JP2013166804A - ポリオレフィン微多孔膜、電池用セパレータ及び電池 - Google Patents

ポリオレフィン微多孔膜、電池用セパレータ及び電池 Download PDF

Info

Publication number
JP2013166804A
JP2013166804A JP2010129255A JP2010129255A JP2013166804A JP 2013166804 A JP2013166804 A JP 2013166804A JP 2010129255 A JP2010129255 A JP 2010129255A JP 2010129255 A JP2010129255 A JP 2010129255A JP 2013166804 A JP2013166804 A JP 2013166804A
Authority
JP
Japan
Prior art keywords
microporous membrane
polyethylene
polyolefin microporous
battery
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010129255A
Other languages
English (en)
Inventor
Kotaro Takita
耕太郎 滝田
Shintaro Kikuchi
慎太郎 菊地
Kazuhiro Yamada
一博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Battery Separator Film Co Ltd
Original Assignee
Toray Battery Separator Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Battery Separator Film Co Ltd filed Critical Toray Battery Separator Film Co Ltd
Priority to JP2010129255A priority Critical patent/JP2013166804A/ja
Priority to CN201180014660.XA priority patent/CN102869710B/zh
Priority to PCT/JP2011/061284 priority patent/WO2011152201A1/ja
Priority to KR1020127026859A priority patent/KR101843806B1/ko
Publication of JP2013166804A publication Critical patent/JP2013166804A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】高空孔率及び優れた透過性及び機械的強度を有する薄いポリオレフィン微多孔膜、かかる微多孔膜を用いた電池用セパレータ、及びかかるセパレータを用いた電池を提供する。
【解決手段】水銀圧入法により求めた孔径分布曲線において細孔半径が10〜1,000nmの範囲の細孔の容積S1に対して、細孔半径が100〜1,000nmの範囲の細孔の容積S2の割合(S2/S1×100)が25%以上であり、かつ細孔半径が500〜1,000nmの範囲の細孔の容積S3の割合(S3/S1×100)が5%以下であるポリオレフィン微多孔膜。
【選択図】図1

Description

本発明は、高い空孔率及び優れた透過性及び機械的強度を有する薄いポリオレフィン微多孔膜、かかる微多孔膜を用いた電池用セパレータ、及びかかるセパレータを用いた電池に関する。
リチウムイオン二次電池は、ニッケル−水素二次電池やニッケル−カドミウム二次電池等のその他の二次電池に比べて高い電圧を有するため高いエネルギー密度が得られるが、内部短絡が生じた場合には急激に発熱することがある。そのためリチウムイオン二次電池用セパレータは、内部短絡が生じた場合に電池反応を停止させる機能(シャットダウン機能)を有する必要がある。電池用セパレータとして従来からポリオレフィン微多孔膜が用いられている。ポリオレフィン微多孔膜は、電池の発熱により細孔が閉塞して電解液のイオン伝導を遮断することにより電池反応をシャットダウンさせる。
しかし過充電時には、LiCoO2等の正極活物質の結晶が破壊して激しく発熱する。過充電時の発熱を抑制する方法として、電池用セパレータで過熱を防止する方法のほか、正負極間に微小な短絡箇所を故意に形成して過充電の進行を回避する方法がある(WO 2005/117167)。微小な短絡箇所は、例えば他方の電極と対向する面に、厚さ数μmの凸部を有する多孔質膜を形成した電極を用い、過充電時にリチウムや遷移金属等を多孔質膜の凸部に集中的に析出させ、セパレータを貫通するようにデンドライトを成長させることにより形成する。この方法を用いる場合、微小な短絡箇所の形成を容易にするために、高い空孔率を有するポリオレフィン微多孔膜を用いるのが望ましい。空孔率の高い微多孔膜は、例えば無機物質からなる孔形成剤により空孔を形成する方法で製造できるが、このような微多孔膜は突刺強度に劣るという問題がある。
そこでWO 2006/106783(特許文献1)は、細孔径が大きく、透過性及び機械的強度に優れたポリオレフィン微多孔膜を、重量平均分子量が5×105以上の超高分子量ポリエチレンと重量平均分子量が1×104以上5×105未満のポリエチレンとのポリエチレン組成物と成膜用溶剤とを溶融混練した後ダイより押出し、冷却することによりゲル状シートを形成し、ゲル状シートに対して少なくとも一軸方向に第一の延伸を施し、ポリエチレン組成物の結晶分散温度以上かつ融点以下の温度範囲内で熱固定処理し、成膜用溶剤を除去し、溶剤除去後の延伸物に対して少なくとも一軸方向に第二の延伸を施すことにより形成することを提案している。しかし特許文献1のポリオレフィン微多孔膜は、重量平均分子量が5×105未満のポリエチレンを多量に含むため、比較的薄い微多孔膜を形成した場合に、空孔率、透過性及び突刺強度について良好なバランスを得るのが困難なことがあった。最近では携帯電話等に用いられる小型リチウムイオン二次電池用に、薄いセパレータ、特に厚さ19μm以下のセパレータが要求されている。従って、高い空孔率及び優れた透過性及び突刺強度を有し、過充電時の発熱防止に適した薄いポリオレフィン微多孔膜が望まれている。
WO 2006/106783
従って本発明の目的は、高い空孔率及び優れた透過性及び機械的強度を有する薄いポリオレフィン微多孔膜、かかる微多孔膜を用いた電池用セパレータ、及びかかるセパレータを用いた電池を提供することである。
上記目的に鑑み鋭意研究の結果、本発明者らは、重量平均分子量が5×105〜9×105の第一のポリエチレンと、重量平均分子量が1×106以上の第二のポリエチレンとの混合物からゲル状シートを形成し、これを延伸し、熱固定処理し、洗浄し、再び延伸し、熱処理すると、適度な孔径範囲において大きな細孔容積を有し、薄くても優れた透過性及び機械的強度を有するポリオレフィン微多孔膜が得られることを発見し、本発明に想到した。
すなわち、本発明のポリオレフィン微多孔膜は、水銀圧入法により求めた孔径分布曲線において、細孔半径0〜1,000 nmの範囲の細孔の容積に対して、細孔半径が100〜1,000 nmの範囲の細孔の容積の割合が25%以上であり、かつ細孔半径が500〜1,000 nmの範囲の細孔の容積の割合が5%以下であることを特徴とする。
前記ポリオレフィン微多孔膜を構成するポリオレフィンは、重量平均分子量が5×105〜9×105の第一のポリエチレンと重量平均分子量が1×106以上の第二のポリエチレンとを含むのが好ましい。前記第一及び第二のポリエチレンの合計を100質量%として、前記第二のポリエチレンの含有量は10〜25質量%であるのが好ましい。前記第一のポリエチレンの末端ビニル基濃度は10,000個の炭素原子当たり0.2個未満であるのが好ましい。ポリオレフィン微多孔膜は、微多孔膜の質量を100質量%として10質量%以下の無機フィラーを含んでもよい。
本発明の好ましい実施形態によるポリオレフィン微多孔膜は19μm以下の平均厚さ及び45%以上の空孔率を有し、上記孔径分布曲線のピークが細孔半径50 nm以上の範囲にある。本発明の好ましい別の実施形態によるポリオレフィン微多孔膜は、7.5%以下の横手方向(TD)の熱収縮率(105℃及び8時間の条件下)、及び10%以下の横手方向(TD)の最大収縮率(溶融直前)を有する。本発明のさらに別の好ましい実施形態によるポリオレフィン微多孔膜は、50%以上の空孔率、100 mN/μm以上の突刺強度、及び18μm以下の平均厚さを有する。
本発明の電池用セパレータは上記ポリオレフィン微多孔膜により形成されていることを特徴とする。
本発明の電池は上記電池用セパレータを含むことを特徴とする。本発明の電池用セパレータは、小型のリチウムイオン二次電池に適している。
本発明のポリオレフィン微多孔膜は薄く、高い空孔率と優れた透過性及び機械的強度を有し、特に優れた突刺強度を有する。本発明のポリオレフィン微多孔膜からなるセパレータを用いた小型のリチウムイオン二次電池は優れた安全性を有する。そのため本発明のポリオレフィン微多孔膜は、特に携帯電話用小型リチウムイオン二次電池のセパレータに適している。
典型的な孔径分布曲線の一例を示すグラフである。 溶融直前の最大収縮率を求めるための温度−寸法変化率曲線を概略的に示すグラフである。 実施例1及び比較例1、2及び6の孔径分布曲線を示すグラフである。
[1] ポリオレフィン微多孔膜
(A) 組成
ポリオレフィン微多孔膜を構成するポリオレフィンは、重量平均分子量(Mw)が5×105〜9×105の第一のポリエチレンと、Mwが1×106以上の第二のポリエチレンとの組成物であるのが好ましい。第二のポリエチレンの含有量は、ポリエチレン組成物全体を100質量%として、10〜25質量%が好ましく、15〜25質量%がより好ましい。この含有量が10
質量%未満又は25質量%超だと空孔率と機械的強度とのバランスが悪い。
(1) 第一のポリエチレン
第一のポリエチレンは、高密度ポリエチレン、中密度ポリエチレン、分岐状低密度ポリエチレン及び鎖状低密度ポリエチレンが好ましく、高密度ポリエチレンがより好ましい。第一のポリエチレンは、エチレンの単独重合体のみならず、エチレン以外のα-オレフィンを少量含有するエチレン・α-オレフィン共重合体でもよい。エチレン以外のα-オレフィンとしては、プロピレン、ブテン-1、ペンテン-1、ヘキセン-1、4-メチルペンテン-1及びオクテン-1が好ましい。その他に、酢酸ビニル、メタクリル酸メチル及びスチレンを含有しても良い。エチレンとエチレン以外のα-オレフィンとを共重合することにより、第一のポリエチレンの融点を132℃以上とすることができる。融点は、JIS K7121に基づき示差走査熱量測定(DSC)により求める。エチレン以外のα-オレフィンの含有量は5モル%以下が好ましい。
第一のポリエチレンのMwは5×105〜8×105が好ましく、5.5×105〜7×105がより好ましい。第一のポリエチレンの分子量分布[重量平均分子量/数平均分子量(Mw/Mn)]は50以下が好ましく、2〜50がより好ましく、3〜15がさらに好ましく、4〜10が最も好ましい。
高い透過性及び機械的強度を有するポリオレフィン微多孔膜を得るために、第一のポリエチレンの末端ビニル基濃度は、10,000個の炭素原子当たり0.2個未満であるのが好ましい。このようなポリエチレンの市販品として、例えばサンファイン(登録商標、旭化成株式会社製)のグレード「SH-800」、「SH-810」等が挙げられる。これらの市販品の末端ビニル基濃度は10,000個の炭素原子当たり0.05〜0.14個である。このようなポリエチレンは、例えばチーグラーナッタ触媒又はシングルサイト重合触媒により製造することができる。なお末端ビニル基濃度はWO 1997/23554に記載の方法により測定することができる。
末端ビニル基濃度が0.2個未満になる限り、末端ビニル基濃度が0.2個未満のポリエチレンに末端ビニル基濃度が0.2個以上のポリエチレンを混合しても良い。末端ビニル基濃度が0.2個以上のポリエチレンにより、ポリオレフィン微多孔膜のシャットダウン特性が向上する。末端ビニル基濃度が0.2個以上のポリエチレンの市販品として、例えばルポレン(Lupolen、登録商標、Basell社製)等が挙げられる。これらの市販品の末端ビニル基濃度は10,000個の炭素原子当たり0.6〜10.0個である。このようなポリエチレンはクロム含有触媒により製造することができる。
シャットダウン温度を例えば130℃以下に低下させる目的で、融点が130℃以下のポリエチレンを第一のポリエチレンに添加しても良い。
(2) 第二のポリエチレン
第二のポリエチレンは超高分子量ポリエチレンが好ましい。超高分子量ポリエチレンは、エチレンの単独重合体のみならず、エチレン以外のα-オレフィンを少量含有するエチレン・α-オレフィン共重合体でもよい。エチレン以外のα-オレフィンとしては、プロピレン、ブテン-1、ペンテン-1、ヘキセン-1、4-メチルペンテン-1及びオクテン-1が挙げられる。その他に、酢酸ビニル、メタクリル酸メチル及びスチレンも使用可能である。エチレン以外のα-オレフィンの含有量は5モル%以下が好ましい。第二のポリエチレンのMwは1×106〜5×106が好ましく、1×106〜3×106がより好ましい。第二のポリエチレンのMw/Mnは1.2〜50が好ましく、3〜20がより好ましく、4〜15がさらに好ましく、4〜10が最も好ましい。
第二のポリエチレンは、限定的ではないが例えばチーグラーナッタ触媒又はシングルサイト重合触媒により製造することができる。第二のポリエチレンの融点は134℃以上が好ましい。超高分子量ポリエチレンの市販品として、例えばハイゼックスミリオン(登録商標、三井化学株式会社製)のグレード「240M」が挙げられる。
(3) その他の成分
上記ポリエチレン組成物は、無機フィラー、耐熱ポリマー等のその他の成分を含有してもよい。無機フィラーは、珪素及び/又はアルミニウム原子を含むのが好ましい。耐熱ポリマーとして、WO 2007/132942及びWO 2008/016174に記載されたものが好ましい。無機フィラー及び耐熱ポリマーの各々の含有量は、微多孔膜の質量を100質量%として10質量%以下が好ましい。
(B) 製造方法
ポリオレフィン微多孔膜を製造する方法は、(1) 上記ポリオレフィン及び成膜用溶剤を溶融混練してポリオレフィン溶液を調製し、(2) ポリオレフィン溶液をダイより押し出し、(3) 得られた押出し成形体を冷却してゲル状シートを形成し、(4) ゲル状シートを延伸し、(5) 熱固定処理し、(6) ゲル状シートから成膜用溶剤を除去し、(7) 得られた微多孔膜を乾燥し、(8) 微多孔膜を延伸(再延伸)し、(9) 熱処理する工程を有する。工程(9)の後に、必要に応じて、(10) 電離放射による架橋処理工程、(11) 親水化処理工程等を施しても良い。
(1) ポリオレフィン溶液の調製
上記ポリオレフィンと成膜用溶剤を溶融混練することにより調製するポリオレフィン溶液に、必要に応じて酸化防止剤、微粉珪酸(孔形成剤)等の各種添加剤を本発明の効果を損なわない範囲で添加しても良い。
比較的高倍率の延伸を可能とするために、成膜用溶剤は室温で液体であるのが好ましい。液体溶剤としては、ノナン、デカン、デカリン、パラキシレン、ウンデカン、ドデカン、流動パラフィン等の脂肪族、環式脂肪族又は芳香族の炭化水素、及び沸点がこれらに対応する鉱油留分、並びにジブチルフタレート、ジオクチルフタレート等の室温では液状のフタル酸エステルが挙げられる。液体溶剤の含有量が安定なゲル状シートを得るために、流動パラフィンのような不揮発性の液体溶剤を用いるのが好ましい。また溶融混練状態ではポリオレフィンと混和するが室温では固体の溶剤を液体溶剤に混合してもよい。このような固体溶剤として、ステアリルアルコール、セリルアルコール、パラフィンワックス等が挙げられる。ただし固体溶剤のみを使用すると、延伸むら等が発生する恐れがある。
液体溶剤の粘度は40℃において20〜200 cStであるのが好ましい。40℃における粘度を20 cSt以上とすれば、ダイからポリオレフィン溶液を押し出したシートが不均一となることがない。一方、200 cSt以下とすれば液体溶剤の除去が容易である。
ポリオレフィン溶液の均一な溶融混練は、特に限定されないが高濃度のポリオレフィン溶液を調製するために二軸押出機中で行うのが好ましい。成膜用溶剤は混練開始前に添加しても、混練中に二軸押出機の途中から添加してもよいが、後者が好ましい。
溶融混練温度は、(ポリエチレン組成物の融点Tm+10℃)〜(Tm+120℃)とするのが好ましい。具体的には、ポリエチレン組成物は約130〜140℃の融点を有するので、溶融混練温度は140〜250℃が好ましく、180〜230℃がより好ましく、210〜230℃が最も好ましい。
二軸押出機のスクリューの長さ(L)と直径(D)の比(L/D)は20〜100の範囲が好ましく、35〜70の範囲がより好ましい。L/Dを20以上にすると、溶融混練が十分となる。L/Dを100以下にすると、ポリオレフィン溶液の滞留時間が増大し過ぎない。二軸押出機のシリンダ内径は40〜100 mmであるのが好ましい。
ポリオレフィン溶液を100質量%として、ポリオレフィンの含有量は20〜30質量%が好ましく、20〜28質量%であるのがより好ましい。ポリオレフィンが20質量%未満又は30質量%超だと、ゲル状シートの成形性が低い。
(2) 押出
押出機内で溶融混練したポリオレフィン溶液をシート用ダイから押し出す。シート用ダイのギャップは0.1〜5mmが好ましく、押し出し時に140〜250℃に加熱するのが好ましい。加熱溶液の押し出し速度は0.2〜15 m/分であるのが好ましい。
押し出し成形体中にポリオレフィンを良好に分散させて膜厚均一性を確保するために、二軸押出機のスクリュー回転速度Ns(rpm)に対するポリオレフィン溶液の押出量Q(kg/h)の比Q/Nsを0.4 kg/h/rpm以下にするのが好ましく、0.35 kg/h/rpm以下にするのがより好ましい。Q/Nsの下限は特に制限されないが、0.01 kg/h/rpmが好ましい。Q/Nsはスクリューの形状(例えば直径、スクリュー溝の深さ等)等にも依存する。なおスクリュー回転数Nsは50 rpm以上が好ましい。スクリュー回転数Nsの上限は特に制限されないが、500 rpmが好ましい。
(3) ゲル状シートの形成
ダイから押し出した成形体を冷却することによりゲル状シートが得られる。冷却は、少なくともゲル化温度までは30℃/分以上、好ましくは50℃/分以上の速度で行うのが好ましい。また10〜45℃まで冷却するのが好ましい。冷却により、成膜用溶剤によって分離されたポリオレフィンのミクロ相は固定化することができる。一般に冷却速度が遅いと、比較的大きなポリオレフィンの結晶が形成されるので、ゲル状シートの高次構造が粗くなるが、冷却速度が速いと、比較的小さなポリオレフィンの結晶が形成されるので、ゲル状シートの高次構造が密になる。冷却速度が30℃/分未満では結晶化度が上昇し、延伸に適したゲル状シートとなりにくい。冷却方法としては、冷風、冷却水等の冷却媒体に直接接触させる方法、冷媒で冷却したロールに接触させる方法等が挙げられる。ゲル状シートの厚さは0.5〜5mmが好ましく、0.7〜3mmがより好ましい。
(4) ゲル状シートの延伸
ゲル状シートを少なくとも一軸方向に延伸する。ゲル状シートは成膜用溶剤を含むので、簡単に均一に延伸できる。ゲル状シートは、加熱後、テンター法等より所定の倍率に延伸する。延伸は一軸延伸でも二軸延伸でもよいが、二軸延伸が好ましい。二軸延伸の場合、同時二軸延伸、逐次延伸及び多段延伸(例えば同時二軸延伸及び逐次延伸の組合せ)のいずれでもよいが、同時二軸延伸が好ましい。
延伸倍率は、一軸延伸の場合2倍以上が好ましく、3〜30倍がより好ましく、二軸延伸の場合いずれの方向でも3倍以上が好ましい。面積倍率では9倍以上が好ましく、16倍以上がより好ましく、20倍以上が最も好ましい。面積倍率を9倍以上とすることにより突刺強度は一層向上する。しかし面積倍率を400倍超とするのは延伸装置及び延伸操作の点で困難であるので、面積倍率の上限は事実上400倍である。なお二軸延伸における長手方向(MD)及び横手方向(TD)における延伸倍率は同じでなくてもよい。
延伸温度は、ポリエチレン組成物の融点Tm以下にするのが好ましく、ポリエチレン組成物の結晶分散温度Tcd以上かつ融点Tm未満の範囲にするのがより好ましい。延伸温度が融点Tmを超えるとポリエチレン組成物が溶融し、延伸による分子鎖の配向ができない。また延伸温度が結晶分散温度未満ではポリエチレン組成物の軟化が不十分で、延伸時に破膜しやすく、高倍率の延伸ができない。結晶分散温度Tcdは、ASTM D 4065に従って測定した動的粘弾性の温度特性から求める。具体的には、ポリエチレン組成物は約90〜100℃の結晶分散温度を有するので、延伸温度を90〜130℃にし、好ましくは100〜120℃にし、より好ましくは110〜120℃にし、最も好ましくは115〜120℃にする。
以上のような延伸によりポリエチレンラメラ間に開裂が起こり、ポリエチレン相が微細化し、多数のフィブリルが形成される。フィブリルは三次元的に不規則に連結した網目構造を形成する。延伸により機械的強度が向上するとともに、細孔が拡大するので、電池用セパレータに好適になる。
所望の物性に応じて、膜厚方向に温度分布を設けて延伸してもよく、これにより一層機械的強度に優れたポリオレフィン微多孔膜が得られる。その方法の詳細は特許第3347854号に記載されている。
(5) 熱固定処理工程
延伸したゲル状シートを熱固定処理(テンターに固定した状態で加熱する処理)する。熱固定処理によりゲル状シートの結晶が安定化し、ラメラ層が均一化する。そのため延伸により形成されたフィブリルからなる網状構造が安定化し、後段の成膜用溶剤除去処理により、細孔径が大きく、機械的強度に優れ、熱収縮率が低い微多孔膜を作製できる。熱固定処理は、テンター方式、ロール方式又は圧延方式により行う。熱固定処理温度は(Tcd−20℃)〜Tmの温度範囲内である。
(6) 成膜用溶剤の除去
成膜用溶剤の除去に洗浄溶媒を用いる。ポリオレフィン相と成膜用溶剤相とは分離しているので、成膜用溶剤の除去により多孔質膜が得られる。洗浄溶媒としては、例えばペンタン、ヘキサン、ヘプタン等の飽和炭化水素、塩化メチレン、四塩化炭素等の塩素化炭化水素、ジエチルエーテル、ジオキサン等のエーテル類、メチルエチルケトン等のケトン類、三フッ化エタン,C6F14,C7F16等の鎖状フルオロカーボン、C5H3F7等の環状ハイドロフルオロカーボン、C4F9OCH3,C4F9OC2H5等のハイドロフルオロエーテル、C4F9OCF3,C4F9OC2F5等のパーフルオロエーテル等の易揮発性溶媒が挙げられる。これらの洗浄溶媒は低い表面張力(例えば25℃で24 mN/m以下)を有する。低い表面張力の洗浄溶媒を用いることにより、微多孔を形成する網状構造が洗浄後の乾燥時に気−液界面の表面張力により収縮するのが抑制され、もって高い空孔率及び透過性を有する微多孔膜が得られる。
成膜用溶剤の除去は、延伸膜を洗浄溶媒に浸漬する方法、延伸膜に洗浄溶媒をシャワーする方法、又はこれらの組合せにより行うことができる。洗浄溶媒の使用量は洗浄方法により異なるが、一般に延伸膜100質量部に対して300〜30,000質量部であるのが好ましい。洗浄温度は15〜30℃でよく、必要に応じて80℃以下に加熱する。残留量が当初の1質量%未満になるまで、成膜用溶剤を除去するのが好ましい。
(7) 乾燥
成膜用溶剤を除去することにより得られたポリオレフィン微多孔膜を、加熱乾燥法、風乾法等により乾燥する。乾燥温度は、ポリエチレン組成物の結晶分散温度Tcd以下であるのが好ましく、特にTcd−5℃以下であるのが好ましい。乾燥は、微多孔膜の乾燥重量を100質量%として、残存洗浄溶媒が5質量%以下になるまで行うのが好ましく、3質量%以下になるまで行うのがより好ましい。乾燥が不十分であると、後の熱処理で微多孔膜の空孔率が低下し、透過性が悪化する。
(8) 微多孔膜の延伸
乾燥した微多孔膜を少なくとも一軸方向に延伸(再延伸)する。再延伸は、微多孔膜を加熱しながら上記と同様にテンター法等により行うことができる。テンター装置としては、例えばWO 2009/084722に記載された装置を用いることができる。再延伸は一軸延伸でも二軸延伸でもよいが、一軸延伸の場合は横手方向(TD)に行うのが好ましい。二軸延伸の場合、同時二軸延伸及び逐次延伸のいずれでもよいが、同時二軸延伸が好ましい。なお再延伸は通常延伸ゲル状シートから得られた長尺シート状の微多孔膜に対して行うので、再延伸における長手方向(MD)及び横手方向(TD)はゲル状シートの延伸におけるMD方向及びTD方向と一致する。
再延伸の温度は、ポリエチレン組成物の融点Tm以下にするのが好ましく、(Tcd−20℃)〜Tmの範囲内にするのがより好ましい。具体的には70〜135℃が好ましく、110〜132℃がより好ましく、120〜130℃が最も好ましい。
一軸延伸の場合、再延伸の倍率は1.01〜1.6倍が好ましく、特にTD方向は1.1〜1.6倍が好ましく、1.2〜1.5倍がより好ましい。二軸延伸の場合、MD方向及びTD方向に各々1.01〜1.6倍とするのが好ましい。なお、MD方向とTD方向で異なってもよいが、TD方向の方がMD方向より小さいのが好ましい。
再延伸の速度はMD方向及びTD方向ともに3%/秒以上が好ましく、5%/秒以上がより好ましい。上限は50%/秒が好ましく、25%/秒がより好ましい。再延伸速度はMD方向及びTD方向で互いに独立して設定しても良い。
(9) 熱処理
乾燥後の微多孔膜を熱処理する。熱処理によって結晶が安定化し、ラメラ層が均一化される。熱処理時間は1,000秒以下が好ましく、1〜800秒がより好ましい。熱処理は、熱固定処理及び/又は熱緩和処理である。熱固定処理とはMD方向及びTD方向の両方ともに寸法変化が無いように行う熱処理であり、熱緩和処理とは熱収縮させる処理である。熱固定処理はテンターに固定した状態で加熱することにより行うことができる。熱固定処理温度はTcd〜Tmの範囲内が好ましく、微多孔膜の延伸(再延伸)温度±5℃の範囲内がより好ましく、再延伸温度±3℃の範囲内が特に好ましい。熱緩和処理は、例えばベルトコンベア又はエアフローティング方式により加熱炉内を移動させたり、テンターに保持した状態で加熱しながらTD方向に狭めたりすることにより行うことができる。熱緩和処理は融点Tm以下の温度、好ましくは60℃〜(融点Tm−5℃)の温度範囲内で行う。熱緩和処理によるTD方向における収縮は、再延伸前のTD方向の長さL1に対して熱緩和処理後のTD方向の長さL2が91%以上であるように留めるのが好ましく、95%以上となるように留めるのがより好ましい。以上のような熱緩和処理により、透過性の良好な高強度の微多孔膜が得られる。
(10) 微多孔膜の架橋処理
微多孔膜に対して、α線、β線、γ線、電子線等の電離放射線の照射により架橋処理を施してもよい。電子線の照射の場合、0.1〜100 Mradの電子線量が好ましく、100〜300 kVの加速電圧が好ましい。架橋処理によりポリオレフィン微多孔膜のメルトダウン温度が上昇する。
(11) 親水化処理
用途に応じて、微多孔膜に親水化処理を施してもよい。親水化処理は、モノマーグラフト、界面活性剤処理、コロナ放電等により行うことができる。モノマーグラフトは架橋処理後に行うのが好ましい。
界面活性剤処理の場合、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤及び両イオン系界面活性剤のいずれも使用できるが、ノニオン系界面活性剤が好ましい。界面活性剤を水又はメタノール、エタノール、イソプロピルアルコール等の低級アルコールに溶解してなる溶液中に微多孔膜を浸漬するか、微多孔膜にドクターブレード法により溶液を塗布する。
(C) 物性
(1) 19μm以下の平均膜厚
平均膜厚が19μm超では、携帯電話用小型リチウムイオン二次電池のセパレータに適さない。平均膜厚は12〜18μmが好ましく、14〜17μmがより好ましい。微多孔膜の平均膜厚は、主としてゲル状シートの厚さ及び延伸倍率を適宜調整することにより制御することができる。
(2) 細孔容積分布
水銀圧入法により求めたポリオレフィン微多孔膜の孔径分布曲線[細孔半径rとLog微分細孔容積(dVp/dLog(r))をプロットした曲線]では、図1に示すように、細孔半径10〜1,000 nmの範囲の細孔容積(細孔半径10〜1,000 nmの範囲のハッチング部分の面積S1により表される)に対して、細孔半径が100〜1,000 nmの範囲の細孔の容積(細孔半径100〜1,000 nmの範囲のハッチング部分の面積S2により表される)の割合(S2/S1×100)が25%以上であり、かつ細孔半径500〜1,000 nmの範囲の細孔容積(細孔半径500〜1,000 nmの範囲のハッチング部分の面積S3により表される)の割合(S3/S1×100)が5%以下である。(S2/S1×100)は30%以上が好ましく、35%以上がより好ましい。(S3/S1×100)は4.5%以下が好ましい。
孔径分布曲線のピーク(ピークが複数ある場合は最も高いピーク)は、細孔半径50 nm以上の範囲にあるのが好ましく、細孔半径70〜500 nmの範囲にあるのがより好ましく、細孔半径70〜300 nmの範囲にあるのが最も好ましい。
本発明の微多孔膜は、以上のような細孔容積分布を有するので、前述した過充電時の発熱防止メカニズム(正負極間に微小な短絡箇所を故意に形成して過充電の進行を回避させるメカニズム)に適した高い空孔率を有し、かつ透過性及び機械的強度に優れている。
(3) 25〜80%の空孔率
空孔率が25%未満では、ポリオレフィン微多孔膜は良好な透気度を有さない。一方80%を超えると、ポリオレフィン微多孔膜を電池用セパレータとして用いたとき、機械的強度が不十分となり、電極が短絡する危険が大きくなる。空孔率は45%以上が好ましく、50〜55%がより好ましい。
(4) 10秒/100 cm3/μm以下の透気度
JIS P8117に準拠して測定した透気度(空気透過度)が10秒/100 cm3/μm以下であると、前述した過充電時の発熱防止メカニズム(正負極間に微小な短絡箇所を故意に形成して過充電の進行を回避させるメカニズム)に適した高い空孔率を有する。透気度は1秒/100 cm3/μm〜10秒/100 cm3/μmが好ましく、2秒/100 cm3/μm〜9秒/100 cm3/μmがより好ましい。ここで透気度は、平均膜厚TAVの微多孔膜に対してJIS P8117に準拠して測定した透気度P1を、P2=P1/TAVの式により膜厚を1μmとしたときの透気度P2に換算した値である。
(5) 1.0×102 mN/μm以上の突刺強度
微多孔膜の突刺強度は、先端が球面(曲率半径R:0.5 mm)の直径1mmの針を2mm/秒の速度で微多孔膜に突刺したときの最大荷重により表される。突刺強度が1.0×102 mN/μm未満では、ポリオレフィン微多孔膜を電池用セパレータとして電池に組み込んだ場合に短絡が発生する恐れがある。突刺強度は1.3×102mN/μm以上が好ましく、1.5×102 mN/μm以上がより好ましい。ここで突刺強度は、平均膜厚TAVの微多孔膜に対して測定した突刺強度S(mN)をS'=S/TAVの式により、膜厚を1μmとしたときの突刺強度S'(mN/μm)に換算した値である。
(6) 5×104 kPa以上の引張破断強度
ASTM D882により測定した引張破断強度がMD方向及びTD方向のいずれにおいても5×104 kPa以上であると、電池用セパレータとして用いたときに破膜の心配がない。特にMD方向の引張破断強度は6×104〜2.5×105 kPaがより好ましく、TD方向の引張破断強度は5×104〜1.5×105 kPaがより好ましく、5×104〜1.0×105 kPaが最も好ましい。
(7) 100%以上の引張破断伸度
ASTM D882により測定した引張破断伸度がMD方向及びTD方向のいずれにおいても100%以上であると、電池用セパレータとして用いたときに破膜の心配がない。引張破断伸度は110〜300%が好ましい。特にMD方向の引張破断伸度は125〜250%がより好ましく、TD方向の引張破断伸度は140〜300%がより好ましい。
(8) 10%以下の熱収縮率
105℃に8時間保持したときの熱収縮率はMD方向及びTD方向ともに10%以下である。TD方向の熱収縮率は、8%以下が好ましく、7.5%以下がより好ましく、6%以下が最も好ましい。
(9) 25%以下の溶融直前の最大収縮率
図2から明らかなように、荷重下で微多孔膜を昇温させると、微多孔膜は収縮し続け、温度Tで寸法変化率(収縮率)が最大となる。温度Tを超えると、微多孔膜は急激に伸びる。これは微多孔膜の溶融によると推測される。温度Tにおける(溶融直前の)最大収縮率は耐溶融収縮性の指標となる。MD方向の最大収縮率は、好ましくは10%以下である。TD方向の最大収縮率は、好ましくは15%以下であり、より好ましくは12%以下である。
[2] 電池用セパレータ
本発明のポリオレフィン微多孔膜は薄く、かつ透過性、機械的強度及び耐熱収縮性に優れているので、電池用セパレータ、特に携帯電話用小型リチウムイオン二次電池のセパレータに好適である。
[3] 電池
本発明のポリオレフィン微多孔膜は、リチウムイオン二次電池、リチウムポリマー二次電池、ニッケル−水素二次電池、ニッケル−カドミウム二次電池、ニッケル−亜鉛二次電池、銀−亜鉛二次電池等の二次電池用のセパレータに好ましく、特にリチウムイオン二次電池用セパレータに好ましい。以下リチウムイオン二次電池を説明する。
リチウムイオン二次電池では、正極と負極が電解液(電解質)を含有するセパレータを介して積層されている。電極の構造は特に限定されず、例えば円盤状の正極及び負極が対向するように配設された電極構造(コイン型)、平板状の正極及び負極が交互に積層された電極構造(積層型)、帯状の正極及び負極が重ねられて巻回された電極構造(捲回型)等にすることができる。
正極は通常、(a) 集電体と、(b) その表面に形成され、リチウムイオンを吸蔵放出可能な正極活物質を含む層とを有する。正極活物質としては、遷移金属酸化物、リチウムと遷移金属との複合酸化物(リチウム複合酸化物)、遷移金属硫化物等の無機化合物等が挙げられ、遷移金属としては、V、Mn、Fe、Co、Ni等が挙げられる。リチウム複合酸化物の好ましい例としては、ニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウム、α-NaFeO2型構造を母体とする層状リチウム複合酸化物等が挙げられる。負極は、(a) 集電体と、(b) その表面に形成され、負極活物質を含む層とを有する。負極活物質としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラック等の炭素質材料が挙げられる。
電解液はリチウム塩を有機溶媒に溶解することにより得られる。リチウム塩としては、LiClO4、LiPF6、LiAsF6、LiSbF6、LiBF4、LiCF3SO3、LiN(CF3SO2)2、LiC(CF3SO2)3、Li2B10Cl10、LiN(C2F5SO2)2、LiPF4(CF3)2、LiPF3(C2F5)3、低級脂肪族カルボン酸リチウム塩、LiAlCl4等が挙げられる。これらは単独で用いてもよいし、2種以上の混合物として用いてもよい。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、エチルメチルカーボネート、γ-ブチロラクトン等の高沸点及び高誘電率の有機溶媒や、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタン、ジオキソラン、ジメチルカーボネート、ジエチルカーボネート等の低沸点及び低粘度の有機溶媒が挙げられる。これらは単独で用いてもよいし、2種以上の混合物として用いてもよい。高誘電率の有機溶媒は粘度が高く、低粘度の有機溶媒は誘電率が低いため、両者の混合物を用いるのが好ましい。
電池に組み込むセパレータに、イオン透過性を付与する電解液を浸漬法等により含浸させる。円筒型電池を組み立てる場合、例えば正極シート/微多孔膜セパレータ/負極シート/微多孔膜セパレータの順に積層巻回し、電池缶に挿入し、電解液を含浸させ、次いで安全弁を備えた正極端子を兼ねる電池蓋をガスケットを介してかしめる。
本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。
実施例1
重量平均分子量(Mw)が5.6×105で、分子量分布(Mw/Mn)が4.1で、末端ビニル基濃度が10,000個の炭素原子当たり0.1個の高密度ポリエチレン(HDPE)82質量%と、Mwが2.0×106で、Mw/Mnが5の超高分子量ポリエチレン(UHMWPE)18質量%とからなるポリエチレン組成物を調製した。ポリエチレン組成物の融点Tmは135℃であり、結晶分散温度Tcdは100℃であった。
UHMWPE及びHDPEのMw及びMw/Mnは、Macromolecules, Vol.34, No.19, pp.6812-6820(2001)に記載の方法に従い、以下の条件でゲルパーミエーションクロマトグラフィー(GPC)法により求めた(以下同じ)。
・測定装置:Polymer Laboratories製PL-GPC220
・カラム:Polymer Laboratories製Three PLgel Mixed-B Columns
・カラム温度:145℃
・溶媒(移動相):1,2,4-トリクロロベンゼン(アルドリッチ社製、約1,000 ppmのブチル化ヒドロキシトルエンを含む)
・溶媒流速:0.5 ml/分
・試料濃度:0.25〜0.75 mg/mL(溶解条件:160℃/2h)
・インジェクション量:300μL
・検出器:ディファレンシャルリフラクトメーター
・検量線:単分散ポリスチレン標準試料を用いて得られた検量線から、所定の換算定数を用いて作成した。
ポリエチレン組成物25質量部を二軸押出機に投入し、二軸押出機のサイドフィーダーから流動パラフィン[50 cst(40℃)]75質量部を供給し、210℃及び350 rpmの条件で溶融混練して、ポリエチレン溶液を調製した。このポリエチレン溶液を二軸押出機に設けたTダイから押し出し、40℃に温調した冷却ロールで引き取りながら冷却し、厚さ1.2 mmのゲル状シートを形成した。得られたゲル状シートを、テンター延伸機により118.0℃でMD方向及びTD方向ともに5倍に同時二軸延伸し、95℃で熱固定処理した。
次いで延伸ゲル状シートを塩化メチレン浴中に浸漬し、流動パラフィンを除去した。洗浄した膜を風乾し、テンター延伸装置により126.8℃でTD方向に1.4倍に再延伸した後、テンター延伸装置に固定したまま、MD方向及びTD方向の両方ともに寸法変化が無いように126.8℃の温度で熱固定処理を行い(再延伸及びその後の熱固定処理の合計時間:26秒)、微多孔膜を得た。
比較例1
ポリエチレン組成物の組成をHDPE70質量%及びUHMWPE30質量%とし、ポリエチレン溶液のポリエチレン組成物の濃度を23質量%とし、延伸温度を115.0℃とし、再延伸倍率を1.3倍とし、再延伸及びその後の熱固定処理の温度を122.2℃とし、再延伸とその後の熱固定処理の間に、L2/L1(L1は再延伸前の微多孔膜のTD方向の長さを表し、L2は熱緩和処理後の微多孔膜のTD方向の長さを表す。)が1.0となるように122.2℃で熱緩和処理し、再延伸及びその後の熱緩和処理及び熱固定処理の合計時間を26秒とした以外、実施例1と同様にして、平均膜厚16μmのポリエチレン微多孔膜を作製した。
比較例2
延伸温度を118.0℃とし、再延伸倍率を1.4倍とし、再延伸及びその後の熱固定処理の温度を126.9℃とし、熱緩和処理を行わず、再延伸及びその後の熱固定処理の合計時間を26秒とした以外比較例1と同様にして、平均膜厚16μmのポリエチレン微多孔膜を作製した。
比較例3
ポリエチレン組成物の組成を、重量平均分子量が7.5×105で、分子量分布が11.8で、末端ビニル基濃度が10,000個の炭素原子当たり0.7個のHDPE70質量%及びUHMWPE30質量%とし、ポリエチレン溶液のポリエチレン組成物の濃度を23質量%とし、延伸温度を116.5℃とし、再延伸倍率を1.1倍とし、再延伸及びその後の熱固定処理の温度を124.2℃とし、再延伸とその後の熱固定処理の間に、L2/L1が0.95となるように124.2℃で熱緩和処理し、再延伸及びその後の熱緩和処理及び熱固定処理の合計時間を26秒とした以外実施例1と同様にして、平均膜厚16μmのポリエチレン微多孔膜を作製した。
比較例4
ポリエチレン組成物の組成をHDPE60質量%及びUHMWPE40質量%とし、延伸温度を115.0℃とし、再延伸倍率を1.08倍とし、再延伸及びその後の熱固定処理の温度を124.5℃とし、再延伸とその後の熱固定処理の間に、L2/L1が0.96となるように124.5℃で熱緩和処理し、再延伸及びその後の熱緩和処理及び熱固定処理の合計時間を26秒とした以外実施例1と同様にして、平均膜厚16μmのポリエチレン微多孔膜を作製した。
比較例5
ポリエチレン溶液のポリエチレン組成物の濃度を25質量%とし、再延伸を行わずにL2/L1が0.95となるように126.0℃で熱緩和処理してTD方向に収縮させた後126.0℃で熱固定処理し、熱緩和処理及びその後の熱固定処理の合計時間を26秒とした以外比較例1と同様にして、平均膜厚20μmのポリエチレン微多孔膜を作製した。
比較例6
ポリエチレン組成物の組成をHDPE98質量%及びUHMWPE2質量%とし、ポリエチレン溶液のポリエチレン組成物の濃度を39質量%とし、延伸温度を118.7℃とし、再延伸倍率を1.4倍とし、再延伸及びその後の熱固定処理の温度を130.2℃とした以外実施例1と同様にして、平均膜厚19μmのポリエチレン微多孔膜を作製した。
実施例1及び比較例1〜6で得られたポリエチレン微多孔膜の物性を以下の方法で測定した。結果を表1及び図3に示す。
(1) 平均膜厚
微多孔膜の平均膜厚は、試験片の複数箇所で10 cmの横手方向長さにわたって1cmの間隔で接触厚さ計(明産株式会社製RC-1)により膜厚を測定し、得られた膜厚の測定値を平均することにより求めた。
(2) 透気度(sec/100 cm3/μm)
透気度は、平均膜厚TAVの微多孔膜に対してJIS P8117に準拠して測定した透気度P1を、P2=P1/TAVの式により膜厚を1μmとしたときの透気度P2に換算することにより求めた。
(3) 空孔率(%)
空孔率は、微多孔膜の質量w1と、微多孔膜と同じポリエチレン組成物からなる同サイズの空孔のない膜の質量w2から、空孔率(%)=(w2−w1)/w2×100の式により算出した。
(4) 突刺強度(mN/μm)
先端に球面(曲率半径R:0.5 mm)を有する直径1mmの針を、平均膜厚TAVの微多孔膜に2mm/秒の速度で突刺して最大荷重S(貫通する直前の荷重mN)を測定し、膜厚を1μmとしたときの荷重S'をS'=S/TAVの式により求め、突刺強度(mN/μm)とした。
(5) 引張破断強度及び引張破断伸度
幅10 mmの短冊状試験片を用いてASTM D882により測定した。
(6) 熱収縮率(%)
微多孔膜を105℃に8時間保持したときのMD方向及びTD方向の収縮率をそれぞれ3回ずつ測定し、平均することにより求めた。
(7) 溶融直前の最大収縮率
微多孔膜から切り出した50 mm×3mmの短冊状試験片を、熱機械的分析装置(セイコーインスツルメンツ株式会社製、TMA/SS6000)に10 mmのチャック間距離でセットし、試験片の下端に19.6 mNの荷重をかけながら5℃/minの速度で昇温し、寸法変化を測定した。23℃における試験片の寸法を基準にして、それに対する寸法の変化率を算出し、図2に示す温度−寸法変化率曲線を作成した。135〜140℃の温度範囲における寸法変化率(収縮率)の最大値Pを溶融直前の最大収縮率とした。
(8) 細孔容積分布
細孔容積分布は、WO 2009/044227の段落82〜83に記載の方法に従い、以下の条件で水銀圧入法により求めた。
測定装置:Micromeritics Co. ,Ltd.製Pore Sizer 9320
水銀:接触角141.3°、表面張力484 dyne/cm
圧力範囲:3.6 kPa〜207 MPa
セル容積:15 cm3
細孔半径10〜1,000 nmの範囲の細孔容積Sに対する細孔半径100〜1,000 nmの範囲の細孔容積S2及び細孔半径500〜1,000 nmの範囲の細孔容積S3の割合は、それぞれ図1に示すS2/S及びS3/Sから求めた。
Figure 2013166804
表1(続き)
Figure 2013166804
注:(1) Mwは重量平均分子量を表す。
(2) 重量平均分子量/数平均分子量(Mw/Mn)。
(3) 赤外分光法により測定した10,000個の炭素原子あたりの末端ビニル基濃度。
(4) MDは長手方向を表す。
(5) TDは横手方向を表す。
(6) L1は再延伸前の微多孔膜のTD方向の長さを表し、L2は熱緩和処理後の微多孔膜のTD方向の長さを表す。
(7) 図1に示すS2/Sから求めた。
(8) 図1に示すS3/Sから求めた。
(9) 135℃における寸法変化率。135℃に到達した時点で既に伸びており、23℃における基準寸法を超えていた。
表1から明らかなように、実施例1の微多孔膜は、孔径分布曲線において細孔半径が10〜1,000 nmの範囲の細孔の容積に対して、細孔半径が100〜1,000 nmの範囲の細孔の容積の割合が25%以上であり、かつ細孔半径が500〜1,000 nmの範囲の細孔の容積の割合が5%以下であった。そのため、実施例1の微多孔膜は、平均厚さが19μm以下でありながら、50%以上の高い空孔率及び100 mN/μm以上の突刺強度を有し、さらに引張破断強度及び耐熱収縮性に優れていた。
これに対して、比較例1〜5の微多孔膜は、ポリエチレン組成物のUHMWPEの含有量が25質量%超であるので、細孔半径10〜1,000 nmの範囲の細孔容積に対する、細孔半径が500〜1,000 nmの範囲の細孔の容積の割合が5%超であった。そのため、比較例1〜5の微多孔膜は、透気度、空孔率、耐熱収縮性及び溶融直前の最大収縮率の少なくとも1つが実施例1の微多孔膜より劣っていた。比較例6の微多孔膜は、ポリエチレン組成物のUHMWPEの含有量が10質量%未満であるので、細孔半径10〜1,000 nmの範囲の細孔容積に対する、細孔半径が100〜1,000 nmの範囲の細孔の容積の割合が25%未満であった。そのため、比較例6の微多孔膜は、空孔率、引張破断伸度及び溶融直前の最大収縮率がいずれも実施例1の微多孔膜より劣っていた。

Claims (10)

  1. 水銀圧入法により求めた孔径分布曲線において、細孔半径が10〜1,000 nmの範囲の細孔の容積に対して、細孔半径が100〜1,000 nmの範囲の細孔の容積の割合が25%以上であり、かつ細孔半径が500〜1,000 nmの範囲の細孔の容積の割合が5%以下であることを特徴とするポリオレフィン微多孔膜。
  2. 請求項1に記載のポリオレフィン微多孔膜において、重量平均分子量が5×105〜9×105の第一のポリエチレンと重量平均分子量が1×106以上の第二のポリエチレンとを含むことを特徴とするポリオレフィン微多孔膜。
  3. 請求項2に記載のポリオレフィン微多孔膜において、前記第一及び第二のポリエチレンの合計を100質量%として、前記第二のポリエチレンの含有量が10〜25質量%であることを特徴とするポリオレフィン微多孔膜。
  4. 請求項2又は3に記載のポリオレフィン微多孔膜において、前記第一のポリエチレンの末端ビニル基濃度が10,000個の炭素原子当たり0.2個未満であり、微多孔膜の質量を100質量%として10質量%以下の無機フィラーを含むことを特徴とするポリオレフィン微多孔膜。
  5. 請求項1〜4のいずれかに記載のポリオレフィン微多孔膜において、平均厚さが19μm以下で、空孔率が45%以上で、前記孔径分布曲線のピークが細孔半径50 nm以上の範囲にあることを特徴とするポリオレフィン微多孔膜。
  6. 請求項1〜5のいずれかに記載のポリオレフィン微多孔膜において、105℃に8時間保持したときの横手方向(TD)の熱収縮率が7.5%以下で、横手方向(TD)の溶融直前の最大収縮率が10%以下であることを特徴とするポリオレフィン微多孔膜。
  7. 請求項1〜6のいずれかに記載のポリオレフィン微多孔膜において、空孔率が50%以上で、突刺強度が100 mN/μm以上で、平均厚さが18μm以下であることを特徴とするポリオレフィン微多孔膜。
  8. 請求項1〜7のいずれかに記載のポリオレフィン微多孔膜からなることを特徴とする電池用セパレータ。
  9. 請求項8に記載の電池用セパレータを含む電池。
  10. 請求項9に記載の電池において、小型のリチウムイオン二次電池であることを特徴とする電池。
JP2010129255A 2010-06-04 2010-06-04 ポリオレフィン微多孔膜、電池用セパレータ及び電池 Pending JP2013166804A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010129255A JP2013166804A (ja) 2010-06-04 2010-06-04 ポリオレフィン微多孔膜、電池用セパレータ及び電池
CN201180014660.XA CN102869710B (zh) 2010-06-04 2011-05-17 聚烯烃微多孔膜、电池用隔板和电池
PCT/JP2011/061284 WO2011152201A1 (ja) 2010-06-04 2011-05-17 ポリオレフィン微多孔膜、電池用セパレータ及び電池
KR1020127026859A KR101843806B1 (ko) 2010-06-04 2011-05-17 폴리올레핀 미다공막, 전지용 세퍼레이터 및 전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010129255A JP2013166804A (ja) 2010-06-04 2010-06-04 ポリオレフィン微多孔膜、電池用セパレータ及び電池

Publications (1)

Publication Number Publication Date
JP2013166804A true JP2013166804A (ja) 2013-08-29

Family

ID=45066580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010129255A Pending JP2013166804A (ja) 2010-06-04 2010-06-04 ポリオレフィン微多孔膜、電池用セパレータ及び電池

Country Status (4)

Country Link
JP (1) JP2013166804A (ja)
KR (1) KR101843806B1 (ja)
CN (1) CN102869710B (ja)
WO (1) WO2011152201A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523570A (ja) * 2014-06-30 2017-08-17 三星エスディアイ株式会社Samsung SDI Co., Ltd. 多孔性ポリオレフィン系分離膜およびその製造方法
WO2018164054A1 (ja) * 2017-03-08 2018-09-13 東レ株式会社 ポリオレフィン微多孔膜
CN108819279A (zh) * 2018-06-04 2018-11-16 四川大学 一种高孔隙率聚丙烯微孔膜及其制备方法
WO2020145152A1 (ja) * 2019-01-09 2020-07-16 花王株式会社 繊維シート及びその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE035392T2 (en) * 2012-03-30 2018-05-02 Toray Industries Polyethylene microporous membrane and process
CN105246692B (zh) * 2013-05-31 2017-12-08 东丽株式会社 聚烯烃多层微多孔膜及其制造方法
HUE049125T2 (hu) 2014-05-28 2020-09-28 Toray Industries Poliolefin mikropórusos membrán és eljárás elõállítására
KR101749883B1 (ko) 2014-12-17 2017-06-21 스미또모 가가꾸 가부시끼가이샤 무기 산화물 분말, 및 이것을 함유하는 슬러리, 그리고 비수 전해액 이차 전지 및 그 제조 방법
US10658639B2 (en) 2015-06-05 2020-05-19 Toray Industries, Inc. Method of preparing microporous membrane, microporous membrane, battery separator, and secondary battery
JP6878841B2 (ja) * 2016-03-11 2021-06-02 東ソー株式会社 超高分子量ポリエチレン組成物製セパレータ
JP2023551224A (ja) * 2021-05-07 2023-12-07 エルジー エナジー ソリューション リミテッド 分離膜用多孔性基材及びそれを含む電気化学素子用分離膜

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677663B2 (ja) * 2000-10-26 2011-04-27 東レ東燃機能膜合同会社 ポリオレフィン微多孔膜
JP4746772B2 (ja) * 2001-06-19 2011-08-10 東レ東燃機能膜合同会社 ポリオレフィン微多孔膜の製造方法
JP5202866B2 (ja) 2007-04-09 2013-06-05 東レバッテリーセパレータフィルム株式会社 ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
JP2008297349A (ja) * 2007-05-29 2008-12-11 Nitto Denko Corp 多孔質フィルムの製造方法
US8414663B2 (en) * 2007-08-31 2013-04-09 Toray Battery Separator Film Co., Ltd. Microporous polyolefin membrane comprising a polyethlene resin having a specific viscoelastic angular frequency, its production method, battery separator and battery comprising the same
US20090226814A1 (en) * 2008-03-07 2009-09-10 Kotaro Takita Microporous membrane, battery separator and battery
JP5572334B2 (ja) * 2008-05-30 2014-08-13 旭化成イーマテリアルズ株式会社 ポリオレフィン製微多孔膜

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523570A (ja) * 2014-06-30 2017-08-17 三星エスディアイ株式会社Samsung SDI Co., Ltd. 多孔性ポリオレフィン系分離膜およびその製造方法
WO2018164054A1 (ja) * 2017-03-08 2018-09-13 東レ株式会社 ポリオレフィン微多孔膜
KR20190124200A (ko) * 2017-03-08 2019-11-04 도레이 카부시키가이샤 폴리올레핀 미다공막
JPWO2018164054A1 (ja) * 2017-03-08 2020-01-09 東レ株式会社 ポリオレフィン微多孔膜
JP7088162B2 (ja) 2017-03-08 2022-06-21 東レ株式会社 ポリオレフィン微多孔膜
KR102518673B1 (ko) 2017-03-08 2023-04-06 도레이 카부시키가이샤 폴리올레핀 미다공막
CN108819279A (zh) * 2018-06-04 2018-11-16 四川大学 一种高孔隙率聚丙烯微孔膜及其制备方法
WO2020145152A1 (ja) * 2019-01-09 2020-07-16 花王株式会社 繊維シート及びその製造方法
JPWO2020145152A1 (ja) * 2019-01-09 2021-09-27 花王株式会社 繊維シート及びその製造方法

Also Published As

Publication number Publication date
WO2011152201A1 (ja) 2011-12-08
CN102869710B (zh) 2014-03-05
KR101843806B1 (ko) 2018-03-30
CN102869710A (zh) 2013-01-09
KR20130087367A (ko) 2013-08-06

Similar Documents

Publication Publication Date Title
JP5422562B2 (ja) ポリマー微多孔膜
JP5497635B2 (ja) ポリオレフィン微多孔膜、その製造方法、電池用セパレータ及び電池
JP5453272B2 (ja) 微多孔膜およびそのような膜を製造し使用する方法
JP5202826B2 (ja) ポリエチレン微多孔膜及びその製造方法並びに電池用セパレータ
JP5576609B2 (ja) ポリオレフィン微多孔膜、その製造方法、電池用セパレータ及び電池
WO2011152201A1 (ja) ポリオレフィン微多孔膜、電池用セパレータ及び電池
JP5596768B2 (ja) ポリエチレン微多孔膜及び電池用セパレータ
TWI418582B (zh) 微多孔聚烯烴膜、其製法、電池隔離材及電池
TWI402172B (zh) 微多孔聚烯烴薄膜、其製法、電池隔離材及電池
JP5548290B2 (ja) 多層微多孔膜、電池用セパレータ及び電池
JP5250262B2 (ja) ポリオレフィン微多孔膜及びその製造方法、並びに電池用セパレータ及び電池
JP5250263B2 (ja) ポリオレフィン微多孔膜及びその製造方法、並びに電池用セパレータ及び電池
JPWO2007052663A1 (ja) ポリオレフィン微多孔膜並びにそれを用いた電池用セパレータ及び電池
JP2013035293A (ja) 多層微多孔膜及びその製造方法、並びに電池用セパレータ及び電池
JP2008055901A (ja) ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
KR20100082778A (ko) 미세다공성 막 및 이의 제조 및 사용 방법
JP5202866B2 (ja) ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
WO2007032450A1 (ja) ポリエチレン微多孔膜及びその製造方法、並びに電池用セパレータ
KR20170041195A (ko) 폴리올레핀제 미세 다공막 및 이의 제조 방법, 비수 전해액계 이차전지용 세퍼레이터, 및 비수 전해액계 이차전지
JP2021105166A (ja) ポリオレフィン微多孔膜、及び二次電池
JP2021021068A (ja) ポリオレフィン微多孔膜、及び非水電解液二次電池
JP2021021067A (ja) ポリオレフィン微多孔膜、及び非水電解液二次電池