JP2012250602A - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
JP2012250602A
JP2012250602A JP2011124000A JP2011124000A JP2012250602A JP 2012250602 A JP2012250602 A JP 2012250602A JP 2011124000 A JP2011124000 A JP 2011124000A JP 2011124000 A JP2011124000 A JP 2011124000A JP 2012250602 A JP2012250602 A JP 2012250602A
Authority
JP
Japan
Prior art keywords
continuously variable
variable transmission
clutch
speed
hybrid vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011124000A
Other languages
English (en)
Other versions
JP5909052B2 (ja
Inventor
Masaki Komuro
正樹 小室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2011124000A priority Critical patent/JP5909052B2/ja
Publication of JP2012250602A publication Critical patent/JP2012250602A/ja
Application granted granted Critical
Publication of JP5909052B2 publication Critical patent/JP5909052B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】無段変速機の応答性を向上させる。
【解決手段】無段変速機11の入力側にはエンジン13が連結され、無段変速機11の出力側にはクラッチ14を介してモータジェネレータ15が連結される。また、モータジェネレータ15には駆動輪17が連結される。クラッチ14が解放されるEVモードにおいては、電動オイルポンプ47から無段変速機11に対して作動油が供給される。これにより、エンジン停止に伴ってオイルポンプ46が停止するEVモードにおいても、プライマリ油室23やセカンダリ油室25からの作動油流出を防止することができ、変速要求時には無段変速機11を素早く作動させることが可能となる。
【選択図】図1

Description

本発明は、無段変速機の入力側に連結されるエンジンと、無段変速機の出力側に連結される電動モータと、電動モータに連結される駆動輪とを備えるハイブリッド車両の制御装置に関する。
無段変速機を備えるハイブリッド車両として、無段変速機の入力側にエンジンを組み付ける一方、無段変速機の出力側に電動モータを組み付けるようにしたハイブリッド車両が開発されている(例えば、特許文献1参照)。このハイブリッド車両はエンジンと電動モータとの間にクラッチを有しており、クラッチを制御することによって走行モードを切り換えることが可能となっている。すなわち、クラッチを締結して駆動輪にエンジンを接続することにより、エンジンおよび電動モータによって走行させるハイブリッド走行モードに設定することが可能となる。また、クラッチを解放して駆動輪からエンジンを切り離すことにより、電動モータを用いて走行させるモータ走行モードに設定することが可能となる。
特開平8−266012号公報
ところで、無段変速機に制御油圧を供給するオイルポンプは、エンジンによって駆動されることから、エンジン停止時には無段変速機に対する制御油圧の供給も停止される。すなわち、エンジンが停止するモータ走行モードにおいては、無段変速機に対する油圧供給が停止されることになっていた。このように、無段変速機に対する制御油圧の供給停止は、無段変速機の制御油室からの作動油流出を招くことになるため、無段変速機を再び変速制御させる際の応答遅れを招く要因となっていた。
特に、前述したクラッチを締結状態に切り換える際には、締結前にクラッチ前後の回転数を同期させることにより、クラッチの締結ショックを抑制することが求められている。このクラッチの同期制御においては、エンジンの回転数制御と共に無段変速機の変速制御を実施する必要があることから、無段変速機の応答遅れは素早い同期制御を阻害する要因となる。このため、モータ走行モードでエンジンを停止させるハイブリッド車両においては、無段変速機の応答遅れを防止することが所望されている。
本発明の目的は、無段変速機の応答性を向上させることにある。
本発明のハイブリッド車両の制御装置は、無段変速機の入力側に連結されるエンジンと、前記無段変速機の出力側に連結される電動モータと、前記電動モータに連結される駆動輪とを備えるハイブリッド車両の制御装置であって、前記無段変速機と前記電動モータとの間に設けられ、前記無段変速機と前記電動モータとを連結する締結状態と、前記無段変速機と前記電動モータとを切り離す解放状態とに切り換えられるクラッチと、前記クラッチを解放状態に切り換えることにより、前記駆動輪から前記エンジンおよび前記無段変速機を切り離し、前記電動モータによって前記駆動輪を駆動するモータ走行モードを設定するモード設定手段と、前記モータ走行モードにおけるエンジン停止中に、前記無段変速機に油圧を供給する油圧供給手段とを有することを特徴とする。
本発明のハイブリッド車両の制御装置は、前記モータ走行モードが設定された状態のもとで、前記クラッチを滑り状態または締結状態に制御して前記電動モータから前記無段変速機に動力を伝達するとともに、前記油圧供給手段からの油圧を用いて前記無段変速機を変速させる変速制御手段を有することを特徴とする。
本発明のハイブリッド車両の制御装置は、前記エンジンと前記無段変速機との間に設けられ、前記エンジンと前記無段変速機とを連結する締結状態と、前記エンジンと前記無段変速機とを切り離す解放状態とに切り換えられる第2クラッチを有し、前記第2クラッチは、前記モータ走行モードでの変速時に解放状態に切り換えられることを特徴とする。
本発明のハイブリッド車両の制御装置は、前記変速制御手段は、前記モータ走行モードでの変速終了時に前記クラッチを解放状態に切り換えることを特徴とする。
本発明のハイブリッド車両の制御装置は、前記モータ走行モードでの変速時に、前記クラッチの伝達トルクに基づき前記電動モータの出力トルクを増加させるモータ制御手段を有することを特徴とする。
本発明のハイブリッド車両の制御装置は、前記変速制御手段は、前記無段変速機の変速比と所定の目標変速比とが所定値を超えて離れる場合、所定の減速状態を超えて車両が減速する場合、または前記無段変速機の変速比が所定範囲内に収束する場合に、前記モータ走行モードでの変速を実施することを特徴とする。
本発明のハイブリッド車両の制御装置は、前記目標変速比を車速に基づき算出する目標変速比算出手段を有することを特徴とする。
本発明のハイブリッド車両の制御装置は、前記目標変速比は、前記エンジンを所定回転数で制御したときに、前記クラッチの入力回転数と出力回転数とを同期させる変速比であることを特徴とする。
本発明のハイブリッド車両の制御装置は、前記目標変速比は、走行中の車両を所定減速度で停車させるまでに、前記無段変速機を所定変速速度で減速側の所定変速比に到達させる変速比であることを特徴とする。
本発明のハイブリッド車両の制御装置は、前記目標変速比算出手段は、前記車速に基づいて、前記エンジンを所定回転数で制御したときに、前記クラッチの入力回転数と出力回転数とを同期させる第1目標変速比を算出し、前記車速に基づいて、走行中の車両を所定減速度で停車させるまでに、前記無段変速機を所定変速速度で減速側の所定変速比に到達させる第2目標変速比を算出し、前記第1目標変速比と前記第2目標変速比とを比較し、減速側の変速比を前記目標変速比として設定することを特徴とする。
本発明のハイブリッド車両の制御装置は、前記エンジンからの動力によって駆動され、前記無段変速機に油圧を供給するオイルポンプを有し、前記変速制御手段は、前記モータ走行モードでの変速時に所定の加減速状態を超えて車両が加減速する場合に、前記オイルポンプからの油圧を用いて前記無段変速機を変速させることを特徴とする。
本発明によれば、モータ走行モードにおいてエンジンが停止する場合であっても、油圧供給手段から無段変速機に対して油圧が供給される。これにより、無段変速機の制御油室からの作動油流出を防止することができ、再び無段変速機を作動させる際の応答性を向上させることが可能となる。
また、本発明によれば、モータ走行モードにおいてエンジンが停止する場合であっても、油圧供給手段から無段変速機に対して油圧が供給される。これにより、モータ走行モードにおいて無段変速機を変速させておくことができ、クラッチ前後の回転数を素早く同期させて、クラッチを締結状態に切り換えることが可能となる。
ハイブリッド車両に搭載されるパワーユニットを示す概略図である。 (a)〜(c)はEVモードからHEVモードへの走行モードの切換過程を示す説明図である。 (a)〜(c)はEVモードでの変速制御過程を示す説明図である。 パワーユニットとその制御系との一部の構成を示す概略図である。 制御ユニットによって実行される変速制御手順の一例を示すフローチャートである。 制御ユニットによって実行される変速制御手順の一例を示すフローチャートである。 (a)は同期変速比を算出する際に参照される特性線図であり、(b)は戻し変速比を算出する際に参照される特性線図である。 目標変速比を示す線図である。 追従判定の手順を示す説明図である。 EVモードでの変速状況の一例を示す説明図である。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1はハイブリッド車両に搭載されるパワーユニット10を示す概略図である。このパワーユニット10は、本発明の一実施の形態であるハイブリッド車両の制御装置によって制御されている。図1に示すように、パワーユニット10は無段変速機11を有しており、無段変速機11の入力側にはトルクコンバータ12を介してエンジン13が連結される一方、無段変速機11の出力側にはクラッチ14を介してモータジェネレータ(電動モータ)15が連結されている。また、モータジェネレータ15には、デファレンシャル機構16を介して駆動輪17が連結されている。このパワーユニット10においては、クラッチ14を締結することでエンジン13および無段変速機11を駆動輪17に連結することが可能となり、クラッチ14を解放することでエンジン13および無段変速機11を駆動輪17から切り離すことが可能となる。
無段変速機11は、プライマリ軸20とこれに平行となるセカンダリ軸21とを有している。プライマリ軸20にはプライマリプーリ22が設けられており、プライマリプーリ22の背面側にはプライマリ油室23が区画されている。また、セカンダリ軸21にはセカンダリプーリ24が設けられており、セカンダリプーリ24の背面側にはセカンダリ油室25が区画されている。さらに、プライマリプーリ22およびセカンダリプーリ24には駆動チェーン26が巻き掛けられている。プライマリ油室23に供給するプライマリ圧Ppおよびセカンダリ油室25に供給するセカンダリ圧Psを調整することにより、プーリ溝幅を変化させて駆動チェーン26の巻き付け径を変化させることができ、プライマリ軸20からセカンダリ軸21に対する無段変速が可能となる。なお、チェーンドライブ式の無段変速機11に限られることはなく、ベルトドライブ式やトラクションドライブ式の無段変速機であっても良い。
無段変速機11にエンジン動力を伝達するため、エンジン13とプライマリプーリ22との間にはトルクコンバータ12が設けられている。トルクコンバータ12は、クランク軸30に連結されるポンプインペラ31と、このポンプインペラ31に対向するとともにタービン軸32に連結されるタービンランナ33とを備えている。また、トルクコンバータ12にはロックアップクラッチ(第2クラッチ)34が組み込まれている。ロックアップクラッチ34はタービンランナ33に連結されるクラッチプレート35を有しており、このクラッチプレート35はフロントカバー36とタービンランナ33との間に配置されている。クラッチプレート35のタービンランナ33側にはアプライ室37が区画されており、クラッチプレート35のフロントカバー36側にはリリース室38が区画されている。アプライ室37に作動油を供給してリリース室38から作動油を排出することにより、クラッチプレート35はフロントカバー36に押し付けられ、ロックアップクラッチ34はクランク軸30とタービン軸32とを直結する締結状態となる。一方、リリース室38に作動油を供給してアプライ室37から作動油を排出することにより、クラッチプレート35はフロントカバー36から引き離され、ロックアップクラッチ34はクランク軸30とタービン軸32とを切り離す解放状態となる。なお、図示する場合には、トルクコンバータ12のタービン軸32と無段変速機11のプライマリ軸20とが直結されているが、これに限られることはなく、タービン軸32とプライマリ軸20との間に遊星歯車列等からなる前後進切換機構を組み付けても良く、タービン軸32とプライマリ軸20との間にギヤ列を組み付けても良い。
前述したように、セカンダリプーリ24とモータジェネレータ15との間には、走行モードを切り換えるためのクラッチ14が設けられている。このクラッチ14は、セカンダリ軸21に連結されるクラッチ入力軸40と、モータジェネレータ15のロータ15aに連結されるクラッチ出力軸41とを備えている。クラッチ入力軸40には摩擦板42aを備えたクラッチドラム42が連結されており、クラッチ出力軸41には摩擦板43aを備えたクラッチハブ43が連結されている。また、クラッチドラム42には油圧ピストン44が組み込まれており、油圧ピストン44の背面側には締結油室45が区画されている。この締結油室45に作動油を供給することにより、油圧ピストン44を摩擦板42a,43aに向けて移動させることが可能となる。これにより、油圧ピストン44によって摩擦板42a,43aを互いに押し付けることができ、クラッチ14を締結状態に切り換えることが可能となる。一方、締結油室45から作動油を排出することにより、油圧ピストン44を摩擦板42a,43aから引き離すことが可能となる。これにより、摩擦板42a,43aの押し付けを解除することができ、クラッチ14を解放状態に切り換えることが可能となる。また、摩擦クラッチであるクラッチ14は、前述した締結状態や解放状態に制御されるだけでなく、摩擦板42a,43aの間にスリップが生じる滑り状態(半クラッチ状態)に制御することが可能となっている。このように、滑り状態に制御可能なクラッチ14を設けることにより、締結油室45の油圧を調整することでクラッチ14の伝達トルクを調整することが可能となる。なお、クラッチ14としては、図示する油圧クラッチに限られることはなく、電磁力によって締結状態、滑り状態、解放状態に制御される電磁クラッチであっても良い。
無段変速機11、クラッチ14、ロックアップクラッチ34等に対して作動油を供給するため、エンジン13にはポンプインペラ31を介してオイルポンプ46が連結されている。このオイルポンプ46は、エンジン13によって駆動されることから、エンジン13の運転状態に連動して油圧を供給することが可能となっている。同様に、無段変速機11、クラッチ14、ロックアップクラッチ34等に対して作動油を供給するため、パワーユニット10には電動オイルポンプ(油圧供給手段)47が組み付けられている。この電動オイルポンプ47は、駆動源となる図示しない電動モータを備えており、エンジン13の運転状態に影響されることなく油圧供給が可能となっている。さらに、オイルポンプ46や電動オイルポンプ47はバルブユニット48に接続されており、バルブユニット48を介して無段変速機11、クラッチ14、ロックアップクラッチ34等に作動油が供給制御されている。なお、バルブユニット48には複数の電磁弁が組み込まれており、これらの電磁弁は後述する制御ユニット50によって制御される。
図2(a)〜(c)はEVモードからHEVモードへの走行モードの切換過程を示す説明図である。ここで、EVモード(モータ走行モード)とは、クラッチ14を解放状態に切り換えることにより、駆動輪17からエンジン13および無段変速機11を切り離して走行させる走行モードである。すなわち、動力源としてモータジェネレータ15のみが駆動輪17に連結されており、モータ動力のみが駆動輪17に伝達されている。なお、EVモードにおいて、エンジン13および無段変速機11は停止した状態となっている。また、HEVモード(ハイブリッド走行モード)とは、クラッチ14を締結状態に切り換えることにより、駆動輪17にエンジン13および無段変速機11を接続して走行させる走行モードである。すなわち、駆動源としてモータジェネレータ15およびエンジン13が駆動輪17に連結されており、モータ動力およびエンジン動力が駆動輪17に伝達されている。なお、HEVモードにおいて、モータジェネレータ15を空転状態に制御することにより、エンジン動力のみを駆動輪17に伝達することも可能である。
図2(a)に示すように、EVモードでの走行時には、クラッチ出力軸41は車速に連動して回転する一方、クラッチ入力軸40は停止した状態となっている。すなわち、クラッチ14の入力回転数Niは出力回転数Noに比べて大幅に低下した状態となっている。このEVモードからクラッチ14を締結してHEVモードに移行させるためには、図2(b)に示すように、エンジン13を始動してエンジン回転数Neを引き上げることにより、出力回転数Noに入力回転数Niを同期させる必要がある。図2(a)に示すように、無段変速機11が減速側で停止している場合には、エンジン回転数Neが減速されてクラッチ入力軸40に伝達されることから、入力回転数Niを素早く引き上げることが困難となる。そこで、図2(b)に示すように、エンジン回転数Neを引き上げるとともに、無段変速機11を増速側(High側)にアップシフトさせることにより、入力回転数Niを出力回転数Noに向けて素早く上昇させている。そして、入力回転数Niが出力回転数Noに到達すると、図2(c)に示すように、クラッチ14が締結状態に切り換えられ、EVモードからHEVモードへの切り換えが完了することになる。
このように、クラッチ14を締結してEVモードからHEVモードに切り換える際には、無段変速機11の変速制御を併せて実施することにより、入力回転数Niを出力回転数Noに素早く同期させている。この無段変速機11の変速制御においては、出力回転数Noが車速に連動することから、出力回転数Noが増大する高車速時においては、無段変速機11を増速側に大きくアップシフトさせる必要があった。このように、無段変速機11を大きな変速幅で変速させることは、同期制御に掛かる時間を引き延ばす要因となるため、本発明の一実施の形態であるハイブリッド車両の制御装置は、同期制御前のEVモードにおいて事前に無段変速機11を変速させている。以下、EVモードでの変速制御について説明する。
図3(a)〜(c)はEVモードでの変速制御過程を示す説明図である。図3(a)に示すように、車両発進時に用いられるEVモードにおいては、無段変速機11の変速比が減速側(Low側)にダウンシフトされた状態となっている。前述したように、車速が上昇してEVモードをHEVモードに切り換える際には、同期制御において無段変速機11にアップシフトが要求されることから、予めEVモードにおいて無段変速機11をアップシフトさせている。この変速制御を実施する際には、図3(b)に示すように、クラッチ14が解放状態から滑り状態に切り換えられ、モータジェネレータ15から無段変速機11に対して動力が分配される。これにより、無段変速機11のプライマリプーリ22およびセカンダリプーリ24が回転した状態となり、無段変速機11は変速制御が可能な状態となる。そして、プライマリ油室23およびセカンダリ油室25の油圧を制御することにより、無段変速機11が所定の目標変速比までアップシフトされると、図3(c)に示すように、クラッチ14が滑り状態から解放状態に切り換えられる。このように、EVモードでの変速終了時にクラッチ14を解放状態に切り換えることにより、プライマリプーリ22およびセカンダリプーリ24の回転が停止することから、無段変速機11の変速比をクラッチ14の解放時点で固定することが可能となる。このように、EVモードにおいて事前に変速制御を実施しておくことにより、その後の同期制御において要求される変速幅を狭めることができ、クラッチ14の同期制御を素早く実行してクラッチ14を締結状態に切り換えることが可能となる。
図4はパワーユニット10とその制御系との一部の構成を示す概略図である。図4に示すように、無段変速機11、エンジン13、クラッチ14、ロックアップクラッチ34を制御するため、ハイブリッド車両の制御系には制御ユニット50が設けられている。この制御ユニット50は、後述するように、モード設定手段、変速制御手段、モータ制御手段、目標変速比算出手段として機能している。制御ユニット50には、エンジン回転数Neを検出するエンジン回転数センサ51、プライマリプーリ22の回転数(プライマリ回転数Np)を検出するプライマリ回転数センサ52、セカンダリプーリ24の回転数(セカンダリ回転数Ns)を検出するセカンダリ回転数センサ53、入力回転数Niを検出する入力回転数センサ54、出力回転数Noを検出する出力回転数センサ55、車速を検出する車速センサ56、車両加速度を検出する加速度センサ57、ブレーキペダルの操作量を検出するブレーキセンサ58、アクセルペダルの操作量を検出するアクセルセンサ59等が接続されている。そして、制御ユニット50は、各種センサ等からの情報に基づき車両状態を判定し、無段変速機11、エンジン13、クラッチ14、ロックアップクラッチ34等に向けて制御信号を出力する。なお、制御ユニット50は、制御信号等を演算するCPUを備えるとともに、制御プログラム、演算式、マップデータ等を格納するROMや、一時的にデータを格納するRAMを備えている。
図4に示すように、制御ユニット50は、エンジン制御部61、ロックアップ制御部62、CVT制御部63、クラッチ制御部64、電動ポンプ制御部65およびモータ制御部66を有している。エンジン制御部61は、エンジン13の図示しないスタータモータ、スロットルバルブ、インジェクタ、イグナイタ等に対して制御信号を出力し、エンジン13の運転状態を制御する。ロックアップ制御部62は、バルブユニット48に制御信号を出力し、ロックアップクラッチ34の作動状態を制御する。CVT制御部63は、バルブユニット48に制御信号を出力し、無段変速機11の変速比を制御する。クラッチ制御部64は、バルブユニット48に制御信号を出力し、クラッチ14の作動状態を制御する。電動ポンプ制御部65は、電動オイルポンプ47に制御信号を出力し、電動オイルポンプ47の作動状態を制御する。さらに、モータ制御部66は、ステータ15bの通電状態を制御するインバータ67に制御信号を出力し、モータジェネレータ15の作動状態を制御する。
また、制御ユニット50は、走行モード制御部68およびEV変速制御部69を有している。走行モード制御部68は、各種センサ等からの情報に基づいて走行モード(EVモード,HEVモード)を判定する。EVモードが選択された場合には、走行モード制御部68からの制御信号に基づいて、クラッチ14が解放状態に切り換えられるとともに、モータジェネレータ15の駆動状態(力行,回生)が制御される。このEVモードにおいては、EV変速制御部69からの制御信号に基づいて、HEVモードへの切り換えに伴う同期制御に備えて変速制御が実施される。また、HEVモードが選択された場合には、走行モード制御部68からの制御信号に基づいて、クラッチ14が締結状態に切り換えられるとともに、エンジン13およびモータジェネレータ15の駆動状態が制御される。
以下、フローチャートに沿ってEVモードでの変速制御について説明する。図5および図6は制御ユニット50によって実行される変速制御手順の一例を示すフローチャートである。なお、図5および図6のフローチャートは、符号a〜dの箇所で互いに接続されている。また、図7(a)は同期変速比Ziを算出する際に参照される特性線図であり、図7(b)は戻し変速比Yiを算出する際に参照される特性線図である。
図5に示すように、EVモードにおいては、ステップS1において電動オイルポンプ47が始動され、続くステップS2においてロックアップクラッチ34が解放される。続くステップS3では、車速に基づき図7(a)の特性線図を参照し、第1目標変速比としての同期変速比Ziが算出される。ここで、同期変速比Ziとは、現在の車速を維持したままエンジン13を所定のエンジン回転数(例えば1000rpm)に制御するとともに、クラッチ14の同期制御を実施した場合に、無段変速機11に対して要求される変速比である。すなわち、EVモードにおいて無段変速機11の変速比を同期変速比Ziに制御しておくことにより、同期制御においてはエンジン13を始動して所定回転数(例えば1000rpm)に到達させるだけで、クラッチ14の入力回転数Niと出力回転数Noとを同期させることが可能となる。クラッチ14の出力回転数Noは車速に連動して増減することから、図7(a)に示すように、同期変速比Ziを車速に基づき設定することが可能となっている。なお、オイルポンプ46を適切に駆動する最低限のエンジン回転数を確保する観点から、同期変速比Ziの算出に用いられるエンジン回転数を1000rpmに設定しているが、これに限られることはなく、他の回転数であっても良いことはいうまでもない。
また、図5に示すように、ステップS4では、車速に基づき図7(b)の特性線図を参照し、第2目標変速比としての戻し変速比Yiが算出される。ここで、戻し変速比Yiとは、停車時までに無段変速機11を所定変速比にダウンシフト(ロー戻し変速)させる観点から設定される変速比であり、車両の発進性能を確保するために設定される変速比である。すなわち、戻し変速比Yiとは、走行中の車両が所定減速度で停車するまでに、無段変速機11を所定変速速度で減速側の所定変速比に到達させることが可能な変速比である。このロー戻し変速時において、無段変速機11に与えられる変速時間は、減速開始時の車速に連動して増減することから、図7(b)に示すように、戻し変速比Yiについても車速に基づき設定することが可能となっている。なお、通常、車両発進時にはEVモードが選択されることから、無段変速機11を介してエンジン動力が出力されることはない。しかしながら、バッテリ残量が大きく低下している場合等には、車両発進時にHEVモードが選択されることも想定されるため、停車時までに無段変速機11を所定変速比にダウンシフトさせることが望ましい。
このように、同期変速比Ziおよび戻し変速比Yiが算出されると、続くステップS5において、同期変速比Ziと戻し変速比Yiとが比較され、減速側の変速比が目標変速比Xiとして設定される。ここで、図8は目標変速比Xiを示す線図である。図8に示すように、車速がVaを下回る場合には、戻し変速比Yiに基づき目標変速比Xiが設定され、車速がVaを上回る場合には、同期変速比Ziに基づき目標変速比Xiが設定される。このように、減速側の変速比を目標変速比Xiとして設定することにより、停車時のロー戻し変速を可能とする変速比範囲を外れることなく、同期制御に備えて無段変速機11を変速させることが可能となる。なお、図8に示す場合には、低車速領域において同期変速比Ziを戻し変速比Yiが減速側に上回り、高車速領域において戻し変速比Yiを同期変速比Ziが減速側に上回っているが、これに限られることはなく、同期変速比Ziや戻し変速比Yiは様々な条件によって変化するものである。なお、同期変速比Ziは、エンジン13から駆動輪17までの間に設けられるギヤのギヤ比や、初期条件として設定されるエンジン回転数(所定回転数)の値に応じて変化する変速比である。また、戻し変速比Yiは、初期条件として設定される車両の減速度(所定減速度)、無段変速機11の変速速度(所定変速速度)、停車時に要求される無段変速機11の変速比(所定変速比)の値に応じて変化する変速比である。
図5に示すように、ステップS5において目標変速比Xiが設定されると、ステップS6に進み、車両走行中であるか否かが判定される。ステップS6において車両停止中であると判定された場合、つまりクラッチ出力軸41の回転が停止している場合には、無段変速機11を変速させることができないため、ステップS3に進み、目標変速比Xiが再設定される。一方、ステップS6において車両走行中であると判定された場合、つまりクラッチ出力軸41が回転している場合には、無段変速機11を変速させることが可能であるため、ステップS7に進み、EVモードでの変速制御を開始するか否かが判断される。ステップS7において、目標変速比Xiと実変速比iとが所定値αを超えて離れる場合(式(1))、所定の減速状態を超えて車両が減速する場合、または実変速比iが所定範囲内に収束している場合には、ステップS8に進み、EVモードでの変速制御が開始される。一方、ステップS7において、目標変速比Xiと実変速比iとが所定値αを超えて離れていない場合、所定の減速状態を超えて車両が減速していない場合、または実変速比iが所定範囲内に収束していない場合には、ステップS3に進み、変速制御を開始することなく再び目標変速比Xiを設定する。なお、実変速比iとは、プライマリ回転数Npをセカンダリ回転数Nsで除した値であり(i=Np/Ns)、無段変速機11の実際の変速比を意味している。
|Xi−i|>α …(1)
前述したステップS7において、所定の減速状態を超えて車両が減速する場合とは、ブレーキセンサ58によって検出されるブレーキペダルの操作量が所定値を超えた場合や、加速度センサ57によって検出される車両減速度が所定値を超えた場合等が該当する。このように、運転手に減速意思があると判定された場合には、ロー戻し変速を実施する必要があることから、ステップS8に進み、EVモードでの変速制御が開始される。また、ステップS7において、実変速比iが所定範囲内に収束している場合とは、クラッチ14を解放状態に保持しているにも拘わらず、セカンダリプーリ24が回転してしまう状況を意味している。解放中のクラッチ14からセカンダリプーリ24には僅かなドラグトルク(引きずりトルク)が伝達され、無段変速機11の回転抵抗は実変速比iによって左右されている。すなわち、前述した所定範囲とは無段変速機11の回転抵抗がクラッチ14のドラグトルクを下回る変速比範囲であり、この所定範囲内に実変速比iが収束する状況とはドラグトルクによって無段変速機11が回転する状況である。このように、クラッチ14を解放していてもセカンダリプーリ24が回転してしまう状況では、エネルギーの有効利用を図る観点から、ステップS8に進み、EVモードでの変速制御を開始している。
ステップS8では、クラッチ14が解放状態から滑り状態に切り換えられ、モータジェネレータ15からセカンダリプーリ24に動力が分配される。このステップS8においては、プライマリ回転数Npやセカンダリ回転数Nsが変速可能となる最低限の回転数を超えるように、締結油室45の油圧を調整してクラッチ14の伝達トルクが制御される。続くステップS9では、クラッチ14の伝達トルクに基づいてモータジェネレータ15の加算トルクを算出し、モータジェネレータ15の出力トルクに加算トルクが上乗せされる。このように、モータジェネレータ15からクラッチ14を介して無段変速機11に動力を分配する際には、モータジェネレータ15の出力トルクを増加させるようにしている。これにより、モータジェネレータ15から駆動輪17に伝達される動力の変動を抑制することができ、運転手に違和感を与えることなくEVモードでの変速制御を実施することが可能となる。
なお、以下の式(2)に示すように、モータジェネレータ15の加算トルクTaは、クラッチ14の上限伝達トルクTbと、CVT抵抗トルクTcおよびCVT加速トルクTdの合成トルク(Tc+Td)とを比較し、小さい方のトルクが加算トルクTaとして設定される。上限伝達トルクTbは、滑り状態となるクラッチ14を介して伝達される伝達トルクの上限値であり、締結油室45の油圧に基づき所定の伝達トルクマップを参照することで求められる。また、CVT抵抗トルクTcは、無段変速機11の回転抵抗を表すトルクであり、プライマリ圧Pp、セカンダリ圧Ps、プライマリ回転数Np、セカンダリ回転数Nsに基づき、所定の抵抗トルクマップを参照することで求められる。さらに、CVT加速トルクTdは、無段変速機11の回転上昇に必要なトルクであり、プライマリプーリ22およびセカンダリプーリ24の角加速度や無段変速機11の慣性相当重量に基づき求められる。なお、クラッチ14とモータジェネレータ15との間にギヤ列が設けられる場合には、このギヤ列のギヤ比を考慮して加算トルクTaが算出される。
Ta=min(Tb,Tc+Td) …(2)
このように、ステップS8においてクラッチ14を滑り状態に制御して無段変速機11を回転させ、ステップS9においてモータジェネレータ15の出力トルクが引き上げられると、前述したステップS3〜S5と同様の手順に沿って、ステップS10では同期変速比Ziが算出され、ステップS11では戻し変速比Yiが算出され、ステップS12では目標変速比Xiが算出される。そして、続くステップS13において、目標変速比Xiに向けて無段変速機11の変速制御が実行される。なお、EVモードにおいては、エンジン13と共にオイルポンプ46が停止しているが、クラッチ14の締結油室45、プライマリプーリ22のプライマリ油室23、セカンダリプーリ24のセカンダリ油室25、ロックアップクラッチ34のリリース室38には、ステップS1で始動された電動オイルポンプ47から作動油が供給されている。なお、HEVモードにおいてはオイルポンプ46が駆動されることから、電動オイルポンプ47の吐出能力はEVモードでの変速制御に必要な最低限の能力に設定されている。また、EVモードでの変速制御においては、ロックアップクラッチ34を解放して無段変速機11からエンジン13を切り離すようにしたので、エンジン13を回転させることなく変速制御を行うことができ、エネルギー損失を低減することが可能となる。
図6に示すように、続くステップS14では、所定の加減速状態を超えて急減速や急加速されているか否かが判定される。なお、ステップS14において急減速の判定基準となる所定の減速状態とは、ステップS7での判定に用いた所定の減速状態よりも減速度の大きな減速状態を意味している。ステップS14において、急加速や急減速が発生していないと判定された場合には、ステップS15に進み、EVモードでの変速制御を終了するか否かが判断される。ステップS15において、目標変速比Xiと実変速比iとが所定値β以内に近づいており、所定の減速状態を超えて車両が減速しておらず、かつ実変速比iが所定範囲内に収束していない場合には、ステップS16に進み、クラッチ14が滑り状態から解放状態に切り換えられる。すなわち、ステップS15において、EVモードでの変速制御が終了したと判定された場合には、ステップS16に進み、クラッチ14が解放されて変速比が固定されることになる。一方、ステップS15において、目標変速比Xiと実変速比iとが所定値βを超えて離れる場合、所定の減速状態を超えて車両が減速する場合、または実変速比iが所定範囲内に収束している場合には、ステップS8に進み、EVモードでの変速制御が継続されることになる。
一方、ステップS14において、急加速や急減速が発生していると判定された場合には、ステップS17に進み、現在の変速能力で変速比の追従が可能であるか否かが判定される。ここで、図9は追従判定の手順を示す説明図である。図9に示すように、現在の走行状態(車速V1,変速比i1)から、所定の減速状態を超えて車両を急減速させた場合には、所定車速V2(例えば0km/h)における目標変速比ia2が読み込まれる。この目標変速比ia2とは、所定車速V2における目標変速比Xiである。また、想定される車両減速度に基づいて車速V2に達するまでの制動時間T2を算出する。そして、電動オイルポンプ47の吐出状態とバルブユニット48の作動状態によって決まるプーリ作動油圧を図示しない油圧センサから検出し、予め実測したプーリ作動油圧と変速速度のマップに基づいて無段変速機11の変速速度を算出する。さらに、変速速度および制動時間T2に基づいて変速可能な変速幅を算出し、この変速幅と変速比i1とに基づいて到達が予測される予測変速比ib2を算出する。そして、目標変速比ia2と予測変速比ib2とを比較判定し、目標変速比ia2と予測変速比ib2とが所定値Cを超えて離れる場合(|ia2−ib2|>C)には、現在の変速能力では変速比の追従が不可能であると判定される。一方、目標変速比ia2と予測変速比ib2とが所定値Cを超えて離れていない場合には、現在の変速能力で変速比の追従が可能であると判定される。
また、図9に示すように、現在の走行状態(車速V1,変速比i1)から、所定の加速状態を超えて車両を急加速させた場合には、所定車速V3における目標変速比ia3が読み込まれる。この目標変速比ia3とは、所定車速V3における目標変速比Xiである。また、想定される車両加速度に基づいて車速V3に達するまでの加速時間T3を算出する。そして、電動オイルポンプ47の吐出状態とバルブユニット48の作動状態によって決まるプーリ作動油圧を図示しない油圧センサから検出し、予め実測したプーリ作動油圧と変速速度のマップに基づいて無段変速機11の変速速度を算出する。さらに、変速速度および加速時間T3に基づいて変速可能な変速幅を算出し、この変速幅と変速比i1とに基づいて到達が予測される予測変速比ib3を算出する。そして、目標変速比ia3と予測変速比ib3とを比較判定し、目標変速比ia3と予測変速比ib3とが所定値Cを超えて離れる場合(|ia3−ib3|>C)には、現在の変速能力では変速比の追従が不可能であると判定される。一方、目標変速比ia3と予測変速比ib3とが所定値Cを超えて離れていない場合には、現在の変速能力で変速比の追従が可能であると判定される。
このように、EVモードでの変速制御時に、過度な急減速や急加速が実施された場合には、ステップS17において変速比の追従判定が実施される。ステップS17において、現在の変速能力では変速比の追従が不可能であると判定された場合には、ステップS18に進み、クラッチ14が滑り状態から解放状態に切り換えられ、続くステップS19において停止中のエンジン13が始動される。次いで、前述したステップS3〜S5と同様の手順に沿って、ステップS20では同期変速比Ziが算出され、ステップS21では戻し変速比Yiが算出され、ステップS22では目標変速比Xiが算出される。そして、ステップS23において、目標変速比Xi(前述したia2,ia3)に向けて変速制御が実施される。このように、電動オイルポンプ47からの作動油だけでは変速速度が足りない状況においては、エンジン13を始動してオイルポンプ46を駆動した上で、無段変速機11の変速制御を実施している。これにより、急減速や急加速が行われた場合であっても、適切な変速比に無段変速機11を制御することが可能となる。続いて、ステップS24に進み、目標変速比Xiに実変速比iが達したか否かが判定される。ステップS24において、実変速比iが目標変速比Xiに到達したと判定された場合には、ステップS25に進み、エンジン13が停止される。そして、ステップS3に戻り、EVモードでの変速制御に備えて、再び目標変速比Xiが設定される。一方、ステップS24において、実変速比iが目標変速比Xiに到達していないと判定された場合には、実変速比iが目標変速比Xiに到達するまで、オイルポンプ46を用いた変速制御が継続される。なお、ステップS17において、現在の変速能力で変速比の追従が可能であると判定された場合には、前述したステップS15に進み、電動オイルポンプ47を用いた変速制御が継続されることになる。
続いて、EVモードでの変速状況を線図に沿って説明する。ここで、図10はEVモードでの変速状況の一例を示す説明図である。図10に示すように、EVモードで走行している場合には、変化する車速に応じて目標変速比Xiが算出される。また、目標変速比Xiと実変速比iとは比較判定されており、目標変速比Xiと実変速比iとが所定値αを上回って離れる場合には、クラッチ14を滑り状態に制御しながら目標変速比Xiに向けて無段変速機11の変速制御が実施される。そして、変速制御を実施することにより、目標変速比Xiと実変速比iとが所定値βを下回って近づいた場合には、クラッチ14が解放状態に切り換えられて実変速比iが固定される。このような変速制御は、目標変速比Xiと実変速比iとが乖離する度に実施されることから、EVモードにおいて実変速比iを目標変速比Xiに近づけておくことが可能となる。これにより、HEVモードに切り換えるためにクラッチ14の同期制御を実施する際には、無段変速機11に要求される変速幅を狭めることができ、素早く同期制御を実施することが可能となる。
これまで説明したように、ハイブリッド車両に電動オイルポンプ47を設けるようにしたので、エンジン停止中に無段変速機11に対して油圧を供給することが可能となる。これにより、エンジン13が停止するEVモードにおいて、無段変速機11を変速させることが可能となり、クラッチ14の同期制御を素早く完了させることが可能となる。また、オイルポンプ46が停止するエンジン停止中に、無段変速機11に対する油圧供給を継続することができるため、制御油室であるプライマリ油室23やセカンダリ油室25を作動油で満たしておくことが可能となり、無段変速機11の応答性を高めて停止中の無段変速機11を素早く再稼働させることが可能となる。なお、前述の説明では、EVモードの設定期間中に渡って電動オイルポンプ47を駆動しているが、これに限られることはなく、EVモードでの変速制御時だけ電動オイルポンプ47を駆動しても良い。また、EVモードだけでなくHEVモードにおいて電動オイルポンプ47を駆動しても良い。
本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、前述の説明では、EVモードでの変速時にクラッチ14を滑り状態に制御しているが、これに限られることはなく、クラッチ14を締結状態に切り換えてモータジェネレータ15から無段変速機11に動力を伝達しても良い。また、前述の説明では、エンジン停止中に油圧を供給する油圧供給手段として電動オイルポンプ47を挙げているが、これに限られることはなく、蓄圧した作動油を必要に応じて放出するアキュムレータを油圧供給源として採用しても良い。また、油圧供給手段として、モータジェネレータ15によって駆動されるオイルポンプを採用しても良い。
また、前述の説明では、特性線図を参照して同期変速比Ziや戻し変速比Yiを算出しているが、これに限られることはなく、適宜演算することで同期変速比Ziや戻し変速比Yiを算出しても良い。さらに、同期変速比Ziと戻し変速比Yiとを比較して目標変速比Xiを設定しているが、これに限られることはなく、同期変速比Ziだけを用いて目標変速比Xiを設定しても良く、戻し変速比Yiだけを用いて目標変速比Xiを設定しても良い。なお、図示するパワーユニット10は、エンジン13と無段変速機11との間にトルクコンバータ12を有しているが、これに限られることはなく、パワーユニット10からトルクコンバータ12を削減しても良い。
11 無段変速機
13 エンジン
14 クラッチ
15 モータジェネレータ(電動モータ)
17 駆動輪
34 ロックアップクラッチ(第2クラッチ)
46 オイルポンプ
47 電動オイルポンプ(油圧供給手段)
50 制御ユニット(モード設定手段、変速制御手段、モータ制御手段、目標変速比算出手段)
Xi 目標変速比
Zi 同期変速比(目標変速比,第1目標変速比)
Yi 戻し変速比(目標変速比,第2目標変速比)

Claims (11)

  1. 無段変速機の入力側に連結されるエンジンと、前記無段変速機の出力側に連結される電動モータと、前記電動モータに連結される駆動輪とを備えるハイブリッド車両の制御装置であって、
    前記無段変速機と前記電動モータとの間に設けられ、前記無段変速機と前記電動モータとを連結する締結状態と、前記無段変速機と前記電動モータとを切り離す解放状態とに切り換えられるクラッチと、
    前記クラッチを解放状態に切り換えることにより、前記駆動輪から前記エンジンおよび前記無段変速機を切り離し、前記電動モータによって前記駆動輪を駆動するモータ走行モードを設定するモード設定手段と、
    前記モータ走行モードにおけるエンジン停止中に、前記無段変速機に油圧を供給する油圧供給手段とを有することを特徴とするハイブリッド車両の制御装置。
  2. 請求項1記載のハイブリッド車両の制御装置において、
    前記モータ走行モードが設定された状態のもとで、前記クラッチを滑り状態または締結状態に制御して前記電動モータから前記無段変速機に動力を伝達するとともに、前記油圧供給手段からの油圧を用いて前記無段変速機を変速させる変速制御手段を有することを特徴とするハイブリッド車両の制御装置。
  3. 請求項2記載のハイブリッド車両の制御装置において、
    前記エンジンと前記無段変速機との間に設けられ、前記エンジンと前記無段変速機とを連結する締結状態と、前記エンジンと前記無段変速機とを切り離す解放状態とに切り換えられる第2クラッチを有し、
    前記第2クラッチは、前記モータ走行モードでの変速時に解放状態に切り換えられることを特徴とするハイブリッド車両の制御装置。
  4. 請求項2または3記載のハイブリッド車両の制御装置において、
    前記変速制御手段は、前記モータ走行モードでの変速終了時に前記クラッチを解放状態に切り換えることを特徴とするハイブリッド車両の制御装置。
  5. 請求項2〜4のいずれか1項に記載のハイブリッド車両の制御装置において、
    前記モータ走行モードでの変速時に、前記クラッチの伝達トルクに基づき前記電動モータの出力トルクを増加させるモータ制御手段を有することを特徴とするハイブリッド車両の制御装置。
  6. 請求項2〜5のいずれか1項に記載のハイブリッド車両の制御装置において、
    前記変速制御手段は、前記無段変速機の変速比と所定の目標変速比とが所定値を超えて離れる場合、所定の減速状態を超えて車両が減速する場合、または前記無段変速機の変速比が所定範囲内に収束する場合に、前記モータ走行モードでの変速を実施することを特徴とするハイブリッド車両の制御装置。
  7. 請求項6記載のハイブリッド車両の制御装置において、
    前記目標変速比を車速に基づき算出する目標変速比算出手段を有することを特徴とするハイブリッド車両の制御装置。
  8. 請求項7記載のハイブリッド車両の制御装置において、
    前記目標変速比は、前記エンジンを所定回転数で制御したときに、前記クラッチの入力回転数と出力回転数とを同期させる変速比であることを特徴とするハイブリッド車両の制御装置。
  9. 請求項7記載のハイブリッド車両の制御装置において、
    前記目標変速比は、走行中の車両を所定減速度で停車させるまでに、前記無段変速機を所定変速速度で減速側の所定変速比に到達させる変速比であることを特徴とするハイブリッド車両の制御装置。
  10. 請求項7記載のハイブリッド車両の制御装置において、
    前記目標変速比算出手段は、
    前記車速に基づいて、前記エンジンを所定回転数で制御したときに、前記クラッチの入力回転数と出力回転数とを同期させる第1目標変速比を算出し、
    前記車速に基づいて、走行中の車両を所定減速度で停車させるまでに、前記無段変速機を所定変速速度で減速側の所定変速比に到達させる第2目標変速比を算出し、
    前記第1目標変速比と前記第2目標変速比とを比較し、減速側の変速比を前記目標変速比として設定することを特徴とするハイブリッド車両の制御装置。
  11. 請求項2〜10のいずれか1項に記載のハイブリッド車両の制御装置において、
    前記エンジンからの動力によって駆動され、前記無段変速機に油圧を供給するオイルポンプを有し、
    前記変速制御手段は、前記モータ走行モードでの変速時に所定の加減速状態を超えて車両が加減速する場合に、前記オイルポンプからの油圧を用いて前記無段変速機を変速させることを特徴とするハイブリッド車両の制御装置。
JP2011124000A 2011-06-02 2011-06-02 ハイブリッド車両の制御装置 Active JP5909052B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011124000A JP5909052B2 (ja) 2011-06-02 2011-06-02 ハイブリッド車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011124000A JP5909052B2 (ja) 2011-06-02 2011-06-02 ハイブリッド車両の制御装置

Publications (2)

Publication Number Publication Date
JP2012250602A true JP2012250602A (ja) 2012-12-20
JP5909052B2 JP5909052B2 (ja) 2016-04-26

Family

ID=47523846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011124000A Active JP5909052B2 (ja) 2011-06-02 2011-06-02 ハイブリッド車両の制御装置

Country Status (1)

Country Link
JP (1) JP5909052B2 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065302A1 (ja) * 2012-10-25 2014-05-01 ジヤトコ株式会社 ハイブリッド車両のモード切り替え制御装置
JP2014151688A (ja) * 2013-02-06 2014-08-25 Jatco Ltd ハイブリッド車両の潤滑装置
WO2014148376A1 (ja) * 2013-03-21 2014-09-25 日産自動車株式会社 ハイブリッド車両
JP2014180965A (ja) * 2013-03-21 2014-09-29 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2014234064A (ja) * 2013-05-31 2014-12-15 富士重工業株式会社 制御装置
JP2015013503A (ja) * 2013-07-03 2015-01-22 本田技研工業株式会社 車両用動力伝達装置
JP2015128913A (ja) * 2014-01-06 2015-07-16 日産自動車株式会社 ハイブリッド車両の制御装置
JP2015150916A (ja) * 2014-02-12 2015-08-24 日産自動車株式会社 ハイブリッド車両の制御装置
JP2015174602A (ja) * 2014-03-18 2015-10-05 日産自動車株式会社 ハイブリッド車両の制御装置
JP2017177973A (ja) * 2016-03-29 2017-10-05 株式会社Subaru 駆動制御機構および駆動制御装置
JP2017177975A (ja) * 2016-03-29 2017-10-05 株式会社Subaru ハイブリッド車両システム
WO2018096604A1 (ja) * 2016-11-24 2018-05-31 日産自動車株式会社 ハイブリッド車両の制御方法と制御装置
WO2019031278A1 (ja) * 2017-08-07 2019-02-14 ジヤトコ株式会社 車両の制御装置及び制御方法
JP2020152240A (ja) * 2019-03-20 2020-09-24 株式会社Subaru 車両の制御装置
JP2020152241A (ja) * 2019-03-20 2020-09-24 株式会社Subaru 車両の制御装置
JP2021066324A (ja) * 2019-10-24 2021-04-30 株式会社Subaru 車両
JP7436234B2 (ja) 2020-02-19 2024-02-21 株式会社Subaru ハイブリッド車両システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020773A (ja) * 1999-07-07 2001-01-23 Toyota Motor Corp 車両の駆動制御装置
JP2001200920A (ja) * 2000-01-17 2001-07-27 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2011080516A (ja) * 2009-10-06 2011-04-21 Jatco Ltd 車両のオイルポンプ制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020773A (ja) * 1999-07-07 2001-01-23 Toyota Motor Corp 車両の駆動制御装置
JP2001200920A (ja) * 2000-01-17 2001-07-27 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2011080516A (ja) * 2009-10-06 2011-04-21 Jatco Ltd 車両のオイルポンプ制御装置

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065302A1 (ja) * 2012-10-25 2014-05-01 ジヤトコ株式会社 ハイブリッド車両のモード切り替え制御装置
JPWO2014065302A1 (ja) * 2012-10-25 2016-09-08 ジヤトコ株式会社 ハイブリッド車両のモード切り替え制御装置
JP2014151688A (ja) * 2013-02-06 2014-08-25 Jatco Ltd ハイブリッド車両の潤滑装置
KR20150120455A (ko) * 2013-03-21 2015-10-27 쟈트코 가부시키가이샤 하이브리드 차량
JP2014180965A (ja) * 2013-03-21 2014-09-29 Nissan Motor Co Ltd ハイブリッド車両の制御装置
EP2977283B1 (en) * 2013-03-21 2022-09-07 Nissan Motor Co., Ltd. Hybrid vehicle
US9616883B2 (en) 2013-03-21 2017-04-11 Nissan Motor Co., Ltd. Hybrid vehicle
CN105050844A (zh) * 2013-03-21 2015-11-11 日产自动车株式会社 混合动力车辆
JP5955455B2 (ja) * 2013-03-21 2016-07-20 日産自動車株式会社 ハイブリッド車両
WO2014148376A1 (ja) * 2013-03-21 2014-09-25 日産自動車株式会社 ハイブリッド車両
KR101712760B1 (ko) 2013-03-21 2017-03-06 쟈트코 가부시키가이샤 하이브리드 차량
JP2014234064A (ja) * 2013-05-31 2014-12-15 富士重工業株式会社 制御装置
JP2015013503A (ja) * 2013-07-03 2015-01-22 本田技研工業株式会社 車両用動力伝達装置
JP2015128913A (ja) * 2014-01-06 2015-07-16 日産自動車株式会社 ハイブリッド車両の制御装置
JP2015150916A (ja) * 2014-02-12 2015-08-24 日産自動車株式会社 ハイブリッド車両の制御装置
JP2015174602A (ja) * 2014-03-18 2015-10-05 日産自動車株式会社 ハイブリッド車両の制御装置
JP2017177975A (ja) * 2016-03-29 2017-10-05 株式会社Subaru ハイブリッド車両システム
JP2017177973A (ja) * 2016-03-29 2017-10-05 株式会社Subaru 駆動制御機構および駆動制御装置
WO2018096604A1 (ja) * 2016-11-24 2018-05-31 日産自動車株式会社 ハイブリッド車両の制御方法と制御装置
WO2019031278A1 (ja) * 2017-08-07 2019-02-14 ジヤトコ株式会社 車両の制御装置及び制御方法
JPWO2019031278A1 (ja) * 2017-08-07 2020-09-03 ジヤトコ株式会社 車両の制御装置及び制御方法
CN110997379A (zh) * 2017-08-07 2020-04-10 加特可株式会社 车辆的控制装置及控制方法
CN110997379B (zh) * 2017-08-07 2023-03-24 加特可株式会社 车辆的控制装置及控制方法
JP2020152240A (ja) * 2019-03-20 2020-09-24 株式会社Subaru 車両の制御装置
JP2020152241A (ja) * 2019-03-20 2020-09-24 株式会社Subaru 車両の制御装置
JP7232092B2 (ja) 2019-03-20 2023-03-02 株式会社Subaru 車両の制御装置
JP7273575B2 (ja) 2019-03-20 2023-05-15 株式会社Subaru 車両の制御装置
JP2021066324A (ja) * 2019-10-24 2021-04-30 株式会社Subaru 車両
JP7414467B2 (ja) 2019-10-24 2024-01-16 株式会社Subaru 車両
JP7436234B2 (ja) 2020-02-19 2024-02-21 株式会社Subaru ハイブリッド車両システム

Also Published As

Publication number Publication date
JP5909052B2 (ja) 2016-04-26

Similar Documents

Publication Publication Date Title
JP5909052B2 (ja) ハイブリッド車両の制御装置
JP5494839B2 (ja) 車両制御装置
US9758158B2 (en) Hybrid vehicle control device
US9216734B2 (en) Control device
US9925982B2 (en) Method for actuating a vehicle powertrain
CN107923324B (zh) 控制装置
JP2012245833A (ja) ハイブリッド車両の制御装置
JP2014097773A (ja) ハイブリッド車両の制御装置
JP2014234133A (ja) ハイブリッド車両の制御装置
JP6113478B2 (ja) ハイブリッド車両の制御装置
JP6151973B2 (ja) 車両用制御装置
JP5718530B2 (ja) 車両用の自動変速機
JP6303783B2 (ja) ハイブリッド車両の制御装置
JP6409363B2 (ja) ハイブリッド車両の制御装置
JP6273505B2 (ja) ハイブリッド車両の制御装置
JP6725254B2 (ja) 車両の制御装置
JP2014231889A (ja) 変速機の制御装置
JP6235793B2 (ja) 車両用制御装置
JP6280314B2 (ja) 車両用制御装置
WO2018078789A1 (ja) 車両の制御方法と制御装置
JP2012091583A (ja) ハイブリッド車両の制御装置
JP2019111995A (ja) 車両用制御装置
JP6204702B2 (ja) 車両用制御装置
JP6220159B2 (ja) 車両用制御装置
JP2016078636A (ja) フライホイール回生システム及びその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160325

R150 Certificate of patent or registration of utility model

Ref document number: 5909052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250