JP2012164961A - 太陽電池およびその製造方法 - Google Patents

太陽電池およびその製造方法 Download PDF

Info

Publication number
JP2012164961A
JP2012164961A JP2011242378A JP2011242378A JP2012164961A JP 2012164961 A JP2012164961 A JP 2012164961A JP 2011242378 A JP2011242378 A JP 2011242378A JP 2011242378 A JP2011242378 A JP 2011242378A JP 2012164961 A JP2012164961 A JP 2012164961A
Authority
JP
Japan
Prior art keywords
pattern
doping
semiconductor layer
solar cell
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011242378A
Other languages
English (en)
Inventor
Min-Seok Oh
▲ミン▼錫 呉
Min Park
敏 朴
Yun Seok Lee
允錫 李
Nam Gyu Song
南圭 宋
Cho Yeong Lee
草英 李
Hoon-Ha Jeon
勳夏 全
Eon-Ik Chang
然翼 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Samsung SDI Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd, Samsung SDI Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2012164961A publication Critical patent/JP2012164961A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】太陽電池に入射する太陽光の吸収率が増加した太陽電池を提供する。また、前記太陽電池を含む多様な種類の太陽電池も製造することができる太陽電池の製造方法を提供する。
【解決手段】太陽電池の製造方法において、太陽光が入射する第1面に対向する基板の第2面上に半導体層が形成される。前記半導体層上に第1不純物ガスが吸着する。前記半導体層にレーザーを加えて第1ドーピングパターンが形成される。したがって、太陽電池の基板の前面に入射する太陽光の損失を減少させることができる。
【選択図】図1

Description

本発明は太陽電池およびその製造方法に関し、より詳細には、後面コンタクトタイプの太陽電池およびその製造方法に関する。
一般的に、太陽電池は、太陽光が入射する前面および前記前面に対向する後面を含み、前記太陽光による前記太陽電池の光起電力(photovoltaic effect)を利用することにより、太陽光エネルギーを電気的エネルギーに変えるエネルギー変換素子である。前記太陽電池は、前記前面を介して太陽光が入射すると、基板の内部で電子と正孔が発生し、発生した電子と正孔が太陽電池の第1電極および第2電極に移動することにより、第1電極と第2電極の間の電位差である光起電力が発生する。このとき、前記太陽電池に負荷を連結すれば、電流が流れるようになる。
前記太陽電池は、前記前面上に形成された第1電極を含み、前記後面上に形成された第2電極を含む。このとき、前記第1電極は、太陽光が入射する前面上に形成されるため、前記第1電極が形成された面積だけ太陽光の吸収率が減少する。
また、前記太陽電池は、前記前面上に形成された第1電極を含む場合、前記前面上に正孔または電子を収集するP型またはN型の非晶質シリコンと、前記非晶質シリコンと前記第1電極をオーミック接触する透明導電性酸化物(Transparent Conductive Oxides:TCO)とをさらに含む。前記非晶質シリコンおよび前記透明導電性酸化物は太陽光を吸収するため、前記前面に入射する太陽光の吸収率が減少する。
本発明は、上述したような問題点を解決するために案出されたものであって、本発明は、太陽電池に入射する太陽光の吸収率が増加した太陽電池を提供することを目的とする。
また、本発明は、前記太陽電池を含む多様な種類の太陽電池も製造することができる太陽電池の製造方法を提供することを他の目的とする。
前記本発明の目的を実現するために、一実施形態に係る太陽電池は、基板、半導体層、第1ドーピングパターン、および第2ドーピングパターンを含む。前記基板は、太陽光が入射する第1面、および前記第1面に対向する第2面を有する。前記半導体層は、前記第2面上に部分的に形成された絶縁パターン、および前記絶縁パターンが形成された領域外に形成された半導体パターンを含む。前記第1および第2ドーピングパターンは、前記半導体パターンに形成される。
一実施形態において、前記半導体層の厚さは、100Å〜200Åであってもよい。前記半導体パターンは、第1半導体パターン、および前記第1半導体パターンと離隔した第2半導体パターンを含んでもよい。前記第1ドーピングパターンは前記第1半導体パターン内に形成され、前記第2ドーピングパターンは前記第2半導体パターン内に形成されてもよい。
一実施形態において、前記半導体層の厚さは、50Å〜100Åであってもよい。前記半導体パターンは、第1半導体パターン、および前記第1半導体パターンと離隔した第2半導体パターンを含んでもよい。前記第1ドーピングパターンは前記第1半導体パターン上に形成され、前記第2ドーピングパターンは前記第2半導体パターン上に形成されてもよい。
前記本発明の目的を実現するために、他の実施形態に係る太陽電池の製造方法は、前記太陽電池の製造方法であって、太陽光が入射する第1面に対向する基板の第2面上に半導体層が形成される。前記半導体層上に第1不純物ガスが吸着する。前記半導体層にレーザーを加えて第1ドーピングパターンが形成される。
一実施形態において、前記太陽電池の製造方法であって、前記第1ドーピングパターン上に、反応性プラズマ蒸着法、イオンプレーティング蒸着法、およびインクジェットプリンティング法のうちの1つを利用してコンタクト層が形成されてもよい。
一実施形態において、前記太陽電池の製造方法であって、前記コンタクト層上に前記第1ドーピングパターンと電気的に連結する電極が形成されてもよい。
一実施形態において、前記太陽電池の製造方法であって、前記第1ドーピングパターンが形成された半導体層上に第2不純物ガスが吸着してもよい。前記半導体層に前記レーザーを加えることで、前記第1ドーピングパターンに隣接した第2ドーピングパターンが形成されてもよい。
一実施形態において、前記半導体層の厚さは100Å〜200Åであり、前記第1および第2ドーピングパターンは前記半導体層内に形成されてもよい。
一実施形態において、前記第1不純物ガスは塩化ホウ素(BCl)またはジボラン(B)のうちの1つであり、前記第2不純物ガスはホスフィン(PH)であってもよい。
一実施形態において、前記半導体層は、絶縁パターンおよび半導体パターンを含んでもよい。前記半導体層を形成する段階において、インクジェットプリンティング法によって前記絶縁パターンが形成され、前記絶縁パターンが形成された領域外に前記半導体パターンが形成されてもよい。
前記本発明の目的を実現するために、他の実施形態に係る太陽電池の製造方法を提供する。前記太陽電池の製造方法において、太陽光が入射する第1面に対向する基板の第2面上に半導体層が形成される。前記半導体層上に、部分的に開口した第1マスクが配置される。前記第1マスクが配置された前記半導体層に第1プラズマを提供することで、第1ドーピングパターンが形成される。
一実施形態において、前記太陽電池の製造方法であって、前記第1ドーピングパターン上に、反応性プラズマ蒸着法、イオンプレーティング蒸着法、およびインクジェットプリンティング法のうちの1つを利用してコンタクト層が形成されてもよい。
一実施形態において、前記太陽電池の製造方法であって、前記コンタクト層上に前記第1ドーピングパターンと電気的に連結する電極が形成されてもよい。
一実施形態において、前記太陽電池の製造方法であって、前記第1ドーピングパターンが形成された前記半導体層上に、部分的に開口した第2マスクが配置される。前記第2マスクが配置された前記半導体層に第2プラズマを提供することで、前記第1ドーピングパターンに隣接した第2ドーピングパターンが形成されてもよい。
一実施形態において、前記半導体層の厚さは100Å〜200Åであり、前記第1および第2ドーピングパターンは前記半導体層内に形成されてもよい。
一実施形態において、前記第1プラズマは塩化ホウ素(BCl)またはジボラン(B)を利用して生成され、第2プラズマはホスフィン(PH)を利用して生成されてもよい。
一実施形態において、前記半導体層の厚さは50Å〜100Åであり、前記第1および第2ドーピングパターンは前記半導体層上に蒸着されてもよい。
一実施形態において、前記第1プラズマは、塩化ホウ素(BCl)またはジボラン(B)、シラン(SiH)、および水素(H)を利用して生成され、第2プラズマは、ホスフィン(PH)、シラン(SiH)、および水素(H)を利用して生成されてもよい。
一実施形態において、前記半導体層は、絶縁パターンおよび半導体パターンを含んでもよい。前記半導体層を形成する段階において、インクジェットプリンティング法によって前記絶縁パターンが形成され、前記絶縁パターンが形成された領域外に前記半導体パターンが形成されてもよい。
一実施形態において、前記半導体層の厚さは100Å〜200Åであり、前記第1ドーピングパターンは前記半導体パターン内に形成されてもよい。
一実施形態において、前記半導体層の厚さは50Å〜100Åであり、前記第1ドーピングパターンは前記半導体パターン上に蒸着されてもよい。
このような太陽電池および太陽電池の製造方法によれば、太陽電池の基板の後面に第1および第2ドーピングパターンを形成することにより、太陽電池の基板の前面に入射する太陽光の損失を減少させることができる。
また、第1および第2ドーピングパターンをI型の非晶質半導体である半導体層に形成することにより、前記第1ドーピングパターンを前記第2ドーピングパターンから電気的に絶縁することができる。
さらに、第1パッシベーション膜をI型の非晶質半導体で形成することにより、太陽光の吸収率を増加させることができる。
本発明の一実施形態に係る太陽電池の斜視図である。 図1のI−I’ラインに沿って切断した太陽電池の断面図である。 図1の太陽電池の製造工程を示す断面図である。 図1の太陽電池の製造工程を示す断面図である。 図1の太陽電池の製造工程を示す断面図である。 図1の太陽電池の製造工程を示す断面図である。 図1の太陽電池の製造工程を示す断面図である。 図1の太陽電池の製造工程を示す断面図である。 図1の太陽電池の製造工程を示す断面図である。 本発明の他の実施形態に係る太陽電池の製造工程を示す断面図である。 本発明の他の実施形態に係る太陽電池の製造工程を示す断面図である。 本発明の他の実施形態に係る太陽電池の斜視図である。 図5のII−II’ラインに沿って切断した太陽電池の断面図である。 図5の太陽電池の製造工程を示す断面図である。 図5の太陽電池の製造工程を示す断面図である。 図5の太陽電池の製造工程を示す断面図である。 図5の太陽電池の製造工程を示す断面図である。 本発明の他の実施形態に係る太陽電池の斜視図である。 図8のIII−III’ラインに沿って切断した太陽電池の断面図である。 図8の太陽電池の製造工程を示す断面図である。 図8の太陽電池の製造工程を示す断面図である。 図8の太陽電池の製造工程を示す断面図である。 図8の太陽電池の製造工程を示す断面図である。 図8の太陽電池の製造工程を示す断面図である。 図8の太陽電池の製造工程を示す断面図である。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
図1は、本発明の一実施形態に係る太陽電池の斜視図である。図2は、図1のI−I’ラインに沿って切断した太陽電池の断面図である。
図1および図2を参照すれば、太陽電池100は、基板110、保護層120、半導体層130、コンタクト層140、および電極層150を含む。
前記基板110は、太陽光が入射する前面111と、前記前面111に対向する後面112とを含む。前記基板110は、N(negative)型の結晶質シリコン基板またはP(positive)型の結晶質シリコン基板であってもよい。例えば、図1の実施形態では、前記基板110がN型の結晶質シリコン基板である。前記基板110は、前記太陽光が入射すれば、前記太陽光の光子(photon)によって前記基板110内で正孔(hole)と電子(electron)を生成する。前記正孔は、N型の結晶質シリコン基板の前記基板110と後述するP型の非晶質シリコンの第1ドーピングパターン(DP1)に向かって移動し、前記電子は後述するN型の非晶質シリコンの第2ドーピングパターン(DP2)に向かって移動する。前記第1ドーピングパターン(DP1)に移動した前記正孔および前記第2ドーピングパターン(DP2)に移動した前記電子は、前記電極層150に蓄積される。前記基板110は、前記太陽光の吸収率を増加させるために、前記前面111に凹凸を含む。
前記保護層120は、第1パッシベーション膜121および反射防止膜122を含む。前記保護層120は、第2パッシベーション膜123をさらに含んでもよい。
前記第1パッシベーション膜121は、前記凹凸が形成された前記基板110の前面111上に形成される。前記第1パッシベーション膜121は、前記基板110内に生成された正孔と電子の再結合を防ぐ。前記第1パッシベーション膜121は、I型の非晶質シリコン(intrinsic a−Si)、酸化シリコン(SiOx)、および酸化アルミニウム(Al)のうちの1つを含んでもよい。例えば、前記第1パッシベーション膜121が前記I型の非晶質シリコンを含む場合、前記I型の非晶質シリコンはP型またはN型の非晶質シリコンに比べて膜特性が良いため、前記基板110内に生成された電子および正孔の損失を減少させることができる。前記第1パッシベーション膜121の厚さは、約50Å〜約200Åであってもよい。
前記反射防止膜122は、前記第1パッシベーション膜121上に形成される。前記反射防止膜122は、前記太陽光が前記前面111に入射するときに、前記太陽光の反射を防ぐ。前記反射防止膜122は、窒化シリコン(SiNx)を含んでもよい。前記反射防止膜122の厚さは、約700Å〜約1000Åであってもよい。
前記第2パッシベーション膜123は、前記第1パッシベーション膜121上に形成され、前記第1パッシベーション膜121および前記反射防止膜122の間に形成されてもよい。前記第2パッシベーション膜123は、N型の非晶質シリコン(n a−Si)を含んでもよい。
前記半導体層130は、前記基板110の後面112上に形成される。前記半導体層130は、I型の非晶質シリコン(intrinsica−Si)を含む。前記半導体層130の厚さは、約100Å〜約200Åであってもよい。前記半導体層130は、第1ドーピングパターン(DP1)および第2ドーピングパターン(DP2)を含む。前記第1ドーピングパターン(DP1)は第1不純物ガスであって、ドーピングされたP型のシリコンを含む。前記第1不純物ガスは、塩化ホウ素(BCl)またはジボラン(B)であってもよい。前記第2ドーピングパターン(DP2)は第2不純物ガスであって、ドーピングされたN型のシリコン(N+型シリコン)を含む。前記第2不純物ガスは、ホスフィン(PH)であってもよい。
前記第1ドーピングパターン(DP1)および前記第2ドーピングパターン(DP2)は、互いに離隔して形成される。例えば、本実施形態によれば、前記第1ドーピングパターン(DP1)は、第1方向(D1)に延長し、前記第1方向(D1)に交差する第2方向(D2)に平行に配列された第1パターン、および前記第2方向(D2)に延長し、前記第1パターンを連結する第2パターンを含む。前記第2ドーピングパターン(DP2)は、前記第1方向(D1)に延長し、前記第2方向(D2)に平行に配列された第3パターン、および前記第2方向(D2)に延長し、前記第3パターンを連結する第4パターンを含む。前記第1パターンおよび前記第3パターンは順番に配置され、前記第2パターンおよび前記第4パターンは互いに対向する。
前記コンタクト層140は、前記半導体層130の前記第1および第2ドーピングパターン(DP1、DP2)上に形成される。前記コンタクト層140は、前記半導体層130と前記電極層150の間に形成され、オーミックコンタクト(ohmic contact)を形成する。前記コンタクト層140は、インジウム酸化物(Indium oxide)、酸化スズ(Tin oxide)、ジルコニウム酸化物(Zirconium oxide)にスズ(Sn)、タングステン(W)、チタニウム(Ti)、モリブデン(Mo)、亜鉛(Zn)、タンタル(Ta)のうちの少なくとも1つを添加した透明導電性酸化物(Transparent Conductive Oxides:TCO)であってもよい。前記コンタクト層140の厚さは、約100Å〜約700Åであってもよい。前記コンタクト層140は、前記第1および第2ドーピングパターン(DP1、DP2)上に形成されるため、前記第1および第2ドーピングパターン(DP1、DP2)と同じ形状を有してもよい。
前記電極層150は、前記コンタクト層140上に形成される。前記電極層150は、前記コンタクト層140のように、前記第1および第2ドーピングパターン(DP1、DP2)と同じ形状を有する。前記電極層150は、前記第1ドーピングパターン(DP1)に沿って形成された第1電極151、および前記第2ドーピングパターン(DP2)に沿って形成された第2電極152を含む。前記第1および第2電極151、152それぞれは、シード層(seed layer)、メイン電極、およびキャッピング層(capping layer)を含んでもよい。前記メイン電極は前記シード層上に形成され、前記キャッピング層は前記メイン電極上に形成される。前記シード層は銀(Ag)またはニッケル(Ni)を含み、前記メイン電極は銀(Ag)または銅(Cu)を含み、前記キャッピング層はスズ(Sn)を含んでもよい。
前記第1電極151は、前記第1パターンに沿って形成された第1フィンガー電極151a、および前記第2パターンに沿って形成された第1バス電極151bを含み、前記第2電極152は、前記第3パターンに沿って形成された第2フィンガー電極152a、および前記第4パターンに沿って形成された第4バス電極152bを含んでもよい。したがって、前記第1フィンガー電極151aおよび前記第2フィンガー電極152aは順番に配置され、前記第1バス電極151bおよび前記第2バス電極152bは互いに対向する。
図3A〜図3Gは、図1の太陽電池の製造工程を示す断面図である。
図3Aを参照すれば、前記基板110の前面111にピラミッド形状の凹凸を形成(texturing)する。例えば、前記基板110の前面111に凹凸を形成するために、ウェットエッチングしたりドライエッチングしてもよい。
前記ウェットエッチングの場合、前記基板110を、エッチング溶液を利用して、前記基板110の前面111および後面112に凹凸を形成する。前記エッチング溶液は、水酸化カリウム(KOH)または水酸化ナトリウム(NaOH)のアルカリ溶液にイソプロピルアルコール(isopropyl alcohol:IPA)または界面活性剤を添加した溶液である。前記凹凸が形成された前記前面111上に保護膜を形成する。前記保護膜は酸化シリコン(SiOx)を含む。次に、前記凹凸が形成された前記後面112を、水酸化カリウム(KOH)のアルカリ溶液を利用して前記凹凸を除去する。次に、前記保護膜が形成された前記前面111を洗浄して前記保護膜を除去する。したがって、前記基板110は、前記前面111にのみ凹凸を含む。
これとは異なり、前記ドライエッチングの場合、前記基板110を反応性イオンエッチング(reactive ion etching:RIE)し、前記基板110の前面111にピラミッド形状の凹凸を形成する。前記反応性イオンエッチングには、塩素(Cl)、炭素テトラフルオロメタン(CF)、六フッ化硫黄(SF)、フルオロホルム(CHF)、および酸素(O)のうちの少なくとも1つ以上を利用してもよい。
図3Bを参照すれば、前記凹凸が形成された前記前面111上に保護層120を形成する。例えば、前記凹凸が形成された前記前面111上に、前記第1パッシベーション膜121および前記反射防止膜122を順に形成する。前記第1パッシベーション膜121および前記反射防止膜122は、化学気相蒸着法(chemical vapor deposition:CVD)、スパッタリング法(sputtering)などの蒸着法を利用して形成されてもよい。前記第1パッシベーション膜121は、I型の非晶質シリコン(intrinsic a−Si)、酸化シリコン(SiOx)、および酸化アルミニウム(Al)のうちの1つを含んでもよい。前記反射防止膜122は、シリコンナイトライド(SiNx)を含んでもよい。例えば、前記第1パッシベーション膜121は約50Å〜約200Åの厚さに形成され、前記反射防止膜122は約700Å〜約1000Åの厚さに形成されてもよい。
これとは異なり、前記第1パッシベーション膜121と前記反射防止膜122の間に、前記第2パッシベーション膜123をさらに形成してもよい。前記第2パッシベーション膜123は、化学気相蒸着法、スパッタリング法などの蒸着法を利用して形成されてもよい。前記第2パッシベーション膜123は、N型の非晶質シリコン(na−Si)を含んでもよい。
図3Cを参照すれば、前記保護層120が形成された前記基板110の後面112上に半導体層130を形成する。前記半導体層130は、プラズマ補強化学気相蒸着法(plasma enhanced chemical vapor deposition:PECVD)を利用して形成されてもよい。例えば、前記半導体層130は、I型の非晶質シリコン、シラン(SiH)、および水素(H)のプラズマを利用して蒸着される。前記半導体層130は、後続工程で形成される第1ドーピングパターンの厚さおよび第2ドーピングパターンの厚さを考慮した上で、約100Å〜約200Åの厚さに形成されてもよい。
図3Dを参照すれば、前記半導体層130内にガスエマルジョンレーザードーピング法(gas immersion laser doping:GILD)を利用して、第1不純物ガス(DG1)を第1ドーピング領域(DA1)にドーピングする。例えば、前記半導体層130が形成された前記基板110を第1不純物ガス(DG1)が発生するチャンバ内に配置し、前記半導体層130の表面に前記第1不純物ガス(DG1)を吸着させる。前記第1不純物ガス(DG1)は、塩化ホウ素(BCl)またはジボラン(B)であってもよい。
次に、前記第1不純物ガス(DG1)が吸着した前記半導体層130の表面上にエネルギーとしてレーザー(LS)を加えることで、前記第1不純物ガス(DG1)を前記半導体層130の第1ドーピング領域(DA1)に選択的にドーピングする。前記第1ドーピング領域(DA1)の深さは、約50Å〜約100Åであってもよい。前記第1不純物ガス(DG1)のドーピング後に、前記半導体層130の表面上に残存する前記第1不純物ガス(DG1)は、乾式洗浄によって除去されてもよい。
図3Eを参照すれば、前記図3Dの工程によって前記第1ドーピング領域(DA1)に形成された第1ドーピングパターン(DP1)を有する前記半導体層130内に、ガスエマルジョンレーザードーピング法を利用して、第2不純物ガス(DG2)を前記第1ドーピング領域(DA1)から離隔した前記第2ドーピング領域(DP2)にドーピングする。例えば、前記第1ドーピングパターン(DP1)が形成された前記基板110を第2不純物ガス(DG2)が発生するチャンバ内に配置し、前記半導体層130の表面に前記第2不純物ガス(DG2)を吸着させる。前記第2不純物ガス(DG2)は、ホスフィン(PH)であってもよい。
次に、前記第2不純物ガス(DG2)が吸着した前記半導体層130の表面上にエネルギーとしてレーザー(LS)を加えることで、前記第2不純物ガス(DG2)を前記第1ドーピング領域(DA1)に離隔した前記半導体層130の第2ドーピング領域(DA2)に選択的にドーピングする。前記第2ドーピング領域(DA2)の深さは、約50Å〜約100Åであってもよい。
図3Fを参照すれば、前記図3Eの工程によって前記第2ドーピング領域(DA2)に第2ドーピングパターン(DP2)が形成される。前記第2ドーピングパターン(DP2)は、前記第1ドーピングパターン(DP1)の幅よりも小さい幅を有してもよい。前記第2ドーピングパターン(DP2)は、前記第1ドーピングパターン(DP1)から所定の間隔だけ離隔し、前記第1および第2ドーピングパターン(DP1、DP2)が形成されない半導体層130によって前記第1ドーピングパターン(DP1)と絶縁する。前記第2不純物ガス(DG2)のドーピング後に、前記半導体層130の表面上に残存する前記第2不純物ガス(DG2)は、乾式洗浄によって除去されてもよい。
図3Gを参照すれば、前記半導体層130の前記第1および第2ドーピングパターン(DP1、DP2)上に、反応性プラズマ蒸着法(reactive plasma deposition:RPD)、イオンプレーティング蒸着法(ion plating deposition)、またはインクジェットプリンティング法を利用してコンタクト層140を形成する。前記反応性プラズマ蒸着法または前記イオンプレーティング蒸着法の場合、前記コンタクト層140は、前記第1および第2ドーピングパターン(DP1、DP2)に対応する部分が開口したシャドーマスク(shadow mask)を利用して、前記第1および第2ドーピングパターン(DP1、DP2)上にインジウム酸化物(Indium oxide)、酸化スズ(Tin oxide)、ジルコニウム酸化物(Zirconium oxide)にスズ(Sn)、タングステン(W)、チタニウム(Ti)、モリブデン(Mo)、亜鉛(Zn)、タンタル(Ta)のうちの少なくとも1つを添加した透明導電性酸化物を蒸着してもよい。
これとは異なり、前記インクジェットプリンティング法の場合、前記コンタクト層140は、前記第1および第2ドーピングパターン(DP1、DP2)上に前記透明導電性酸化物を蒸着してもよい。前記コンタクト層140は、約100Å〜約700Åの厚さに形成されてもよい。
再び図2を参照すれば、前記コンタクト層140上にスクリーンプリンティング法(screen printing)利用して電極層150を形成する。前記スクリーンプリンティング法の場合、前記コンタクト層140が形成された前記基板110上に、前記コンタクト層140に対応する部分が開口したマスクを配置し、前記マスクが配置された前記基板110上に銀(Ag)または銅(Cu)を塗布して単一層の電極層150を形成する。
これとは異なり、図に示されてはいないが、前記コンタクト層140上にインクジェットプリンティング法を利用して銀(Ag)またはニッケル(Ni)でシード層を形成し、前記シード層上に前記スクリーンプリンティング法を利用して銀(Ag)または銅(Cu)でメイン電極を形成し、前記メイン電極上にメッキ法を利用してスズ(Sn)でキャッピング層を形成することにより、三層の電極層を形成してもよい。
前記電極層150は、前記第1ドーピングパターン(DP1)に対応する第1電極151と、前記第2ドーピングパターン(DP2)に対応する第2電極152とを含む。
図1の実施形態によれば、前記太陽電池100は、前記基板110の後面112上に形成された半導体層130内に、第1不純物ガスおよびレーザーを利用して前記第1および第2ドーピングパターンを形成することにより、前記前面111に入射する太陽光の損失を減少させることができる。
図4Aおよび図4Bは、本発明の他の実施形態に係る太陽電池の製造工程を示す断面図である。
図4Aおよび図4Bの実施形態に係る太陽電池は、第1および第2ドーピングパターンを形成する方法を除いては、図1の実施形態に係る太陽電池と実質的に同じであるため、図1の実施形態に係る太陽電池と同じ構成要素には同じ図面番号を付与し、繰り返される説明は省略する。
図4Aを参照すれば、I型の非晶質シリコンを含む前記半導体層130内に、プラズマドーピング法(plasma doping:PLAD)を利用して、第1不純物ガスを第1ドーピング領域(DA1)にドーピングする。例えば、前記半導体層130が形成された前記基板110上に、前記第1ドーピング領域(DA1)に対応する部分が開口した第1シャドーマスク(SM1)を配置する。前記第1シャドーマスク(SM1)が配置された前記基板110を、第1不純物ガスが流入するチャンバ内に配置する。前記チャンバ内で、放電などによる高エネルギーが前記第1不純物ガスに加わることによって前記第1不純物ガスをプラズマ化し、3族イオンを含む第1プラズマ(PL1)を前記半導体層130の前記第1ドーピング領域(DA1)に選択的にドーピングする。前記第1不純物ガスは塩化ホウ素(BCl)またはジボラン(B)であり、前記3族イオンはホウ素(B)イオンであってもよい。前記第1ドーピングパターン(DP1)は、約50Å〜約100Åの厚さに形成されてもよい。次に、前記第1ドーピングパターン(DP1)は、熱処理またはレーザー加工を利用して活性化されてもよい。
図2および図4Bを参照すれば、前記図4Aの工程によって前記第1ドーピング領域(DA1)に形成された第1ドーピングパターン(DP1)を有する前記半導体層130内に、プラズマドーピング法(plasma doping:PLAD)を利用して、第2不純物ガスを第2ドーピング領域(DA2)にドーピングする。例えば、前記第1ドーピングパターン(DP1)が形成された前記基板110上に、前記第2ドーピング領域(DA2)に対応する部分が開口した第2シャドーマスク(SM2)を配置する。前記第2シャドーマスク(SM2)が配置された前記基板110を、第2不純物ガスが流入するチャンバ内に配置する。前記チャンバ内で、放電などによる高エネルギーが前記第2不純物ガスに加わることによって前記第2不純物ガスをプラズマ化し、5族イオンを含む第2プラズマ(PL2)を前記半導体層130の前記第2ドーピング領域(DA2)に選択的にドーピングする。前記第2不純物ガス(DG2)はホスフィン(PH)であり、前記5族イオンはリン(P)イオンであってもよい。前記図4Bの工程により、前記第2ドーピング領域(DA2)に第2ドーピングパターン(DP2)が形成される。前記第2ドーピングパターン(DP2)は、約50Å〜約100Åの厚さに形成されてもよい。次に、前記第2ドーピングパターン(DP2)は、熱処理またはレーザー加工を利用して活性化されてもよい。
図4Aおよび図4Bに示した実施形態によれば、前記太陽電池100は、前記基板110の後面112上に形成された半導体層130内に、プラズマを利用して前記第1および第2ドーピングパターンを形成することにより、前記前面111に入射する太陽光の損失を減少させることができる。
図5は、本発明の他の実施形態に係る太陽電池の斜視図である。図6は、図5のII−II’ラインに沿って切断した太陽電池の断面図である。
図5の実施形態に係る太陽電池は、第1および第2ドーピングパターンを形成する方法を除いては、図1の実施形態に係る太陽電池と実質的に同じであるため、図1の実施形態に係る太陽電池と同じ構成要素には同じ図面番号を付与し、繰り返される説明は省略する。
図5および図6を参照すれば、太陽電池200は、基板110、保護層120、半導体層160、第1ドーピングパターン(DP3)、第2ドーピングパターン(DP4)、コンタクト層140、および電極層150を含む。
前記半導体層160は、前記基板110の後面112上に形成される。前記半導体層130は、I型の非晶質シリコン(intrinsic a−Si)を含む。前記半導体層160の厚さは、約50Å〜約100Åであってもよい。
前記第1ドーピングパターン(DP3)は、前記半導体層160上に形成される。前記第1ドーピングパターン(DP3)は、第1不純物ガスとして蒸着されたP型シリコンを含む。前記第1不純物ガスは、塩化ホウ素(BCl)またはジボラン(B)であってもよい。前記第2ドーピングパターン(DP4)は、前記半導体層160上に前記第1ドーピングパターン(DP3)と離隔して形成される。前記第2ドーピングパターン(DP4)は、第2不純物ガスとして蒸着されたN型シリコン(N+型シリコン)を含む。前記第2不純物ガスはホスフィン(PH)であってもよい。前記第1および第2ドーピングパターン(DP3、DP4)は、図1の実施形態に係る第1および第2ドーピングパターンと同じ形状を有してもよい。
図7A〜図7Dは、図5および6に示す太陽電池の製造工程を示す断面図である。
図7Aを参照すれば、I型の非晶質シリコンを含む前記半導体層160上に、プラズマ補強化学気相蒸着法(PECVD)を利用して第1ドーピングパターン(DP3)を形成する。例えば、前記半導体層160が形成された前記基板110上に、前記第1ドーピングパターン(DP3)に対応する部分が開口した第1シャドーマスク(SM3)を配置する。前記第1シャドーマスク(SM3)が配置された前記基板110を、第1不純物ガスが流入するチャンバ内に配置する。前記チャンバ内で、放電などによる高エネルギーが前記第1不純物ガスに加わることで、前記第1不純物ガスを利用して第1プラズマ(PL3)を生成する。前記第1プラズマ(PL3)は、前記第1不純物ガスから生成された原子またはイオンを含み、前記原子またはイオン同士が反応し、前記半導体層160上に選択的に薄膜が蒸着される。前記第1不純物ガスは、シラン(SiH)および水素(H)に塩化ホウ素(BCl)またはジボラン(B)を添加した混合ガスであってもよい。
図7Bおよび図7Cを参照すれば、前記第1ドーピングパターン(DP3)が形成された前記半導体層160上に、前記プラズマ補強化学気相蒸着法(PECVD)を利用して第2ドーピングパターン(DP4)を形成する。例えば、前記第1ドーピングパターン(DP3)が形成された前記基板110上に、前記第2ドーピングパターン(DP4)に対応する部分が開口した第2シャドーマスク(SM4)を配置する。前記第2シャドーマスク(SM4)が配置された前記基板110を、第2不純物ガスが流入するチャンバ内に配置する。前記チャンバ内で、放電などによる高エネルギーが前記第2不純物ガスに加わることで、前記第2不純物ガスを利用して第2プラズマ(PL4)を生成する。前記第2プラズマ(PL4)は、前記第2不純物ガスから生成された原子またはイオンを含み、前記原子またはイオン同士が反応し、前記第1ドーピングパターン(DP3)から離隔した前記半導体層160上に選択的に薄膜が蒸着される。前記第2不純物ガスは、シラン(SiH)および水素(H)にホスフィン(PH)を添加した混合ガスであってもよい。前記第1ドーピングパターン(DP3)は約50Å〜約100Åの厚さに形成され、前記第2ドーピングパターン(DP4)は約50Å〜約100Åの厚さに形成されてもよい。
図7Dを参照すれば、前記第1および第2ドーピングパターン(DP3、DP4)上に、反応性プラズマ蒸着法(reactive plasma deposition:RPD)、イオンプレーティング蒸着法(ion plating deposition)、またはインクジェットプリンティング法を利用してコンタクト層140を形成する。
再び図6を参照すれば、前記コンタクト層140上に、スクリーンプリンティング法(screen printing)利用して電極層150を形成する。
図5の実施形態によれば、前記太陽電池200は、前記基板110の後面112上に形成された半導体層160上に、プラズマを利用して前記第1および第2ドーピングパターンを形成することにより、前記前面111に入射する太陽光の損失を減少させることができる。
図8は、本発明の他の実施形態に係る太陽電池の斜視図である。図9は、図8のIII−III’ラインに沿って切断した太陽電池の断面図である。
図8および図9の実施形態に係る太陽電池は、半導体層を形成する方法を除いては、図1の実施形態に係る太陽電池と実質的に同じであるため、図1の実施形態に係る太陽電池と同じ構成要素には同じ図面番号を付与し、繰り返される説明は省略する。
図8および図9を参照すれば、太陽電池300は、基板110、保護層120、半導体層170、第1ドーピングパターン(DP1)、第2ドーピングパターン(DP2)、コンタクト層140、および電極層150を含む。
前記半導体層170は、前記基板110の後面112上に形成される。前記半導体層170は、絶縁パターン171および半導体パターン172を含む。前記絶縁パターン171は、前記基板110の後面112の第1領域に形成される。前記半導体パターン172は、前記第1領域を除いた前記基板110の後面112の第2領域に形成される。図7の実施形態によれば、前記半導体パターン172は、互いに離隔した第1半導体パターン172aおよび第2半導体パターン172bを含む。前記絶縁パターン171は、前記第1半導体パターン172aおよび前記第2半導体パターン172bの間に配置される。
前記絶縁パターン171は、酸化シリコン(SiO)を含む。前記半導体パターン172は、I型の非晶質シリコン(intrinsic a−Si)を含む。前記絶縁パターン171および前記半導体パターン172それぞれの厚さは、約50Å〜約100Åであってもよい。
前記第1半導体パターン172aは前記第1ドーピングパターン(DP1)を含み、前記第2半導体パターン172bは前記第2ドーピングパターン(DP2)を含む。前記第1ドーピングパターン(DP1)は、第1不純物ガスとしてドーピングされたP型シリコンを含む。前記第1不純物ガスは、塩化ホウ素(BCl)またはジボラン(B)であってもよい。前記第2ドーピングパターン(DP2)は、第2不純物ガスとしてドーピングされたN型シリコン(N+型シリコン)を含む。前記第2不純物ガスは、ホスフィン(PH)であってもよい。
前記第1および第2ドーピングパターン(DP1、DP2)をそれぞれ含む前記第1および第2半導体パターン172a、172b上に前記コンタクト層140が形成され、前記コンタクト層140上に前記電極層150が形成される。
図10A〜図10Fは、図8および図9の太陽電池の製造工程を示す断面図である。
図10Aを参照すれば、前記後面112の第1領域に、インクジェットプリンティング法を利用して前記絶縁パターン171を形成する。
図10Bを参照すれば、前記後面112上に前記第1領域を除いた前記後面112の第2領域が開口したシャドーマスクを配置し、前記基板110上にプラズマ補強化学気相蒸着法(plasma enhanced chemical vapor deposition:PECVD)を利用して前記半導体パターン172を形成する。
前記半導体パターン172は、前記絶縁パターン171を間において、第1半導体パターン172aおよび第2半導体パターン172bに分離する。前記半導体層170は、後続工程で形成される第1ドーピングパターンの厚さおよび第2ドーピングパターンの厚さを考慮した上で、約100Å〜約200Åの厚さに形成されてもよい。
その結果、前記保護層120が形成された前記基板110の後面112上に、絶縁パターン171および半導体パターン172を含む半導体層170が形成される。
図10Cを参照すれば、前記第1半導体パターン172a内に、ガスエマルジョンレーザードーピング法(gas immersion laser doping:GILD)を利用して、第1不純物ガスDG1を第1ドーピング領域DA1にドーピングする。例えば、前記半導体層170が形成された前記基板110を前記第1不純物ガス(DG1)が発生するチャンバ内に配置し、前記半導体層170の表面に前記第1不純物ガス(DG1)を吸着させる。前記第1不純物ガス(DG1)は、塩化ホウ素(BCl)またはジボラン(B)であってもよい。
次に、前記第1不純物ガス(DG1)が吸着した前記半導体層170の表面上にエネルギーとしてレーザー(LS)を加えることで、前記第1不純物ガス(DG1)を前記第1半導体パターン172aに選択的にドーピングする。前記第1ドーピングパターンDP1は、約50Å〜約100Åの厚さに形成されてもよい。
前記第1不純物ガス(DG1)のドーピング後に、前記半導体層170の表面上に残存する前記第1不純物ガス(DG1)は、乾式洗浄によって除去されてもよい。
図10Dを参照すれば、図10Cの工程によって前記第1ドーピング領域(DA1)に形成された第1ドーピングパターン(DP1)を有する前記第2半導体パターン172b内に、ガスエマルジョンレーザードーピング法を利用して、第2不純物ガス(DG2)を前記第1ドーピング領域(DA1)と離隔した前記第2ドーピング領域(DA2)にドーピングする。例えば、前記第1ドーピングパターン(DP1)が形成された前記基板110を第2不純物ガス(DG2)が発生するチャンバ内に配置し、前記半導体層170の表面に前記第2不純物ガス(DG2)を吸着させる。前記第2不純物ガス(DG2)は、ホスフィン(PH)であってもよい。
次に、前記第2不純物ガス(DG2)が吸着した前記半導体層170の表面上にエネルギーとしてレーザー(LS)を加えることで、前記第2不純物ガス(DG2)を前記第1半導体パターン172aから離隔した前記第2半導体パターン172bに選択的にドーピングする。前記第2ドーピングパターン(DP2)は、約50Å〜約100Åの厚さに形成されてもよい。前記第2ドーピングパターン(DP2)は、前記第1ドーピングパターン(DP1)の幅よりも小さい幅を有してもよい。
図10Eを参照すれば、前記図10Dの工程によって前記第2ドーピング領域(DA2)に第2ドーピングパターン(DP2)が形成される。前記第2ドーピングパターン(DP2)は、前記第1および第2半導体パターン172a、172bの間に形成された前記絶縁パターン171によって前記第1ドーピングパターン(DP1)と絶縁してもよい。前記第2不純物ガス(DG2)のドーピング後に、前記半導体層170の表面上に残存する前記第2不純物ガス(DG2)は、乾式洗浄によって除去されてもよい。
図10Fを参照すれば、前記半導体層170の前記第1および第2ドーピングパターン(DP1、DP2)上に、反応性プラズマ蒸着法(reactive plasma deposition:RPD)、イオンプレーティング蒸着法(ion plating deposition)、またはインクジェットプリンティング法を利用してコンタクト層140を形成する。
再び図9を参照すれば、前記コンタクト層140上に、スクリーンプリンティング法(screen printing)利用して電極層150を形成する。
図8の実施形態によれば、前記半導体層170が絶縁パターン171、第1半導体パターン172a、および第2半導体パターン172bを含み、前記第1および第2ドーピングパターン(DP1、DP2)が不純物ガスおよびレーザーを利用して、前記第1および第2半導体パターン172a、172b内にそれぞれ形成される。
これとは異なり、図4Aおよび図4Bの実施形態により、不純物ガスをプラズマ化し、前記第1および第2半導体パターン172a、172b内に前記第1および第2ドーピングパターン(DP1、DP2)をそれぞれ形成してもよい。
これとは異なり、図5の実施形態により、不純物ガスをプラズマ化し、前記第1および第2半導体パターン172a、172b上に前記第1および第2ドーピングパターン(DP1、DP2)をそれぞれ形成してもよい。
図7の実施形態によれば、前記太陽電池300は、前記基板110の後面112上に形成された半導体層170内に、第1不純物ガスおよびレーザーを利用して前記第1および第2ドーピングパターンを形成することにより、前記前面111に入射する太陽光の損失を減少させることができる。
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
100、200、300:太陽電池
110:基板
120:保護層
130、160、170:半導体層
140:コンタクト層
150:電極層
DP1:第1ドーピングパターン
DP2:第2ドーピングパターン

Claims (22)

  1. 太陽光が入射する第1面、および前記第1面に対向する第2面を有する基板と、
    前記第2面上に部分的に形成された絶縁パターン、および前記絶縁パターンが形成された領域外に形成された半導体パターンを含む半導体層と、
    前記半導体パターンに形成された第1および第2ドーピングパターンと、
    を含む、太陽電池。
  2. 前記半導体層の厚さは100Å〜200Åであり、
    前記半導体パターンは、第1半導体パターンおよび前記第1半導体パターンから離隔した第2半導体パターンを含み、
    前記第1ドーピングパターンは前記第1半導体パターン内に形成され、前記第2ドーピングパターンは前記第2半導体パターン内に形成されることを特徴とする、請求項1に記載の太陽電池。
  3. 前記半導体層の厚さは50Å〜100Åであり、
    前記半導体パターンは、第1半導体パターンおよび前記第1半導体パターンと離隔した第2半導体パターンを含み、
    前記第1ドーピングパターンは前記第1半導体パターン上に形成され、前記第2ドーピングパターンは前記第2半導体パターン上に形成されることを特徴とする、請求項1に記載の太陽電池。
  4. 太陽光が入射する第1面に対向する基板の第2面上に半導体層を形成する段階と、
    前記半導体層上に第1不純物ガスを吸着させる段階と、
    前記半導体層にレーザーを加えて第1ドーピングパターンを形成する段階と、
    を含む、太陽電池の製造方法。
  5. 前記第1ドーピングパターン上に、反応性プラズマ蒸着法、イオンプレーティング蒸着法、およびインクジェットプリンティング法のうちの1つを利用してコンタクト層を形成する段階をさらに含むことを特徴とする、請求項4に記載の太陽電池の製造方法。
  6. 前記コンタクト層上に、前記第1ドーピングパターンと電気的に接続する電極を形成する段階をさらに含むことを特徴とする、請求項5に記載の太陽電池の製造方法。
  7. 前記第1ドーピングパターンが形成された半導体層上に第2不純物ガスを吸着させる段階と、
    前記半導体層に前記レーザーを加えて前記第1ドーピングパターンと離隔した第2ドーピングパターンを形成する段階と、
    をさらに含むことを特徴とする、請求項4〜6のいずれか1項に記載の太陽電池の製造方法。
  8. 前記第1ドーピングパターンは、第1方向に延長した複数の第1パターン、および前記第1パターンを連結する第2パターンを含み、
    前記第2ドーピングパターンは、前記第1方向に延長して前記第1パターンに隣接するように形成された複数の第3パターン、および前記第3パターンを連結する第4パターンを含み、
    前記第1パターンと前記第3パターンは順番に配置されることを特徴とする、請求項7に記載の太陽電池の製造方法。
  9. 前記半導体層の厚さは100Å〜200Åであり、
    前記第1および第2ドーピングパターンは、前記半導体層内に形成されることを特徴とする、請求項7または8に記載の太陽電池の製造方法。
  10. 前記第1不純物ガスは塩化ホウ素(BCl)またはジボラン(B)のうちの1つであり、前記第2不純物ガスはホスフィン(PH)であることを特徴とする、請求項7〜9のいずれか1項に記載の太陽電池の製造方法。
  11. 前記半導体層は、絶縁パターンおよび半導体パターンを含み、
    前記半導体層を形成する段階は、
    インクジェットプリンティング法によって前記絶縁パターンを形成する段階と、
    前記絶縁パターンが形成された領域外に前記半導体パターンを形成する段階と、
    を含む、請求項4〜10のいずれか1項に記載の太陽電池の製造方法。
  12. 太陽光が入射する第1面に対向する基板の第2面上に半導体層を形成する段階と、
    前記半導体層上に部分的に開口した第1マスクを配置する段階と、
    前記第1マスクが配置された前記半導体層に、第1プラズマを提供して第1ドーピングパターンを形成する段階と、
    を含む、太陽電池の製造方法。
  13. 前記第1ドーピングパターン上に、反応性プラズマ蒸着法、イオンプレーティング蒸着法、およびインクジェットプリンティング法のうちの1つを利用してコンタクト層を形成する段階をさらに含む、請求項12に記載の太陽電池の製造方法。
  14. 前記コンタクト層上に、前記第1ドーピングパターンと電気的に接続する電極を形成する段階をさらに含む、請求項13に記載の太陽電池の製造方法。
  15. 前記第1ドーピングパターンが形成された前記半導体層上に、部分的に開口した第2マスクを配置する段階と、
    前記第2マスクが配置された前記半導体層に第2プラズマを提供し、前記第1ドーピングパターンと離隔した第2ドーピングパターンを形成する段階と、
    をさらに含むことを特徴とする、請求項12〜14のいずれか1項に記載の太陽電池の製造方法。
  16. 前記半導体層の厚さは100Å〜200Åであり、
    前記第1および第2ドーピングパターンは、前記半導体層内に形成されることを特徴とする、請求項15に記載の太陽電池の製造方法。
  17. 前記第1プラズマは塩化ホウ素(BCl)またはジボラン(B)を利用して生成され、第2プラズマはホスフィン(PH)を利用して生成されることを特徴とする、請求項16に記載の太陽電池の製造方法。
  18. 前記半導体層の厚さは50Å〜100Åであり、
    前記第1および第2ドーピングパターンは、前記半導体層上に蒸着されることを特徴とする、請求項15〜17のいずれか1項に記載の太陽電池の製造方法。
  19. 前記第1プラズマは塩化ホウ素(BCl)またはジボラン(B)、シラン(SiH)、および水素(H)を利用して生成され、第2プラズマはホスフィン(PH)、シラン(SiH)、および水素(H)を利用して生成されることを特徴とする、請求項18に記載の太陽電池の製造方法。
  20. 前記半導体層は、絶縁パターンおよび半導体パターンを含み、
    前記半導体層を形成する段階は、
    インクジェットプリンティング法によって前記絶縁パターンを形成する段階と、
    前記絶縁パターンが形成された領域外に前記半導体パターンを形成する段階と、
    を含む、請求項12〜19のいずれか1項に記載の太陽電池の製造方法。
  21. 前記半導体層の厚さは100Å〜200Åであり、
    前記第1ドーピングパターンは、前記半導体パターン内に形成されることを特徴とする、請求項20に記載の太陽電池の製造方法。
  22. 前記半導体層の厚さは50Å〜100Åであり、
    前記第1ドーピングパターンは、前記半導体パターン上に蒸着されることを特徴とする、請求項20に記載の太陽電池の製造方法。

JP2011242378A 2011-02-08 2011-11-04 太陽電池およびその製造方法 Pending JP2012164961A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110010891A KR20120090449A (ko) 2011-02-08 2011-02-08 태양 전지 및 이의 제조 방법
KR10-2011-0010891 2011-02-08

Publications (1)

Publication Number Publication Date
JP2012164961A true JP2012164961A (ja) 2012-08-30

Family

ID=46587854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011242378A Pending JP2012164961A (ja) 2011-02-08 2011-11-04 太陽電池およびその製造方法

Country Status (4)

Country Link
US (1) US20120199183A1 (ja)
JP (1) JP2012164961A (ja)
KR (1) KR20120090449A (ja)
CN (1) CN102629636B (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107551A (ja) * 2012-11-29 2014-06-09 Hanwha Chemical Corp 太陽電池用基板の表面処理方法
JP2014123692A (ja) * 2012-12-19 2014-07-03 Junji Hirokane 光起電力素子およびその製造方法
US20150017817A1 (en) * 2013-07-12 2015-01-15 Toyota Jidosha Kabushiki Kaisha Laser processing apparatus and laser processing method
JP2015015472A (ja) * 2013-07-05 2015-01-22 エルジー エレクトロニクス インコーポレイティド 太陽電池及びその製造方法
WO2015198978A1 (ja) * 2014-06-27 2015-12-30 シャープ株式会社 光電変換装置およびその製造方法
JP2016012624A (ja) * 2014-06-27 2016-01-21 シャープ株式会社 光電変換装置およびその製造方法
JP2016012623A (ja) * 2014-06-27 2016-01-21 シャープ株式会社 光電変換装置およびその製造方法
JP2016143868A (ja) * 2015-02-05 2016-08-08 信越化学工業株式会社 裏面接合型太陽電池
JP2016532317A (ja) * 2013-09-27 2016-10-13 ダンマークス テクニスク ユニバーシテットDanmarks Tekniske Universitet ナノ構造化されたシリコン系太陽電池およびナノ構造化されたシリコン系太陽電池を製造する方法
JPWO2015060432A1 (ja) * 2013-10-25 2017-03-09 シャープ株式会社 光電変換装置
WO2017047310A1 (ja) * 2015-09-18 2017-03-23 シャープ株式会社 光電変換素子及びその製造方法
JP2017059763A (ja) * 2015-09-18 2017-03-23 シャープ株式会社 光電変換素子及びその製造方法
WO2017061463A1 (ja) * 2015-10-05 2017-04-13 株式会社アルバック Hbc型結晶系太陽電池の製造方法および製造装置
WO2017061467A1 (ja) * 2015-10-05 2017-04-13 株式会社アルバック Hbc型結晶系太陽電池及びその製造方法
JP2017228661A (ja) * 2016-06-22 2017-12-28 株式会社アルバック Hbc型結晶系太陽電池の製造方法、及びhbc型結晶系太陽電池
JP2018073969A (ja) * 2016-10-28 2018-05-10 株式会社アルバック 太陽電池の製造方法
WO2018168785A1 (ja) * 2017-03-13 2018-09-20 国立大学法人北陸先端科学技術大学院大学 ヘテロ接合型太陽電池の製造方法、ヘテロ接合型太陽電池およびヘテロ接合型結晶シリコン電子デバイス
WO2020218000A1 (ja) * 2019-04-23 2020-10-29 株式会社カネカ 太陽電池および太陽電池の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101613843B1 (ko) * 2013-04-23 2016-04-20 엘지전자 주식회사 태양 전지 및 이의 제조 방법
KR102140068B1 (ko) * 2014-01-13 2020-07-31 엘지전자 주식회사 태양 전지의 제조 방법
US20150380581A1 (en) * 2014-06-27 2015-12-31 Michael C. Johnson Passivation of light-receiving surfaces of solar cells with crystalline silicon
CN106920862A (zh) * 2017-03-08 2017-07-04 泰州乐叶光伏科技有限公司 全背电极太阳电池背面离子注入掩模版及背面图形实现方法
US20180337292A1 (en) * 2017-05-19 2018-11-22 Lg Electronics Inc. Solar cell and method for manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03159179A (ja) * 1989-11-16 1991-07-09 Sanyo Electric Co Ltd 光電変換素子の製造方法
JPH07122768A (ja) * 1993-10-25 1995-05-12 Sanyo Electric Co Ltd 光起電力素子及びその製造方法
JPH11112011A (ja) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd 光起電力素子の製造方法
JP2005101240A (ja) * 2003-09-24 2005-04-14 Sanyo Electric Co Ltd 光起電力素子およびその製造方法
JP2008021993A (ja) * 2006-06-30 2008-01-31 General Electric Co <Ge> 全背面接点構成を含む光起電力デバイス及び関連する方法
JP2008529265A (ja) * 2005-01-20 2008-07-31 コミツサリア タ レネルジー アトミーク へテロ接合およびインターフィンガ構造を有する半導体デバイス
WO2009096539A1 (ja) * 2008-01-30 2009-08-06 Kyocera Corporation 太陽電池素子および太陽電池素子の製造方法
JP2010183080A (ja) * 2009-02-04 2010-08-19 Lg Electronics Inc 太陽電池及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03159179A (ja) * 1989-11-16 1991-07-09 Sanyo Electric Co Ltd 光電変換素子の製造方法
JPH07122768A (ja) * 1993-10-25 1995-05-12 Sanyo Electric Co Ltd 光起電力素子及びその製造方法
JPH11112011A (ja) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd 光起電力素子の製造方法
JP2005101240A (ja) * 2003-09-24 2005-04-14 Sanyo Electric Co Ltd 光起電力素子およびその製造方法
JP2008529265A (ja) * 2005-01-20 2008-07-31 コミツサリア タ レネルジー アトミーク へテロ接合およびインターフィンガ構造を有する半導体デバイス
JP2008021993A (ja) * 2006-06-30 2008-01-31 General Electric Co <Ge> 全背面接点構成を含む光起電力デバイス及び関連する方法
WO2009096539A1 (ja) * 2008-01-30 2009-08-06 Kyocera Corporation 太陽電池素子および太陽電池素子の製造方法
JP2010183080A (ja) * 2009-02-04 2010-08-19 Lg Electronics Inc 太陽電池及びその製造方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107551A (ja) * 2012-11-29 2014-06-09 Hanwha Chemical Corp 太陽電池用基板の表面処理方法
JP2014123692A (ja) * 2012-12-19 2014-07-03 Junji Hirokane 光起電力素子およびその製造方法
JP2015015472A (ja) * 2013-07-05 2015-01-22 エルジー エレクトロニクス インコーポレイティド 太陽電池及びその製造方法
US10833210B2 (en) 2013-07-05 2020-11-10 Lg Electronics Inc. Solar cell and method for manufacturing the same
US20150017817A1 (en) * 2013-07-12 2015-01-15 Toyota Jidosha Kabushiki Kaisha Laser processing apparatus and laser processing method
JP2016532317A (ja) * 2013-09-27 2016-10-13 ダンマークス テクニスク ユニバーシテットDanmarks Tekniske Universitet ナノ構造化されたシリコン系太陽電池およびナノ構造化されたシリコン系太陽電池を製造する方法
JPWO2015060432A1 (ja) * 2013-10-25 2017-03-09 シャープ株式会社 光電変換装置
WO2015198978A1 (ja) * 2014-06-27 2015-12-30 シャープ株式会社 光電変換装置およびその製造方法
JP2016012624A (ja) * 2014-06-27 2016-01-21 シャープ株式会社 光電変換装置およびその製造方法
JP2016012623A (ja) * 2014-06-27 2016-01-21 シャープ株式会社 光電変換装置およびその製造方法
JP2016143868A (ja) * 2015-02-05 2016-08-08 信越化学工業株式会社 裏面接合型太陽電池
WO2016125430A1 (ja) * 2015-02-05 2016-08-11 信越化学工業株式会社 裏面接合型太陽電池
JP2017059763A (ja) * 2015-09-18 2017-03-23 シャープ株式会社 光電変換素子及びその製造方法
WO2017047310A1 (ja) * 2015-09-18 2017-03-23 シャープ株式会社 光電変換素子及びその製造方法
WO2017061463A1 (ja) * 2015-10-05 2017-04-13 株式会社アルバック Hbc型結晶系太陽電池の製造方法および製造装置
WO2017061467A1 (ja) * 2015-10-05 2017-04-13 株式会社アルバック Hbc型結晶系太陽電池及びその製造方法
JP2017228661A (ja) * 2016-06-22 2017-12-28 株式会社アルバック Hbc型結晶系太陽電池の製造方法、及びhbc型結晶系太陽電池
CN107527960A (zh) * 2016-06-22 2017-12-29 株式会社爱发科 Hbc型晶体太阳能电池的制造方法以及hbc型晶体太阳能电池
CN107527960B (zh) * 2016-06-22 2022-04-26 株式会社爱发科 Hbc型晶体太阳能电池的制造方法
JP2018073969A (ja) * 2016-10-28 2018-05-10 株式会社アルバック 太陽電池の製造方法
WO2018168785A1 (ja) * 2017-03-13 2018-09-20 国立大学法人北陸先端科学技術大学院大学 ヘテロ接合型太陽電池の製造方法、ヘテロ接合型太陽電池およびヘテロ接合型結晶シリコン電子デバイス
WO2020218000A1 (ja) * 2019-04-23 2020-10-29 株式会社カネカ 太陽電池および太陽電池の製造方法
JPWO2020218000A1 (ja) * 2019-04-23 2021-11-25 株式会社カネカ 太陽電池および太陽電池の製造方法
JP7202456B2 (ja) 2019-04-23 2023-01-11 株式会社カネカ 太陽電池および太陽電池の製造方法

Also Published As

Publication number Publication date
KR20120090449A (ko) 2012-08-17
CN102629636A (zh) 2012-08-08
CN102629636B (zh) 2016-05-11
US20120199183A1 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
JP2012164961A (ja) 太陽電池およびその製造方法
JP5705968B2 (ja) 光電変換装置及びその製造方法
JP6106403B2 (ja) 光電変換素子及び光電変換素子の製造方法
JP5538360B2 (ja) 太陽電池の製造方法及び太陽電池
JP3205613U (ja) ヘテロ接合太陽電池構造
CN103081123A (zh) 用于太阳能发电的装置及其制造方法
JP2019033298A (ja) 太陽電池
WO2012132766A1 (ja) 光電変換装置及び光電変換装置の製造方法
JP2014199875A (ja) 太陽電池、およびその製造方法、ならびに太陽電池モジュール
US9761752B2 (en) Solar cell, solar cell module, method for manufacturing solar cell, and method for manufacturing solar cell module
JP2012114411A (ja) 薄膜太陽電池
JP6502147B2 (ja) 太陽電池の製造方法および太陽電池モジュールの製造方法
KR101369920B1 (ko) 태양전지 및 태양전지의 제조방법
JP5645734B2 (ja) 太陽電池素子
JP6294694B2 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
US8852982B2 (en) Photoelectric device and manufacturing method thereof
TWI581447B (zh) 異質接面太陽能電池結構及其製作方法
KR101114198B1 (ko) 국부화 에미터 태양전지 및 그 제조 방법
KR101854236B1 (ko) 태양전지 및 그 제조방법
KR20120077707A (ko) 국부화 에미터 태양전지 및 그 제조 방법
KR101053782B1 (ko) 박막형 태양전지 및 그 제조방법
KR101073832B1 (ko) 박막형 태양전지의 제조 방법
KR101673224B1 (ko) 태양전지 및 그 제조방법
CN111063744A (zh) 太阳能电池和用于制造太阳能电池的方法
CN117577721A (zh) 全背接触式光伏电池、钙钛矿晶硅叠层电池及其工艺方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121026

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150723

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160223