JP2013214111A - 光導波路の製造方法及び光導波路 - Google Patents

光導波路の製造方法及び光導波路 Download PDF

Info

Publication number
JP2013214111A
JP2013214111A JP2013150542A JP2013150542A JP2013214111A JP 2013214111 A JP2013214111 A JP 2013214111A JP 2013150542 A JP2013150542 A JP 2013150542A JP 2013150542 A JP2013150542 A JP 2013150542A JP 2013214111 A JP2013214111 A JP 2013214111A
Authority
JP
Japan
Prior art keywords
resin
clad layer
optical waveguide
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013150542A
Other languages
English (en)
Other versions
JP5610046B2 (ja
Inventor
Tomoaki Shibata
智章 柴田
Masatoshi Yamaguchi
正利 山口
Atsushi Takahashi
敦之 高橋
Masami Ochiai
雅美 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2013150542A priority Critical patent/JP5610046B2/ja
Publication of JP2013214111A publication Critical patent/JP2013214111A/ja
Application granted granted Critical
Publication of JP5610046B2 publication Critical patent/JP5610046B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Optical Integrated Circuits (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)

Abstract

【課題】光導波路を生産性良く製造でき、コア層と上部クラッド層との間に気泡が残らない光導波路の製造方法を提供する。
【解決手段】基材上に形成されたクラッド層形成用樹脂を硬化して下部クラッド層を形成する工程、該下部クラッド層上にコア層形成用樹脂フィルムを積層してコア層を形成する工程、該コア層を露光現像してコアパターンを形成する工程、および該コアパターン上に、支持体フィルムに上部クラッド層形成用樹脂を積層してなる上部クラッド層形成用樹脂フィルムを該樹脂が該コアパターンに接触するように積層する工程、その後、温度40〜200℃で加熱処理を行う工程、該クラッド層形成用樹脂を硬化して、上部クラッド層を形成する工程を有する光導波路の製造方法、及び溶融粘度が120〜180Pa・sである樹脂より形成されてなる光導波路である。
【選択図】なし

Description

本発明は、光導波路の製造方法及び光導波路に関し、特に、光導波路を生産性良く製造でき、コア層と上部クラッド層との間に気泡が残らない光導波路の製造方法及び光導波路に関するものである。
情報容量の増大に伴い、幹線やアクセス系といった通信分野のみならず、ルータやサーバ内の情報処理にも光信号を用いる光インターコネクション技術の開発が進められている。具体的には、ルータやサーバ装置内のボード間あるいはボード内の短距離信号伝送に光を用いるために、電気配線板に光伝送路を複合した光電気混載基板の開発がなされている。光伝送路としては、光ファイバに比べ、配線の自由度が高く、かつ高密度化が可能な光導波路を用いることが望ましく、中でも、加工性や経済性に優れたポリマー材料を用いた光導波路が有望である。
光導波路は電気配線板と共存するため、高透明性とともに高耐熱性も要求されるが、このような光導波路材として、フッ素化ポリイミド(例えば非特許文献1)やエポキシ樹脂(例えば特許文献1)が提案されている。
フッ素化ポリイミドは、300℃以上の高耐熱性と、波長850nmにおいて0.3dB/cmの高透明性を有するものの、製膜には300℃以上で数十分から数時間の加熱条件が必要であるため、電気配線板上での製膜が困難であった。また、フッ素化ポリイミドには感光性がないため、感光・現像による光導波路作製法が適用できず、生産性・大面積化に劣っていた。さらに、液状の材料を基板上に塗布し製膜する方法を用いて光導波路を作製するため、膜厚管理が煩雑であり、しかも基板上に塗布した樹脂が、硬化前は液状であるため、基板上で樹脂が流れてしまい、膜厚の均一性を保つことが困難であるなど、材料形態が液状であることに起因した課題があった。
一方、液状エポキシ樹脂に光重合開始剤を添加した光導波路形成用エポキシ樹脂は、感光・現像法によりコアパターンが形成可能であり、高透明性、高耐熱性を有するものもあるが、材料が液状であることに起因した同様な課題があった。
そこで、放射線重合可能な成分を含有するドライフィルムを基板上に積層し、所定量の光を照射することで所定場所を放射線硬化させてクラッドを形成するとともに、必要に応じて未露光部を現像することによりコア部分などを形成、さらに該コア部分を埋め込むためのクラッドを形成して、伝送特性に優れる光導波路を製造する方法は有用である。この方法を用いるとコア埋め込み後のクラッドの平坦性確保が容易である。また、大面積の光導波路を製造することにも適している。ドライフィルムを基板上にラミネートする方法として、特許文献2の図1および図2に開示されているような、相対的に上下動が可能な一対のブロック体によって形成される真空室を有する真空式ラミネータを用いて減圧下でラミネートする、いわゆる真空ラミネート方式が知られている。
しかしながら、コア部分を埋め込む際に入った気泡がコア層と上部クラッド層との間に残るという問題があり、この気泡により、光信号を通した際、損失が大きくなるという問題があった。特に、従来要求されていたコア部分の配線密度は、線幅/線間が50μm/200μm程度であったが、例えば、線幅/線間が50μm/50μmといった狭いピッチの光導波路を作製する場合には、気泡による影響が大きかった。また、コア部分を埋め込んだ際に、上部クラッド層の平坦性の向上が求められていた。
特開平6−228274号公報 特開平11−320682号公報 エレクトロニクス実装学会誌、Vol.7、No.3、pp.213−218、2004年
本発明は、前記の課題を解決するためになされたもので、光導波路を生産性良く製造でき、コア層と上部クラッド層との間に気泡が残らない光導波路の製造方法及び光導波路を提供することを目的とする。
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、上部クラッド層形成用樹脂フィルムの積層時に、該クラッド層形成用樹脂の溶融粘度が100〜200Pa・sとなるように積層条件を制御すること、積層時における溶融粘度が100〜200Pa・sである樹脂により上部クラッド層を形成すること、またはコアパターン上に、支持体フィルムに上部クラッド層形成用樹脂を積層してなる上部クラッド層形成用樹脂フィルムを該樹脂が該コアパターンに接触するように積層し、その後加熱処理を行うことにより前記の目的を達成することを見出し本発明を完成したものである。
すなわち、本発明は、
(1)基材上に形成されたクラッド層形成用樹脂を硬化して下部クラッド層を形成する工程、該下部クラッド層上にコア層形成用樹脂フィルムを積層してコア層を形成する工程、該コア層を露光現像してコアパターンを形成する工程、および該コアパターン上に上部クラッド層形成用樹脂フィルムを積層し、該クラッド層形成用樹脂を硬化して、上部クラッド層を形成する工程を有する光導波路の製造方法であって、該上部クラッド層形成用樹脂フィルムの積層時に、該クラッド層形成用樹脂の溶融粘度が100〜200Pa・sとなるように積層条件を制御することを特徴とする光導波路の製造方法、
(2)コア層を形成する工程が、ヒートロールを有するロールラミネータを用いて、下部クラッド層上にコア層形成用樹脂フィルムを加熱圧着する工程を含むことを特徴とする前記(1)に記載の光導波路の製造方法、
(3)コアパターン上に上部クラッド層形成用樹脂フィルムを積層する際、平板型ラミネータを用いて減圧雰囲気下で加熱圧着することを特徴とする前記(1)に記載の光導波路の製造方法、
(4)基材上に、下部クラッド層、コアパターンおよび上部クラッド層を順に積層した光導波路において、該上部クラッド層が、積層時における溶融粘度が100〜200Pa・sである樹脂より形成されてなる光導波路、
(5)基材上に、下部クラッド層、コアパターンおよび上部クラッド層を順に積層した光導波路において、該上部クラッド層が、40〜130℃における溶融粘度が100〜200Pa・sである樹脂より形成されてなる光導波路、
(6)基材上に、下部クラッド層、コアパターンおよび上部クラッド層を順に積層した光導波路において、該上部クラッド層が、100℃における溶融粘度が100〜200Pa・sである樹脂より形成されてなる光導波路、
(7)基材上に、下部クラッド層、コアパターンおよび上部クラッド層を順に積層した光導波路において、該上部クラッド層が、フェノキシ樹脂系のペースポリマーと2官能エポキシ樹脂を含み、90〜120℃における溶融粘度が100〜200Pa・sである樹脂より形成されてなる光導波路、
(8)上記溶融粘度が120〜180Pa・sである請求項4〜7のいずれかに記載の光導波路、
(9)基材上に形成されたクラッド層形成用樹脂を硬化して下部クラッド層を形成する工程、該下部クラッド層上にコア層形成用樹脂フィルムを積層してコア層を形成する工程、該コア層を露光現像してコアパターンを形成する工程、および該コアパターン上に、支持体フィルムに上部クラッド層形成用樹脂を積層してなる上部クラッド層形成用樹脂フィルムを該樹脂が該コアパターンに接触するように積層する工程、その後加熱処理を行う工程、該クラッド層形成用樹脂を硬化して、上部クラッド層を形成する工程を有する光導波路の製造方法、
(10)加熱処理の条件が温度40〜200℃であることを特徴とする前記(9)に記載の光導波路の製造方法、
を提供するものである。
なお、以下、(1)〜(3)の製造方法を第1の製造方法、(9)〜(10)の製造方法を第2の製造方法ということがある。
本発明の製造方法によれば、光導波路を生産性良く製造でき、コア層と上部クラッド層との間に気泡が残らない。
本発明の光導波路の製造方法の一例を説明する図である。 本発明の光導波路の製造方法に用いるクラッド層形成用樹脂フィルムを説明する図である。 本発明の光導波路の製造方法に用いるコア層形成用樹脂フィルムを説明する図である。 本発明の光導波路の製造方法の別の一例を説明する図である。 上部クラッド層ラミネート後、加熱処理前の顕微鏡写真である。 上部クラッド層ラミネート後、加熱処理後の顕微鏡写真である。
本発明により製造される光導波路は、例えば、図1(g)に示すように、基材1上に下部クラッド層2、コアパターン8および上部クラッド層9を有する光導波路であって、高屈折率である1つのコア層形成用樹脂フィルム(図3、300)と、低屈折率である2つのクラッド層形成用樹脂、好ましくはクラッド層形成用樹脂フィルム(図2、200)を用いて作製することができる。フィルム状材料を用いることで、液状材料特有の生産性や大面積対応に関する課題を解決できる。
(基材)
基材1の種類としては、特に制限されるものではないが、例えば、FR−4基板、ポリイミド、半導体基板、シリコン基板やガラス基板等を用いることができる。
また、基材1としてフィルムを用いることで、光導波路に柔軟性および強靭性を付与させることができる。フィルムの材料としては、特に限定されないが、柔軟性、強靭性を有するとの観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、ポリアミド、アラミド、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルサルファイド、ポリアリレート、液晶ポリマー、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリイミドなどが好適に挙げられる。
フィルムの厚さは、目的とする柔軟性により適宜変えてよいが、5〜250μmであることが好ましい。5μm以上であると強靭性が得易いという利点があり、250μm以下であると十分な柔軟性が得られる。
図1に示した基材1として、後述するクラッド層形成用樹脂フィルム200の製造過程で用いる支持体フィルム10を用いることができる。この場合、クラッド層形成用樹脂フィルム200としては、光導波路作製後、クラッド層の外側に支持体を有する形態とする場合には、接着処理を施した支持体フィルム10上にクラッド層形成用樹脂20が製膜されていることが好ましい。これにより、下部クラッド層2と基材1の接着力を向上させ、下部クラッド層2と基材1の剥離不良を抑制できる。ここで接着処理とは、易接着樹脂コート、コロナ処理、サンドブラスト等によるマット加工などにより、支持体フィルム10とこの上に形成されるクラッド層形成用樹脂20との接着力を向上させる処理である。一方、光導波路作製後、支持体を剥がした形態とする場合には、支持体フィルムに必要に応じ離型処理が施されていてもよい。
また、上部クラッド層の外側に基材を有していてもよく、該基材の種類としては、前述した基材1と同様のものが挙げられ、例えば、図1(f)に示すように後述するクラッド層形成用樹脂フィルム200の製造過程で用いる支持体フィルム10等が挙げられる。
上述の基材1の片面または両面上にコアパターンおよびクラッド層を有する高分子層を複数積層し、多層光導波路を作製してもよい。
さらに、上述の基材1上には電気配線を設けてもよく、この場合、予め電気配線を設けたものを基材1として用いることができる。あるいは、光導波路製造後に、基材1上に電気配線を形成することが可能である。これにより、基板1上の金属配線の信号伝送線と光導波路の信号伝送線との両方を備えられ、両者を使い分けることが可能になり、高速でかつ早い長い距離の信号伝送を容易に行うことができる。
(クラッド層形成用樹脂およびクラッド層形成用樹脂フィルム)
以下、本発明で使用されるクラッド層形成用樹脂およびクラッド層形成用樹脂フィルム(図2、200)について詳述する。
本発明で用いるクラッド層形成用樹脂としては、コア層より低屈折率で、光または熱により硬化する樹脂組成物であれば特に限定されず、熱硬化性樹脂組成物や感光性樹脂組成物を好適に使用することができる。より好適にはクラッド層形成用樹脂が、(A)ベースポリマー(バインダポリマともいう)、(B)光重合性化合物および(C)光重合開始剤を含有する樹脂組成物により構成されることが好ましい。なお、クラッド層形成用樹脂に用いる樹脂組成物は、上部クラッド層9と下部クラッド層2において、該樹脂組成物に含有する成分が同一であっても異なっていてもよく、該樹脂組成物の屈折率が同一であっても異なっていてもよい。
ここで用いる(A)ベースポリマーは、クラッド層を形成し、該クラッド層の強度を確保するためのものであり、該目的を達成し得るものであれば特に限定されず、フェノキシ樹脂、エポキシ樹脂、(メタ)アクリル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリエーテルアミド、ポリエーテルイミド、ポリエーテルスルホン等、あるいはこれらの誘導体などが挙げられる。これらのベースポリマーは1種単独でも、また2種以上を混合して用いてもよい。上記で例示したベースポリマーのうち、耐熱性が高いとの観点から、主鎖に芳香族骨格を有することが好ましく、特にフェノキシ樹脂が好ましい。また、3次元架橋し、耐熱性を向上できるとの観点からは、エポキシ樹脂、特に室温で固形のエポキシ樹脂が好ましい。さらに、後に詳述する(B)光重合性化合物との相溶性が、クラッド層形成用樹脂の透明性を確保するために重要であるが、この点からは上記フェノキシ樹脂および(メタ)アクリル樹脂が好ましい。なお、ここで(メタ)アクリル樹脂とは、アクリル樹脂およびメタクリル樹脂を意味するものである。
フェノキシ樹脂の中でも、ビスフェノールA、ビスフェノールA型エポキシ化合物またはそれらの誘導体、およびビスフェノールF、ビスフェノールF型エポキシ化合物またはそれらの誘導体を共重合成分の構成単位として含むものは、耐熱性、密着性および溶解性に優れるため好ましい。ビスフェノールAまたはビスフェノールA型エポキシ化合物の誘導体としては、テトラブロモビスフェノールA、テトラブロモビスフェノールA型エポキシ化合物等が好適に挙げられる。また、ビスフェノールFまたはビスフェノールF型エポキシ化合物の誘導体としては、テトラブロモビスフェノールF、テトラブロモビスフェノールF型エポキシ化合物等が好適に挙げられる。ビスフェノールA/ビスフェノールF共重合型フェノキシ樹脂の具体例としては、東都化成(株)製「フェノトートYP−70」(商品名)が挙げられる。
室温で固形のエポキシ樹脂としては、例えば、東都化学(株)製「エポトートYD−7020、エポトートYD−7019、エポトートYD−7017」(いずれも商品名)、ジャパンエポキシレジン(株)製「エピコート1010、エピコート1009、エピコート1008」(いずれも商品名)などのビスフェノールA型エポキシ樹脂が挙げられる。
次に、(B)光重合性化合物としては、紫外線等の光の照射によって重合するものであれば特に限定されず、分子内にエチレン性不飽和基を有する化合物や分子内に2つ以上のエポキシ基を有する化合物などが挙げられる。
分子内にエチレン性不飽和基を有する化合物としては、(メタ)アクリレート、ハロゲン化ビニリデン、ビニルエーテル、ビニルピリジン、ビニルフェノール等が挙げられるが、これらの中で、透明性と耐熱性の観点から、(メタ)アクリレートが好ましい。
(メタ)アクリレートとしては、1官能性のもの、2官能性のもの、3官能性以上の多官能性のもののいずれをも用いることができる。なお、ここで(メタ)アクリレートとは、アクリレートおよびメタクリレートを意味するものである。
分子内に2つ以上のエポキシ基を有する化合物としては、ビスフェノールA型エポキシ樹脂等の2官能または多官能芳香族グリシジルエーテル、ポリエチレングリコール型エポキシ樹脂等の2官能または多官能脂肪族グリシジルエーテル、水添ビスフェノールA型エポキシ樹脂等の2官能脂環式グリシジルエーテル、フタル酸ジグリシジルエステル等の2官能芳香族グリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル等の2官能脂環式グリシジルエステル、N,N−ジグリシジルアニリン等の2官能または多官能芳香族グリシジルアミン、アリサイクリックジエポキシカルボキシレート等の2官能脂環式エポキシ樹脂、2官能複素環式エポキシ樹脂、多官能複素環式エポキシ樹脂、2官能または多官能ケイ素含有エポキシ樹脂などが挙げられる。これらの(B)光重合性化合物は、単独でまたは2種類以上組み合わせて用いることができる。
次に(C)成分の光重合開始剤としては、特に制限はなく、例えば(B)成分にエポキシ化合物を用いる場合の開始剤として、アリールジアゾニウム塩、ジアリールヨードニウム塩、トリアリールスルホニウム塩、トリアリルセレノニウム塩、ジアルキルフェナジルスルホニウム塩、ジアルキル−4−ヒドロキシフェニルスルホニウム塩、スルホン酸エステルなどが挙げられる。
また、(B)成分に分子内にエチレン性不飽和基を有する化合物を用いる場合の開始剤としては、ベンゾフェノン等の芳香族ケトン、2−エチルアントラキノン等のキノン類、ベンゾインメチルエーテル等のベンゾインエーテル化合物、ベンゾイン等のベンゾイン化合物、ベンジルジメチルケタール等のベンジル誘導体、2−(o−クロロフェニル)−4,5−ジフェニルイミダゾール二量体等の2,4,5−トリアリールイミダゾール二量体、2−メルカプトベンゾイミダゾール等のベンゾイミダゾール類、ビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキサイド等のフォスフィンオキサイド類、9−フェニルアクリジン等のアクリジン誘導体、N−フェニルグリシン、N−フェニルグリシン誘導体、クマリン系化合物などが挙げられる。また、ジエチルチオキサントンとジメチルアミノ安息香酸の組み合わせのように、チオキサントン系化合物と3級アミン化合物とを組み合わせてもよい。なお、コア層およびクラッド層の透明性を向上させる観点からは、上記化合物のうち、芳香族ケトンおよびフォスフィンオキサイド類が好ましい。これらの(C)光重合開始剤は、単独でまたは2種類以上組み合わせて用いることができる。
(A)ベースポリマーの配合量は、(A)成分および(B)成分の総量に対して、5〜80質量%とすることが好ましい。また、(B)光重合性化合物の配合量は、(A)および(B)成分の総量に対して、95〜20質量%とすることが好ましい。
この(A)成分および(B)成分の配合量として、(A)成分が5質量%以上であり、(B)成分が95質量%以下であると、樹脂組成物を容易にフィルム化することができる。一方、(A)成分が80質量%以下あり、(B)成分が20質量%以上であると、(A)ベースポリマーを絡み込んで硬化させることが容易にでき、光導波路を形成する際に、パターン形成性が向上し、かつ光硬化反応が十分に進行する。以上の観点から、この(A)成分および(B)成分の配合量として、(A)成分10〜75質量%、(B)成分90〜25質量%がより好ましく、(A)成分20〜70質量%、(B)成分80〜30質量%がさらに好ましい。
(C)光重合開始剤の配合量は、(A)成分および(B)成分の総量100質量部に対して、0.1〜10質量部とすることが好ましい。この配合量が0.1質量部以上であると、光感度が十分であり、一方10質量部以下であると、露光時に樹脂組成物の表層での光吸収が増大することがなく、内部の光硬化が十分となる。さらに、光導波路として使用する際には、重合開始剤自身の光吸収の影響により伝搬損失が増大することもなく好適である。以上の観点から、(C)光重合開始剤の配合量は、0.2〜5質量部とすることがより好ましい。
また、このほかに必要に応じて、クラッド層形成用樹脂中には、酸化防止剤、黄変防止剤、紫外線吸収剤、可視光吸収剤、着色剤、可塑剤、安定剤、充填剤などのいわゆる添加剤を本発明の効果に悪影響を与えない割合で添加してもよい。
クラッド層形成用樹脂フィルム(図2、200)は、前記(A)〜(C)成分を含有する樹脂組成物を溶媒に溶解して、前記支持体フィルム10に塗布し、溶媒を除去することにより容易に製造することができる。
クラッド層形成用樹脂フィルム200の製造過程で用いられる支持体フィルム10は、その材料については特に限定されず、種々のものを用いることができる。支持体フィルムとしての柔軟性および強靭性の観点から、上記した基材1のフィルム材料として例示したものが同様に挙げられる。
支持体フィルム10の厚さは、目的とする柔軟性により適宜変えてよいが、5〜250μmであることが好ましい。5μm以上であると強靭性が得られ、250μm以下であると十分な柔軟性が得られる。また、加熱処理を行う場合には、支持体フィルム10の厚さは、5〜40μmであることが好ましい。5μm以上であれば十分な強靭性が得られ、40μm以下であれば、加熱温度を高く設定することなく気泡をなくすことができる。
このとき、クラッド層形成用樹脂フィルム200の保護やロール状に製造するときの巻き取り性などの観点から、必要に応じクラッド層形成用樹脂フィルム200に保護フィルム11を貼り合わせてもよい。保護フィルム11としては、支持体フィルム10として例に挙げたものと同様なものを用いることができ、必要に応じて離型処理や帯電防止処理がされていてもよい。
ここで用いる溶媒としては、該樹脂組成物溶解し得るものであれば特に限定されず、例えば、アセトン、メチルエチルケトン、メチルセロソルブ、エチルセロソルブ、トルエン、N,N−ジメチルアセトアミド、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、N−メチル−2−ピロリドン等の溶媒またはこれらの混合溶媒を用いることができる。樹脂溶液中の固形分濃度は30〜80質量%程度であることが好ましい。
下部クラッド層2および上部クラッド層9(以下、クラッド層2,9と略す)の厚さに関しては、乾燥後の厚さで、5〜500μmの範囲が好ましい。5μm以上であると、光の閉じ込めに必要なクラッド厚さが確保でき、500μm以下であると、膜厚を均一に制御することが容易である。以上の観点から、クラッド層2、9の厚さは、さらに10〜100μmの範囲であることがより好ましい。
また、クラッド層2,9の厚さは、最初に形成される下部クラッド層2と、コアパターンを埋め込むための上部クラッド層9において、同一であっても異なってもよいが、コアパターンを埋め込むために、上部クラッド層9の厚さは、コア層3の厚さよりも厚くすることが好ましい。
(コア層形成用樹脂フィルム)
次に、本発明で使用するコア層形成用樹脂フィルム(図3、300)について詳述する。
コア層形成用樹脂フィルム300を構成するコア層形成用樹脂30としては、コア層3がクラッド層2,9より高屈折率であるように設計され、活性光線によりコアパターン8を形成し得る樹脂組成物を用いることができ、感光性樹脂組成物が好適である。具体的には、前記クラッド層形成用樹脂で用いたのと同様の樹脂組成物、すなわち、前記(A)、(B)および(C)成分を含有し、必要に応じて前記任意成分を含有する樹脂組成物を用いることが好ましい。
コア層形成用樹脂フィルム300は、前記(A)〜(C)成分を含有する樹脂組成物を溶媒に溶解して支持体フィルム4に塗布し、溶媒を除去することにより容易に製造することができる。溶媒としては、該樹脂組成物を溶解し得るものであれば特に限定されず、クラッド層形成用樹脂フィルムの製造に用いる溶媒として例示したものを同様に用いることができる。樹脂溶液中の固形分濃度は、30〜80質量%程度であることが好ましい。
コア層形成用樹脂フィルム300の厚さについては特に限定されず、乾燥後のコア層3の厚さが、通常は10〜100μmとなるように調整される。該フィルムの厚さが10μm以上であると、光導波路形成後の受発光素子または光ファイバとの結合において位置合わせトレランスが拡大できるという利点があり、100μm以下であると、光導波路形成後の受発光素子または光ファイバとの結合において、結合効率が向上するという利点がある。以上の観点から、該フィルムの厚さは、さらに30〜70μmの範囲であることが好ましい。
コア層形成用樹脂フィルム300の製造過程で用いる支持体フィルム4は、コア層形成用樹脂30を支持する支持体フィルムであって、その材料については特に限定されないが、後にコア層形成用樹脂30を剥離することが容易であり、かつ、耐熱性および耐溶剤性を有するとの観点から、ポリエチレンテレフタレート等のポリエステル、ポリプロピレン、ポリエチレンなどが好適に挙げられる。
支持体フィルム4の厚さは、5〜50μmであることが好ましい。5μm以上であると、支持体フィルム4としての強度が得やすいという利点があり、50μm以下であると、パターン形成時のマスクとのギャップが小さくなり、より微細なパターンが形成できるという利点がある。以上の観点から、支持体フィルム4の厚さは10〜40μmの範囲であることがより好ましく、15〜30μmであることが特に好ましい。
コア層形成用樹脂フィルム300の保護やロール状に製造するときの巻き取り性などの観点から、必要に応じコア層形成用樹脂フィルム300に保護フィルム11を貼り合わせてもよい。保護フィルム11としては、支持体フィルム4として例に挙げたものと同様なものが使用でき、必要に応じ離型処理や帯電防止処理がされていてもよい。
(光導波路の製造方法)
以下、本発明の光導波路の製造方法について詳述する(図1参照)。なお、以下の製造例では、クラッド層形成用樹脂フィルム(図2、200)およびコア層形成用樹脂フィルム(図3、300)を用いた場合の実施形態の一例を具体的に説明する。
まず、第1の工程として、クラッド層形成用樹脂20と支持体フィルム10から構成されたクラッド層形成用樹脂フィルム(図2、200)を用いて、クラッド層形成用樹脂20を光または加熱により硬化し、下部クラッド層2を形成する(図1(a))。このとき、上記支持体フィルム10が、図1(a)に示す下部クラッド層2の基材1となる。
光または加熱による硬化条件は、クラッド層形成用樹脂の種類によって変わるが、クラッド層形成用樹脂フィルムの製造過程で用いた溶剤を揮散させ、コア層3との密着性が確保されるように完全硬化させないことが好ましい。これは、溶剤が後の上部クラッド層積層時に、溶剤によって浸食されるなどの悪影響を防止するためである。
例えば、ベースポリマーとしてフェノキシ樹脂系、光重合性化合物として2官能エポキシ樹脂を含むクラッド層形成用樹脂の場合には、温度90〜150℃で10〜120分程度で硬化させれば良い。
この下部クラッド層2は、後述するコア層との密着性の観点から、コア層積層側の表面において段差がなく平坦であることが好ましい。また、クラッド層形成用樹脂フィルムを用いることにより、クラッド層2の表面平坦性を確保することができる。
図2に示すように、クラッド層形成用樹脂フィルム200の支持体フィルム10の反対側に保護フィルム11を設けている場合には、該保護フィルムを剥離後、クラッド層形成用樹脂20を光または加熱により硬化し、クラッド層2を形成する。このとき、クラッド層形成用樹脂20は、接着処理を施した支持体フィルム10上に製膜されていることが好ましい。一方、保護フィルム11は、クラッド層形成用樹脂フィルム200からの剥離を容易にするため接着処理が施されていないことが好ましく、必要に応じ離型処理が施されていてもよい。
次いで、下記に詳述する第2の工程によって、下部クラッド層2上にコア層3を形成する。この第2の工程では、下部クラッド層2上にコア層形成用樹脂フィルム300を積層して、下部クラッド層2より屈折率の高いコア層3を形成する。
具体的には、第2の工程として、下部クラッド層2上にコア層形成用樹脂フィルム300を貼り合わせ、コア層3を積層する。積層には、ロールラミネータや平板型ラミネータを用いることができる。
例えば、ロールラミネータ5(図1(b))を用いる場合、密着性および追従性向上の観点から、圧着しながらラミネートすることが好ましく、圧着する際、ヒートロールを有するラミネータを用いて加熱しながら行なうことが好ましい。ロールラミネータを用いると、気泡巻き込みラミネート温度は、室温(25℃)〜100℃の範囲が好ましい。室温より高い温度であると、下部クラッド層とコア層との密着性が向上し、40℃以上であると、更に密着力を向上させることができる。一方、100℃以下であると、コア層がロールラミネート時に流動することなく、必要とする膜厚が得られる。以上の観点から、40〜100℃の範囲がより好ましい。圧力は0.2〜0.9MPaが好ましい。ラミネート速度は0.1〜3m/minが好ましいが、これらの条件には特に制限はない。
一方、平板型ラミネータ6(図1(c))を用いる場合、密着性および追従性向上の観点から、加熱圧着の際、減圧雰囲気下で行なうと好ましい。なお、本発明において平板型ラミネータとは、積層材料を一対の平板の間に挟み、平板を加圧することにより圧着させるラミネータのことをいう。平板型ラミネータとして、例えば、特許文献2に記載されているような真空加圧式ラミネータを好適に用いることができる。減圧の尺度である真空度の上限は、10000Pa以下が好ましく、さらには1000Pa以下が好ましい。真空度は、密着性および追従性の見地から低い方が望ましい。一方、真空度の下限は、生産性の観点(真空引きにかかる時間)から、10Pa程度であることが好ましい。加熱温度は、40〜130℃とすることが好ましく、圧着圧力は、0.1〜1.0MPa(1〜10kgf/cm2)とすることが好ましいが、これらの条件には特に制限はない。
ラミネート時の気泡低減の観点からはロールラミネータを、密着性や平坦性の観点からは平板型ラミネータを用いるのがよい。また、必要に応じこれらラミネータを併用してもよい。
コア層形成用樹脂フィルム300は、取扱性の観点から、コア層形成用樹脂30と支持体フィルム4から構成されていることが好ましく、この場合、コア層形成用樹脂30を下部クラッド層2側にしてラミネートする。また、コア層形成用樹脂フィルム300はコア層形成用樹脂30単独で構成されていても良い。
図3に示すようにコア層形成用樹脂フィルム300の基材の反対側に保護フィルム11を設けている場合には、保護フィルム11を剥離後、コア層形成用樹脂フィルム300をラミネートする。このとき、保護フィルム11および支持体フィルム4は、コア層形成用樹脂フィルム300からの剥離を容易にするため接着処理は行っていないことが好ましく、必要に応じ離型処理が施されていてもよい。
次に、第3の工程として、コア層3を露光現像し、光導波路のコアパターン8を形成する(図1(d),(e))。具体的には、フォトマスクパターン7を通して活性光線が画像状に照射される。活性光線の光源としては、例えば、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプ等の紫外線を有効に放射する公知の光源が挙げられる。また、他にも写真用フラッド電球、太陽ランプ等の可視光を有効に放射するものも用いることができる。
次いで、コア層形成用樹脂フィルム300の支持体フィルム4が残っている場合には、支持体フィルム4を剥離し、ウェット現像等で未露光部を除去して現像し、コアパターン8を形成する。ウェット現像の場合は、前記フィルムの組成に適した有機溶剤系現像液を用いて、スプレー、揺動浸漬、ブラッシング、スクラッピング等の公知の方法により現像する。
有機溶剤系現像液としては、例えば、N−メチルピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、シクロヘキサノン、メチルエチルケトン、メチルイソブチルケトン、γ−ブチロラクトン、メチルセロソルブ、エチルセロソルブ、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。また、必要に応じて2種類以上の現像方法を併用してもよい。
現像の方式としては、例えば、ディップ方式、パドル方式、高圧スプレー方式等のスプレー方式、ブラッシング、スクラッピング等が挙げられ、高圧スプレー方式が解像度向上のためには最も適している。
現像後の処理として、必要に応じて60〜250℃程度の加熱(好ましくは、110〜150℃で、10〜120分程度)または0.1〜1000mJ/cm2程度の露光を行うことにより、溶剤を揮散させ溶剤による浸食が起きないように、コアパターン8をさらに硬化して用いてもよい。
次いで、第4の工程として、コアパターン8埋込みのためクラッド層形成用樹脂フィルム200をラミネートする。ラミネートは、クラッド層形成用樹脂フィルム200がクラッド層形成用樹脂20と支持体フィルム10からなる場合には、クラッド層形成用樹脂20をコアパターン8側にしてラミネートする。このときのクラッド層9の厚さは、前述のようにコア層3の厚さより大きくすることが好ましい。
ラミネートは、クラッド層形成用樹脂フィルム200を減圧雰囲気下において加熱圧着すると好ましい(図1(f))。ここで、第4の工程は、密着性および追従性向上の観点から、加熱圧着の際、減圧雰囲気下で行なうと好ましい。さらに好ましくは平板型ラミネータ6を用いて減圧雰囲気下で加熱圧着することである。減圧の尺度である真空度の上限は、10000Pa以下が好ましく、さらには1000Pa以下が好ましい。真空度は、密着性および追従性の見地から低い方が望ましい。一方、真空度の下限は、生産性の観点(真空引きにかかる時間)から、10Pa程度であることが好ましい。加熱温度は、40〜130℃とすることが好ましく、圧着圧力は、0.1〜1.0MPa(1〜10kgf/cm2)とすることが好ましいが、これらの条件には特に制限はない。
また、クラッド層形成用樹脂フィルム200を加熱圧着する際、少なくとも一方、好ましくは両方をステンレス鋼(SUS)板を用いて圧着することにより、膜厚が均一となり、ゴム板を用いた場合に比べ平坦な上部クラッド層が形成される。
図2に示すように、クラッド層形成用樹脂フィルム200の支持体フィルム10の反対側に保護フィルム11を設けている場合には、保護フィルム11を剥離後、クラッド層形成用樹脂フィルム200をラミネートして光または加熱により硬化することによりクラッド層9を形成する。このとき、クラッド層形成用樹脂20は接着処理を施した支持体フィルム10上に製膜されていることが好ましい。一方、保護フィルム11は、クラッド層形成用樹脂フィルム200からの剥離を容易にするため接着処理は行っていないことが好ましく、必要に応じ離型処理が施されていてもよい。
本発明の第1の製造方法においては、上部クラッド層形成用樹脂フィルムの積層時に、該クラッド層形成用樹脂の溶融粘度が100〜200Pa・sとなるように温度、圧力及び時間等の積層条件を制御することが必要であり、好ましくは溶融粘度120〜180Pa・sである。この粘度範囲になるように積層条件を制御することにより、コアと上部クラッド層との間に気泡が残ることが無い。200Pa・sより大きい場合には、樹脂粘度が高く気泡が残ってしまう。一方、100Pa・sより小さい場合には、樹脂粘度が低いため、樹脂の流れ出しや平坦性が悪くなる課題が生じる。また、上記溶融粘度は、40〜130℃における溶融粘度であると好ましい。40℃より高い場合には、室温でタックが低く取り扱い性に優れる樹脂フィルムとすることができる。一方、130℃より低い場合には、生産性に優れる利点がある。これらの観点から、上記溶融粘度は、50〜100℃における溶融粘度であるとより好ましく、100℃における溶融粘度であるとさらに好ましい。このような温度範囲の溶融粘度とすることにより、コア層と上部クラッド層との間に気泡が残らない光導波路が得られ、また樹脂フィルムの取り扱い性にも優れる。
また、本発明の光導波路は、基材上に、下部クラッド層、コアパターンおよび上部クラッド層を順に積層した光導波路において、該上部クラッド層が、積層時における溶融粘度が100〜200Pa・sである樹脂より形成されてなる光導波路である。
また、この光導波路は、基材上に、下部クラッド層、コアパターンおよび上部クラッド層を順に積層した光導波路において、該上部クラッド層が、40〜130℃、好ましくは100℃における溶融粘度が100〜200Pa・sである樹脂より形成されてなる光導波路であっても良く、前記上部クラッド層が、フェノキシ樹脂系のペースポリマーと2官能エポキシ樹脂を含み、90〜120℃における溶融粘度が100〜200Pa・sである樹脂より形成されてなる光導波路であると好ましい。
また、上記溶融粘度が120〜180Pa・sであると好ましい。
上記溶融粘度が100〜200Pa・s、好ましくは120〜180Pa・sである樹脂は、樹脂の組成として用いられるベースポリマーや重合性化合物の種類(構造、分子量、ガラス転位温度、粘度等)の選択や、これらの配合比率などを適宜調整することで得ることができる。
例えば、ベースポリマーとしては、フェノキシ樹脂系、室温で固形のエポキシ樹脂、(メタ)アクリルポリマー、アクリルゴム、ポリウレタン、ポリイミド、ポリアミド、ポリアミドイミド、ポリシロキサン等が挙げられる。ここで、ベースポリマーの分子量については、樹脂フィルムの形態とするため、数平均分子量で5,000以上であることが好ましく、さらに10,000以上が好ましく、特に30,000以上であることが好ましい。数平均分子量の上限については、特に制限はないが、重合性化合物成分との相溶性の観点から、1,000,000以下であることが好ましく、さらには900,000以下、特には800,000以下であることが好ましい。なお、本発明における数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレン換算した値である。
重合性化合物としては、特に制限はないが、例えば、分子内にエチレン性不飽和基を有する化合物を用いることができる。具体的には、(メタ)アクリレート、ハロゲン化ビニリデン、ビニルエーテル、ビニルピリジン、ビニルフェノール等が挙げられるが、これらのうち透明性と耐熱性の観点から、(メタ)アクリレートが好ましいものとして挙げられる。(メタ)アクリレートとしては、1官能性のもの、2官能性のもの、3官能性のもののいずれをも用いることができる。なお、ここで(メタ)アクリレートとは、アクリレート及びメタクリレートを意味する。
また、分子内に2つ以上のエポキシ基を有する化合物を含むことも好適である。具体的には、ビスフェノールA型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ナフタレン型エポキシ樹脂等の2官能芳香族グリシジルエーテル;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン−フェノール型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂等の多官能芳香族グリシジルエーテル;ポリエチレングリコール型エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、ネオペンチルグリコール型エポキシ樹脂、ヘキサンジオール型エポキシ樹脂等の2官能脂肪族グリシジルエーテル;水添ビスフェノールA型エポキシ樹脂等の2官能脂環式グリシジルエーテル;トリメチロールプロパン型エポキシ樹脂、ソルビトール型エポキシ樹脂、グリセリン型エポキシ樹脂等の多官能脂肪族グリシジルエーテル;フタル酸ジグリシジルエステル等の2官能芳香族グリシジルエステル;テトラヒドロフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル等の2官能脂環式グリシジルエステル;N,N−ジグリシジルアニリン、N,N−ジグリシジルトリフルオロメチルアニリン等の2官能芳香族グリシジルアミン;N,N,N’,N’−テトラグリシジル−4,4−ジアミノジフェニルメタン、1,3−ビス(N,N−グリシジルアミノメチル)シクロヘキサン、N,N,O−トリグリシジル−p−アミノフェノール等の多官能芳香族グリシジルアミン;アリサイクリックジエポキシアセタール、アリサイクリックジエポキシアジペート、アリサイクリックジエポキシカルボキシレート、ビニルシクロヘキセンジオキシド等の2官能脂環式エポキシ樹脂;ジグリシジルヒダントイン等の2官能複素環式エポキシ樹脂;トリグリシジルイソシアヌレート等の多官能複素環式エポキシ樹脂;オルガノポリシロキサン型エポキシ樹脂等の2官能又は多官能ケイ素含有エポキシ樹脂などが挙げられる。
これらの重合性化合物は、通常その分子量が、100〜2000程度であり、さらに好ましくは150〜1000程度であり、室温で液状のものが好適に用いられる。またこれらの化合物は、単独または2種類以上組み合わせて使用することができ、さらにその他の重合性化合物と組み合わせて使用することもできる。なお、本発明における重合性化合物の分子量は、GPC法又は質量分析法にて測定できる。
ベースポリマーと重合性化合物の配合比率は、これら成分の総量に対してベースポリマーを10〜80質量%とすることが好ましい。10質量%以上であるとフィルム形態とすることが容易となる。一方、80質量%以下であると、ラミネート時の溶融粘度を100〜200Pa・sの範囲に調整することが容易であり、また重合性化合物の反応が十分に進行する。これらの観点から20〜70質量%の範囲とすることがさらに好ましい。
なお、本発明において、上部クラッド層形成用樹脂の溶融粘度は、膜厚が200〜500μmの測定用サンプルを用意し、直径2cmの1対の円形平板にて平行にサンプルを挟み、動的粘弾性測定装置(TAインストゥルメント社製、ARES−2KSTD)にて昇温速度5℃/minで測定した。さらに、具体的には、せん断周波数1Hz、ひずみ5%(回転角度9度)の条件で測定した。
ここで、測定用サンプルは、例えば、後述の実施例1と同様の方法で、ポリアミドフィルム等の支持体フィルム上に、クラッド層形成用樹脂を塗布・乾燥し、次いで離型PETフィルム等の保護フィルムを貼り付けて、クラッド層形成用樹脂フィルムを作製した後、保護フィルム及び支持体フィルムを剥がしてクラッド層形成用樹脂層を取り出し、複数のクラッド形成用樹脂層を重ね合わせ、真空加圧式ラミネータ(株式会社名機製作所製、MVLP−500)を用いて、500Pa以下に真空引きした後、圧力0.4MPa、温度50℃、時間30秒の条件にて加圧することによって得た。加圧後の膜厚が200〜500μmの範囲内となるように、重ね合わせるクラッド形成用樹脂層の層数を調整した。
本発明の第2の製造方法においては、クラッド層形成用樹脂フィルム200を積層した後、加熱処理を行う。加熱処理の条件としては温度40℃〜200℃であることが好ましく、50〜100℃がより好ましい。40℃以上であれば、コア層3と上部クラッド層9との間に気泡が残ることが無い。200℃以下であれば、クラッド層形成用樹脂が硬化されず、また、上部クラッド形成用樹脂フィルム中に含まれる残存溶剤等で下部クラッドやコアが膨潤、剥離することがない。加熱処理の時間としては、15〜120分が好ましい。この時間の範囲内であれば、気泡が残ることがなく、また、作業性も犠牲にならない。これらの観点から、加熱処理時間は20〜60分とすることがより好ましい
この後、硬化は、第1および第2の製造方法共に、第1の工程と同様に、光または加熱によって上記と同様に行い、クラッド層形成用樹脂フィルム200のクラッド層形成用樹脂20を硬化し、上部クラッド層9を形成する第5の工程を行う(図1(g))。
次に、実施例を用いて本発明をさらに詳しく説明する。
実施例1(第1の製造方法)
〔クラッド層形成用樹脂フィルムの作製〕
(A)ベースポリマー(バインダポリマ)として、フェノキシ樹脂(商品名:フェノトートYP−70、東都化成株式会社製、数平均分子量43000)48質量部、(B)光重合性化合物として、アリサイクリックジエポキシカルボキシレート(商品名:KRM−2110、分子量:252、旭電化工業株式会社製)49.6質量部、(C)光重合開始剤として、トリフェニルスルホニウムヘキサフロロアンチモネート塩(商品名:SP−170、旭電化工業株式会社製)2質量部、増感剤として、SP−100(商品名、旭電化工業株式会社製)0.4質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を広口のポリ瓶に秤量し、メカニカルスターラ、シャフト及びプロペラを用いて、温度25℃、回転数400rpmの条件で、6時間撹拌し、クラッド層形成用樹脂ワニスAを調合した。その後、孔径2μmのポリフロンフィルタ(商品名:PF020、アドバンテック東洋株式会社製)を用いて、温度25℃、圧力0.4MPaの条件で加圧濾過し、さらに真空ポンプ及びベルジャーを用いて減圧度50mmHgの条件で15分間減圧脱泡した。
上記で得られたクラッド層形成用樹脂ワニスAを、ポリアミドフィルム(商品名:ミクトロン、東レ株式会社製、厚さ:12μm)のコロナ処理面上に塗工機(マルチコーターTM−MC、株式会社ヒラノテクシード製)を用いて塗布し、80℃、10分、その後100℃、10分乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、クラッド層形成用樹脂フィルムを得た。このとき樹脂層の厚さは、塗工機のギャップを調節することで、任意に調整可能であり、本実施例では硬化後の膜厚が、下部クラッド層25μm、上部クラッド層80μmとなるように調節した。
〔コア層形成用樹脂フィルムの作製〕
(A)ベースポリマー(バインダポリマ)として、フェノキシ樹脂(商品名:フェノトートYP−70、東都化成株式会社製)26質量部、(B)光重合性化合物として、9,9−ビス[4−(2−アクリロイルオキシエトキシ)フェニル]フルオレン(商品名:A−BPEF、新中村化学工業株式会社製)36質量部、およびビスフェノールA型エポキシアクリレート(商品名:EA−1020、新中村化学工業株式会社製)36質量部、(C)光重合開始剤として、ビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキサイド(商品名:イルガキュア819、チバ・スペシャリティ・ケミカルズ社製)1質量部、及び1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(商品名:イルガキュア2959、チバ・スペシャリティ・ケミカルズ社製)1質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を用いたこと以外は上記製造例と同様の方法および条件でコア層形成用樹脂ワニスBを調合した。その後、上記製造例と同様の方法および条件で加圧濾過さらに減圧脱泡した。
上記で得られたコア層形成用樹脂ワニスBを、PETフィルム(商品名:コスモシャインA1517、東洋紡績株式会社製、厚さ:16μm)の非処理面上に、上記製造例と同様な方法で塗布乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、コア層形成用樹脂フィルムを得た。本実施例では硬化後の膜厚が50μmとなるよう、塗工機のギャップを調整した。
[光導波路の作製]
光導波路の作製方法について、以下、図1を参照しつつ説明する。
上記で得られた下部クラッド層形成用樹脂フィルムの保護フィルムである離型PETフィルム(ピューレックスA31)を剥離し、紫外線露光機(株式会社オーク製作所製、EXM−1172)にて樹脂側(支持体フィルムの反対側)から紫外線(波長365nm)を1J/cm2照射し、次いで80℃で10分間加熱処理することにより、下部クラッド層2を形成した(図1(a)参照)。
次に、該下部クラッド層2上に、ロールラミネータ(日立化成テクノプラント株式会社製、HLM−1500)を用い圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件で、上記コア層形成用樹脂フィルムをラミネートし、コア層30を形成した(図1(b)参照)。
次に、線幅/線間=50μm/75μm、パターン本数12本、パターン長125mmのネガ型フォトマスク7を介し、上記紫外線露光機にて紫外線(波長365nm)を0.8J/cm2照射し(図1(d)参照)、次いで80℃で5分間露光後加熱を行った。その後、支持体フィルムであるPETフィルムを剥離し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N−ジメチルアセトアミド=8/2、質量比)を用いて、コアパターンを現像した(図1(e)参照)。続いて、洗浄液(イソプロパノール)を用いて洗浄し、100℃で10分間加熱乾燥した。
次いで、上部クラッド層として、平板型ラミネータとして真空加圧式ラミネータ(株式会社名機製作所製、MVLP−500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度100℃、加圧時間30秒の条件にて、上記クラッド層形成用樹脂フィルムをラミネートした(図1(f)参照)。なお、温度100℃における、上部クラッド層形成用樹脂フィルムの溶融粘度は170Pa・sであった。その後、紫外線(波長365nm)を両面に合計で25J/cm2照射後、160℃で1時間加熱処理することによって、上部クラッド層9を形成し支持体フィルムが外側に配置されたフレキシブル光導波路を作製した(図1(g)参照)。さらにポリアミドフィルム剥離のため、該フレキシブル光導波路を85℃/85%の高温高湿条件で24時間処理し、支持体フィルムを除去したフレキシブル光導波路を作製した。
このようにして作製したフレキシブル光導波路について、倍率50倍の顕微鏡下で外観検査を行い、コアに接する気泡が0個であることを確認した。
なお、作製した光導波路の伝搬損失を、光源に850nmの面発光レーザー((EXFO社製、FLS−300−01−VCL)を、受光センサに(株)アドバンテスト製、Q82214を用い、カットバック法(測定導波路長5、3、2cm、入射ファイバー;GI−50/125マルチモードファイバー(NA=0.20)、出射ファイバー;SI−114/125(NA=0.22))により測定したところ、0.05dB/cmであった。
比較例1
実施例1において、上部クラッド形成時のラミネート温度を60℃、65℃、80℃、90℃で行ったこと以外は、実施例1と同様にしてフレキシブル光導波路を作製した。温度60℃、65℃、80℃、90℃における上部クラッド層形成用樹脂フィルムの溶融粘度はそれぞれ1720Pa・s、1180Pa・s、445Pa・s、260Pa・sであった。これらの条件で作製したフレキシブル光導波路には、コアに接する大きさ5μm以上の気泡が5個以上残った。
なお、作製した光導波路の伝搬損失を、光源に850nmの面発光レーザー((EXFO社製、FLS−300−01−VCL)を、受光センサに(株)アドバンテスト製、Q82214を用い、カットバック法(測定導波路長5、3、2cm、入射ファイバー;GI−50/125マルチモードファイバー(NA=0.20)、出射ファイバー;SI−114/125(NA=0.22))により測定したところ、0.1dB/cmであり、気泡が原因で伝搬損失が劣化することがわかった。
実施例2(第1の製造方法)
〔クラッド層形成用樹脂フィルムの作製〕
(A)ベースポリマー(バインダポリマ)として、フェノキシ樹脂(商品名:フェノトートYP−70、東都化成株式会社製)50質量部、(B)光重合性化合物として、アリサイクリックジエポキシカルボキシレート(商品名:KRM−2110、分子量:252、旭電化工業株式会社製)50質量部、(C)光重合開始剤として、トリフェニルスルホニウムヘキサフロロアンチモネート塩(商品名:SP−170、旭電化工業株式会社製)2質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を広口のポリ瓶に秤量し、メカニカルスターラ、シャフト及びプロペラを用いて、温度25℃、回転数400rpmの条件で、6時間撹拌し、クラッド層形成用樹脂ワニスCを調合した。その後、孔径2μmのポリフロンフィルタ(商品名:PF020、アドバンテック東洋株式会社製)を用いて、温度25℃、圧力0.4MPaの条件で加圧濾過し、さらに真空ポンプ及びベルジャーを用いて減圧度50mmHgの条件で15分間減圧脱泡した。
上記で得られたクラッド層形成用樹脂ワニスCを、PETフィルム(商品名:コスモシャインA4100、東洋紡績株式会社製、厚さ:50μm)の非処理面上に塗工機(マルチコーターTM−MC、株式会社ヒラノテクシード製)を用いて塗布し、80℃、10分、その後100℃、10分乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、クラッド層形成用樹脂フィルムを得た。このとき樹脂層の厚さは、塗工機のギャップを調節することで、任意に調整可能であり、本実施例では硬化後の膜厚が、下部クラッド層30μm、上部クラッド層60μmとなるように調節した。
〔コア層形成用樹脂フィルムの作製〕
実施例1と同様の方法および条件でコア層形成用樹脂ワニスBを調合した。その後、上記製造例と同様の方法および条件で加圧濾過さらに減圧脱泡した。
上記で得られたコア層形成用樹脂ワニスBを、PETフィルム(商品名:コスモシャインA1517、東洋紡績株式会社製、厚さ:16μm)の非処理面上に、上記製造例と同様な方法で塗布乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、コア層形成用樹脂フィルムを得た。本実施例では硬化後の膜厚が40μmとなるよう、塗工機のギャップを調整した。
[光導波路の作製]
光導波路の作製方法について、以下説明する。
シリコン基板40(厚さ0.625mm、酸化膜1μm付き、三菱マテリアル(株)製)上にスピンコート法によって、シランカップリング剤(東レ・ダウコーニング(株)製[Z6040])を、500rpm/10秒、さらには1500rpm/30秒の条件で塗工し、その後ホットプレート上で120℃/3分加熱した。なお、スピンコートには、ミカサ(株)製「1H−D2」を用いた。次いで、上記で作製したクラッド層形成用樹脂フィルムの保護フィルムを剥がし、クラッド層形成用樹脂層がシランカップリング処理したシリコン基板に接するようにして、ロールラミネータ(日立化成テクノプラント(株)製、HLM−1500)を用い、80℃、0.5MPa、送り速度0.5mの条件でロールラミネートした。その後、紫外線露光機(株式会社オーク製作所製、EXM−1172)にて樹脂側(支持体フィルムの反対側)から紫外線(波長365nm)を1J/cm2照射し、支持体フィルムであるPETフィルム(コスモシャインA4100)を剥がした後、120℃で60分間加熱処理することにより、下部クラッド層2を形成した(図4(a)参照)。
次に、該下部クラッド層2上に、ロールラミネータ(日立化成テクノプラント株式会社製、HLM−1500)を用い圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件で、上記コア層形成用樹脂フィルムをラミネートし、コア層30を形成した(図4(b)参照)。
次に、線幅/線間=50μm/75μm、パターン本数12本、パターン長125mmのネガ型フォトマスク7を介し、上記紫外線露光機にて紫外線(波長365nm)を0.8J/cm2照射し(図4(c)参照)、次いで80℃で5分間露光後加熱を行った。その後、支持体フィルムであるPETフィルムを剥離し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N−ジメチルアセトアミド=8/2、質量比)を用いて、コアパターンを現像した(図4(d)参照)。続いて、洗浄液(イソプロパノール)を用いて洗浄し、120℃で60分間加熱乾燥した。
次いで、上部クラッド層として、平板型ラミネータとして真空加圧式ラミネータ(株式会社名機製作所製、MVLP−500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度100℃、加圧時間30秒の条件にて、上記クラッド層形成用樹脂フィルムをラミネートした(図4(e)参照)。なお、温度100℃における、上部クラッド層形成用樹脂フィルムの溶融粘度は121Pa・sであった。その後、紫外線(波長365nm)を1J/cm2照射後、160℃で1時間加熱処理することによって、上部クラッド層9を形成した(図4(f)参照)。
このようにして作製した光導波路について、倍率50倍の顕微鏡下で外観検査を行い、コアに接する気泡が0個であることを確認した。
なお、作製した光導波路の伝搬損失を、実施例1と同様にして測定したところ、0.05dB/cmであった。
比較例2
実施例2において、上部クラッド形成時のラミネート温度を60℃、70℃、80℃、90℃で行ったこと以外は、実施例2と同様にしてフレキシブル光導波路を作製した。温度60℃、70℃、80℃、90℃における上部クラッド層形成用樹脂フィルムの溶融粘度はそれぞれ1670Pa・s、842Pa・s、383Pa・s、233Pa・sであった。これらの条件で作製したフレキシブル光導波路には、コアに接する大きさ5μm以上の気泡が5個以上残った。
なお、作製した光導波路の伝搬損失を、実施例1と同様にして測定したところ、0.1dB/cmであり、気泡が原因で伝搬損失が劣化することがわかった。
実施例3(第2の製造方法)
〔クラッド層形成用樹脂フィルムの作製〕
(A)ベースポリマー(バインダポリマ)として、フェノキシ樹脂(商品名:フェノトートYP−70、東都化成株式会社製)48質量部、(B)光重合性化合物として、アリサイクリックジエポキシカルボキシレート(商品名:KRM−2110、分子量:252、旭電化工業株式会社製)49.6質量部、(C)光重合開始剤として、トリフェニルスルホニウムヘキサフロロアンチモネート塩(商品名:SP−170、旭電化工業株式会社製)2質量部、増感剤として、SP−100(商品名、旭電化工業株式会社製)0.4質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を広口のポリ瓶に秤量し、メカニカルスターラ、シャフト及びプロペラを用いて、温度25℃、回転数400rpmの条件で、6時間撹拌し、クラッド層形成用樹脂ワニスAを調合した。その後、孔径2μmのポリフロンフィルタ(商品名:PF020、アドバンテック東洋株式会社製)を用いて、温度25℃、圧力0.4MPaの条件で加圧濾過し、さらに真空ポンプ及びベルジャーを用いて減圧度50mmHgの条件で15分間減圧脱泡した。
上記で得られたクラッド層形成用樹脂ワニスAを、ポリアミドフィルム(商品名:ミクトロン、東レ株式会社製、厚さ:12μm)のコロナ処理面上に塗工機(マルチコーターTM−MC、株式会社ヒラノテクシード製)を用いて塗布し、80℃、10分、その後100℃、10分乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、クラッド層形成用樹脂フィルムを得た。このとき樹脂層の厚さは、塗工機のギャップを調節することで、任意に調整可能であり、本実施例では硬化後の膜厚が、下部クラッド層25μm、上部クラッド層80μmとなるように調節した。
〔コア層形成用樹脂フィルムの作製〕
(A)ベースポリマー(バインダポリマ)として、フェノキシ樹脂(商品名:フェノトートYP−70、東都化成株式会社製)26質量部、(B)光重合性化合物として、9,9−ビス[4−(2−アクリロイルオキシエトキシ)フェニル]フルオレン(商品名:A−BPEF、新中村化学工業株式会社製)36質量部、およびビスフェノールA型エポキシアクリレート(商品名:EA−1020、新中村化学工業株式会社製)36質量部、(C)光重合開始剤として、ビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキサイド(商品名:イルガキュア819、チバ・スペシャリティ・ケミカルズ社製)1質量部、及び1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(商品名:イルガキュア2959、チバ・スペシャリティ・ケミカルズ社製)1質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を用いたこと以外は上記製造例と同様の方法および条件でコア層形成用樹脂ワニスBを調合した。その後、上記製造例と同様の方法および条件で加圧濾過さらに減圧脱泡した。
上記で得られたコア層形成用樹脂ワニスBを、PETフィルム(商品名:コスモシャインA1517、東洋紡績株式会社製、厚さ:16μm)の非処理面上に、上記製造例と同様な方法で塗布乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、コア層形成用樹脂フィルムを得た。本実施例では硬化後の膜厚が70μmとなるよう、塗工機のギャップを調整した。
[光導波路の作製]
光導波路の作製方法について、以下、図1を参照しつつ説明する。
上記で得られた下部クラッド層形成用樹脂フィルムの保護フィルムである離型PETフィルム(ピューレックスA31)を剥離し、紫外線露光機(株式会社オーク製作所製、EXM−1172)にて樹脂側(支持体フィルムの反対側)から紫外線(波長365nm)を1J/cm2照射し、次いで80℃で10分間加熱処理することにより、下部クラッド層2を形成した(図1(a)参照)。
次に、該下部クラッド層2上に、ロールラミネータ(日立化成テクノプラント株式会社製、HLM−1500)を用い圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件で、上記コア層形成用樹脂フィルムをラミネートし、コア層30を形成した(図1(b)参照)。
次に、線幅/線間=80μm/170μm、パターン本数8本、パターン長125mmのネガ型フォトマスク7を介し、上記紫外線露光機にて紫外線(波長365nm)を0.8J/cm2照射し(図1(d)参照)、次いで80℃で5分間露光後加熱を行った。その後、支持体フィルムであるPETフィルムを剥離し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N−ジメチルアセトアミド=8/2、質量比)を用いて、コアパターンを現像した(図1(e)参照)。続いて、洗浄液(イソプロパノール)を用いて洗浄し、100℃で10分間加熱乾燥した。
次いで、上部クラッド層として、平板型ラミネータとして真空加圧式ラミネータ(株式会社名機製作所製、MVLP−500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度60℃、加圧時間30秒の条件にて、上記クラッド層形成用樹脂フィルム1をラミネートした(図1(f)参照)。このとき、倍率100倍の顕微鏡下で外観検査を行ったところ、コアに接する気泡が上部クラッド中に4個あった(図5参照)。
続いて、この気泡を消失するため50℃、30分加熱炉中で加熱し、同様に顕微鏡下で外観検査を行ったところ、気泡を消失した(図6参照)。
その後、紫外線(波長365nm)を両面に合計で25J/cm2照射後、160℃で1時間加熱処理することによって、上部クラッド層9を形成し支持体フィルムが外側に配置されたフレキシブル光導波路を作製した(図1(g)参照)。さらにポリアミドフィルム剥離のため、該フレキシブル光導波路を85℃/85%の高温高湿条件で24時間処理し、支持体フィルムを除去したフレキシブル光導波路を作製した。
作製した光導波路の伝搬損失を、光源に850nmの面発光レーザー((EXFO社製、FLS−300−01−VCL)を、受光センサに(株)アドバンテスト製、Q82214を用い、カットバック法(測定導波路長5、3、2cm、入射ファイバー;GI−50/125マルチモードファイバー(NA=0.20)、出射ファイバー;SI−114/125(NA=0.22))により測定したところ、0.05dB/cmであった。
また、上部クラッドラミネート後の加熱温度を60℃、70℃、80℃、90℃、100℃とした場合においても、気泡を消失できることを確認した。
比較例3
上部クラッドラミネート後の加熱処理を行わなかったこと以外は、実施例3と同様な光導波路形成用樹脂フィルム及び工程にて光導波路を作製した。その結果、上部クラッドラミネート後に残った気泡がそのまま残ってしまった。この条件で作製した光導波路の伝搬損失は、0.1dB/cmであり、気泡が原因で伝搬損失が劣化することがわかった。
実施例4(第2の製造方法)
〔クラッド層形成用樹脂フィルムの作製〕
(A)ベースポリマー(バインダポリマ)として、フェノキシ樹脂(商品名:フェノトートYP−70、東都化成株式会社製)50質量部、(B)光重合性化合物として、アリサイクリックジエポキシカルボキシレート(商品名:KRM−2110、分子量:252、旭電化工業株式会社製)50質量部、(C)光重合開始剤として、トリフェニルスルホニウムヘキサフロロアンチモネート塩(商品名:SP−170、旭電化工業株式会社製)2質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を広口のポリ瓶に秤量し、メカニカルスターラ、シャフト及びプロペラを用いて、温度25℃、回転数400rpmの条件で、6時間撹拌し、クラッド層形成用樹脂ワニスCを調合した。その後、孔径2μmのポリフロンフィルタ(商品名:PF020、アドバンテック東洋株式会社製)を用いて、温度25℃、圧力0.4MPaの条件で加圧濾過し、さらに真空ポンプ及びベルジャーを用いて減圧度50mmHgの条件で15分間減圧脱泡した。
上記で得られたクラッド層形成用樹脂ワニスCを、PETフィルム(商品名:コスモシャインA1517、東洋紡績株式会社製、厚さ:16μm)の易接着処理面上に塗工機(マルチコーターTM−MC、株式会社ヒラノテクシード製)を用いて塗布し、80℃、10分、その後100℃、10分乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、クラッド層形成用樹脂フィルムを得た。このとき樹脂層の厚さは、塗工機のギャップを調節することで、任意に調整可能であり、本実施例では硬化後の膜厚が、下部クラッド層30μm、上部クラッド層80μmとなるように調節した。
〔コア層形成用樹脂フィルムの作製〕
実施例3と同様の方法および条件でコア層形成用樹脂フィルムを得た。本実施例では硬化後の膜厚が50μmとなるよう、塗工機のギャップを調整した。
[光導波路の作製]
光導波路の作製方法について、以下、図1を参照しつつ説明する。
上記で得られた下部クラッド層形成用樹脂フィルム2の保護フィルムである離型PETフィルム(ピューレックスA31)を剥離し、紫外線露光機(株式会社オーク製作所製、EXM−1172)にて樹脂側(支持体フィルムの反対側)から紫外線(波長365nm)を1J/cm2照射し、次いで80℃で10分間加熱処理することにより、下部クラッド層2を形成した(図1(a)参照)。
次に、該下部クラッド層2上に、ロールラミネータ(日立化成テクノプラント株式会社製、HLM−1500)を用い圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件で、上記コア層形成用樹脂フィルムをラミネートし、コア層30を形成した(図1(b)参照)。
次に、線幅/線間=50μm/250μm、パターン本数12本、パターン長125mmのネガ型フォトマスク7を介し、上記紫外線露光機にて紫外線(波長365nm)を0.8J/cm2照射し(図1(d)参照)、次いで80℃で5分間露光後加熱を行った。その後、支持体フィルムであるPETフィルムを剥離し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N−ジメチルアセトアミド=8/2、質量比)を用いて、コアパターンを現像した(図1(e)参照)。続いて、洗浄液(イソプロパノール)を用いて洗浄し、100℃で10分間加熱乾燥した。
次いで、上部クラッド層として、平板型ラミネータとして真空加圧式ラミネータ(株式会社名機製作所製、MVLP−500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度60℃、加圧時間30秒の条件にて、上記クラッド層形成用樹脂フィルム1をラミネートした(図1(f)参照)。このとき、倍率100倍の顕微鏡下で外観検査を行ったところ、コアに接する気泡が上部クラッド中に3個あった。
続いて、この気泡を消失するため50℃、30分加熱炉中で加熱し、気泡を消失した。
その後、紫外線(波長365nm)を両面に合計で6J/cm2照射後、120℃で1時間加熱処理することによって、上部クラッド層9を形成し支持体フィルムが外側に配置されたフレキシブル光導波路を作製した(図1(g)参照)。
作製した光導波路の伝搬損失を、光源に850nmの面発光レーザー((EXFO社製、FLS−300−01−VCL)を、受光センサに(株)アドバンテスト製、Q82214を用い、カットバック法(測定導波路長5、3、2cm、入射ファイバー;GI−50/125マルチモードファイバー(NA=0.20)、出射ファイバー;SI−114/125(NA=0.22))により測定したところ、0.05dB/cmであった。
また、上部クラッドラミネート後の加熱温度を60℃、70℃、80℃、90℃、100℃とした場合においても、気泡を消失できることを確認した。
比較例4
上部クラッドラミネート後の加熱処理を行わなかったこと以外は、実施例4と同様な光導波路形成用樹脂フィルム及び工程にて光導波路を作製した。その結果、上部クラッドラミネート後に残った気泡がそのまま残ってしまった。この条件で作製した光導波路の伝搬損失は、0.1dB/cmであり、気泡が原因で伝搬損失が劣化することがわかった。
実施例5(第2の製造方法)
実施例4において、クラッド形成用樹脂フィルムの支持体フィルムを、厚さ25μmのPETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、非処理面使用)に替えたこと以外は、実施例2と同様に光導波路を作製した。このとき、上部クラッドラミネート後に、倍率100倍の顕微鏡下で外観検査を行ったところ、コアに接する気泡が上部クラッド中に4個あった。この場合においても、上部クラッドラミネート後の加熱温度を50℃、60℃、70℃、80℃、90℃、100℃とすることで気泡を消失できた。
比較例5
上部クラッドラミネート後の加熱処理を行わなかったこと以外は、実施例5と同様な光導波路形成用樹脂フィルム及び工程にて光導波路を作製した。その結果、上部クラッドラミネート後に残った気泡がそのまま残ってしまった。
実施例6(第2の製造方法)
実施例3において、クラッド形成用樹脂フィルムの支持体フィルムを、厚さ9μmのアラミドフィルム(商品名:ミクトロン、東レ株式会社、コロナ処理面使用)に替えたこと以外は、実施例3と同様に光導波路を作製した。このとき、上部クラッドラミネート後に、倍率100倍の顕微鏡下で外観検査を行ったところ、コアに接する気泡が上部クラッド中に1個あった。この場合においては、上部クラッドラミネート後の加熱温度を40℃、加熱時間を60分とすることで気泡を消失できた。
比較例6
上部クラッドラミネート後の加熱処理を行わなかったこと以外は、実施例6と同様な光導波路形成用樹脂フィルム及び工程にて光導波路を作製した。その結果、上部クラッドラミネート後に残った気泡がそのまま残ってしまった。
実施例3〜6及び比較例3〜6の結果を表1に示す。
以上詳細に説明したように、本発明の製造方法によれば、光導波路を生産性良く製造できコア層と上部クラッド層との間に気泡が残らない。特に、第2の製造方法によれば、光導波路を生産性良く製造できコア層と上部クラッド層との間に気泡が残らず、上部クラッド層が平坦である。
このため、実用性の高い光導波路の製造方法として極めて有用である。
1;基材
2;下部クラッド層
3;コア層
4;支持体フィルム(コア層形成用)
5;ロールラミネータ
6;真空加圧ラミネータ
7;フォトマスク
8;コアパターン
9;上部クラッド層
10;支持体フィルム(クラッド層形成用)
11;保護フィルム(保護層)
20;クラッド層形成用樹脂
30;コア層形成用樹脂
40;シリコン基板
200;クラッド層形成用樹脂フィルム
300;コア層形成用樹脂フィルム

Claims (7)

  1. 基材上に形成されたクラッド層形成用樹脂を硬化して下部クラッド層を形成する工程、該下部クラッド層上にコア層形成用樹脂フィルムを積層してコア層を形成する工程、該コア層を露光現像してコアパターンを形成する工程、および該コアパターン上に、支持体フィルムに上部クラッド層形成用樹脂を積層してなる上部クラッド層形成用樹脂フィルムを該樹脂が該コアパターンに接触するように積層する工程、その後、温度40〜200℃で加熱処理を行う工程、該クラッド層形成用樹脂を硬化して、上部クラッド層を形成する工程を有する光導波路の製造方法。
  2. コア層を形成する工程が、ヒートロールを有するロールラミネータを用いて、下部クラッド層上にコア層形成用樹脂フィルムを加熱圧着する工程を含むことを特徴とする、請求項1に記載の光導波路の製造方法。
  3. コアパターン上に上部クラッド層形成用樹脂フィルムを積層する際、平板型ラミネータを用いることを特徴とする、請求項1又は2に記載の光導波路の製造方法。
  4. 基材上に、下部クラッド層、コアパターンおよび上部クラッド層を順に積層した光導波路において、該上部クラッド層が、積層時における溶融粘度が120〜180Pa・sである樹脂より形成されてなる光導波路。
  5. 基材上に、下部クラッド層、コアパターンおよび上部クラッド層を順に積層した光導波路において、該上部クラッド層が、40〜130℃における溶融粘度が120〜180Pa・sである樹脂より形成されてなる光導波路。
  6. 基材上に、下部クラッド層、コアパターンおよび上部クラッド層を順に積層した光導波路において、該上部クラッド層が、100℃における溶融粘度が120〜180Pa・sである樹脂より形成されてなる光導波路。
  7. 基材上に、下部クラッド層、コアパターンおよび上部クラッド層を順に積層した光導波路において、該上部クラッド層が、フェノキシ樹脂系のペースポリマーと2官能エポキシ樹脂を含み、90〜120℃における溶融粘度が120〜180Pa・sである樹脂より形成されてなる光導波路。
JP2013150542A 2008-05-13 2013-07-19 光導波路の製造方法及び光導波路 Expired - Fee Related JP5610046B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013150542A JP5610046B2 (ja) 2008-05-13 2013-07-19 光導波路の製造方法及び光導波路

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008126325 2008-05-13
JP2008126325 2008-05-13
JP2008126317 2008-05-13
JP2008126317 2008-05-13
JP2013150542A JP5610046B2 (ja) 2008-05-13 2013-07-19 光導波路の製造方法及び光導波路

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010511979A Division JP5360055B2 (ja) 2008-05-13 2009-05-12 光導波路の製造方法及び光導波路

Publications (2)

Publication Number Publication Date
JP2013214111A true JP2013214111A (ja) 2013-10-17
JP5610046B2 JP5610046B2 (ja) 2014-10-22

Family

ID=41318742

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010511979A Expired - Fee Related JP5360055B2 (ja) 2008-05-13 2009-05-12 光導波路の製造方法及び光導波路
JP2013150542A Expired - Fee Related JP5610046B2 (ja) 2008-05-13 2013-07-19 光導波路の製造方法及び光導波路

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010511979A Expired - Fee Related JP5360055B2 (ja) 2008-05-13 2009-05-12 光導波路の製造方法及び光導波路

Country Status (5)

Country Link
JP (2) JP5360055B2 (ja)
KR (1) KR20110014150A (ja)
CN (1) CN102027400B (ja)
TW (1) TWI452363B (ja)
WO (1) WO2009139375A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5308398B2 (ja) * 2010-05-11 2013-10-09 日東電工株式会社 光導波路形成用樹脂組成物およびそれを用いた光導波路
JP5351096B2 (ja) * 2010-06-02 2013-11-27 日東電工株式会社 光導波路の製法
JP5768545B2 (ja) * 2011-07-05 2015-08-26 日立化成株式会社 フレキシブル光導波路及びフレキシブル光電気複合基板
CA3026263C (en) * 2016-06-02 2024-06-11 AGC Inc. Resin optical waveguide
JP6859136B2 (ja) * 2017-03-03 2021-04-14 日東電工株式会社 光導波路コア形成用感光性エポキシ樹脂組成物、光導波路コア形成用感光性フィルム、光導波路、光電気混載基板および光導波路の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005331759A (ja) * 2004-05-20 2005-12-02 Ngk Spark Plug Co Ltd 光導波路構造付きデバイスの製造方法
JP2006023376A (ja) * 2004-07-06 2006-01-26 Bridgestone Corp 光デバイスの製造方法
JP2006331759A (ja) * 2005-05-25 2006-12-07 Tomoegawa Paper Co Ltd 電子部品用セパレータ及びその製造方法
WO2007091596A1 (ja) * 2006-02-08 2007-08-16 Hitachi Chemical Company, Ltd. フレキシブル光導波路および光モジュール
JPWO2008032724A1 (ja) * 2006-09-14 2010-01-28 東レ株式会社 光導波路フィルム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3705083B2 (ja) * 2000-06-26 2005-10-12 三菱化学株式会社 光メモリ素子の製造方法及び光メモリ素子
TWI262360B (en) * 2001-03-29 2006-09-21 Hitachi Chemical Co Ltd Light sensitive film for forming circuit and method for manufacturing printed circuit board
CN1922227A (zh) * 2004-02-25 2007-02-28 关西油漆株式会社 光波导用固化性树脂组合物、光波导用固化性干膜
JP4810887B2 (ja) * 2004-06-07 2011-11-09 パナソニック電工株式会社 エポキシ樹脂フィルム、光導波路、光電気複合基板、光通信モジュール
JP2006003622A (ja) * 2004-06-17 2006-01-05 Bridgestone Corp 光デバイスの製造方法
WO2006001395A1 (ja) * 2004-06-25 2006-01-05 Nippon Kayaku Kabushiki Kaisha エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
CN101592860B (zh) * 2004-10-07 2012-04-04 日立化成工业株式会社 光学材料用树脂组合物、光学材料用树脂薄膜及使用其的光导
TW200728330A (en) * 2005-09-29 2007-08-01 Jsr Corp Radiation sensitive resin composition for optical waveguides, optical waveguide and method for manufacturing optical waveguide
US7811640B2 (en) * 2006-05-02 2010-10-12 Rpo Pty Limited Methods for fabricating polymer optical waveguides on large area panels
US20100040986A1 (en) * 2006-09-22 2010-02-18 Masatoshi Yamaguchi Process for manufacturing light guide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005331759A (ja) * 2004-05-20 2005-12-02 Ngk Spark Plug Co Ltd 光導波路構造付きデバイスの製造方法
JP2006023376A (ja) * 2004-07-06 2006-01-26 Bridgestone Corp 光デバイスの製造方法
JP2006331759A (ja) * 2005-05-25 2006-12-07 Tomoegawa Paper Co Ltd 電子部品用セパレータ及びその製造方法
WO2007091596A1 (ja) * 2006-02-08 2007-08-16 Hitachi Chemical Company, Ltd. フレキシブル光導波路および光モジュール
JPWO2007091596A1 (ja) * 2006-02-08 2009-07-02 日立化成工業株式会社 フレキシブル光導波路および光モジュール
JPWO2008032724A1 (ja) * 2006-09-14 2010-01-28 東レ株式会社 光導波路フィルム

Also Published As

Publication number Publication date
CN102027400A (zh) 2011-04-20
JP5610046B2 (ja) 2014-10-22
CN102027400B (zh) 2016-03-30
TWI452363B (zh) 2014-09-11
KR20110014150A (ko) 2011-02-10
TW200951520A (en) 2009-12-16
WO2009139375A1 (ja) 2009-11-19
JPWO2009139375A1 (ja) 2011-09-22
JP5360055B2 (ja) 2013-12-04

Similar Documents

Publication Publication Date Title
JPWO2008035658A1 (ja) 光導波路の製造方法
JP4265695B2 (ja) フレキシブル光導波路およびその製造方法ならびに光モジュール
JP4894348B2 (ja) フレキシブル光導波路及びその製造方法
EP2368939A1 (en) Resin composition for optical material, and resin film for optical material
JP5610046B2 (ja) 光導波路の製造方法及び光導波路
JPWO2012070585A1 (ja) 光導波路
JP5218562B2 (ja) 光導波路
JP5754127B2 (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及び光学材料用ワニス並びにこれらを用いた光導波路
JP2007293244A (ja) 多層光導波路
JP5685926B2 (ja) 光電気複合基板及びその製造方法
JP4929667B2 (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及びこれを用いた光導波路
JP2009186979A (ja) 光導波路複合基板の製造方法
WO2009116421A1 (ja) 光導波路の製造方法
JP5309950B2 (ja) 光導波路の製造方法
JP5066926B2 (ja) フレキシブル光導波路の製造方法
JP2009093140A (ja) 光導波路の製造方法及び該製造方法により得られた光導波路
JP2010079058A (ja) 光電気複合基板の製造方法
JP2011221288A (ja) 光導波路及び光電気複合基板の製造方法、並びにそれにより得られる光導波路及び光電気複合基板
JP5754130B2 (ja) 光電気複合基板及びその製造方法
JP5447143B2 (ja) フレキシブルプリント配線板、光電気配線板及びそれらの製造方法
JPWO2009041439A1 (ja) 光導波路及びその製造方法
JP2014197225A (ja) 光導波路の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140818

LAPS Cancellation because of no payment of annual fees