WO2007091596A1 - フレキシブル光導波路および光モジュール - Google Patents

フレキシブル光導波路および光モジュール Download PDF

Info

Publication number
WO2007091596A1
WO2007091596A1 PCT/JP2007/052123 JP2007052123W WO2007091596A1 WO 2007091596 A1 WO2007091596 A1 WO 2007091596A1 JP 2007052123 W JP2007052123 W JP 2007052123W WO 2007091596 A1 WO2007091596 A1 WO 2007091596A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
flexible optical
meth
film
acrylate
Prior art date
Application number
PCT/JP2007/052123
Other languages
English (en)
French (fr)
Inventor
Tatsuya Makino
Atsushi Takahashi
Hiroshi Masuda
Toshihiko Takasaki
Tomoaki Shibata
Masami Ochiai
Original Assignee
Hitachi Chemical Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Company, Ltd. filed Critical Hitachi Chemical Company, Ltd.
Priority to US12/278,597 priority Critical patent/US7660503B2/en
Priority to CN2007800048776A priority patent/CN101379421B/zh
Priority to EP07708162A priority patent/EP1983360A1/en
Priority to JP2007557866A priority patent/JPWO2007091596A1/ja
Publication of WO2007091596A1 publication Critical patent/WO2007091596A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material

Definitions

  • the present invention relates to a flexible optical waveguide and an optical module excellent in flexibility, heat resistance, and transparency.
  • a flexible optical waveguide having flexibility without having a hard and supporting substrate assuming connection between boards is considered suitable.
  • Such flexible optical waveguides are not only used for connecting boards, but are also used in consumer products such as hinges for folding mobile phones, which have traditionally used flexible printed wiring boards, and hinges that connect the display of a notebook computer to the main body.
  • Application to equipment is being studied, and flexibility, heat resistance, and transparency are required.
  • a polymer optical waveguide film described in Patent Document 1 As a conventional flexible optical waveguide, for example, a polymer optical waveguide film described in Patent Document 1 has been proposed.
  • This polymer optical waveguide film uses deuterated or halogenated poly (meth) acrylate for the cladding layer and core layer, and is fabricated by spin coating to produce a waveguide at a wavelength of 1.3 / zm.
  • Waveguide loss (waveguide length 5cm) is exemplified with 1. ldB and 1.5dB, and it is shown that the loss is the same even when the waveguide is not bent. (See Patent Document 1, Examples 1 and 2).
  • Patent Document 1 Japanese Patent No. 3249340
  • the present invention has been made in view of the above viewpoint, and provides a flexible optical waveguide having high flexibility, heat resistance, and transparency, and an optical module using the flexible optical waveguide. Objective.
  • the present invention relates to the following (1) to (17).
  • a flexible optical waveguide having a core portion and a clad layer, and having an insertion loss increasing component of 0.1 ldB or less in a 360 ° bending test with a radius of curvature of 2 mm.
  • the core part and the Z or clad layer are produced using a resin composition containing (A) a binder polymer, (B) a photopolymerizable compound, and (C) a photopolymerization initiator. 8) A flexible optical waveguide as described above.
  • the photopolymerizable compound includes a monofunctional (meth) acrylate having at least one selected from the group consisting of an aryl group, an aralkyl group, an aryloxy group, and an aromatic heterocyclic group.
  • the flexible optical waveguide according to any one of (12).
  • R 1 is a hydrogen atom or a methyl group
  • R 2 to R 13 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 2 carbon atoms.
  • An alkoxycarbo group having ⁇ 7, an aryl group having 6 to 10 carbon atoms, or an aralkyl group having 7 to 9 carbon atoms, a and b each independently represents an integer of 1 to 20)
  • R 14 represents a hydrogen atom or a methyl group
  • R 15 represents a hydrogen atom, a methyl group or a halogen atom.
  • a flexible optical waveguide having high flexibility, heat resistance, and transparency, and an optical module using the flexible optical waveguide can be provided.
  • FIG. 1 is a cross-sectional view illustrating a flexible optical waveguide according to the present invention.
  • FIG. 2 shows the temperature profile in the reflow furnace in the reflow test carried out in the present invention.
  • FIG. 3 shows the radius of curvature and loss change when a 360 ° bending test was performed using the flexible optical waveguide fabricated in Example 1.
  • FIG. 4 shows the number of bendings and the loss change when the bending test is repeatedly performed using the flexible optical waveguide manufactured in Example 1.
  • FIG. 5 shows the results of measuring propagation loss using the flexible optical waveguide fabricated in Example 1.
  • the optical waveguide 1 includes a core portion 2 made of a core layer forming resin having a high refractive index, and a clad layer (upper clad layer 3 and lower clad layer 4) made of a low refractive index clad layer forming resin. It consists of The core part 2 is formed in a pattern shape after the active layer is irradiated with an active ray in an image form through a negative mask pattern as described later on the core layer made of the core layer forming resin.
  • the optical waveguide 1 has a cover film 5 disposed on at least one of the outer sides of the upper cladding layer 3 and the lower cladding layer 4. It's okay.
  • the cover film 5 By disposing the cover film 5, the flexibility and toughness of the cover film 5 can be imparted to the optical waveguide 1. Furthermore, since the optical waveguide 1 is not damaged or scratched, handling is improved.
  • the clad layer-forming resin used in the present invention is not particularly limited as long as it has the effects of the present invention, and has a lower refractive index than the core layer and is cured by light or heat.
  • a photosensitive resin composition can be suitably used.
  • the resin for forming the cladding layer is composed of a resin composition containing (A) a binder polymer, (B) a photopolymerizable compound, and (C) a photopolymerization initiator. preferable.
  • the (A) nodular polymer used here is for forming a clad layer and ensuring the strength and flexibility of the clad layer, and is not particularly limited as long as the object can be achieved.
  • examples thereof include phenoxy resin, epoxy resin, (meth) acrylic resin, polycarbonate, polyarylate, polyether amide, polyether imide, polyether sulfone, and derivatives thereof.
  • These binder polymers can be used singly or in combination of two or more.
  • (meth) acrylic resin means acrylic resin and methacrylic resin.
  • phenoxy resins a linear high molecular polymer of bisphenol A type epoxy resin is preferred from the viewpoint of high heat resistance.
  • This linear polymer, phenoxy resin is generally added by a one-step method in which bisphenol A and epichlorohydrin are polycondensed, or polyfunctional epoxy resin and bisphenol A are polyadded. It is manufactured by the two-stage method.
  • Specific examples include “Fuenotote YP-50, Phenotote YP-55, Phenototo YP-70” (all trade names), JP-A-4-120124, JP-A-4-122714, And those described in JP-A-4-339852.
  • Examples of solid epoxy resins that are solid at room temperature (25 ° C) include “Epototo YD-7020, Epototo YD—7019, Epototo YD—7017” (all trade names) manufactured by Tohto Kasei Co., Ltd.
  • Examples include bisphenol type epoxy resin such as “Epicoat 1010, Epicoat 1009, Epicoat 1008” (V, product name).
  • the molecular weight of the binder polymer is preferably 20,000 or more in terms of weight average molecular weight from the viewpoint of strength and flexibility, and more preferably 50,000 or more.
  • the upper limit of the weight average molecular weight is not particularly limited, but it is preferably 1,000,000 or less from the viewpoint of (B) compatibility with the photopolymerizable compound and exposure developability. , 0.000 or less.
  • the weight average molecular weight in the present invention is a value measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
  • the blending amount of the (A) binder polymer is preferably 5 to 80% by mass with respect to the total amount of the component (A) and the component (B).
  • a cured resin having sufficient strength and flexibility can be obtained.
  • it is 80% by mass or less, it becomes easy to be cured by being entangled with the component (B) at the time of exposure, and sufficient resistance to a solvent used in the production process (hereinafter referred to as “solvent resistance”) is sufficiently obtained. From the above viewpoint, it should be 10-75% by mass It is particularly preferably 20 to 70% by mass.
  • the photopolymerizable compound is not particularly limited as long as it is polymerized by irradiation with light such as ultraviolet rays, and a compound having two or more epoxy groups in the molecule or an ethylene property in the molecule. Examples thereof include compounds having an unsaturated group.
  • bisphenol A type epoxy resin tetrabromobisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, bisphenol AD type epoxy resin, full Bifunctional aromatic glycidyl ether such as olene type epoxy resin and naphthalene type epoxy resin; phenol novolac type epoxy resin, cresol novolac type epoxy resin, dicyclopentadiene phenol type epoxy resin, tetraphenol-roll Polyfunctional aromatic glycidyl ethers such as ethane type epoxy resin; polyethylene glycol type epoxy resin, polypropylene glycol type epoxy resin, neopentyldaricol type epoxy resin, hexanediol type epoxy resin Bifunctional aliphatic glycidyl ether; trimethylol Multifunctional aliphatic glycidyl ethers such as ropan
  • the molecular weight of the compound having two or more epoxy groups in the molecule is usually about 100 to 2,000, preferably about 150 to 1,000. These compounds are preferably used in a liquid form at room temperature (25 ° C).
  • These compounds may be used alone or in combination of two or more, or in combination with other photopolymerizable compounds.
  • the molecular weight of the photopolymerizable compound can be measured by GPC method or mass spectrometry.
  • Specific examples of the compound having an ethylenically unsaturated group in the molecule include (meth) acrylate, vinylidene halide, butyl ether, butyl pyridine, burphenol and the like. Among these, (meth) acrylate is preferable from the viewpoints of transparency and heat resistance. As the (meth) acrylate, monofunctional, bifunctional, trifunctional or more polyfunctional ones! /, And deviation can be used.
  • (meta) acrylate refers to acrylate and metatalate.
  • Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate.
  • Alkyl (meth) acrylates having a hydroxy group such as 2-hydroxybutyl (meth) acrylate; cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, Cyclopentyl (meth) acrylate, 2-tetrahydrofuryl (meth) acrylate, dicyclopental (meth) acrylate, dicyclopentate (meth) acrylate, isobornyl (meth) acrylate, etc.
  • Alkoxypolyalkylenes such as methoxypolyethyleneglycol (meth) acrylate, ethoxypolyethyleneglycol (meth) acrylate, methoxypolypropylenediol (meth) acrylate, ethoxypolypropyleneglycol (meth) acrylate Glycol (meth) acrylates; phenoxy polyethylene glycol (meth) acrylate, nourphenoxy polyethylene glycol (meth) acrylate, phenoloxy polypropylene glycol (meth) acrylate, etc.
  • bifunctional (meth) acrylate examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene Glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, polypropylene glycol Di (meth) acrylate, ethoxylated polypropylene glycol di (meth) acrylate, 1, 3 butanediol di (meth) acrylate, 1, 4 butane diol di (meth) acrylate, neopentyl glycol di (meta ) Atalylate, 3—methyl 1,5 pentanediol di (meth) acrylate,
  • ethoxylated bisphenol A di (meth) acrylate propoxylated bisphenol A di (meth) acrylate, propoxy-modified toxylated bisphenol A di (meth) acrylate, Ethoxylated fluorene type di (meth) acrylate, bisphenol A type, bisphenol F type, and bisphenol It is preferable to use AF type epoxy (meth) acrylate.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 to R each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 2 to 7 carbon atoms.
  • a and b each independently represent an integer of 1 to 20.
  • R 1 is a hydrogen atom
  • R 2 to R 13 are hydrogen atoms
  • a is 1
  • b is 1. This is available as a commercially available product (Shin Nakamura Chemical Co., Ltd. ), Product name “A—BPEF”).
  • X is CH CH (OH) CH, (CHO) CH, (CHO) CH, or (CHO
  • Y represents C (CH), CH, SO, or O, c, d, e and f e 3 6 f 3 6 3 2 2 2
  • R 14 represents a hydrogen atom or a methyl group
  • R 15 represents a hydrogen atom, a methyl group or a halogen atom.
  • X is CH CH (OH) CH
  • This compound with a favorable rate is available as a commercial product (made by Shin-Nakamura Chemical Co., Ltd., trade name “EA-1020”).
  • component (B) at least 1 in the molecule and the above-mentioned full orange (meth) acrylate.
  • a compound having two (meth) atallyloyl groups can be used in combination.
  • trifunctional or higher polyfunctional (meth) acrylates examples include trimethylol propane tri (meth) acrylate, ethoxy-trimethylol propane tri (meth) acrylate, and propoxy trimethylol propane tri (meth).
  • pentaerythritol tri (meth) atalylate examples include trimethylol propane tri (meth) acrylate, ethoxy-trimethylol propane tri (meth) acrylate, and propoxy trimethylol propane tri (meth).
  • pentaerythritol tri (meth) atalylate examples include pentaerythritol tri (meth) atalylate
  • These compounds may be used alone or in combination of two or more, or in combination with other photopolymerizable compounds.
  • the blending amount of the (B) photopolymerizable compound is preferably 20 to 95 mass% with respect to the total amount of the component (A) and the component (B).
  • (A) the binder polymer can be easily entangled and cured, and sufficient solvent resistance can be obtained. If it is 95% by mass or less, a cured resin having sufficient strength and flexibility can be obtained.
  • the blending amount of the (B) photopolymerizable compound is more preferably 30 to 80% by mass, more preferably 25 to 90% by mass.
  • the (C) photopolymerization initiator is not particularly limited as long as it is a compound that causes polymerization of the (B) photopolymerizable compound by irradiation with light such as ultraviolet rays.
  • (C) photopolymerization initiator may be, for example, an aryl diazo-um salt such as p-methoxybenzenediazo-hexafluorophosphate; Rheodonium hexafluorophosphate, diphenol-hexafluoroantimonate, and other salt salts; 4-Luthiothiophene Ninoresnoreforma Hexaphenoloneophosphate, Diphenol-Neuro 4-Enoxyphenol-Sulsulfo-Umhexafluoroantimonate, Diphenyl 4-thioenoxyphenyl Nylsulfo -Triarylsulfo such as umpentafluorohydroxyantimonate- Triarylseleno-um
  • Dialkyl-4-hydroxy salts such as sulfo-hexafluoroantimonate, 4-hydroxyphenol pendylmethylsulfo-hexafluoroantimonate; ⁇ -hydroxymethylbenzoin sulfonate, ⁇ hydroxyimide sulfonate, a —Sulfo-roxyketone, ⁇ -sulfo-roxyketone, etc.
  • Examples include acid esters. Among these, from the viewpoint of transparency and curability, it is preferable to use a triarylsulfum salt.
  • the photopolymerization initiator examples include benzophenone, ⁇ , ⁇ '-tetramethyl-1,4,4'-dia Minovenzofenone, ⁇ , ⁇ '—Tetraethyl-1,4'-Diaminobenzophenone, 4-Methoxy4'-Dimethylaminobenzophenone, 2,2 Dimethoxy-1,1,2 Diphenylethane-1-one, 1-hydroxycyclo Hexylphenylketone, 2-hydroxy-1-2-methyl 1-phenolpropane-1-one, 1- [4- (2-hydroxyethoxy) phenol] 2-hydroxy 2-methyl-1-propane-1-one, 2-Benzyl-2-dimethylamino 1- (4-morpholinophenol) butane 1-on, 1, 2-methyl-1 [4- (methylthio) phenol] 2 Morpholinopropane 1-on, 1 [(
  • the aryl group substituents of the two triarylimidazole sites may give the same and symmetric compounds, or differently give asymmetric compounds. Also good. Also. Thioxanthone compounds and tertiary amines may be combined, such as a combination of jetylthioxanthone and dimethylaminobenzoic acid.
  • the photopolymerization initiator (C) shown above may be used alone or in combination of two or more, and may be used in combination with an appropriate sensitizer.
  • the blending amount of the (C) photopolymerization initiator is 0.
  • the blending amount of the (C) photopolymerization initiator is more preferably 0.3 to 7% by mass, and particularly preferably 0.5 to 5% by mass.
  • the resin for forming a clad layer may contain an antioxidant, an anti-yellowing agent, So-called additives such as ultraviolet absorbers, visible light absorbers, colorants, plasticizers, stabilizers, fillers and the like may be added in proportions without adversely affecting the effects of the present invention.
  • the resin for forming a clad layer can be used as a resin varnish for forming a clad layer by dissolving a resin composition containing the components (A) to (C) in a suitable organic solvent.
  • the organic solvent used here is not particularly limited as long as it can dissolve the resin composition constituting the resin for forming the cladding layer.
  • Organic solvents include, for example, acetone, methanol, ethanol, isopropanol, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, butyl acetate, ethyl lactate, ⁇ -butyrolatatone, methyl cetylsolve, cetylcetol sorb, butinoreceroso Noreb, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, toluene, xylene, ⁇ , ⁇ -dimethylformamide, ⁇ , ⁇ -dimethylacetamide, ⁇ -methylpyrrolidone and the like.
  • the organic solvents shown above may be used alone or in combination of two or more.
  • the solid concentration in the rosin varnish is preferably 30 to 80% by mass.
  • the stirring method is not particularly limited, but the viewpoint power of stirring efficiency A stirring method using a propeller is preferable.
  • limiting in particular as a rotational speed of the propeller at the time of stirring It is preferable that it is 10-1 and OOOrpm. When it is 10 rpm or more, the components (A) to (C) and the organic solvent are sufficiently mixed. If it is 1, OOOrpm or less, bubbles are less likely to be entrained by the rotation of the propeller. From the above viewpoint, 50 to 800 rpm is more preferable, and 100 to 500 rpm is particularly preferable.
  • stirring time It is preferable that it is 1 to 24 hours. If it is 1 hour or longer, the components (A) to (C) and each component of the organic solvent are sufficiently mixed. If it is 24 hours or less, the varnish preparation time can be shortened.
  • the prepared clad layer forming varnish is preferably filtered using a filter having a pore size of 50 ⁇ m or less. If the hole diameter is 50 m or less, large foreign matters are removed and the varnish is removed. No creaking or the like occurs during application. From the above viewpoints, it is particularly preferable to filter using a filter having a pore diameter of 10 m or less, which is more preferably filtered using a filter having a pore diameter of 30 m or less.
  • the prepared clad layer forming varnish is preferably degassed under reduced pressure.
  • a vacuum pump and a bell jar, a defoaming device with a vacuum device, and the like can be used as specific examples.
  • the pressure which the organic solvent contained in a resin varnish does not boil is preferable.
  • the vacuum degassing time is not particularly limited, but is preferably 3 to 60 minutes. If it is 3 minutes or longer, bubbles dissolved in the varnish varnish can be removed. If it is 60 minutes or less, the organic solvent contained in the resin varnish will not volatilize.
  • the lower clad layer 4 is formed on the substrate by using, for example, the above-described resin layer varnish for forming the clad layer using a method such as spin coating. It can be formed by coating and removing the organic solvent. Alternatively, it can be formed by applying a resin varnish for forming a clad layer on a suitable support film and removing the organic solvent to produce a resin film for forming a clad layer. Further, the resin film can be formed by laminating on a substrate using a method such as laminating.
  • Preferred examples of the substrate include a silicon substrate with an oxide film or a glass substrate.
  • cover film 5 In the case of the flexible optical waveguide of FIGS. 1B and 1D in which the cover film 5 is disposed outside the lower cladding layer 4, for example, a substrate on which a resin film for forming a cladding layer is bonded is the cover film 5 Can also be used. Also, it can be used as a clad layer forming resin film V, support film force cover film 5!
  • the lower cladding layer is formed by a method such as chemical treatment.
  • the substrate and support film used above can be peeled from 4
  • the upper clad layer 3 is formed, for example, after forming the core portion 2 to be described later, ⁇ It can be formed by a method similar to that for the lower clad layer 4 shown above using a fat film.
  • the cover film 5 is laminated.
  • the support film used for the above-described resin film for forming a clad layer or a substrate on which the resin film for forming a clad layer is bonded may also serve as the cover film 5.
  • the upper portion is formed by a chemical treatment method or the like.
  • the support film can be peeled from the clad layer 3.
  • the thickness of the clad layer (the whole of the upper clad layer 3 and the lower clad layer 4) is preferably in the range of 9 to 500 ⁇ m. If it is 9 ⁇ m or more, it becomes easy to confine the propagating light inside the core, and if it is 500 m or less, sufficient flexibility is obtained that the thickness of the entire optical waveguide 1 is not too large.
  • the thickness of the cladding layer is more preferably in the range of 10 to 300 ⁇ m, more preferably in the range of 20 to 200 ⁇ m, and further preferably in the range of 30 to 150 ⁇ m. It is particularly preferred that
  • the thickness of the clad layer may be the same or different in the lower clad layer 4 initially formed and the upper clad layer 3 for embedding the core pattern, but the thickness of the entire optical waveguide 1 is reduced. From the standpoint of developing more excellent flexibility, it is preferable to make the thickness of the lower cladding layer 4 smaller than that of the upper cladding layer 3.
  • the thickness of the upper cladding layer 3 is preferably in the range of 7-300 ⁇ m, and more preferably in the range of 7-200 ⁇ m.
  • the thickness of the lower cladding layer 4 is preferably in the range of 2 to 200 m, and more preferably in the range of 2 to 150 m.
  • the thickness of the upper cladding layer 3 is the boundary force between the core part 2 and the lower cladding layer 4 and is the value up to the upper surface of the upper cladding layer 3.
  • the thickness of the lower cladding layer 4 is the value of the core part 2 and the lower cladding layer. This is the value from the boundary with layer 4 to the lower surface of lower cladding layer 4.
  • the support film used in the production process of the resin film is particularly limited in terms of its material. It is not specified and various things can be used.
  • polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate; polyethylene, polypropylene, polycarbonate, polyamide, polyimide, polyamideimide, poly
  • PET polyethylene terephthalate
  • polyethylene naphthalate polyethylene
  • polypropylene polycarbonate
  • polyamide polyimide
  • polyamideimide polyamideimide
  • Preferable examples include ether imide, polyphenylene ether, polyether sulfide, polyether sulfone, polyether ketone, polyacrylate, liquid crystal polymer, and polysulfone.
  • the thickness of the support film may be appropriately changed depending on the intended flexibility, but is preferably in the range of 2 to: LOO / z m. When it is above, sufficient toughness can be obtained. If it is 100 m or less, sufficient flexibility can be obtained. From the above viewpoint, the range of 2 to 80 / ⁇ ⁇ is more preferable, and the range of 5 to 50 m is more preferable, and the range of 8 to 25 / ⁇ ⁇ is particularly preferable. preferable.
  • Support film strength of the above-described resin film for forming a clad layer When the cover film 5 of a flexible optical waveguide as shown in FIGS. 1 (b) to (d) is also used, the support film is subjected to an adhesive treatment, It is preferable to apply a resin layer varnish for forming a clad layer to the treated surface. Thereby, the adhesive force between the clad layer and the support film, that is, the cover film 5 can be improved, and the peeling failure between the clad layer and the cover film 5 can be suppressed.
  • adheresion treatment refers to the cover film 5 formed on the surface of the cover film 5 by using an easy adhesion resin coat, an antistatic resin coat, a corona treatment, a plasma treatment, a reactive ion etching treatment, a mat blasting using a sandblast, etc. This is a treatment for increasing the adhesive strength with the formed clad layer forming resin.
  • the core layer forming resin used in the present invention is within the range where the effects of the present invention are exhibited.
  • a photosensitive resin composition having a higher refractive index than that of the cladding layer and capable of forming a core pattern by irradiation with actinic rays such as ultraviolet rays can be suitably used.
  • actinic rays such as ultraviolet rays
  • the same resin composition as that for forming the clad layer is a resin composition containing the components (A), (B) and (C) and, if necessary, the above additives.
  • the ethoxy fluorene represented by the above general formula (1) as the above (B) photopolymerizable compound from the viewpoint of making the core portion have a higher refractive index than the cladding layer, the ethoxy fluorene represented by the above general formula (1) as the above (B) photopolymerizable compound.
  • Type di (meth) acrylate and Z or the above general formula (2) It is particularly preferred to use a rosin composition containing (meth) acrylate.
  • the core layer forming resin may be dissolved in a suitable organic solvent and used as a core layer forming resin varnish.
  • the core layer forming varnish varnish is prepared, filtered, and defoamed by the same method as the clad layer forming varnish varnish.
  • the core layer can be formed by applying a resin layer varnish for forming a core layer onto the lower cladding layer 4 using a method such as spin coating, and removing the organic solvent.
  • the core layer-forming resin varnish is coated on a suitable support film and the organic solvent is removed to prepare the core layer-forming resin film, and then the resin film is laminated using a method such as laminating. Then, it can be formed by bonding onto the lower cladding layer 4.
  • the thickness of the core layer is preferably in the range of 5 to: LOO m. If it is 5 m or more, precise position adjustment between the core center and the connection terminal is easy, and if it is 100 / z m or less, the entire thickness of the optical waveguide 1 is not too large and sufficient flexibility is obtained. From the above viewpoint, the thickness of the core layer is particularly preferably in the range of 20-60 / ⁇ ⁇ , more preferably in the range of 10-70 m.
  • the material of the support film used in the manufacturing process of the resin film is not particularly limited, and various types can be used. it can. From the viewpoint of flexibility and toughness as a support film, and from the viewpoint of the transmittance of light for core pattern exposure, for example, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polypropylene, polycarbonate, and the like are preferable. .
  • the thickness of the support film may be appropriately changed depending on the intended flexibility, but is preferably in the range of 5 to 50 / ⁇ ⁇ . If it is 5 m or more, sufficient toughness can be obtained, and if it is 50 ⁇ m or less, it is preferable that a fine pattern can be formed without increasing the gap with the photomask when forming the core pattern. From the above viewpoint, the range of 10 to 40 / ⁇ ⁇ is more preferable, and the range of 15 to 30 / ⁇ ⁇ is particularly preferable.
  • a highly transparent support film that does not contain lubricant particles inside.
  • a support film for example, “Cosmo Shine A1517, Cosmo Shine A4100” (both trade names) manufactured by Toyobo Co., Ltd. are available.
  • the increase in insertion loss in a 360 ° bending test with a curvature radius of 2 mm is preferably 0.1 dB or less. If it is less than 0 ldB, when using a flexible optical waveguide in a bent state, the loss value will be small and the transmission signal strength will not be weakened. Insertion loss refers to optical loss mainly due to propagation loss and coupling loss.
  • the flexible optical waveguide of the present invention preferably has a relative refractive index difference of 1 to 10% between the core and the clad layer. If it is 1% or more, the light propagating through the core during bending will not leak into the cladding layer. If it is 10% or less, the coupling loss does not increase because the propagation light does not spread too much at the connection part of the optical waveguide and the optical fiber. From the above viewpoint, 1.5 to 7.5% is more preferable, and 2 to 5% is particularly preferable.
  • the relative refractive index difference was determined by the following formula.
  • Relative index difference (%) [(Refractive index of core) 2 — (Refractive index of cladding layer) 2 ] Z [2 X (Refractive index of core) 2 ] XI 00
  • an increase in insertion loss after performing a repeated bending test with a curvature radius of 5 mm 100,000 times is 0.1 dB or less. If it is less than 0.1 dB, stable optical transmission can be performed for a long time, and it can be applied to a part that is always movable, such as a hinge part of a mobile phone. From the above viewpoint, it is more preferably 0.05 dB or less.
  • the elastic modulus of the flexible optical waveguide of the present invention in a film tensile test is preferably 0.05 to 6 GPa.
  • a value of 0.05 GPa or more is preferable because sufficient flexibility can be obtained and the optical waveguide is not deformed when bent and does not affect the propagation characteristics. 6GPa or less It is preferable that it is brittle and does not break when bent. From the above viewpoints, 0.1 to 6 GPa is more preferable, and 0.2 to 5 GPa is more preferable, and 0.5 to 4 GPa is particularly preferable.
  • the elastic modulus means the slope of the tangent at the origin in the load elongation curve in the film tensile test.
  • the maximum elongation in the film tensile test of the flexible optical waveguide of the present invention is preferably 3 to 50%. If it is 3% or more, it is suitable because it becomes brittle and does not break when bent. When it is 50% or less, sufficient flexibility can be obtained, and the optical waveguide is not deformed at the time of bending, which is preferable without affecting the propagation characteristics. From the above viewpoint, it is more preferably 5 to 40%.
  • the maximum elongation means the elongation at the time when the maximum load was applied in the film tensile test.
  • the thickness of the flexible optical waveguide of the present invention is preferably in the range of 9 to 500 ⁇ m. If it is above, it is preferable that no breakage occurs due to insufficient strength during bending. Sufficient flexibility is obtained when the thickness is 500 ⁇ m or less. From the above viewpoint, the range of 10-300 ⁇ m is more preferable, and the range of 20-200 / ⁇ ⁇ is more preferable, and the range of 30-150 / zm is more preferable.
  • the flexible optical waveguide of the present invention preferably has an increased component of propagation loss of 0.05 dBZcm or less after three reflow tests at a maximum temperature of 265 ° C. If it is 0.05 dB / cm or less, the reflow process can be applied from the viewpoint of reliability when mounting components, and the applicable range of flexible optical waveguides can be expanded. From the above viewpoint, 0.03 dB / cm or less is more preferable. Note that the reflow test at a maximum temperature of 265 ° C means a lead-free solder reflow test performed under conditions in accordance with IPCZJE DEC J-STD-020B.
  • the flexible optical waveguide of the present invention preferably has a propagation loss of 0.3 dBZcm or less.
  • it is 3 dBZcm or less, it is possible to suppress a decrease in the intensity of the transmission signal due to light loss. From the above viewpoint, it is more preferably 0.2 dBZcm or less, and particularly preferably 0.1 dBZcm or less.
  • the above-described resin composition is used in the flexible optical waveguide of the present invention, for evaluation of various physical properties such as heat resistance, flexibility, and strength of the cured resin composition, for example, glass
  • various physical properties such as heat resistance, flexibility, and strength of the cured resin composition
  • glass The transition temperature, 5% mass loss temperature, tensile modulus, maximum tensile strength, maximum elongation, linear expansion coefficient, water absorption, etc. can be measured by known methods.
  • the method for producing the flexible optical waveguide of the present invention is not particularly limited. As described above, the core layer forming resin varnish and the Z or clad layer forming resin varnish are used for spin coating. Or a method using a resin film for forming a core layer and a resin film for forming a Z or clad layer. A combination of these methods can also be produced. Among these, the method using the resin film is preferred from the viewpoint of producing a large-area optical waveguide at a low cost in a lump.
  • FIGS. 1 (a) to 1 (d) there are four possible forms of flexible optical waveguides in FIGS. 1 (a) to 1 (d).
  • the cover film 5 shown in FIG. The manufacturing method in the case of using the core layer forming resin film and the clad layer forming resin film as well as the flexible optical waveguide disposed outside the upper cladding layer 3 will be described in detail.
  • the clad layer forming resin and the clad layer forming resin film of the clad layer forming resin film constituted by the support film cover are cured by light and Z or heat. Clad layer 4 is formed.
  • a protective film is provided on the opposite side of the support film of the resin film for forming the clad layer in the first step of forming the lower clad layer 4, the protective film is peeled off and then used for forming the clad layer.
  • the resin is cured with light and Z or heat to form the lower cladding layer 4.
  • the irradiation amount of actinic rays when forming the lower clad layer 4 is preferably 0.1 to 5 jZcm 2, and the preferred heating temperature is 50 to 130 ° C. There is no limit.
  • a core layer forming resin film and a core layer forming resin film each having a supporting film force are laminated on the lower clad layer 4 to form a core layer.
  • a core layer-forming resin film is heat-pressed onto the lower clad layer 4 to form a core layer having a refractive index higher than that of the lower clad layer 4.
  • the laminating method in the second step examples include a method using a roll laminator or a flat plate laminator.
  • the flat plate laminator It is preferable to laminate the resin film for forming the core layer under reduced pressure using a tape.
  • the flat plate laminator refers to a laminator in which a laminated material is sandwiched between a pair of flat plates, and the flat plates are pressure-bonded by caloric pressure.
  • a vacuum pressurizing laminator can be suitably used.
  • the heating temperature here is preferably 50 to 130 ° C.
  • the crimping pressure is preferably 0.1 to 1 OMPa (l to 10 kgfZcm 2 ), but these conditions are particularly limited. There is no.
  • the core layer forming resin film may be temporarily pasted on the lower clad layer 4 in advance using a roll laminator before the lamination with the vacuum pressure laminator.
  • the laminating temperature is preferably in the range of room temperature (25 ° C) to 100 ° C.
  • room temperature 25 ° C
  • the adhesion between the lower clad layer 4 and the core layer is improved, and when the temperature is 100 ° C or less, the film thickness is required so that the core layer does not flow during the pole lamination. Is obtained. From the above viewpoint, the range of 40 to 100 ° C is more preferable.
  • the pressure is preferably 0.2 to 0.9 MPa and the laminating speed is preferably 0.1 to 3 mZmin, but these conditions are not particularly limited.
  • the core layer is exposed and developed to form a core pattern (core portion 2) of the optical waveguide.
  • actinic rays are irradiated in an image form through a negative mask pattern.
  • the active light source include known light sources that effectively irradiate ultraviolet rays, such as carbon arc lamps, mercury vapor arc lamps, ultrahigh pressure mercury lamps, high pressure mercury lamps, and xenon lamps.
  • the irradiation amount of active light is preferably 0.01 to 10 J / cm 2 . 0.
  • the curing reaction will proceed sufficiently, and the core pattern will not be washed away by the development process described later. If it is less than lOjZcm 2, the core pattern will not thicken due to excessive exposure. A fine pattern can be formed, which is preferable. From the above viewpoint, it is particularly preferable that in the range of 0. 05 ⁇ 5j / cm 2 and more desirability instrument 0. l ⁇ 2j / cm 2 range.
  • post-exposure heating may be performed from the viewpoint of improving resolution and improving core pattern adhesion.
  • UV irradiation power The time from exposure to heating is within 30 seconds to 10 minutes. It is preferable. Within this range, the active species generated by ultraviolet irradiation will not be deactivated.
  • the post-exposure heating temperature is preferably 40 to 160 ° C.
  • the support film of the core layer forming resin film is peeled off, and the unexposed portion is removed and developed by wet development or the like to form the core pattern of the optical waveguide.
  • wet development development can be performed using an organic solvent developer suitable for the composition of the film.
  • the organic solvent-based developer include acetone, methanol, ethanol, isopropanol, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, butyl acetate, ethyl lactate, y-butylate ratatone, methylcetone solve, and ethyl acetate mouth.
  • Examples include sorb, butylcellosolve, propylene glycolenomonomethylol ether, propylene glycolenomonomethylol ether acetate, toluene, xylene, N, N dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like.
  • methylol ether, propylene glycolol monomethylol etherate acetate, N, N dimethylacetamide, N-methylpyrrolidone can be added with water in the range of 1 to 20% by mass to prevent ignition.
  • organic solvents can be used alone or in combination of two or more, but from the viewpoint of adjusting the solubility of the unexposed area, it is preferable to use an appropriate organic solvent in combination.
  • organic solvents include propylene glycol monomethyl ether acetate / N, N dimethylacetamide, propylene glycol monomethyl ether acetate ZN-methylpyrrolidone, lactic acid ethyl ZN, N dimethylacetamide, ethyl lactate ZN-methyl.
  • Preferred examples include pyrrolidone, ⁇ -butyral rataton / ⁇ , ⁇ ⁇ ⁇ ⁇ dimethylacetamide, and ⁇ -petitorata ratatoton / ⁇ -methylpyrrolidone.
  • Development methods include dip method, paddle method, high pressure spray method, etc .; brushing; scraping, etc.
  • High pressure spray method is the most suitable for improving resolution.
  • the core pattern of the optical waveguide may be washed using the organic solvent described above.
  • organic solvent-based cleaning liquids include acetone, methanol, ethanol, isopropanol, ethyl acetate, butyl acetate, ethyl lactate, ⁇ -butyroratatone, methylcetosolve, ethinoreserosonoleb, butinorecerosonolev, propylene glycol Examples include Nole monomethylenoateolene, propylene glycol monomethyl ether acetate, toluene, and xylene.
  • methanol ethanol, isopropanol, and ethyl acetate from the viewpoint of solubility.
  • organic solvents can be added with water in the range of 1 to 20% by mass in order to prevent ignition.
  • organic solvents can be used alone or in combination of two or more.
  • Cleaning methods include spray methods such as dip method, paddle method, and high-pressure spray method; brushing; scraping.
  • a fourth step of laminating and curing the resin film for forming the clad layer for embedding the core pattern is performed.
  • the upper clad layer 3 is formed on the core pattern by thermocompression bonding the clad layer forming resin film in the same manner as described above.
  • the thickness of the upper cladding layer 3 is preferably larger than the thickness of the core layer.
  • Examples of the laminating method in the fourth step include a method using a roll laminator or a flat plate laminator. From the viewpoint of adhesion, followability, and flatness, a flat plate type is used as in the second step. It is preferable to laminate the resin film for forming a clad layer under reduced pressure using a laminator, preferably a vacuum pressure laminator.
  • the heating temperature here is preferably 50 to 130 ° C, and the crimping pressure is preferably 0.1 to 1 OMPa (l to 10 kgfZcm 2 ). There is no.
  • the curing in the fourth step is performed by light and Z or heat, as in the first step.
  • the amount of actinic rays applied when forming the upper cladding layer 3 is preferably 0.1 to 30 jZcm 2 .
  • Irradiation with actinic rays when the support film of the above-mentioned clad layer forming resin film is PET The amount is preferably set to 0. l ⁇ 5jZcm 2.
  • the support film is polyethylene naphthalate, polyamide, polyimide, polyamide imide, polyether imide, polyether benzene, polyether sulfide, polyether sulfone, polysulfone, etc. Since it is difficult for actinic rays having a short wavelength to pass therethrough, the irradiation amount of actinic rays is preferably 0.5 to 30 jZcm 2 .
  • the curing reaction proceeds sufficiently, and if it is 30jZcm 2 or less, the light irradiation time does not take too long. From the above viewpoint, 3 to 27 j / cm 2 is more preferable, and 5 to 25 j / cm 2 is particularly preferable.
  • a double-sided exposure machine capable of simultaneously irradiating actinic rays from both sides can be used.
  • the heating temperature during irradiation with actinic light and after Z or irradiation is preferably 50 to 200 ° C, but these conditions are not particularly limited.
  • the flexible optical waveguide of the present invention is excellent in flexibility, heat resistance, and transparency, and thus may be used as an optical transmission line of an optical module.
  • the form of the optical module is not particularly limited.
  • an optical waveguide with an optical fiber in which an optical fiber is connected to both ends of the optical waveguide, an optical waveguide with a connector in which a connector is connected to both ends of the optical waveguide, an optical waveguide and a print Opto-electric composite substrate combined with wiring board, optical waveguide, opto-electric conversion module combining optical signal and electric signal, optical wavelength conversion combining optical waveguide and wavelength division filter A waver etc. are mentioned.
  • the printed wiring board to be combined is not particularly limited, and either a rigid substrate such as a glass epoxy substrate or a flexible substrate such as a polyimide substrate may be used.
  • the glass transition temperature of the obtained cured film was measured using a dynamic viscoelasticity measuring device (Rheometric Scientific Rheometric, Solids Analyzer RSA-II), measuring temperature range 50 ° C ⁇ 250 ° C, heating rate 5 ° Measured with CZmin.
  • the loss tangent (Tan ⁇ ) peak was taken as the glass transition temperature.
  • thermogravimetry-differential thermal analysis (TG-DTA) apparatus EXSTAR6000 TGZDTA6300, manufactured by Seiko Insunore Co., Ltd.
  • the measurement temperature range was 30 ° C ⁇ 600 ° C, and the heating rate was 10 ° C Zmin.
  • the linear expansion coefficients ⁇ and ⁇ of the resulting cured film were determined by thermomechanical analysis (TM).
  • the evaluation of the flexible optical waveguide obtained was performed for the following items (1) to (6).
  • Example 1 in addition to the above, the 360 ° bending test was also performed for the radius of curvature shown in FIG. 3, and the insertion loss value of the flexible optical waveguide was measured in the same manner as described above. The amount of increase was investigated.
  • the relative refractive index difference of the obtained flexible optical waveguide was determined by using a cured film (cured film for core) obtained from the core film forming resin film and a cured film obtained from the clad layer forming resin (cured film for cladding). ) Based on the refractive index at a wavelength of 830 nm.
  • Relative index difference (%) [(Refractive index of core) 2 — (Refractive index of cladding layer) 2 ] Z [2 X (Refractive index of core) 2 ] XI 00
  • a metal microscope manufactured by Olympus Corporation, BHMJL was used to crack the core and cladding of the flexible optical waveguide. The presence or absence of occurrence was observed.
  • Example 1 in addition to the above, a repeated bending test was performed in the same manner for the number of bendings shown in FIG. 4, and the insertion loss value of the flexible optical waveguide was measured in the same manner as described above. The increase was examined.
  • a film tensile test of the obtained flexible optical waveguide (width 5 mm, length 50 mm, distance between grips 30 mm, thickness is as shown in Table 3) was performed in the same manner and under the same conditions as above, and the elastic modulus and The maximum elongation was determined.
  • the thickness of the obtained flexible optical waveguide was measured using a digimatic indicator (Mitutoyo Corporation).
  • the maximum temperature is 265 ° under the conditions of IPCZJEDEC J-STD-020B.
  • C lead solder free reflow test was performed 3 times.
  • Detailed reflow conditions are shown in Table 1, and the temperature profile in the reflow furnace is shown in Figure 2.
  • the propagation loss value of the flexible optical waveguide after the reflow test was measured using the same light source, light receiving element, incident fiber, and output fiber as above, and the increase with respect to the propagation loss value before the reflow test was examined. .
  • the propagation loss of the obtained flexible optical waveguide was measured by the cutback method (measurement waveguide length 5, 3, 2 cm) using the same light source, light receiving element, incident fiber, and output fiber as above. .
  • the resin layer varnish A for clad layer formation obtained above was coated on a corona-treated surface of a polyamide film (trade name: Mictron, Toray Industries, Inc., thickness: 12 m) (multicoating). It is coated using Itoter TM-MC (manufactured by Hirano Techseed Co., Ltd.), dried at 80 ° C for 10 minutes, then at 100 ° C for 10 minutes, and then a release PET film (trade name: A31, Teijin DuPont Films Co., Ltd. (thickness: 25 m) was pasted so that the release surface was on the resin side, and a resin film A for forming a clad layer was obtained.
  • the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine. In this production example, the film thickness after curing is 30 m above the lower cladding layer. The partial cladding layer was adjusted to 80 ⁇ m.
  • the resin layer varnish B for forming the core layer is the same as in Production Example 1 above.
  • a release PET film (trade name: A31, Teijin DuPont Films Co., Ltd., thickness: 25 m) is attached as a protective film so that the release surface is on the resin side.
  • a resin film B for forming a core layer was obtained.
  • the coating machine gap was adjusted so that the film thickness after curing was 50 m.
  • the resin film B for core layer formation obtained above was irradiated with ultraviolet light (wavelength 365 nm) at lj / cm 2 with an ultraviolet exposure machine (EXM-1172, manufactured by Oak Manufacturing Co., Ltd.).
  • EXM-1172 an ultraviolet exposure machine
  • (A31) was peeled off, and finally further heated and dried at 160 ° C. for 1 hour, and the PET film (A1517) was peeled off to obtain a cured film.
  • a cured film for measuring physical properties was obtained.
  • the cured film thus obtained was subjected to refractive index measurement, glass transition temperature measurement, 5% mass loss temperature measurement, tensile test, linear expansion coefficient measurement, and water absorption measurement. The results are shown in Table 2.
  • the polyamide film used as the support film for the resin film A for forming the cladding layer was PET film (trade name: Cosmo Shine A1517, manufactured by Toyobo Co., Ltd., thickness: 16 m, coated surface : A resin film D for forming a cladding layer was produced in the same manner and under the same conditions as in Production Example 1 except that the surface was changed to the antistatic surface.
  • the polyamide film used as the support film for the resin film A for forming the cladding layer was made of PET film (trade name: Cosmo Shine A1517, manufactured by Toyobo Co., Ltd., thickness A resin film E for forming a clad layer was produced in the same manner and under the same conditions as in Production Example 1 except that the thickness was changed to 16 zm, coated surface: non-treated surface.
  • the resin film E for clad layer formation obtained above was irradiated with ultraviolet light (wavelength 365 nm) at lj / cm 2 with an ultraviolet exposure machine (EXM-1172, manufactured by Oak Manufacturing Co., Ltd.), and used as a protective film.
  • the PET film (A31) was peeled off and finally dried by heating at 160 ° C for 1 hour, and the PET film (A1517) used as the support film was peeled off to obtain a cured film. It was.
  • the obtained cured film was subjected to refractive index measurement, glass transition temperature measurement, 5% mass loss temperature measurement, tensile test, linear expansion coefficient measurement, and water absorption measurement. The results are shown in Table 2.
  • the cured films obtained in the above Production Examples 2, 3, and 5 have heat resistance, low hygroscopicity, a low linear expansion coefficient, excellent mechanical properties, and a core layer forming resin. Since the film has a higher refractive index than the resin film for forming the cladding layer, it can be seen that the film is useful as a material for flexible optical waveguides.
  • Release film which is a protective film for cocoon film for forming clad layer obtained in Production Example 1
  • the PET film (A31) was peeled off and irradiated with UV light (wavelength 365 nm) from the resin side (opposite side of the base film) by ljZcm 2 using an UV exposure machine (EXM-1172, manufactured by Oak Manufacturing Co., Ltd.)
  • the lower clad layer 4 was formed by heat treatment at 80 ° C. for 10 minutes.
  • a vacuum pressure laminator manufactured by Meiki Seisakusho Co., Ltd., MVLP-500
  • MVLP-500 a vacuum pressure laminator
  • the core layer-forming resin film B obtained in Production Example 2 was laminated to form a core layer.
  • a washing solution isopropanol
  • the resin film A for clad formation obtained in Production Example 1 was laminated as an upper clad layer under the same laminating conditions as described above. Furthermore, after irradiation with ultraviolet light (wavelength 365 nm) on both surfaces for a total of 25 jZcm 2 , heat treatment was performed at 160 ° C for 1 hour to form the upper cladding layer 3, and the upper and lower cladding layers shown in Fig. 1 (d) were formed. A flexible optical waveguide 1 having a cover film 5 arranged on the outside was obtained. Thereafter, an optical waveguide 1 having a waveguide length of 5 cm was cut out using a dicing saw (DAD-341, manufactured by DISCO Corporation).
  • DAD-341 dicing saw
  • the cover film 5 is a polyamide film used as a support film for the resin film A for forming the clad layer.
  • the obtained flexible optical waveguide was subjected to 360 ° bending test, repeated bending test, film tensile test, reflow test, thickness measurement, and propagation loss measurement. It can be seen that the obtained flexible optical waveguide has high transparency because it has high flexibility, heat resistance, and low propagation loss.
  • the results are shown in Table 3 and FIGS.
  • Example 1 the resin film A for forming the clad layer used in the lower clad layer 4 and the upper clad layer 3 was changed to the resin film D for forming the clad layer obtained in Production Example 4 above, and the upper clad UV irradiation after laminating film for layer formation 25jZcm 2 to 3jZcm 2 except that the heat treatment temperature 160 ° C was changed to 120 ° C, and the cover film 5 was placed outside the upper and lower cladding layers shown in Fig. 1 (d) using the same method and conditions as in Example 1. A flexible optical waveguide 1 was obtained.
  • the cover film 5 is a PET film used as a support film for the resin film D for forming the clad layer.
  • the obtained flexible optical waveguide was subjected to a 360 ° bending test, a repeated bending test, a film tensile test, a thickness measurement, and a propagation loss measurement.
  • the resulting flexible optical waveguide is
  • the core part 2 was formed by the same method and conditions as in Example 1, and the resin film for clad formation E was laminated under the same conditions as in Example 1 and irradiated with 3jZcm 2 of ultraviolet rays.
  • the upper clad layer 3 was formed by heat treatment at 160 ° C. to obtain an optical waveguide with a silicon substrate.
  • the optical waveguide with a silicon substrate was immersed in a 5% by mass hydrofluoric acid aqueous solution for 24 hours, and the optical waveguide portion was peeled off from the silicon substrate to obtain the flexible optical waveguide 1 shown in FIG.
  • the obtained flexible optical waveguide was subjected to 360 ° bending test, repeated bending test, film tensile test, reflow test, thickness measurement, and propagation loss measurement. It can be seen that the obtained flexible optical waveguide has high flexibility because it has high flexibility, heat resistance, and low propagation loss.
  • the results are shown in Table 3.
  • Example 2 Except for changing the core layer-forming resin film B to the core layer-forming resin film C obtained in Production Example 3, the same method and conditions as in Example 1 are shown in FIG. 1 (d). Up and down A flexible optical waveguide 1 in which the cover film 5 was disposed outside the lad layer was obtained.
  • the cover film 5 is a polyamide film used as a support film for the resin film A for forming the clad layer.
  • the obtained flexible optical waveguide was subjected to 360 ° bending test, repeated bending test, film tensile test, reflow test, thickness measurement, and propagation loss measurement. It can be seen that the obtained flexible optical waveguide has high flexibility because it has high flexibility, heat resistance, and low propagation loss.
  • the results are shown in Table 3.
  • the flexible layer shown in FIG. 1 (a) was prepared in the same manner and under the same conditions as in Example 3 except that the core layer-forming resin film was changed to the core layer-forming resin film C obtained in Production Example 3 above. An optical waveguide 1 was obtained.
  • the obtained flexible optical waveguide was subjected to 360 ° bending test, repeated bending test, film tensile test, reflow test, thickness measurement, and propagation loss measurement. It can be seen that the obtained flexible optical waveguide has high flexibility because it has high flexibility, heat resistance, and low propagation loss.
  • the results are shown in Table 3.
  • VCSEL EXFO, FLS-300-01-VCL
  • light receiving sensor manufactured by Advantest Co., Ltd., Q82214
  • the measured value was 0.5 dB or less.
  • the increase in insertion loss was 0.1 ldB or less under the condition of a curvature radius of 2 mm.
  • the increase in insertion loss after 100,000 bending tests with a radius of curvature of 5 mm was less than 0.1 dB.
  • a metal microscope manufactured by Olinos Co., Ltd., B HMJL
  • observing the optical module cracks occurred in the core and cladding. There was no.
  • the flexible optical waveguide and optical module of the present invention are excellent in flexibility, heat resistance, and transparency, and can be applied in the field of consumer devices such as mobile phones and laptop computers, which have high versatility, and in a wider range of fields. It is.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Epoxy Resins (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

 コア部およびクラッド層を有するフレキシブル光導波路であって、曲率半径2mmの360°曲げ試験における挿入損失の増加分が、0.1dB以下であるフレキシブル光導波路およびフレキシブル光導波路を用いた光モジュールである。高い屈曲性、耐熱性、透明性を有するフレキシブル光導波路およびフレキシブル光導波路を用いた光モジュールを提供することができる。

Description

明 細 書
フレキシブル光導波路および光モジュール
技術分野
[0001] 本発明は屈曲性、耐熱性、および透明性の優れたフレキシブル光導波路および光 モジュールに関するものである。
背景技術
[0002] 近年、高速大容量信号伝送に対応するために、従来の電気配線に変わり光配線を 用いた信号伝送技術の開発が進められている。光の伝送路としては、加工の容易さ 、低コスト、配線の自由度が高ぐかつ高密度化が可能な点から、ポリマ光導波路が 注目を集めている。
ポリマ光導波路の形態としては、ボード同士の接続を想定した硬 、支持基板を持た な ヽ、柔軟性を備えたフレキシブル光導波路が好適と考えられる。
このようなフレキシブル光導波路は、ボード同士の接続以外にも、従来フレキシブ ルプリント配線板が用いられてきた折畳み型携帯電話のヒンジ部やノート型パソコン のディスプレイと本体とを結ぶヒンジ部など、民生機器への適用が検討されており、屈 曲性、耐熱性、および透明性が求められている。
[0003] 従来のフレキシブル光導波路としては、例えば、特許文献 1に記載のポリマ光導波 路フィルムが提案されている。このポリマ光導波路フィルムは、重水素化またはハロゲ ン化ポリ (メタ)アタリレートをクラッド層およびコア層に用いており、スピンコート法によ り作製され、波長 1. 3 /z mにおける導波路の導波損失 (導波路長 5cm)が 1. ldBお よび 1. 5dBのものが例示され、かつ、導波路を曲げない状態、および曲げた状態で も損失が同一であることが示されている (特許文献 1、実施例 1および 2参照)。ここで 、作製されたポリマ光導波路フィルムの屈曲性については、上記のように導波路を曲 げない状態、および曲げた状態の導波損失に関する記述があるものの、屈曲時の曲 率半径や繰り返し折り曲げ試験結果などの具体的な測定条件に関する記述がなぐ その程度は明らかではない。また、耐熱性および透明性についても明らかではない。 以上のように、従来のフレキシブル光導波路には、屈曲性、耐熱性、および透明性 を兼ね備えたものは知られて ヽな 、。
[0004] 特許文献 1:特許第 3249340号公報
発明の開示
[0005] 本発明は、上記観点に鑑みてなされたものであり、高い屈曲性、耐熱性、および透 明性を有するフレキシブル光導波路およびフレキシブル光導波路を用いた光モジュ ールを提供することを目的とする。
[0006] 本発明者らは、鋭意検討を重ねた結果、下記に記載の構成により上記課題を解決 し得ることを見出した。
すなわち、本発明は以下の(1)〜(17)に関するものである。
(1)コア部およびクラッド層を有するフレキシブル光導波路であって、曲率半径 2mm の 360° 曲げ試験における挿入損失の増加分力 0. ldB以下であるフレキシブル 光導波路。
(2)コア部とクラッド層との比屈折率差力 1〜10%である上記(1)に記載のフレキシ ブル光導波路。
(3)曲率半径 5mmの繰り返し折り曲げ試験を 10万回実施後の挿入損失の増加分が 、 0. ldB以下である上記(1)または(2)に記載のフレキシブル光導波路。
(4)フィルム引張り試験における弾性率力 0. 05〜6GPaである上記(1)〜(3)のい ずれかに記載のフレキシブル光導波路。
(5)フィルム引張り試験における最大伸び率力 3〜50%である上記(1)〜(4)の 、 ずれかに記載のフレキシブル光導波路。
(6)厚みが、 9〜500 μ mである上記(1)〜(5)の!、ずれかに記載のフレキシブル光 導波路。
(7)最高温度 265°Cのリフロー試験を 3回実施後の伝搬損失の増加分力 0. 05dB Zcm以下である上記(1)〜(6)の 、ずれかに記載のフレキシブル光導波路。
(8)伝搬損失が、 0. 3dBZcm以下である上記(1)〜(7)のいずれかに記載のフレ キシブル光導波路。
(9)コア部および Zまたはクラッド層を、(A)バインダボリマ、(B)光重合性化合物お よび (C)光重合開始剤を含む榭脂組成物を用いて作製する上記(1)〜 (8)の 、ず れかに記載のフレキシブル光導波路。
(10) (A)成分および (B)成分の総量に対して、(A)成分を 5〜80量%、および (B) 成分を 20〜95質量%含み、かつ (A)成分および (B)成分の総量 100質量部に対し て、(C)成分を 0. 1〜10質量部含む榭脂組成物を用いて作製する上記 (9)に記載 のフレキシブル光導波路。
(11) (A)バインダボリマ力 フエノキシ榭脂である上記(9)または(10)に記載のフレ キシブル光導波路。
(12) (B)光重合性化合物として、分子内にエチレン性不飽和基を有する化合物を 含む上記(9)〜(11)の 、ずれかに記載のフレキシブル光導波路。
(13) (B)光重合性化合物として、ァリール基、ァラルキル基、ァリールォキシ基およ び芳香族複素環式基からなる群から選ばれる少なくとも 1種を有する単官能 (メタ)ァ タリレートを含む上記(9)〜(12)のいずれかに記載のフレキシブル光導波路。
(14) (B)光重合性化合物として、下記一般式(1)で表されるエトキシィ匕フルオレン型 ジ (メタ)アタリレートを含む上記(9)〜(12)の 、ずれかに記載のフレキシブル光導波 路。
[0007] [化 1]
Figure imgf000005_0001
[0008] (式中、 R1は水素原子またはメチル基、 R2〜R13は各々独立して水素原子、炭素数 1 〜12のアルキル基、炭素数 1〜6のアルコキシ基、炭素数 2〜7のアルコキシカルボ -ル基、炭素数 6〜10のァリール基、または炭素数 7〜9のァラルキル基を示す。 aお よび bは各々独立して 1〜 20の整数を示す。)
(15) (B)光重合性化合物として、下記一般式 (2)で表される (メタ)アタリレートを含 む上記(9)〜(12)の 、ずれかに記載のフレキシブル光導波路。
[0009] [化 2]
Figure imgf000006_0001
[0010] (式中、 Xは CH CH (OH) CH
2 2、(C H O) C H
2 4 c 2 4、(C H O) C H、または(C H O)
3 6 d 3 6 2 4
(C H O) C Hであり、 Yは C (CH ) または Oを示し、 c
3 2、 CH
2、 SO、
2 、 d、 eおよび f e 3 6 f 3 6
はそれぞれ 0から 10の整数を示す。 R14は水素原子またはメチル基、 R15は水素原子 、メチル基またはハロゲン原子を示す。 )
(16) (B)光重合性化合物として、分子内に 2つ以上のエポキシ基を有する化合物を 含む上記(9)〜(11)の 、ずれかに記載のフレキシブル光導波路。
(17)上記(1)〜(16)のいずれかに記載のフレキシブル光導波路を用いる光モジュ 一ノレ。
[0011] 本発明によれば、高 、屈曲性、耐熱性、および透明性を有するフレキシブル光導 波路およびフレキシブル光導波路を用いた光モジュールを提供することができる。 図面の簡単な説明
[0012] [図 1]本発明のフレキシブル光導波路の形態を説明するものであり、断面図である。
[図 2]本発明で実施したリフロー試験におけるリフロー炉内の温度プロファイルを示す ものである。
[図 3]実施例 1で作製されたフレキシブル光導波路を用いて 360° 曲げ試験を行った ときの曲率半径と損失変化を示すものである。
[図 4]実施例 1で作製されたフレキシブル光導波路を用いて繰り返し折り曲げ試験を 行ったときの折り曲げ回数と損失変化を示すものである。
[図 5]実施例 1で作製されたフレキシブル光導波路を用いて伝搬損失を測定した結 果を示すものである。
符号の説明
[0013] 1;フレキシブル光導波路 (光導波路)
2 ;コア部
3 ;上部クラッド層 4 ;下部クラッド層
5 ;カバーフィルム
発明を実施するための最良の形態
[0014] 本発明のフレキシブル光導波路の例を図 1 (a)に示す。光導波路 1は、高屈折率で あるコア層形成用榭脂からなるコア部 2と、低屈折率であるクラッド層形成用榭脂から なるクラッド層(上部クラッド層 3および下部クラッド層 4)とで構成されている。コア部 2 は、コア層形成用榭脂からなるコア層に後述のようにネガマスクパターンを通して活 性光線を画像状に照射された後、現像工程を経て、パターン状に形成される。 また、光導波路 1は、図 1 (b)、(c)、および (d)のように、上部クラッド層 3または下部 クラッド層 4の外側の少なくともいずれか一方に、カバーフィルム 5が配置されていて もよい。カバーフィルム 5を配置することにより、カバーフィルム 5の柔軟性や強靭性を 光導波路 1に付与することが可能となる。さらに、光導波路 1が汚れや傷を受けなくな るため、取り扱いやすさが向上する。
[0015] 〔クラッド層形成用榭脂〕
本発明に用いるクラッド層形成用榭脂としては、本発明の効果を奏する範囲であれ ば特に限定されず、コア層より低屈折率で、光または熱により硬化する熱硬化性榭脂 組成物や感光性榭脂組成物を好適に用いることができる。より好適には、クラッド層 形成用榭脂が、(A)バインダボリマ、(B)光重合性ィ匕合物、および (C)光重合開始 剤を含む榭脂組成物により構成されることがより好ましい。
[0016] ここで用いる (A)ノ インダボリマは、クラッド層を形成し、該クラッド層の強度および 可撓性を確保するためのものであり、該目的を達成しえるものであれば特に限定され ず、フエノキシ榭脂、エポキシ榭脂、(メタ)アクリル榭脂、ポリカーボネート、ポリアリレ ート、ポリエーテルアミド、ポリエーテルイミド、ポリエーテルスルホンなど、あるいはこ れらの誘導体などが挙げられる。これらのバインダボリマは、 1種単独でも、また 2種 以上を混合して用いてもょ ヽ。
これらの中で、耐熱性が高いとの観点から、主鎖に芳香環を有するのが好ましぐ 特にフエノキシ榭脂が好ましい。また、 3次元架橋し、耐熱性を向上できるとの観点か らは、エポキシ榭脂、特に室温(25°C)で固形のエポキシ榭脂が好ましい。さらに、ク ラッド層形成用榭脂フィルムの透明性を確保するために、後に詳述する (B)光重合 性ィ匕合物との相溶性が重要である力 この観点からは、上記フエノキシ榭脂、および ( メタ)アクリル榭脂が好ましい。なお、ここで (メタ)アクリル榭脂とは、アクリル榭脂およ びメタクリル榭脂を意味するものである。
[0017] フエノキシ榭脂の中でも、高 、耐熱性を有する観点から、ビスフエノール A型ェポキ シ榭脂の直鎖状高分子重合体が好まし 、。この直鎖状高分子重合体であるフエノキ シ榭脂は、一般にビスフエノール Aとェピクロロヒドリンとを重縮合反応させる一段法 によって、または 2官能エポキシ榭脂とビスフエノール Aとを重付加させる二段法によ つて製造されるものである。具体例としては、東都化成 (株)製「フエノトート YP— 50、 フエノトート YP— 55、フエノトート YP— 70」(いずれも商品名)、特開平 4— 120124 号公報、特開平 4— 122714号公報、および特開平 4— 339852号公報に記載のも のなどが挙げられる。
[0018] 室温 (25°C)で固形のエポキシ榭脂としては、例えば、東都化成 (株)製「ェポトート YD— 7020、ェポトート YD— 7019、ェポトート YD— 7017」(いずれも商品名)、ジ ャパンエポキシレジン (株)製「ェピコート 1010、ェピコート 1009、ェピコート 1008」( V、ずれも商品名)などのビスフエノール型エポキシ榭脂が挙げられる。
[0019] (A)バインダボリマの分子量にっ 、ては、強度および可撓性の観点から、重量平均 分子量で 20, 000以上であることが好ましぐ 50, 000以上であることがより好ましい 。重量平均分子量の上限については、特に制限はないが、(B)光重合性ィ匕合物との 相溶性や露光現像性の観点から、 1, 000, 000以下であることが好ましぐ 500, 00 0以下であることがより好ましい。なお、本発明における重量平均分子量は、ゲルパ 一ミエーシヨンクロマトグラフィー(GPC)で測定し、標準ポリスチレン換算した値であ る。
[0020] (A)バインダポリマの配合量は、(A)成分および(B)成分の総量に対して、 5〜80 質量%とすることが好ましい。 5質量%以上であると、十分な強度や可撓性を有する 硬化樹脂が得られる。 80質量%以下であると、露光時に (B)成分によって絡め込ま れることにより硬化することが容易となり、製造過程で用いる溶剤に対する耐性 (以下 、「耐溶剤性」という)が十分に得られる。以上の観点から、 10〜75質量%とすること 力 り好ましぐ 20〜70質量%とすることが特に好ましい。
(B)光重合性ィ匕合物としては、紫外線などの光の照射によって重合するものであれ ば特に限定されず、分子内に 2つ以上のエポキシ基を有する化合物や分子内にェ チレン性不飽和基を有する化合物などが挙げられる。
この中では、上記フエノキシ榭脂との相溶性の観点から、分子内に 2つ以上のェポ キシ基を有する化合物を含むものが好ましい。具体的には、ビスフ ノール A型ェポ キシ榭脂、テトラブロモビスフエノール A型エポキシ榭脂、ビスフエノール F型エポキシ 榭脂、ビスフエノール AF型エポキシ榭脂、ビスフエノール AD型エポキシ榭脂、フル オレン型エポキシ榭脂、ナフタレン型エポキシ榭脂などの 2官能芳香族グリシジルェ 一テル;フエノールノボラック型エポキシ榭脂、クレゾ一ルノボラック型エポキシ榭脂、 ジシクロペンタジェンーフエノール型エポキシ榭脂、テトラフエ-ロールエタン型ェポ キシ榭脂などの多官能芳香族グリシジルエーテル;ポリエチレングリコール型ェポキ シ榭脂、ポリプロピレングリコール型エポキシ榭脂、ネオペンチルダリコール型ェポキ シ榭脂、へキサンジオール型エポキシ榭脂などの 2官能脂肪族グリシジルエーテル; トリメチロールプロパン型エポキシ樹脂、ソルビトール型エポキシ榭脂、グリセリン型ェ ポキシ榭脂などの多官能脂肪族グリシジルエーテル;水添ビスフエノール A型ェポキ シ榭脂、水添ビスフエノール F型エポキシ榭脂などの 2官能脂環式グリシジルエーテ ル;フタル酸ジグリシジルエステルなどの 2官能芳香族グリシジルエステル;テトラヒド ロフタル酸ジグリシジルエステル、へキサヒドロフタル酸ジグリシジルエステルなどの 2 官能脂環式グリシジルエステル; N, N—ジグリシジルァ二リン、 N, N—ジグリシジル トリフルォロメチルァ-リンなどの 2官能芳香族グリシジルァミン; N, N, Ν', Ν'—テト ラグリシジルー 4, 4ージアミノジフエニルメタン、 1, 3—ビス(Ν, Ν—グリシジルァミノ メチル)シクロへキサン、 Ν, Ν, Ο—トリグリシジル一 ρ—ァミノフエノールなどの多官 能芳香族グリシジルァミン;アリサイクリックジエポキシァセタール、アリサイクリックジェ ポキシアジペート、アリサイクリックジエポキシカルボキシレート、ビュルシクロへキセン ジォキシドなどの 2官能脂環式エポキシ榭脂;トリグリシジルイソシァヌレートなどの多 官能複素環式エポキシ榭脂;オルガノポリシロキサン型エポキシ榭脂などの 2官能ま たは多官能ケィ素含有エポキシ榭脂などが挙げられる。これらの中でも、透明性およ び耐熱性の観点から、 2官能芳香族グリシジルエーテル、 2官能脂環式グリシジルェ 一テル、 2官能脂環式エポキシ榭脂を用いることが好ま 、。
[0022] これらの分子内に 2つ以上のエポキシ基を有する化合物の分子量としては、通常 1 00-2, 000程度であり、好ましくは 150〜1, 000程度である。これらの化合物は、 通常、室温(25°C)で液状のものが好適に用いられる。
また、これら化合物は、単独でも、また 2種類以上を組み合わせて用いてもよぐさら にその他の光重合性ィ匕合物と組み合わせて用いてもょ 、。
なお、光重合性化合物の分子量は、 GPC法または質量分析法により測定すること ができる。
[0023] 分子内にエチレン性不飽和基を有する化合物の具体例としては、(メタ)アタリレート 、ハロゲン化ビ-リデン、ビュルエーテル、ビュルピリジン、ビュルフエノールなどが挙 げられる。これらの中では、透明性と耐熱性の観点から、(メタ)アタリレートが好ましい 。 (メタ)アタリレートとしては、単官能のもの、 2官能のもの、 3官能以上の多官能のも のの!/、ずれも用いることができる。
なお、ここで (メタ)アタリレートとは、アタリレートおよびメタタリレートを意味するもの である。
[0024] 単官能 (メタ)アタリレートとしては、例えば、メチル (メタ)アタリレート、ェチル (メタ) アタリレート、ブチル (メタ)アタリレート、イソブチル (メタ)アタリレート、 tert—ブチル( メタ)アタリレート、ブトキシェチル (メタ)アタリレート、イソアミル (メタ)アタリレート、へ キシル (メタ)アタリレート、 2—ェチルへキシル (メタ)アタリレート、ヘプチル (メタ)ァク リレート、ォクチルヘプチル (メタ)アタリレート、ノ-ル (メタ)アタリレート、デシル (メタ) アタリレート、ゥンデシル (メタ)アタリレート、ラウリル (メタ)アタリレート、トリデシル (メタ )アタリレート、テトラデシル (メタ)アタリレート、ペンタデシル (メタ)アタリレート、へキサ デシル (メタ)アタリレート、ステアリル (メタ)アタリレート、ベへ-ル (メタ)アタリレートな どのアルキル (メタ)アタリレート類; 2—ヒドロキシェチル (メタ)アタリレート、 2—ヒドロ
、 2—ヒドロキシブチル (メタ)アタリレートなどのヒドロキシ基を有するアルキル (メタ)ァ タリレート類;、シクロペンチル (メタ)アタリレート、シクロへキシル (メタ)アタリレート、シ クロペンチル (メタ)アタリレート、 2—テトラヒドロフリル (メタ)アタリレート、ジシクロペン タ-ル (メタ)アタリレート、ジシクロペンテ-ル (メタ)アタリレート、イソボル-ル (メタ)ァ タリレートなどの脂環式 (メタ)アタリレート類;メトキシポリエチレングリコール (メタ)ァク リレート、エトキシポリエチレングリコール (メタ)アタリレート、メトキシポリプロピレンダリ コール (メタ)アタリレート、エトキシポリプロピレングリコール (メタ)アタリレートなどのァ ルコキシポリアルキレングリコール (メタ)アタリレート類;フエノキシポリエチレングリコ ール (メタ)アタリレート、ノユルフェノキシポリエチレングリコール (メタ)アタリレート、フ エノキシポリプロピレングリコール (メタ)アタリレートなどのァリールォキシポリアルキレ ングリコール (メタ)アタリレート類;ベンジル (メタ)アタリレートなどのァラルキル基を有 する(メタ)アタリレート類;フエ-ル (メタ)アタリレート、 o -ビフエ-ル (メタ)アタリレート 、 1—ナフチル (メタ)アタリレート、 2—ナフチル (メタ)アタリレートなどのァリール基を 有する(メタ)アタリレート類;フエノキシェチル (メタ)アタリレート、 p -タミルフエノキシ ェチル(メタ)アタリレート、 o—フエ-ルフエノキシェチル(メタ)アタリレート、 1—ナフト キシェチル (メタ)アタリレート、 2—ナフトキシェチル (メタ)アタリレート、 2—ヒドロキシ —3—フエノキシプロピル(メタ)アタリレート、 2—ヒドロキシ一 3— (o—フエ-ルフエノ キシ)プロピル (メタ)アタリレート、 2—ヒドロキシ一 3— (1—ナフトキシ)プロピル (メタ) アタリレート、 2—ヒドロキシ一 3— (2—ナフトキシ)プロピル (メタ)アタリレートなどのァ リールォキシ基を有する(メタ)アタリレート類; 2— (メタ)アタリロイ口キシェチル— N— 力ルバゾールなどの芳香族複素環式基を有する (メタ)アタリレート類;モノ(2— (メタ) アタリロイ口キシェチル)スクシネート、モノ(2— (メタ)アタリロイ口キシェチル)フタレー ト、モノ(2— (メタ)アタリロイ口キシェチル)イソフタレート、モノ(2— (メタ)アタリロイ口 キシェチル)テレフタレート、モノ(2—(メタ)アタリロイ口キシェチル)テトラヒドロフタレ ート、モノ(2—(メタ)アタリロイ口キシェチル)へキサヒドロフタレート、モノ(2—(メタ) アタリロイ口キシェチル)へキサヒドロイソフタレート、モノ(2— (メタ)アタリロイ口キシェ チル)へキサヒドロテレフタレートなどの多価カルボン酸 (メタ)アタリロイロキシアルキ ルエステル類等が挙げられる。これらの中でも透明性及び耐熱性の観点から、ベン ジル (メタ)アタリレート、フエ-ル (メタ)アタリレート、 o—ビフエ-ル (メタ)アタリレート、 1—ナフチル (メタ)アタリレート、 2—ナフチル (メタ)アタリレート、フエノキシェチル (メ タ)アタリレート、 p—タミルフエノキシェチル(メタ)アタリレート、 ο フエ-ルフエノキシ ェチル (メタ)アタリレート、 1—ナフトキシェチル (メタ)アタリレート、 2—ナフトキシェチ ル (メタ)アタリレート、 2— (メタ)アタリロイ口キシェチル— N—カルバゾール、 2—ヒドロ キシ一 3 フエノキシプロピル(メタ)アタリレート、 2 ヒドロキシ一 3— (o フエ-ルフ エノキシ)プロピル (メタ)アタリレート、 2 ヒドロキシ一 3— (1—ナフトキシ)プロピル (メ タ)アタリレート、 2 ヒドロキシ一 3— (2 ナフトキシ)プロピル (メタ)アタリレートを用 、ることが好まし!/、。
2官能 (メタ)アタリレートとしては、エチレングリコールジ (メタ)アタリレート、ジェチレ ングリコールジ (メタ)アタリレート、トリエチレングリコールジ (メタ)アタリレート、テトラエ チレングリコールジ (メタ)アタリレート、ポリエチレングリコールジ(メタ)アタリレート、プ ロピレングリコールジ(メタ)アタリレート、ジプロピレングリコールジ(メタ)アタリレート、 トリプロピレングリコールジ (メタ)アタリレート、テトラプロピレングリコールジ (メタ)アタリ レート、ポリプロピレングリコールジ (メタ)アタリレート、エトキシ化ポリプロピレングリコ ールジ(メタ)アタリレート、 1, 3 ブタンジオールジ(メタ)アタリレート、 1, 4 ブタン ジオールジ (メタ)アタリレート、ネオペンチルグリコールジ (メタ)アタリレート、 3—メチ ルー 1, 5 ペンタンジオールジ (メタ)アタリレート、 1, 6 へキサンジオールジ (メタ) アタリレート、 2 ブチルー 2 ェチルー 1, 3 プロパンジオールジ (メタ)アタリレート 、 1, 9ーノナンジオールジ (メタ)アタリレート、 1, 10 デカンジオールジ (メタ)アタリ レート、グリセリンジ (メタ)アタリレート、トリシクロデカンジメタノールジ (メタ)アタリレー ト、エトキシ化 2—メチル—1, 3 プロパンジオールジ (メタ)アタリレート、エトキシィ匕 ビスフエノール Aジ (メタ)アタリレート、プロポキシ化ビスフエノール Aジ (メタ)アタリレ ート、プロポキシ化工トキシ化ビスフエノール Aジ(メタ)アタリレート、エトキシ化フルォ レン型ジ (メタ)アタリレート、ビスフエノール A型、ビスフエノール F型、ビスフエノール AF型、水添ビスフエノール A型、および水添ビスフエノール F型のエポキシ (メタ)ァク リレートが挙げられる。これらの中でも透明性及び耐熱性の観点から、エトキシ化ビス フエノール Aジ (メタ)アタリレート、プロポキシ化ビスフエノール Aジ (メタ)アタリレート、 プロポキシ化工トキシ化ビスフエノール Aジ (メタ)アタリレート、エトキシ化フルオレン 型ジ(メタ)アタリレート、ビスフエノール A型、ビスフエノール F型、及びビスフエノール AF型のエポキシ (メタ)アタリレートなどを用いることが好まし 、。
[0026] 具体的には、下記一般式(1)で表されるエトキシィ匕フルオレン型ジ (メタ)アタリレー ト、下記一般式(2)で表される (メタ)アタリレートなどを用いることが好ま 、。
[0027] [化 3]
Figure imgf000013_0001
[0028] ここで、 R1は水素原子またはメチル基、 R2〜R ま各々独立して水素原子、炭素数 1〜12のアルキル基、炭素数 1〜6のアルコキシ基、炭素数 2〜7のアルコキシカルボ -ル基、炭素数 6〜10のァリール基、または炭素数 7〜9のァラルキル基を示す。 aお よび bは各々独立して 1〜20の整数を示す。なお、一般式(1)において、 R1が水素原 子、 R2〜R13が水素原子、 aが 1および bが 1であるもの力 市販品として入手可能であ る (新中村化学 (株)製、商品名「A— BPEF」)。
[0029]
Figure imgf000013_0002
[0030] ここで、 Xは CH CH (OH) CH、(C H O) C H、(C H O) C H、または(C H O
2 2 2 4 c 2 4 3 6 d 3 6 2 4
) (C H O) C Hであり、 Yは C (CH )、 CH、 SO、または Oを示し、 c、 d、 eおよび f e 3 6 f 3 6 3 2 2 2
はそれぞれ 0から 10の整数を示す。 R14は水素原子またはメチル基、 R15は水素原子 、メチル基またはハロゲン原子を示す。これらのうち、特に、 Xが CH CH (OH) CH、
2 2
Yが C (CH ) 、 R"および R15が水素原子で表されるビスフエノール A型エポキシアタリ
3 2
レートが好ましぐこの化合物は市販品として入手可能である (新中村化学 (株)製、 商品名「EA— 1020」)。
なお、(B)成分として、上述のフルオレンジ (メタ)アタリレートと分子内に少なくとも 1 つの (メタ)アタリロイル基を有する化合物を併用することもできる。
[0031] 3官能以上の多官能 (メタ)アタリレートとしては、例えばトリメチロールプロパントリ (メ タ)アタリレート、エトキシィ匕トリメチロールプロパントリ(メタ)アタリレート、プロボキシィ匕 トリメチロールプロパントリ(メタ)アタリレート、ペンタエリスリトールトリ(メタ)アタリレート
、ペンタエリスリトールテトラ (メタ)アタリレート、エトキシィ匕ペンタエリスリトールテトラ (メ タ)アタリレート、プロポキシ化ペンタエリスリトールテトラ (メタ)アタリレート、ジペンタエ リスリトールへキサ (メタ)アタリレート、エトキシィ匕イソシァヌル酸トリ(メタ)アタリレート、 フエノールノボラック型、及びクレゾ一ルノボラック型エポキシ (メタ)アタリレートなどが 挙げられる。これらの中でも透明性及び耐熱性の観点から、フエノールノボラック型、 及びクレゾ一ルノボラック型エポキシ (メタ)アタリレートを用いることが好まし!/、。
これらの化合物は、単独でも、また 2種類以上組み合わせて用いてもよぐさらにそ の他の光重合性ィ匕合物と組み合わせて用いてもょ 、。
[0032] (B)光重合性ィ匕合物の配合量は、 (A)成分および (B)成分の総量に対して、 20〜 95質量%であることが好ましい。 20質量%以上であると、(A)バインダボリマを絡み こんで硬化することが容易にでき、十分な耐溶剤性が得られる。また、 95質量%以下 であると、十分な強度や可撓性を有する硬化樹脂が得られる。以上の観点から、 (B) 光重合性ィ匕合物の配合量は、 25〜90質量%とすることがより好ましぐ 30〜80質量 %とすることが特に好ましい。
[0033] (C)光重合開始剤は、紫外線などの光の照射により(B)光重合性化合物の重合を 生じさせる化合物であれば特に制限されな 、。 (B)成分にエポキシ榭脂を用いる場 合、(C)光重合開始剤としては、例えば、 p—メトキシベンゼンジァゾ -ゥムへキサフ ルォロホスフェートなどのァリールジァゾ -ゥム塩;ジフエ-ルョードニゥムへキサフル ォロホスフェート、ジフエ-ルョードニゥムへキサフルォロアンチモネートなどのジァリ 一ルョードニゥム塩;トリフエ-ノレスノレホ-ゥムへキサフノレオ口ホスフェート、トリフエ- ルスルホ -ゥムへキサフルォロアンチモネート、ジフエ-ル 4 チオフエノキシフエ ニノレスノレホ-ゥムへキサフノレオ口ホスフェート、ジフエ-ノレー4ーチオフエノキシフエ- ルスルホ -ゥムへキサフルォロアンチモネート、ジフエ-ル 4 チオフエノキシフエ ニルスルホ -ゥムペンタフルォロヒドロキシアンチモネートなどのトリァリールスルホ- ゥム塩;トリフエ-ルセレノ -ゥムへキサフルォロホスフェート、トリフエ-ルセレノ -ゥム テトラフルォロボレート、トリフエ-ルセレノ -ゥムへキサフルォロアンチモネートなどの トリアリールセレノ-ゥム塩;ジメチルフエナシルスルホ -ゥムへキサフルォロアンチモ ネート、ジェチルフエナシルスルホ -ゥムへキサフルォロアンチモネートなどのジアル キルフエナシルスルホ -ゥム塩; 4 ヒドロキシフエ-ルジメチルスルホ-ゥムへキサフ ルォロアンチモネート、 4ーヒドロキシフエ-ルペンジルメチルスルホ -ゥムへキサフル ォロアンチモネートなどのジアルキルー4ーヒドロキシ塩; α—ヒドロキシメチルベンゾ インスルホン酸エステル、 Ν ヒドロキシイミドスルホネート、 a—スルホ-ロキシケトン 、 βースルホ-ロキシケトンなどのスルホン酸エステルなどが挙げられる。これらの中 でも透明性及び硬化性の観点から、トリアリールスルホ-ゥム塩を用いることが好まし い。
また、(Β)成分に分子内エチレン性不飽和基を有する化合物を用いる場合、 (C) 光重合開始剤としては、例えば、ベンゾフエノン、 Ν, Ν'—テトラメチル一 4, 4'—ジァ ミノべンゾフエノン、 Ν, Ν'—テトラエチル一 4, 4'—ジァミノべンゾフエノン、 4—メトキ シ一 4'—ジメチルァミノべンゾフエノン、 2, 2 ジメトキシ一 1 , 2 ジフエニルェタン一 1—オン、 1—ヒドロキシシクロへキシルフェニルケトン、 2—ヒドロキシ一 2—メチル 1 —フエ-ルプロパン一 1―オン、 1— [4— (2 ヒドロキシエトキシ)フエ-ル] 2 ヒド ロキシ 2—メチル 1—プロパン一 1—オン、 2 -ベンジル - 2 -ジメチルァミノ 1 一(4 モルフォリノフエ-ル) ブタン 1 オン、 1 , 2—メチルー 1 [4—(メチル チォ)フエ-ル] 2 モルフォリノプロパン 1 オン、 1 [ (4 フエ-ルチオ)フエ -ル ]—1 , 2—ォクタジオン— 2—べンゾィルォキシムなどの芳香族ケトン; 2—ェチ ルアントラキノン、フエナントレンキノン、 2— tert—ブチルアントラキノン、オタタメチル アントラキノン、 1 , 2 ベンズアントラキノン、 2, 3 ベンズアントラキノン、 2 フエ二 ルアントラキノン、 2, 3 ジフエ二ルアントラキノン、 1 クロ口アントラキノン、 2—メチ ノレアントラキノン、 1 , 4 ナフトキノン、 9, 10 フエナントラキノン、 2—メチノレー 1 , 4 ナフトキノン、 2, 3 ジメチルアントラキノンなどのキノン類;ベンゾインメチルエーテ ノレ、ベンゾインェチノレエーテノレ、ベンゾインフエ-ノレエーテノレなどのべンゾインエー テル化合物;ベンゾイン、メチルベンゾイン、ェチルベンゾインなどのべンゾイン化合 物;ベンジルジメチルケタールなどのべンジル誘導体; 2—(o クロ口フエ-ル) -4, 5 ジフエ-ルイミダゾ一ルニ量体、 2— (o クロ口フエ-ル)— 4, 5 ジ(メトキシフエ -ル)イミダゾールニ量体、 2—(o フルオロフェ-ル)ー 4, 5 ジフエ-ルイミダゾ 一ルニ量体、 2—(0—メトキシフェ-ル)ー4, 5 ジフエ-ルイミダゾ一ルニ量体、 2 — (P—メトキシフエ-ル)一 4, 5 ジフエ-ルイミダゾ一ルニ量体などの 2, 4, 5 トリ ァリールイミダゾールニ量体;ビス(2, 4, 6 トリメチルベンゾィル)フエ-ルフォスフィ ンオキサイド、ビス(2, 6 ジメトキシベンゾィル)—2, 4, 4 トリメチルペンチルフォ スフインオキサイド、 2, 4, 6 トリメチルベンゾィルジフエニルフォスフィンオキサイド などのフォスフィンオキサイド類; 9 フエ-ルァクリジン、 1, 7 ビス(9、 9'—アタリジ -ルヘプタン)などのアタリジン誘導体; N フエ-ルグリシン誘導体;タマリン系化合 物などが挙げられる。また、 2, 4, 5 トリアリールイミダゾールニ量体において、 2つ のトリアリールイミダゾール部位のァリール基の置換基は同一で対称な化合物を与え てもよいし、相違して非対称な化合物を与えてもよい。また。ジェチルチオキサントン とジメチルァミノ安息香酸の組み合わせのように、チォキサントン系化合物と 3級アミ ンとを組み合わせてもよい。これらの中でも、特に透明性と厚膜硬化性の観点から、 1 —ヒドロキシシクロへキシルフェニルケトン、 2—ヒドロキシ一 2—メチルー 1—フエニル プロパン一 1 オン、 1— [4— ( 2 ヒドロキシェトキシ)フエ-ル] 2 ヒドロキシ一 2 ーメチノレー 1 プロパン 1 オンなどの α—ヒドロキシケトン;ホスフィンオキサイド 類を用いることが好ましい。
上記に示した (C)光重合開始剤は、単独でも、また 2種類以上を組み合わせて用 V、てもよく、さらに適切な増感剤と組み合わせて用いてもょ 、。
[0035] (C)光重合開始剤の配合量は、(Α)成分および (Β)成分の総量 100に対して、 0.
1〜10質量%とすることが好ましい。 0. 1質量%以上であれば、光感度が十分である 。また、 10質量%以下であれば、光導波路の表面のみが選択的に硬化し、硬化が不 十分となることがなぐさらに光重合開始剤自身の吸収により、伝搬損失が増大するこ ともなく好適である。以上の観点から、(C)光重合開始剤の配合量は、 0. 3〜7質量 %とすることがより好ましぐ 0. 5〜5質量%とすることが特に好ましい。
[0036] また、このほか必要に応じて、クラッド層形成用榭脂は、酸化防止剤、黄変防止剤、 紫外線吸収剤、可視光吸収剤、着色剤、可塑剤、安定剤、充填剤などのいわゆる添 加剤を本発明の効果に悪影響を与えな 、割合で添加してもよ 、。
[0037] クラッド層形成用榭脂は、 (A)〜 (C)成分を含有する榭脂組成物を好適な有機溶 剤に溶解して、クラッド層形成用榭脂ワニスとして用いることもできる。ここで用いる有 機溶剤としては、クラッド層形成用榭脂を構成する榭脂組成物を溶解しえるものであ れば特に限定されない。有機溶剤としては、例えば、アセトン、メタノール、エタノール 、イソプロパノール、メチルェチルケトン、メチルイソブチルケトン、シクロへキサノン、 酢酸ブチル、乳酸ェチル、 γ —ブチロラタトン、メチルセ口ソルブ、ェチルセ口ソルブ 、ブチノレセロソノレブ、プロピレングリコールモノメチルエーテル、プロピレングリコール モノメチルエーテルアセテート、トルエン、キシレン、 Ν, Ν—ジメチルホルムアミド、 Ν , Ν—ジメチルァセトアミド、 Ν—メチルピロリドンなどが挙げられる。これらの中でも、 溶解性および沸点の観点から、メチルェチルケトン、メチルイソブチルケトン、シクロ へキサノン、乳酸メチル、乳酸ェチル、ェチルセ口ソルブ、プロピレングリコールモノメ チルエーテルアセテート、 Ν, Ν—ジメチルァセトアミドを用いることが好ましい。
上記に示した有機溶剤は、単独でも、また 2種類以上を組み合わせて用いてもよい 。該榭脂ワニス中の固形分濃度は、 30〜80質量%であることが好ましい。
[0038] クラッド層形成用榭脂ワニスを調合する際は、撹拌により混合することが好ましい。
撹拌方法としては特に制限はないが、撹拌効率の観点力 プロペラを用いた撹拌方 法が好ましい。撹拌する際のプロペラの回転速度としては特に制限はないが、 10〜1 , OOOrpmであることが好ましい。 lOrpm以上であると、(A)〜(C)成分、および有機 溶剤のそれぞれの成分が十分に混合される。 1, OOOrpm以下であるとプロペラの回 転による気泡の巻き込みが少なくなる。以上の観点から 50〜800rpmであることがよ り好ましぐ 100〜500rpmであることが特に好ましい。撹拌時間としては特に制限は ないが、 1〜24時間であることが好ましい。 1時間以上であると、(A)〜(C)成分、お よび有機溶剤のそれぞれの成分が十分に混合される。 24時間以下であると、ワニス 調合時間を短縮することができる。
[0039] 調合したクラッド層形成用榭脂ワニスは、孔径 50 μ m以下のフィルタを用いて濾過 するのが好ましい。孔径 50 m以下であると、大きな異物などが除去されて、ワニス 塗布時にはじきなどを生じることがない。以上の観点から、孔径 30 m以下のフィル タを用いて濾過するのがより好ましぐ孔径 10 m以下のフィルタを用いて濾過する のが特に好ましい。
[0040] 調合したクラッド層形成用榭脂ワニスは、減圧下で脱泡することが好ま 、。脱泡方 法としては特に制限はなぐ具体例としては、真空ポンプとベルジャー、真空装置付 き脱泡装置などを用いることができる。減圧時の圧力としては特に制限はないが、榭 脂ワニスに含まれる有機溶剤が沸騰しない圧力が好ましい。減圧脱泡時間としては 特に制限はないが、 3〜60分であることが好ましい。 3分以上であると、榭脂ワニス内 に溶解した気泡を取り除くことができる。 60分以下であると、榭脂ワニスに含まれる有 機溶剤が揮発することがな ヽ。
[0041] 図 1 (a)〜(d)のフレキシブル光導波路の場合、下部クラッド層 4は、例えば、上記 のクラッド層形成用榭脂ワニスを、スピンコート法などの方法を用いて基板上に塗布 し、有機溶剤を除去することにより形成することができる。または、クラッド層形成用榭 脂ワニスを好適な支持フィルム上に塗布し、有機溶剤を除去してクラッド層形成用榭 脂フィルムを作製することにより形成することができる。さらに、該榭脂フィルムをラミネ ートなどの方法を用いて基板上に貼り合せることにより形成することができる。
上記の基板としては、酸ィ匕膜付きシリコン基板またはガラス基板などが好適に挙げ られる。
下部クラッド層 4の外側にカバーフィルム 5が配置された図 1 (b)および (d)のフレキ シブル光導波路の場合、例えば、クラッド層形成用榭脂フィルムを貼り合せた基板が 、カバーフィルム 5を兼用することができる。また、クラッド層形成用榭脂フィルムに用 V、た支持フィルム力 カバーフィルム 5を兼用してもよ!、。
下部クラッド層 4の外側にカバーフィルム 5を有さない図 1 (a)および(c)のフレキシ ブル光導波路の場合、例えば、光導波路 1を作製後、薬液処理などの方法によって 、下部クラッド層 4から上記で用いた基板および支持フィルムを剥離することができる
[0042] 図 1 (a)〜(d)のフレキシブル光導波路の場合、上部クラッド層 3は、例えば、後述 するコア部 2を形成後、上記のクラッド層形成用榭脂ワニスまたはクラッド層形成用榭 脂フィルムを用いて、上記に示した下部クラッド層 4と同様の方法により形成すること ができる。
上部クラッド層 3の外側にカバーフィルム 5が配置された図 1 (c)および (d)のフレキ シブル光導波路の場合、例えば、上部クラッド層 3を形成後、カバーフィルム 5をラミ ネートなどの方法によって貼り合せることができる。また、上記に示したクラッド層形成 用榭脂フィルムに用いた支持フィルム、またはクラッド層形成用榭脂フィルムを貼り合 せた基板が、カバーフィルム 5を兼用してもよい。
上部クラッド層 3の外側にカバーフィルム 5を有さない図 1 (a)および (b)のフレキシ ブル光導波路の場合、例えば、上部クラッド層 3を形成後、薬液処理などの方法によ つて上部クラッド層 3から支持フィルムを剥離することができる。
[0043] クラッド層(上部クラッド層 3および下部クラッド層 4の全体)の厚さに関しては、 9〜5 00 μ mの範囲であることが好ましい。 9 μ m以上であると、伝搬光をコア内部に閉じ 込めるのが容易となり、また 500 m以下であると、光導波路 1全体の厚みが大きす ぎることなぐ十分な柔軟性が得られる。以上の観点から、該クラッド層の厚さは、 10 〜300 μ mの範囲であることがより好ましぐ 20〜200 μ mの範囲であることがさらに 好ましぐ 30-150 μ mの範囲であることが特に好ましい。
また、クラッド層の厚さは、最初に形成される下部クラッド層 4とコアパターンを埋め 込むための上部クラッド層 3において、同一でも異なってもよいが、光導波路 1全体の 厚みが小さくなり、より優れた柔軟性が発現するとの観点から、下部クラッド層 4の厚さ を、上部クラッド層 3よりも小さくすることが好ましい。上部クラッド層 3の厚さとしては、 7-300 μ mの範囲であることが好ましぐ 7-200 μ mの範囲であることがより好まし い。下部クラッド層 4の厚さとしては、 2〜200 mの範囲であることが好ましぐ 2〜1 50 mの範囲であることがより好ましい。なお、上部クラッド層 3の厚さとは、コア部 2と 下部クラッド層 4との境界力 上部クラッド層 3の上面までの値であり、下部クラッド層 4 の厚さとは、コア部 2と下部クラッド層 4との境界から下部クラッド層 4の下面までの値 である。
[0044] クラッド層の形成に、上記に示したクラッド層形成用榭脂フィルムを用いる場合、該 榭脂フィルムの製造過程で用いられる支持フィルムは、その材料にっ ヽては特に限 定されず、種々のものを用いることができる。支持フィルムとしての柔軟性および強靭 性の観点から、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレー ト、ポリエチレンナフタレートなどのポリエステル;ポリエチレン、ポリプロピレン、ポリ力 ーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリフエ-レン エーテル、ポリエーテルスルフイド、ポリエーテルスルホン、ポリエーテルケトン、ポリア リレート、液晶ポリマ、ポリスルホンなどが好適に挙げられる。
支持フィルムの厚さは、 目的とする柔軟性により適宜変えてもよいが、 2〜: LOO /z m の範囲とすることが好ましい。 以上であると、十分な強靭性を得られる。 100 m以下であると、十分な柔軟性が得られる。以上の観点から、 2〜80 /ζ πιの範囲とす ることがより好ましぐ 5〜50 mの範囲とすることがさらに好ましぐ 8〜25 /ζ πιの範 囲とすることが特に好ましい。
[0045] 上記クラッド層形成用榭脂フィルムの支持フィルム力 図 1 (b)〜(d)に示すようなフ レキシブル光導波路のカバーフィルム 5を兼用する場合、支持フィルムに接着処理を 施し、該処理面にクラッド層形成用榭脂ワニスを塗布するのが好ましい。これにより、 クラッド層と支持フィルム、すなわちカバーフィルム 5の接着力を向上させ、クラッド層 とカバーフィルム 5の剥離不良を抑制できる。ここで接着処理とは、易接着榭脂コート 、帯電防止榭脂コート、コロナ処理、プラズマ処理、反応性イオンエッチング処理、サ ンドブラストなどによるマットカ卩ェなどにより、カバーフィルム 5と、この上に形成される クラッド層形成用榭脂との接着力を高める処理である。
[0046] 〔コア層形成用榭脂〕
本発明に用いるコア層形成用榭脂としては、本発明の効果を奏する範囲であれば
、特に限定されず、クラッド層より高屈折率で、紫外線などの活性光線の照射によりコ ァパターンを形成しえる感光性樹脂組成物を好適に用いることができる。具体的には
、上記クラッド層形成用榭脂と同様の榭脂組成物を用いることがより好ましい。すなわ ち、上記 (A)、 (B)および (C)成分を含有し、必要に応じて上記添加剤などを含有す る榭脂組成物である。この中で、高耐熱性、高透明性に加え、コア部をクラッド層より 高屈折率とする観点から、上記 (B)光重合性化合物として上記一般式 (1)で表され るエトキシィ匕フルオレン型ジ (メタ)アタリレートおよび Zまたは上記一般式(2)で表さ れる (メタ)アタリレートを含む榭脂組成物を用いることが特に好ましい。
[0047] コア層形成用榭脂は、上記クラッド層形成用榭脂と同様に、好適な有機溶剤に溶 解して、コア層形成用榭脂ワニスとして用いてもよい。
[0048] コア層形成用榭脂ワニスは、上記したクラッド層形成用榭脂ワニスと同様の方法に より、調合、濾過および脱泡することが好ましい。
[0049] コア層は、コア層形成用榭脂ワニスを、スピンコート法などの方法を用いて下部クラ ッド層 4上に塗布し、有機溶剤を除去することにより形成することができる。または、コ ァ層形成用榭脂ワニスを好適な支持フィルム上に塗布し、有機溶剤を除去すること により、コア層形成用榭脂フィルムを作製後、該榭脂フィルムをラミネートなどの方法 を用いて下部クラッド層 4上に貼り合せることにより形成することができる。
[0050] コア層の厚さに関しては、 5〜: LOO mの範囲とすることが好ましい。 5 m以上で あると、コア中心と接続端子との精密な位置調整が容易となり、また 100 /z m以下で あると、光導波路 1全体の厚みが大きすぎず、十分な柔軟性が得られる。以上の観点 から、該コア層の厚さは、 10〜70 mの範囲であることがより好ましぐ 20〜60 /ζ πι の範囲であることが特に好まし 、。
[0051] コア層の形成にコア層形成用榭脂フィルムを用いる場合、該榭脂フィルムの製造過 程で用いられる支持フィルムは、その材料については特に限定されず、種々のものを 用いることができる。支持フィルムとしての柔軟性および強靭性の観点、ならびにコア パターン露光用光線の透過率の観点から、例えば、ポリエチレンテレフタレート、ポリ ブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル;ポリプロピレン 、ポリカーボネートなどが好適に挙げられる。
支持フィルムの厚さは、 目的とする柔軟性により適宜変えてもよいが、 5〜50 /ζ πιの 範囲とすることが好ましい。 5 m以上であると、十分な強靭性を得ることができ、 50 μ m以下であると、コアパターン形成時にフォトマスクとのギャップが大きくなることが なぐ微細なパターンが形成でき好適である。以上の観点から、 10〜40 /ζ πιの範囲 とすることがより好ましぐ 15〜30 /ζ πιの範囲とすることが特に好ましい。
また、露光用光線の透過率向上およびコアパターン側壁の荒れを低減するとの観 点から、内部に滑材粒子を含まな 、高透明タイプの支持フィルムを用いるのが好まし い。このような支持フィルムとしては、例えば、東洋紡績 (株)製「コスモシャイン A151 7、コスモシャイン A4100」(いずれも商品名)が入手可能である。
[0052] 〔フレキシブル光導波路〕
本発明のフレキシブル光導波路は、曲率半径 2mmの 360° 曲げ試験における挿 入損失の増加分が、 0. ldB以下であることが好ましい。 0. ldB以下であれば、屈曲 した状態でフレキシブル光導波路を使用した場合、損失値が小さくなり、伝送信号強 度が弱くなることがない。なお、挿入損失とは、主に伝搬損失および結合損失による 光損失のことを意味するものである。
[0053] 本発明のフレキシブル光導波路は、コア部とクラッド層の比屈折率差力 1〜10% であることが好ましい。 1%以上であると、屈曲時にコア部を伝搬する光がクラッド層 に漏れ出すことがない。 10%以下であると、光導波路と光ファイバなどの接続部にお いて、伝搬光が広がりすぎることがなぐ結合損失が大きくならない。以上の観点から 、 1. 5〜7. 5%であることがより好ましぐ 2〜5%であることが特に好ましい。なお、比 屈折率差は、以下に示す式により求めた。
比屈折率差 (%) = [ (コア部の屈折率) 2—(クラッド層の屈折率)2] Z [2 X (コア部 の屈折率)2] X I 00
[0054] 本発明のフレキシブル光導波路は、曲率半径 5mmの繰り返し折り曲げ試験を 10 万回実施後の挿入損失の増加分が、 0. ldB以下であることが好ましい。 0. ldB以 下であると、長期間安定した光伝送を行うことができ、例えば携帯電話のヒンジ部など 、常に可動する部分に適用することができる。以上の観点から、 0. 05dB以下である ことがより好ましい。
また、曲率半径 2mmの繰り返し折り曲げ試験を 10万回実施後に、拡大鏡や顕微 鏡下又は目視で観察したときに、コア部にクラックが発生していないことが好ましい。 フレキシブル光導波路の機械特性の観点から、クラッド部にもクラックが発生して!/、な いことがより好ましい。
[0055] 本発明のフレキシブル光導波路のフィルム引張り試験における弾性率は、 0. 05〜 6GPaであることが好ましい。 0. 05GPa以上であると、十分な柔軟性が得られ、屈曲 時に光導波路が変形して伝搬特性に影響を与えることがなく好適である。 6GPa以下 であると、脆くなり屈曲時に破断することがなく好適である。以上の観点から、 0. 1〜 6GPaであることがより好ましぐ 0. 2〜5GPaであることがさらに好ましぐ 0. 5〜4GP aであることが特に好ましい。なお、弾性率とは、フィルム引張り試験において荷重 伸び率曲線で原点における接線の傾きのことを意味するものである。
[0056] 本発明のフレキシブル光導波路のフィルム引張り試験における最大伸び率は、 3〜 50%であることが好ましい。 3%以上であると、脆くなり屈曲時に破断することがなく 好適である。 50%以下であると、十分な柔軟性が得られ、屈曲時に光導波路が変形 して伝搬特性に影響を与えることがなく好適である。以上の観点から 5〜40%である ことがより好ましい。なお、最大伸び率とは、フィルム引張り試験において最大荷重が 力かった時点での伸び率のことを意味するものである。
[0057] 本発明のフレキシブル光導波路の厚みは、 9〜500 μ mの範囲であることが好まし い。 以上であると、屈曲時に強度不足による破断がおこることがなく好適である 。 500 μ m以下であると十分な柔軟性が得られる。以上の観点から、 10-300 μ m の範囲であることがより好ましぐ 20〜200 /ζ πιの範囲であることがさらに好ましぐ 30 〜150 /z mの範囲であることが特に好ましい。
[0058] 本発明のフレキシブル光導波路は、最高温度 265°Cのリフロー試験を 3回実施した 後の伝搬損失の増加分力 0. 05dBZcm以下であることが好ましい。 0. 05dB/c m以下であると、部品実装時の信頼性の観点から、リフロープロセスが適用でき、フレ キシブル光導波路の適用範囲が広げることができる。以上の観点から、 0. 03dB/c m以下であることがより好ましい。なお、最高温度 265°Cのリフロー試験とは IPCZJE DEC J— STD— 020Bに準じた条件で実施する鉛フリーはんだリフロー試験のこと を意味するものである。
[0059] 本発明のフレキシブル光導波路は、伝搬損失が 0. 3dBZcm以下であることが好 ましい。 0. 3dBZcm以下であると、光の損失による、伝送信号の強度低下を抑える ことができ好適である。以上の観点から、さらに好ましくは 0. 2dBZcm以下であり、 特に好ましくは 0. ldBZcm以下である。
[0060] 本発明のフレキシブル光導波路に上述した榭脂組成物を用いる場合、榭脂組成物 の硬化物について、耐熱性、可撓性、強度等の各種物性評価として、例えば、ガラス 転移温度、 5%質量減温度、引張り弾性率、最大引張り強度、最大伸び率、線膨張 係数、吸水率等を公知の方法により測定することができる。
[0061] 本発明のフレキシブル光導波路を製造する方法としては、特に制限はないが、上 述のようにコア層形成用榭脂ワニスおよび Zまたはクラッド層形成用榭脂ワニスを用 いてスピンコート法などにより製造する方法、または、コア層形成用榭脂フィルムおよ び Zまたはクラッド層形成用榭脂フィルムを用いる方法などが挙げられる。これらの方 法を組み合わせて製造することもできる。これらの中では、大面積の光導波路を低コ ストで一括して製造できる観点から、該榭脂フィルムを用いる方法が好ま 、。
[0062] 続、て、フレキシブル光導波路の形態としては、図 1 (a)〜(d)の 4種類が考えられ る力 ここでは、図 1 (d)に示すカバーフィルム 5が下部クラッド層 4および上部クラッド 層 3の外側に配置されたフレキシブル光導波路にっ ヽて、コア層形成用榭脂フィル ムおよびクラッド層形成用榭脂フィルムを用いた場合の製造方法にっ 、て詳述する。
[0063] まず、第 1の工程としてクラッド層形成用榭脂と支持フィルムカゝら構成されたクラッド 層形成用榭脂フィルムのクラッド層形成用榭脂を光および Zまたは熱により硬化し、 下部クラッド層 4を形成する。
該下部クラッド層 4を形成する第 1の工程においてクラッド層形成用榭脂フィルムの 支持フィルムの反対側に、保護フィルムを設けている場合には、該保護フィルムを剥 離後、クラッド層形成用榭脂を光および Zまたは熱により硬化し、下部クラッド層 4を 形成する。
下部クラッド層 4を形成する際の活性光線の照射量は、 0. l〜5jZcm2とすることが 好ましぐ加熱温度は 50〜130°Cとすることが好ましいが、これらの条件には特に制 限はない。
[0064] 次いで、第 2の工程として、下部クラッド層 4上に、コア層形成用榭脂と支持フィルム 力も構成されたコア層形成用榭脂フィルムをラミネートし、コア層を形成する。この第 2 の工程において、上記の下部クラッド層 4上に、コア層形成用榭脂フィルムを加熱圧 着することにより、下部クラッド層 4より屈折率の高いコア層を形成する。
第 2の工程におけるラミネート方式としては、ロールラミネータ、または平板型ラミネ ータを用いる方法が挙げられるが、密着性および追従性の観点から、平板型ラミネ一 タを用いて減圧下でコア層形成用榭脂フィルムを積層することが好ましい。なお、本 発明において平板型ラミネータとは、積層材料を一対の平板の間に挟み、平板をカロ 圧することにより圧着させるラミネータのことを指し、例えば、真空加圧式ラミネータを 好適に用いることができる。ここでの加熱温度は、 50〜130°Cとすることが好ましぐ 圧着圧力は、 0. 1〜1. OMPa(l〜10kgfZcm2)とすることが好ましいが、これらの 条件には特に制限はない。
なお、真空加圧式ラミネータによる積層の前に、ロールラミネータを用いて、あらか じめコア層形成用榭脂フィルムを下部クラッド層 4上に仮貼りしておいてもよい。ここで 、密着性および追従性向上の観点から、圧着しながら仮貼りすることが好ましぐ圧着 する際、ヒートロールを有するラミネータを用いて加熱しながら行っても良い。ラミネー ト温度は、室温(25°C)〜100°Cの範囲とすることが好ましい。室温(25°C)以上であ ると、下部クラッド層 4とコア層との密着性が向上し、 100°C以下であると、コア層が口 ールラミネート時に流動することなぐ必要とする膜厚が得られる。以上の観点から、 4 0〜100°Cの範囲がより好ましい。圧力は 0. 2〜0. 9MPaが好ましぐラミネート速度 は 0. l〜3mZminが好ましいが、これらの条件には特に制限はない。
次に、第 3の工程として、コア層を露光現像し、光導波路のコアパターン (コア部 2) を形成する。具体的には、ネガマスクパターンを通して活性光線が画像状に照射さ れる。活性光線の光源としては、例えば、カーボンアーク灯、水銀蒸気アーク灯、超 高圧水銀灯、高圧水銀灯、キセノンランプなどの紫外線を有効に照射する公知の光 源が挙げられる。また、他にも写真用フラッド電球、太陽ランプなどの可視光を有効 に放射するものも用いることができる。ここでの活性光線の照射量は、 0. 01〜10J/ cm2とすることが好ましい。 0. Olj/cm2以上であると、硬化反応が十分に進行し、後 述する現像工程によりコアパターンが流失することがなぐ lOjZcm2以下であると露 光量過多によりコアパターンが太ることがなぐ微細なパターンが形成でき好適である 。以上の観点から、 0. 05〜5j/cm2の範囲とすることがより好ましぐ 0. l〜2j/cm2 の範囲とすることが特に好まし 、。
露光後に、解像度向上及びコアパターン密着性向上の観点から、露光後加熱を行 つてもよい。紫外線照射力 露光後加熱までの時間としては、 30秒〜 10分以内であ ることが好ましい。この範囲内であれば紫外線照射により発生した活性種が失活する ことがない。露光後加熱の温度としては 40〜160°Cとすることが好ましい。
[0066] 次いで、コア層形成用榭脂フィルムの支持フィルムを剥離し、ウエット現像などで未 露光部を除去して現像し、光導波路のコアパターンを形成する。ウエット現像の場合 は、上記フィルムの組成に適した有機溶剤系現像液を用いて現像することができる。 有機溶剤系現像液としては、例えば、アセトン、メタノール、エタノール、イソプロパ ノール、メチルェチルケトン、メチルイソブチルケトン、シクロへキサノン、酢酸ブチル、 乳酸ェチル、 y—ブチ口ラタトン、メチルセ口ソルブ、ェチルセ口ソルブ、ブチルセロソ ルブ、プロピレングリコーノレモノメチノレエーテル、プロピレングリコーノレモノメチノレエー テルアセテート、トルエン、キシレン、 N, N ジメチルホルムアミド、 N, N—ジメチル ァセトアミド、 N—メチルピロリドンなどが挙げられる。これらの中でも、溶解性の観点 力 、メチルェチルケトン、メチルイソブチルケトン、シクロへキサノン、乳酸メチル、乳 酸ェチノレ、 y ブチロラタトン、ェチノレセロソノレブ、ブチノレセロソノレブ、プロピレングリ コーノレモノメチノレエーテル、プロピレングリコーノレモノメチノレエーテノレアセテート、 N, N ジメチルァセトアミド、 N—メチルピロリドンを用いることが好ましい。これらの有機 溶剤は、引火防止のため、 1〜20質量%の範囲で水を添加することができる。
また、上記の有機溶剤は単独でも、また 2種類以上を組み合わせて用いることがで きるが、未露光部の溶解性調整の観点から、適切な有機溶剤を組み合わせて使用 することが好ましい。具体例としては、プロピレングリコールモノメチルエーテルァセテ ート/ N, N ジメチルァセトアミド、プロピレングリコールモノメチルエーテルァセテ ート ZN—メチルピロリドン、乳酸ェチル ZN, N ジメチルァセトアミド、乳酸ェチル ZN—メチルピロリドン、 γ—ブチ口ラタトン/ Ν, Ν ジメチルァセトアミド、 γ—プチ 口ラタトン/ Ν—メチルピロリドンの組合せなどが好適に挙げられる。
現像の方式としては、ディップ方式、パドル方式、高圧スプレー方式などのスプレー 方式;ブラッシング;スクラッピングなどが挙げられ、高圧スプレー方式が解像度向上 のためには最も適している。
[0067] 現像後の処理として、上記に示した有機溶剤を使用して光導波路のコアパターンを 洗净してちよい。 有機溶剤系洗浄液としては、例えば、アセトン、メタノール、エタノール、イソプロパ ノール、酢酸ェチル、酢酸ブチル、乳酸ェチル、 γ —ブチロラタトン、メチルセ口ソル ブ、ェチノレセロソノレブ、ブチノレセロソノレブ、プロピレングリコーノレモノメチノレエーテノレ、 プロピレングリコールモノメチルエーテルアセテート、トルエン、キシレンなどが挙げら れる。これらの中でも、溶解性の観点から、メタノール、エタノール、イソプロパノール 、酢酸ェチルを用いることが好ましい。これらの有機溶剤は、引火防止のため、 1〜2 0質量%の範囲で水を添加することができる。
また、上記の有機溶剤は単独でも、また 2種類以上を組み合わせて用いることがで きる。
洗浄の方式としては、ディップ方式、パドル方式、高圧スプレー方式などのスプレー 方式;ブラッシング;スクラッピングなどが挙げられる。
露光または洗浄後の処理として、必要に応じて 60〜250°C程度の加熱、または 0. 1〜: LOOOmiZcm2程度の露光を行うことにより、光導波路のコアパターンをさらに硬 ィ匕してちょい。
[0068] この後、コアパターン埋め込みのためクラッド層形成用榭脂フィルムをラミネートおよ び硬化する第 4の工程を行う。コアパターン上に、上記と同様な方法でクラッド層形成 用榭脂フィルムを加熱圧着することにより、上部クラッド層 3を形成する。このとき上部 クラッド層 3の厚さは、コア層の厚さより大きくすることが好ましい。
第 4の工程におけるラミネート方式としては、ロールラミネータ、または平板型ラミネ ータを用いる方法が挙げられるが、密着性、追従性、および平坦性の観点から、第 2 の工程と同様に、平板型ラミネータ、好適には真空加圧式ラミネータを用いて減圧下 でクラッド層形成用榭脂フィルムを積層することが好ましい。ここでの加熱温度は、 50 〜130°Cとすることが好ましぐ圧着圧力は、 0. 1〜1. OMPa (l〜10kgfZcm2)と することが好ましいが、これらの条件には特に制限はない。
[0069] 第 4の工程における硬化は、第 1の工程と同様に、光および Zまたは熱によって行 う。上部クラッド層 3を形成する際の活性光線の照射量は、 0. l〜30jZcm2とするこ とが好ましい。
上記クラッド層形成用榭脂フィルムの支持フィルムが PETの場合、活性光線の照射 量は、 0. l〜5jZcm2とすることが好ましい。一方、該支持フィルムがポリエチレンナ フタレート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリフエ-レンェ 一テル、ポリエーテルスルフイド、ポリエーテルスルホン、ポリスルホンなどの場合、 P ETに比べて紫外線などの短波長の活性光線を通しにく 、ことから、活性光線の照射 量は、 0. 5〜30jZcm2とすることが好ましい。 0. 5jZcm2以上であると硬化反応が 十分に進行し、 30jZcm2以下であると光照射の時間が長くかかりすぎることがない。 以上の観点から、 3〜27j/cm2とすることがより好ましぐ 5〜25j/cm2とすることが 特に好ましい。
なお、より硬化させるために、両面から同時に活性光線を照射することが可能な両 面露光機を使用することができる。また、加熱をしながら活性光線を照射してもよい。 活性光線照射中および Zまたは照射後の加熱温度は 50〜200°Cとすることが好ま しいが、これらの条件には特に制限はない。
[0070] 本発明のフレキシブル光導波路は、屈曲性、耐熱性、および透明性に優れて!/、る ために、光モジュールの光伝送路として用いてもよい。光モジュールの形態としては 、特に制限はないが、例えば、光導波路の両端に光ファイバを接続した光ファイバ付 き光導波路、光導波路の両端にコネクタを接続したコネクタ付き光導波路、光導波路 とプリント配線板と複合化した光電気複合基板、光導波路と光信号と電気信号を相 互に変換する光 Z電気変換素子を組み合わせた光電気変換モジュール、光導波路 と波長分割フィルタを組み合わせた波長合分波器等が挙げられる。なお、光電気複 合基板において、複合ィ匕するプリント配線板としては、特に制限はなくガラスエポキシ 基板などのリジット基板、ポリイミド基板などのフレキシブル基板のどちらを用いてもよ い。
実施例
[0071] 以下の本発明の実施例をさらに具体的に説明するが、本発明はこれらの実施例に なんら限定されるものではな 、。
また、以下の製造例にぉ 、て得られた榭脂フィルムを硬化して得られた硬化フィル ムの物性評価は、次の(1)〜(6)に示す項目について行った。
[0072] (1)屈折率測定 得られた硬化フィルムの屈折率をプリズムカプラー(Metricon社製、 Model2010 )を使用し、波長 830nmで測定した。
[0073] (2) Dynamic Mechanical Analysis (DMA)法によるガラス転移温度測定
得られた硬化フィルムのガラス転移温度を、動的粘弾性測定装置 (Rheometric Scientific Rheometric社製、 Solids Analyzer RSA— II)を使用し、測定温度 範囲 50°C→250°C、昇温速度 5°CZminで測定した。損失正接 (Tan δ )のピーク をガラス転移温度とした。
[0074] (3) 5%質量減温度測定
得られた硬化フィルムの 5%質量減温度を、熱重量—示差熱分析 (Thermogravi metry- Differential Thermal Analysis: TG - DTA)装置(セイコーインスッノレ (株)製 EXSTAR6000 TGZDTA6300)を使用し、空気中で測定温度範囲 30 °C→600°C、昇温速度 10°CZminで測定した。
[0075] (4)フィルム引張り試験
得られた硬化フィルム(幅 10mm、長さ 70mm、つかみ間距離 50mm、厚さ 100 m)のフィルム引張り試験を、引張り試験機((株)島津製作所製、オートグラフ AGS— 5KNG型)を用いて、温度 25°C、引張り速度 5mmZminで、 JIS K 7127に準拠 して行い、引張り弾性率、最大引張り強度、および最大伸び率を求めた。
なお、最大伸び率は、以下に示す式により求めた。
最大伸び率 (%) = (最大荷重時のつかみ間距離 初期のつかみ間距離) Z初期 のっかみ間距離 X 100
[0076] (5)線膨張係数測定
得られた硬化フィルム(幅 3mm、長さ 25mm、つかみ間距離 15mm、厚さ 100 /z m )の線膨張係数 αおよび αを、熱機械分析(Thermomechanical Analysis :TM
1 2
A)装置(セイコーインスツル (株)製 EXSTAR6000 TMAZSS6100)を使用し、 窒素雰囲気下で測定温度範囲 25°C→300°C、昇温速度 5°CZminで測定した。 なお、 aとはガラス転移温度よりも 10〜50°C低い温度での線膨張係数、 aとはガ
1 2 ラス転移温度よりも 10〜50°C高い温度での線膨張係数を示すものである。
[0077] (6)吸水率測定 得られた硬化フィルムの吸水率測定は以下の方法で行った。得られた硬化フィルム を lOcm X 10cmのサイズに切出し、 100°Cで 1時間加熱乾燥させた後に質量を測 定した(乾燥時質量)。 25°Cで 24時間水中に静置して、十分に吸水させた。水中か ら取り出した後、フィルム表面の余分な水分をふき取り、直ちに質量測定を行った(吸 水時質量)。
なお、吸水率は、以下に示す式により求めた。
吸水率 (%) = (吸水時質量 乾燥時質量) Z乾燥時質量 X 100
[0078] また、以下の実施例にお!、て得られたフレキシブル光導波路の評価は、次の(1) 〜(6)に示す項目につ 、て行った。
(1) 360° 曲げ試験
得られたフレキシブル光導波路 (導波路長 5cm)を、半径 2mmの棒に 1周巻きつけ 、光源に波長 850nmの光を中心波長とする VCSEL (EXFO社製、 FLS— 300— 0 1— VCL)、受光センサ((株)アドバンテスト製、 Q82214)、入射ファイバ(GI— 50 Z125マルチモードファイノく、 NA=0. 20)、および出射ファイノく(SI—114Z125、 NA=0. 22)を用いて、曲率半径 2mmの 360° 曲げ試験における挿入損失値を測 定し、巻きつけな!/、場合の挿入損失値に対する増加分を調べた。
なお、実施例 1では、上記の他に、図 3に示す曲率半径についても同様に、 360° 曲げ試験を実施し、上記と同様にフレキシブル光導波路の挿入損失値を測定し、挿 入損失値の増加分を調べた。
[0079] (2)比屈折率差
得られたフレキシブル光導波路の比屈折率差を、コア層形成用榭脂フィルム力も得 られた硬化フィルム (コア用硬化フィルム)およびクラッド層形成用榭脂から得られた 硬化フィルム (クラッド用硬化フィルム)の波長 830nmにおける屈折率を基に算出し た。
なお、比屈折率差は、以下に示す式により求めた。
比屈折率差 (%) = [ (コア部の屈折率) 2—(クラッド層の屈折率)2] Z [2 X (コア部 の屈折率)2] X I 00
[0080] (3)繰り返し折り曲げ試験 得られたフレキシブル光導波路 (導波路長 5cm)を、屈曲耐久試験機 (大昌電子( 株)製)を用い、曲率半径 5mm、屈曲速度約 1秒の条件で繰り返し折り曲げ試験を行 つた。 10万回実施後のフレキシブル光導波路の挿入損失値を上記と同様の光源、 受光素子、入射ファイバ、および出射ファイバを用いて測定し、試験前の挿入損失値 に対する増加分を調べた。
また、曲率半径 2mm、屈曲速度約 1秒の条件で繰り返し折り曲げ試験を 10万回実 施後に、金属顕微鏡 (ォリンパス (株)製、 BHMJL)を用い、フレキシブル光導波路の コア部およびクラッド部におけるクラック発生の有無を観察した。
なお、実施例 1では、上記の他に、図 4に示す折り曲げ回数についても同様に繰り 返し折り曲げ試験を実施して、上記と同様にフレキシブル光導波路の挿入損失値を 測定し、挿入損失値の増加分を調べた。
[0081] (4)フィルム引張り試験
得られたフレキシブル光導波路(幅 5mm、長さ 50mm、つかみ間距離 30mm、厚 さは表 3に示すとおりである)のフィルム引張り試験を、上記と同様な方法、条件で行 い、弾性率および最大伸び率を求めた。
[0082] (5)厚さ測定
得られたフレキシブル光導波路の厚さを、デジマチックインジケータ( (株)ミツトヨ) を用いて測定した。
[0083] (6)リフロー試験
得られたフレキシブル光導波路 (導波路長 5cm)を、リフロー試験機 (古河電気工 業(製)、サラマンダ XNA— 645PC)を用いて、 IPCZJEDEC J— STD— 020Bに 準じた条件で最高温度 265°Cの鉛はんだフリーリフロー試験を 3回行った。詳細なリ フロー条件を表 1、リフロー炉内の温度プロファイルを図 2に示す。リフロー試験実施 後のフレキシブル光導波路の伝搬損失値を上記と同様の光源、受光素子、入射ファ ィバ、および出射ファイバを用いて測定し、リフロー試験前の伝搬損失値に対する増 加分を調べた。
[0084] [表 1] ゾーン番号 1 2 3 4 5 6 7
上部ヒータ設定 S度 (¾) 175 1 95 220 250 280 220 0 下部ヒ^設定 iS度 (°C) 175 1 95 220 250 300 240 一
コンベア速度(cm min. } 60
[0085] (7)伝搬損失の測定
得られたフレキシブル光導波路の伝搬損失を、上記と同様の光源と受光素子、入 射ファイバとおよび、出射ファイバを用いて、カットバック法 (測定導波路長 5、 3、 2c m)により測定した。
[0086] 製造例 1
〔クラッド層形成用榭脂フィルム Aの作製〕
(A)バインダボリマとして、フエノキシ榭脂(商品名:フエノトート YP— 70、東都化成 (株)製) 50質量部、(B)光重合性化合物として、アリサイクリックジエポキシカルボキ シレート(商品名: KRM— 2110、分子量: 252、旭電ィ匕工業 (株)製) 50質量部、(C )光重合開始剤として、トリフエ-ルスルホ -ゥムへキサフロロアンチモネート塩(商品 名: SP— 170、旭電化工業 (株)製) 4質量部、増感剤として、 SP— 100 (商品名、旭 電化工業 (株)製) 0. 4質量部、有機溶剤としてプロピレングリコールモノメチルエー テルアセテート 40質量部を広口のポリ瓶に秤量し、メカ-カルスターラ、シャフト及び プロペラを用いて、温度 25°C、回転数 400rpmの条件で、 6時間撹拌し、クラッド層 形成用榭脂ワニス Aを調合した。その後、孔径 2 mのポリフロンフィルタ(商品名: P F020、アドバンテック東洋 (株)製)を用いて、温度 25°C、圧力 0. 4MPaの条件でカロ 圧濾過し、さらに真空ポンプ及びベルジャーを用いて減圧度 50mmHgの条件で 15 分間減圧脱泡した。
[0087] 上記で得られたクラッド層形成用榭脂ワニス Aを、ポリアミドフィルム(商品名:ミクトロ ン、東レ (株)製、厚さ: 12 m)のコロナ処理面上に塗工機 (マルチコ一ター TM— MC、(株)ヒラノテクシード製)を用いて塗布し、 80°C、 10分、その後 100°C、 10分乾 燥し、次いで保護フィルムとして離型 PETフィルム(商品名: A31、帝人デュポンフィ ルム (株)、厚さ: 25 m)を離型面が榭脂側になるように貼り付け、クラッド層形成用 榭脂フィルム Aを得た。このとき榭脂層の厚さは、塗工機のギャップを調節することで 、任意に調整可能であり、本製造例では硬化後の膜厚が、下部クラッド層 30 m、上 部クラッド層 80 μ mとなるように調節した。
[0088] 製造例 2
〔コア層形成用榭脂フィルム Bの作製〕
(A)バインダボリマとして、フエノキシ榭脂(商品名:フエノトート YP— 70、東都化成 (株)製) 10質量部、(B)光重合性化合物として、 9, 9 ビス [4一(2 アタリロイルォ キシエトキシ)フ ニル]フルオレン (商品名: A— BPEF、新中村ィ匕学工業 (株)製) 4 5質量部、およびビスフエノール A型エポキシアタリレート(商品名: EA— 1020、新中 村ィ匕学工業 (株)製) 45質量部、(C)光重合開始剤として、ビス (2, 4, 6 トリメチル ベンゾィル)フエ-ルフォスフィンオキサイド(商品名:ィルガキュア 819、チバ'スぺシ ャルティ'ケミカルズ (株)製) 2質量部、有機溶剤としてプロピレングリコールモノメチ ルエーテルアセテート 40質量部を用 、たこと以外は上記製造例 1と同様の方法およ び条件でコア層形成用榭脂ワニス Bを調合した。その後、加圧濾過用のフィルタとし て孔径 2 μ mのポリフロンフィルタ(商品名: PF020、アドバンテック東洋 (株)製)、お よび孔径 0. 5 mのメンブレンフィルタ(商品名: J050A、アドバンテック東洋 (株)製 )を用いたこと以外は上記製造例 1と同様の方法および条件で加圧濾過さらに減圧 脱泡した。
[0089] コア層形成用榭脂ワニス Bを、 PETフィルム(商品名:コスモシャイン A1517、東洋 紡績 (株)製、厚さ:16 m)の非処理面上に、上記製造例 1と同様な方法で塗布乾 燥し、次いで保護フィルムとして離型 PETフィルム(商品名: A31、帝人デュポンフィ ルム (株)、厚さ: 25 m)を離型面が榭脂側になるように貼り付け、コア層形成用榭 脂フィルム Bを得た。本製造例では硬化後の膜厚が 50 mとなるよう、塗工機のギヤ ップを調整した。
[0090] 〔物性測定用硬化フィルムの作製〕
上記で得られたコア層形成用榭脂フィルム Bに紫外線露光機 ( (株)オーク製作所 製、 EXM— 1172)にて紫外線 (波長 365nm)を lj/cm2照射し、上記離型 PETフィ ルム (A31)を剥離し、最後に 160°Cで 1時間さらに加熱乾燥を行い、上記 PETフィ ルム(A1517)を剥がして硬化フィルムを得た。
得られた硬化フィルムの屈折率測定、ガラス転移温度測定、 5%質量減温度測定、 引張り試験、線膨張係数測定、および吸水率測定を行った。結果を表 2に示す。
[0091] 製造例 3
〔コア層形成用榭脂フィルム Cの作製〕
(A)バインダボリマとして、フエノキシ榭脂(商品名:フエノトート YP— 70、東都化成 (株)製) 25質量部、(B)光重合性化合物として、 9, 9 ビス [4一(2—アタリロイルォ キシエトキシ)フ ニル]フルオレン (商品名: A— BPEF、新中村ィ匕学工業 (株)製) 3 7. 5質量部、およびビスフエノール A型エポキシアタリレート(商品名: EA— 1020、 新中村ィ匕学工業 (株)製) 37. 5質量部、(C)光重合開始剤として、ビス (2, 4, 6 ト リメチルベンゾィル)フエ-ルフォスフィンオキサイド(商品名:ィルガキュア 819、チバ 'スペシャルティ ·ケミカルズ (株)製) 2質量部、有機溶剤としてプロピレングリコールモ ノメーチルエーテルアセテート 40質量部を用いた以外は、製造例 2と同様な方法お よび条件で、コア層形成用榭脂ワニス C、およびコア層形成用榭脂フィルム Cを得た
[0092] 〔物性測定用硬化フィルムの作製〕
得られたコア層形成用榭脂フィルム Cを用いて製造例 2と同様な方法および条件で
、物性測定用硬化フィルムを得た。得られた硬化フィルムの屈折率測定、ガラス転移 温度測定、 5%質量減温度測定、引張り試験、線膨張係数測定、および吸水率測定 を行った。結果を表 2に示す。
[0093] 製造例 4
〔クラッド層形成用榭脂フィルム Dの作製〕
製造例 1にお 、てクラッド層形成用榭脂フィルム Aの支持フィルムとして用いたポリ アミドフィルムを PETフィルム(商品名:コスモシャイン A1517、東洋紡績 (株)製、厚 さ: 16 m、塗布面:帯電防止処理面)に変更した以外は、製造例 1と同様な方法お よび条件で、クラッド層形成用榭脂フィルム Dを作製した。
[0094] 製造例 5
〔クラッド層形成用榭脂フィルム Eの作製〕
製造例 1にお 、てクラッド層形成用榭脂フィルム Aの支持フィルムとして用いたポリ アミドフィルムを PETフィルム(商品名:コスモシャイン A1517、東洋紡績 (株)製、厚 さ: 16 z m、塗布面:非処理面)に変更した以外は、製造例 1と同様な方法および条 件で、クラッド層形成用榭脂フィルム Eを作製した。
[0095] 〔物性測定用硬化フィルムの作製〕
上記で得られたクラッド層形成用榭脂フィルム Eに紫外線露光機((株)オーク製作 所製、 EXM- 1172)にて紫外線 (波長 365nm)を lj/cm2照射し、保護フィルムと して用レ、た離型 PETフィルム (A31)を剥離し、最後に 160°Cで 1時間さらに加熱乾 燥を行 、、支持フィルムとして用いた上記 PETフィルム(A1517)を剥がして硬化フィ ルムを得た。
得られた硬化フィルムの屈折率測定、ガラス転移温度測定、 5%質量減温度測定、 引張り試験、線膨張係数測定、および吸水率測定を行った。結果を表 2に示す。
[0096] [表 2]
Figure imgf000035_0001
* 1 波長 830nm、 25°C、 * 2 DMA法、
* 3 TMA法、 ,:ガラス転移温度より 10〜50°C低い温度での線膨張係数、
2 :ガラス転移温度より 10~50¾高い温度での線膨張係数
[0097] 上記の製造例 2、 3および 5で得られた硬化フィルムは、耐熱性、低吸湿性および低 線膨張係数を有し、優れた機械特性を有し、かつコア層形成用榭脂フィルムがクラッ ド層形成用榭脂フィルムより高屈折率を有することから、フレキシブル光導波路用材 料として有用であることが分かる。
[0098] 実施例 1
〔フレキシブル光導波路の作製〕
上記製造例 1で得られたクラッド層形成用榭脂フィルム Αの保護フィルムである離型 PETフィルム (A31)を剥離し、紫外線露光機((株)オーク製作所製、 EXM- 1172 )にて榭脂側 (基材フィルムの反対側)から紫外線 (波長 365nm)を ljZcm2照射し、 次いで 80°Cで 10分間加熱処理することにより、下部クラッド層 4を形成した。
次に、該下部クラッド層 4上に、真空加圧式ラミネータ((株)名機製作所製、 MVLP — 500)を用い、圧力 0. 4MPa、温度 50°C、加圧時間 30秒の条件にて、上記製造 例 2で得られたコア層形成用榭脂フィルム Bを積層し、コア層を形成した。
次に、幅 50 mのネガ型フォトマスクを介し、上記紫外線露光機にて紫外線 (波長 365nm)を 0. 5jZcm2照射し、次いで 80°Cで 5分間露光後加熱を行った。その後、 支持フィルムである PETフィルムを剥離し、現像液(プロピレングリコールモノメチル エーテルアセテート ZN, N—ジメチルァセトアミド =8Z2、質量比)を用いて、コア パターン (コア部 2)を現像した。 、て、洗浄液 (イソプロパノール)を用いて洗浄し、 100°Cで 10分間加熱乾燥した。
次いで、上記と同様なラミネート条件にて、上部クラッド層として上記製造例 1で得ら れたクラッド形成用榭脂フィルム Aをラミネートした。さらに、紫外線 (波長 365nm)を 両面に合計で 25jZcm2照射後、 160°Cで 1時間加熱処理することによって、上部ク ラッド層 3を形成し、図 1 (d)に示した上下クラッド層の外側にカバーフィルム 5が配置 されたフレキシブル光導波路 1を得た。その後、ダイシングソー((株)ディスコ製、 DA D— 341)を用いて導波路長 5cmの光導波路 1を切出した。
なお、この場合のカバーフィルム 5はクラッド層形成用榭脂フィルム Aの支持フィル ムとして用いたポリアミドフィルムである。
得られたフレキシブル光導波路の 360° 曲げ試験、繰り返し折り曲げ試験、フィル ム引張り試験、リフロー試験、厚さ測定、伝搬損失測定を行った。得られたフレキシブ ル光導波路は、高屈曲性、耐熱性を有し、かつ低伝搬損失であることより高透明性を 有することが分かる。結果を表 3および図 3〜5に示す。
実施例 2
実施例 1にお 、て下部クラッド層 4および上部クラッド層 3に用いたクラッド層形成用 榭脂フィルム Aを上記製造例 4で得られたクラッド層形成用榭脂フィルム Dに変更し、 上部クラッド層形成用榭脂フィルムラミネート後の紫外線照射量 25jZcm2を 3jZcm 2に、加熱処理温度 160°Cを 120°Cに変更した以外は、実施例 1と同様な方法および 条件で、図 1 (d)に示した上下クラッド層の外側にカバーフィルム 5が配置されたフレ キシブル光導波路 1を得た。
なお、この場合のカバーフィルム 5はクラッド層形成用榭脂フィルム Dの支持フィル ムとして用いた PETフィルムである。
[0100] 得られたフレキシブル光導波路の 360° 曲げ試験、繰り返し折り曲げ試験、フィル ム引張り試験、厚さ測定、伝搬損失測定を行った。得られたフレキシブル光導波路は
、高屈曲性を有し、かつ低伝搬損失であることより高透明性を有することが分かる。結 果を表 3に示す。
[0101] 実施例 3
製造例 5で得られたクラッド層形成用榭脂フィルム Eを厚さ 1 μ mの酸ィ匕膜付きシリ コン基板 (厚さ 625 m)上に、ラミネート後、紫外線を UZcm2照射し、支持フィルム として用いた PETフィルムを剥離して下部クラッド 4を形成した。
続いて、実施例 1と同様な方法および条件でコア部 2を形成し、さらにクラッド形成 用榭脂フィルム Eを実施例 1と同様な条件でラミネートし、紫外線を 3jZcm2照射した 。該クラッド形成用榭脂フィルム Eの支持フィルムとして用いた PETフィルムを剥離後 、 160°Cで加熱処理することによって、上部クラッド層 3を形成し、シリコン基板付き光 導波路を得た。
次に、該シリコン基板付き光導波路を 5質量%のフッ酸水溶液に 24時間浸漬し、光 導波路部をシリコン基板から剥離させ、図 1 (a)に示したフレキシブル光導波路 1を得 た。
[0102] 得られたフレキシブル光導波路の 360° 曲げ試験、繰り返し折り曲げ試験、フィル ム引張り試験、リフロー試験、厚さ測定、伝搬損失測定を行った。得られたフレキシブ ル光導波路は、高い屈曲性、耐熱性を有し、かつ低伝搬損失であることより高透明 性を有することが分かる。結果を表 3に示す。
[0103] 実施例 4
コア層形成用榭脂フィルム Bを上記製造例 3で得られたコア層形成用榭脂フィルム Cに変更した以外は、実施例 1と同様な方法および条件で、図 1 (d)に示した上下ク ラッド層の外側にカバーフィルム 5が配置されたフレキシブル光導波路 1を得た。 なお、この場合のカバーフィルム 5はクラッド層形成用榭脂フィルム Aの支持フィル ムとして用いたポリアミドフィルムである。
[0104] 得られたフレキシブル光導波路の 360° 曲げ試験、繰り返し折り曲げ試験、フィル ム引張り試験、リフロー試験、厚さ測定、伝搬損失測定を行った。得られたフレキシブ ル光導波路は、高い屈曲性、耐熱性を有し、かつ低伝搬損失であることより高透明 性を有することが分かる。結果を表 3に示す。
[0105] 実施例 5
コア層形成用榭脂フィルムを上記製造例 3で得られたコア層形成用榭脂フィルム C に変更した以外は、実施例 3と同様な方法および条件で図 1 (a)に示したフレキシブ ル光導波路 1を得た。
[0106] 得られたフレキシブル光導波路の 360° 曲げ試験、繰り返し折り曲げ試験、フィル ム引張り試験、リフロー試験、厚さ測定、伝搬損失測定を行った。得られたフレキシブ ル光導波路は、高い屈曲性、耐熱性を有し、かつ低伝搬損失であることより高透明 性を有することが分かる。結果を表 3に示す。
[0107] 実施例 6
実施例 1で得られた導波路長 5cmのフレキシブル光導波路の両端に石英ガラスブ ロック付き光ファイノく(GI— 50Z125マルチモードファイノく、 NA=0. 20)を光学用 接着剤で固定し、光モジュールを作製した。得られた光モジュールの挿入損失を光 源に波長 850nmの光を中心波長とする VCSEL (EXFO社製、 FLS— 300— 01— VCL)、受光センサ((株)アドバンテスト製、 Q82214)を用いて測定したところ、 0. 5 dB以下であった。また、 360° 曲げ試験を行ったところ、曲率半径 2mmの条件で挿 入損失の増加分が、 0. ldB以下であった。さらに、曲率半径 5mmの繰り返し折り曲 げ試験を 10万回実施後の挿入損失の増加分が、 0. ldB以下であった。曲率半径 2 mmの繰り返し折り曲げ試験を 10万回実施後に、金属顕微鏡 (ォリンノ ス (株)製、 B HMJL)を用い、光モジュールを観察したところ、コア部およびクラッド部において、ク ラックは発生して 、なかった。
[0108] [表 3] 項目 実施例 1 実施例 2 実施例 3 実施例 4 実施例 5
360 D曲げ試験の
0. 1未満 0. 1未滴 0. 1未満 0. 1未満 0. 1未満 揷入損失増加分 (d B) "
比屈折率差 (%) *2 2. 2 2. 2 2. 2 2. 3 2. 3 繰り返し折り曲げ試験後の
0. 05未満 0. 05未満 0. 05未満 0. 05未満 0- 05未満 挿入損失増加分 (d B) *3
繰り返し折り曲げ試験後の
クラック有無 *4 なし Zなし なし Zなし なし Zなし なし Zなし なし Zなし (コア部 クラツド部)
弾性率 (G P a) 4. 1 3. 2 1. 7 4. 0 1. 8 最大伸び率 (%) 6 7 7 6 7
厚さ (/i m) 1 45 1 55 1 20 1 45 1 20 リフロー試験後の
伝搬損失の 0. 02未満 一 0. 02未満 0. 02未満 0. 02未満 増加分 (d BZcm)
伝搬損失 (d BZcm) 0. 1 0. 1 0. 1 0. 1 0. 1
* 1 曲率半径 2mrru * 2 波長 830 nm、 * 3 曲率半径 5mm、 1 0万回実施後、 * 4 曲率半径 2mm 1 0万回実施後 産業上の利用可能性
本発明のフレキシブル光導波路および光モジュールは屈曲性、耐熱性、および透 明性に優れており、汎用性が高ぐ携帯電話やノート型パソコンなどの民生機器の分 野、さらに幅広い分野に適用可能である。

Claims

請求の範囲
[I] コア部およびクラッド層を有するフレキシブル光導波路であって、曲率半径 2mmの 360° 曲げ試験における挿入損失の増加分力 0. IdB以下であるフレキシブル光 導波路。
[2] コア部とクラッド層との比屈折率差力 1〜10%である請求項 1に記載のフレキシブ ル光導波路。
[3] 曲率半径 5mmの繰り返し折り曲げ試験を 10万回実施後の挿入損失の増加分が、
0. IdB以下である請求項 1または 2に記載のフレキシブル光導波路。
[4] フィルム引張り試験における弾性率力 0. 05〜6GPaである請求項 1〜3のいずれ かに記載のフレキシブル光導波路。
[5] フィルム引張り試験における最大伸び率力 3〜50%である請求項 1〜4のいずれ かに記載のフレキシブル光導波路。
[6] 厚みが、 9〜500 μ mである請求項 1〜5のいずれかに記載のフレキシブル光導波 路。
[7] 最高温度 265°Cのリフロー試験を 3回実施後の伝搬損失の増加分が、 0. 05dB/ cm以下である請求項 1〜6のいずれかに記載のフレキシブル光導波路。
[8] 伝搬損失が、 0. 3dBZcm以下である請求項 1〜7のいずれかに記載のフレキシブ ル光導波路。
[9] コア部および Zまたはクラッド層を、(A)バインダボリマ、(B)光重合性化合物およ び (C)光重合開始剤を含む榭脂組成物を用いて作製する請求項 1〜8の ヽずれか に記載のフレキシブル光導波路。
[10] (A)成分および (B)成分の総量に対して、(A)成分を 5〜80質量%、および (B)成 分を 20〜95質量%含み、かつ (A)成分および (B)成分の総量 100質量部に対して 、(C)成分を 0. 1〜10質量部含む榭脂組成物を用いて作製する請求項 9に記載の フレキシブル光導波路。
[II] (A)バインダボリマ力 フエノキシ榭脂である請求項 9または 10に記載のフレキシブ ル光導波路。
[12] (B)光重合性化合物として、分子内にエチレン性不飽和基を有する化合物を含む 請求項 9〜: L 1のいずれかに記載のフレキシブル光導波路。
[13] (B)光重合性ィ匕合物として、ァリール基、ァラルキル基、ァリールォキシ基および芳 香族複素環式基からなる群から選ばれる少なくとも 1種を有する単官能 (メタ)アタリレ ートを含む請求項 9〜 12のいずれかに記載のフレキシブル光導波路。
[14] (B)光重合性ィ匕合物として、下記一般式(1)で表されるエトキシィ匕フルオレン型ジ( メタ)アタリレートを含む請求項 9〜12のいずれかに記載のフレキシブル光導波路。
[化 1]
Figure imgf000041_0001
(式中、 R1は水素原子またはメチル基、 R2〜R13は各々独立して水素原子、炭素数 1 〜12のアルキル基、炭素数 1〜6のアルコキシ基、炭素数 2〜7のアルコキシカルボ -ル基、炭素数 6〜10のァリール基、または炭素数 7〜9のァラルキル基を示す。 aお よび bは各々独立して 1〜 20の整数を示す。)
(B)光重合性ィ匕合物として、下記一般式 (2)で表される (メタ)アタリレートを含む請求 項 9〜 12のいずれかに記載のフレキシブル光導波路。
[化 2]
Figure imgf000041_0002
(式中、 Xは CH CH (OH) CH、(C H O) C H、(C H O) C H、または(C H O)
2 2 2 4 c 2 4 3 6 d 3 6 2 4
(C H O) C Hであり、 Yは C (CH )、 CH、 SO、または Oを示し、 c、 d、 eおよび f e 3 6 f 3 6 3 2 2 2
はそれぞれ 0から 10の整数を示す。 R14は水素原子またはメチル基、 R15は水素原子 、メチル基またはハロゲン原子を示す。 )
(B)光重合性ィ匕合物として、分子内に 2つ以上のエポキシ基を有する化合物を含 む請求項 9〜: L 1のいずれかに記載のフレキシブル光導波路。
請求項 1〜16のいずれかに記載のフレキシブル光導波路を用いる光モジュ
PCT/JP2007/052123 2006-02-08 2007-02-07 フレキシブル光導波路および光モジュール WO2007091596A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/278,597 US7660503B2 (en) 2006-02-08 2007-02-07 Flexible optical waveguide and optical module
CN2007800048776A CN101379421B (zh) 2006-02-08 2007-02-07 柔性光波导及光学模块
EP07708162A EP1983360A1 (en) 2006-02-08 2007-02-07 Flexible optical waveguide and optical module
JP2007557866A JPWO2007091596A1 (ja) 2006-02-08 2007-02-07 フレキシブル光導波路および光モジュール

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006030884 2006-02-08
JP2006-030884 2006-02-08
JP2006081394 2006-03-23
JP2006-081394 2006-03-23
JP2006342942 2006-12-20
JP2006-342942 2006-12-20

Publications (1)

Publication Number Publication Date
WO2007091596A1 true WO2007091596A1 (ja) 2007-08-16

Family

ID=38345192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052123 WO2007091596A1 (ja) 2006-02-08 2007-02-07 フレキシブル光導波路および光モジュール

Country Status (7)

Country Link
US (1) US7660503B2 (ja)
EP (1) EP1983360A1 (ja)
JP (1) JPWO2007091596A1 (ja)
KR (1) KR20080094900A (ja)
CN (1) CN101379421B (ja)
TW (1) TW200739155A (ja)
WO (1) WO2007091596A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035658A1 (fr) * 2006-09-22 2008-03-27 Hitachi Chemical Company, Ltd. Procédé de fabrication de guide de lumière
WO2009028172A1 (ja) * 2007-08-30 2009-03-05 Mitsui Chemicals, Inc. 光導波路高分子フィルム
JP2009199076A (ja) * 2008-01-24 2009-09-03 Hitachi Chem Co Ltd クラッド層形成用樹脂組成物およびこれを用いたクラッド層形成用樹脂フィルム、これらを用いた光導波路ならびに光モジュール
WO2009116421A1 (ja) * 2008-03-18 2009-09-24 日立化成工業株式会社 光導波路の製造方法
JP2010049225A (ja) * 2008-07-24 2010-03-04 Fuji Xerox Co Ltd 光導波路フィルム及びその製造方法、並びに、光送受信モジュール
WO2010032809A1 (ja) * 2008-09-19 2010-03-25 日立化成工業株式会社 光導波路
JP2010091734A (ja) * 2008-10-07 2010-04-22 Hitachi Chem Co Ltd コア部形成用樹脂組成物及びこれを用いたコア部形成用樹脂フィルム、ならびにこれらを用いた光導波路
JP2010091732A (ja) * 2008-10-07 2010-04-22 Hitachi Chem Co Ltd コア部形成用樹脂組成物及びこれを用いたコア部形成用樹脂フィルム、ならびにこれらを用いた光導波路
JP2010164770A (ja) * 2009-01-15 2010-07-29 Hitachi Chem Co Ltd 光導波路
JP2013214111A (ja) * 2008-05-13 2013-10-17 Hitachi Chemical Co Ltd 光導波路の製造方法及び光導波路
JPWO2017209137A1 (ja) * 2016-06-02 2019-03-28 Agc株式会社 樹脂光導波路
JP7504602B2 (ja) 2019-10-10 2024-06-24 大阪ガスケミカル株式会社 光学フィルムおよびその用途

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200809398A (en) * 2006-08-11 2008-02-16 Eternal Chemical Co Ltd Photosensitive resin composition
JP2011154107A (ja) * 2010-01-26 2011-08-11 Sumitomo Electric Ind Ltd プラスチッククラッド光ファイバ
US20110279411A1 (en) * 2010-05-17 2011-11-17 Nitto Denko Corporation Optical waveguide and optical touch panel
WO2013080097A1 (en) * 2011-11-29 2013-06-06 Koninklijke Philips Electronics N.V. A wave guide
US20160274321A1 (en) * 2015-03-21 2016-09-22 Ii-Vi Incorporated Flexible Structured Optical Modules
WO2017147573A1 (en) * 2016-02-25 2017-08-31 Cornell University Waveguides for use in sensors or displays
FI130454B (en) 2019-05-24 2023-09-06 Exfo Oy Separation of data traffic from optical communication fiber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072876A (ja) * 1998-09-01 2000-03-07 Reiko Udagawa 含フッ素ポリイミド樹脂およびそれらを用いた光導波路
JP2003177260A (ja) * 2001-12-13 2003-06-27 Showa Denko Kk 光導波路樹脂用組成物
JP2004300255A (ja) * 2003-03-31 2004-10-28 Sumitomo Bakelite Co Ltd 光導波路用材料並びに光導波路
JP2005338202A (ja) * 2004-05-25 2005-12-08 Taiyo Ink Mfg Ltd 光導波路材料用光硬化性・熱硬化樹脂組成物、及びその硬化物並びに光・電気混載基板
WO2006001447A1 (ja) * 2004-06-28 2006-01-05 Omron Corporation フィルム光導波路及びその製造方法並びに電子機器装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3249340B2 (ja) 1995-05-22 2002-01-21 日本電信電話株式会社 高分子フレキシブル光導波路の製造方法
CA2599519A1 (en) * 2005-03-01 2006-09-08 Exfo Electro-Optical Engineering Inc. Method and apparatus for extracting light from an optical waveguide
BRPI0803104A2 (pt) * 2007-03-30 2011-08-30 Hitachi Chemical Co Ltd elemento de conexão ótica e aparelho de exibição

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072876A (ja) * 1998-09-01 2000-03-07 Reiko Udagawa 含フッ素ポリイミド樹脂およびそれらを用いた光導波路
JP2003177260A (ja) * 2001-12-13 2003-06-27 Showa Denko Kk 光導波路樹脂用組成物
JP2004300255A (ja) * 2003-03-31 2004-10-28 Sumitomo Bakelite Co Ltd 光導波路用材料並びに光導波路
JP2005338202A (ja) * 2004-05-25 2005-12-08 Taiyo Ink Mfg Ltd 光導波路材料用光硬化性・熱硬化樹脂組成物、及びその硬化物並びに光・電気混載基板
WO2006001447A1 (ja) * 2004-06-28 2006-01-05 Omron Corporation フィルム光導波路及びその製造方法並びに電子機器装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035658A1 (fr) * 2006-09-22 2008-03-27 Hitachi Chemical Company, Ltd. Procédé de fabrication de guide de lumière
KR101189039B1 (ko) * 2007-08-30 2012-10-08 미쓰이 가가쿠 가부시키가이샤 광도파로 고분자 필름
WO2009028172A1 (ja) * 2007-08-30 2009-03-05 Mitsui Chemicals, Inc. 光導波路高分子フィルム
JP5183634B2 (ja) * 2007-08-30 2013-04-17 三井化学株式会社 光導波路高分子フィルム
JP2009199076A (ja) * 2008-01-24 2009-09-03 Hitachi Chem Co Ltd クラッド層形成用樹脂組成物およびこれを用いたクラッド層形成用樹脂フィルム、これらを用いた光導波路ならびに光モジュール
WO2009116421A1 (ja) * 2008-03-18 2009-09-24 日立化成工業株式会社 光導波路の製造方法
JP2013214111A (ja) * 2008-05-13 2013-10-17 Hitachi Chemical Co Ltd 光導波路の製造方法及び光導波路
JP2010049225A (ja) * 2008-07-24 2010-03-04 Fuji Xerox Co Ltd 光導波路フィルム及びその製造方法、並びに、光送受信モジュール
JP5218562B2 (ja) * 2008-09-19 2013-06-26 日立化成株式会社 光導波路
WO2010032809A1 (ja) * 2008-09-19 2010-03-25 日立化成工業株式会社 光導波路
US8787722B2 (en) 2008-09-19 2014-07-22 Hitachi Chemical Company, Ltd. Optical waveguide
TWI457624B (zh) * 2008-09-19 2014-10-21 Hitachi Chemical Co Ltd 光波導
JP2010091732A (ja) * 2008-10-07 2010-04-22 Hitachi Chem Co Ltd コア部形成用樹脂組成物及びこれを用いたコア部形成用樹脂フィルム、ならびにこれらを用いた光導波路
JP2010091734A (ja) * 2008-10-07 2010-04-22 Hitachi Chem Co Ltd コア部形成用樹脂組成物及びこれを用いたコア部形成用樹脂フィルム、ならびにこれらを用いた光導波路
JP2010164770A (ja) * 2009-01-15 2010-07-29 Hitachi Chem Co Ltd 光導波路
JPWO2017209137A1 (ja) * 2016-06-02 2019-03-28 Agc株式会社 樹脂光導波路
JP7504602B2 (ja) 2019-10-10 2024-06-24 大阪ガスケミカル株式会社 光学フィルムおよびその用途

Also Published As

Publication number Publication date
KR20080094900A (ko) 2008-10-27
CN101379421B (zh) 2010-10-13
TW200739155A (en) 2007-10-16
EP1983360A1 (en) 2008-10-22
US7660503B2 (en) 2010-02-09
JPWO2007091596A1 (ja) 2009-07-02
US20090175585A1 (en) 2009-07-09
CN101379421A (zh) 2009-03-04

Similar Documents

Publication Publication Date Title
WO2007091596A1 (ja) フレキシブル光導波路および光モジュール
JP4265695B2 (ja) フレキシブル光導波路およびその製造方法ならびに光モジュール
JP5381097B2 (ja) 光学材料用フェノキシ樹脂、光学材料用樹脂組成物、光学材料用樹脂フィルム及びこれらを用いた光導波路
JP2007128028A (ja) フレキシブル光導波路及びその製造方法
JP2009300688A (ja) クラッド層形成用樹脂組成物およびこれを用いたクラッド層形成用樹脂フィルム、これらを用いた光導波路ならびに光モジュール
JP5212141B2 (ja) フレキシブル光導波路の製造方法
JP5585578B2 (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路
JP5610046B2 (ja) 光導波路の製造方法及び光導波路
JP5257090B2 (ja) 光導波路
JP5003506B2 (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム、及びこれらを用いた光導波路
WO2010087378A1 (ja) 光導波路の製造方法、光導波路及び光電気複合配線板
JP5228947B2 (ja) フレキシブル光導波路及びその製造方法
JP2009186979A (ja) 光導波路複合基板の製造方法
JP2009175244A (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム、及びこれらを用いた光導波路
JP2009093139A (ja) 光導波路の製造方法及び該製造方法により得られた光導波路
JP2009093140A (ja) 光導波路の製造方法及び該製造方法により得られた光導波路
JP2010197985A (ja) 光導波路の製造方法、光導波路及び光電気複合配線板
JP5904362B2 (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路
JP2015145998A (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム、それらを用いた光導波路及びその製造法
JP2010271371A (ja) フレキシブル光導波路
JP5458682B2 (ja) 光導波路形成用樹脂フィルム及びこれを用いた光導波路、その製造方法並びに光電気複合配線板
JP2010271369A (ja) フレキシブル光導波路
JP2010271370A (ja) フレキシブル光導波路
WO2017022055A1 (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム、それらを用いた光導波路及びその製造方法
JP2009175457A (ja) クラッド層形成用樹脂組成物およびこれを用いたクラッド層形成用樹脂フィルム、これらを用いた光導波路ならびに光モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007557866

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087018687

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007708162

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12278597

Country of ref document: US

Ref document number: 200780004877.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE