JP2012253266A - 半導体集積回路 - Google Patents

半導体集積回路 Download PDF

Info

Publication number
JP2012253266A
JP2012253266A JP2011126379A JP2011126379A JP2012253266A JP 2012253266 A JP2012253266 A JP 2012253266A JP 2011126379 A JP2011126379 A JP 2011126379A JP 2011126379 A JP2011126379 A JP 2011126379A JP 2012253266 A JP2012253266 A JP 2012253266A
Authority
JP
Japan
Prior art keywords
power supply
circuit
inverter
voltage
supply line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011126379A
Other languages
English (en)
Inventor
Takaaki Tatsumi
孝明 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2011126379A priority Critical patent/JP2012253266A/ja
Priority to US13/481,361 priority patent/US8711533B2/en
Priority to CN2012101723032A priority patent/CN102820292A/zh
Publication of JP2012253266A publication Critical patent/JP2012253266A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • H01L27/0285Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements bias arrangements for gate electrode of field effect transistors, e.g. RC networks, voltage partitioning circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

【課題】実装工程中のESD保護とともに、保護用トランジスタのオフリーク電流を低減する。
【解決手段】RCMOS型のESD保護回路において、RC構成の検出回路の出力を、電源配線2のサージを基準電圧配線3に流す保護用トランジスタ5のゲートに伝達するインバータ回路4内で、出力が上記ゲートに接続されたインバータを、電源配線と第3の電源線7との間に接続している。第3の電源線は実装時には、オープンで実装後には負電圧に接続する。
【選択図】図2

Description

本開示技術は、被保護回路と、当該被保護回路の電源線に発生するサージを除去する保護回路とを同一の半導体基板に形成した半導体集積回路に関する。
一般に、LSI(Large Scale Integrated Circuit)等の半導体集積回路は、その微細化および低電圧化に伴って、所定の機能をもつ回路(以下、内部回路または被保護回路という)の電源線に発生するサージから内部回路を保護することの重要性が増している。
電源線に発生するサージは、代表的なものとして、電源線の外部端子に対する静電気放電(Electrostatic Discharge:ESD)によって電源線電圧が急上昇するESDサージが知られる。
ESDサージによって、外部端子に高電圧パルスが発生した場合、内部回路が破壊されることを防ぐ目的で、ESD保護のための素子又は回路が内部回路(被保護回路)とともに半導体基板に集積化される。
ESD保護のための素子又は回路として、GGMOS(Gate Grounded MOS)、サイリスタ、RCMOSなどが知られている。それぞれのESD保護のための素子,回路は用途によって使い分けされているが、近年、設計が比較的簡単なRCMOS構成の保護回路がよく使われる。
図1に、RCMOS構成のESD保護回路の回路構成図を示す。なお、図1は、下記非特許文献1の開示技術に基づく図である。以下、この回路構成とその動作を説明する。
図1に図解するRCMOS構成のESD保護回路1は、多くの内部回路がCMOS構成であり、内部回路6とのプロセスの親和性が高い構成として、抵抗(R)と容量(C)を検出素子と、インバータといったCMOS回路を用いている。このESD保護回路1は、抵抗性素子R及び容量性素子Cと、CMOSインバータ回路4と、保護用トランジスタ5を、電源配線2と基準電圧配線3との間に図示のように接続して構成されている。
より詳細には、ESD保護回路1は、ESDに起因して電源配線2に発生する高電圧パルスを基準電圧配線3に逃がすMOSトランジスタ(以下、保護用トランジスタ)5を電源配線2と基準電圧配線3との間に配置している。保護用トランジスタ5のドレインを電源配線2に、ソースを基準電圧配線3にそれぞれ接続している。さらに、電源配線2と基準電圧配線3の間に抵抗性素子Rと容量性素子Cとを直列に接続してRC直列回路を構成している。そして、素子間ノードをCMOSインバータ回路3の入力に、CMOSインバータ回路3の出力を保護用トランジスタ5のゲートに、それぞれ接続している。
このESD保護回路は、抵抗性素子Rと容量性素子Cによる時定数を利用して、通常の電源配線の電位的な立ち上げや揺らぎ等には反応しないように設計される。
通常の電源投入時のように電源配線の電位を意図的に立ち上げる場合、そのパルスの立ち上がり速度がESDサージ発生時に比べて小さい。そのため、抵抗性素子Rと容量性素子Cとを接続するノードの電位VRCが、電源配線の電位の上昇に余り遅れることなく立ち上がる。
一方、通常の動作で想定されるより高い周波数のパルス(例えばESDサージ)が電源配線2に印加されると、RC直列回路内で抵抗性素子Rと容量性素子Cとを接続するノードの電位VRCが、電源配線2の電位上昇に遅れて立ち上がる。ESDの代表的なモデルであるHBM(Human Body Model)における電位上昇は数百ナノ秒という極めて短い時間に生じ、そのような高い周波数の電位上昇で、上記電位VRCが電源配線2の電位上昇に遅れて立ち上がるようにRC直列回路の時定数が決められている。
電源配線の電位の立ち上がりから遅れて電位VRCが立ち上がると、電位VRCがCMOSインバータ回路4のインバータの閾値に達するまでの期間だけ、CMOSインバータ回路4で発生した正のパルスが保護用MOSトランジスタ5のゲートに印加される。
よって、この正のパルスで規定される時間だけ保護用MOSトランジスタ5がオンして、ESDサージを電源配線2から基準電圧配線3に排除する。そのため、電源配線2と基準電圧配線3間に接続されている内部回路6はESDサージから保護される。
電位VRCがCMOSインバータ回路4のインバータの閾値に達すると、保護用MOSトランジスタ5のゲートに印加される正のパルスが終了するため、速やかに当該トランジスタがオフする。
このようにして、RCMOS構成のESD保護回路は、抵抗(R)と容量(C)を用いた検出回路(RC直列回路)によってESDサージを検出し、当該検出回路の検出結果に応答してESDサージを速やかに電源配線から除去する。
C. A. Torres et al; "Modular, Portable, and Easily Simulated ESD Protection Networks for Advanced CMOS Technologies", Electrical Overstress/Electrostatic Discharge Symposium, September 11-13. Symposium Proceedings, P.81-94, Fig. 1.
ESDは、電源配線2が接続された外部端子(VDD端子)2Tに対し発生することが多い。ESDは基準電圧配線3が接続された外部端子(VSS端子)3Tに対しても発生するが、基準電圧配線3は通常、半導体集積回路の各回路を共通に接地するために張り巡らされており、容量が大きいため電位が揺れにくい。このため基準電圧配線3に対して発生したESD起因のノイズが回路動作に与える影響は、VDD側ほどではない。
一方、半導体集積回路が電子機器内に実装された後でESDが発生することも皆無ではない。但し、静電気による放電であるため、静電気を帯電するもの(人体や実装機器)が近くに存在する状態で発生する確率が高い。よって、半導体集積回路が製造されている最中や組み立て中、すなわち半導体集積回路を回路基板あるいはインターポーザというパッケージ基板等に実装中でのESD保護は重要である。
実装中では、基準電圧配線3が先に、例えばグラウンド電位に接続され、電源配線2はフローティング状態での作業が存在する。例えば、半導体集積回路が基板等に接合されている場合、基準電圧配線3も半導体基板を介して接地状態にあると看做してよい場合での作業が存在する。
このように基準電圧配線3のみ接地された片側接地状態で、外部端子から電源配線2にESDサージが侵入すると、ESDサージが内部回路を破壊するおそれがある。
ESDサージは高電圧パルスであるため、その高電圧によって図1に示すESD保護回路も一瞬バイアスされ得る。保護用トランジスタ5は、電源電圧VDDが印加されている通常動作時にはMOS動作でサージ放電を行う。
一方、CMOSインバータ回路4にとっても、ESDサージ電圧が駆動バイアス源となる。
インバータは、PMOSとNMOSといった2つのトランジスタからなる。通常、バイアス電圧のほぼ中間レベルがインバータの反転動作の閾値となることから、この閾値に至らない間は反転動作できず、動作遅延がある。
ESDサージ電圧が駆動バイアス源となるインバータ回路では、駆動バイアスがごく短い時間しか印加されないため、インバータ回路が動作しないことがある。
また、実装後に通常動作させる際には、以下の如く、オフリーク電流に起因した消費電力が大きいという不利益がある。
図1に示す保護用トランジスタ5は、本来ならば、内部回路6内に設けられた、チャネルの導電型が同じトランジスタと一括して形成することが望ましい。
保護用トランジスタ5は、オン抵抗を小さくしてクランプ電圧を抑制することが要求される。オン抵抗削減のためには、ゲート幅やゲート長を内部回路側より大きくせざるを得ない。その場合、どうしてもオフリーク電流が大きくなってしまい、このことが消費電力を増大させる。
ここで「クランプ電圧」とは、保護用トランジスタが動作しているときのソースとドレイン間の一定電圧であり、この電圧は内部回路6にも印加される。内部回路6の低電圧化に伴って、このクランプ電圧も下げる必要があるが、上記消費電力の問題がネックとなってクランプ電圧の低減がなかなか進まないのが実情である。
よって、ゲート幅やゲート長といったクランプ電圧と関係するパラメータを用いることなく、オフリークを低減できることが望まれている。これができれば保護用トランジスタを内部回路と一括形成が可能となるが、そのような提案は未だなされていない。
本開示技術は、上記したように実装中でのESD保護を確実に行うことが可能な構成を有する半導体集積回路を提案するものである。
また、別の観点で見ると、本開示技術は、上記したクランプ電圧に影響を与えることなくリーク除去のためのトランジスタでオフリークを低減可能な構成を有する半導体集積回路を提案するものである。
本開示技術に関わる一形態の半導体集積回路は、第1及び第2の電源線と、前記第1及び第2の電源線間に接続されて電源電圧が供給される被保護回路と、前記第1の電源線に発生するサージを検出する検出回路と、互いに直列に接続された少なくとも1つのインバータを含むインバータ回路と、前記第1及び第2の電源線間に接続され、前記検出回路の出力により制御されて前記サージを前記第2の電源線に流す保護用トランジスタと、を同一の半導体基板に有する。前記インバータ回路は、前記保護用トランジスタの制御ノードに出力が接続されたインバータが前記第1及び第2の電源線とは別の第3の電源線と前記第1の電源線との間に接続されている。
この構成では、第1の電源線の電位変動があっても、その電位変動の速度(例えば電位の立ち上がりの速度)が、あまり大きくない場合、抵抗性素子と容量性素子の素子間ノードの電位は、第1の電源線の電位変動にほぼ追従して変化する。このため、インバータ回路の最終段のインバータによって保護用トランジスタはオンしない。
一方、サージ印加時のように第1の電源線の電位変動の速度が大きいと、抵抗性素子と容量性素子の素子間ノードの電位は、抵抗性素子と容量性素子の時定数によって決まる遅延によって立ち上がるまでの時間が長くなる。このとき素子間ノードの電位がインバータ回路のインバータの閾値電圧を超えるまでの短い時間だけ、当該インバータ回路によって保護用トランジスタがオンする。素子間ノードの電位がインバータの閾値電圧を超えると、保護用トランジスタがオフする。
このため、ある程度高いノイズは第1の電源線から第2の電源線に排出され、この電圧が高いノイズから被保護回路が破壊されることはない。
本開示技術では、インバータ回路が少なくとも1つのインバータから構成される。本開示技術では、インバータが1つの場合は当該インバータを、複数の場合は最終段のインバータを、第1の電源線と第3の電源線との間に接続している。つまり、被保護回路の共通電圧線としても用いられる第2の電源線と分けて第3の電源線を、最終段のインバータ専用に設けている。
例えば組み立て時においては、第1の電源線はオープン状態であるが、第2の電源線は電位固定されていることが多い。そのような片側固定の状態で第1の電源線にサージが発生すると、そのサージ発生に応答して抵抗性素子と容量性素子の素子間ノードに電位変化が出現する。
このとき本開示技術の適用がない場合、全てのインバータが、電位固定された第2の電源線の電位を基準に、第1の電源線に印加されるノイズ電圧でバイアスされる。そのため、インバータ回路に大きな遅延が生じ、保護用トランジスタがオンしないことがある。
これに対し、本開示技術が適用された上記構成によれば、組み立て時にはオープンとなる第3の電源線と第1の電源線との間に最終段のインバータが接続されている。つまり、電位固定され、あるいは配線容量が大きくて電位的に動きにくい第2の配線ではなく、第3の配線に最終段のインバータが接続されている。このため、遅延の影響が最も大きい最終段のインバータの応答性がよくなる。したがって、第1の電源線がオープン状態である組み立て時等においても、インバータ回路が正常動作し、サージが確実に第1の電源線から除去される。
組み立てが終了し、製品として通常動作する際に以下の利点がある。
第3の電源線は、第2の電源線とは独立した電圧を設定することが可能である。よって、第3の電源線に、保護用トランジスタのオフ時に、リーク電流がほぼ流れないとみなせるまでチャネルを確実に閉じるための電圧を設定することができる。例えば、保護用トランジスタのチャネル導電型がN型の場合、この電圧として負電圧を好適に用いる。この時、最終段のインバータは、第3の電源線側のトランジスタがオンし、この第3の電源線の印加電圧(例えば負電圧)をリーク除去トランジスタの制御ノードに伝達する動作を行う。このためオフリーク電流量が低下する。
本開示技術によれば、実装中での保護を確実にし、また実装後の通常動作時には、クランプ電圧に影響を与えることなく保護用トランジスタのオフリーク電流低減が可能な半導体集積回路を提供することができる。
実施形態に関わり、背景技術説明に用いたRCMOS構成のESD保護回路の構成図である。 ESD保護回路の回路構成図である。 図3は、最終段のインバータ動作の説明図である。 本開示技術の効果を調べたシミュレーション時の回路図と結果を示す図である。 N型MOSトランジスタのゲート電圧対ドレイン電流の特性図である。 負電圧(−VS)を−0.5Vとしたときの図5と同じ特性図である。
本開示技術に関わる保護回路を有する半導体集積回路を、ESD保護回路を有する場合を代表的な例として、以下、図面を参照して説明する。
次の順で説明を行う。
1.第1の実施の形態、
[保護回路の回路構成]、
[保護回路の動作]、
[オフリークの低減]。
2.変形例。
<1.第1の実施の形態>
[保護回路の回路構成]
図2に、本開示技術に関わるESD保護回路の回路構成を示す。図2は、図1のインバータ回路記号を具体的なトランジスタ構成にした図である。図2においても、図1と同様にVDD端子2T、VSS端子3T等の外部端子が設けられているが、これらの外部端子は図示を省略している。また、電源配線2と基準電圧線3とに接続されて電源供給を受ける内部回路(被保護回路)が設けられている。
これらの回路構成が同一の半導体基板に集積化されることによって半導体集積回路が形成されている。
図2に図解されるRCMOS構成のESD保護回路1は、VDD端子(図1の符号2T)が接続された「第1の電源線」としての電源配線2と、「第2の電源線」の一例として、例えばVSS端子(図1の符号3T)が接続された基準電圧配線3とを有する。電源配線2と基準電圧配線3との間には電源電圧VDDが印加される。
電源配線2と基準電圧配線3に接続されて電源電圧VDDが供給される内部回路(被保護回路)6が配置されている。
電源配線2と基準電圧配線3に接続される内部回路6以外のすべての回路素子は、内部回路6を保護対象とするESD保護回路1を構成する。
ESD保護回路1において、電源配線2と基準電圧配線3の間に、抵抗性素子R及び容量性素子Cと、CMOSインバータ回路4と、保護用トランジスタ5とが設けられている。
本実施形態においては、保護用トランジスタ5はチャネルの導電型がN型のトランジスタであり、ドレインが電源配線2に、ソースが基準電圧配線3に接続されている。また、保護用トランジスタ5の基板領域(P型ウェル等)はソースと電気的に短絡されているが、この構成は安定動作のために望ましいが必須ではない。
保護用トランジスタ5は、電源配線2に、例えば電源端子2Tを介して発生するESD起因の正の高電圧パルス(例えばESDサージ)を基準電圧配線3に逃がす機能をもつ。
電源配線2と基準電圧配線3の間に抵抗性素子Rと容量性素子Cとを直列に接続したRC直列回路(検出回路)が接続されている。検出回路は、抵抗性素子Rと容量性素子Cとの接続点をCMOSインバータ回路4の入力に接続している。
なお、本実施形態においては、上記のように電源配線2に発生する正の高電圧パルスの除去を目的とするため、抵抗性素子Rを電源配線2側に接続し、容量性素子Cを基準電圧配線3側に接続している。
正の高電圧パルス(ESDサージ)が電源配線2に発生したときに、抵抗性素子Rと容量性素子Cとの接続ノードの電位VRCが変動する。CMOSインバータ回路4は、このRC素子間の電位VRCの変動に基づいて、保護用トランジスタ5の制御電極(ゲート)を制御する回路である。
CMOSインバータ回路4は、1つ以上のインバータを有する。図2では3段構成を示す。
各インバータは、電源配線2と基準電圧配線3間に直列に接続されたPMOSトランジスタ4PとNMOSトランジスタ4Nを有する。
初段のインバータInv1におけるPMOSトランジスタ4PとNMOSトランジスタ4Nの共通ゲートが、抵抗性素子Rと容量性素子Cの間に接続されている。また、PMOSトランジスタ4PとNMOSトランジスタ4Nの共通ドレインが、次段のインバータInv2の入力に接続されている。
次段および最終段のインバータInv2,Inv3もほぼ同様に構成されている。
最終段のインバータInv3の出力が、保護用トランジスタ5のゲート(制御電極)に接続されている。
本実施形態では、最終段のインバータInv3のみ、そのNMOSトランジスタ4Nのソースが基準電圧配線3(第2の電源線)とは別の第3の電源線7に接続されている。
第3の電源線7は、本例では、負電圧(−VS)を供給するための配線であり、図示しない外部端子(−VS端子)に接続させてもよい。
なお、内部回路6が同じ負電圧(−VS)を用いる回路であれば、ESD保護回路1は、第3の電源線7を内部回路6と共用することが望ましい。
また、負電圧(−VS)を半導体集積回路内で電源電圧(VDD)等から生成する場合は、その外部端子は不要である。
[保護回路の動作]
より詳細な上記ESD保護回路1の動作を、以下に説明する。
ESD保護回路の動作は、以上の概略で説明した動作に対応した以下の(1),(2)に示す2つの状況に加え、3つ目の(3)に示す組み立て或いは基板実装時の状況での要求を満たさなくてはならない。
(1)通常動作中(サージ印加なし):
ここで「通常動作中(サージ印加なし)」とは、通常動作時に予定されている電源線の電位変動はあっても、保護用トランジスタ5をオンさせるほどの大きなサージが電源線に印加されない動作状態をいう。予定されている電源線の電位変動とは、電源立ち上げ時や立ち下げ時の電位変動、さらには、回路動作に起因して電源線が小さな振幅で揺れるような電位変動のことである。
電源配線2(第1の電源線)が電源電圧VDDで保持されているときは、図2の容量性素子Cは、高インピーダンス状態なので、素子間ノードの電位VRCは、ほぼH(VDD)レベルをとる。このHレベルは、3つのインバータのうちの初段のインバータInv1の入力に印加されるので、その出力がL(VSS)レベルをとる。この初段のインバータの出力(Lレベル)は、次とその次のインバータInv2,Inv3の各出力を確定している。よって、H(VRC)→L(Inv1出力)→H(Inv2出力)→L(Inv3出力)となる。
このとき、保護用トランジスタ5のゲートはL(VSS)レベルであるため、保護用トランジスタ5のチャネルは閉じている。したがって、電源電圧VDDが印加された電源配線2から、基準電圧VSSが印加された基準電圧配線3へ電流は流れない。
ここで、本開示技術では、第3の電源線7が、第2の電源線(基準電圧配線3)独立に電圧を設定できることから、保護用トランジスタ5のオフリーク電流が低減されている。例えば、本例のように、負電圧(−VS)を第3の電源線7に供給する。この場合、最終段のインバータInv3が動作時に、そのNMOSトランジスタ4Nがオンして負電圧(−VS)を保護用トランジスタ5のゲートに与える。保護用トランジスタ5は、本開示技術が非適用の場合に基準電圧VSS(通常、0V)が印加されるよりも、負電圧(−VS)が印加された場合に、オフリーク電流が各段に低減される。
なお、オフリーク電流の低減については、別途後述する。
一方、電源配線2が基準電圧(例えばGND)を保持しているときは、保護用MOSトランジスタ5のソースとドレイン間にバイアス電圧が印加されないので、保護用MOSトランジスタ5はオンしない。
通常動作時の電源立ち上げ時には、電源配線2の電位がLからHに推移する。しかし、このようにサージに比べて遅い(小さい速度の)電源配線2の電位上昇では、電源配線2の電位上昇にほぼ追従して電位VRCが立ち上がるので、保護用MOSトランジスタ5がオンすることはない。
(2)サージ印加時:
ESDサージが外部端子(VDD端子)で発生し、これが電源配線2に侵入すると、容量性素子Cがごく短い時間だけ低インピーダンス状態となる。そのため、コンデンサへの高周波パルス入力と同様の効果により、容量性素子Cに放電電流が流れる。このため、当該容量性素子Cと抵抗性素子Rの時定数で決まる遅延が発生し、電源配線2の電位立ち上がりに対して、電位VRCの立ち上がりが遅れる。そのため、電源配線2の電位が立ち上がって保護用MOSトランジスタ5にバイアス電圧が印加され始めてから、電位VRCが初段インバータの閾値電圧に達するまでの間のごく短い期間だけ、保護用MOSトランジスタ5がオンする。
より詳細には、最終段のインバータInv3の入力がLレベルになるため、当該インバータを構成するPMOSトランジスタ4Pのチャネルが開いて導通し、NMOSトランジスタ4Nのチャネルは閉じて非導通となる。そのため、最終段のインバータInv3がHレベル(VDDレベル)を保護用トランジスタ5のゲートに出力する。
よって、保護用トランジスタ5のゲートの電位は短い時間だけHレベルとなるので、そのチャネルが開き、電源配線2からESDサージが基準電圧配線3に流れる。
これが通常動作中にESD保護回路が機能するときの動作である。
(3)組み立て作業中にESDサージが入ったとき:
組立作業中は、通常、静電対策のため基準電圧配線3のみ基準電位(例えばGND)に接続されていることが多い。その一方、電源配線2がつながる電源電圧VDDの外部端子(VDD端子)には結線が行われていない。このとき、各インバータに電源が供給されていないため、保護用トランジスタ5のゲート電位は不確定(例えば、フローティング)となっている。
一方、第3の電源線7の電位もフローティングとなっている。負電源が外部から与えられる場合、その外部端子:(−VS)端子に結線が行われていない。あるいは、負電源を内部発生する場合、その発生を行う電源回路の電源供給がなされていないので、第3の電源線7に対する電位固定は行われていない。
この状態で、VDD端子にESDサージが急に入ると、このESDサージを電源電圧VDDの代わりとして、3つのインバータおよび保護用MOSトランジスタ5が短い時間だけ動作可能となる。
ここで、本開示技術が非適用の場合、つまり最終段のインバータInv3の低電位電源への接続側(以下、ソース側という)が基準電圧配線3に接続されている場合を考える。
このとき3つのインバータが、短い時間で印加されたESDサージをバイアス源(電源)として動作しようとするが、電源供給時間が短いため、電位変動を遅れて受ける後段のインバータほど反転しづらくなる。このため、CMOSインバータ回路4全体としては正しい動作ができず、保護用MOSトランジスタ5が有効にオンしないことがある。
これに対し、本開示技術では、最終段のインバータInv3のソース側が、オープン状態の第3の電源線7に接続されている。このため、ソースが基準電圧配線3で電位固定された他のインバータに比べるとインバータ閾値電圧が小さく、ESDサージによる短い電源供給であっても速やかに反転動作する。
本開示技術では、このように、初段のインバータに入力があってから反転動作するまでの時間が長く最も遅延の影響が大きい最終段のインバータInv3のソース側を電位的にオープンとすることで、この最終段のインバータの応答性を良くしている。
CMOSインバータ回路4は、最終段のインバータの応答性を良くするだけで正しく動作し、本開示技術では、このことを利用してCMOSインバータ回路4の正常動作を保証する。そのため、組み立て時でも保護用MOSトランジスタ5が短い時間だけオンして、ESDサージ除去が可能となる。
図3は、CMOSインバータ回路4内の各インバータの入出力の電位の遷移を示す回路図である。
上記したように各インバータが正しく動作するには、図3に示す素子間ノードの電位VRCから、保護用トランジスタ5のゲート電位に到るまで(L→H→L→H)と示すように電位レベルの反転遷移が行われる必要がある。しかし、これらの3つのインバータは、同じESDサージパルスで電源供給を受けるため、後段のインバータほど反転動作しづらくなる。
本開示技術では、最も反転しづらい最終段のインバータInv3のソース側を電位的にオープンとすることで、そのインバータ反転の閾値電圧を小さくしている(反転しやすい方向に変化させている)。よって、最終段のインバータInv3の出力が確実にHとなり、このHの期間だけ保護用MOSトランジスタ5がオンして、ESDサージパルスの除去電流Iが保護用トランジスタ5に流れる。
図4に、最終段のインバータのソース側を電位固定した場合とオープンとする場合の応答性の違いを調べたシミュレーション結果を示す。
図4において、(A1)がソース側電位を固定とした回路図、(B1)が、その回路の動作シミュレーションで得られた電位変化のプロット図である。また、図4において、(A2)がソース側をオープンとした回路図、(B2)が、その回路の動作シミュレーションで得られた電位変化のプロット図である。
なお、この回路シミュレーションでは、ソース側を電位的に固定するかオープンとするかによる応答性の違いはインバータの段数に依存しないため、用いる回路は、その応答性の違いが分かる最小の2段構成としている。
図4(A2)では、回路動作の安定性のため、最終段のインバータのソース側のNMOSトランジスタを高抵抗(100MΩ)で置き換えている。NMOSトランジスタのソース側を電位的にオープンとすると、当該NMOSトランジスタは動作には関係しないため、これを、オープンと等価な高抵抗(100MΩ)で置き換えることが可能である。
図4(B1),図4(B2)において、符号ND0が初段の入力ノードの電位、符号ND1が初段と最終段の段間のノードの電位、符号ND2が最終段の出力ノードの電位のそれぞれについての推移曲線を表している。
図4(B1)と図4(B2)を比較すると明らかなように、初段の入力ノードの電位を立ち上げてから(ND0)、最終段の出力ノードの電位が立ち上がるまで(ND2)の追従性(応答性)が、最終段のインバータのソース側を電位的にオープンとすることで明らかに改善されることが判る。このことは、インバータのソース側をオープンとすることで反転しやすくなることに起因する。
本開示技術は、この応答性の改善により、組み立て時のESDサージ保護動作を確実に行うことを可能とする。
[オフリークの低減]
次に、上記(1)の通常動作時のオフリーク低減について述べる。
RCMOS構成のESD保護回路1において、通常動作中、図2に示す保護用トランジスタ5は、ゲート電位が基準電圧VSS(例えば、0V)で駆動されている場合、ゲートがオフでチャネルは閉じている。
しかしながら、保護用トランジスタ5のソースとドレイン間にはオフリークといわれる、わずかな電流が流れる。
一般に、保護用トランジスタ5は、大量の電流を流せるだけの大きさ(ゲート幅)を持つため、このオフリーク電流は、消費電力の観点から無視できない。
図5に、典型的なN型MOSトランジスタのゲート電圧(Vgate)対ドレイン電流(Idrain)の特性グラフを示す。
図4に示すように、VG=0Vのときに、図中に示しただけの電流が流れている。本例では、グラフから読み取ると、単位ゲート幅(1μm)当たり、約0.1nA弱のオフリーク電流が発生している。
このオフリーク低減のため、本実施形態では、最終段のインバータInv3のみ、そのNMOSトランジスタ4Nのソースを、基準電圧VSSより低い負電圧(−VS)でバイアスしている。
通常動作時には、最終段のインバータInv3の入力はHレベルとなっている。よって、このインバータInv3を構成するNMOSトランジスタ4Nはチャネルが開いた状態であり、PMOSトランジスタ4Pはチャネルが閉じている。
NMOSトランジスタ4Nのオン抵抗が無視できるほど小さいと、インバータInv3の出力は、負電圧(−VS)そのものとなる。NMOSトランジスタ4Nのオン抵抗が無視できない場合でも、負電圧(−VS)を基準電圧VSSより十分小さくすると、保護用トランジスタ5のオフリーク電流を十分低減できる。
図5に、負電圧(−VS)を−0.5Vとしたときの図4と同じ特性グラフを示す。
図5のように、負電圧(−VS)を基準電圧VSS(=0V)からわずか0.5V下げただけでも、保護用トランジスタ5のオフリーク電流が5桁ほど低下している。このため、負電圧の印加が、オフリーク低減に十分な効果を奏することがわかる。
<2.変形例>
以上の回路構成は、上記説明に限定されない。
例えば、以上の説明では、ESDサージが正のパルス電圧であることを前提とした。ESDサージが負の場合、図2に示す抵抗性素子Rと容量性素子Cの位置を入れ替え、かつ、保護用トランジスタ5をN型チャネルのものから、P型チャネルのものに変更するとよい。
但し、正のESDサージ除去を目的とする図1の回路、あるいは、負のESDサージ除去を目的とする本変形例の回路において、逆極性のESDサージの除去は可能である。
例えば図1の回路では、負のESDサージが電源配線2に発生するとする。この負のサージは、保護用MOSトランジスタ5の高電位電源側のPN接合、つまりN型のドレイン不純物領域とP型の基板領域(例えばPウェル領域)間のPN接合のダイオードを順方向にバイアスする。そのため、負のESDサージは、この順方向にバイアスされたPN接合ダイオードを介して速やかに電源配線2から基準電圧配線3に排出される。
同様に、保護用MOSトランジスタ5をP型とした場合の変形例に関わる回路において、正のESDサージは、電源配線2に接続された高電位電源側のPN接合ダイオードが順方向にバイアスされてオンするため、速やかに電源配線2から基準電圧配線3に排出される。
これらの場合、CMOSインバータ回路4におけるインバータは、1段または1段より大きい奇数段とすることが望ましい。
但し、図1の回路では正のサージ除去を主に行い、変形例では負のサージ除去を主に行う場合、インバータの段数を偶数としてもよい。この場合、図1の回路において保護用MOSトランジスタ5をP型に、変形例において保護用MOSトランジスタ5をN型とする。
また、抵抗性素子Rは抵抗そのものでなくともインピーダンスとして抵抗とみなせる素子であれば何でもよい。容量性素子Cについても同様で、容量そのもの(キャパシタ)に限らず、インピーダンスとして容量とみなせる素子であれば何でもよい。
以上の説明では、第3の電源線7に印加する電圧を負電圧としたが、これは電源配線2に正電圧を印加し、基準電圧配線3が接地されることを前提としたためである。
よって、必ずしもVDD、VSS、負電源という3種類でなくても、相対的に、高い、中位、低いという3種類の電位をもつ電源を用いることができる。その場合、第1の電源線と第3の電源線との印加電圧差が、第1の電源線と第2の電源線の印加電圧差より大きいことを要件とする。
さらに、実装時あるいは組み立て時の説明を行ったが、ウェハ製造時のESD保護にも効果を奏する。
ウェハ製造工程におけるPC(ペレットチェック)時などの測定では、基板裏面などがアースに落とされてそれなりのESD保護対策がなされる。この場合、上記の実装時と同様にESD保護が行われる。
以上説明してきた本実施形態によれば、パッケージ組み立て時、基板への実装時あるいはウェハ製造時において、確実にESD保護を行うことができる。
また、通常動作時には、ゲート長やゲート幅といったクランプ電圧に影響する素子パラメータを変更しなくても、保護用トランジスタのオフリークを容易に低減することができる。
ゲート長やゲート幅といった素子パラメータを変える場合、デバイスの再設計となるが、本実施形態では、第3の電源線の追加で足りるため、従来から配線を一部違えるだけである。例えば、最終段のインバータのNMOSトランジスタのソースのVSS(例えばグラウンド)線との接続を切って、新たに設けた負電源配線(第3の電源線)に接続するという変更のみで、上記顕著な効果を得ることが可能である。
図5に示すように少しの電圧変更で大幅なリーク低減が望めるため、保護用トランジスタ(保護用トランジスタ)のゲート長やゲート幅を、内部回路内の同じ導電型のトランジスタと揃え、あるいは近づけることができる。
保護用トランジスタは、ある程度高い電流駆動力が必要なため、ゲート幅は大きくしてもよいが、ゲート長、チャネル濃度、その他の不純物濃度等は内部回路のトランジスタ同じにできる。よって、内部回路のPウェルに、N型の保護用トランジスタ5およびインバータと、内部回路内のN型トランジスタとを一括して形成することができる。さらに、抵抗性素子を薄膜抵抗とし、容量性素子をMIMキャパシタとして、内部回路の多層配線層内に埋め込んで、さらにESD保護回路と内部回路の一体化を図ることもできる。
1…ESD保護回路、2…電源配線(第1の電源線)、2T…外部端子(VDD端子)、3…基準電圧配線(第2の電源線)、3T…外部端子(VSS端子)、4…CMOSインバータ回路、4P…PMOSトランジスタ、4N…NMOSトランジスタ、5…保護用トランジスタ、6…内部回路(被保護回路)、7…第3の電源線。

Claims (11)

  1. 第1及び第2の電源線と、
    前記第1及び第2の電源線間に接続されて電源電圧が供給される被保護回路と、
    前記第1の電源線に発生するサージを検出する検出回路と、
    互いに直列に接続された少なくとも1つのインバータを含むインバータ回路と、
    前記第1及び第2の電源線間に接続され、前記検出回路の出力により制御されて前記サージを前記第2の電源線に流す保護用トランジスタと、
    を同一の半導体基板に有し、
    前記インバータ回路は、前記保護用トランジスタの制御ノードに出力が接続されたインバータが前記第1及び第2の電源線とは別の第3の電源線と前記第1の電源線との間に接続されている
    半導体集積回路。
  2. 前記インバータ回路は、
    複数のインバータを含み、
    最終段のインバータが、前記第3の電源線と前記第1の電源線との間に接続され、
    他のインバータが前記第1及び第2の電源線間に接続されている
    請求項1に記載の半導体集積回路。
  3. 前記第3の電源線に供給される電圧は、前記第1の電源線に供給される電圧との電圧差が、前記第1及び第2の電源線間に供給される電源電圧より大きい電圧である
    請求項1または2に記載の半導体集積回路。
  4. 前記ノイズが発生する前記第1の電源線に正電圧が供給され、
    前記第2の電源線に接地電圧が供給され、
    前記第3の電源線に負電圧が供給される
    請求項3に記載の半導体集積回路。
  5. 前記インバータの段数が奇数であり、
    前記保護用トランジスタのチャネル導電型がN型である
    請求項4に記載の半導体集積回路。
  6. 前記インバータの段数が偶数であり、
    前記保護用トランジスタのチャネル導電型がP型である
    請求項4に記載の半導体集積回路。
  7. 前記半導体基板のウェル領域であって、前記被保護回路のトランジスタが形成されたウェル領域内に、当該とランジスとチャネルの導電型が同じ前記保護用トランジスタが形成されている
    請求項5又は6に記載の半導体集積回路。
  8. 前記被保護回路は負電源が必要な回路であり、
    前記第3の電源線を、前記被保護回路が負電源線として共用する
    請求項7に記載の半導体集積回路。
  9. 前記検出回路が、
    前記第1の電源線に接続された抵抗性素子と、
    前記第2の電源線に接続された容量性素子と
    を直列接続し、
    前記抵抗性素子と前記容量性素子の接続点から、前記第1の電源線に正のノイズが発生することに応答して前記インバータの入力を電位変動させる回路である
    請求項1から8の何れか一項に記載の半導体集積回路。
  10. 前記検出回路が、
    前記第1の電源線に接続された容量性素子と、
    前記第2の電源線に接続された抵抗性素子と
    を直列接続し、
    前記容量性素子と前記抵抗性素子の接続点から、前記第1の電源線に負のノイズが発生することに応答して前記インバータの入力を電位変動させる回路である
    請求項1から8の何れか一項に記載の半導体集積回路。
  11. 前記第1の電源線、前記第2の電源線、前記第3の電源線のそれぞれが、外部から異なる電圧が印加される外部端子に接続されている
    請求項9または10に記載の半導体集積回路。
JP2011126379A 2011-06-06 2011-06-06 半導体集積回路 Withdrawn JP2012253266A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011126379A JP2012253266A (ja) 2011-06-06 2011-06-06 半導体集積回路
US13/481,361 US8711533B2 (en) 2011-06-06 2012-05-25 Semiconductor integrated circuit
CN2012101723032A CN102820292A (zh) 2011-06-06 2012-05-29 半导体集成电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011126379A JP2012253266A (ja) 2011-06-06 2011-06-06 半導体集積回路

Publications (1)

Publication Number Publication Date
JP2012253266A true JP2012253266A (ja) 2012-12-20

Family

ID=47261529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011126379A Withdrawn JP2012253266A (ja) 2011-06-06 2011-06-06 半導体集積回路

Country Status (3)

Country Link
US (1) US8711533B2 (ja)
JP (1) JP2012253266A (ja)
CN (1) CN102820292A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015046507A (ja) * 2013-08-28 2015-03-12 株式会社東芝 Esd保護回路
WO2016088482A1 (ja) * 2014-12-05 2016-06-09 ソニー株式会社 半導体集積回路
JPWO2016203648A1 (ja) * 2015-06-19 2017-11-02 ルネサスエレクトロニクス株式会社 半導体装置
US10236684B2 (en) 2016-10-24 2019-03-19 Kabushiki Kaisha Toshiba ESD protection circuit

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203838A (ja) * 2013-04-01 2014-10-27 ソニー株式会社 保護回路、電子機器および保護回路の駆動方法
CN103515944B (zh) * 2013-10-14 2017-03-29 辽宁大学 采用双通道技术的用于电源和地之间ESD保护的Power Clamp
US10026729B2 (en) * 2014-03-12 2018-07-17 Mediatek Inc. Surge-protection circuit and surge-protection method
US9583938B2 (en) 2015-05-01 2017-02-28 International Business Machines Corporation Electrostatic discharge protection device with power management
CN106816865A (zh) * 2017-02-08 2017-06-09 上海华虹宏力半导体制造有限公司 Esd保护电路
JP2019054370A (ja) * 2017-09-14 2019-04-04 東芝メモリ株式会社 半導体記憶装置
WO2019066976A1 (en) * 2017-09-29 2019-04-04 Intel Corporation MULTINIVE DISTRIBUTED CLAMPS
US10868421B2 (en) * 2018-07-05 2020-12-15 Amazing Microelectronic Corp. On-chip multiple-stage electrical overstress (EOS) protection device
TWI655818B (zh) * 2018-07-27 2019-04-01 智原科技股份有限公司 積體電路的靜電放電防護裝置
CN110912098B (zh) * 2019-11-25 2021-08-24 南京尔芯电子有限公司 防止静电释放esd保护在电源关断下引起漏电流的电路
CN111193249B (zh) * 2020-01-06 2022-02-22 西安理工大学 一种可同时用于静电放电和浪涌保护的箝位电路
CN112968437B (zh) * 2021-04-01 2022-07-08 长鑫存储技术有限公司 静电保护电路及芯片的静电保护网络
CN114678851B (zh) * 2022-04-01 2022-09-27 雅致精密工业(深圳)有限公司 一种电源管理芯片保护电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7593202B2 (en) * 2005-11-01 2009-09-22 Freescale Semiconductor, Inc. Electrostatic discharge (ESD) protection circuit for multiple power domain integrated circuit
US7518845B2 (en) * 2006-06-07 2009-04-14 International Business Machines Corporation RC-triggered power clamp suppressing negative mode electrostatic discharge stress
WO2009058128A1 (en) * 2007-10-30 2009-05-07 Agere Systems Inc. Electrostatic discharge protection circuit
EP2246885A1 (fr) * 2009-04-27 2010-11-03 STmicroelectronics SA Structure de protection d'un circuit intégré contre des décharges électrostatiques
US8339756B2 (en) * 2009-12-17 2012-12-25 Intel Corporation Control circuit having a delay-reduced inverter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015046507A (ja) * 2013-08-28 2015-03-12 株式会社東芝 Esd保護回路
TWI500230B (zh) * 2013-08-28 2015-09-11 Toshiba Kk ESD protection circuit
WO2016088482A1 (ja) * 2014-12-05 2016-06-09 ソニー株式会社 半導体集積回路
US10591532B2 (en) 2014-12-05 2020-03-17 Sony Semiconductor Solutions Corporation Semiconductor integrated circuit
JPWO2016203648A1 (ja) * 2015-06-19 2017-11-02 ルネサスエレクトロニクス株式会社 半導体装置
US10236684B2 (en) 2016-10-24 2019-03-19 Kabushiki Kaisha Toshiba ESD protection circuit

Also Published As

Publication number Publication date
US20120307406A1 (en) 2012-12-06
CN102820292A (zh) 2012-12-12
US8711533B2 (en) 2014-04-29

Similar Documents

Publication Publication Date Title
JP2012253266A (ja) 半導体集積回路
US7274546B2 (en) Apparatus and method for improved triggering and leakage current control of ESD clamping devices
US8189308B2 (en) Integrated circuit
US7764475B2 (en) Electrostatic discharge circuit and method for reducing input capacitance of semiconductor chip including same
US9679891B2 (en) Optimized ESD clamp circuitry
US8830640B2 (en) Electrostatic discharge protection circuit
KR101039856B1 (ko) 정전기 방전 회로
WO2016088482A1 (ja) 半導体集積回路
JP2018064082A (ja) 静電放電回路
US20080197415A1 (en) Electrostatic discharge protection circuit having multiple discharge paths
US10158225B2 (en) ESD protection system utilizing gate-floating scheme and control circuit thereof
JP2017037949A (ja) 半導体装置
KR20050067508A (ko) 정전기 보호회로
KR20080076411A (ko) 정전기 보호 회로
JP6398696B2 (ja) 静電気保護回路及び半導体集積回路装置
WO2016017386A1 (ja) 保護素子、保護回路及び半導体集積回路
TW490785B (en) Electrostatic discharge protection apparatus of semiconductor
US20080123231A1 (en) Circuit for discharging static electricity
US10454269B2 (en) Dynamically triggered electrostatic discharge cell
US20100149704A1 (en) Esd protection circuit
US9154133B2 (en) ESD robust level shifter
TWI744941B (zh) 靜電放電電路
KR20110130811A (ko) 정전기 방전 회로
KR100790448B1 (ko) 정전기 방전 보호 장치
JP6012361B2 (ja) 過電圧保護回路

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902