JP2013100569A - 電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材及び電子機器用部品 - Google Patents
電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材及び電子機器用部品 Download PDFInfo
- Publication number
- JP2013100569A JP2013100569A JP2011243869A JP2011243869A JP2013100569A JP 2013100569 A JP2013100569 A JP 2013100569A JP 2011243869 A JP2011243869 A JP 2011243869A JP 2011243869 A JP2011243869 A JP 2011243869A JP 2013100569 A JP2013100569 A JP 2013100569A
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- less
- copper
- range
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
- H01B1/026—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Abstract
【解決手段】Mgを、3.3原子%以上6.9原子%以下の範囲で含み、残部が実質的にCu及び不可避不純物とされ、導電率σ(%IACS)が、Mgの濃度をX原子%としたときに、
σ≦1.7241/(−0.0347×X2+0.6569×X+1.7)×100
の範囲内とされ、平均結晶粒径が1μm以上100μm以下の範囲内とされている。
また、中間熱処理後であって仕上加工前の銅素材における平均結晶粒径が1μm以上100μm以下の範囲内とされている。
【選択図】なし
Description
これらのCu−Mg系合金では、図1に示すCu−Mg系状態図から分かるように、Mgの含有量が3.3原子%以上の場合、溶体化処理(500℃から900℃)と、析出処理を行うことで、CuとMgからなる金属間化合物を析出させることができる。すなわち、これらのCu−Mg系合金においても、上述のコルソン合金と同様に、析出硬化によって比較的高い導電率と強度を有することが可能となるのである。
さらに、母相中に多くの粗大なCuとMgからなる金属間化合物が分散されていることから、曲げ加工時にこれらの金属間化合物が起点となって割れ等が発生しやすいため、複雑な形状の電子機器用部品を成型することができないといった問題があった。
σ≦1.7241/(−0.0347×X2+0.6569×X+1.7)×100
の範囲内とされ、平均結晶粒径が1μm以上100μm以下の範囲内とされていることを特徴としている。
σ≦1.7241/(−0.0347×X2+0.6569×X+1.7)×100
の範囲内とされており、中間熱処理後であって仕上加工前の銅素材における平均結晶粒径が1μm以上100μm以下の範囲内とされていることを特徴としている。
このようなCu−Mg過飽和固溶体からなる銅合金では、ヤング率が低くなる傾向にあり、例えばオスタブがメスのばね接触部を押し上げて挿入されるコネクタ等に適用しても、挿入時の接圧変動が抑制され、かつ、弾性限界が広いために容易に塑性変形するおそれがない。よって、端子、コネクタ、リレー、リードフレーム等の電子機器用部品に特に適している。
さらに、Mgを過飽和に固溶させていることから、加工硬化によって強度を向上させることが可能となる。
また、結晶粒径が1μm以上とされているので、耐応力緩和特性を確保することができる。さらに、結晶粒径が100μm以下とされているので、曲げ加工性を向上させることができる。
この場合、加工組織が大きく発達しておらず、再結晶組織が存在していることになり、曲げ加工性を確保することができる。
この場合、CuとMgを主成分とする金属間化合物の析出が抑制されており、Mgが母相中に過飽和に固溶したCu−Mg過飽和固溶体とされていることになる。よって、母相中には、割れの起点となる粗大なCuとMgを主成分とする金属間化合物が多く分散されておらず、曲げ加工性が向上することになる。
また、CuとMgを主成分とする金属間化合物の粒径は、金属間化合物の長径(途中で粒界に接しない条件で粒内に最も長く引ける直線の長さ)と短径(長径と直角に交わる方向で、途中で粒界に接しない条件で最も長く引ける直線の長さ)の平均値とする。
ヤング率Eが125GPa以下、かつ、0.2%耐力σ0.2が400MPa以上である場合には、弾性エネルギー係数(σ0.2 2/2E)が高くなり、容易に塑性変形しなくなるため、端子、コネクタ、リレー、リードフレーム等の電子機器用部品に特に適している。
この場合、中間加工工程において、銅素材にひずみを導入し、中間熱処理工程において再結晶組織にすることによって、中間熱処理工程後の銅素材における平均結晶粒径を1μm以上100μm以下の範囲内とすることができる。また、200℃/min以上の冷却速度で冷却を行う構成とされているので、CuとMgを主成分とする金属間化合物の析出を抑制でき、Mgが母相中に過飽和に固溶したCu−Mg過飽和固溶体とされた電子機器用銅合金を製造することができる。
この構成の電子機器用銅合金塑性加工材によれば、弾性エネルギー係数(σ0.2 2/2E)が高く、容易に塑性変形しない。
なお、この明細書において塑性加工材とは、いずれかの製造工程において、塑性加工が施された銅合金をいうものとする。
この構成の電子機器用部品(例えば端子、コネクタ、リレー、リードフレーム)は、ヤング率が低く、かつ、耐力が高いので、弾性エネルギー係数(σ0.2 2/2E)が高く、容易に塑性変形しない。
本実施形態である電子機器用銅合金は、Mgを、3.3原子%以上6.9原子%以下の範囲で含み、残部がCu及び不可避不純物のみからなるCuとMgの2元系合金とされている。
そして、導電率σ(%IACS)が、Mgの含有量をX原子%としたときに、
σ≦1.7241/(−0.0347×X2+0.6569×X+1.7)×100
の範囲内とされている。
また、走査型電子顕微鏡観察において、粒径0.1μm以上のCuとMgを主成分とする金属間化合物の平均個数が、1個/μm2以下とされている。
ここで、平均結晶粒径は、JIS H 0501の切断法にしたがって測定することが好ましい。
また、結晶粒径が10μmを超える場合には、光学顕微鏡を用いて平均結晶粒径を測定することが好ましい。一方、結晶粒径が10μm以下である場合には、SEM−EBSD(Electron Backscatter Diffraction Patterns)測定装置によって、平均結晶粒径を測定することが好ましい。
また、この電子機器用銅合金は、ヤング率Eが125GPa以下とされ、0.2%耐力σ0.2が400MPa以上とされている。
Mgは、導電率を大きく低下させることなく、強度を向上させるとともに再結晶温度を上昇させる作用効果を有する元素である。また、Mgを母相中に固溶させることにより、ヤング率が低く抑えられ、かつ、優れた曲げ加工性が得られる。
ここで、Mgの含有量が3.3原子%未満では、その作用効果を奏功せしめることはできない。一方、Mgの含有量が6.9原子%を超えると、溶体化のために熱処理を行った際に、CuとMgを主成分とする金属間化合物が残存してしまい、その後の塑性加工等で割れが発生してしまうおそれがある。
このような理由から、Mgの含有量を、3.3原子%以上6.9原子%以下に設定している。
CuとMgの2元系合金において、導電率σが、Mgの含有量をX原子%としたとき、
σ≦1.7241/(−0.0347×X2+0.6569×X+1.7)×100
の範囲内である場合には、CuとMgを主成分とする金属間化合物がほとんど存在しないことになる。
すなわち、導電率σが上記式を超える場合には、CuとMgを主成分とする金属間化合物が多量に存在し、サイズも比較的大きいことから、曲げ加工性が大幅に劣化することになる。また、CuとMgを主成分とする金属間化合物が生成し、かつ、Mgの固溶量が少ないことから、ヤング率も上昇してしまうことになる。よって、導電率σが、上記式の範囲内となるように、製造条件を調整することになる。
なお、上述の作用効果を確実に奏功せしめるためには、導電率σ(%IACS)を、
σ≦1.7241/(−0.0300×X2+0.6763×X+1.7)×100
の範囲内とすることが好ましい。この場合、CuとMgを主成分とする金属間化合物がより少量であるために、曲げ加工性がさらに向上することになる。
上述の作用効果をさらに確実に奏功せしめるためには、導電率σ(%IACS)を、
σ≦1.7241/(−0.0292×X2+0.6797×X+1.7)×100
の範囲内とすることがさらに好ましい。この場合、CuとMgを主成分とする金属間化合物がさらに少量であるために、曲げ加工性がさらに向上することになる。
CI値が0.1以下の測定点の割合が80%を超えた場合には、加工時に導入された歪みが大きく、加工組織が大きく発達した状態であり、曲げ加工性が劣化してしまうおそれがある。したがって、CI値が0.1以下の測定点の割合は80%以下とすることが好ましい。より好ましくは75%以下であり、さらに好ましくは70%以下である。
なお、CI値は、EBSD装置の解析ソフトOIM Analysis(Ver.5.3)にて測定される値で、評価した解析点の結晶パターンが良好ではない(すなわち加工組織である)際に、CI値が0.1以下となる。よって、CI値が0.1以下の測定点の割合が80%以下である場合は、比較的歪みの少ない組織が維持されており、曲げ加工性が確保されることになる。
本実施形態である電子機器用銅合金においては、走査型電子顕微鏡で観察した結果、粒径0.1μm以上のCuとMgを主成分とする金属間化合物の平均個数が、1個/μm2以下とされている。すなわち、CuとMgを主成分とする金属間化合物がほとんど析出しておらず、Mgが母相中に固溶しているのである。
ここで、溶体化が不完全であったり、溶体化後にCuとMgを主成分とする金属間化合物が析出することにより、サイズの大きい金属間化合物が多量に存在すると、これらの金属間化合物が割れの起点となり、加工時に割れが発生したり、曲げ加工性が大幅に劣化することになる。また、CuとMgを主成分とする金属間化合物の量が多いと、ヤング率が上昇することになるため、好ましくない。
さらに、上述の作用効果を確実に奏功せしめるためには、粒径0.05μm以上のCuとMgを主成分とする金属間化合物の個数が合金中に1個/μm2以下であることが、より好ましい。
また、CuとMgを主成分とする金属間化合物の粒径は、金属間化合物の長径(途中で粒界に接しない条件で粒内に最も長く引ける直線の長さ)と短径(長径と直角に交わる方向で、途中で粒界に接しない条件で最も長く引ける直線の長さ)の平均値とする。
なお、下記の製造方法において、加工工程として圧延を用いる場合、加工率は圧延率に相当する。
(溶解・鋳造工程S01)
まず、銅原料を溶解して得られた銅溶湯に、前述の元素を添加して成分調整を行い、銅合金溶湯を製出する。なお、Mgの添加には、Mg単体やCu−Mg母合金等を用いることができる。また、Mgを含む原料を銅原料とともに溶解してもよい。また、本合金のリサイクル材及びスクラップ材を用いてもよい。
ここで、銅溶湯は、純度が99.99質量%以上とされたいわゆる4NCuとすることが好ましい。また、溶解工程では、Mgの酸化を抑制するために、真空炉、あるいは、不活性ガス雰囲気又は還元性雰囲気とされた雰囲気炉を用いることが好ましい。
そして、成分調整された銅合金溶湯を鋳型に注入して鋳塊を製出する。なお、量産を考慮した場合には、連続鋳造法又は半連続鋳造法を用いることが好ましい。
次に、得られた鋳塊の均質化及び溶体化のために加熱処理を行う。鋳塊の内部には、凝固の過程においてMgが偏析で濃縮することにより発生したCuとMgを主成分とする金属間化合物等が存在することになる。そこで、これらの偏析及び金属間化合物等を消失又は低減させるために、鋳塊を400℃以上900℃以下にまで加熱する加熱処理を行うことで、鋳塊内において、Mgを均質に拡散させたり、Mgを母相中に固溶させたりするのである。なお、この加熱工程S02は、非酸化性又は還元性雰囲気中で実施することが好ましい。
ここで、加熱温度が400℃未満では、溶体化が不完全となり、母相中にCuとMgを主成分とする金属間化合物が多く残存するおそれがある。一方、加熱温度が900℃を超えると、銅素材の一部が液相となり、組織や表面状態が不均一となるおそれがある。よって、加熱温度を400℃以上900℃以下の範囲に設定している。より好ましくは500℃以上850℃以下、更に好ましくは520℃以上800℃以下とする。
そして、加熱工程S02において400℃以上900℃以下にまで加熱された銅素材を、200℃以下の温度にまで、200℃/min以上の冷却速度で冷却する。この急冷工程S03により、母相中に固溶したMgがCuとMgを主成分とする金属間化合物として析出することとを抑制し、走査型電子顕微鏡観察において、粒径0.1μm以上のCuとMgを主成分とする金属間化合物の平均個数を1個/μm2以下とすることができる。すなわち、銅素材をCu−Mg過飽和固溶体とすることができるのである。
なお、粗加工の効率化と組織の均一化のために、前述の加熱工程S02の後に熱間加工を実施し、この熱間加工の後に上述の急冷工程S03を実施する構成としてもよい。この場合、塑性加工方法に特に限定はなく、例えば最終形態が板や条の場合には圧延、線や棒の場合には線引きや押出や溝圧延等、バルク形状の場合には鍛造やプレス、を採用することができる。
加熱工程S02及び急冷工程S03を経た銅素材を必要に応じて切断するとともに、加熱工程S02及び急冷工程S03等で生成された酸化膜等を除去するために必要に応じて表面研削を行う。そして、所定の形状へと塑性加工を行う。この中間加工工程S04によって、後述する中間熱処理工程S05後に再結晶組織を得ることができる。
なお、この中間加工工程S04における温度条件は特に限定はないが、冷間又は温間加工となる−200℃から200℃の範囲内とすることが好ましい。また、加工率は、最終形状に近似するように適宜選択されることになるが、再結晶組織を得るためには、20%以上とすることが好ましい。さらに好ましくは50%以上である。
ここで、塑性加工方法に特に限定はなく、例えば最終形態が板や条の場合には圧延、線や棒の場合には線引きや押出や溝圧延、バルク形状の場合には鍛造やプレス、を採用することができる。さらに、溶体化の徹底のために、S02〜S04を繰り返しても良い。
中間加工工程S04後に、溶体化の徹底、再結晶組織化または加工性向上のための軟化を目的として熱処理を実施する。
ここで、中間熱処理の温度条件に限定はないが、実質的に再結晶組織が得られるように、400℃以上900℃以下とすることが好ましい。より好ましくは500℃以上800℃以下とする。また、非酸化雰囲気又は還元性雰囲気中で熱処理を行うことが好ましい。
ここで、中間熱処理工程S05においては、400℃以上900℃以下にまで加熱された銅素材を、200℃以下の温度にまで、200℃/min以上の冷却速度で冷却する。このように急冷することによって、母相中に固溶したMgがCuとMgを主成分とする金属間化合物として析出することが抑制されることになり、走査型電子顕微鏡観察において、粒径0.1μm以上のCuとMgを主成分とする金属間化合物の平均個数が1個/μm2以下とすることができる。すなわち、銅素材をCu−Mg過飽和固溶体とすることができるのである。
なお、中間加工工程S04及び中間熱処理工程S05は、繰り返し実施してもよい。
中間熱処理工程S05後の銅素材を所定の形状に仕上塑性加工を行う。この仕上加工工程S06により、耐力の向上を図ることが可能となる。なお、この中間加工工程S04における温度条件は特に限定はないが、−200℃以上200℃以下の範囲内で行うことが好ましい。また、加工率は、最終形状に近似するように適宜選択されることになるが、0〜95%とすることが好ましい。より好ましくは、10〜80%である。
ここで、塑性加工方法に特に限定はなく、例えば最終形態が板や条の場合には圧延、線や棒の場合には線引きや押出や溝圧延、バルク形状の場合には鍛造やプレス、を採用することができる。
次に、仕上加工工程06によって得られた塑性加工材に対して、耐応力緩和特性の向上、及び、低温焼鈍硬化を行うために、又は、残留ひずみの除去のために、仕上熱処理を実施する。
熱処理温度は、200℃超え800℃以下の範囲内とすることが好ましい。なお、この仕上熱処理工程S07においては、溶体化されたMgが析出しないように、熱処理条件(温度、時間、冷却速度)を設定する必要がある。例えば250℃で10秒〜24時間程度、300℃で5秒〜4時間程度、500℃で0.1秒〜60秒程度とすることが好ましい。非酸化雰囲気又は還元性雰囲気で行うことが好ましい。
また、冷却方法は、水焼入など、加熱された前記銅素材を、200℃/min以上の冷却速度で、200℃以下にまで冷却することが好ましい。このように急冷することにより、母相中に固溶したMgがCuとMgを主成分とする金属間化合物として析出することが抑制されることになり、走査型電子顕微鏡観察において、粒径0.1μm以上のCuとMgを主成分とする金属間化合物の平均個数が1個/μm2以下とすることができる。すなわち、銅素材をCu−Mg過飽和固溶体とすることができるのである。
さらに、上述の仕上加工工程S06と仕上熱処理工程S07とを、繰り返し実施してもよい。なお、中間熱処理工程と仕上熱処理工程とは、中間加工工程又は仕上加工工程における塑性加工後の組織を再結晶化することを目的とするか否かによって区別することができる。
また、導電率σ(%IACS)は、Mgの含有量をX原子%としたときに、
σ≦1.7241/(−0.0347×X2+0.6569×X+1.7)×100
の範囲内に設定されることになる。
さらに、本実施形態である電子機器用銅合金は、平均結晶粒径が1μm以上100μm以下の範囲内とされている。
また、本実施形態である電子機器用銅合金は、SEM−EBSD法による測定結果で、CI値が0.1以下である領域の割合が80%以下とされている。
σ≦1.7241/(−0.0347×X2+0.6569×X+1.7)×100
の範囲内に設定されている。さらに、走査型電子顕微鏡観察において、粒径0.1μm以上のCuとMgを主成分とする金属間化合物の平均個数が1個/μm2以下とされている。
このようなCu−Mg過飽和固溶体からなる銅合金では、ヤング率が低くなる傾向にあり、例えばオスタブがメスのばね接触部を押し上げて挿入されるコネクタ等に適用しても、挿入時の接圧変動が抑制され、かつ、弾性限界が広いために容易に塑性変形するおそれがない。よって、端子、コネクタ、リレー、リードフレーム等の電子機器用部品に特に適している。
さらに、Mgを過飽和に固溶させていることから、加工硬化させることで、強度が向上することになり、比較的高い強度を有することが可能となる。
また、CuとMgと不可避不純物からなるCuとMgの2元系合金とされていることから、他の元素による導電率の低下が抑制され、導電率を比較的高くすることができる。
また、加熱工程S02によって400℃以上900℃以下にまで加熱された鋳塊または塑性加工材を、200℃/min以上の冷却速度で200℃以下にまで冷却する急冷工程S03を備えているので、冷却の過程でCuとMgを主成分とする金属間化合物が析出することを抑制することが可能となり、急冷後の鋳塊または塑性加工材をCu−Mg過飽和固溶体とすることができる。
また、中間加工工程S04の後に、溶体化の徹底、再結晶組織化または加工性向上のための軟化を目的として中間熱処理工程S05を備えているので、特性の向上及び加工性の向上を図ることができる。
また、中間熱処理工程S05においては、400℃以上900℃以下にまで加熱された銅素材を、200℃/min以上の冷却速度で200℃以下にまで冷却するので、冷却の過程でCuとMgを主成分とする金属間化合物が析出することを抑制することが可能となり、急冷後の銅素材をCu−Mg過飽和固溶体とすることができる。
例えば、上述の実施形態では、電子機器用銅合金の製造方法の一例について説明したが、製造方法は本実施形態に限定されることはなく、既存の製造方法を適宜選択して製造してもよい。
純度99.99質量%以上の無酸素銅(ASTM B152 C10100)からなる銅原料を準備し、これを高純度グラファイト坩堝内に装入して、Arガス雰囲気とされた雰囲気炉内において高周波溶解した。得られた銅溶湯内に、各種添加元素を添加して表1、2に示す成分組成に調製し、カーボン鋳型に注湯して鋳塊を製出した。なお、鋳塊の大きさは、厚さ約20mm×幅約20mm×長さ約100〜120mmとした。
そして、仕上圧延後に、表に示す条件でソルトバス中で仕上熱処理を実施し、その後、水焼入れを実施し、特性評価用条材を作成した。
各試料において鏡面研磨、エッチングを行い光学顕微鏡にて、圧延方向が写真の横になるように撮影し、1000倍の視野(約300×200μm2)で観察を行った。そして、結晶粒径をJIS H 0501の切断法に従い、写真縦、横の所定長さの線分を5本ずつ引き、完全に切られる結晶粒数を数え、その切断長さの平均値を平均結晶粒径として算出した。
また、平均結晶粒径10μm以下の場合は、SEM−EBSD(Electron Backscatter Diffraction Patterns)測定装置によって、平均結晶粒径を測定する。耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行った。その後、走査型電子顕微鏡を用いて、試料表面の測定範囲内の個々の測定点(ピクセル)に電子線を照射し、後方散乱電子線回折による方位解析により、隣接する測定点間の方位差が15°以上となる測定点間を大角粒界とし、15°以下を小角粒界とした。大角粒界を用いて、結晶粒界マップを作成し、JIS H 0501の切断法に準拠し、結晶粒界マップに対して、縦、横の所定長さの線分を5本ずつ引き、完全に切られる結晶粒数を数え、その切断長さの平均値を平均結晶粒径とした。
特性評価用条材の圧延の幅方向に対して垂直な面、すなわちTD(Transverse direction)面に対し、耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行った。そして、EBSD測定装置(FEI社製Quanta FEG 450,EDAX/TSL社製(現 AMETEK社) OIM Data Collection)と、解析ソフト(EDAX/TSL社製(現 AMETEK社)OIM Data Analysis ver.5.3)によって、電子線の加速電圧20kV、観察倍率300倍で100μm×100μmの領域を0.1μmのステップで測定し、各結晶粒の方位差の解析を行った。解析ソフトを用いて、各測定点のCI値を計算した。その後、全測定点に対するCI値が0.1以下の割合を算出した。測定には各条材について組織が特異でない視野を選び、10視野の測定を行い、その平均値を値として用いた。
加工性の評価として、前述の中間圧延時における耳割れの有無を観察した。目視で耳割れが全くあるいはほとんど認められなかったものを◎、長さ1mm未満の小さな耳割れが発生したものを○、長さ1mm以上3mm未満の耳割れが発生したものを△、長さ3mm以上の大きな耳割れが発生したものを×、耳割れに起因して圧延途中で破断したものを××とした。
なお、耳割れの長さとは、圧延材の幅方向端部から幅方向中央部に向かう耳割れの長さのことである。
(機械的特性)
特性評価用条材からJIS Z 2201に規定される13B号試験片を採取し、JIS Z 2241のオフセット法により、0.2%耐力σ0.2を測定した。なお、試験片は、圧延方向に平行な方向で採取した。
ヤング率Eは、前述の試験片にひずみゲージを貼り付け、荷重−伸び曲線の勾配から求めた。
特性評価用条材から幅10mm×長さ60mmの試験片を採取し、4端子法によって電気抵抗を求めた。また、マイクロメータを用いて試験片の寸法測定を行い、試験片の体積を算出した。そして、測定した電気抵抗値と体積とから、導電率を算出した。なお、試験片は、その長手方向が特性評価用条材の圧延方向に対して平行になるように採取した。
日本伸銅協会技術標準JCBA−T307:2007の4試験方法に準拠して曲げ加工を行った。
圧延方向と試験片の長手方向が平行になるように、特性評価用条材から幅10mm×長さ30mmの試験片を複数採取し、曲げ角度が90度、曲げ半径が0.25mmのW型の治具を用い、W曲げ試験を行った。
そして、曲げ部の外周部を目視で確認し、破断した場合は×、一部のみ破断が起きた場合は△、破断が起きず微細な割れのみが生じた場合は○、破断や微細な割れを確認できない場合を◎として判定を行った。
各試料の圧延面に対して、鏡面研磨、イオンエッチングを行った。CuとMgを主成分とする金属間化合物の析出状態を確認するため、FE−SEM(電界放出型走査電子顕微鏡)を用い、1万倍の視野(約120μm2/視野)で観察を行った。
次に、CuとMgを主成分とする金属間化合物の密度(個/μm2)を調査するために、金属間化合物の析出状態が特異ではない1万倍の視野(約120μm2/視野)を選び、その領域で、5万倍で連続した10視野(約4.8μm2/視野)の撮影を行った。金属間化合物の粒径については、金属間化合物の長径(途中で粒界に接しない条件で粒内に最も長く引ける直線の長さ)と短径(長径と直角に交わる方向で、途中で粒界に接しない条件で最も長く引ける直線の長さ)の平均値とした。そして、粒径0.1μmのCuとMgを主成分とする金属間化合物の密度(個/μm2)を求めた。
また、Mgの含有量が本発明の範囲よりも高い比較例3、4においては、中間圧延時に大きな耳割れが発生し、その後の特性評価を実施することが不可能であった。
CI値が0.1以下である領域の割合が83%とされた比較例9においても本発明例と比較して曲げ加工性に劣ることが確認される。
また、従来例であるCu−Ni−Si系合金(Cu−3.0at%Ni−1.6at%Si−0.5at%Zn−0.3at%Sn)においては、ヤング率が131GPaと高かった。
S06 仕上圧延工程(仕上加工工程)
Claims (10)
- CuとMgの2元系合金からなり、前記2元系合金は、
Mgを、3.3原子%以上6.9原子%以下の範囲で含み、残部がCu及び不可避不純物のみからなり、
導電率σ(%IACS)が、Mgの濃度をX原子%としたときに、
σ≦1.7241/(−0.0347×X2+0.6569×X+1.7)×100
の範囲内とされ、
平均結晶粒径が1μm以上100μm以下の範囲内とされていることを特徴とする電子機器用銅合金。 - CuとMgの2元系合金からなり、前記2元系合金は、
Mgを、3.3原子%以上6.9原子%以下の範囲で含み、残部がCu及び不可避不純物のみからなり、
導電率σ(%IACS)が、Mgの濃度をX原子%としたときに、
σ≦1.7241/(−0.0347×X2+0.6569×X+1.7)×100
の範囲内とされており、
中間熱処理後であって仕上加工前の銅素材における平均結晶粒径が1μm以上100μm以下の範囲内とされていることを特徴とする電子機器用銅合金。 - 請求項1または請求項2に記載の電子機器用銅合金において、
SEM−EBSD法による測定結果で、CI値が0.1以下である領域の割合が80%以下であることを特徴とする電子機器用銅合金。 - 請求項1から請求項3のいずれか一項に記載の電子機器用銅合金において、
走査型電子顕微鏡観察において、粒径0.1μm以上のCuとMgを主成分とする金属間化合物の平均個数が、1個/μm2以下とされていることを特徴とする電子機器用銅合金。 - 請求項1から請求項4のいずれか一項に記載の電子機器用銅合金において、
ヤング率が125GPa以下、0.2%耐力σ0.2が400MPa以上とされていることを特徴とする電子機器用銅合金。 - 請求項1から請求項5のいずれか一項に記載の電子機器用銅合金を製出する電子機器用銅合金の製造方法であって、
CuとMgの2元系合金からなり、Mgを、3.3原子%以上6.9原子%以下の範囲で含み、残部がCu及び不可避不純物のみとされた組成の銅素材に対して冷間又は温間にて所定の形状に塑性加工する中間加工工程と、前記中間加工工程で塑性加工した銅素材を熱処理する中間熱処理工程と、を備えており、
前記中間熱処理工程後の銅素材における平均結晶粒径を1μm以上100μm以下の範囲内とすることを特徴とする電子機器用銅合金の製造方法。 - 請求項6に記載の電子機器用銅合金の製造方法において、
前記中間加工工程では、−200℃から200℃の範囲内において加工率50%以上で塑性加工し、
前記中間熱処理工程では、400℃以上900℃以下に加熱して所定時間保持後に、200℃以下の温度にまで200℃/min以上の冷却速度で冷却を行うことを特徴とする電子機器用銅合金の製造方法。 - 請求項1から請求項5のいずれか一項に記載の電子機器用銅合金からなり、ヤング率Eが125GPa以下、0.2%耐力σ0.2が400MPa以上とされていることを特徴とする電子機器用銅合金塑性加工材。
- 請求項8に記載された電子機器用銅合金塑性加工材であって、
端子、コネクタ、リレー、リードフレーム等の電子機器用部品を構成する銅素材として使用されることを特徴とする電子機器用銅合金塑性加工材。 - 請求項1から請求項5のいずれか一項に記載の電子機器用銅合金からなること特徴とする電子機器用部品。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011243869A JP5903838B2 (ja) | 2011-11-07 | 2011-11-07 | 電子機器用銅合金、電子機器用銅素材、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材及び電子機器用部品 |
KR1020147003632A KR101615830B1 (ko) | 2011-11-07 | 2012-11-07 | 전자 기기용 구리 합금, 전자 기기용 구리 합금의 제조 방법, 전자 기기용 구리 합금 소성 가공재 및 전자 기기용 부품 |
US14/352,184 US10153063B2 (en) | 2011-11-07 | 2012-11-07 | Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices |
CN201280047171.9A CN103842531A (zh) | 2011-11-07 | 2012-11-07 | 电子设备用铜合金、电子设备用铜合金的制造方法、电子设备用铜合金塑性加工材料及电子设备用组件 |
PCT/JP2012/078851 WO2013069687A1 (ja) | 2011-11-07 | 2012-11-07 | 電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材及び電子機器用部品 |
TW101141343A TWI547572B (zh) | 2011-11-07 | 2012-11-07 | 電子機器用銅合金、電子機器用銅合金之製造方法、電子機器用銅合金塑性加工材及電子機器用零件 |
EP12847293.3A EP2778240B1 (en) | 2011-11-07 | 2012-11-07 | Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011243869A JP5903838B2 (ja) | 2011-11-07 | 2011-11-07 | 電子機器用銅合金、電子機器用銅素材、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材及び電子機器用部品 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013100569A true JP2013100569A (ja) | 2013-05-23 |
JP5903838B2 JP5903838B2 (ja) | 2016-04-13 |
Family
ID=48290061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011243869A Active JP5903838B2 (ja) | 2011-11-07 | 2011-11-07 | 電子機器用銅合金、電子機器用銅素材、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材及び電子機器用部品 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10153063B2 (ja) |
EP (1) | EP2778240B1 (ja) |
JP (1) | JP5903838B2 (ja) |
KR (1) | KR101615830B1 (ja) |
CN (1) | CN103842531A (ja) |
TW (1) | TWI547572B (ja) |
WO (1) | WO2013069687A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103726001A (zh) * | 2013-12-18 | 2014-04-16 | 江苏科技大学 | 一种大幅提高铜基复合材料高温塑性的处理方法 |
WO2015016218A1 (ja) * | 2013-07-31 | 2015-02-05 | 三菱マテリアル株式会社 | 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品及び端子 |
JP2015030863A (ja) * | 2013-07-31 | 2015-02-16 | 三菱マテリアル株式会社 | 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品及び端子 |
CN105220005A (zh) * | 2015-10-05 | 2016-01-06 | 无棣向上机械设计服务有限公司 | 一种高导电率铜镁合金材料 |
WO2017043558A1 (ja) * | 2015-09-09 | 2017-03-16 | 三菱マテリアル株式会社 | 電子・電気機器用銅合金、電子・電気機器用部品、端子、及びバスバー |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3009523B1 (en) | 2010-05-14 | 2018-08-29 | Mitsubishi Materials Corporation | Copper alloy for electronic device, method for producing it, and rolled material from it |
JP5903838B2 (ja) | 2011-11-07 | 2016-04-13 | 三菱マテリアル株式会社 | 電子機器用銅合金、電子機器用銅素材、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材及び電子機器用部品 |
JP5903842B2 (ja) | 2011-11-14 | 2016-04-13 | 三菱マテリアル株式会社 | 銅合金、銅合金塑性加工材及び銅合金塑性加工材の製造方法 |
JP5983589B2 (ja) * | 2013-12-11 | 2016-08-31 | 三菱マテリアル株式会社 | 電子・電気機器用銅合金圧延材、電子・電気機器用部品及び端子 |
CN104404290A (zh) * | 2014-11-13 | 2015-03-11 | 无锡信大气象传感网科技有限公司 | 一种高导热性的传感器用铜合金材料及制造方法 |
CN105296804B (zh) * | 2015-08-28 | 2017-10-27 | 中国科学院金属研究所 | 一种磁兼容铜合金及其应用 |
CN105112719A (zh) * | 2015-09-08 | 2015-12-02 | 张超 | 一种铜合金 |
MX2018001139A (es) | 2015-09-09 | 2018-04-20 | Mitsubishi Materials Corp | Aleacion de cobre para dispositivo electronico/electrico, material plasticamente trabajado de aleacion de cobre para dispositivo electronico/electrico, componente para dispositivo electronico/electrico, terminal y barra colectora. |
US10128019B2 (en) * | 2015-09-09 | 2018-11-13 | Mitsubishi Materials Corporation | Copper alloy for electronic/electrical device, plastically-worked copper alloy material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar |
US10453582B2 (en) | 2015-09-09 | 2019-10-22 | Mitsubishi Materials Corporation | Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar |
US11319615B2 (en) | 2016-03-30 | 2022-05-03 | Mitsubishi Materials Corporation | Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay |
WO2017170699A1 (ja) | 2016-03-30 | 2017-10-05 | 三菱マテリアル株式会社 | 電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、バスバー、及び、リレー用可動片 |
JP6828444B2 (ja) * | 2017-01-10 | 2021-02-10 | 日立金属株式会社 | 導電線の製造方法、並びにケーブルの製造方法 |
JP6440760B2 (ja) * | 2017-03-21 | 2018-12-19 | Jx金属株式会社 | プレス加工後の寸法精度を改善した銅合金条 |
JP6345290B1 (ja) * | 2017-03-22 | 2018-06-20 | Jx金属株式会社 | プレス加工後の寸法精度を改善した銅合金条 |
KR102452709B1 (ko) * | 2017-05-30 | 2022-10-11 | 현대자동차주식회사 | 자동차 가니쉬용 합금 및 자동차용 가니쉬 |
JP6780187B2 (ja) | 2018-03-30 | 2020-11-04 | 三菱マテリアル株式会社 | 電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、及び、バスバー |
EP3778941A4 (en) | 2018-03-30 | 2021-11-24 | Mitsubishi Materials Corporation | COPPER ALLOY FOR ELECTRONIC / ELECTRIC DEVICE, SHEET / STRIP MATERIAL COPPER ALLOY FOR ELECTRONIC / ELECTRIC DEVICE, ELECTRONIC / ELECTRIC DEVICE COMPONENT, TERMINAL AND OMNIBUS BAR |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011241412A (ja) * | 2010-05-14 | 2011-12-01 | Mitsubishi Materials Corp | 電子機器用銅合金、電子機器用銅合金の製造方法及び電子機器用銅合金圧延材 |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5344136B2 (ja) | 1974-12-23 | 1978-11-27 | ||
JPS53125222A (en) | 1977-04-07 | 1978-11-01 | Furukawa Electric Co Ltd:The | High tensile electroconductive copper alloy |
JPS6250425A (ja) | 1985-08-29 | 1987-03-05 | Furukawa Electric Co Ltd:The | 電子機器用銅合金 |
JPS62227051A (ja) | 1986-03-28 | 1987-10-06 | Mitsubishi Shindo Kk | Cu合金製電気機器用コネクタ |
JPS62250136A (ja) | 1986-04-23 | 1987-10-31 | Mitsubishi Shindo Kk | Cu合金製端子 |
JPS63203738A (ja) | 1987-02-18 | 1988-08-23 | Mitsubishi Shindo Kk | Cu合金製電気機器用リレー材 |
JPH0819499B2 (ja) | 1987-06-10 | 1996-02-28 | 古河電気工業株式会社 | フレキシブルプリント用銅合金 |
JPS6452034A (en) | 1987-08-19 | 1989-02-28 | Mitsubishi Electric Corp | Copper alloy for terminal and connector |
JPH01107943A (ja) | 1987-10-20 | 1989-04-25 | Nisshin Steel Co Ltd | リン青銅の薄板連続鋳造方法 |
JP2722401B2 (ja) | 1988-10-20 | 1998-03-04 | 株式会社神戸製鋼所 | 耐マイグレーション性に優れた高導電性電気・電子部品配線用銅合金 |
JPH02145737A (ja) | 1988-11-24 | 1990-06-05 | Dowa Mining Co Ltd | 高強度高導電性銅基合金 |
JPH0690887B2 (ja) | 1989-04-04 | 1994-11-14 | 三菱伸銅株式会社 | Cu合金製電気機器用端子 |
JPH04268033A (ja) | 1991-02-21 | 1992-09-24 | Ngk Insulators Ltd | ベリリウム銅合金の製造方法 |
JPH0582203A (ja) | 1991-09-20 | 1993-04-02 | Mitsubishi Shindoh Co Ltd | Cu合金製電気ソケツト構造部品 |
JP3046471B2 (ja) | 1993-07-02 | 2000-05-29 | 株式会社神戸製鋼所 | 耐蟻の巣状腐食性が優れたフィンチューブ型熱交換器 |
JPH0718354A (ja) | 1993-06-30 | 1995-01-20 | Mitsubishi Electric Corp | 電子機器用銅合金およびその製造方法 |
JPH07166271A (ja) | 1993-12-13 | 1995-06-27 | Mitsubishi Materials Corp | 耐蟻の巣状腐食性に優れた銅合金 |
JP3904118B2 (ja) | 1997-02-05 | 2007-04-11 | 株式会社神戸製鋼所 | 電気、電子部品用銅合金とその製造方法 |
JP3465541B2 (ja) | 1997-07-16 | 2003-11-10 | 日立電線株式会社 | リードフレーム材の製造方法 |
JPH11186273A (ja) * | 1997-12-19 | 1999-07-09 | Ricoh Co Ltd | 半導体装置及びその製造方法 |
JPH11199954A (ja) | 1998-01-20 | 1999-07-27 | Kobe Steel Ltd | 電気・電子部品用銅合金 |
JP4009981B2 (ja) | 1999-11-29 | 2007-11-21 | Dowaホールディングス株式会社 | プレス加工性に優れた銅基合金板 |
JP4729680B2 (ja) | 2000-12-18 | 2011-07-20 | Dowaメタルテック株式会社 | プレス打ち抜き性に優れた銅基合金 |
JP2005113259A (ja) | 2003-02-05 | 2005-04-28 | Sumitomo Metal Ind Ltd | Cu合金およびその製造方法 |
JP3731600B2 (ja) | 2003-09-19 | 2006-01-05 | 住友金属工業株式会社 | 銅合金およびその製造方法 |
ATE431435T1 (de) | 2004-06-23 | 2009-05-15 | Wieland Werke Ag | Korrosionsbeständige kupferlegierung mit magnesium und deren verwendung |
JP4542008B2 (ja) * | 2005-06-07 | 2010-09-08 | 株式会社神戸製鋼所 | 表示デバイス |
US8287669B2 (en) | 2007-05-31 | 2012-10-16 | The Furukawa Electric Co., Ltd. | Copper alloy for electric and electronic equipments |
JP5224415B2 (ja) * | 2008-07-31 | 2013-07-03 | 古河電気工業株式会社 | 電気電子部品用銅合金材料とその製造方法 |
JP5420328B2 (ja) | 2008-08-01 | 2014-02-19 | 三菱マテリアル株式会社 | フラットパネルディスプレイ用配線膜形成用スパッタリングターゲット |
JP5515313B2 (ja) | 2009-02-16 | 2014-06-11 | 三菱マテリアル株式会社 | Cu−Mg系荒引線の製造方法 |
CN101707084B (zh) | 2009-11-09 | 2011-09-21 | 江阴市电工合金有限公司 | 铜镁合金绞线的生产方法 |
JP5587593B2 (ja) | 2009-11-10 | 2014-09-10 | Dowaメタルテック株式会社 | 銅合金の製造方法 |
KR101419147B1 (ko) | 2009-12-02 | 2014-07-11 | 후루카와 덴키 고교 가부시키가이샤 | 구리합금 판재 및 그 제조방법 |
JP4563508B1 (ja) * | 2010-02-24 | 2010-10-13 | 三菱伸銅株式会社 | Cu−Mg−P系銅合金条材及びその製造方法 |
EP3009523B1 (en) * | 2010-05-14 | 2018-08-29 | Mitsubishi Materials Corporation | Copper alloy for electronic device, method for producing it, and rolled material from it |
CN102206766B (zh) | 2011-05-03 | 2012-11-21 | 中国西电集团公司 | 一种铜镁合金铸造中镁含量的控制方法 |
JP5703975B2 (ja) * | 2011-06-06 | 2015-04-22 | 三菱マテリアル株式会社 | 電子機器用銅合金、電子機器用銅合金の製造方法及び電子機器用銅合金圧延材 |
JP5903832B2 (ja) | 2011-10-28 | 2016-04-13 | 三菱マテリアル株式会社 | 電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金圧延材及び電子機器用部品 |
JP5903838B2 (ja) | 2011-11-07 | 2016-04-13 | 三菱マテリアル株式会社 | 電子機器用銅合金、電子機器用銅素材、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材及び電子機器用部品 |
JP5910004B2 (ja) | 2011-11-07 | 2016-04-27 | 三菱マテリアル株式会社 | 電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材および電子機器用部品 |
JP2013104095A (ja) | 2011-11-14 | 2013-05-30 | Mitsubishi Materials Corp | 電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材および電子機器用部品 |
JP5903842B2 (ja) | 2011-11-14 | 2016-04-13 | 三菱マテリアル株式会社 | 銅合金、銅合金塑性加工材及び銅合金塑性加工材の製造方法 |
JP5962707B2 (ja) | 2013-07-31 | 2016-08-03 | 三菱マテリアル株式会社 | 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用銅合金塑性加工材の製造方法、電子・電気機器用部品及び端子 |
-
2011
- 2011-11-07 JP JP2011243869A patent/JP5903838B2/ja active Active
-
2012
- 2012-11-07 WO PCT/JP2012/078851 patent/WO2013069687A1/ja active Application Filing
- 2012-11-07 TW TW101141343A patent/TWI547572B/zh active
- 2012-11-07 CN CN201280047171.9A patent/CN103842531A/zh active Pending
- 2012-11-07 EP EP12847293.3A patent/EP2778240B1/en active Active
- 2012-11-07 US US14/352,184 patent/US10153063B2/en active Active
- 2012-11-07 KR KR1020147003632A patent/KR101615830B1/ko active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011241412A (ja) * | 2010-05-14 | 2011-12-01 | Mitsubishi Materials Corp | 電子機器用銅合金、電子機器用銅合金の製造方法及び電子機器用銅合金圧延材 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015016218A1 (ja) * | 2013-07-31 | 2015-02-05 | 三菱マテリアル株式会社 | 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品及び端子 |
JP2015030863A (ja) * | 2013-07-31 | 2015-02-16 | 三菱マテリアル株式会社 | 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品及び端子 |
JP2015045083A (ja) * | 2013-07-31 | 2015-03-12 | 三菱マテリアル株式会社 | 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品及び端子 |
US10294547B2 (en) | 2013-07-31 | 2019-05-21 | Mitsubishi Materials Corporation | Copper alloy for electronic and electrical equipment, plastically worked copper alloy material for electronic and electrical equipment, and component and terminal for electronic and electrical equipment |
CN103726001A (zh) * | 2013-12-18 | 2014-04-16 | 江苏科技大学 | 一种大幅提高铜基复合材料高温塑性的处理方法 |
CN103726001B (zh) * | 2013-12-18 | 2015-12-30 | 江苏科技大学 | 一种大幅提高铜基复合材料高温塑性的处理方法 |
WO2017043558A1 (ja) * | 2015-09-09 | 2017-03-16 | 三菱マテリアル株式会社 | 電子・電気機器用銅合金、電子・電気機器用部品、端子、及びバスバー |
JP6155407B1 (ja) * | 2015-09-09 | 2017-06-28 | 三菱マテリアル株式会社 | 電子・電気機器用銅合金、電子・電気機器用部品、端子、及びバスバー |
CN105220005A (zh) * | 2015-10-05 | 2016-01-06 | 无棣向上机械设计服务有限公司 | 一种高导电率铜镁合金材料 |
Also Published As
Publication number | Publication date |
---|---|
EP2778240B1 (en) | 2017-03-29 |
EP2778240A4 (en) | 2015-07-08 |
WO2013069687A1 (ja) | 2013-05-16 |
US20140283962A1 (en) | 2014-09-25 |
KR20140034931A (ko) | 2014-03-20 |
US10153063B2 (en) | 2018-12-11 |
TWI547572B (zh) | 2016-09-01 |
TW201337006A (zh) | 2013-09-16 |
KR101615830B1 (ko) | 2016-04-26 |
CN103842531A (zh) | 2014-06-04 |
EP2778240A1 (en) | 2014-09-17 |
JP5903838B2 (ja) | 2016-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5903838B2 (ja) | 電子機器用銅合金、電子機器用銅素材、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材及び電子機器用部品 | |
JP5045784B2 (ja) | 電子機器用銅合金、電子機器用銅合金の製造方法及び電子機器用銅合金圧延材 | |
JP5045783B2 (ja) | 電子機器用銅合金、電子機器用銅合金の製造方法及び電子機器用銅合金圧延材 | |
JP5712585B2 (ja) | 電子機器用銅合金、電子機器用銅合金の製造方法及び電子機器用銅合金圧延材 | |
JP5903832B2 (ja) | 電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金圧延材及び電子機器用部品 | |
TWI513833B (zh) | 電子機器用銅合金、電子機器用銅合金之製造方法、電子機器銅合金用塑性加工材、以及電子機器用零件 | |
JP5690979B1 (ja) | 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子 | |
JP5983589B2 (ja) | 電子・電気機器用銅合金圧延材、電子・電気機器用部品及び端子 | |
JP5565506B1 (ja) | 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用部品及び端子 | |
JP5903839B2 (ja) | 電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材および電子機器用部品 | |
JP5910004B2 (ja) | 電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材および電子機器用部品 | |
JP5703975B2 (ja) | 電子機器用銅合金、電子機器用銅合金の製造方法及び電子機器用銅合金圧延材 | |
JP2014129569A (ja) | 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子 | |
JP6221471B2 (ja) | 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用銅合金塑性加工材の製造方法、電子・電気機器用部品及び端子 | |
JP6248388B2 (ja) | 電子・電気機器用銅合金、電子・電気機器用部品及び端子 | |
JP5045782B2 (ja) | 電子機器用銅合金、電子機器用銅合金の製造方法及び電子機器用銅合金圧延材 | |
JP6248389B2 (ja) | 電子・電気機器用銅合金、電子・電気機器用部品及び端子 | |
JP2013104095A (ja) | 電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材および電子機器用部品 | |
JP6248386B2 (ja) | 電子・電気機器用銅合金、電子・電気機器用部品及び端子 | |
JP2013104096A (ja) | 電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材および電子機器用部品 | |
JP7187989B2 (ja) | 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子 | |
JP6248387B2 (ja) | 電子・電気機器用銅合金、電子・電気機器用部品及び端子 | |
JP2019173092A (ja) | 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子 | |
JP2019173093A (ja) | 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140926 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20150608 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20150618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150818 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160216 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160229 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5903838 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |