JP2016111186A - 半導体集積回路 - Google Patents

半導体集積回路 Download PDF

Info

Publication number
JP2016111186A
JP2016111186A JP2014247067A JP2014247067A JP2016111186A JP 2016111186 A JP2016111186 A JP 2016111186A JP 2014247067 A JP2014247067 A JP 2014247067A JP 2014247067 A JP2014247067 A JP 2014247067A JP 2016111186 A JP2016111186 A JP 2016111186A
Authority
JP
Japan
Prior art keywords
power supply
circuit
semiconductor integrated
voltage
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014247067A
Other languages
English (en)
Inventor
孝明 巽
Takaaki Tatsumi
孝明 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2014247067A priority Critical patent/JP2016111186A/ja
Priority to US15/516,566 priority patent/US10591532B2/en
Priority to PCT/JP2015/080357 priority patent/WO2016088482A1/ja
Priority to CN201580062180.9A priority patent/CN107004638B/zh
Publication of JP2016111186A publication Critical patent/JP2016111186A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2853Electrical testing of internal connections or -isolation, e.g. latch-up or chip-to-lead connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1236Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of surge arresters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • H01L27/0285Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements bias arrangements for gate electrode of field effect transistors, e.g. RC networks, voltage partitioning circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/001Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing
    • G01R31/002Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing where the device under test is an electronic circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

【課題】ESD保護の機能を保ちつつ、通常動作時の低消費電力化を図ることができるようにする。【解決手段】本開示の半導体集積回路は、被保護回路に接続された第1および第2の電源線と、第1および第2の電源線に供給される電圧とは異なる電圧が供給される第3の電源線と、第1および第2の電源線間に接続され、第1の電源線に発生するサージを検出する検出回路と、互いに直列に接続された少なくとも1つのインバータを含み、第1および第2の電源線間に接続されたインバータ回路と、第1および第2の電源線間に接続され、検出回路の出力により制御されてサージを第2の電源線に流す保護用トランジスタと、少なくとも第3の電源線と保護用トランジスタとに接続された時定数回路とを備える。【選択図】図4

Description

本開示は、電源線に発生したサージを除去する回路を備えた半導体集積回路に関する。
一般に、LSI(Large Scale Integrated Circuit)等の半導体集積回路は、その微細化および低電圧化に伴って、所定の機能をもつ内部回路(以下、被保護回路という)を電源線に発生するサージから保護することの重要性が増している。
電源線に発生するサージは、代表的なものとして、電源線の外部端子に対する静電気放電(Electrostatic Discharge:ESD)によって電源線電圧が急上昇するESDサージが知られている。
ESDサージによって、外部端子に高電圧パルスが発生した場合、被保護回路が破壊されることを防ぐ目的で、ESD保護のための素子または回路が被保護回路とともに半導体基板に集積化される。
ESD保護のための素子または回路として、GGMOS(Gate Grounded MOS)、サイリスタ、RCMOSなどが知られている。それぞれのESD保護のための素子または回路は用途によって使い分けされているが、近年、設計が比較的簡単なRCMOS構成のESD保護回路がよく使われる(例えば特許文献1および非特許文献1参照)。
特開2012−253266号公報
C. A. Torres et al; "Modular, Portable, and Easily Simulated ESD Protection Networks for Advanced CMOS Technologies", Electrical Overstress/Electrostatic Discharge Symposium, September 11-13. Symposium Proceedings, P.81-94, Fig. 1.
RCMOS構成のESD保護回路として、電源配線とグランド配線との間に、抵抗素子および容量素子を用いた検出回路と、CMOSを用いたインバータ回路と、電源配線に発生するサージをグランド配線に逃がす保護用トランジスタとを配置した構成が知られている。保護用トランジスタとしてはMOSトランジスタが用いられる。
上記RCMOS構成のESD保護回路では、サージが発生した場合に保護用トランジスタがオンし、サージを電源配線からグランド配線に逃がす。サージが発生していない場合には保護用トランジスタはオフとなり、スタンバイ状態となる。しかしながら、保護用トランジスタとして用いられるMOSトランジスタは、オフ状態であってもオフリーク電流が発生し、これがスタンバイ状態における消費電力の増加を招く。このため、オフリーク電流を低減することが求められる。
特許文献1には、RCMOS構成のESD保護回路において、インバータ回路の最終段に設けられたインバータの一端を、電源配線およびグランド配線とは別の第3の電源線に接続することでオフリーク電流を低減することが提案されている。しかしながら、特許文献1に記載の回路では、サージが発生した場合に、第3の電源線に接続されたインバータに過電流が流れ、ESD保護の機能が失われるおそれがある。
本開示の目的は、ESD保護の機能を保ちつつ、通常動作時の低消費電力化を図ることができるようにした半導体集積回路を提供することにある。
本開示による半導体集積回路は、被保護回路に接続された第1および第2の電源線と、第1および第2の電源線に供給される電圧とは異なる電圧が供給される第3の電源線と、第1および第2の電源線間に接続され、第1の電源線に発生するサージを検出する検出回路と、互いに直列に接続された少なくとも1つのインバータを含み、第1および第2の電源線間に接続されたインバータ回路と、第1および第2の電源線間に接続され、検出回路の出力により制御されてサージを第2の電源線に流す保護用トランジスタと、少なくとも第3の電源線と保護用トランジスタとに接続された時定数回路とを備えたものである。
本開示による半導体集積回路では、第3の電源線と保護用トランジスタとに時定数回路が接続されていることで、保護用トランジスタのオフリーク電流を減らすことが可能となる。
本開示の半導体集積回路によれば、第3の電源線と保護用トランジスタとに時定数回路を接続するようにしたので、保護用トランジスタのオフリーク電流を減らすことが可能となり、ESD保護の機能を保ちつつ、通常動作時の低消費電力化を図ることができる。
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
一般的なESD保護回路の構成例を示す回路図である。 NMOSトランジスタに流れるオフリーク電流を示す説明図である。 オフリーク電流を低減したESD保護回路の一例を示す回路図である。 本開示の第1の実施の形態に係る半導体集積回路の一例を示す回路図である。 図4に示した回路によってオフリーク電流が減ることを示す説明図である。 第1の実施の形態の第1の変形例に係る半導体集積回路の一例を示す回路図である。 第1の実施の形態の第2の変形例に係る半導体集積回路の一例を示す回路図である。 第1の実施の形態の第3の変形例に係る半導体集積回路の一例を示す回路図である。 第2の実施の形態に係る半導体集積回路の一例を示す回路図である。 図9に示した回路によってオフリーク電流が減ることを示す説明図である。
以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
0.ESD保護回路の説明(図1〜図3)
0.1 構成
0.1.1 第1の比較例の構成
0.1.2 第2の比較例の構成
0.2 課題
1.第1の実施の形態
1.1 構成および動作(図4、図5)
1.2 効果
1.3 変形例
1.3.1 第1および第2の変形例(インバータの段数を2段以上にした場合の構成例)(図6、図7)
1.3.2 第3の変形例(保護用トランジスタをPMOSトランジスタにした場合の構成例)(図8)
2.第2の実施の形態(図9、図10)
3.その他の実施の形態
<0.ESD保護回路の説明>
まず、本開示による半導体集積回路に対する比較例となるESD保護回路の構成と、その課題を説明する。
[0.1 構成]
(0.1.1 第1の比較例の構成)
図1に、本開示の半導体集積回路に対する第1の比較例の回路を示す。図1に示した第1の比較例の回路は、上記非特許文献1の記載に基づく、一般的なRCMOS構成のESD保護回路100の構成例を示している。
図1に示すESD保護回路100は、外部端子(VDD端子)2Tが接続された電源配線(第1の電源線)2と、外部端子(VSS端子)3Tが接続された基準電圧配線(第2の電源線)3とを備えている。電源配線2と基準電圧配線3との間には電源電圧VDDが印加される。
ESD保護回路100はまた、電源配線2と基準電圧配線3との間に、インバータ回路4と、保護用トランジスタ5と、検出回路8とを備えている。
保護用トランジスタ5は、ESDに起因して電源配線2に発生する高電圧パルスを基準電圧配線3に逃がすものである。保護用トランジスタ5は例えばNMOSトランジスタからなり、ドレイン端子が電源配線2に、ソース端子が基準電圧配線3に接続されている。
検出回路8は、検出用抵抗素子Raおよび検出用容量素子CaからなるRC直列回路を構成している。
インバータ回路4は、少なくとも1つのCMOS構成のインバータを含んでいる。図1では、第1、第2および第3のインバータInv1,Inv2,Inv3を直列接続した3段構成の例を示している。インバータ回路4の入力端は、検出用抵抗素子Raと検出用容量素子Caとの間のノードに接続されている。インバータ回路4の出力端は、保護用トランジスタ5のゲート端子に接続されている。
このESD保護回路100は、検出用抵抗素子Raと検出用容量素子Caとによる時定数を利用して、通常の電源配線2の電位的な立ち上げや揺らぎ等には反応しないように設計される。通常の電源投入時のように電源配線2の電位を意図的に立ち上げる場合、そのパルスの立ち上がり速度がESDサージ発生時に比べて小さい。そのため、検出用抵抗素子Raと検出用容量素子Caとを接続するノードの電位VRCが、電源配線2の電位の上昇に余り遅れることなく立ち上がる。
一方、通常の動作で想定されるより高い周波数のパルス(例えばESDサージ)が電源配線2に印加されると、検出用抵抗素子Raと検出用容量素子Caとを接続するノードの電位VRCが、電源配線2の電位上昇に遅れて立ち上がる。ESDの代表的なモデルであるHBM(Human Body Model)における電位上昇は数百ナノ秒という極めて短い時間に生じ、そのような高い周波数の電位上昇で、上記電位VRCが電源配線2の電位上昇に遅れて立ち上がるように検出回路8の時定数が決められている。
電源配線2の電位の立ち上がりから遅れて電位VRCが立ち上がると、電位VRCがインバータ回路4のインバータの閾値に達するまでの期間だけ、インバータ回路4で発生した正のパルスが保護用トランジスタ5のゲートに印加される。よって、この正のパルスで規定される時間だけ保護用トランジスタ5がオンして、ESDサージを電源配線2から基準電圧配線3に逃がす。これにより、電源配線2と基準電圧配線3との間に接続される被保護回路としての内部回路はESDサージから保護される。
電位VRCがインバータ回路4のインバータの閾値に達すると、保護用トランジスタ5のゲートに印加される正のパルスが終了するため、速やかに保護用トランジスタ5がオフする。このようにして、ESD保護回路100は、RC直列回路からなる検出回路8によってESDサージを検出し、検出回路8の検出結果に応答してESDサージを速やかに電源配線2から除去する。
ここで、ESD保護回路100の動作は、以下の(1),(2)の状況での要求を満たすことが要求される。
(1)通常動作中(サージ印加なし):
ここで「通常動作中(サージ印加なし)」とは、通常動作時に予定されている電源配線2の電位変動はあっても、保護用トランジスタ5をオンさせるほどの大きなサージが電源配線2に印加されない動作状態をいう。予定されている電源配線2の電位変動とは、電源立ち上げ時や立ち下げ時の電位変動、さらには、回路動作に起因して電源配線2が小さな振幅で揺れるような電位変動のことである。
電源配線2が電源電圧VDDで保持されているときは、検出用容量素子Caは、高インピーダンス状態なので、検出用抵抗素子Raと検出用容量素子Caとを接続するノードの電位VRCは、ほぼH(VDD)レベルをとる。このHレベルは、3つのインバータのうちの初段の第1のインバータInv1の入力に印加されるので、その出力がL(VSS)レベルをとる。この第1のインバータInv1の出力(Lレベル)は、第2および第3のインバータInv2,Inv3の各出力を確定している。このとき、第2のインバータInv2の出力はHレベル、第3のインバータInv3の出力はLレベルとなる。
従って、このとき、保護用トランジスタ5のゲートはL(VSS)レベルであるため、保護用トランジスタ5のチャネルは閉じている。したがって、電源電圧VDDが印加された電源配線2から、基準電圧VSSが印加された基準電圧配線3へ電流は流れない。
(2)組み立て作業中にESDサージが入ったとき:
一般にESD試験はこの状況で行われる。組立作業中は、通常、静電対策のため基準電圧配線3のみ基準電位(例えば接地電圧)に接続されていることが多い。その一方、電源配線2がつながるVDD端子2Tには結線が行われていない。このとき、各インバータに電源が供給されていないため、保護用トランジスタ5のゲート電位は不確定(例えば、フローティング)となっている。
この状態で、VDD端子2TにESDサージが急に入ると、このESDサージを電源電圧VDDの代わりとして、インバータ回路4および保護用トランジスタ5が短い時間だけ動作可能となる。その場合、組み立て時でも保護用トランジスタ5が短い時間だけオンして、ESDサージ除去が可能となる。
(0.1.2 第2の比較例の構成)
図3に、本開示の半導体集積回路に対する第2の比較例の回路を示す。図3に示した第2の比較例の回路は、上記特許文献1の記載に基づく、オフリーク電流を低減したRCMOS構成のESD保護回路101の構成例を示している。
図3のESD保護回路101では、図1のESD保護回路100におけるインバータ回路4を具体的なトランジスタ構成で示している。図3のESD保護回路101においても、図1のESD保護回路100と同様に、外部端子としてVDD端子2TおよびVSS端子3Tが設けられているが、これらの外部端子は図示を省略している。また、図3の回路例では、電源配線2と基準電圧線3とに接続されて電源供給を受ける被保護回路6が設けられている。ESD保護回路101と被保護回路6とが同一の半導体基板に集積化されることによって半導体集積回路が形成されている。
ESD保護回路101では、インバータ回路4の第1、第2および第3のインバータInv1,Inv2,Inv3がそれぞれ、電源配線2と基準電圧配線3との間に直列に接続されたPMOSトランジスタ4PとNMOSトランジスタ4Nとで構成されている。初段の第1のインバータInv1におけるPMOSトランジスタ4PとNMOSトランジスタ4Nの共通ゲートが、検出用抵抗素子Raと検出用容量素子Caとの間に接続されている。また、第1のインバータInv1におけるPMOSトランジスタ4PとNMOSトランジスタ4Nとの共通ドレインが、次段の第2のインバータInv2の入力端に接続されている。第2および第3のインバータInv2,Inv3も、第1のインバータInv1とほぼ同様に構成されている。最終段の第3のインバータInv3の出力端は、保護用トランジスタ5のゲート端子に接続されている。
ESD保護回路101では、最終段の第3のインバータInv3のみ、そのNMOSトランジスタ4Nのソース端子が基準電圧配線3とは別の第3の電源線7に接続されている。
第3の電源線7は、負電圧(−VS)を供給するための配線であり、図示しない外部端子(−VS端子)に接続させてもよい。なお、被保護回路6が同じ負電圧(−VS)を用いる回路であれば、ESD保護回路101は、第3の電源線7を被保護回路6と共用することが望ましい。また、負電圧(−VS)を半導体集積回路内で電源電圧VDD等から生成する場合は、その外部端子は不要である。
上記図1のESD保護回路100の構成で問題になるのは、上記(1)の通常動作中の保護用トランジスタ5のリーク電流である。図2に、典型的なNMOSトランジスタのゲート電圧Vg対ドレイン電流Idの特性グラフを示す。保護用トランジスタ5は、通常動作中、ゲート電圧Vg=0Vでチャネルは閉じている。しかしながら、保護用トランジスタ5のソースとドレイン間にはオフリークといわれる、わずかな電流が流れる。例えば図2の例では、ゲート電圧Vg=0Vのときに、単位ゲート幅(1μm)当たり、約0.1nA弱のオフリーク電流が発生している。一般に、保護用トランジスタ5は、大量の電流を流せるだけの大きさを持ち、そのゲート幅が大きく、通常1mm以上であるため、消費電力が大きい。
このオフリーク低減のため、図3のESD保護回路101では、最終段の第3のインバータInv3のみ、そのNMOSトランジスタ4Nのソース端子を、基準電圧VSSより低い負電圧(−VS)でバイアスしている。
このESD保護回路101では、上記(1)の通常動作中(サージ印加なし)のときには、第3の電源線7が、基準電圧配線3とは独立に電圧を設定できることから、保護用トランジスタ5のオフリーク電流が低減される。例えば、負電圧(−VS)を第3の電源線7に供給する。この場合、最終段の第3のインバータInv3が動作時に、そのNMOSトランジスタ4Nがオンして負電圧(−VS)を保護用トランジスタ5のゲートに与える。保護用トランジスタ5は、図1のESD保護回路100のように基準電圧VSS(通常、0V)が印加されるよりも、負電圧(−VS)が印加された場合にオフリーク電流が低減される。
[0.2 課題]
上記したように、図3のESD保護回路101では、保護用トランジスタ5の手前の第3のインバータInv3のNMOSトランジスタ4Nのソース側およびバックゲートを、基準電圧VSSではなく、負電圧(−VS)にする。これにより、上記(1)の通常動作中(サージ印加なし)の期間で保護用トランジスタ5のゲート電圧を負にし、保護用トランジスタ5のオフリークを低減させる。
しかしながら、図3のESD保護回路101において、インバータInv3のNMOSトランジスタ4Nはソースだけでなくバックゲート(PWell)をも負電圧にする必要がある。バックゲートを負電圧にするためには、インバータInv3のNMOSトランジスタ4Nのwellだけを、他のMOSトランジスタから分離する必要がある。図1のESD保護回路100と比較して、他のMOSトランジスタとは別の電源を用いたwellを要するため、設計およびレイアウト上の困難を伴う。
<1.第1の実施の形態>
次に、本開示の第1の実施の形態について説明する。以下では、上記図1および図3に示した回路と同様の構成および動作を有する部分については、適宜説明を省略する。
[1.1 構成および動作]
図4は、本開示の第1の実施の形態に係る半導体集積回路の一構成例を示している。
図4の回路例では、ESD保護回路1と、被保護回路6とが同一の半導体基板に集積化されることによって半導体集積回路が形成されている。図4の半導体集積回路は、図3の半導体集積回路と同様に、被保護回路6に接続され、被保護回路6に電源電圧VDDを供給する電源配線2および基準電圧配線3を備えている。また、電源配線2および基準電圧配線3に供給される電圧とは異なる電圧が供給される第3の電源線7を備えている。
図4のESD保護回路1はまた、図1の回路例と同様に、電源配線2と基準電圧配線3との間に、インバータ回路4と、保護用トランジスタ5と、検出回路8とを備えている。
図4のESD保護回路1では、図3の回路例と同様に、図1のESD保護回路100におけるインバータ回路4を具体的なトランジスタ構成で示している。図4のESD保護回路1においても、図1のESD保護回路100と同様に、外部端子としてVDD端子2TおよびVSS端子3Tが設けられているが、これらの外部端子は図示を省略している。
図4のESD保護回路1では、インバータ回路4を第1のインバータInv1のみの1段の構成にした例を示しているが、後述する変形例のように、2つ以上のインバータを有する2段以上の構成であってもよい。第1のインバータInv1は、電源配線2と基準電圧配線3との間に直列に接続されたPMOSトランジスタ4PとNMOSトランジスタ4Nとで構成されている。
図4のESD保護回路1は、図1および図3の回路例とは異なる構成要素として、時定数回路9をさらに備えている。時定数回路9は、少なくとも第3の電源線7と保護用トランジスタ5とに接続されている。時定数回路9は、直列接続された容量素子Cbと抵抗素子Rbとを含んでいる。容量素子Cbの一端はインバータ回路4の出力端に接続され、容量素子Cbの他端は保護用トランジスタ5のゲート端子と抵抗素子Rbの他端とに接続されている。抵抗素子Rbの一端は第3の電源線7に接続され、抵抗素子Rbの他端は容量素子Cbの他端と保護用トランジスタ5のゲート端子とに接続されている。
このESD保護回路1において、保護用トランジスタ5はNMOSトランジスタである。電源配線2には電源電圧VDDとして正電圧が供給され、基準電圧配線3には基準電圧VSSとして接地電圧が供給され、第3の電源線7には負電圧(−VS)が供給される。
この図4のESD保護回路1では、図3のESD保護回路101と同様に、上記(1)の通常動作中(サージ印加なし)のときには、保護用トランジスタ5のオフリーク電流が低減される。第3の電源線7には負電圧(−VS)が供給されているので、時定数回路9を介して保護用トランジスタ5のゲートの電位は負となる。保護用トランジスタ5のゲートに基準電圧VSSよりも低い負の電圧が印加されるので、図1のESD保護回路100のように基準電圧VSSが保護用トランジスタ5のゲートに印加される場合よりも、オフリーク電流が低減される。
図5に、典型的なNMOSトランジスタのゲート電圧Vg対ドレイン電流Idの特性グラフを示す。上述した図2に示したように、保護用トランジスタ5には、ゲート電圧Vg=0Vであっても、単位ゲート幅(1μm)当たり、約0.1nA弱のオフリーク電流が発生している。例えば図5に示したように、ゲート電圧Vg=−0.8Vとすれば、オフリーク電流はVg=0Vの場合より1桁以上、下がる。
この図4のESD保護回路1において、上記(2)の組み立て作業中にESDサージが入ったときのような状況では、例えば電源配線2および第3の電源線7には、電源電圧VDDおよび負電圧(−VS)の供給はなされず、保護用トランジスタ5のゲート電位は不確定(例えば、フローティング)となる。この状態で、電源配線2にESDサージが急に入ると、このESDサージを電源電圧VDDの代わりとして、インバータ回路4および保護用トランジスタ5が短い時間だけ動作可能となる。容量素子CbはESDサージのパルス入力に対して電流を通し、保護用トランジスタ5のゲートをオンさせることで、ESDサージ除去が可能となる。
[1.2 効果]
以上のように、本実施の形態によれば、保護用トランジスタ5のオフリーク電流を減らすことが可能となり、ESD保護の機能を保ちつつ、通常動作時の低消費電力化を図ることができる。例えば、図1のESD保護回路100に比べて、消費電力を1/10以下にすることが可能になる。
また、図3のESD保護回路101ではインバータInv3のNMOSトランジスタ4Nのwellだけを、他のMOSトランジスタから分離する必要があるのに対して、本実施の形態では図1のESD保護回路100に対して単純に時定数回路9を追加する配線処理をすればよいため、設計上、レイアウト上の問題を伴わない。
なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。以降の他の実施の形態および変形例についても同様である。
[1.3 変形例]
次に、第1の実施の形態の変形例について説明する。以下では、上記図4に示した回路と同様の構成および動作を有する部分については、適宜説明を省略する。
(1.3.1 第1および第2の変形例)
図4に示した半導体集積回路において、インバータ回路4を構成するインバータは2段以上の構成であってもよい。
図6は、第1の実施の形態の第1の変形例に係る半導体集積回路の一例を示している。
図6に示した半導体集積回路は、図4に示した半導体集積回路に対して、3段構成のインバータ回路4を有するESD保護回路1Aを備えている。すなわち、インバータ回路4が、第1、第2および第3のインバータInv1,Inv2,Inv3を直列接続した構成とされている。この場合、インバータ回路4の出力端は最終段の第3のインバータInv3の出力端となるので、時定数回路9における容量素子Cbの一端は、第3のインバータInv3の出力端に接続されている。
その他の構成および動作は図4に示した半導体集積回路と略同様であっても良い。また、その他、インバータ回路4を5段以上の奇数段の構成にする場合も、インバータ回路4以外は図4に示した半導体集積回路と略同様の構成にすることができる。
図7は、第1の実施の形態の第2の変形例に係る半導体集積回路の一例を示している。
図7に示した半導体集積回路は、図4に示した半導体集積回路に対して、2段構成のインバータ回路4を有するESD保護回路1Bを備えている。すなわち、インバータ回路4が、第1および第2のインバータInv1,Inv2を直列接続した構成とされている。この場合、インバータ回路4の出力端は最終段の第2のインバータInv2の出力端となるので、時定数回路9における容量素子Cbの一端は、第2のインバータInv2の出力端に接続されている。
また、図7に示した半導体集積回路は、図4に示した半導体集積回路に対して、検出回路8を構成する検出用抵抗素子Raと検出用容量素子Caとの位置関係が逆となっている。すなわち、図4に示した半導体集積回路では、電源配線2に検出用抵抗素子Raの一端が接続され、基準電圧配線3に検出用容量素子Caの一端が接続されている。これに対して、図7に示した半導体集積回路では、電源配線2に検出用容量素子Caの一端が接続され、基準電圧配線3に検出用抵抗素子Raの一端が接続されている。
その他の構成および動作は図4に示した半導体集積回路と略同様であっても良い。また、その他、インバータ回路4を4段以上の偶数段の構成にする場合も、インバータ回路4と検出回路8以外は図4に示した半導体集積回路と略同様の構成にすることができる。
(1.3.2 第3の変形例)
図8は、第1の実施の形態の第3の変形例に係る半導体集積回路の一例を示している。
図8に示した半導体集積回路は、図4に示した半導体集積回路に対して、2段構成のインバータ回路4と、PMOSトランジスタで構成された保護用トランジスタ5Pとを有するESD保護回路1Cを備えている。
インバータ回路4は、第1および第2のインバータInv1,Inv2を直列接続した構成とされている。この場合、インバータ回路4の出力端は最終段の第2のインバータInv2の出力端となるので、時定数回路9における容量素子Cbの一端は、第2のインバータInv2の出力端に接続されている。
このESD保護回路1Cでは、電源配線2に電源電圧VDDとして第1の正電圧を供給し、基準電圧配線3に基準電圧VSSとして接地電圧を供給し、第3の電源線7に第1の正電圧よりも高い第2の正電圧VDを供給する。
その他の構成および動作は図4に示した半導体集積回路と略同様であっても良い。
<2.第2の実施の形態>
次に、本開示の第2の実施の形態について説明する。以下では、上記第1の実施の形態と同様の構成および動作を有する部分については、適宜説明を省略する。
図9は、第2の実施の形態に係る半導体集積回路の一例を示している。
図9に示した半導体集積回路は、図4に示した半導体集積回路に対して、時定数回路9の接続位置を変えたESD保護回路1Dを備えている。
図4に示した半導体集積回路では、時定数回路9が、電源配線2と、第3の電源線7と、保護用トランジスタ5のバックゲート端子とに接続されている。より詳しくは、時定数回路9の容量素子Cbの一端が電源配線2に接続され、容量素子Cbの他端が保護用トランジスタのバックゲート端子と抵抗素子Rbの他端とに接続されている。抵抗素子Rbの一端は第3の電源線7に接続され、抵抗素子Rbの他端は容量素子Cbの他端と保護用トランジスタ5のバックゲート端子とに接続されている。
また、インバータ回路4の出力端は、保護用トランジスタ5のゲート端子に接続されている。ESD保護回路1Dにおいて、保護用トランジスタ5はNMOSトランジスタである。電源配線2には電源電圧VDDとして正電圧が供給され、基準電圧配線3には基準電圧VSSとして接地電圧が供給され、第3の電源線7には負電圧(−VS)が供給される。その他の構成は図4に示した半導体集積回路と略同様であっても良い。
図10に、典型的なNMOSトランジスタのゲート電圧Vg対ドレイン電流Idの特性グラフを示す。図10のrefで示した特性グラフのように、保護用トランジスタ5にはゲート電圧Vg=0Vであっても、単位ゲート幅(1μm)当たり、約0.1nA弱のオフリーク電流が発生している。
本実施の形態におけるESD保護回路1Dにおいても、上記(1)の通常動作中(サージ印加なし)のときには、保護用トランジスタ5のオフリーク電流が低減される。第3の電源線7には負電圧(−VS)が供給されているので、保護用トランジスタ5のバックゲート端子には負電圧が印加される。これにより、保護用トランジスタ5のしきい値電圧Vthが上がるので、図10に示したように、ゲート電圧Vg対ドレイン電流Idの特性グラフが全体として下がり、オフリーク電流が低減される。
<3.その他の実施の形態>
本開示による技術は、上記各実施の形態の説明に限定されず種々の変形実施が可能である。
例えば、本技術は以下のような構成を取ることができる。
(1)
被保護回路に接続された第1および第2の電源線と、
前記第1および第2の電源線に供給される電圧とは異なる電圧が供給される第3の電源線と、
前記第1および第2の電源線間に接続され、前記第1の電源線に発生するサージを検出する検出回路と、
互いに直列に接続された少なくとも1つのインバータを含み、前記第1および第2の電源線間に接続されたインバータ回路と、
前記第1および第2の電源線間に接続され、前記検出回路の出力により制御されて前記サージを前記第2の電源線に流す保護用トランジスタと、
少なくとも前記第3の電源線と前記保護用トランジスタとに接続された時定数回路と
を備えた半導体集積回路。
(2)
前記時定数回路は、容量素子と抵抗素子とを含み、
前記抵抗素子の一端が、前記第3の電源線に接続されている
上記(1)に記載の半導体集積回路。
(3)
前記容量素子の一端が前記インバータ回路の出力端に接続され、前記容量素子の他端が前記保護用トランジスタのゲート端子と前記抵抗素子の他端とに接続され、
前記抵抗素子の他端が前記容量素子の他端と前記保護用トランジスタの前記ゲート端子とに接続されている
上記(2)に記載の半導体集積回路。
(4)
前記容量素子の一端が前記第1の電源線に接続され、前記容量素子の他端が前記保護用トランジスタのバックゲート端子と前記抵抗素子の他端とに接続され、
前記抵抗素子の他端が前記容量素子の他端と前記保護用トランジスタの前記バックゲート端子とに接続されている
上記(2)に記載の半導体集積回路。
(5)
前記保護用トランジスタはNMOSトランジスタであり、
前記第1の電源線に正電圧が供給され、
前記第2の電源線に接地電圧が供給され、
前記第3の電源線に負電圧が供給される
上記(1)ないし(4)のいずれか1つに記載の半導体集積回路。
(6)
前記保護用トランジスタはPMOSトランジスタであり、
前記第1の電源線に第1の正電圧が供給され、
前記第2の電源線に接地電圧が供給され、
前記第3の電源線に前記第1の正電圧よりも高い第2の正電圧が供給される
上記(1)ないし(4)のいずれか1つに記載の半導体集積回路。
1,1A,1B,1C,1D…ESD保護回路、2…電源配線(第1の電源線)、2T…外部端子(VDD端子)、3…基準電圧配線(第2の電源線)、3T…外部端子(VSS端子)、4…インバータ回路、4P…PMOSトランジスタ、4N…NMOSトランジスタ、5,5P…保護用トランジスタ、6…被保護回路、7…第3の電源線、8…検出回路、9…時定数回路、100,101…ESD保護回路、Inv1…第1のインバータ、Inv2…第2のインバータ、Inv3…第3のインバータ、Ra…検出用抵抗素子、Rb…抵抗素子、Ca…検出用容量素子、Cb…容量素子、VDD…電源電圧(正電圧)、VSS…基準電圧(接地電圧)、−VS…負電圧、VD…正電圧。

Claims (6)

  1. 被保護回路に接続された第1および第2の電源線と、
    前記第1および第2の電源線に供給される電圧とは異なる電圧が供給される第3の電源線と、
    前記第1および第2の電源線間に接続され、前記第1の電源線に発生するサージを検出する検出回路と、
    互いに直列に接続された少なくとも1つのインバータを含み、前記第1および第2の電源線間に接続されたインバータ回路と、
    前記第1および第2の電源線間に接続され、前記検出回路の出力により制御されて前記サージを前記第2の電源線に流す保護用トランジスタと、
    少なくとも前記第3の電源線と前記保護用トランジスタとに接続された時定数回路と
    を備えた半導体集積回路。
  2. 前記時定数回路は、容量素子と抵抗素子とを含み、
    前記抵抗素子の一端が、前記第3の電源線に接続されている
    請求項1に記載の半導体集積回路。
  3. 前記容量素子の一端が前記インバータ回路の出力端に接続され、前記容量素子の他端が前記保護用トランジスタのゲート端子と前記抵抗素子の他端とに接続され、
    前記抵抗素子の他端が前記容量素子の他端と前記保護用トランジスタの前記ゲート端子とに接続されている
    請求項2に記載の半導体集積回路。
  4. 前記容量素子の一端が前記第1の電源線に接続され、前記容量素子の他端が前記保護用トランジスタのバックゲート端子と前記抵抗素子の他端とに接続され、
    前記抵抗素子の他端が前記容量素子の他端と前記保護用トランジスタの前記バックゲート端子とに接続されている
    請求項2に記載の半導体集積回路。
  5. 前記保護用トランジスタはNMOSトランジスタであり、
    前記第1の電源線に正電圧が供給され、
    前記第2の電源線に接地電圧が供給され、
    前記第3の電源線に負電圧が供給される
    請求項1に記載の半導体集積回路。
  6. 前記保護用トランジスタはPMOSトランジスタであり、
    前記第1の電源線に第1の正電圧が供給され、
    前記第2の電源線に接地電圧が供給され、
    前記第3の電源線に前記第1の正電圧よりも高い第2の正電圧が供給される
    請求項1に記載の半導体集積回路。
JP2014247067A 2014-12-05 2014-12-05 半導体集積回路 Pending JP2016111186A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014247067A JP2016111186A (ja) 2014-12-05 2014-12-05 半導体集積回路
US15/516,566 US10591532B2 (en) 2014-12-05 2015-10-28 Semiconductor integrated circuit
PCT/JP2015/080357 WO2016088482A1 (ja) 2014-12-05 2015-10-28 半導体集積回路
CN201580062180.9A CN107004638B (zh) 2014-12-05 2015-10-28 半导体集成电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014247067A JP2016111186A (ja) 2014-12-05 2014-12-05 半導体集積回路

Publications (1)

Publication Number Publication Date
JP2016111186A true JP2016111186A (ja) 2016-06-20

Family

ID=56091437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014247067A Pending JP2016111186A (ja) 2014-12-05 2014-12-05 半導体集積回路

Country Status (4)

Country Link
US (1) US10591532B2 (ja)
JP (1) JP2016111186A (ja)
CN (1) CN107004638B (ja)
WO (1) WO2016088482A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10930638B2 (en) 2018-01-22 2021-02-23 Lapis Semiconductor Co., Ltd. Semiconductor device having overlapping resistance element and capacitor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3357090B1 (en) * 2015-09-29 2020-06-17 TDK Corporation Electrostatic discharge protection device and circuit apparatus
JP2017123374A (ja) * 2016-01-05 2017-07-13 ソニー株式会社 半導体集積回路及びその制御方法
CN106714389B (zh) * 2017-02-16 2019-05-21 深圳市晟碟半导体有限公司 一种led驱动装置及其浪涌防护电路、浪涌防护方法
US10985156B2 (en) * 2018-01-10 2021-04-20 Marvell Asia Pte., Ltd. Electrostatic discharge clamp with reduced off-state power consumption
US10819110B2 (en) * 2018-02-27 2020-10-27 Globalfoundries Inc. Electrostatic discharge protection device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6510033B1 (en) * 2000-06-30 2003-01-21 Intel Corporation RC-timer circuit to reduce current leakage in future semiconductor processes
TW518736B (en) * 2001-09-06 2003-01-21 Faraday Tech Corp Gate-driven or gate-coupled electrostatic discharge protection circuit
TW538522B (en) * 2002-05-15 2003-06-21 Winbond Electronics Corp Fast-triggered static charge protection circuit and its method
JP2005093497A (ja) * 2003-09-12 2005-04-07 Toshiba Corp 保護回路を有する半導体装置
US7710695B2 (en) * 2007-06-04 2010-05-04 Via Technologies, Inc. Integrated circuit and electrostatic discharge protection circuit
EP2135282A1 (en) * 2007-10-30 2009-12-23 Agere Systems, Inc. Electrostatic discharge protection circuit
US7881028B2 (en) * 2008-03-04 2011-02-01 International Business Machines Corporation E-fuse used to disable a triggering network
JP5578805B2 (ja) * 2008-05-19 2014-08-27 キヤノン株式会社 半導体集積回路の保護回路及びその駆動方法
JP2012253266A (ja) * 2011-06-06 2012-12-20 Sony Corp 半導体集積回路
JP2013055102A (ja) * 2011-09-01 2013-03-21 Sony Corp 半導体集積回路及び保護回路
JP5985851B2 (ja) * 2012-03-27 2016-09-06 旭化成エレクトロニクス株式会社 Esd保護回路及びesd保護回路に係る半導体装置
JP2014022560A (ja) * 2012-07-18 2014-02-03 Sony Corp 保護素子、半導体装置及び電子機器
JP2014086580A (ja) * 2012-10-24 2014-05-12 Toshiba Corp 保護回路
JP2014187288A (ja) * 2013-03-25 2014-10-02 Toshiba Corp 静電保護回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10930638B2 (en) 2018-01-22 2021-02-23 Lapis Semiconductor Co., Ltd. Semiconductor device having overlapping resistance element and capacitor

Also Published As

Publication number Publication date
US20180024187A1 (en) 2018-01-25
CN107004638A (zh) 2017-08-01
WO2016088482A1 (ja) 2016-06-09
US10591532B2 (en) 2020-03-17
CN107004638B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
WO2016088482A1 (ja) 半導体集積回路
JP5955924B2 (ja) 静電放電保護回路
US7274546B2 (en) Apparatus and method for improved triggering and leakage current control of ESD clamping devices
US9679891B2 (en) Optimized ESD clamp circuitry
JP2012253266A (ja) 半導体集積回路
TWI674720B (zh) 電源保護電路
JP2007234718A (ja) 半導体集積回路装置
JP2014132717A (ja) 静電気放電保護回路及び半導体回路装置
JP2011119356A (ja) 半導体装置
JP2013055102A (ja) 半導体集積回路及び保護回路
CN108599130B (zh) 一种具有防反接电路的esd保护电路及其实现方法
JP5165356B2 (ja) 半導体集積回路装置
JP2017037949A (ja) 半導体装置
WO2018214160A1 (zh) Esd保护电路及esd保护方法
JP2010041013A (ja) 保護回路
JP6784820B2 (ja) Esd保護回路
US20150380397A1 (en) ESD Protection for Advanced CMOS Processes
US7545616B2 (en) Circuit for discharging static electricity
KR102101537B1 (ko) 타이하이 및 타이로우 회로
US20100123509A1 (en) Pad circuit for the programming and i/o operations
JP2005093496A (ja) 半導体集積回路装置
US10177135B2 (en) Integrated circuit and electrostatic discharge protection circuit thereof
JP6342305B2 (ja) Esd保護回路
US7564665B2 (en) Pad ESD spreading technique
JP2008244071A (ja) Esd保護回路を備えた半導体集積回路