WO2016088482A1 - 半導体集積回路 - Google Patents

半導体集積回路 Download PDF

Info

Publication number
WO2016088482A1
WO2016088482A1 PCT/JP2015/080357 JP2015080357W WO2016088482A1 WO 2016088482 A1 WO2016088482 A1 WO 2016088482A1 JP 2015080357 W JP2015080357 W JP 2015080357W WO 2016088482 A1 WO2016088482 A1 WO 2016088482A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
circuit
semiconductor integrated
transistor
voltage
Prior art date
Application number
PCT/JP2015/080357
Other languages
English (en)
French (fr)
Inventor
孝明 巽
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/516,566 priority Critical patent/US10591532B2/en
Priority to CN201580062180.9A priority patent/CN107004638B/zh
Publication of WO2016088482A1 publication Critical patent/WO2016088482A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2853Electrical testing of internal connections or -isolation, e.g. latch-up or chip-to-lead connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1236Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of surge arresters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • H01L27/0285Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements bias arrangements for gate electrode of field effect transistors, e.g. RC networks, voltage partitioning circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/001Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing
    • G01R31/002Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing where the device under test is an electronic circuit

Definitions

  • the present disclosure relates to a semiconductor integrated circuit including a circuit for removing a surge generated in a power supply line.
  • a semiconductor integrated circuit such as an LSI (Large Scale Integrated Circuit) or the like is subjected to an internal circuit having a predetermined function (hereinafter referred to as a protected circuit) from a surge generated in a power supply line as its miniaturization and voltage reduction occur.
  • a protected circuit an internal circuit having a predetermined function
  • ESD electrostatic discharge
  • an element or a circuit for ESD protection is integrated on a semiconductor substrate together with the protected circuit for the purpose of preventing the protected circuit from being destroyed.
  • GGMOS Gate Grounded MOS
  • RCMOS thyristors
  • RCMOS thyristors
  • Each ESD protection element or circuit is properly used depending on the application, but in recent years, an RCMOS configuration ESD protection circuit that is relatively simple in design is often used (see, for example, Patent Document 1 and Non-Patent Document 1).
  • an ESD protection circuit of RCMOS configuration As an ESD protection circuit of RCMOS configuration, a detection circuit using a resistance element and a capacitive element, an inverter circuit using a CMOS between a power supply wiring and a ground wiring, and a protection for releasing a surge generated in the power supply wiring to the ground wiring A configuration in which a transistor is disposed is known. A MOS transistor is used as the protection transistor.
  • the protection transistor when a surge occurs, the protection transistor is turned on, and the surge is released from the power supply wiring to the ground wiring. When no surge is generated, the protection transistor is turned off and enters a standby state.
  • the MOS transistor used as the protection transistor generates off-leakage current even in the off state, which causes an increase in power consumption in the standby state. For this reason, it is required to reduce the off-leakage current.
  • Patent Document 1 in an ESD protection circuit having an RCMOS configuration, one end of an inverter provided in the final stage of an inverter circuit is connected to a third power supply line different from the power supply wiring and the ground wiring to thereby reduce off-leakage current. It has been proposed to reduce. However, in the circuit described in Patent Document 1, when a surge occurs, an overcurrent flows through the inverter connected to the third power supply line, and the ESD protection function may be lost.
  • the semiconductor integrated circuit according to the embodiment of the present disclosure is supplied with a voltage different from the voltages supplied to the first and second power supply lines connected to the protected circuit and the first and second power supply lines.
  • a transistor and a time constant circuit connected to at least the third power supply line and the protection transistor are provided.
  • the time constant circuit is connected to the third power supply line and the protection transistor, so that the off-leak current of the protection transistor can be reduced.
  • the time constant circuit is connected to the third power supply line and the protection transistor, it is possible to reduce the off-leak current of the protection transistor. Thus, it is possible to reduce the power consumption during normal operation while maintaining the ESD protection function.
  • FIG. 4 is a circuit diagram illustrating an example of a semiconductor integrated circuit according to a first embodiment of the present disclosure.
  • FIG. FIG. 5 is an explanatory diagram showing that off-leakage current is reduced by the circuit shown in FIG. 4.
  • It is a circuit diagram showing an example of a semiconductor integrated circuit concerning the 1st modification of a 1st embodiment. It is a circuit diagram showing an example of a semiconductor integrated circuit concerning the 2nd modification of a 1st embodiment.
  • FIG. 6 is a circuit diagram showing an example of a semiconductor integrated circuit according to a second embodiment. It is explanatory drawing which shows that an off-leakage current reduces with the circuit shown in FIG.
  • FIG. 1 shows a circuit of a first comparative example for the semiconductor integrated circuit of the present disclosure.
  • the circuit of the first comparative example shown in FIG. 1 shows a configuration example of an ESD protection circuit 100 having a general RCMOS configuration based on the description of Non-Patent Document 1.
  • the ESD protection circuit 100 shown in FIG. 1 includes a power supply wiring (first power supply line) 2 to which an external terminal (VDD terminal) 2T is connected and a reference voltage wiring (second power supply) to which an external terminal (VSS terminal) 3T is connected. Power supply line 3). A power supply voltage VDD is applied between the power supply wiring 2 and the reference voltage wiring 3.
  • the ESD protection circuit 100 also includes an inverter circuit 4, a protection transistor 5, and a detection circuit 8 between the power supply wiring 2 and the reference voltage wiring 3.
  • the protection transistor 5 allows high voltage pulses generated in the power supply wiring 2 due to ESD to escape to the reference voltage wiring 3.
  • the protection transistor 5 is composed of an NMOS transistor, for example, and has a drain terminal connected to the power supply wiring 2 and a source terminal connected to the reference voltage wiring 3.
  • the detection circuit 8 constitutes an RC series circuit including a detection resistive element Ra and a detection capacitive element Ca.
  • the inverter circuit 4 includes at least one inverter having a CMOS configuration.
  • FIG. 1 shows an example of a three-stage configuration in which the first, second, and third inverters Inv1, Inv2, Inv3 are connected in series.
  • the input terminal of the inverter circuit 4 is connected to a node between the detection resistance element Ra and the detection capacitance element Ca.
  • the output terminal of the inverter circuit 4 is connected to the gate terminal of the protection transistor 5.
  • the ESD protection circuit 100 is designed so as not to react to a potential rise or fluctuation of the normal power supply wiring 2 by using a time constant formed by the detection resistance element Ra and the detection capacitance element Ca. .
  • the potential of the power supply wiring 2 is intentionally raised as in normal power-on, the rising speed of the pulse is smaller than when an ESD surge occurs. Therefore, the potential VRC of the node connecting the detection resistance element Ra and the detection capacitance element Ca rises without much delay from the increase in the potential of the power supply wiring 2.
  • the positive pulse generated in the inverter circuit 4 is applied to the gate of the protection transistor 5 only during the period until the potential VRC reaches the inverter threshold value of the inverter circuit 4. Applied. Therefore, the protection transistor 5 is turned on for a time specified by the positive pulse, and the ESD surge is released from the power supply wiring 2 to the reference voltage wiring 3. Thereby, an internal circuit as a protected circuit connected between the power supply wiring 2 and the reference voltage wiring 3 is protected from an ESD surge.
  • the ESD protection circuit 100 detects the ESD surge by the detection circuit 8 composed of the RC series circuit, and promptly removes the ESD surge from the power supply wiring 2 in response to the detection result of the detection circuit 8.
  • the operation of the ESD protection circuit 100 is required to satisfy the requirements in the following situations (1) and (2).
  • the potential VRC of the node connecting the detection resistive element Ra and the detection capacitive element Ca is almost H.
  • VDD voltage
  • the H level is applied to the input of the first inverter Inv1 in the first stage among the three inverters, the output thereof takes the L (VSS) level.
  • the output (L level) of the first inverter Inv1 determines the outputs of the second and third inverters Inv2 and Inv3. At this time, the output of the second inverter Inv2 becomes H level, and the output of the third inverter Inv3 becomes L level.
  • the inverter circuit 4 and the protection transistor 5 can be operated for a short time using the ESD surge as a substitute for the power supply voltage VDD. In that case, even when assembled, the protection transistor 5 is turned on only for a short time, so that ESD surge can be removed.
  • FIG. 3 shows a circuit of a second comparative example for the semiconductor integrated circuit of the present disclosure.
  • the circuit of the second comparative example shown in FIG. 3 shows a configuration example of the ESD protection circuit 101 having an RCMOS configuration based on the description in Patent Document 1 with reduced off-leakage current.
  • the inverter circuit 4 in the ESD protection circuit 100 of FIG. 1 is shown with a specific transistor configuration.
  • the VDD terminal 2T and the VSS terminal 3T are provided as external terminals as in the ESD protection circuit 100 of FIG. 1, but these external terminals are not shown.
  • a protected circuit 6 that is connected to the power supply wiring 2 and the reference voltage line 3 and receives power supply is provided.
  • a semiconductor integrated circuit is formed by integrating the ESD protection circuit 101 and the protected circuit 6 on the same semiconductor substrate.
  • the first, second, and third inverters Inv1, Inv2, and Inv3 of the inverter circuit 4 are respectively connected to the PMOS transistor 4P and NMOS that are connected in series between the power supply line 2 and the reference voltage line 3. It is composed of a transistor 4N.
  • a common gate of the PMOS transistor 4P and the NMOS transistor 4N in the first inverter Inv1 in the first stage is connected between the detection resistance element Ra and the detection capacitance element Ca.
  • the common drain of the PMOS transistor 4P and the NMOS transistor 4N in the first inverter Inv1 is connected to the input terminal of the second inverter Inv2 in the next stage.
  • the second and third inverters Inv2 and Inv3 are configured in substantially the same manner as the first inverter Inv1.
  • the output terminal of the third inverter Inv3 in the final stage is connected to the gate terminal of the protection transistor 5.
  • the source terminal of the NMOS transistor 4N of only the third inverter Inv3 at the final stage is connected to a third power supply line 7 different from the reference voltage wiring 3.
  • the third power supply line 7 is a wiring for supplying a negative voltage ( ⁇ VS), and may be connected to an external terminal ( ⁇ VS terminal) (not shown). If the protected circuit 6 is a circuit using the same negative voltage ( ⁇ VS), the ESD protection circuit 101 desirably shares the third power supply line 7 with the protected circuit 6. Further, when the negative voltage ( ⁇ VS) is generated from the power supply voltage VDD or the like in the semiconductor integrated circuit, the external terminal is unnecessary.
  • FIG. 2 shows a characteristic graph of gate voltage Vg versus drain current Id of a typical NMOS transistor.
  • a slight current called off-leakage flows between the source and drain of the protection transistor 5.
  • an off-leakage current of about 0.1 nA per unit gate width (1 ⁇ m) is generated.
  • the protection transistor 5 has a size that allows a large amount of current to flow, has a large gate width, and is usually 1 mm or more, and thus consumes a large amount of power.
  • the voltage of the third power supply line 7 can be set independently of the reference voltage wiring 3 during the normal operation (without surge application) of (1). Off-leakage current is reduced. For example, a negative voltage ( ⁇ VS) is supplied to the third power supply line 7. In this case, when the third inverter Inv3 in the final stage is in operation, the NMOS transistor 4N is turned on to apply a negative voltage ( ⁇ VS) to the gate of the protection transistor 5.
  • the protection transistor 5 has an off-leakage current reduced when a negative voltage (-VS) is applied, rather than a reference voltage VSS (usually 0 V) as in the ESD protection circuit 100 of FIG.
  • the source side and the back gate of the NMOS transistor 4N of the third inverter Inv3 before the protection transistor 5 are not the reference voltage VSS but the negative voltage ( ⁇ VS). To. As a result, the gate voltage of the protection transistor 5 is made negative during the normal operation (no surge application) of (1), and the off-leakage of the protection transistor 5 is reduced.
  • the NMOS transistor 4N of the inverter Inv3 needs to have a negative voltage not only for the source but also for the back gate (PWell). In order to set the back gate to a negative voltage, it is necessary to isolate only the well of the NMOS transistor 4N of the inverter Inv3 from other MOS transistors. Compared with the ESD protection circuit 100 of FIG. 1, a well using a power supply different from that of other MOS transistors is required, which is difficult in terms of design and layout.
  • FIG. 4 illustrates a configuration example of the semiconductor integrated circuit according to the first embodiment of the present disclosure.
  • the ESD protection circuit 1 and the protected circuit 6 are integrated on the same semiconductor substrate to form a semiconductor integrated circuit.
  • the semiconductor integrated circuit of FIG. 4 includes a power supply wiring 2 and a reference voltage wiring 3 that are connected to the protected circuit 6 and supply the power supply voltage VDD to the protected circuit 6. Further, a third power supply line 7 to which a voltage different from the voltage supplied to the power supply wiring 2 and the reference voltage wiring 3 is supplied is provided.
  • the ESD protection circuit 1 of FIG. 4 also includes an inverter circuit 4, a protection transistor 5, and a detection circuit 8 between the power supply wiring 2 and the reference voltage wiring 3 as in the circuit example of FIG. Yes.
  • the inverter circuit 4 in the ESD protection circuit 100 of FIG. 1 is shown with a specific transistor configuration, similarly to the circuit example of FIG.
  • the VDD terminal 2T and the VSS terminal 3T are provided as external terminals, as in the ESD protection circuit 100 in FIG. 1, but these external terminals are not shown.
  • the inverter circuit 4 has a single-stage configuration including only the first inverter Inv1 is shown, but a two-stage circuit having two or more inverters as in a modified example described later.
  • the above configuration may be used.
  • the first inverter Inv1 includes a PMOS transistor 4P and an NMOS transistor 4N connected in series between the power supply line 2 and the reference voltage line 3.
  • the ESD protection circuit 1 in FIG. 4 further includes a time constant circuit 9 as a component different from the circuit examples in FIGS.
  • the time constant circuit 9 is connected to at least the third power supply line 7 and the protection transistor 5.
  • the time constant circuit 9 includes a capacitive element Cb and a resistive element Rb connected in series. One end of the capacitive element Cb is connected to the output terminal of the inverter circuit 4, and the other end of the capacitive element Cb is connected to the gate terminal of the protection transistor 5 and the other end of the resistance element Rb.
  • One end of the resistor element Rb is connected to the third power supply line 7, and the other end of the resistor element Rb is connected to the other end of the capacitor element Cb and the gate terminal of the protection transistor 5.
  • the protection transistor 5 is an NMOS transistor. A positive voltage is supplied to the power supply wiring 2 as the power supply voltage VDD, a ground voltage is supplied to the reference voltage wiring 3 as the reference voltage VSS, and a negative voltage ( ⁇ VS) is supplied to the third power supply line 7.
  • the off-leak current of the protection transistor 5 is reduced during the normal operation of (1) (no surge applied). Since the negative voltage ( ⁇ VS) is supplied to the third power supply line 7, the potential of the gate of the protection transistor 5 becomes negative via the time constant circuit 9. Since a negative voltage lower than the reference voltage VSS is applied to the gate of the protection transistor 5, the reference voltage VSS is applied to the gate of the protection transistor 5 as in the ESD protection circuit 100 of FIG. Off-leakage current is reduced.
  • FIG. 5 shows a characteristic graph of gate voltage Vg versus drain current Id of a typical NMOS transistor.
  • the power supply wiring 2 and the third power supply line 7 include the power supply voltage VDD and the negative voltage.
  • the voltage ( ⁇ VS) is not supplied, and the gate potential of the protection transistor 5 is uncertain (for example, floating). If an ESD surge suddenly enters the power supply wiring 2 in this state, the inverter circuit 4 and the protection transistor 5 can be operated for a short time by using the ESD surge as a substitute for the power supply voltage VDD.
  • the capacitive element Cb allows the ESD surge to be removed by passing a current to the pulse input of the ESD surge and turning on the gate of the protection transistor 5.
  • the present embodiment it is possible to reduce the off-leakage current of the protection transistor 5, and it is possible to achieve low power consumption during normal operation while maintaining the ESD protection function.
  • the power consumption can be reduced to 1/10 or less as compared with the ESD protection circuit 100 of FIG.
  • the inverter constituting the inverter circuit 4 may have two or more stages.
  • FIG. 6 shows an example of a semiconductor integrated circuit according to the first modification of the first embodiment.
  • the semiconductor integrated circuit shown in FIG. 6 includes an ESD protection circuit 1A having an inverter circuit 4 having a three-stage configuration with respect to the semiconductor integrated circuit shown in FIG. That is, the inverter circuit 4 has a configuration in which the first, second, and third inverters Inv1, Inv2, and Inv3 are connected in series.
  • the output terminal of the inverter circuit 4 is the output terminal of the third inverter Inv3 in the final stage, one end of the capacitive element Cb in the time constant circuit 9 is connected to the output terminal of the third inverter Inv3. .
  • FIG. 7 shows an example of a semiconductor integrated circuit according to the second modification of the first embodiment.
  • the semiconductor integrated circuit shown in FIG. 7 includes an ESD protection circuit 1B having an inverter circuit 4 having a two-stage configuration with respect to the semiconductor integrated circuit shown in FIG. That is, the inverter circuit 4 has a configuration in which the first and second inverters Inv1, Inv2 are connected in series.
  • the output terminal of the inverter circuit 4 is the output terminal of the second inverter Inv2 in the final stage, one end of the capacitive element Cb in the time constant circuit 9 is connected to the output terminal of the second inverter Inv2. .
  • the positional relationship between the detection resistive element Ra and the detection capacitive element Ca constituting the detection circuit 8 is reversed with respect to the semiconductor integrated circuit shown in FIG. Yes. That is, in the semiconductor integrated circuit shown in FIG. 4, one end of the detection resistance element Ra is connected to the power supply wiring 2, and one end of the detection capacitance element Ca is connected to the reference voltage wiring 3. On the other hand, in the semiconductor integrated circuit shown in FIG. 7, one end of the detection capacitive element Ca is connected to the power supply wiring 2, and one end of the detection resistance element Ra is connected to the reference voltage wiring 3.
  • FIG. 8 shows an example of a semiconductor integrated circuit according to a third modification of the first embodiment.
  • the semiconductor integrated circuit shown in FIG. 8 includes an ESD protection circuit 1C having a two-stage inverter circuit 4 and a protection transistor 5P made up of a PMOS transistor, compared to the semiconductor integrated circuit shown in FIG. ing.
  • the inverter circuit 4 has a configuration in which first and second inverters Inv1, Inv2 are connected in series. In this case, since the output terminal of the inverter circuit 4 is the output terminal of the second inverter Inv2 in the final stage, one end of the capacitive element Cb in the time constant circuit 9 is connected to the output terminal of the second inverter Inv2. .
  • a first positive voltage is supplied as the power supply voltage VDD to the power supply wiring 2
  • a ground voltage is supplied as the reference voltage VSS to the reference voltage wiring 3
  • a first positive voltage is supplied to the third power supply line 7.
  • a second positive voltage VD higher than the voltage is supplied.
  • FIG. 9 shows an example of a semiconductor integrated circuit according to the second embodiment.
  • the semiconductor integrated circuit shown in FIG. 9 includes an ESD protection circuit 1D in which the connection position of the time constant circuit 9 is changed with respect to the semiconductor integrated circuit shown in FIG.
  • the time constant circuit 9 is connected to the power supply wiring 2, the third power supply line 7, and the back gate terminal of the protection transistor 5. More specifically, one end of the capacitive element Cb of the time constant circuit 9 is connected to the power supply wiring 2, and the other end of the capacitive element Cb is connected to the back gate terminal of the protection transistor and the other end of the resistance element Rb. One end of the resistor element Rb is connected to the third power supply line 7, and the other end of the resistor element Rb is connected to the other end of the capacitor element Cb and the back gate terminal of the protection transistor 5.
  • the output terminal of the inverter circuit 4 is connected to the gate terminal of the protection transistor 5.
  • the protection transistor 5 is an NMOS transistor.
  • a positive voltage is supplied to the power supply wiring 2 as the power supply voltage VDD
  • a ground voltage is supplied to the reference voltage wiring 3 as the reference voltage VSS
  • a negative voltage is supplied to the third power supply line 7.
  • Other configurations may be substantially the same as those of the semiconductor integrated circuit shown in FIG.
  • the off-leak current of the protection transistor 5 is reduced during the normal operation (1) (no surge is applied). Since the negative voltage ( ⁇ VS) is supplied to the third power supply line 7, a negative voltage is applied to the back gate terminal of the protection transistor 5. As a result, the threshold voltage Vth of the protection transistor 5 is increased, so that the characteristic graph of the gate voltage Vg versus the drain current Id as a whole decreases as shown in FIG. 10, and the off-leak current is reduced.
  • the present technology can take the following configurations.
  • a semiconductor integrated circuit comprising: a time constant circuit connected to at least the third power supply line and the protection transistor.
  • the time constant circuit includes a capacitive element and a resistive element, The semiconductor integrated circuit according to (1), wherein one end of the resistance element is connected to the third power supply line. (3) One end of the capacitive element is connected to the output end of the inverter circuit, the other end of the capacitive element is connected to the gate terminal of the protection transistor and the other end of the resistance element, The semiconductor integrated circuit according to (2), wherein the other end of the resistive element is connected to the other end of the capacitive element and the gate terminal of the protection transistor.
  • the protection transistor is an NMOS transistor; A positive voltage is supplied to the first power line; A ground voltage is supplied to the second power line; The semiconductor integrated circuit according to any one of (1) to (4), wherein a negative voltage is supplied to the third power supply line.
  • the protection transistor is a PMOS transistor; A first positive voltage is supplied to the first power line; A ground voltage is supplied to the second power line; The semiconductor integrated circuit according to any one of (1) to (4), wherein a second positive voltage higher than the first positive voltage is supplied to the third power supply line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

 本開示の半導体集積回路は、被保護回路に接続された第1および第2の電源線と、第1および第2の電源線に供給される電圧とは異なる電圧が供給される第3の電源線と、第1および第2の電源線間に接続され、第1の電源線に発生するサージを検出する検出回路と、互いに直列に接続された少なくとも1つのインバータを含み、第1および第2の電源線間に接続されたインバータ回路と、第1および第2の電源線間に接続され、検出回路の出力により制御されてサージを第2の電源線に流す保護用トランジスタと、少なくとも第3の電源線と保護用トランジスタとに接続された時定数回路とを備える。

Description

半導体集積回路
 本開示は、電源線に発生したサージを除去する回路を備えた半導体集積回路に関する。
 一般に、LSI(Large Scale Integrated Circuit)等の半導体集積回路は、その微細化および低電圧化に伴って、所定の機能をもつ内部回路(以下、被保護回路という)を電源線に発生するサージから保護することの重要性が増している。
 電源線に発生するサージは、代表的なものとして、電源線の外部端子に対する静電気放電(Electrostatic Discharge:ESD)によって電源線電圧が急上昇するESDサージが知られている。
 ESDサージによって、外部端子に高電圧パルスが発生した場合、被保護回路が破壊されることを防ぐ目的で、ESD保護のための素子または回路が被保護回路とともに半導体基板に集積化される。
 ESD保護のための素子または回路として、GGMOS(Gate Grounded MOS)、サイリスタ、RCMOSなどが知られている。それぞれのESD保護のための素子または回路は用途によって使い分けされているが、近年、設計が比較的簡単なRCMOS構成のESD保護回路がよく使われる(例えば特許文献1および非特許文献1参照)。
特開2012-253266号公報
C. A. Torres et al; "Modular, Portable, and Easily Simulated ESD Protection Networks for Advanced CMOS Technologies", Electrical Overstress/Electrostatic Discharge Symposium, September 11-13. Symposium Proceedings, P.81-94, Fig. 1.
 RCMOS構成のESD保護回路として、電源配線とグランド配線との間に、抵抗素子および容量素子を用いた検出回路と、CMOSを用いたインバータ回路と、電源配線に発生するサージをグランド配線に逃がす保護用トランジスタとを配置した構成が知られている。保護用トランジスタとしてはMOSトランジスタが用いられる。
 上記RCMOS構成のESD保護回路では、サージが発生した場合に保護用トランジスタがオンし、サージを電源配線からグランド配線に逃がす。サージが発生していない場合には保護用トランジスタはオフとなり、スタンバイ状態となる。しかしながら、保護用トランジスタとして用いられるMOSトランジスタは、オフ状態であってもオフリーク電流が発生し、これがスタンバイ状態における消費電力の増加を招く。このため、オフリーク電流を低減することが求められる。
 特許文献1には、RCMOS構成のESD保護回路において、インバータ回路の最終段に設けられたインバータの一端を、電源配線およびグランド配線とは別の第3の電源線に接続することでオフリーク電流を低減することが提案されている。しかしながら、特許文献1に記載の回路では、サージが発生した場合に、第3の電源線に接続されたインバータに過電流が流れ、ESD保護の機能が失われるおそれがある。
 従って、ESD保護の機能を保ちつつ、通常動作時の低消費電力化を図ることができるようにした半導体集積回路を提供することが望ましい。
 本開示の一実施の形態に係る半導体集積回路は、被保護回路に接続された第1および第2の電源線と、第1および第2の電源線に供給される電圧とは異なる電圧が供給される第3の電源線と、第1および第2の電源線間に接続され、第1の電源線に発生するサージを検出する検出回路と、互いに直列に接続された少なくとも1つのインバータを含み、第1および第2の電源線間に接続されたインバータ回路と、第1および第2の電源線間に接続され、検出回路の出力により制御されてサージを第2の電源線に流す保護用トランジスタと、少なくとも第3の電源線と保護用トランジスタとに接続された時定数回路とを備えたものである。
 本開示の一実施の形態に係る半導体集積回路では、第3の電源線と保護用トランジスタとに時定数回路が接続されていることで、保護用トランジスタのオフリーク電流を減らすことが可能となる。
 本開示の一実施の形態に係る半導体集積回路によれば、第3の電源線と保護用トランジスタとに時定数回路を接続するようにしたので、保護用トランジスタのオフリーク電流を減らすことが可能となり、ESD保護の機能を保ちつつ、通常動作時の低消費電力化を図ることができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
一般的なESD保護回路の構成例を示す回路図である。 NMOSトランジスタに流れるオフリーク電流を示す説明図である。 オフリーク電流を低減したESD保護回路の一例を示す回路図である。 本開示の第1の実施の形態に係る半導体集積回路の一例を示す回路図である。 図4に示した回路によってオフリーク電流が減ることを示す説明図である。 第1の実施の形態の第1の変形例に係る半導体集積回路の一例を示す回路図である。 第1の実施の形態の第2の変形例に係る半導体集積回路の一例を示す回路図である。 第1の実施の形態の第3の変形例に係る半導体集積回路の一例を示す回路図である。 第2の実施の形態に係る半導体集積回路の一例を示す回路図である。 図9に示した回路によってオフリーク電流が減ることを示す説明図である。
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 0.ESD保護回路の説明(図1~図3)
  0.1 構成
   0.1.1 第1の比較例の構成
   0.1.2 第2の比較例の構成
  0.2 課題
 1.第1の実施の形態
  1.1 構成および動作(図4、図5)
  1.2 効果
  1.3 変形例
   1.3.1 第1および第2の変形例(インバータの段数を2段以上にした場合の構成例)(図6、図7)
   1.3.2 第3の変形例(保護用トランジスタをPMOSトランジスタにした場合の構成例)(図8)
 2.第2の実施の形態(図9、図10)
 3.その他の実施の形態
<0.ESD保護回路の説明>
 まず、本開示による半導体集積回路に対する比較例となるESD保護回路の構成と、その課題を説明する。
[0.1 構成]
(0.1.1 第1の比較例の構成)
 図1に、本開示の半導体集積回路に対する第1の比較例の回路を示す。図1に示した第1の比較例の回路は、上記非特許文献1の記載に基づく、一般的なRCMOS構成のESD保護回路100の構成例を示している。
 図1に示すESD保護回路100は、外部端子(VDD端子)2Tが接続された電源配線(第1の電源線)2と、外部端子(VSS端子)3Tが接続された基準電圧配線(第2の電源線)3とを備えている。電源配線2と基準電圧配線3との間には電源電圧VDDが印加される。
 ESD保護回路100はまた、電源配線2と基準電圧配線3との間に、インバータ回路4と、保護用トランジスタ5と、検出回路8とを備えている。
 保護用トランジスタ5は、ESDに起因して電源配線2に発生する高電圧パルスを基準電圧配線3に逃がすものである。保護用トランジスタ5は例えばNMOSトランジスタからなり、ドレイン端子が電源配線2に、ソース端子が基準電圧配線3に接続されている。
 検出回路8は、検出用抵抗素子Raおよび検出用容量素子CaからなるRC直列回路を構成している。
 インバータ回路4は、少なくとも1つのCMOS構成のインバータを含んでいる。図1では、第1、第2および第3のインバータInv1,Inv2,Inv3を直列接続した3段構成の例を示している。インバータ回路4の入力端は、検出用抵抗素子Raと検出用容量素子Caとの間のノードに接続されている。インバータ回路4の出力端は、保護用トランジスタ5のゲート端子に接続されている。
 このESD保護回路100は、検出用抵抗素子Raと検出用容量素子Caとによる時定数を利用して、通常の電源配線2の電位的な立ち上げや揺らぎ等には反応しないように設計される。通常の電源投入時のように電源配線2の電位を意図的に立ち上げる場合、そのパルスの立ち上がり速度がESDサージ発生時に比べて小さい。そのため、検出用抵抗素子Raと検出用容量素子Caとを接続するノードの電位VRCが、電源配線2の電位の上昇に余り遅れることなく立ち上がる。
 一方、通常の動作で想定されるより高い周波数のパルス(例えばESDサージ)が電源配線2に印加されると、検出用抵抗素子Raと検出用容量素子Caとを接続するノードの電位VRCが、電源配線2の電位上昇に遅れて立ち上がる。ESDの代表的なモデルであるHBM(Human Body Model)における電位上昇は数百ナノ秒という極めて短い時間に生じ、そのような高い周波数の電位上昇で、上記電位VRCが電源配線2の電位上昇に遅れて立ち上がるように検出回路8の時定数が決められている。
 電源配線2の電位の立ち上がりから遅れて電位VRCが立ち上がると、電位VRCがインバータ回路4のインバータの閾値に達するまでの期間だけ、インバータ回路4で発生した正のパルスが保護用トランジスタ5のゲートに印加される。よって、この正のパルスで規定される時間だけ保護用トランジスタ5がオンして、ESDサージを電源配線2から基準電圧配線3に逃がす。これにより、電源配線2と基準電圧配線3との間に接続される被保護回路としての内部回路はESDサージから保護される。
 電位VRCがインバータ回路4のインバータの閾値に達すると、保護用トランジスタ5のゲートに印加される正のパルスが終了するため、速やかに保護用トランジスタ5がオフする。このようにして、ESD保護回路100は、RC直列回路からなる検出回路8によってESDサージを検出し、検出回路8の検出結果に応答してESDサージを速やかに電源配線2から除去する。
 ここで、ESD保護回路100の動作は、以下の(1),(2)の状況での要求を満たすことが要求される。
(1)通常動作中(サージ印加なし):
 ここで「通常動作中(サージ印加なし)」とは、通常動作時に予定されている電源配線2の電位変動はあっても、保護用トランジスタ5をオンさせるほどの大きなサージが電源配線2に印加されない動作状態をいう。予定されている電源配線2の電位変動とは、電源立ち上げ時や立ち下げ時の電位変動、さらには、回路動作に起因して電源配線2が小さな振幅で揺れるような電位変動のことである。
 電源配線2が電源電圧VDDで保持されているときは、検出用容量素子Caは、高インピーダンス状態なので、検出用抵抗素子Raと検出用容量素子Caとを接続するノードの電位VRCは、ほぼH(VDD)レベルをとる。このHレベルは、3つのインバータのうちの初段の第1のインバータInv1の入力に印加されるので、その出力がL(VSS)レベルをとる。この第1のインバータInv1の出力(Lレベル)は、第2および第3のインバータInv2,Inv3の各出力を確定している。このとき、第2のインバータInv2の出力はHレベル、第3のインバータInv3の出力はLレベルとなる。
 従って、このとき、保護用トランジスタ5のゲートはL(VSS)レベルであるため、保護用トランジスタ5のチャネルは閉じている。したがって、電源電圧VDDが印加された電源配線2から、基準電圧VSSが印加された基準電圧配線3へ電流は流れない。
(2)組み立て作業中にESDサージが入ったとき:
 一般にESD試験はこの状況で行われる。組立作業中は、通常、静電対策のため基準電圧配線3のみ基準電位(例えば接地電圧)に接続されていることが多い。その一方、電源配線2がつながるVDD端子2Tには結線が行われていない。このとき、各インバータに電源が供給されていないため、保護用トランジスタ5のゲート電位は不確定(例えば、フローティング)となっている。
 この状態で、VDD端子2TにESDサージが急に入ると、このESDサージを電源電圧VDDの代わりとして、インバータ回路4および保護用トランジスタ5が短い時間だけ動作可能となる。その場合、組み立て時でも保護用トランジスタ5が短い時間だけオンして、ESDサージ除去が可能となる。
(0.1.2 第2の比較例の構成)
 図3に、本開示の半導体集積回路に対する第2の比較例の回路を示す。図3に示した第2の比較例の回路は、上記特許文献1の記載に基づく、オフリーク電流を低減したRCMOS構成のESD保護回路101の構成例を示している。
 図3のESD保護回路101では、図1のESD保護回路100におけるインバータ回路4を具体的なトランジスタ構成で示している。図3のESD保護回路101においても、図1のESD保護回路100と同様に、外部端子としてVDD端子2TおよびVSS端子3Tが設けられているが、これらの外部端子は図示を省略している。また、図3の回路例では、電源配線2と基準電圧線3とに接続されて電源供給を受ける被保護回路6が設けられている。ESD保護回路101と被保護回路6とが同一の半導体基板に集積化されることによって半導体集積回路が形成されている。
 ESD保護回路101では、インバータ回路4の第1、第2および第3のインバータInv1,Inv2,Inv3がそれぞれ、電源配線2と基準電圧配線3との間に直列に接続されたPMOSトランジスタ4PとNMOSトランジスタ4Nとで構成されている。初段の第1のインバータInv1におけるPMOSトランジスタ4PとNMOSトランジスタ4Nの共通ゲートが、検出用抵抗素子Raと検出用容量素子Caとの間に接続されている。また、第1のインバータInv1におけるPMOSトランジスタ4PとNMOSトランジスタ4Nとの共通ドレインが、次段の第2のインバータInv2の入力端に接続されている。第2および第3のインバータInv2,Inv3も、第1のインバータInv1とほぼ同様に構成されている。最終段の第3のインバータInv3の出力端は、保護用トランジスタ5のゲート端子に接続されている。
 ESD保護回路101では、最終段の第3のインバータInv3のみ、そのNMOSトランジスタ4Nのソース端子が基準電圧配線3とは別の第3の電源線7に接続されている。
 第3の電源線7は、負電圧(-VS)を供給するための配線であり、図示しない外部端子(-VS端子)に接続させてもよい。なお、被保護回路6が同じ負電圧(-VS)を用いる回路であれば、ESD保護回路101は、第3の電源線7を被保護回路6と共用することが望ましい。また、負電圧(-VS)を半導体集積回路内で電源電圧VDD等から生成する場合は、その外部端子は不要である。
 上記図1のESD保護回路100の構成で問題になるのは、上記(1)の通常動作中の保護用トランジスタ5のリーク電流である。図2に、典型的なNMOSトランジスタのゲート電圧Vg対ドレイン電流Idの特性グラフを示す。保護用トランジスタ5は、通常動作中、ゲート電圧Vg=0Vでチャネルは閉じている。しかしながら、保護用トランジスタ5のソースとドレイン間にはオフリークといわれる、わずかな電流が流れる。例えば図2の例では、ゲート電圧Vg=0Vのときに、単位ゲート幅(1μm)当たり、約0.1nA弱のオフリーク電流が発生している。一般に、保護用トランジスタ5は、大量の電流を流せるだけの大きさを持ち、そのゲート幅が大きく、通常1mm以上であるため、消費電力が大きい。
 このオフリーク低減のため、図3のESD保護回路101では、最終段の第3のインバータInv3のみ、そのNMOSトランジスタ4Nのソース端子を、基準電圧VSSより低い負電圧(-VS)でバイアスしている。
 このESD保護回路101では、上記(1)の通常動作中(サージ印加なし)のときには、第3の電源線7が、基準電圧配線3とは独立に電圧を設定できることから、保護用トランジスタ5のオフリーク電流が低減される。例えば、負電圧(-VS)を第3の電源線7に供給する。この場合、最終段の第3のインバータInv3が動作時に、そのNMOSトランジスタ4Nがオンして負電圧(-VS)を保護用トランジスタ5のゲートに与える。保護用トランジスタ5は、図1のESD保護回路100のように基準電圧VSS(通常、0V)が印加されるよりも、負電圧(-VS)が印加された場合にオフリーク電流が低減される。
[0.2 課題]
 上記したように、図3のESD保護回路101では、保護用トランジスタ5の手前の第3のインバータInv3のNMOSトランジスタ4Nのソース側およびバックゲートを、基準電圧VSSではなく、負電圧(-VS)にする。これにより、上記(1)の通常動作中(サージ印加なし)の期間で保護用トランジスタ5のゲート電圧を負にし、保護用トランジスタ5のオフリークを低減させる。
 しかしながら、図3のESD保護回路101において、インバータInv3のNMOSトランジスタ4Nはソースだけでなくバックゲート(PWell)をも負電圧にする必要がある。バックゲートを負電圧にするためには、インバータInv3のNMOSトランジスタ4Nのwellだけを、他のMOSトランジスタから分離する必要がある。図1のESD保護回路100と比較して、他のMOSトランジスタとは別の電源を用いたwellを要するため、設計およびレイアウト上の困難を伴う。
<1.第1の実施の形態>
 次に、本開示の第1の実施の形態について説明する。以下では、上記図1および図3に示した回路と同様の構成および動作を有する部分については、適宜説明を省略する。
[1.1 構成および動作]
 図4は、本開示の第1の実施の形態に係る半導体集積回路の一構成例を示している。
 図4の回路例では、ESD保護回路1と、被保護回路6とが同一の半導体基板に集積化されることによって半導体集積回路が形成されている。図4の半導体集積回路は、図3の半導体集積回路と同様に、被保護回路6に接続され、被保護回路6に電源電圧VDDを供給する電源配線2および基準電圧配線3を備えている。また、電源配線2および基準電圧配線3に供給される電圧とは異なる電圧が供給される第3の電源線7を備えている。
 図4のESD保護回路1はまた、図1の回路例と同様に、電源配線2と基準電圧配線3との間に、インバータ回路4と、保護用トランジスタ5と、検出回路8とを備えている。
 図4のESD保護回路1では、図3の回路例と同様に、図1のESD保護回路100におけるインバータ回路4を具体的なトランジスタ構成で示している。図4のESD保護回路1においても、図1のESD保護回路100と同様に、外部端子としてVDD端子2TおよびVSS端子3Tが設けられているが、これらの外部端子は図示を省略している。
 図4のESD保護回路1では、インバータ回路4を第1のインバータInv1のみの1段の構成にした例を示しているが、後述する変形例のように、2つ以上のインバータを有する2段以上の構成であってもよい。第1のインバータInv1は、電源配線2と基準電圧配線3との間に直列に接続されたPMOSトランジスタ4PとNMOSトランジスタ4Nとで構成されている。
 図4のESD保護回路1は、図1および図3の回路例とは異なる構成要素として、時定数回路9をさらに備えている。時定数回路9は、少なくとも第3の電源線7と保護用トランジスタ5とに接続されている。時定数回路9は、直列接続された容量素子Cbと抵抗素子Rbとを含んでいる。容量素子Cbの一端はインバータ回路4の出力端に接続され、容量素子Cbの他端は保護用トランジスタ5のゲート端子と抵抗素子Rbの他端とに接続されている。抵抗素子Rbの一端は第3の電源線7に接続され、抵抗素子Rbの他端は容量素子Cbの他端と保護用トランジスタ5のゲート端子とに接続されている。
 このESD保護回路1において、保護用トランジスタ5はNMOSトランジスタである。電源配線2には電源電圧VDDとして正電圧が供給され、基準電圧配線3には基準電圧VSSとして接地電圧が供給され、第3の電源線7には負電圧(-VS)が供給される。
 この図4のESD保護回路1では、図3のESD保護回路101と同様に、上記(1)の通常動作中(サージ印加なし)のときには、保護用トランジスタ5のオフリーク電流が低減される。第3の電源線7には負電圧(-VS)が供給されているので、時定数回路9を介して保護用トランジスタ5のゲートの電位は負となる。保護用トランジスタ5のゲートに基準電圧VSSよりも低い負の電圧が印加されるので、図1のESD保護回路100のように基準電圧VSSが保護用トランジスタ5のゲートに印加される場合よりも、オフリーク電流が低減される。
 図5に、典型的なNMOSトランジスタのゲート電圧Vg対ドレイン電流Idの特性グラフを示す。上述した図2に示したように、保護用トランジスタ5には、ゲート電圧Vg=0Vであっても、単位ゲート幅(1μm)当たり、約0.1nA弱のオフリーク電流が発生している。例えば図5に示したように、ゲート電圧Vg=-0.8Vとすれば、オフリーク電流はVg=0Vの場合より1桁以上、下がる。
 この図4のESD保護回路1において、上記(2)の組み立て作業中にESDサージが入ったときのような状況では、例えば電源配線2および第3の電源線7には、電源電圧VDDおよび負電圧(-VS)の供給はなされず、保護用トランジスタ5のゲート電位は不確定(例えば、フローティング)となる。この状態で、電源配線2にESDサージが急に入ると、このESDサージを電源電圧VDDの代わりとして、インバータ回路4および保護用トランジスタ5が短い時間だけ動作可能となる。容量素子CbはESDサージのパルス入力に対して電流を通し、保護用トランジスタ5のゲートをオンさせることで、ESDサージ除去が可能となる。
[1.2 効果]
 以上のように、本実施の形態によれば、保護用トランジスタ5のオフリーク電流を減らすことが可能となり、ESD保護の機能を保ちつつ、通常動作時の低消費電力化を図ることができる。例えば、図1のESD保護回路100に比べて、消費電力を1/10以下にすることが可能になる。
 また、図3のESD保護回路101ではインバータInv3のNMOSトランジスタ4Nのwellだけを、他のMOSトランジスタから分離する必要があるのに対して、本実施の形態では図1のESD保護回路100に対して単純に時定数回路9を追加する配線処理をすればよいため、設計上、レイアウト上の問題を伴わない。
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。以降の他の実施の形態および変形例についても同様である。
[1.3 変形例]
 次に、第1の実施の形態の変形例について説明する。以下では、上記図4に示した回路と同様の構成および動作を有する部分については、適宜説明を省略する。
(1.3.1 第1および第2の変形例)
 図4に示した半導体集積回路において、インバータ回路4を構成するインバータは2段以上の構成であってもよい。
 図6は、第1の実施の形態の第1の変形例に係る半導体集積回路の一例を示している。
 図6に示した半導体集積回路は、図4に示した半導体集積回路に対して、3段構成のインバータ回路4を有するESD保護回路1Aを備えている。すなわち、インバータ回路4が、第1、第2および第3のインバータInv1,Inv2,Inv3を直列接続した構成とされている。この場合、インバータ回路4の出力端は最終段の第3のインバータInv3の出力端となるので、時定数回路9における容量素子Cbの一端は、第3のインバータInv3の出力端に接続されている。
 その他の構成および動作は図4に示した半導体集積回路と略同様であっても良い。また、その他、インバータ回路4を5段以上の奇数段の構成にする場合も、インバータ回路4以外は図4に示した半導体集積回路と略同様の構成にすることができる。
 図7は、第1の実施の形態の第2の変形例に係る半導体集積回路の一例を示している。
 図7に示した半導体集積回路は、図4に示した半導体集積回路に対して、2段構成のインバータ回路4を有するESD保護回路1Bを備えている。すなわち、インバータ回路4が、第1および第2のインバータInv1,Inv2を直列接続した構成とされている。この場合、インバータ回路4の出力端は最終段の第2のインバータInv2の出力端となるので、時定数回路9における容量素子Cbの一端は、第2のインバータInv2の出力端に接続されている。
 また、図7に示した半導体集積回路は、図4に示した半導体集積回路に対して、検出回路8を構成する検出用抵抗素子Raと検出用容量素子Caとの位置関係が逆となっている。すなわち、図4に示した半導体集積回路では、電源配線2に検出用抵抗素子Raの一端が接続され、基準電圧配線3に検出用容量素子Caの一端が接続されている。これに対して、図7に示した半導体集積回路では、電源配線2に検出用容量素子Caの一端が接続され、基準電圧配線3に検出用抵抗素子Raの一端が接続されている。
 その他の構成および動作は図4に示した半導体集積回路と略同様であっても良い。また、その他、インバータ回路4を4段以上の偶数段の構成にする場合も、インバータ回路4と検出回路8以外は図4に示した半導体集積回路と略同様の構成にすることができる。
(1.3.2 第3の変形例)
 図8は、第1の実施の形態の第3の変形例に係る半導体集積回路の一例を示している。
 図8に示した半導体集積回路は、図4に示した半導体集積回路に対して、2段構成のインバータ回路4と、PMOSトランジスタで構成された保護用トランジスタ5Pとを有するESD保護回路1Cを備えている。
 インバータ回路4は、第1および第2のインバータInv1,Inv2を直列接続した構成とされている。この場合、インバータ回路4の出力端は最終段の第2のインバータInv2の出力端となるので、時定数回路9における容量素子Cbの一端は、第2のインバータInv2の出力端に接続されている。
 このESD保護回路1Cでは、電源配線2に電源電圧VDDとして第1の正電圧を供給し、基準電圧配線3に基準電圧VSSとして接地電圧を供給し、第3の電源線7に第1の正電圧よりも高い第2の正電圧VDを供給する。
 その他の構成および動作は図4に示した半導体集積回路と略同様であっても良い。
<2.第2の実施の形態>
 次に、本開示の第2の実施の形態について説明する。以下では、上記第1の実施の形態と同様の構成および動作を有する部分については、適宜説明を省略する。
 図9は、第2の実施の形態に係る半導体集積回路の一例を示している。
 図9に示した半導体集積回路は、図4に示した半導体集積回路に対して、時定数回路9の接続位置を変えたESD保護回路1Dを備えている。
 図4に示した半導体集積回路では、時定数回路9が、電源配線2と、第3の電源線7と、保護用トランジスタ5のバックゲート端子とに接続されている。より詳しくは、時定数回路9の容量素子Cbの一端が電源配線2に接続され、容量素子Cbの他端が保護用トランジスタのバックゲート端子と抵抗素子Rbの他端とに接続されている。抵抗素子Rbの一端は第3の電源線7に接続され、抵抗素子Rbの他端は容量素子Cbの他端と保護用トランジスタ5のバックゲート端子とに接続されている。
 また、インバータ回路4の出力端は、保護用トランジスタ5のゲート端子に接続されている。ESD保護回路1Dにおいて、保護用トランジスタ5はNMOSトランジスタである。電源配線2には電源電圧VDDとして正電圧が供給され、基準電圧配線3には基準電圧VSSとして接地電圧が供給され、第3の電源線7には負電圧(-VS)が供給される。その他の構成は図4に示した半導体集積回路と略同様であっても良い。
 図10に、典型的なNMOSトランジスタのゲート電圧Vg対ドレイン電流Idの特性グラフを示す。図10のrefで示した特性グラフのように、保護用トランジスタ5にはゲート電圧Vg=0Vであっても、単位ゲート幅(1μm)当たり、約0.1nA弱のオフリーク電流が発生している。
 本実施の形態におけるESD保護回路1Dにおいても、上記(1)の通常動作中(サージ印加なし)のときには、保護用トランジスタ5のオフリーク電流が低減される。第3の電源線7には負電圧(-VS)が供給されているので、保護用トランジスタ5のバックゲート端子には負電圧が印加される。これにより、保護用トランジスタ5のしきい値電圧Vthが上がるので、図10に示したように、ゲート電圧Vg対ドレイン電流Idの特性グラフが全体として下がり、オフリーク電流が低減される。
<3.その他の実施の形態>
 本開示による技術は、上記各実施の形態の説明に限定されず種々の変形実施が可能である。
 例えば、本技術は以下のような構成を取ることができる。
(1)
 被保護回路に接続された第1および第2の電源線と、
 前記第1および第2の電源線に供給される電圧とは異なる電圧が供給される第3の電源線と、
 前記第1および第2の電源線間に接続され、前記第1の電源線に発生するサージを検出する検出回路と、
 互いに直列に接続された少なくとも1つのインバータを含み、前記第1および第2の電源線間に接続されたインバータ回路と、
 前記第1および第2の電源線間に接続され、前記検出回路の出力により制御されて前記サージを前記第2の電源線に流す保護用トランジスタと、
 少なくとも前記第3の電源線と前記保護用トランジスタとに接続された時定数回路と
 を備えた半導体集積回路。
(2)
 前記時定数回路は、容量素子と抵抗素子とを含み、
 前記抵抗素子の一端が、前記第3の電源線に接続されている
 上記(1)に記載の半導体集積回路。
(3)
 前記容量素子の一端が前記インバータ回路の出力端に接続され、前記容量素子の他端が前記保護用トランジスタのゲート端子と前記抵抗素子の他端とに接続され、
 前記抵抗素子の他端が前記容量素子の他端と前記保護用トランジスタの前記ゲート端子とに接続されている
 上記(2)に記載の半導体集積回路。
(4)
 前記容量素子の一端が前記第1の電源線に接続され、前記容量素子の他端が前記保護用トランジスタのバックゲート端子と前記抵抗素子の他端とに接続され、
 前記抵抗素子の他端が前記容量素子の他端と前記保護用トランジスタの前記バックゲート端子とに接続されている
 上記(2)に記載の半導体集積回路。
(5)
 前記保護用トランジスタはNMOSトランジスタであり、
 前記第1の電源線に正電圧が供給され、
 前記第2の電源線に接地電圧が供給され、
 前記第3の電源線に負電圧が供給される
 上記(1)ないし(4)のいずれか1つに記載の半導体集積回路。
(6)
 前記保護用トランジスタはPMOSトランジスタであり、
 前記第1の電源線に第1の正電圧が供給され、
 前記第2の電源線に接地電圧が供給され、
 前記第3の電源線に前記第1の正電圧よりも高い第2の正電圧が供給される
 上記(1)ないし(4)のいずれか1つに記載の半導体集積回路。
 本出願は、日本国特許庁において2014年12月5日に出願された日本特許出願番号第2014-247067号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (6)

  1.  被保護回路に接続された第1および第2の電源線と、
     前記第1および第2の電源線に供給される電圧とは異なる電圧が供給される第3の電源線と、
     前記第1および第2の電源線間に接続され、前記第1の電源線に発生するサージを検出する検出回路と、
     互いに直列に接続された少なくとも1つのインバータを含み、前記第1および第2の電源線間に接続されたインバータ回路と、
     前記第1および第2の電源線間に接続され、前記検出回路の出力により制御されて前記サージを前記第2の電源線に流す保護用トランジスタと、
     少なくとも前記第3の電源線と前記保護用トランジスタとに接続された時定数回路と
     を備えた半導体集積回路。
  2.  前記時定数回路は、容量素子と抵抗素子とを含み、
     前記抵抗素子の一端が、前記第3の電源線に接続されている
     請求項1に記載の半導体集積回路。
  3.  前記容量素子の一端が前記インバータ回路の出力端に接続され、前記容量素子の他端が前記保護用トランジスタのゲート端子と前記抵抗素子の他端とに接続され、
     前記抵抗素子の他端が前記容量素子の他端と前記保護用トランジスタの前記ゲート端子とに接続されている
     請求項2に記載の半導体集積回路。
  4.  前記容量素子の一端が前記第1の電源線に接続され、前記容量素子の他端が前記保護用トランジスタのバックゲート端子と前記抵抗素子の他端とに接続され、
     前記抵抗素子の他端が前記容量素子の他端と前記保護用トランジスタの前記バックゲート端子とに接続されている
     請求項2に記載の半導体集積回路。
  5.  前記保護用トランジスタはNMOSトランジスタであり、
     前記第1の電源線に正電圧が供給され、
     前記第2の電源線に接地電圧が供給され、
     前記第3の電源線に負電圧が供給される
     請求項1に記載の半導体集積回路。
  6.  前記保護用トランジスタはPMOSトランジスタであり、
     前記第1の電源線に第1の正電圧が供給され、
     前記第2の電源線に接地電圧が供給され、
     前記第3の電源線に前記第1の正電圧よりも高い第2の正電圧が供給される
     請求項1に記載の半導体集積回路。
PCT/JP2015/080357 2014-12-05 2015-10-28 半導体集積回路 WO2016088482A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/516,566 US10591532B2 (en) 2014-12-05 2015-10-28 Semiconductor integrated circuit
CN201580062180.9A CN107004638B (zh) 2014-12-05 2015-10-28 半导体集成电路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-247067 2014-12-05
JP2014247067A JP2016111186A (ja) 2014-12-05 2014-12-05 半導体集積回路

Publications (1)

Publication Number Publication Date
WO2016088482A1 true WO2016088482A1 (ja) 2016-06-09

Family

ID=56091437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080357 WO2016088482A1 (ja) 2014-12-05 2015-10-28 半導体集積回路

Country Status (4)

Country Link
US (1) US10591532B2 (ja)
JP (1) JP2016111186A (ja)
CN (1) CN107004638B (ja)
WO (1) WO2016088482A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180287377A1 (en) * 2015-09-29 2018-10-04 Tdk Corporation Electrostatic Discharge Protection Device and Circuit Apparatus
JP2017123374A (ja) * 2016-01-05 2017-07-13 ソニー株式会社 半導体集積回路及びその制御方法
CN106714389B (zh) * 2017-02-16 2019-05-21 深圳市晟碟半导体有限公司 一种led驱动装置及其浪涌防护电路、浪涌防护方法
US10985156B2 (en) * 2018-01-10 2021-04-20 Marvell Asia Pte., Ltd. Electrostatic discharge clamp with reduced off-state power consumption
JP7027176B2 (ja) 2018-01-22 2022-03-01 ラピスセミコンダクタ株式会社 半導体装置
US10819110B2 (en) * 2018-02-27 2020-10-27 Globalfoundries Inc. Electrostatic discharge protection device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093497A (ja) * 2003-09-12 2005-04-07 Toshiba Corp 保護回路を有する半導体装置
JP2010004021A (ja) * 2008-05-19 2010-01-07 Canon Inc 半導体集積回路の保護回路及びその駆動方法
JP2012253266A (ja) * 2011-06-06 2012-12-20 Sony Corp 半導体集積回路
JP2013055102A (ja) * 2011-09-01 2013-03-21 Sony Corp 半導体集積回路及び保護回路
JP2013207388A (ja) * 2012-03-27 2013-10-07 Asahi Kasei Electronics Co Ltd Esd保護回路及びesd保護回路に係る半導体装置
JP2014022560A (ja) * 2012-07-18 2014-02-03 Sony Corp 保護素子、半導体装置及び電子機器
JP2014187288A (ja) * 2013-03-25 2014-10-02 Toshiba Corp 静電保護回路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6510033B1 (en) * 2000-06-30 2003-01-21 Intel Corporation RC-timer circuit to reduce current leakage in future semiconductor processes
TW518736B (en) * 2001-09-06 2003-01-21 Faraday Tech Corp Gate-driven or gate-coupled electrostatic discharge protection circuit
TW538522B (en) * 2002-05-15 2003-06-21 Winbond Electronics Corp Fast-triggered static charge protection circuit and its method
US7710695B2 (en) * 2007-06-04 2010-05-04 Via Technologies, Inc. Integrated circuit and electrostatic discharge protection circuit
JP5562246B2 (ja) * 2007-10-30 2014-07-30 アギア システムズ インコーポレーテッド 静電気放電保護回路
US7881028B2 (en) * 2008-03-04 2011-02-01 International Business Machines Corporation E-fuse used to disable a triggering network
JP2014086580A (ja) * 2012-10-24 2014-05-12 Toshiba Corp 保護回路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093497A (ja) * 2003-09-12 2005-04-07 Toshiba Corp 保護回路を有する半導体装置
JP2010004021A (ja) * 2008-05-19 2010-01-07 Canon Inc 半導体集積回路の保護回路及びその駆動方法
JP2012253266A (ja) * 2011-06-06 2012-12-20 Sony Corp 半導体集積回路
JP2013055102A (ja) * 2011-09-01 2013-03-21 Sony Corp 半導体集積回路及び保護回路
JP2013207388A (ja) * 2012-03-27 2013-10-07 Asahi Kasei Electronics Co Ltd Esd保護回路及びesd保護回路に係る半導体装置
JP2014022560A (ja) * 2012-07-18 2014-02-03 Sony Corp 保護素子、半導体装置及び電子機器
JP2014187288A (ja) * 2013-03-25 2014-10-02 Toshiba Corp 静電保護回路

Also Published As

Publication number Publication date
JP2016111186A (ja) 2016-06-20
US10591532B2 (en) 2020-03-17
CN107004638A (zh) 2017-08-01
US20180024187A1 (en) 2018-01-25
CN107004638B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
WO2016088482A1 (ja) 半導体集積回路
JP5955924B2 (ja) 静電放電保護回路
US7274546B2 (en) Apparatus and method for improved triggering and leakage current control of ESD clamping devices
JP2012253266A (ja) 半導体集積回路
US9679891B2 (en) Optimized ESD clamp circuitry
US8189308B2 (en) Integrated circuit
TWI674720B (zh) 電源保護電路
CN108028251B (zh) 静电放电保护装置以及电路设备
US20060274466A1 (en) High voltage power supply clamp circuitry for electrostatic discharge (ESD) protection
TWI384613B (zh) 靜電放電保護電路及靜電放電保護方法
JP2007234718A (ja) 半導体集積回路装置
US20080197415A1 (en) Electrostatic discharge protection circuit having multiple discharge paths
JP2014132717A (ja) 静電気放電保護回路及び半導体回路装置
US8643987B2 (en) Current leakage in RC ESD clamps
US20110194218A1 (en) ESD Clamp for High Voltage Operation
JP2009147040A (ja) 半導体集積回路装置
KR20080076411A (ko) 정전기 보호 회로
JP2010041013A (ja) 保護回路
JP6784820B2 (ja) Esd保護回路
US7545616B2 (en) Circuit for discharging static electricity
JP4102277B2 (ja) 半導体集積回路装置
KR102101537B1 (ko) 타이하이 및 타이로우 회로
US9154133B2 (en) ESD robust level shifter
US20100123509A1 (en) Pad circuit for the programming and i/o operations
US10177135B2 (en) Integrated circuit and electrostatic discharge protection circuit thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866205

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15516566

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866205

Country of ref document: EP

Kind code of ref document: A1