続され得る。
(R12)(R8)〜(R11)に記載のような光起電システムのうちいずれかは第1のコンデンサをさらに含み得、前記第1のコンデンサは、前記支持構造上に配置され、前記光起電接合部のうち少なくとも1つ上において電気的に接続される。
(R13)(R8)〜(R12)に記載のような光起電システムのうちいずれかにおいて、前記集積回路チップは、電力を負荷へ転送するための出力ポートを少なくとも1つ含み得、前記システムは、第2のコンデンサと、前記出力ポートと前記第2のコンデンサとの間において電気的に接続されたインダクタとをさらに含み得、前記第2のコンデンサおよび前記インダクタは、前記支持構造上に配置される。
(R14)(R1)〜(R13)に記載のような光起電システムのうちいずれかは、前記多接合太陽電池セル上に光を集光するための光学素子をさらに含み得る。
(R15)(R1)〜(R14)に記載のような光起電システムのうちいずれかは、少なくとも前記集積回路チップおよび前記多接合太陽電池セルを封入する材料をさらに含み得る。
(R16)(R1)〜(R15)に記載のような光起電システムのうちいずれかにおいて、前記コントローラは、前記ドライバ回路を制御して、前記第1のトランジスタおよび第2のトランジスタを少なくとも200キロヘルツの周波数において導電状態と非導電状態との間で切り換えるように構成され得る。
(R17)(R16)に記載のような光起電システムのうちいずれかにおいて、前記集積回路チップは、前記集積回路チップと前記多接合太陽電池セルとの間のインターフェースを提供する入力ポートを含み得、前記入力ポート内を流れるリップル電流は、主に1つ以上の多層セラミックコンデンサによってフィルタリングされ得る。
上記の方法およびシステムにおいて、その範囲から逸脱することなく、変更が可能である。よって、上記記載および添付図面中の内容は、限定的なものとしてではなく例示的なものとして解釈されるべきである点に留意されたい。以下の特許請求の範囲は、本明細書中に記載の一般的特徴および特定の特徴と、本方法およびシステムの範囲の全記載とを網羅するものとして意図され、また両者の間に収まるものである。

Claims (118)

  1. 電力システムであって
    N個の電源であって、Nは1よりも大きい整数である、電源と、
    N個のスイッチング回路であって、各前記スイッチング回路は、前記N個の電源それぞれに電気的に接続された入力ポートと、出力ポートと、導電状態と非導電状態との間で切り替わるように適合され、これにより前記入力ポートから電力を前記出力ポートへと転送する第1のスイッチングデバイスとを含み、前記N個のスイッチング回路の前記出力ポートは、出力回路を確立するように、負荷へと電気的に直列接続される、スイッチング回路と、
    を含み、
    前記N個のスイッチング回路はそれぞれ、前記出力回路の相互接続インダクタンスを前記スイッチング回路の一次エネルギー貯蔵インダクタンスとして用いる、
    電力システム。
  2. 前記N個の電源はそれぞれ、光起電装置である、請求項1に記載の電力システム。
  3. 前記N個のスイッチング回路はそれぞれ、コントローラをさらに含み、前記コントローラは、前記スイッチング回路の前記第1のスイッチングデバイスの切り換えを制御して、前記スイッチング回路の前記入力ポートへと電気的に接続された各前記光起電装置から抽出された電力量を少なくとも実質的に最大化させるように適合される、請求項2に記載の電力システム。
  4. 前記N個のスイッチング回路それぞれについて、
    前記入力ポートは、第1の入力端子および第2の入力端子を含み、
    前記第1のスイッチングデバイスは、前記第1の入力端子と、中間スイッチングノードとの間に電気的に接続され、
    前記スイッチング回路は、前記第2の入力端子と前記中間スイッチングノードとの間に電気的に接続されたダイオードおよび第2のスイッチングデバイスからなる群から選択されたデバイスをさらに含み、前記デバイスは、前記第1のスイッチングデバイスが前記非導電状態にあるとき、前記出力回路内を流れる電流のための経路を提供するように適合される、
    請求項3に記載の電力システム。
  5. 前記N個のスイッチング回路それぞれの前記コントローラは、前記スイッチング回路の前記中間スイッチングノードにおける電圧の平均値を少なくとも実質的に最大化させるように適合される、請求項4に記載の電力システム。
  6. 前記N個のスイッチング回路それぞれの前記コントローラは、前記スイッチング回路の前記中間スイッチングノードにおける電圧の平均値を繰り返しサンプリングし、前記スイッチング回路の前記第1のスイッチングデバイスの切り換えを前記中間スイッチングノードにおける前記電圧の平均値の少なくとも2つの連続サンプルに少なくとも部分的に基づいて制御するように適合される、請求項3または5に記載の電力システム。
  7. 前記N個のスイッチング回路それぞれの前記コントローラの起動時刻は、緩く制御される、請求項6に記載の電力システム。
  8. 前記N個のスイッチング回路のうち少なくとも1つの前記コントローラの起動時刻は、その他のN−1個の前記スイッチング回路の前記コントローラの起動時刻と異なる、請求項6に記載の電力システム。
  9. 前記N個のスイッチング回路のうち少なくとも1つの前記コントローラは、前記スイッチング回路の前記スイッチングノードにおける電圧の平均値をその他のN−1個の前記スイッチング回路の前記コントローラと異なるレートでサンプリングするように適合される、請求項6に記載の電力システム。
  10. 前記N個のスイッチング回路それぞれについて、前記コントローラは、前記中間スイッチングノードにおける前記電圧の平均値を周波数において繰り返しサンプリングするように適合され、前記周波数は、前記第1のスイッチングデバイスが前記導電状態と前記非導電状態との間において切り替わる周波数よりも低い、請求項6に記載の電力システム。
  11. 前記N個のスイッチング回路それぞれについて、前記コントローラは、前記中間スイッチングノードにおける前記電圧の平均値を周波数において繰り返しサンプリングするように適合され、前記周波数は、前記第1のスイッチングデバイスが前記導電状態と前記非導電状態との間で切り替わる周波数の10分の1よりも低い、請求項6に記載の電力システム。
  12. 前記N個のスイッチング回路それぞれについて、前記コントローラは、前記中間スイッチングノードにおける前記電圧の平均値を周波数において繰り返しサンプリングするように適合され、前記周波数は、前記出力ポート上の過渡電圧偏位が前記中間スイッチングノードにおける前記電圧の平均値の連続サンプル間において整定するくらいに、充分に緩やかである、請求項6に記載の電力システム。
  13. 各前記スイッチング回路について、前記コントローラは、前記中間スイッチングノードにおける前記電圧の平均値をサンプリングレートにおいて繰り返しサンプリングするように適合され、前記サンプリングレートは、ΔI/IがΔD/Dよりも小さくなるように、充分に高速であり、
    ΔIは、前記中間スイッチングノードにおける前記電圧の平均値の前記第1の連続サンプルと前記第2の連続サンプルとの間の前記出力ポートからの電流変化であり、前記第2のサンプルは、前記第1のサンプルの後に発生し、
    =Imax−Iminであり、
    maxは、前記出力ポートからの電流の最大予測値であり、
    minは、前記出力ポートからの電流の最小予測値であり、
    ΔDは、前記前記中間スイッチングノードにおける前記電圧の平均値の前記第1の連続サンプルと前記第2の連続サンプルとの間の前記第1のスイッチングデバイスのデューティサイクルの変化であり、
    は、前記第1のスイッチングデバイスの最大予測デューティサイクルと、最小予測デューティサイクルとの間の差である、
    請求項6に記載の電力システム。
  14. 各前記スイッチング回路について、前記コントローラは、前記中間スイッチングノードにおける前記電圧の平均値をサンプリングレートにおいて繰り返しサンプリングするように適合され、前記サンプリングレートは、前記出力ポートからの電流のパーセンテージ変化が、前記中間スイッチングノードにおける前記電圧の平均値の連続サンプル間における前記第1のスイッチングデバイスのデューティサイクルのパーセンテージ変化を下回るように、充分に高速である、請求項6に記載の電力システム。
  15. 光起電装置はそれぞれ、電気的に直列接続された複数の太陽電池セルを含む、請求項2または3に記載の電力システム。
  16. 前記光起電装置はそれぞれ、光起電パネルの光起電サブモジュールであり、各前記光起電サブモジュールは、電気的に直列接続された複数の太陽電池セルを含む、請求項2または3に記載の電力システム。
  17. 前記光起電装置のうち少なくとも1つは、複数の電気的に接続された太陽電池セルを含む、請求項2または3に記載の電力システム。
  18. 前記光起電装置のうち少なくとも1つは、多接合太陽電池セルの接合部である、請求項2または3に記載の電力システム。
  19. 前記Nスイッチング回路それぞれの前記第1のスイッチングデバイスが前記導電状態と前記非導電状態との間において切り替わる周波数は、緩く制御される、請求項2または3に記載の電力システム。
  20. 各前記第1のスイッチングデバイスのスイッチング周波数は、各他の前記第1のスイッチングデバイスのスイッチング周波数と異なる、請求項2または3に記載の電力システム。
  21. 前記N個のスイッチング回路はそれぞれ、各前記第1のスイッチングデバイスが各他の前記第1のスイッチングデバイスに対して異相状態で切り替わるように、構成される、請求項2または3に記載の電力システム。
  22. 前記出力回路と電気的に直列接続されたダイオードをさらに含む、請求項2または3に記載の電力システム。
  23. 各前記スイッチング回路について、前記出力ポートは第1の出力端子および第2の出力端子を含み、前記スイッチング回路は、前記第1の出力端子と前記第2の出力端子との間の電流が単一の方向のみにおいて流れるように、動作可能である、請求項2または3に記載の電力システム。
  24. 前記N個のスイッチング回路はそれぞれ、前記第1のスイッチングデバイスが前記導電状態と前記非導電状態との間において少なくとも200キロヘルツの周波数において切り替わるように構成される、請求項2または3に記載の電力システム。
  25. 前記N個のスイッチング回路それぞれの前記入力ポート上において電気的に接続された少なくとも1つの多層セラミックコンデンサをさらに含み、前記N個のスイッチング回路それぞれの前記入力ポート内を流れるリップル電流は、前記スイッチング回路それぞれの前記入力ポート上において電気的に接続された前記少なくとも1つの多層セラミックコンデンサによって主にフィルタリングされる、請求項24に記載の電力システム。
  26. 電力システムであって、
    N個の電源であって、Nは1よりも大きい整数である、電源と、
    N個のスイッチング回路であって、各前記スイッチング回路は、
    前記N個の電源それぞれに電気的に接続された入力ポートと、
    出力ポートと、
    導電状態と非導電状態との間で切り替わるように適合され、これにより前記入力ポートから電力を前記出力ポートへと転送する第1のスイッチングデバイスと、
    を含む、スイッチング回路と、
    を含み、
    前記N個のスイッチング回路はそれぞれ、少なくとも前記入力ポートおよび前記N電源それぞれの直列接続から形成された各前記入力回路の相互接続インダクタンスを前記スイッチング回路の一次エネルギー貯蔵インダクタンスとして用いる、
    電力システム。
  27. 前記N個の電源はそれぞれ、光起電装置である、請求項26に記載の電力システム。
  28. 前記N個のスイッチング回路それぞれについて、
    前記第1のスイッチングデバイスは、前記入力ポート上におおいて電気的に接続され、
    前記スイッチング回路は、前記入力ポートと前記出力ポートとの間で電気的に接続されたダイオードおよび第2のスイッチングからなる群から選択されたデバイスをさらに含み、前記デバイスは、前記第1のスイッチングデバイスが前記非導電状態にあるとき、前記入力ポートと前記出力ポートとの間の電流のための経路を提供するように適合される、
    請求項27に記載の電力システム。
  29. 前記N個のスイッチング回路はそれぞれ、コントローラをさらに含み、前記コントローラは、前記スイッチング回路の前記第1のスイッチングデバイスの切り換えを制御して、前記スイッチング回路の前記出力ポート内を流れる電流の平均値を少なくとも実質的に最大化させるように適合される、請求項27または28に記載の電力システム。
  30. 前記N個のスイッチング回路はそれぞれ、コントローラをさらに含み、前記コントローラは、前記スイッチング回路の前記出力ポートを流れる電流の平均値を繰り返しサンプリングし、前記スイッチング回路の前記第1のスイッチングデバイスの切り換えを前記出力ポート内を流れている前記電流の平均値の少なくとも2つの連続サンプルに少なくとも部分的に基づいて制御するように適合される、請求項27または28に記載の電力システム。
  31. 前記N個のスイッチング回路それぞれの前記コントローラの起動時刻は、緩く制御される、請求項30に記載の電力システム。
  32. 前記N個のスイッチング回路のうち少なくとも1つの前記コントローラの起動時刻は、その他のN−1個の前記スイッチング回路の前記コントローラの起動時刻と異なる、請求項30に記載の電力システム。
  33. 前記N個のスイッチング回路それぞれについて、前記コントローラは、前記出力ポート内を流れている前記電流の平均値を周波数において繰り返しサンプリングするように適合され、前記周波数は、前記第1のスイッチングデバイスが前記導電状態と前記非導電状態との間において切り替わる周波数よりも低い、請求項30に記載の電力システム。
  34. 前記N個のスイッチング回路それぞれについて、前記コントローラは、前記出力ポート内を流れている前記電流の平均値を周波数において繰り返しサンプリングするように適合され、前記周波数は、前記第1のスイッチングデバイスが前記導電状態と前記非導電状態との間で切り替わる周波数の10分の1よりも低い、請求項30に記載の電力システム。
  35. 前記N個のスイッチング回路それぞれについて、前記コントローラは、前記出力ポート内を流れている前記電流の平均値を周波数において繰り返しサンプリングするように適合され、前記周波数は、前記出力ポート上の過渡電流偏位が前記出力ポート内を流れている前記電流の平均値の連続サンプル間において整定するくらいに、充分に緩やかである、請求項30に記載の電力システム。
  36. 前記N個のスイッチング回路はそれぞれ、コントローラをさらに含み、前記コントローラは、前記スイッチング回路の前記第1のスイッチングデバイスの切り換えを制御して、前記スイッチング回路の前記入力ポートへと電気的に接続された光起電装置から抽出された電力量を少なくとも実質的に最大化させるように適合される、請求項27に記載の電力システム。
  37. 前記Nスイッチング回路それぞれの前記第1のスイッチングデバイスが前記導電状態と前記非導電状態との間において切り替わる周波数は、緩く制御される、請求項36に記載の電力システム。
  38. 各前記第1のスイッチングデバイスのスイッチング周波数は、各他の前記第1のスイッチングデバイスのスイッチング周波数と異なる、請求項36に記載の電力システム。
  39. 前記光起電装置のうち少なくとも1つは、多接合太陽電池セルの接合部である、請求項27に記載の電力システム。
  40. 前記光起電装置のうち少なくとも1つは、複数の電気的に接続された太陽電池セルである、請求項27に記載の電力システム。
  41. 前記光起電装置のうち少なくとも1つは、電気的に並列接続された複数の太陽電池セルである、請求項27に記載の電力システム。
  42. 前記光起電装置はそれぞれ、光起電パネルの光起電サブモジュールであり、各前記光起電サブモジュールは、電気的に直列接続された複数の太陽電池セルを含む、請求項27に記載の電力システム。
  43. 電力システムであって、
    N個の光起電装置であって、Nは1よりも大きい整数である、光起電装置と、
    N個のスイッチング回路であって、各前記スイッチング回路は、前記N個の光起電装置それぞれに電気的に接続された入力ポートと、出力ポートと、導電状態と非導電状態との間で切り替わるように適合され、これにより前記入力ポートから電力を前記出力ポートへと転送する第1のスイッチングデバイスとを含み、前記N個のスイッチング回路の前記出力ポートは、出力回路を確立するように、負荷へと電気的に直列接続される、スイッチング回路と、
    システム制御デバイスであって、
    前記出力回路に電気的に直列接続されたトランジスタと、
    前記出力回路内を流れる電流の大きさを示す電流感知信号を生成するように構成された電流感知サブシステムと、
    前記トランジスタおよび前記電流感知サブシステムと通信する制御サブシステムであって、前記制御サブシステムは、前記出力回路内を流れる電流を制御するための前記電流感知信号に少なくとも部分的に基づいて前記トランジスタを制御するように構成される、制御サブシステムと、
    を含む、システム制御デバイスと、
    を含む、電力システム。
  44. 前記制御サブシステムは、前記トランジスタを制御して、前記出力回路内の電流を単一の方向のみにおいて流すように動作可能である、請求項43に記載の電力システム。
  45. 前記制御サブシステムは、前記出力回路内を流れる電流の大きさが閾値を超えた場合、少なくとも部分的に前記電流感知信号に基づいて前記トランジスタを制御して、前記出力回路内を流れる電流を遮断するようにさらに構成される、請求項43または44に記載の電力システム。
  46. 前記制御サブシステムは、前記電力システムの特性を監視し、前記特性を外部システムへと送信するようにさらに構成される、請求項43または44に記載の電力システム。
  47. 前記電力システムの前記特性は、少なくとも電気的に直列接続された前記N個のスイッチング回路の前記出力ポート上の電圧である、請求項46に記載の電力システム。
  48. 前記電力システムの前記特性は、前記出力回路内を流れる電流の大きさである、請求項46に記載の電力システム。
  49. 前記電力システムの前記特性は、前記電力システムの1つ以上のコンポーネントの温度である、請求項46に記載の電力システム。
  50. 前記制御サブシステムは、前記トランジスタを変調して、前記電力システムの前記特性を含む通信信号を生成させるように動作可能である、請求項46に記載の電力システム。
  51. 前記N個のスイッチング回路はそれぞれ、コントローラを含み、前記コントローラは、前記スイッチング回路の前記第1のスイッチングデバイスの切り換えを制御して、前記スイッチング回路の前記入力ポートへと電気的に接続された前記N個の光起電装置のうち各1つから抽出された電力量を少なくとも実質的に最大化させるように適合される、請求項43または44に記載の電力システム。
  52. 前記N個の電源のうち少なくとも1つは、多接合太陽電池セルの接合部である、請求項43または44に記載の電力システム。
  53. 電力システムであって、
    電気的に直列接続された第1の電源および第2の電源であって、前記第1の電源は、第1の値を有する最大電流を生成することができ、前記第2の電源は、第2の値を有する最大電流を生成することができ、前記第2の値は前記第1の値よりも小さい、第1の電源および第2の電源と、
    最大出力点追跡を行うことが可能な第1のスイッチング回路および第2のスイッチング回路と、
    を含み、
    前記第1のスイッチング回路および前記第2のスイッチング回路が集合的に動作可能であることにより、前記第1の電源および前記第2の電源双方から抽出された電力量が少なくとも実質的に最大化されるように、前記第1の電源および前記第2の電源ならびに前記第1のスイッチング回路および前記第2のスイッチング回路が電気的に接続される、
    電力システム。
  54. 前記第1の電源および前記第2の電源はそれぞれ、少なくとも1つの光起電装置を含む、請求項53に記載の電力システム。
  55. 前記第1の電源は第1の光起電接合部を含み、前記第2の電源は、電気的に直列接続された第2の光起電接合部および第3の光起電接合部を含む、請求項54に記載の電力システム。
  56. 前記第1のスイッチング回路は、昇圧形トポロジーを有する回路と、前記第1の電源上において電気的に接続された入力ポートとを含む、請求項53または55に記載の電力システム。
  57. 前記第1のスイッチング回路は、前記第1の電源および前記第2の電源の直列組み合わせ上において電気的に接続された出力ポートをさらに含み、
    前記第2のスイッチング回路は、前記第1の電源および前記第2の電源の直列組み合わせ上において電気的に接続された入力ポートを含む、
    請求項56に記載の電力システム。
  58. 前記第2のスイッチング回路は、
    前記第2のスイッチング回路の前記入力ポートを介して電気的に直列接続された第1のスイッチングデバイスおよび第2のスイッチングデバイスと、
    出力ポートと、
    をさらに含み、
    前記第2のスイッチングデバイスはまた、前記出力ポート上において電気的に接続され、前記第1のスイッチングデバイスが前記非導電状態にあるとき、前記第2のスイッチング回路の前記出力ポートを通じた電流経路を提供するように適合され、
    前記第2のスイッチング回路は、前記第2のスイッチング回路の前記出力ポートを含む回路の相互接続インダクタンスを前記第2のスイッチング回路の一次エネルギー貯蔵インダクタンスとして用いる、
    請求項57に記載の電力システム。
  59. 前記第2のスイッチング回路は、バック型トポロジーを有する回路と、入力ポートと、出力ポートとを含み、前記第2のスイッチング回路の前記入力ポートは、前記第1の電源および前記第2の電源の直列組み合わせ上において電気的に接続され、
    前記第1のスイッチング回路は出力ポートをさらに含み、前記出力ポートは、前記第2のスイッチング回路の前記出力ポートと電気的に並列接続される、
    請求項56に記載の電力システム。
  60. 前記第2のスイッチング回路は、バック型トポロジーを有する回路と、入力ポートと、出力ポートとを含み、前記第2のスイッチング回路の前記入力ポートは、前記第2の電源上において電気的に接続され、
    前記第1のスイッチング回路は出力ポートをさらに含み、前記出力ポートは、前記第2のスイッチング回路の前記出力ポートと電気的に直列接続される、
    請求項56に記載の電力システム。
  61. 前記第1のスイッチング回路は、前記第1の電源上において電気的に接続された入力ポートを含むバックブーストトポロジーを有する回路を含む、請求項53または55に記載の電力システム。
  62. 前記第1のスイッチング回路は、前記第2の電源上において電気的に接続された出力ポートをさらに含み、
    前記第2のスイッチング回路は、前記第2の電源上において電気的に接続された入力ポートを含む、
    請求項61に記載の電力システム。
  63. 前記第2のスイッチング回路は、
    前記第2のスイッチング回路の前記入力ポートを介して電気的に直列接続された第1のスイッチングデバイスおよび第2のスイッチングデバイスと、
    出力ポートと、
    をさらに含み、
    前記第2のスイッチングデバイスはまた、前記第2のスイッチング回路の前記出力ポート上において電気的に接続され、前記第1のスイッチングデバイスが前記非導電状態にあるとき、前記出力ポートを通じた電流経路を提供するように適合され、
    前記第2のスイッチング回路は、前記第2のスイッチング回路の前記出力ポートを含む回路の相互接続インダクタンスを前記第2のスイッチング回路の一次エネルギー貯蔵インダクタンスとして用いる、
    請求項62に記載の電力システム。
  64. 前記第1のスイッチング回路は、出力ポートをさらに含み、
    前記第2のスイッチング回路は、前記第2の電源および前記第1のスイッチング回路の前記出力ポートと電気的に直列接続された出力ポートおよび入力ポートを含む、
    請求項61に記載の電力システム。
  65. 前記第2のスイッチング回路は、
    前記第2のスイッチング回路の前記入力ポートを介して電気的に直列接続された第1のスイッチングデバイスおよび第2のスイッチングデバイスと、
    出力ポートと、
    をさらに含み、
    前記第2のスイッチングデバイスはまた、前記第2のスイッチング回路の前記出力ポート上において電気的に接続され、前記第1のスイッチングデバイスが前記非導電状態にあるとき、前記出力ポートを通じた電流経路を提供するように適合され、
    前記第2のスイッチング回路は、前記第2のスイッチング回路の前記出力ポートを含む回路の相互接続インダクタンスを前記第2のスイッチング回路の一次エネルギー貯蔵インダクタンスとして用いる、
    請求項64に記載の電力システム。
  66. 前記第1のスイッチング回路は出力ポートを含み、
    前記第2のスイッチング回路は、バックブースト型トポロジーを有する回路と、前記第1のスイッチング回路の前記出力ポートと電気的に直列接続された出力ポートと、前記第2の電源上において電気的に接続された入力ポートとを含む、
    請求項61に記載の電力システム。
  67. 前記第1のスイッチング回路および前記第2のスイッチング回路はそれぞれ、
    入力ポートと、
    出力ポートと、
    前記入力ポート上において電気的に直列接続された第1のスイッチングデバイスおよび第2のスイッチングデバイスと、
    を含み、
    前記第2のスイッチングデバイスはまた、前記出力ポート上において電気的に接続され、前記第1のスイッチングデバイスが前記非導電状態にあるとき、前記出力ポートを通じた電流経路を提供し、
    前記第1のスイッチング回路の前記入力ポートは、前記第1の電源上において電気的に接続され、
    前記第2のスイッチング回路の前記入力ポートは、前記第2の電源上において電気的に接続され、
    前記第1のスイッチング回路の前記出力ポートは、前記第2のスイッチング回路の前記出力ポートと電気的に直列接続される、
    請求項53または55に記載の電力システム。
  68. 前記第1のスイッチング回路および前記第2のスイッチング回路はそれぞれ、前記第1のスイッチング回路および前記第2のスイッチング回路の前記出力ポートを含む回路のインダクタンスを一次エネルギー貯蔵インダクタンスとして用いる、請求項67に記載の電力システム。
  69. 前記第1の光起電接合部、前記第2の光起電接合部および前記第3の光起電接合部は、共通多接合太陽電池セルの一部である、請求項55に記載の電力システム。
  70. 前記第1のスイッチング回路および前記第2のスイッチング回路はそれぞれ、
    スイッチングデバイスと、
    前記スイッチングデバイスの切り換えを制御して最大出力点追跡を行うように適合されたコントローラと、
    を含み、
    前記第1のスイッチング回路の前記スイッチングデバイスは、前記第2のスイッチング回路の前記スイッチングデバイスに対して異相状態で切り替わる、
    請求項53に記載の電力システム。
  71. 前記第1のスイッチング回路および前記第2のスイッチング回路はそれぞれ、
    スイッチングデバイスと、
    前記スイッチングデバイスの切り換えを制御して最大出力点追跡を行うように適合されたコントローラと、
    を含み、
    前記第1のスイッチング回路および前記第2のスイッチング回路それぞれの前記コントローラの起動時刻は、緩く制御される、
    請求項53に記載の電力システム。
  72. 前記第1のスイッチング回路および前記第2のスイッチング回路はそれぞれ、
    スイッチングデバイスと、
    前記スイッチングデバイスの切り換えを制御して最大出力点追跡を行うように適合されたコントローラと、
    を含み、
    前記第1のスイッチング回路および前記第2のスイッチング回路それぞれの前記スイッチングデバイスのスイッチング周波数は、緩く制御される、
    請求項53に記載の電力システム。
  73. N個の光起電ストリングを含む電力システムであって、Nは1よりも大きい整数であり、各前記光起電ストリングは、複数の光起電装置と、ストリングオプティマイザに電気的に直列接続された出力ポートを備える複数のDC/DC変換器とを含み、各前記DC/DC変換器は、前記複数の光起電装置それぞれから抽出された電力を少なくとも実質的に最大化させるように適合され、各前記ストリングオプティマイザは、各前記ストリングと共通バスとの間のインターフェースを提供するように適合される、電力システム。
  74. 各前記ストリングオプティマイザはブースト変換器を含み、前記ブースト変換器は、各前記ストリングと前記共通バスとの間のインターフェースを提供するように適合される、請求項73に記載の電力システム。
  75. 各前記ブースト変換器は、各前記光起電ストリングの回路の相互接続インダクタンスを前記ブースト変換器の一次エネルギー貯蔵インダクタンスとして用いる、請求項74に記載の電力システム。
  76. 各前記ブースト変換器は、連続導通動作モードで動作するように適合される、請求項74または75に記載の電力システム。
  77. 各前記ブースト変換器は、不連続の導通動作モードで動作するように適合される、請求項74に記載の電力システム。
  78. 各前記ストリングオプティマイザのブースト変換器は、
    前記ストリングオプティマイザの第1の動作モードにおいて、連続導通動作モードで動作するステップと、
    前記ストリングオプティマイザの第2の動作モードにおいて、不連続の導通動作モードで動作するステップと、
    を行うように適合される、請求項74に記載の電力システム。
  79. 前記ブースト変換器のうち少なくとも1つは、多相ブースト変換器である、請求項74に記載の電力システム。
  80. 前記ブースト変換器のうち少なくとも1つは多相ブースト変換器であり、2つ以上の相の前記ブースト変換器のエネルギー貯蔵インダクタは磁気結合される、請求項74に記載の電力システム。
  81. 前記ブースト変換器のうち少なくとも2つのエネルギー貯蔵インダクタは磁気結合される、請求項74に記載の電力システム。
  82. 各前記ストリングオプティマイザは、導電状態と非導電状態との間で切り換えられて、各前記ストリングと前記共通バスとの間のインターフェースを提供するように適合された第1のスイッチングデバイスを含み、各前記第1のスイッチングデバイスは、各他の前記第1のスイッチングデバイスに対して異相状態で切り替わる、請求項73に記載の電力システム。
  83. 各前記ストリングオプティマイザは多相ブースト変換器であり、各前記ブースト変換器について、第1の電力段のスイッチングデバイスは、第2の相のスイッチング段に対して異相状態で切り替わる、請求項73に記載の電力システム。
  84. 各前記多相ブースト変換器の少なくとも2つの前記スイッチングデバイスは、各他の前記多相ブースト変換器の少なくとも2つの前記スイッチングデバイスに対して異相状態で切り替わるように適合される、請求項83に記載の電力システム。
  85. 前記共通バスへと電気的に接続されたインバータをさらに含む、請求項73に記載の電力システム。
  86. 前記インバータは、最大出力点追跡能力を備えない、請求項85に記載の電力システム。
  87. 前記インバータは、グローバル最大出力点追跡能力を備えない、請求項85に記載の電力システム。
  88. 前記N個の光起電ストリングは、太陽の移動を追跡するように動作することが可能である追跡デバイス上に配置される、請求項73に記載の電力システム。
  89. 前記ストリングオプティマイザはそれぞれ、前記追跡デバイスから分離された共通筐体内に収容される、請求項88に記載の電力システム。
  90. 前記複数の光起電装置はそれぞれ、単一の太陽電池セルである、請求項88に記載の電力システム。
  91. 前記N個の光起電ストリングは、少なくとも2つ追跡デバイス間において分散配置され、各前記追跡デバイスは、太陽の移動を追跡するように動作することが可能である、請求項73に記載の電力システム。
  92. 前記複数の光起電装置はそれぞれ、共通光起電パネルの一部である、請求項73に記載の電力システム。
  93. 前記共通バスへと電気的に接続されたさらなる光起電ストリングをさらに含み、前記さらなる光起電ストリングは、さらなるストリングオプティマイザと電気的に直列接続された複数の光起電装置を含み、前記さらなるストリングオプティマイザは、前記さらなる光起電ストリングと前記共通バスとの間のインターフェースを提供するように適合される、請求項73に記載の電力システム。
  94. 各前記ストリングオプティマイザは、前記共通バス上の電圧を調節するように動作可能である、請求項73に記載の電力システム。
  95. 前記ストリングオプティマイザのうち少なくとも1つは、各前記ストリングを流れる電流を調節するように適合される、請求項73に記載の電力システム。
  96. 前記ストリングオプティマイザのうち少なくとも1つは、各前記ストリングを流れる電流を調節して、前記ストリングのうち最も高出力の光起電装置の光生成電流よりも高い電流とするように適合される、請求項95に記載の電力システム。
  97. 前記ストリングオプティマイザのうち少なくとも1つは、各前記ストリングを流れる電流を調節して、太陽の放射照度に応じて少なくとも部分的に調節される電流にするように適合される、請求項95に記載の電力システム。
  98. 前記ストリングオプティマイザのうち少なくとも1つは、各前記ストリングを流れる電流を調節して、前記ストリングの基準光起電装置の光生成電流に基づいて調節される電流にするように適合される、請求項95に記載の電力システム。
  99. 前記ストリングオプティマイザのうち少なくとも1つは、各前記ストリングを流れる電流を調節して、各前記ストリングから前記共通バスへと転送される電力量を少なくとも実質的に最大化させる電流にするように適合される、請求項95に記載の電力システム。
  100. 前記ストリングオプティマイザのうち少なくとも1つは、前記ストリングの前記DC/DC変換器の直列接続出力ポート上の電圧を調節するように適合される、請求項73に記載の電力システム。
  101. 前記ストリングオプティマイザのうち少なくとも1つは、各前記ストリングから前記共通バスへと転送される電力量を少なくとも実質的に最大化させるように動作することが可能である、請求項73に記載の電力システム。
  102. 前記複数のDC/DC変換器はそれぞれ、
    複数の光起電装置のうち各1つへと電気的に接続された入力ポートと、
    前記入力ポート上において電気的に直列接続された第1のスイッチングデバイスおよび第2のスイッチングデバイスと、
    を含み、
    前記第2のスイッチングデバイスはまた、前記DC/DC変換器の前記出力ポート上において電気的に接続され、前記第1のスイッチングデバイスが前記非導電状態にあるとき、前記出力ポートを通じた電流経路を提供する、
    請求項73に記載の電力システム。
  103. 前記複数のDC/DC変換器はそれぞれ、f前記複数のDC/DC変換器の前記出力ポートを含む回路の相互接続インダクタンスを前記DC/DC変換器の一次エネルギー貯蔵インダクタンスとして用いる、請求項102に記載の電力システム。
  104. 前記ストリングオプティマイザのうち少なくとも1つおよび前記DC/DC変換器は、情報を交換するように動作可能である、請求項73に記載の電力システム。
  105. 前記情報は、ストリングオプティマイザからスイッチング回路へのコマンドを含む、請求項104に記載の電力システム。
  106. 前記コマンドは、前記スイッチング回路を起動せよとのコマンド、前記スイッチング回路を停止せよとのコマンド、および前記スイッチング回路をバイパスモードにせよとのコマンドからなる群から選択される、請求項105に記載の電力システム。
  107. 前記情報は、スイッチング回路状態情報およびスイッチング回路不具合情報からなる群から選択された情報を含む、請求項104に記載の電力システム。
  108. N個の光起電ストリングを含む電力システムであって、Nは1よりも大きい整数であり、各前記光起電ストリングは、複数の光起電装置と、ストリングインバータに電気的に直列接続された出力ポートを含む複数のDC/DC変換器とを含み、各前記DC/DC変換器は、前記複数の光起電装置それぞれから抽出された電力を少なくとも実質的に最大化させるように適合され、各前記ストリングインバータは、各前記ストリングと共通交流バスとの間のインターフェースを提供するように適合される、電力システム。
  109. N個のスイッチング回路を含む電力システムであって、Nは1よりも大きい整数であり、各前記スイッチング回路は、入力ポートと、第1の出力端子および第2の出力端子を含む出力ポートと、導電状態と非導電状態との間で切り換えられるように適合された第1のスイッチングデバイスとを含み、前記N個のスイッチング回路の出力ポートは、出力回路を確立するように、負荷と電気的に直列接続され、
    各前記スイッチング回路は、前記スイッチング回路の第1の動作モードにおいて、第1のスイッチングデバイスを前記導電状態と前記非導電状態との間で切り換えて、前記入力ポートからの電力を前記出力ポートへと転送させるように適合され、
    各前記スイッチング回路は、前記スイッチング回路の第2の動作モードにおいて、第1の出力端子および第2の出力端子をシャントさせるように適合される、
    電力システム。
  110. 前記N個のスイッチング回路はそれぞれ、コントローラをさらに含み、前記コントローラは、前記スイッチング回路の前記第1の動作モードにおいて、前記スイッチング回路の前記第1のスイッチングデバイスの切り換えを制御して、前記スイッチング回路の前記入力ポートへと電気的に接続された電源から抽出された電力量を少なくとも実質的に最大化させるように適合される、請求項109に記載の電力システム。
  111. 前記N個のスイッチング回路はそれぞれ、前記スイッチング回路の前記第1の出力端子と前記第2の出力端子との間に電気的に接続された第2のスイッチングデバイスを含み、前記スイッチング回路の前記第2の動作モードにおいて前記導電状態で動作するように適合される、請求項109または110に記載の電力システム。
  112. (1)前記スイッチング回路の前記入力ポート上の電圧が閾値を下回った場合、(2)前記スイッチング回路の前記入力ポート上の電圧が閾値を上回った場合、(3)前記入力ポートから前記スイッチング回路の前記出力ポートへと転送された電力が閾値を下回った場合、(4)前記スイッチング回路の前記入力ポート内を流れている電流の大きさが閾値を下回った場合、(5)前記スイッチング回路の前記第1の出力端子および前記第2の出力端子間を流れている電流の大きさが閾値を超えた場合、および(6)前記スイッチング回路の温度が閾値を超えた場合、からなる群から選択された状況が発生した場合、前記N個のスイッチング回路がそれぞれ、前記第2の動作モードで動作するように適合され得る、請求項109に記載の電力システム。
  113. 電力システムであって、
    光起電装置と、
    スイッチング回路であって、
    前記光起電装置に電気的に接続された入力ポートを含む、
    スイッチング回路と、
    負荷への電気的接続のための出力ポートと、
    導電状態と非導電状態との間で切り替わるように適合され、これにより前記入力ポートから電力を前記出力ポートへと転送する第1のスイッチングデバイスと、
    コントローラであって、前記コントローラは、前記第1のスイッチングデバイスを前記導電状態と前記非導電状態との間で周波数において切り換えるように適合され、前記周波数は、前記負荷へと送達される電力量を少なくとも実質的に最大化させる、コントローラと、
    を含み、
    前記周波数は、200キロヘルツよりも高い、
    電力システム。
  114. 前記入力ポート内を流れるリップル電流は、1つ以上の多層セラミックコンデンサによって主にフィルタリングされる、請求項113に記載の電力システム。
  115. N個の電源から電力を抽出するためのシステムであって、Nは、1よりも大きい整数であり、前記システムは、
    N個のスイッチング回路であって、各前記スイッチング回路は、
    前記N個の電源それぞれへの電気的接続のための入力ポートと、
    負荷への電気的接続のための出力ポートと、
    導電状態と非導電状態との間で切り替わって、前記入力ポートからの電力を前記出力ポートへと転送するように構成された第1のスイッチングデバイスと、
    前記第1のスイッチングデバイスの切り換えを制御して、前記スイッチング回路の入力ポートに電気的に接続された前記N個の電源それぞれから抽出された電力量を少なくとも実質的に最大化させるように構成されたコントローラとを含む、
    スイッチング回路と、
    前記N個のスイッチング回路のうち少なくとも2つの前記出力ポートを直列または並列に電気的に接続させるように構成された少なくとも1つのさらなるスイッチングデバイスと、
    を含む、システム。
  116. 前記N個のスイッチング回路はそれぞれ、バック型トポロジーを有する、請求項115に記載の電力システム。
  117. 前記N個のスイッチング回路はそれぞれ、昇圧形トポロジーを有する、請求項115に記載の電力システム。
  118. 電気的に並列接続されたN個の光起電ストリングを含む電力システムであって、Nは1よりも大きい整数であり、各前記ストリングは、
    複数の光起電装置と、
    複数のスイッチング回路であって、各前記スイッチング回路は、
    前記複数の光起電装置それぞれに電気的に接続された入力ポートと、
    出力ポートと、
    前記入力ポートを介して電気的に直列接続された第1のスイッチングデバイスおよび第2のスイッチングデバイスであって、前記第2のスイッチングデバイスはまた、前記出力ポート上において電気的に接続され、前記第1のスイッチングデバイスが前記非導電状態にあるとき、前記出力ポートを通じた電流経路を提供するように適合される、第1のスイッチングデバイスおよび第2のスイッチングデバイスと、
    を含む、スイッチング回路と、
    を含み、
    前記出力ポートは、前記N個の光起電ストリングそれぞれ内において電気的に直列接続され、
    前記スイッチング回路はそれぞれ、出力ポートを含む回路の相互接続インダクタンスを前記スイッチング回路の一次エネルギー貯蔵インダクタンスとして用いる、
    電力システム。
JP2013524988A 2010-08-18 2011-08-18 電源から電力を抽出するためのスイッチング回路および関連方法 Withdrawn JP2013536511A (ja)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US37501210P 2010-08-18 2010-08-18
US61/375,012 2010-08-18
US13/212,013 US8872384B2 (en) 2010-08-18 2011-08-17 Switching circuits for extracting power from an electric power source and associated methods
US13/211,985 US9035626B2 (en) 2010-08-18 2011-08-17 Switching circuits for extracting power from an electric power source and associated methods
US13/212,013 2011-08-17
US13/211,997 US8946937B2 (en) 2010-08-18 2011-08-17 Switching circuits for extracting power from an electric power source and associated methods
US13/211,997 2011-08-17
US13/211,985 2011-08-17
PCT/US2011/048321 WO2012024537A2 (en) 2010-08-18 2011-08-18 Switching circuits for extracting power from an electric power source and associated methods

Publications (1)

Publication Number Publication Date
JP2013536511A true JP2013536511A (ja) 2013-09-19

Family

ID=45593477

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2013524990A Withdrawn JP2013535949A (ja) 2010-08-18 2011-08-18 電源から電力を抽出するためのスイッチング回路および関連方法
JP2013524989A Withdrawn JP2013536512A (ja) 2010-08-18 2011-08-18 電源から電力を抽出するためのスイッチング回路および関連方法
JP2013524988A Withdrawn JP2013536511A (ja) 2010-08-18 2011-08-18 電源から電力を抽出するためのスイッチング回路および関連方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2013524990A Withdrawn JP2013535949A (ja) 2010-08-18 2011-08-18 電源から電力を抽出するためのスイッチング回路および関連方法
JP2013524989A Withdrawn JP2013536512A (ja) 2010-08-18 2011-08-18 電源から電力を抽出するためのスイッチング回路および関連方法

Country Status (6)

Country Link
US (7) US8872384B2 (ja)
EP (3) EP2606551B1 (ja)
JP (3) JP2013535949A (ja)
CN (3) CN103155349B (ja)
TW (3) TW201230633A (ja)
WO (3) WO2012024537A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015216827A (ja) * 2014-05-07 2015-12-03 照宥能源科技股▲ふん▼有限公司 太陽光遮光回路
KR20230043505A (ko) * 2021-09-24 2023-03-31 부경대학교 산학협력단 양방향 모듈형 dc-ac 멀티레벨 컨버터

Families Citing this family (384)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
WO2008033674A2 (en) 2006-09-15 2008-03-20 Powerprecise Solutions, Inc. High voltage latching and dc restoration isolation and level shifting method and apparatus
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
PL2212983T3 (pl) 2007-10-15 2021-10-25 Ampt, Llc Układy do wysoko wydajnej energii słonecznej
WO2009072076A2 (en) 2007-12-05 2009-06-11 Solaredge Technologies Ltd. Current sensing on a mosfet
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
EP2232690B1 (en) 2007-12-05 2016-08-31 Solaredge Technologies Ltd. Parallel connected inverters
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8111052B2 (en) 2008-03-24 2012-02-07 Solaredge Technologies Ltd. Zero voltage switching
EP2294669B8 (en) 2008-05-05 2016-12-07 Solaredge Technologies Ltd. Direct current power combiner
US8212541B2 (en) 2008-05-08 2012-07-03 Massachusetts Institute Of Technology Power converter with capacitive energy transfer and fast dynamic response
CN101728140B (zh) * 2008-10-27 2012-04-18 国网电力科学研究院 一种高压、超高压大电流断路器
US9401439B2 (en) * 2009-03-25 2016-07-26 Tigo Energy, Inc. Enhanced systems and methods for using a power converter for balancing modules in single-string and multi-string configurations
WO2010120315A1 (en) 2009-04-17 2010-10-21 Ampt, Llc Methods and apparatus for adaptive operation of solar power systems
CN102422429B (zh) 2009-05-22 2014-08-06 太阳能安吉科技有限公司 电隔离的散热接线盒
KR101344024B1 (ko) * 2009-06-18 2013-12-24 한국전자통신연구원 직교 섭동 신호를 사용하는 최대 전력 추종기 및 그것의 최대 전력 추종 제어 방법
US8330439B2 (en) * 2009-06-23 2012-12-11 Intersil Americas Inc. System and method for PFM/PWM mode transition within a multi-phase buck converter
US8314375B2 (en) 2009-08-21 2012-11-20 Tigo Energy, Inc. System and method for local string management unit
DE102009028973A1 (de) * 2009-08-28 2011-03-03 Robert Bosch Gmbh DC/DC-Wandlerschaltung und Batteriesystem
JP5411630B2 (ja) * 2009-09-03 2014-02-12 ローム株式会社 負荷駆動装置
WO2011049985A1 (en) 2009-10-19 2011-04-28 Ampt, Llc Novel solar panel string converter topology
US9012766B2 (en) 2009-11-12 2015-04-21 Silevo, Inc. Aluminum grid as backside conductor on epitaxial silicon thin film solar cells
US9214576B2 (en) 2010-06-09 2015-12-15 Solarcity Corporation Transparent conducting oxide for photovoltaic devices
US9331499B2 (en) 2010-08-18 2016-05-03 Volterra Semiconductor LLC System, method, module, and energy exchanger for optimizing output of series-connected photovoltaic and electrochemical devices
US8872384B2 (en) 2010-08-18 2014-10-28 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods
US9773928B2 (en) 2010-09-10 2017-09-26 Tesla, Inc. Solar cell with electroplated metal grid
US8217503B2 (en) * 2010-09-14 2012-07-10 Alpha & Omega Semiconductor Inc. Package structure for DC-DC converter
US20120068548A1 (en) * 2010-09-16 2012-03-22 Advantest Corporation Wireless power supply apparatus
WO2012037444A2 (en) * 2010-09-17 2012-03-22 Cascade Microtech, Inc. Systems and methods for non-contact power and data transfer in electronic devices
US9800053B2 (en) 2010-10-08 2017-10-24 Tesla, Inc. Solar panels with integrated cell-level MPPT devices
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10230310B2 (en) * 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
US20120153909A1 (en) * 2010-12-16 2012-06-21 International Business Machines Corporation Hybrid fast-slow passgate control methods for voltage regulators employing high speed comparators
US10389235B2 (en) 2011-05-05 2019-08-20 Psemi Corporation Power converter
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
EP2485356A1 (en) * 2011-02-02 2012-08-08 Arista Power, Inc. Energy storage and power management system
FR2976405B1 (fr) * 2011-06-08 2014-04-04 Commissariat Energie Atomique Dispositif de generation d'energie photovoltaique avec gestion individuelle des cellules
US9024478B2 (en) * 2011-03-03 2015-05-05 Massachusetts Institute Of Technology Photovoltaic energy extraction with multilevel output DC-DC switched capacitor converters
US9423448B1 (en) * 2011-03-06 2016-08-23 Sunpower Corporation Testing of module integrated electronics using power reversal
US8988096B1 (en) 2011-03-06 2015-03-24 Sunpower Corporation Flash testing of photovoltaic modules with integrated electronics
US8547076B1 (en) 2011-03-10 2013-10-01 Volterra Semiconductor Corporation Multiphase control systems and associated methods
KR101732984B1 (ko) * 2011-04-12 2017-05-08 엘지전자 주식회사 태양광 모듈 및 그 제어방법
EP3425784B1 (en) 2011-05-05 2023-09-06 PSEMI Corporation Dc-dc converter with modular stages
US10680515B2 (en) 2011-05-05 2020-06-09 Psemi Corporation Power converters with modular stages
US9882471B2 (en) 2011-05-05 2018-01-30 Peregrine Semiconductor Corporation DC-DC converter with modular stages
US9246330B2 (en) 2011-05-06 2016-01-26 First Solar, Inc. Photovoltaic device
US9252462B2 (en) * 2011-05-18 2016-02-02 Samsung Sdi Co., Ltd. Battery management system
US20130009483A1 (en) * 2011-05-31 2013-01-10 Kawate Keith W Power generator module connectivity control
US9054256B2 (en) 2011-06-02 2015-06-09 Solarcity Corporation Tunneling-junction solar cell with copper grid for concentrated photovoltaic application
CN103890956A (zh) * 2011-06-22 2014-06-25 摩根阳光公司 光伏发电系统
US8774974B2 (en) * 2011-07-15 2014-07-08 First Solar, Inc. Real-time photovoltaic power plant control system
US9431825B2 (en) 2011-07-28 2016-08-30 Tigo Energy, Inc. Systems and methods to reduce the number and cost of management units of distributed power generators
US9142965B2 (en) 2011-07-28 2015-09-22 Tigo Energy, Inc. Systems and methods to combine strings of solar panels
US9368965B2 (en) 2011-07-28 2016-06-14 Tigo Energy, Inc. Enhanced system and method for string-balancing
JP5747742B2 (ja) * 2011-08-30 2015-07-15 Jx日鉱日石エネルギー株式会社 太陽光発電を最適化する演算装置、太陽光発電を最適化する方法、太陽光発電システム、及び太陽光発電シミュレーションシステム
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
US8278997B1 (en) * 2011-10-03 2012-10-02 Google Inc. Apparatus and methodology for controlling hot swap MOSFETs
US9837556B2 (en) 2011-10-31 2017-12-05 Volterra Semiconductor LLC Integrated photovoltaic panel with sectional maximum power point tracking
US20130113529A1 (en) * 2011-11-04 2013-05-09 Radiodetection, Ltd. Signal Generator
JP5472282B2 (ja) * 2011-12-19 2014-04-16 日本電気株式会社 無停電電源装置、給電制御方法、プログラム
GB2498365A (en) * 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
US9673732B2 (en) * 2012-01-24 2017-06-06 Infineon Technologies Austria Ag Power converter circuit
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
US8653881B2 (en) 2012-01-31 2014-02-18 Infineon Technologies Austria Ag Half bridge flyback and forward
US8779841B2 (en) * 2012-01-31 2014-07-15 Infineon Technologies Austria Ag Cascode switch with robust turn on and turn off
US9000615B2 (en) * 2012-02-04 2015-04-07 Sunfield Semiconductor Inc. Solar power module with safety features and related method of operation
JP5031130B1 (ja) * 2012-02-17 2012-09-19 三菱電機株式会社 電力変換装置、及び電力変換システム
JP6019614B2 (ja) * 2012-02-28 2016-11-02 オムロン株式会社 蓄電制御装置、蓄電制御装置の制御方法、プログラム、および蓄電システム
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US9184622B2 (en) 2012-04-10 2015-11-10 Blackberry Limited Power pack charging from intermittent sources
CN103378748B (zh) * 2012-04-24 2017-02-15 光宝电子(广州)有限公司 电源供应器及同步整流模块电路板
US9960602B2 (en) 2012-05-02 2018-05-01 The Aerospace Corporation Maximum power tracking among distributed power sources
US9325176B2 (en) * 2012-05-02 2016-04-26 The Aerospace Corporation Optimum power tracking for distributed power sources
TW201349731A (zh) * 2012-05-30 2013-12-01 Delta Electronics Inc 具有發電模組之太陽能發電系統及其輸出電能控制方法
US9472980B2 (en) * 2012-06-01 2016-10-18 Xunwei Zhou Integrated buck/boost battery management for power storage and delivery
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9785172B2 (en) * 2012-06-13 2017-10-10 Indian Institue Of Technology Bombay Switched capacitor DC-DC converter based distributed maximum power point tracking of partially shaded photovoltaic arrays
US9071142B2 (en) * 2012-06-22 2015-06-30 Monolithic Power Systems, Inc. Multi-phase SMPS with load transient control and associated control method
US9269834B2 (en) * 2012-06-29 2016-02-23 Nxp B.V. Photovoltaic module monitoring and control
RU2506633C1 (ru) * 2012-07-26 2014-02-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Устройство хранения данных (варианты)
KR101382848B1 (ko) * 2012-08-07 2014-04-08 기아자동차주식회사 자동차용 램프 혼성 제어 장치 및 방법
US9178356B2 (en) * 2012-08-29 2015-11-03 Robert L. Bryson Low voltage solar electric energy distribution
US9356173B2 (en) * 2012-08-31 2016-05-31 Sandia Corporation Dynamically reconfigurable photovoltaic system
CN104782038B (zh) * 2012-09-28 2020-06-23 南特能源公司 利用电流反馈的下垂补偿
EP2717409A1 (fr) * 2012-10-03 2014-04-09 Belenos Clean Power Holding AG Régulation d'un module électronique adaptateur de tension
US9041288B2 (en) * 2012-10-09 2015-05-26 Ampegon Ag Stabilized high-voltage power supply
US9865754B2 (en) 2012-10-10 2018-01-09 Tesla, Inc. Hole collectors for silicon photovoltaic cells
US9557758B2 (en) 2012-10-16 2017-01-31 Volterra Semiconductor LLC Systems and methods for controlling maximum power point tracking controllers
US9141123B2 (en) 2012-10-16 2015-09-22 Volterra Semiconductor LLC Maximum power point tracking controllers and associated systems and methods
WO2014062169A1 (en) * 2012-10-16 2014-04-24 Volterra Semiconductor Corporation Maximum power point controller transistor driving circuitry and associated methods
TWI469471B (zh) * 2012-11-23 2015-01-11 Univ Nat Sun Yat Sen 具最大功率追蹤之脈衝式充電電路及其充電方法
JP5971175B2 (ja) * 2012-12-13 2016-08-17 トヨタ自動車株式会社 車載用太陽電池の制御装置
US9105765B2 (en) * 2012-12-18 2015-08-11 Enphase Energy, Inc. Smart junction box for a photovoltaic system
US9660639B2 (en) * 2012-12-21 2017-05-23 Gan Systems Inc. Distributed driver circuitry integrated with GaN power transistors
EP2939338A4 (en) * 2012-12-30 2016-11-02 Enphase Energy Inc TRANSFORMER WITH THREE CONNECTORS WITH DUAL INDEPENDENT MAXIMUM POINT TRACKING AND TWO OPERATING MODES
FR3000626B1 (fr) * 2013-01-02 2015-02-27 Renault Sa Systeme comprenant une batterie formee de modules de batterie, et procede de connexion ou de deconnexion d'un module de batterie correspondant
US9412884B2 (en) 2013-01-11 2016-08-09 Solarcity Corporation Module fabrication of solar cells with low resistivity electrodes
US10074755B2 (en) 2013-01-11 2018-09-11 Tesla, Inc. High efficiency solar panel
US9219174B2 (en) 2013-01-11 2015-12-22 Solarcity Corporation Module fabrication of solar cells with low resistivity electrodes
TWI458990B (zh) * 2013-01-24 2014-11-01 Cyrustek Corp 具有lcr量測功能之數位電錶
US8988059B2 (en) 2013-01-28 2015-03-24 Qualcomm Incorporated Dynamic switch scaling for switched-mode power converters
EP2768102B1 (en) * 2013-02-13 2016-02-10 General Electric Technology GmbH Circuit interruption device
EP2775531A1 (en) * 2013-03-07 2014-09-10 ABB Oy Method and arrangement for operating photovoltaic system and photovoltaic system
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9148054B2 (en) * 2013-03-14 2015-09-29 Volterra Semiconductor LLC Voltage regulators with kickback protection
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US8619445B1 (en) 2013-03-15 2013-12-31 Arctic Sand Technologies, Inc. Protection of switched capacitor power converter
US9397497B2 (en) * 2013-03-15 2016-07-19 Ampt, Llc High efficiency interleaved solar power supply system
EP2779251B1 (en) 2013-03-15 2019-02-27 Solaredge Technologies Ltd. Bypass mechanism
CN105229914B (zh) * 2013-03-15 2019-04-19 Ampt有限公司 高效输送太阳能电力的方法和高效太阳能电力系统
US9219369B2 (en) * 2013-03-15 2015-12-22 Qualcomm Incorporated Multiphase charger
WO2014168911A1 (en) * 2013-04-09 2014-10-16 Massachusetts Institute Of Technology Power conservation with high power factor
US20140306542A1 (en) * 2013-04-11 2014-10-16 Draker, Inc. Switch Disconnect Circuit for Solar Arrays
WO2014169292A2 (en) * 2013-04-13 2014-10-16 Solexel, Inc. Solar photovoltaic module power control and status monitoring system utilizing laminate-embedded remote access module switch
US20140320029A1 (en) * 2013-04-29 2014-10-30 Zeta Far East Limited Power converter circuit and solar power system having same
US9231476B2 (en) * 2013-05-01 2016-01-05 Texas Instruments Incorporated Tracking energy consumption using a boost-buck technique
US20150101761A1 (en) 2013-05-12 2015-04-16 Solexel, Inc. Solar photovoltaic blinds and curtains for residential and commercial buildings
US9748324B2 (en) * 2013-05-21 2017-08-29 Taiwan Semiconductor Manufacturing Co., Ltd. Method of fabricating magnetic core inductors for an integrated voltage regulator
WO2014188633A1 (ja) * 2013-05-23 2014-11-27 日本電気株式会社 通信システム、電力供給制御方法および電力供給制御非一時的なコンピュータ可読媒体
JP6122701B2 (ja) * 2013-06-06 2017-04-26 本田技研工業株式会社 電源装置
CN104242605B (zh) * 2013-06-07 2016-08-10 台达电子工业股份有限公司 均流母排
JP5618023B1 (ja) * 2013-06-11 2014-11-05 住友電気工業株式会社 インバータ装置
US9372210B1 (en) * 2013-06-20 2016-06-21 Silego Technology, Inc. Dynamic power FET switching
US9041433B2 (en) 2013-06-21 2015-05-26 Infineon Technologies Austria Ag System and method for driving transistors
JP6147112B2 (ja) * 2013-06-25 2017-06-14 ローム株式会社 ワイヤレス送電装置およびその制御方法
TWI470396B (zh) 2013-06-26 2015-01-21 Ind Tech Res Inst 功率點追蹤方法與裝置
KR101452776B1 (ko) * 2013-07-10 2014-12-17 엘에스산전 주식회사 태양광 시스템
TWI497889B (zh) * 2013-07-23 2015-08-21 Leadtrend Tech Corp 用以降低電源轉換器的觸碰電流的控制電路及其操作方法
CN104377979B (zh) * 2013-08-14 2018-03-16 南京博兰得电子科技有限公司 逆变器及其供电方法与应用
CN103516305B (zh) * 2013-08-28 2015-10-07 浙江工业大学 含三绕组耦合电感的光伏阵列mppt接口电路
WO2015069516A1 (en) 2013-10-29 2015-05-14 Massachusetts Institute Of Technology Switched-capacitor split drive transformer power conversion circuit
US9799779B2 (en) * 2013-11-08 2017-10-24 The Board Of Trustees Of The University Of Illinois Systems and methods for photovoltaic string protection
US9455703B2 (en) * 2013-11-15 2016-09-27 Eaglepicher Technologies, Llc FET array bypass module
DE102013112616B4 (de) * 2013-11-15 2021-01-14 Hans Eisele GmbH Photovoltaikanlage und Nachrüstsatz für eine solche
KR102102750B1 (ko) * 2013-11-27 2020-05-29 한국전자통신연구원 최대 전력 추종 장치 및 방법
CN103647501B (zh) * 2013-12-09 2016-06-15 湖南大学 一种光伏电源结构及最大功率跟踪控制方法
WO2015090425A1 (en) * 2013-12-19 2015-06-25 Advantest Corporation A power supply device, a test equipment comprising a power supply device and a method for operating a power supply device
US20150188019A1 (en) * 2013-12-27 2015-07-02 Anthony Paul Corrado Device, System and Method For Converting Solar Thermal Energy To Electricity By Thermoelectric Means
TW201526491A (zh) 2013-12-31 2015-07-01 Ibm 電源供應系統的效率調整
TWI497867B (zh) * 2014-02-24 2015-08-21 台達電子工業股份有限公司 輸出電源保護裝置及其操作方法
DE102014002592A1 (de) * 2014-02-24 2015-08-27 Karlsruher Institut für Technologie Schaltungsanordnungen und Verfahren zum Abgreifen elektrischer Leistung von mehreren Modulsträngen
US9977452B2 (en) * 2014-03-07 2018-05-22 Board Of Trustees Of The University Of Alabama Multi-input or multi-output energy system architectures and control methods
JP5941084B2 (ja) * 2014-03-18 2016-06-29 トヨタ自動車株式会社 電源システム
US10520558B2 (en) 2016-01-21 2019-12-31 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with nitrogen-vacancy center diamond located between dual RF sources
US9829545B2 (en) 2015-11-20 2017-11-28 Lockheed Martin Corporation Apparatus and method for hypersensitivity detection of magnetic field
US9845153B2 (en) 2015-01-28 2017-12-19 Lockheed Martin Corporation In-situ power charging
US10006973B2 (en) 2016-01-21 2018-06-26 Lockheed Martin Corporation Magnetometer with a light emitting diode
US9910104B2 (en) 2015-01-23 2018-03-06 Lockheed Martin Corporation DNV magnetic field detector
US10088452B2 (en) 2016-01-12 2018-10-02 Lockheed Martin Corporation Method for detecting defects in conductive materials based on differences in magnetic field characteristics measured along the conductive materials
US10012704B2 (en) 2015-11-04 2018-07-03 Lockheed Martin Corporation Magnetic low-pass filter
US9853837B2 (en) 2014-04-07 2017-12-26 Lockheed Martin Corporation High bit-rate magnetic communication
US9835693B2 (en) 2016-01-21 2017-12-05 Lockheed Martin Corporation Higher magnetic sensitivity through fluorescence manipulation by phonon spectrum control
US9557391B2 (en) 2015-01-23 2017-01-31 Lockheed Martin Corporation Apparatus and method for high sensitivity magnetometry measurement and signal processing in a magnetic detection system
US9910105B2 (en) 2014-03-20 2018-03-06 Lockheed Martin Corporation DNV magnetic field detector
US10168393B2 (en) 2014-09-25 2019-01-01 Lockheed Martin Corporation Micro-vacancy center device
US9590601B2 (en) 2014-04-07 2017-03-07 Lockheed Martin Corporation Energy efficient controlled magnetic field generator circuit
US9638821B2 (en) 2014-03-20 2017-05-02 Lockheed Martin Corporation Mapping and monitoring of hydraulic fractures using vector magnetometers
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
EP3736956A1 (en) * 2014-04-16 2020-11-11 Apple Inc. Drive scheme for weakly coupled coils
US10770893B2 (en) * 2014-05-02 2020-09-08 The Governing Council Of The University Of Toronto Multi-port converter structure for DC/DC power conversion
US10291123B2 (en) * 2014-05-02 2019-05-14 The Governing Council Of The University Of Toronto Multi-port converter structure for DC/DC power conversion
US9774256B2 (en) * 2014-05-07 2017-09-26 Solantro Semiconductor Corp. Dual source DC to DC converter
MX363997B (es) * 2014-06-06 2019-04-09 Stephen Davies Kevin Metodo y sistema de conversion de energia.
US10014718B2 (en) * 2014-06-26 2018-07-03 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power source
WO2016004427A1 (en) 2014-07-03 2016-01-07 Massachusetts Institute Of Technology High-frequency, high-density power factor correction conversion for universal input grid interface
US10309012B2 (en) 2014-07-03 2019-06-04 Tesla, Inc. Wafer carrier for reducing contamination from carbon particles and outgassing
US9287701B2 (en) 2014-07-22 2016-03-15 Richard H. Sherratt and Susan B. Sherratt Revocable Trust Fund DC energy transfer apparatus, applications, components, and methods
JP6468758B2 (ja) * 2014-08-27 2019-02-13 ルネサスエレクトロニクス株式会社 半導体装置
US9812954B1 (en) * 2014-09-17 2017-11-07 University Of South Florida Secure converter-gating, reconfiguration, and regulation
US9748837B1 (en) * 2014-09-17 2017-08-29 University Of South Florida Time delayed converter reshuffling
DE102014113795A1 (de) * 2014-09-24 2016-03-24 Sma Solar Technology Ag Verfahren zur Integration eines Wechselrichters in ein drahtloses lokales Kommunikationsnetzwerk und dazu geeigneter Wechselrichter
IN2014MU03563A (ja) * 2014-11-12 2015-07-17 Star Engineers I Pvt Ltd
US9952073B2 (en) 2014-11-19 2018-04-24 Bode Energy Equipment Co., Ltd. Solar battery wireless integrated load cell and inclinometer
US10218307B2 (en) 2014-12-02 2019-02-26 Tigo Energy, Inc. Solar panel junction boxes having integrated function modules
US9812868B2 (en) * 2014-12-03 2017-11-07 Sunfield Semiconductor Inc. Smart junction box for photovoltaic solar power modules with safe mode and related method of operation
CN104470133B (zh) * 2014-12-05 2017-11-03 天津光电华典科技有限公司 一种太阳能路灯智能控制系统及其充放电控制方法
US9899546B2 (en) 2014-12-05 2018-02-20 Tesla, Inc. Photovoltaic cells with electrodes adapted to house conductive paste
KR101661982B1 (ko) * 2014-12-22 2016-10-04 엘지전자 주식회사 조명 디바이스
EP3250887A4 (en) 2015-01-28 2018-11-14 Lockheed Martin Corporation Magnetic navigation methods and systems utilizing power grid and communication network
US20180013023A1 (en) * 2015-01-30 2018-01-11 Ob Realty, Llc Shade management of solar cells and solar cell regions
WO2016126435A1 (en) 2015-02-04 2016-08-11 Lockheed Martin Corporation Apparatus and method for estimating absolute axes' orientations for a magnetic detection system
GB2551090A (en) 2015-02-04 2017-12-06 Lockheed Corp Apparatus and method for recovery of three dimensional magnetic field from a magnetic detection system
US10044264B2 (en) * 2015-05-20 2018-08-07 Microchip Technology Incorporated Microcontroller with average current measurement circuit using voltage-to-current converters
US11303126B1 (en) * 2015-05-22 2022-04-12 Michael Lee Staver Thermal management of power delivery
KR101702871B1 (ko) * 2015-06-02 2017-02-06 숭실대학교산학협력단 부스트 포워드 차동전력조절기 및 그 구동방법
US9812867B2 (en) * 2015-06-12 2017-11-07 Black Night Enterprises, Inc. Capacitor enhanced multi-element photovoltaic cell
US10177661B2 (en) 2015-06-15 2019-01-08 Futurewei Technologies, Inc. Control method for buck-boost power converters
CN106329898B (zh) 2015-06-19 2021-09-14 康普技术有限责任公司 一种用于软启动电路的快速放电电路及放电方法
US10187115B2 (en) 2015-07-13 2019-01-22 Maxim Integrated Products, Inc. Systems and methods for DC power line communication in a photovoltaic system
US10348095B2 (en) 2015-07-13 2019-07-09 Maxim Integrated Products, Inc. Switching circuits having multiple operating modes and associated methods
US10230427B2 (en) 2015-07-13 2019-03-12 Maxim Integrated Products, Inc. Systems and methods for DC power line communication in a photovoltaic system
EP3295769A4 (en) * 2015-07-27 2018-12-05 Abonyi, István Method for optimizing efficiency of optical semiconductor devices
CN105099363B (zh) * 2015-08-07 2017-07-14 浙江昱能科技有限公司 一种用于光伏系统的电力转换装置
ITUB20153094A1 (it) * 2015-08-12 2017-02-12 Eggtronic Eng S R L Metodo ed apparato per trasferire potenza elettrica e dati
US9983076B2 (en) 2015-08-18 2018-05-29 Bode Energy Equipment Co., Ltd. Solar battery wireless load cell adapter
US20170063094A1 (en) * 2015-08-27 2017-03-02 Sunpower Corporation Power processing
US9693404B1 (en) * 2015-10-07 2017-06-27 Universal Lighting Technologies, Inc. Negative current sensing method for multi-channel LED driver
US10003300B2 (en) * 2015-10-09 2018-06-19 Sunpower Corporation Photovoltaic management and module-level power electronics
US9761744B2 (en) 2015-10-22 2017-09-12 Tesla, Inc. System and method for manufacturing photovoltaic structures with a metal seed layer
US20170126131A1 (en) * 2015-10-30 2017-05-04 Tf Semiconductor Solutions, Inc. Dual low-voltage gate drivers for battery-powered applications
EP3166194A1 (en) * 2015-11-05 2017-05-10 Philips Lighting Holding B.V. A driving circuit driving arrangement and driving method, suitable for grid feeding
US9923485B2 (en) * 2015-11-05 2018-03-20 Futurewei Technologies, Inc. Multi-channel inverter systems
WO2017087013A1 (en) 2015-11-20 2017-05-26 Lockheed Martin Corporation Apparatus and method for closed loop processing for a magnetic detection system
WO2017095454A1 (en) 2015-12-01 2017-06-08 Lockheed Martin Corporation Communication via a magnio
TWI568162B (zh) * 2015-12-18 2017-01-21 群光電能科技股份有限公司 電力控制模組、電源供應器及電力控制方法
TWI550380B (zh) * 2015-12-21 2016-09-21 新唐科技股份有限公司 用於能量採集設備之功率最佳化裝置及方法
US9842956B2 (en) 2015-12-21 2017-12-12 Tesla, Inc. System and method for mass-production of high-efficiency photovoltaic structures
CN105589382B (zh) * 2015-12-22 2019-02-26 江阴市辉龙电热电器有限公司 一种加热器报警及控制模块
DE102016100758A1 (de) * 2016-01-18 2017-07-20 Sma Solar Technology Ag Trennvorrichtung für einen photovoltaischen String, Solaranlage und Betriebsverfahren für eine Solaranlage mit photovoltaischem String
AU2016387312A1 (en) 2016-01-21 2018-09-06 Lockheed Martin Corporation Magnetometer with light pipe
WO2017127098A1 (en) 2016-01-21 2017-07-27 Lockheed Martin Corporation Diamond nitrogen vacancy sensed ferro-fluid hydrophone
WO2017127081A1 (en) 2016-01-21 2017-07-27 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with circuitry on diamond
WO2017127079A1 (en) 2016-01-21 2017-07-27 Lockheed Martin Corporation Ac vector magnetic anomaly detection with diamond nitrogen vacancies
AU2016388316A1 (en) 2016-01-21 2018-09-06 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with common RF and magnetic fields generator
US11209789B2 (en) 2016-02-16 2021-12-28 Siemens Aktiengesellschaft Safety switching device and safety-related device
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
CN107153212B (zh) 2016-03-03 2023-07-28 太阳能安吉科技有限公司 用于映射发电设施的方法
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
CN105680463B (zh) * 2016-03-23 2020-07-24 中国电力科学研究院 一种光储一体化发电系统优化节能控制方法
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
DE102017206254B4 (de) * 2016-04-13 2024-07-11 Dialog Semiconductor (Uk) Limited DC-DC-Umwandlung für Mehrzellen-Batterien
US10115838B2 (en) 2016-04-19 2018-10-30 Tesla, Inc. Photovoltaic structures with interlocking busbars
US10886833B2 (en) 2016-05-24 2021-01-05 Fairchild Semiconductor Corporation Inductor current emulation for output current monitoring
EP3252909B1 (en) * 2016-05-25 2020-01-01 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US10371765B2 (en) 2016-07-11 2019-08-06 Lockheed Martin Corporation Geolocation of magnetic sources using vector magnetometer sensors
US10571530B2 (en) 2016-05-31 2020-02-25 Lockheed Martin Corporation Buoy array of magnetometers
US10145910B2 (en) 2017-03-24 2018-12-04 Lockheed Martin Corporation Photodetector circuit saturation mitigation for magneto-optical high intensity pulses
US10345395B2 (en) 2016-12-12 2019-07-09 Lockheed Martin Corporation Vector magnetometry localization of subsurface liquids
US10359479B2 (en) 2017-02-20 2019-07-23 Lockheed Martin Corporation Efficient thermal drift compensation in DNV vector magnetometry
US10338163B2 (en) 2016-07-11 2019-07-02 Lockheed Martin Corporation Multi-frequency excitation schemes for high sensitivity magnetometry measurement with drift error compensation
US10408890B2 (en) 2017-03-24 2019-09-10 Lockheed Martin Corporation Pulsed RF methods for optimization of CW measurements
US10677953B2 (en) 2016-05-31 2020-06-09 Lockheed Martin Corporation Magneto-optical detecting apparatus and methods
US10281550B2 (en) 2016-11-14 2019-05-07 Lockheed Martin Corporation Spin relaxometry based molecular sequencing
US10317279B2 (en) 2016-05-31 2019-06-11 Lockheed Martin Corporation Optical filtration system for diamond material with nitrogen vacancy centers
US10345396B2 (en) 2016-05-31 2019-07-09 Lockheed Martin Corporation Selected volume continuous illumination magnetometer
US10527746B2 (en) 2016-05-31 2020-01-07 Lockheed Martin Corporation Array of UAVS with magnetometers
US10330744B2 (en) 2017-03-24 2019-06-25 Lockheed Martin Corporation Magnetometer with a waveguide
US10228429B2 (en) 2017-03-24 2019-03-12 Lockheed Martin Corporation Apparatus and method for resonance magneto-optical defect center material pulsed mode referencing
US20170343621A1 (en) 2016-05-31 2017-11-30 Lockheed Martin Corporation Magneto-optical defect center magnetometer
US10274550B2 (en) 2017-03-24 2019-04-30 Lockheed Martin Corporation High speed sequential cancellation for pulsed mode
EP3472858B1 (en) 2016-06-15 2022-01-12 Watlow Electric Manufacturing Company Power converter for a thermal system
CN106452137B (zh) * 2016-07-12 2018-08-07 艾思玛新能源技术(江苏)有限公司 一种提高多路mppt逆变器转换效率的控制方法
JP6486870B2 (ja) * 2016-08-18 2019-03-20 エーエムピーティー, エルエルシー 高効率インターリーブ太陽電力供給システム
US11196357B1 (en) * 2016-08-30 2021-12-07 Uncharted Power, Inc. Fully integrated triboelectric energy harvesting system
JP6729196B2 (ja) * 2016-08-31 2020-07-22 日産自動車株式会社 電力変換装置
US10147994B2 (en) * 2016-09-23 2018-12-04 Skyworks Solutions, Inc. Coupler circuit
US10819139B2 (en) 2016-09-29 2020-10-27 Hewlett Packard Enterprise Development Lp Power supply including logic circuit
JP6531745B2 (ja) * 2016-10-27 2019-06-19 株式会社豊田中央研究所 電源装置及び電源装置の制御方法
WO2018088005A1 (ja) * 2016-11-14 2018-05-17 オリンパス株式会社 撮像素子および内視鏡
US10153661B2 (en) * 2016-11-28 2018-12-11 Texas Instruments Incorporated Methods and apparatus to increase efficiency for wireless power transfer
US10571487B2 (en) 2016-11-30 2020-02-25 Formfactor Beaverton, Inc. Contact engines, probe head assemblies, probe systems, and associated methods for on-wafer testing of the wireless operation of a device under test
US10500966B2 (en) * 2016-12-01 2019-12-10 Ford Global Technologies, Llc Adaptive boost voltage for hybrid vehicle operation
US10033297B2 (en) * 2016-12-14 2018-07-24 Infineon Technologies Ag Rectifier device
CA3045450A1 (en) 2016-12-22 2018-06-28 Commscope Technologies Llc Power source selection
US20180183241A1 (en) * 2016-12-23 2018-06-28 Sunpower Corporation Filter component reduction
US10230362B2 (en) * 2016-12-23 2019-03-12 Microsoft Technology Licensing, Llc Enhanced resonant circuit amplifier
US10186208B2 (en) 2017-01-09 2019-01-22 Samsung Display Co., Ltd. Low voltage display driver
CN108336753B (zh) * 2017-01-20 2023-01-06 丰郅(上海)新能源科技有限公司 实现输出功率最大化的光伏发电系统及方法
CN106712716B (zh) * 2017-02-10 2019-02-01 阳光电源股份有限公司 一种光伏组件的iv曲线扫描方法及优化器
US10665743B2 (en) 2017-02-16 2020-05-26 Futurewei Technologies, Inc. Distributed/central optimizer architecture
CN110192316B (zh) * 2017-03-03 2022-12-27 松下知识产权经营株式会社 电力传输系统
JP6967747B2 (ja) * 2017-03-03 2021-11-17 パナソニックIpマネジメント株式会社 電力伝送システム
DE102017205524A1 (de) * 2017-03-08 2018-09-13 Siemens Aktiengesellschaft Photovoltaikeinrichtung
US10338164B2 (en) 2017-03-24 2019-07-02 Lockheed Martin Corporation Vacancy center material with highly efficient RF excitation
US10459041B2 (en) 2017-03-24 2019-10-29 Lockheed Martin Corporation Magnetic detection system with highly integrated diamond nitrogen vacancy sensor
US10371760B2 (en) 2017-03-24 2019-08-06 Lockheed Martin Corporation Standing-wave radio frequency exciter
US10379174B2 (en) 2017-03-24 2019-08-13 Lockheed Martin Corporation Bias magnet array for magnetometer
US10666065B2 (en) * 2017-03-29 2020-05-26 Lenovo (Singapore) Pte. Ltd. Regulating battery cells
US10333314B2 (en) * 2017-04-17 2019-06-25 Futurewei Technologies, Inc. Multiple buck stage single boost stage optimizer
US20180309301A1 (en) * 2017-04-21 2018-10-25 Fan Wang Solar array communications
US10554050B2 (en) 2017-04-21 2020-02-04 Futurewei Technologies, Inc. Method and apparatus for controlling solar power systems
EP3619545A4 (en) * 2017-05-03 2021-01-20 Qualitau Inc. SIGNAL DISTRIBUTION DEVICE
US10312724B2 (en) * 2017-05-19 2019-06-04 Nxp B.V. Implementation of high-voltage direct-charging 2:1 switched-capacitor converter for battery charging of electronic devices
US10468898B2 (en) 2017-05-19 2019-11-05 Nxp B.V. Implementation of high efficiency battery charger for electronic devices
WO2018222320A1 (en) * 2017-05-30 2018-12-06 Sigmagen, Inc. Distributed multi-modal power maximizing integrated circuit for solar photovoltaic modules
CN109039079B (zh) * 2017-06-09 2020-09-11 台达电子工业股份有限公司 直流转直流的转换器电路及其电路板布局结构
US10601325B2 (en) * 2017-06-09 2020-03-24 Delta Electronics, Inc. DC-to-dC converter circuit and circuit board layout structure for the same
CN109245712A (zh) * 2017-07-03 2019-01-18 北京信邦同安电子有限公司 太阳能组件及其分体式功率优化接线盒
CN109217806A (zh) * 2017-07-03 2019-01-15 北京信邦同安电子有限公司 太阳能组件的分体式功率优化模组
JP6380623B1 (ja) 2017-07-11 2018-08-29 オムロン株式会社 Dc/dcコンバータ、パワーコンディショナ、及び電源システム
CN107565600B (zh) * 2017-09-15 2020-04-03 华为数字技术(苏州)有限公司 光伏功率优化器及其控制方法、装置、光伏发电系统
US10672919B2 (en) 2017-09-19 2020-06-02 Tesla, Inc. Moisture-resistant solar cells for solar roof tiles
US10491121B2 (en) 2017-10-30 2019-11-26 Renesas Electronics America Inc. Window comparator structure for low power hysteretic buck-boost DC-DC controller
CN109787269B (zh) * 2017-11-13 2022-12-02 丰郅(上海)新能源科技有限公司 光伏组件快速关断系统及关断后的重启方法
DE102017127466A1 (de) * 2017-11-21 2019-05-23 Sma Solar Technology Ag Schaltungsanordnung zur Vermeidung der Degradation von Solarmodulen, Solarmodul und Photovoltaikanlage
US11031782B2 (en) 2017-11-29 2021-06-08 Mark Matyac Photovoltaic transfer switch with non-essential load cutoff
US10498166B2 (en) 2017-11-29 2019-12-03 Mark Matyac Method and apparatus for switching a load between two power sources
US20190190377A1 (en) * 2017-12-20 2019-06-20 Qualcomm Incorporated Voltage Regulation with Frequency Control
US10367411B2 (en) * 2017-12-20 2019-07-30 Analog Devices Global Unlimited Company Interleaved boost converter with holdup time extension
CN109962621B (zh) 2017-12-22 2020-10-27 魏主祐 电源转换装置
CN109996375B (zh) * 2017-12-29 2023-06-20 联合汽车电子有限公司 转向灯跛行装置
US11190128B2 (en) 2018-02-27 2021-11-30 Tesla, Inc. Parallel-connected solar roof tile modules
CN110233515B (zh) * 2018-03-06 2024-04-09 中移物联网有限公司 一种按压发电的能量存储电路及能量存储方法
TWI742257B (zh) * 2018-03-16 2021-10-11 力智電子股份有限公司 脈寬調變控制器及第三態電壓產生方法
US10752116B2 (en) * 2018-03-16 2020-08-25 Ford Global Technologies, Llc Vehicle backup electrical power system
CN108551165A (zh) * 2018-03-28 2018-09-18 国网河南省电力公司郑州供电公司 10kV配电网保护定值智能化整定计算自动识别方法
CN109327044B (zh) 2018-04-23 2021-07-09 矽力杰半导体技术(杭州)有限公司 功率转换电路、逆变电路、光伏发电系统及其控制方法
US10926346B2 (en) * 2018-06-20 2021-02-23 Antaya Technologies Corporation Resistance soldering system
US10516271B2 (en) * 2018-06-29 2019-12-24 LT Lighting (Taiwan) Corp. Single-phase energy utilization tracking inverter
US11152863B2 (en) * 2018-07-18 2021-10-19 Indian Institute Of Technology Bombay Method for controlling extraction of power from multiple photo voltaic (PV) arrays and system thereof
TWI662764B (zh) * 2018-08-07 2019-06-11 技嘉科技股份有限公司 具有智能充電功能的主機板
TWI673612B (zh) 2018-08-07 2019-10-01 技嘉科技股份有限公司 具有充電功能的主機板
WO2020043258A1 (en) * 2018-08-31 2020-03-05 Aalborg Universitet Flexible and efficient switched string converter
CN109167507B (zh) * 2018-09-30 2020-12-18 南京南瑞继保电气有限公司 一种多电平换流器子模块冗余供能电路及控制方法
US10666147B1 (en) * 2018-11-14 2020-05-26 Navitas Semiconductor, Inc. Resonant converter control based on zero current detection
US10491129B1 (en) * 2018-11-29 2019-11-26 International Business Machines Corporation Power converter with switchable topology
CN109390965A (zh) * 2018-12-12 2019-02-26 西安西电电力系统有限公司 柔直换流阀功率旁路控制装置
CN111383891B (zh) * 2018-12-29 2023-03-10 中微半导体设备(上海)股份有限公司 用于半导体处理设备的温度控制装置及其温度控制方法
CN110011549A (zh) * 2019-01-21 2019-07-12 关键禾芯科技股份有限公司 调压整流电路系统
CN109765960B (zh) * 2019-03-04 2020-08-28 上海数明半导体有限公司 最大功率追踪的发电装置与系统
CN113875123A (zh) * 2019-03-18 2021-12-31 提升太阳能公司 用于功率管理的方法和系统
CN109888768A (zh) * 2019-03-21 2019-06-14 深圳供电局有限公司 接口装置以及电源系统
EP3859932B1 (en) * 2019-03-29 2023-05-10 Huawei Digital Power Technologies Co., Ltd. Photovoltaic converter module string, control method, and system
US11848581B2 (en) * 2019-06-14 2023-12-19 X-wave Innovations, Inc. Source bootstrap power conversion for the safe and efficient interconnection of homogeneous or heterogeneous energy storage modules
US10839918B1 (en) * 2019-06-24 2020-11-17 Sandisk Technologies Llc Boost converter in memory chip
DE102019210793A1 (de) * 2019-07-22 2021-01-28 Robert Bosch Gmbh Elektrisches Energiespeichersystem und Verfahren zu dessen Betreiben
CN110401329B (zh) * 2019-07-26 2021-07-20 成都芯源系统有限公司 含菊花链架构的多相开关变换器及其故障保护方法
CN110445381B (zh) * 2019-07-26 2021-07-16 成都芯源系统有限公司 含菊花链架构的多相开关变换器及其切相控制方法
CN110365017B (zh) * 2019-08-06 2022-12-13 山东科汇电力自动化股份有限公司 一种应用于中低压配电网的配电终端拓扑网络生成方法
US10812069B1 (en) * 2019-08-06 2020-10-20 Baker Hughes, A Ge Company, Llc Isolated switch driving circuit
CN110601521A (zh) * 2019-09-03 2019-12-20 中电普瑞科技有限公司 一种电力电子变压器的拓扑结构及其控制方法
US10924012B1 (en) 2019-09-27 2021-02-16 Apple Inc. Power converter with high duty cycle compensation
US11251749B2 (en) * 2019-10-16 2022-02-15 Tata Consultancy Services Limited Methods and systems for fault detection, diagnosis and localization in solar panel network
CN110867846B (zh) * 2019-10-25 2021-12-17 中国科学院电工研究所 具有功率平衡器的大型光伏直流串联升压并网系统
US20210126471A1 (en) * 2019-10-28 2021-04-29 Modulaire Power System Private Limited System and method for managing charge control of a battery array
CN110854920B (zh) * 2019-12-14 2023-07-04 大连海事大学 一种光伏发电并联控制器装置
CN111030248A (zh) * 2019-12-30 2020-04-17 重庆国翰能源发展有限公司 一种电动汽车大功率柔性分配群充系统
CN111049367B (zh) * 2019-12-31 2021-09-10 荣信汇科电气股份有限公司 一种柔性直流输电功率单元可靠旁路装置及旁路方法
US20230085253A1 (en) * 2020-01-21 2023-03-16 The Trustees Of Dartmouth College Sequential electrical driving circuits and associated methods
CN111313677B (zh) * 2020-04-01 2021-08-27 南通大学 一种同步工作型SiC MOSFET Boost直流-直流变换器死区设置方法
KR20210158254A (ko) * 2020-06-23 2021-12-30 삼성전자주식회사 Led 패키지 및 이를 포함하는 디스플레이 장치
CN112003358B (zh) * 2020-07-15 2022-04-05 宁波大学 一种可同步提取的多输入环境能量收集电路
JP7377177B2 (ja) * 2020-07-31 2023-11-09 高周波熱錬株式会社 電源装置
CN114123735B (zh) * 2020-08-31 2024-05-03 华为数字能源技术有限公司 一种串并联变换器保护系统、控制器及变换器
US11420523B2 (en) * 2020-09-25 2022-08-23 GM Global Technology Operations LLC Enhanced electric drive vehicle operation via pulse width modulation (PWM) type and frequency control
CN112234818A (zh) * 2020-09-29 2021-01-15 晶科能源有限公司 转换器以及充电设备
US10992149B1 (en) 2020-10-08 2021-04-27 Element Energy, Inc. Safe battery energy management systems, battery management system nodes, and methods
US11791642B2 (en) 2020-10-08 2023-10-17 Element Energy, Inc. Safe battery energy management systems, battery management system nodes, and methods
US20220140826A1 (en) * 2020-10-29 2022-05-05 Texas Instruments Incorporated Temperature control for power devices
US11811318B2 (en) 2020-11-03 2023-11-07 Solaredge Technologies Ltd. Method and apparatus for power conversion
JP2022086418A (ja) 2020-11-30 2022-06-09 株式会社アドバンテスト 電源装置、電源ユニット、試験装置
JP2022086417A (ja) 2020-11-30 2022-06-09 株式会社アドバンテスト 電源装置、電源ユニット、試験装置
CN112491089A (zh) * 2020-12-03 2021-03-12 深圳供电局有限公司 一种微网并离网混合切换系统及方法
TWI777525B (zh) * 2021-01-08 2022-09-11 立錡科技股份有限公司 可降低寄生電感之開關
US11876439B2 (en) 2021-01-14 2024-01-16 Apple Inc. Mitigation of battery output voltage ripple under pulse load
JP2022113336A (ja) * 2021-01-25 2022-08-04 Fdk株式会社 電力供給装置
US11689097B2 (en) 2021-05-05 2023-06-27 Analog Devices, Inc. High-voltage to low-voltage interface in power converter circuit
US11831192B2 (en) 2021-07-07 2023-11-28 Element Energy, Inc. Battery management controllers and associated methods
US11269012B1 (en) 2021-07-19 2022-03-08 Element Energy, Inc. Battery modules for determining temperature and voltage characteristics of electrochemical cells, and associated methods
EP4138246A1 (en) * 2021-08-17 2023-02-22 DC Systems B.V. Dc power distribution architecture and method applicable to data centers
RU208513U1 (ru) * 2021-09-10 2021-12-22 Руслан Владимирович Дорошенко Зарядно-разрядный выпрямитель
US11893931B2 (en) 2021-11-05 2024-02-06 Samsung Electronics Co., Ltd. Electronic device including power supply circuit
CN114361882B (zh) * 2021-12-06 2023-11-17 六安市同心畅能电子科技有限公司 一种电热水器安全节能墙壁插座电路
US11699909B1 (en) 2022-02-09 2023-07-11 Element Energy, Inc. Controllers for managing a plurality of stacks of electrochemical cells, and associated methods
CN114172370B (zh) * 2022-02-09 2022-05-17 深圳市中旭新能源有限公司 控制电路及双路光伏输入的功率变换装置
US11664670B1 (en) 2022-08-21 2023-05-30 Element Energy, Inc. Methods and systems for updating state of charge estimates of individual cells in battery packs
CN116094324B (zh) * 2022-10-17 2023-08-15 广东工业大学 一种变结构光子变换器

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649334A (en) 1984-10-18 1987-03-10 Kabushiki Kaisha Toshiba Method of and system for controlling a photovoltaic power system
DE59303495D1 (de) * 1992-12-03 1996-09-26 Inventio Ag Verfahren zum Parallelschalten von Umrichtern anhand von Strom-Extremwerten
WO1996018937A1 (en) 1994-12-14 1996-06-20 Kenetech Windpower, Inc. Grid connected bi-directional converter including a pwm, dc-dc chopper, and energy storage/supply device
US5642275A (en) * 1995-09-14 1997-06-24 Lockheed Martin Energy System, Inc. Multilevel cascade voltage source inverter with seperate DC sources
US5808455A (en) * 1996-11-13 1998-09-15 Micro Linear Corporation DC-to-DC converter having hysteretic current limiting
JPH11103538A (ja) 1997-09-27 1999-04-13 My Way Giken Kk 光発電システム
GB9725128D0 (en) 1997-11-27 1998-01-28 Weinberg Alan H Solar array system
US6020729A (en) 1997-12-16 2000-02-01 Volterra Semiconductor Corporation Discrete-time sampling of data for use in switching regulators
US6064178A (en) 1998-05-07 2000-05-16 Ford Motor Company Battery charge balancing system having parallel switched energy storage elements
JP2000112545A (ja) 1998-09-30 2000-04-21 Daihen Corp 太陽光発電システム
US6268716B1 (en) 1998-10-30 2001-07-31 Volterra Semiconductor Corporation Digital voltage regulator using current control
US6160441A (en) 1998-10-30 2000-12-12 Volterra Semiconductor Corporation Sensors for measuring current passing through a load
US6278264B1 (en) 2000-02-04 2001-08-21 Volterra Semiconductor Corporation Flip-chip switching regulator
AU5095601A (en) * 2000-03-24 2001-10-08 Cymbet Corp Thin-film battery having ultra-thin electrolyte and associated method
JP4420156B2 (ja) * 2000-06-14 2010-02-24 日本電気株式会社 半導体装置
US6395972B1 (en) 2000-11-09 2002-05-28 Trw Inc. Method of solar cell external interconnection and solar cell panel made thereby
JP3394996B2 (ja) 2001-03-09 2003-04-07 独立行政法人産業技術総合研究所 最大電力動作点追尾方法及びその装置
US6362986B1 (en) 2001-03-22 2002-03-26 Volterra, Inc. Voltage converter with coupled inductive windings, and associated methods
US6657419B2 (en) 2001-11-19 2003-12-02 Solarmate Corporation Micro-solar insolation circuit
DE10222621A1 (de) 2002-05-17 2003-11-27 Josef Steger Verfahren und Schaltungsanordnung zur Steuer- und Regelung von Photovoltaikanlagen
JP2004079997A (ja) 2002-06-19 2004-03-11 Canon Inc 発電システム及び発電装置
FR2842316A1 (fr) * 2002-07-09 2004-01-16 St Microelectronics Sa Regulateur de tension lineaire
US7612283B2 (en) 2002-07-09 2009-11-03 Canon Kabushiki Kaisha Solar power generation apparatus and its manufacturing method
FR2844890B1 (fr) 2002-09-19 2005-01-14 Cit Alcatel Circuit de conditionnement pour une source de puissance au point de puissance maximum, generateur solaire et procede de conditionnement
TW571452B (en) 2002-12-13 2004-01-11 Quanta Comp Inc Charging-type electrical potential balance device
AU2003901027A0 (en) 2003-03-07 2003-03-20 Integrated Electronic Solutions Pty Ltd Circuit improvements for solar lamps
US7158395B2 (en) * 2003-05-02 2007-01-02 Ballard Power Systems Corporation Method and apparatus for tracking maximum power point for inverters, for example, in photovoltaic applications
US7068017B2 (en) 2003-09-05 2006-06-27 Daimlerchrysler Corporation Optimization arrangement for direct electrical energy converters
US20050057214A1 (en) 2003-09-15 2005-03-17 Stefan Matan Systems and methods for generating renewable energy
US20050057215A1 (en) 2003-09-15 2005-03-17 Stefan Matan Systems and methods for charging a battery
US20050139258A1 (en) 2003-12-29 2005-06-30 Yung-Hsiang Liu Solar cell array control device
WO2005112551A2 (en) 2004-05-21 2005-12-01 Hansung Engineering Co. Ltd Method for compensating for partial shade in photovoltaic power system
JP2006012251A (ja) 2004-06-23 2006-01-12 Hitachi Ltd 記憶装置システム及び記憶装置システム用論理基板の冷却構造
DE102004030912B3 (de) 2004-06-25 2006-01-19 Sma Technologie Ag Verfahren zum Umwandeln einer elektrischen Gleichspannung einer Gleichspannungsquelle, insbesondere einer Photovoltaik-Gleichspannungsquelle in eine Wechselspannung
US20060001406A1 (en) 2004-07-01 2006-01-05 Stefan Matan Power extractor circuit
US8013583B2 (en) 2004-07-01 2011-09-06 Xslent Energy Technologies, Llc Dynamic switch power converter
EP1766490A4 (en) 2004-07-13 2007-12-05 Univ Central Queensland DEVICE FOR DETECTING MAXIMUM DISTRIBUTED POWER FOR SOLAR PANELS
WO2006137948A2 (en) 2004-12-29 2006-12-28 Isg Technologies Llc Efficiency booster circuit and technique for maximizing power point tracking
US20060185727A1 (en) 2004-12-29 2006-08-24 Isg Technologies Llc Converter circuit and technique for increasing the output efficiency of a variable power source
JP4617931B2 (ja) * 2005-03-07 2011-01-26 富士電機システムズ株式会社 スイッチング電源回路の制御方式
ITSA20050014A1 (it) 2005-07-13 2007-01-14 Univ Degli Studi Salerno Dispositivo invertitore a singolo stadio, e relativo metodo di controllo, per convertitori di potenza da sorgenti di energia, in particolare sorgenti fotovoltaiche.
JP3763415B1 (ja) * 2005-07-26 2006-04-05 Tdk株式会社 平均電流検出回路
WO2007084196A2 (en) 2005-09-26 2007-07-26 Atira Technologies, Llc Dynamic switch power converter
JP2007215259A (ja) * 2006-02-07 2007-08-23 Matsushita Electric Ind Co Ltd 駆動回路及びそれを用いたスイッチングレギュレータ
US7505833B2 (en) 2006-03-29 2009-03-17 General Electric Company System, method, and article of manufacture for controlling operation of an electrical power generation system
DE102006023563B4 (de) 2006-05-19 2020-09-10 Kostal Industrie Elektrik Gmbh Photovoltaik-Anlage
US7514900B2 (en) 2006-10-06 2009-04-07 Apple Inc. Portable devices having multiple power interfaces
US8212399B2 (en) 2006-11-27 2012-07-03 Xslent Energy Technologies, Llc Power extractor with control loop
US8013474B2 (en) 2006-11-27 2011-09-06 Xslent Energy Technologies, Llc System and apparatuses with multiple power extractors coupled to different power sources
US7960870B2 (en) 2006-11-27 2011-06-14 Xslent Energy Technologies, Llc Power extractor for impedance matching
US9431828B2 (en) 2006-11-27 2016-08-30 Xslent Energy Technologies Multi-source, multi-load systems with a power extractor
US8963369B2 (en) * 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US7900361B2 (en) 2006-12-06 2011-03-08 Solaredge, Ltd. Current bypass for distributed power harvesting systems using DC power sources
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
CN101647172B (zh) * 2007-02-06 2015-06-10 艾克斯兰能源技术公司 具有功率提取器的多电源多负载系统
US8158877B2 (en) 2007-03-30 2012-04-17 Sunpower Corporation Localized power point optimizer for solar cell installations
US7961482B2 (en) 2007-05-09 2011-06-14 International Rectifier Corporation Bi-directional HEMT/GaN half-bridge circuit
US20090020151A1 (en) 2007-07-16 2009-01-22 Pvi Solutions, Inc. Method and apparatus for converting a direct current to alternating current utilizing a plurality of inverters
US20090078300A1 (en) 2007-09-11 2009-03-26 Efficient Solar Power System, Inc. Distributed maximum power point tracking converter
PL2212983T3 (pl) 2007-10-15 2021-10-25 Ampt, Llc Układy do wysoko wydajnej energii słonecznej
US7989953B1 (en) 2007-12-28 2011-08-02 Volterra Semiconductor Corporation Flip chip power switch with under bump metallization stack
US9077206B2 (en) 2008-05-14 2015-07-07 National Semiconductor Corporation Method and system for activating and deactivating an energy generating system
US7991511B2 (en) 2008-05-14 2011-08-02 National Semiconductor Corporation Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
US8139382B2 (en) 2008-05-14 2012-03-20 National Semiconductor Corporation System and method for integrating local maximum power point tracking into an energy generating system having centralized maximum power point tracking
US7969133B2 (en) 2008-05-14 2011-06-28 National Semiconductor Corporation Method and system for providing local converters to provide maximum power point tracking in an energy generating system
US8279644B2 (en) 2008-05-14 2012-10-02 National Semiconductor Corporation Method and system for providing maximum power point tracking in an energy generating system
IT1390778B1 (it) 2008-07-01 2011-09-23 St Microelectronics Srl Architettura per diodo di by-pass di celle in serie di un pannello fotovoltaico
TWI379183B (en) 2008-11-27 2012-12-11 Univ Nat Taiwan Science Tech Frequency-varied incremental conductance maximum power point tracking controller and algorithm for pv converter
US8648497B2 (en) 2009-01-30 2014-02-11 Renewable Power Conversion, Inc. Photovoltaic power plant with distributed DC-to-DC power converters
US8058752B2 (en) 2009-02-13 2011-11-15 Miasole Thin-film photovoltaic power element with integrated low-profile high-efficiency DC-DC converter
US20100213897A1 (en) 2009-02-23 2010-08-26 Lawrence Tze-Leung Tse Battery-Cell Converter Management Systems
WO2010097093A1 (en) 2009-02-24 2010-09-02 Mppc Technology Process and device to operate continuously a solar array to its maximum power
US10283974B2 (en) 2009-03-02 2019-05-07 Volterra Semiconductor LLC Systems and methods for intelligent, adaptive management of energy storage packs
KR20110139244A (ko) 2009-03-02 2011-12-28 엘리먼트 에너지 지능형 에너지 스토리지 팩의 스케일러블한 구성을 위한 시스템 및 방법
JP5783614B2 (ja) 2009-04-17 2015-09-24 ナショナル セミコンダクター コーポレーションNational Semiconductor Corporation 分散型最大パワーポイントトラッキングを具備する光起電力システムの過剰電圧保護システム及び方法
WO2010121181A2 (en) * 2009-04-17 2010-10-21 National Semiconductor Corporation System and method for over-voltage protection in a photovoltaic system
WO2010130273A1 (en) 2009-05-12 2010-11-18 Mppc Technology Device to extract maximum power from a solar array and process to carry it out
US20100288327A1 (en) 2009-05-13 2010-11-18 National Semiconductor Corporation System and method for over-Voltage protection of a photovoltaic string with distributed maximum power point tracking
US8330439B2 (en) 2009-06-23 2012-12-11 Intersil Americas Inc. System and method for PFM/PWM mode transition within a multi-phase buck converter
US20100326492A1 (en) 2009-06-30 2010-12-30 Solarmation, Inc. Photovoltaic Cell Support Structure Assembly
US8102074B2 (en) * 2009-07-30 2012-01-24 Tigo Energy, Inc. Systems and method for limiting maximum voltage in solar photovoltaic power generation systems
EP2280469B1 (en) 2009-07-30 2016-07-06 Nxp B.V. A photovoltaic unit, a dc-dc converter therefor, and a method of operating the same
CN102577017A (zh) 2009-09-16 2012-07-11 国家半导体公司 用于电池或其它电力供应的有源单元及模块平衡
KR101311528B1 (ko) 2009-12-11 2013-09-25 한국전자통신연구원 태양전지의 최대전력 추출 장치 및 방법
US8212536B2 (en) * 2009-12-23 2012-07-03 R2 Semiconductor, Inc. Stacked NMOS DC-to-DC power conversion
US8390261B2 (en) 2010-05-21 2013-03-05 Infineon Technologies Austria Ag Maximum power point tracker bypass
US8872384B2 (en) 2010-08-18 2014-10-28 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods
US20120212064A1 (en) 2010-08-23 2012-08-23 Array Converter Inc. Methods and Devices for Controlling a Photovoltaic Panel in a Three Phase Power Generation System
KR20120075970A (ko) 2010-12-29 2012-07-09 엘지전자 주식회사 태양광 처리 장치 및 방법
TW201415780A (zh) * 2012-10-03 2014-04-16 Inno Tech Co Ltd 同步整流升降壓轉換器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015216827A (ja) * 2014-05-07 2015-12-03 照宥能源科技股▲ふん▼有限公司 太陽光遮光回路
KR20230043505A (ko) * 2021-09-24 2023-03-31 부경대학교 산학협력단 양방향 모듈형 dc-ac 멀티레벨 컨버터
KR102585100B1 (ko) * 2021-09-24 2023-10-05 부경대학교 산학협력단 양방향 모듈형 dc-ac 멀티레벨 컨버터

Also Published As

Publication number Publication date
EP2606550A2 (en) 2013-06-26
TWI434396B (zh) 2014-04-11
CN103155349A (zh) 2013-06-12
US9806523B2 (en) 2017-10-31
EP2606551A2 (en) 2013-06-26
CN103168408B (zh) 2016-04-20
US20140375134A1 (en) 2014-12-25
WO2012024540A3 (en) 2012-05-31
EP2606549A2 (en) 2013-06-26
TW201230610A (en) 2012-07-16
CN103168409A (zh) 2013-06-19
US9035626B2 (en) 2015-05-19
US8946937B2 (en) 2015-02-03
JP2013535949A (ja) 2013-09-12
US9577426B2 (en) 2017-02-21
US20120043823A1 (en) 2012-02-23
EP2606549B1 (en) 2016-05-04
CN103155349B (zh) 2015-11-25
EP2606551A4 (en) 2014-09-17
US20120043818A1 (en) 2012-02-23
CN103168408A (zh) 2013-06-19
US9312769B2 (en) 2016-04-12
US20160226247A1 (en) 2016-08-04
WO2012024537A2 (en) 2012-02-23
WO2012024538A2 (en) 2012-02-23
EP2606549A4 (en) 2014-09-10
US20150256077A1 (en) 2015-09-10
CN103168409B (zh) 2016-09-07
EP2606551B1 (en) 2016-01-06
EP2606550A4 (en) 2014-09-10
WO2012024538A3 (en) 2012-05-31
US8872384B2 (en) 2014-10-28
US20120044014A1 (en) 2012-02-23
JP2013536512A (ja) 2013-09-19
US9698599B2 (en) 2017-07-04
WO2012024537A3 (en) 2012-05-31
US20150108960A1 (en) 2015-04-23
WO2012024540A2 (en) 2012-02-23
TW201230633A (en) 2012-07-16
TW201230293A (en) 2012-07-16
EP2606550B1 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
US9698599B2 (en) Switching circuits for extracting power from an electric power source and associated methods
US12027849B2 (en) Distributed power system using direct current power sources
US9331499B2 (en) System, method, module, and energy exchanger for optimizing output of series-connected photovoltaic and electrochemical devices
KR20230006275A (ko) 멀티레벨 구조를 가지는 전력변환장치
KR20230050184A (ko) 전력변환장치
JP2022179097A (ja) 電力変換システム、及び電源装置
JP2021144502A (ja) 対地電位調整回路および電力制御方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104