JP2011209700A - 防眩フィルムおよび防眩性偏光板 - Google Patents

防眩フィルムおよび防眩性偏光板 Download PDF

Info

Publication number
JP2011209700A
JP2011209700A JP2011040122A JP2011040122A JP2011209700A JP 2011209700 A JP2011209700 A JP 2011209700A JP 2011040122 A JP2011040122 A JP 2011040122A JP 2011040122 A JP2011040122 A JP 2011040122A JP 2011209700 A JP2011209700 A JP 2011209700A
Authority
JP
Japan
Prior art keywords
film
antiglare
energy spectrum
glare
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011040122A
Other languages
English (en)
Other versions
JP5801062B2 (ja
Inventor
Tsutomu Furuya
勉 古谷
Takashi Fujii
貴志 藤井
Akira Kanzaki
昌 神崎
Kyo Jinno
亨 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2011040122A priority Critical patent/JP5801062B2/ja
Publication of JP2011209700A publication Critical patent/JP2011209700A/ja
Application granted granted Critical
Publication of JP5801062B2 publication Critical patent/JP5801062B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/345Accessories, mechanical or electrical features mathematical transformations on beams or signals, e.g. Fourier
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12069Organic material
    • G02B2006/12071PMMA

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】優れた防眩性を示し、良好なコントラストを発現しながら、白ちゃけおよびギラツキの発生による視認性の低下を防止することができるとともに、機械的強度および耐湿性に優れた防眩フィルム、ならびにこれを用いた防眩性偏光板を提供する。
【解決手段】基材フィルム101と、これに積層される凹凸表面を有する防眩層102とを備え、基材フィルム101がアクリル系樹脂を含み、空間周波数0.01μm-1における該凹凸表面の標高のエネルギースペクトルH1 2と、空間周波数0.04μm-1におけるエネルギースペクトルH2 2との比H1 2/H2 2が3〜20の範囲内であり、空間周波数0.1μm-1におけるエネルギースペクトルH3 2と、エネルギースペクトルH2 2との比H3 2/H2 2が0.1以下であり、該凹凸表面は傾斜角度が5°以下である面を95%以上含む防眩フィルム、ならびにこれを用いた防眩性偏光板である。
【選択図】図1

Description

本発明は、防眩(アンチグレア)フィルムおよびこれを用いた防眩性偏光板に関する。
液晶ディスプレイ、プラズマディスプレイパネル、ブラウン管(陰極線管:CRT)ディスプレイ、有機エレクトロルミネッセンス(EL)ディスプレイなどの画像表示装置は、その表示面に外光が映り込むと視認性が著しく損なわれてしまう。従来、このような外光の映り込みを防止するために、画質を重視するテレビやパーソナルコンピュータ、外光の強い屋外で使用されるビデオカメラやデジタルカメラ、および反射光を利用して表示を行なう携帯電話などにおいては、画像表示装置の表面に、外光の映り込みを防止するための防眩フィルムが配置されている。
このような防眩フィルムとして、たとえば、特開2006−53371号公報(特許文献1)には、研磨された金型基材にサンドブラスト加工を施した後、無電解ニッケルめっきを施すことによって、表面に微細な凹凸を有する金型を製造し、トリアセチルセルロース(TAC)フィルム上に形成された光硬化性樹脂層を、該金型の凹凸面に押し付けながら硬化させることにより該金型の凹凸面を光硬化性樹脂層に転写した防眩フィルムが記載されている。
特開2006−53371号公報
防眩フィルムには、防眩性が求められる他、画像表示装置の表面に配置した際に良好なコントラストを発現すること、画像表示装置の表面に配置した際に散乱光によって表示面全体が白っぽくなり、表示が濁った色になる、いわゆる「白ちゃけ」の発生を抑制すること、および、画像表示装置の表面に配置した際に画像表示装置の画素と防眩フィルムの表面凹凸形状とが干渉し、結果として輝度分布が発生して見えにくくなる、いわゆる「ギラツキ」の発生を抑制することが要望されている。しかしながら、特許文献1に記載された防眩フィルムは、サンドブラスト加工によって凹凸形状を形成した金型を使用して作製されるため、防眩フィルムに付与される凹凸形状の精度の点で充分でなく、特に、50μm以上の周期を持つ比較的大きな凹凸形状を有する場合があるため、「ギラツキ」が発生しやすいという問題があった。また、同文献に記載の防眩フィルムは、傷つきやすく、機械的強度の点で必ずしも充分ではないことがあった。さらに、同文献に記載の防眩フィルムは耐湿性において充分でなく、該防眩フィルムを偏光フィルムに貼合して使用すると該偏光フィルムが劣化してしまうことがあった。
そこで、本発明の目的は、優れた防眩性を示し、良好なコントラストを発現しながら、「白ちゃけ」および「ギラツキ」の発生による視認性の低下を防止することができるとともに、機械的強度および耐湿性に優れた防眩フィルム、ならびに、該防眩フィルムと偏光フィルムとの積層体からなる防眩性偏光板であって、該偏光フィルムの劣化が抑制された防眩性偏光板を提供することにある。
本発明は、基材フィルムと、該基材フィルム上に積層される凹凸表面を有する防眩層とを備える防眩フィルムであって、該基材フィルムがアクリル系樹脂を含み、空間周波数0.01μm-1における該凹凸表面の標高のエネルギースペクトルH1 2と、空間周波数0.04μm-1における該凹凸表面の標高のエネルギースペクトルH2 2との比H1 2/H2 2が3〜20の範囲内であり、空間周波数0.1μm-1における該凹凸表面の標高のエネルギースペクトルH3 2と、空間周波数0.04μm-1における該凹凸表面の標高のエネルギースペクトルH2 2との比H3 2/H2 2が0.1以下であり、かつ、該凹凸表面は、傾斜角度が5°以下である面を95%以上含む防眩フィルムを提供する。基材フィルムの厚みは、好ましくは、20μm以上100μm以下である。
また本発明は、上記防眩フィルムと、基材フィルムにおける防眩層とは反対側の面に積層される偏光フィルムとを備える防眩性偏光板を提供する。
本発明の防眩フィルムは、優れた防眩性を示し、良好なコントラストを発現しながら、「白ちゃけ」および「ギラツキ」の発生による視認性の低下を効果的に防止できるものである。また、本発明の防眩フィルムは、機械的強度および耐湿性に優れている。かかる防眩フィルムを用いた本発明の防眩性偏光板においては、吸湿による偏光フィルムの劣化が効果的に抑制される。
本発明の防眩フィルムの一例を模式的に示す断面図である。 本発明の防眩フィルムの表面を模式的に示す斜視図である。 標高を表す関数h(x,y)が離散的に得られる状態を示す模式図である。 本発明の防眩フィルムが備える防眩層の微細凹凸表面の標高を二次元の離散関数h(x,y)で表した図である。 図4に示した二次元関数h(x,y)を離散フーリエ変換して得られた標高のエネルギースペクトルH2(fx,fy)を白と黒のグラデーションで示したものである。 図5に示したエネルギースペクトルH2(fx,fy)のfx=0における断面を示す図である。 微細凹凸表面の傾斜角度の測定方法を説明するための模式図である。 防眩フィルムが備える防眩層の微細凹凸表面の傾斜角度分布のヒストグラムの一例を示すグラフである。 本発明の防眩フィルムを作製するために用いることができるパターンである画像データの一部を示す図である。 図9に示した階調の二次元離散関数g(x,y)を離散フーリエ変換して得られたエネルギースペクトルG2(fx,fy)を白と黒のグラデーションで示した図である。 図10に示したエネルギースペクトルG2(fx,fy)のfx=0における断面を示す図である。 本発明の防眩フィルムの製造に好ましく用いられる金型の製造方法の前半部分の好ましい一例を模式的に示す図である。 本発明の防眩フィルムの製造に好ましく用いられる金型の製造方法の後半部分の好ましい一例を模式的に示す図である。 第1エッチング工程によって形成された凹凸面が第2エッチング工程によって鈍る状態を模式的に示す図である。 実施例1の金型作製の際に使用したパターンを示す図である。 実施例2の金型作製の際に使用したパターンを示す図である。 図15および図16に示したパターンのエネルギースペクトルG2(fx,fy)のfx=0における断面を表した図である。
<防眩フィルム>
図1は、本発明の防眩フィルムの一例を模式的に示す断面図である。本発明の防眩フィルムは、図1に示される例のように、アクリル系樹脂を含む基材フィルム101と、基材フィルム101上に積層された防眩層102とを備える。防眩層102における基材フィルム101とは反対側の表面は、微細な凹凸表面(微細凹凸表面103)からなる。以下、本発明の防眩フィルムについてより詳細に説明する。
(防眩層)
本発明の防眩フィルムが備える防眩層102において、空間周波数0.01μm-1における微細凹凸表面103の標高のエネルギースペクトルH1 2と、空間周波数0.04μm-1における微細凹凸表面103の標高のエネルギースペクトルH2 2との比H1 2/H2 2は、3〜20の範囲内であり、空間周波数0.1μm-1における微細凹凸表面103の標高のエネルギースペクトルH3 2と、空間周波数0.04μm-1における微細凹凸表面103の標高のエネルギースペクトルH2 2との比H3 2/H2 2は、0.1以下である。
従来、防眩フィルムの微細凹凸表面の周期については、JIS B 0601に記載される粗さ曲線要素の平均長さRSm、断面曲線要素の平均長さPSm、およびうねり曲線要素の平均長さWSmなどで評価されていた。しかしながら、このような従来の評価方法では、微細凹凸表面に含まれる複数の周期を正確に評価することができなかった。よって、ギラツキと微細凹凸表面との相関および防眩性と微細凹凸表面との相関についても正確に評価することができず、ギラツキの抑制と十分な防眩性能を兼備する防眩フィルムを作製することが困難であった。
本発明者らは、微細凹凸表面を有する防眩層を、アクリル系樹脂を含む基材フィルム上に積層した防眩フィルムにおいて、その微細凹凸表面が「微細凹凸表面の標高のエネルギースペクトル」を用いて規定される特定の空間周波数分布を示す、すなわち、標高のエネルギースペクトル比H1 2/H2 2が3〜20の範囲内であり、H3 2/H2 2が0.1以下である防眩フィルムは、優れた防眩性能を示し、かつ、白ちゃけによる視認性の低下を防止することができるとともに、高精細の画像表示装置に適用した場合においても、ギラツキを発生せずに高いコントラストを発現することを見出した。
まず、防眩層が有する微細凹凸表面の標高のエネルギースペクトルについて説明する。図2は、本発明の防眩フィルムの表面を模式的に示す斜視図である。図2に示されるように、本発明の防眩フィルム1は、微細な凹凸2から構成される微細凹凸表面を有する防眩層を備える。ここで、本発明でいう「微細凹凸表面の標高」とは、防眩フィルム1表面の任意の点Pにおける、微細凹凸表面の最低点の高さにおいて当該高さを有する仮想的な平面(標高は基準として0μm)からの防眩フィルムの主法線方向5(上記仮想的な平面における法線方向)における直線距離を意味する。図2に示すように、防眩フィルム面内の直交座標を(x,y)で表示した際には、微細凹凸表面の標高は座標(x,y)の二次元関数h(x,y)で表すことができる。図2には、防眩フィルム全体の面を投影面3で表示している。
微細凹凸表面の標高は、共焦点顕微鏡、干渉顕微鏡、原子間力顕微鏡(AFM)などの装置により測定される表面形状の三次元情報から求めることができる。測定機に要求される水平分解能は、少なくとも5μm以下、好ましくは2μm以下であり、また垂直分解能は、少なくとも0.1μm以下、好ましくは0.01μm以下である。この測定に好適な非接触三次元表面形状・粗さ測定機としては、New View 5000シリーズ(Zygo Corporation社製、日本ではザイゴ(株)から入手可能)、三次元顕微鏡PLμ2300(Sensofar社製)などを挙げることができる。測定面積は、標高のエネルギースペクトルの分解能が0.01μm-1以下である必要があるため、少なくとも200μm×200μm以上とするのが好ましく、より好ましくは、500μm×500μm以上である。
次に、二次元関数h(x,y)より標高のエネルギースペクトルを求める方法について説明する。まず、二次元関数h(x,y)より、下記式(1)で定義される二次元フーリエ変換によって二次元関数H(fx,fy)を求める。
ここで、fxおよびfyは、それぞれx方向およびy方向の空間周波数であり、長さの逆数の次元を持つ。また、式(1)中のπは円周率、iは虚数単位である。得られた二次元関数H(fx,fy)を二乗することによって、標高のエネルギースペクトルH2(fx,fy)を求めることができる。このエネルギースペクトルH2(fx,fy)は、防眩層の微細凹凸表面の空間周波数分布を表している。
以下、防眩層の微細凹凸表面のエネルギースペクトルを求める方法をさらに具体的に説明する。上記の共焦点顕微鏡、干渉顕微鏡、原子間力顕微鏡などによって実際に測定される表面形状の三次元情報は、一般的に離散的な値、すなわち、多数の測定点に対応する標高として得られる。図3は、標高を表す関数h(x,y)が離散的に得られる状態を示す模式図である。図3に示すように、防眩フィルム面内の直交座標を(x,y)で表示し、防眩フィルムの投影面3上にx軸方向にΔx毎に分割した線およびy軸方向にΔy毎に分割した線を破線で示すと、実際の測定では微細凹凸表面の標高は、防眩フィルムの投影面3上の各破線の交点毎の離散的な標高値として得られる。
得られる標高値の数は、測定範囲とΔxおよびΔyによって決まり、図3に示すようにx軸方向の測定範囲をX=MΔxとし、y軸方向の測定範囲をY=NΔyとすると、得られる標高値の数は(M+1)×(N+1)個である。
図3に示すように、防眩フィルムの投影面3上の着目点Aの座標を(jΔx,kΔy)(ここで、jは0以上M以下であり、kは0以上N以下である。)とすると、着目点Aに対応する防眩フィルム表面上の点Pの標高は、h(jΔx,kΔy)と表すことができる。
ここで、測定間隔ΔxおよびΔyは、測定機器の水平分解能に依存し、精度良く微細凹凸表面を評価するためには、上述したとおりΔxおよびΔyともに5μm以下であることが好ましく、2μm以下であることがより好ましい。また、測定範囲XおよびYは上述したとおり、ともに200μm以上が好ましく、ともに500μm以上がより好ましい。
このように、実際の測定では微細凹凸表面の標高を表す関数は(M+1)×(N+1)個の値を持つ離散関数h(x,y)として得られる。したがって、測定によって得られた離散関数h(x,y)と下記式(2)で定義される離散フーリエ変換によって離散関数H(fx,fy)が求まり、離散関数H(fx,fy)を二乗することによってエネルギースペクトルの離散関数H2(fx,fy)が求められる。式(2)中のlは−(M+1)/2以上(M+1)/2以下の整数であり、mは−(N+1)/2以上(N+1)/2以下の整数である。また、ΔfxおよびΔfyは、それぞれx方向およびy方向の空間周波数間隔であり、式(3)および式(4)で定義される。ΔfxおよびΔfyは、標高のエネルギースペクトルの水平分解能に相当する。
図4は、本発明の防眩フィルムが備える防眩層の微細凹凸表面の標高を二次元の離散関数h(x,y)で表した図の一例である。図4において標高は白と黒のグラデーションで示している。図4に示した離散関数h(x,y)は、512×512個の値を持ち、水平分解能ΔxおよびΔyは1.66μmである。
また、図5は、図4に示した二次元関数h(x,y)を離散フーリエ変換して得られた標高のエネルギースペクトルH2(fx,fy)を白と黒のグラデーションで示したものである。図5に示した標高のエネルギースペクトルH2(fx,fy)も512×512個の値を持つ離散関数であり、標高のエネルギースペクトルの水平分解能ΔfxおよびΔfyは0.0012μm-1である。
図4に示される例のように、本発明の防眩フィルムが備える防眩層の微細凹凸表面は、ランダムに形成された凹凸からなるため、標高のエネルギースペクトルは、図5に示されるように、原点を中心に対称となる。よって、空間周波数0.01μm-1における標高のエネルギースペクトルH1 2、空間周波数0.04μm-1における標高のエネルギースペクトルH2 2および空間周波数0.1μm-1における標高のエネルギースペクトルH3 2は、二次元関数であるエネルギースペクトルH2(fx,fy)の原点を通る断面より求めることができる。図6に、図5に示したエネルギースペクトルH2(fx,fy)のfx=0における断面を示した。図6より、空間周波数0.01μm-1における標高のエネルギースペクトルH1 2は4.4、空間周波数0.04μm-1における標高のエネルギースペクトルH2 2は0.35、空間周波数0.1μm-1における標高のエネルギースペクトルH3 2は0.00076であることがわかり、比H1 2/H2 2は14、比H3 2/H2 2は0.0022と算出される。
上述したように、本発明に係る防眩層において、空間周波数0.01μm-1における微細凹凸表面の標高のエネルギースペクトルH1 2と、空間周波数0.04μm-1における標高のエネルギースペクトルH2 2との比H1 2/H2 2は、3〜20の範囲内とされる。標高のエネルギースペクトルの比H1 2/H2 2が3を下回ることは、防眩層の微細凹凸表面に含まれる100μm以上の長周期の凹凸形状が少なく、25μm未満の短周期の凹凸形状が多いことを示している。そのような場合には外光の映り込みを効果的に防止することができず、十分な防眩性能が得られない。また、これに対して、標高のエネルギースペクトルの比H1 2/H2 2が20を上回ることは、微細凹凸表面に含まれる100μm以上の長周期の凹凸形状が多く、25μm未満の短周期の凹凸形状が少ないことを示している。そのような場合には、防眩フィルムを高精細の画像表示装置に配置した際にギラツキを発生させる傾向にある。より優れた防眩性能を示しつつ、ギラツキをより効果的に抑制するためには、標高のエネルギースペクトルの比H1 2/H2 2は、5〜18の範囲内であることが好ましく、8〜15の範囲内であることがより好ましい。
また、本発明に係る防眩層において、空間周波数0.1μm-1における微細凹凸表面の標高のエネルギースペクトルH3 2と、空間周波数0.04μm-1における標高のエネルギースペクトルH2 2との比H3 2/H2 2は、0.1以下とされ、好ましくは0.01以下とされる。比H3 2/H2 2が0.1以下であることは、微細凹凸表面に含まれる10μm未満の短周期成分が十分に低減されていることを示しており、これにより白ちゃけの発生を効果的に抑制することができる。微細凹凸表面に含まれる10μm未満の短周期成分は、防眩性に効果的に寄与しない一方、微細凹凸表面に入射した光を散乱させて白ちゃけの原因となるものである。
特許文献1などに開示されている従来公知の防眩フィルムにおいては、空間周波数0.01μm-1における微細凹凸表面の標高のエネルギースペクトルH1 2と、空間周波数0.04μm-1における標高のエネルギースペクトルH2 2との比H1 2/H2 2が本発明の防眩フィルムよりも大きいためギラツキが発生しやすいという問題があった。よって、比H1 2/H2 2を3〜20の範囲内とするためには、空間周波数0.01μm-1における微細凹凸表面の標高のエネルギースペクトルH1 2を小さくする必要がある。このように空間周波数0.01μm-1における微細凹凸表面の標高のエネルギースペクトルH1 2を小さくした微細凹凸表面を有する防眩フィルムは、後述するように0μm-1より大きく0.04μm-1以下の範囲内に極大値を持たないエネルギースペクトルを示すパターンを用いることにより好適に作製することができる。ここで、「パターン」とは、典型的には、防眩フィルムの微細凹凸表面を形成するために用いられる、計算機によって作成された2階調(たとえば、白と黒とに二値化された画像データ)または3階調以上のグラデーションからなる画像データを意味するが、当該画像データへ一義的に変換可能なデータ(行列データなど)も含み得る。画像データへ一義的に変換可能なデータとしては、各画素の座標および階調のみが保存されたデータなどが挙げられる。
このように0μm-1より大きく0.04μm-1以下の範囲内に極大値を持たないエネルギースペクトルを示すパターンを用いて防眩フィルムの微細凹凸表面を形成することによって、効果的に空間周波数0.01μm-1における微細凹凸表面の標高のエネルギースペクトルH1 2を小さくすることが可能となり、比H1 2/H2 2を3〜20の範囲内とすることができる。
さらに、空間周波数0.1μm-1における微細凹凸表面の標高のエネルギースペクトルH3 2と、空間周波数0.04μm-1における標高のエネルギースペクトルH2 2との比H3 2/H2 2が0.1以下である微細凹凸表面を有する防眩フィルムを得るためには、前記パターンのエネルギースペクトルは空間周波数が0.04μm-1より大きく0.1μm-1未満の範囲内に極大値を有することが好ましい。このようなエネルギースペクトルを有するパターンを用いて防眩フィルムの微細凹凸表面を形成することによって、効果的に空間周波数0.04μm-1における微細凹凸表面の標高のエネルギースペクトルH2 2を大きくすることが可能となり、比H3 2/H2 2を0.1以下とすることができる。
このようなパターンを用いて防眩フィルムの微細凹凸表面を形成する方法としては、当該パターンを用いて凹凸面を有する金型を作製し、当該金型の凹凸面を、基材フィルム上に形成された樹脂層の表面に転写する方法(エンボス法)が好ましい。
本発明者らはまた、防眩層の微細凹凸表面が特定の傾斜角度分布を示すようにすることが、優れた防眩性能を示しつつ、白ちゃけを効果的に防止する上で一層有効であることを見出した。すなわち、本発明の防眩フィルムにおいて、防眩層の微細凹凸表面は、傾斜角度が5°以下である面を95%以上含む。傾斜角度が5°以下である面の割合が95%を下回ると、凹凸表面の傾斜角度が急峻になって、周囲からの光を集光し、表示面が全体的に白くなる白ちゃけが発生しやすくなる。このような集光効果を抑制し、白ちゃけを防止するためには、微細凹凸表面の傾斜角度が5°以下である面の割合が高ければ高いほどよく、97%以上であることが好ましく、99%以上であることがより好ましい。
ここで、本発明でいう「微細凹凸表面の傾斜角度」とは、図2を参照して、防眩フィルム1表面の任意の点Pにおいて、防眩フィルムの主法線方向5に対する、そこでの凹凸を加味した局所的な法線6のなす角度(表面傾斜角度)ψを意味する。微細凹凸表面の傾斜角度についても標高と同様に、共焦点顕微鏡、干渉顕微鏡、原子間力顕微鏡(AFM)などの装置により測定される表面形状の三次元情報から求めることができる。
ここで、図7は、微細凹凸表面の傾斜角度の測定方法を説明するための模式図である。具体的な傾斜角度の決定方法を説明すると、図7に示すように、点線で示される仮想的な平面FGHI上の着目点Aを決定し、そこを通るx軸上の着目点Aの近傍に、点Aに対してほぼ対称に点BおよびDを、また点Aを通るy軸上の着目点Aの近傍に、点Aに対してほぼ対称に点CおよびEをとり、これらの点B,C,D,Eに対応する防眩フィルム面上の点Q,R,S,Tを決定する。なお図7では、防眩フィルム面内の直交座標を(x,y)で表示し、防眩フィルム厚み方向の座標をzで表示している。平面FGHIは、y軸上の点Cを通るx軸に平行な直線、および同じくy軸上の点Eを通るx軸に平行な直線と、x軸上の点Bを通るy軸に平行な直線、および同じくx軸上の点Dを通るy軸に平行な直線とのそれぞれの交点F,G,H,Iによって形成される面である。また図7では、平面FGHIに対して、実際の防眩フィルム面の位置が上方にくるように描かれているが、着目点Aのとる位置によって当然ながら、実際の防眩フィルム面の位置が平面FGHIの上方にくることもあるし、下方にくることもある。
傾斜角度は、着目点Aに対応する実際の防眩フィルム面上の点Pと、その近傍にとられた4点B,C,D,Eに対応する実際の防眩フィルム面上の点Q,R,S,Tの合計5点により張られるポリゴン4平面、すなわち、四つの三角形PQR,PRS,PST,PTQの各法線ベクトル6a,6b,6c,6dを平均して得られる平均法線ベクトル(平均法線ベクトルは、図2に示される凹凸を加味した局所的な法線6と同義である)の極角を、測定された表面形状の三次元情報から求めることにより得ることができる。各測定点について傾斜角度を求めた後、ヒストグラムが計算される。
図8は、防眩フィルムが備える防眩層の微細凹凸表面の傾斜角度分布のヒストグラムの一例を示すグラフである。図8に示すグラフにおいて、横軸は傾斜角度であって、0.5°刻みで分割してある。たとえば、一番左の縦棒は、傾斜角度が0〜0.5°の範囲にある集合の分布を示し、以下、右へ行くにつれて角度が0.5°ずつ大きくなっている。図8では、横軸の2目盛毎に値の下限値を表示しており、たとえば、横軸で「1」とある部分は、傾斜角度が1〜1.5°の範囲にある集合の分布を示す。また、縦軸は傾斜角度の分布を表し、合計すれば1(100%)になる値である。この例では、傾斜角度が5°以下である面の割合は略100%である。
防眩層の微細凹凸表面が傾斜角度が5°以下である面を95%以上含む防眩フィルムを作製するためには、やはり、パターンを用いて凹凸面を有する金型を作製し、当該金型の凹凸面を、基材フィルム上に形成された樹脂層の表面に転写する方法(エンボス法)を採用することが好ましい。このようなエンボス法においては、防眩層の微細凹凸表面の傾斜角度は凹凸面を有する金型の製造条件によって決定される。具体的には、後述する金型の製造方法におけるエッチング工程のエッチング量を変化させることで制御することができる。すなわち、第1エッチング工程におけるエッチング量を減少させることによって、形成される第1の表面凹凸形状の高低差を小さくし、傾斜角度が5°以下である面の割合を増加させることができる。傾斜角度が5°以下である面を95%以上含む微細凹凸表面を有する防眩フィルムを得るためには、第1エッチング工程におけるエッチング量は、2〜8μmであることが好ましい。エッチング量が2μm未満である場合には、金属表面に凹凸形状がほとんど形成されずに、ほぼ平坦な金型となってしまうので、このような金型を用いて作製される防眩フィルムは、十分な防眩性を示さなくなってしまう。また、エッチング量が8μmを超える場合には、金属表面に形成される凹凸形状の高低差が大きくなり、傾斜角度が5°以下である面が95%未満となる可能性がある。このような金型を使用して作製した防眩フィルムは白ちゃけが生じる虞がある。
また、第2エッチング工程におけるエッチング量によっても防眩層の微細凹凸表面の傾斜角度を制御することができる。第2エッチング工程におけるエッチング量を増加させることによって、第1の表面凹凸形状の表面傾斜が急峻な部分を効果的に鈍らすことが可能となり、傾斜角度が5°以下である面の割合を増加させることができる。傾斜角度が5°以下である面を95%以上含む微細凹凸表面を有する防眩フィルムを得るためには、第2エッチング工程におけるエッチング量は4〜20μmの範囲内とすることが好ましい。エッチング量が小さいと、第1エッチング工程により得られた凹凸の表面形状を鈍らせる効果が不十分であり、その凹凸形状を転写して得られる防眩フィルムの光学特性があまり良くならない。一方で、エッチング量が大きすぎると、凹凸形状がほとんどなくなってしまい、ほぼ平坦な金型となってしまうので、防眩性を示さなくなってしまう。
本発明において防眩層は、光硬化型樹脂等の硬化型樹脂の硬化物または熱可塑性樹脂などから構成することができ、なかでも光硬化型樹脂の硬化物から構成されることが好ましい。防眩層には、硬化型樹脂の硬化物または熱可塑性樹脂と異なる屈折率を有する微粒子を分散させてもよい。微粒子を分散させることにより、ギラツキをより効果的に抑制することができる。
防眩層に上記微粒子を分散させる場合、微粒子の平均粒径は、5μm以上であることが好ましく、6μm以上であることがより好ましい。また、微粒子の平均粒径は、10μm以下程度とすることができ、好ましくは8μm以下である。平均粒径が5μmを下回る場合には、微粒子による広角側の散乱光強度が上昇し、画像表示装置に適用したときにコントラストを低下させる傾向にある。また、微粒子の屈折率nbと硬化型樹脂の硬化物または熱可塑性樹脂の屈折率nrとの比nb/nrは、0.93以上0.98以下もしくは1.01以上1.04以下であることが好ましく、0.97以上0.98以下もしくは1.01以上1.03以下であることがより好ましい。屈折率比nb/nrが0.93を下回る場合もしくは1.04を上回る場合には、硬化型樹脂の硬化物または熱可塑性樹脂と微粒子との界面における反射率が増大し、結果として後方散乱が上昇し、全光線透過率が低下する傾向にある。全光線透過率の低下は、防眩フィルムのヘイズを増大させ、画像表示装置に適用したときのコントラストの低下を生じさせる。また、屈折率比nb/nrが0.98超過1.01未満である場合には、微粒子による内部散乱効果が小さくなることから、所定の散乱特性を防眩層に与えて微粒子によるギラツキ抑制効果を得るためには、大量の微粒子を添加する必要がある。
微粒子の含有量は、硬化型樹脂または熱可塑性樹脂100重量部に対し、通常50重量部以下であり、好ましくは40重量部以下である。また、微粒子の含有量は、10重量部以上であることが好ましく、15重量部以上であることがより好ましい。微粒子の含有量が10重量部未満である場合には、微粒子によるギラツキ抑制効果が不十分な場合がある。
微粒子を構成する材料は、上記好ましい屈折率比を満たすものであることが好ましい。後述するように、本発明においては防眩層の形成にUVエンボス法が好ましく用いられ、UVエンボス法においては、紫外線硬化型樹脂が好ましく用いられる。この場合、紫外線硬化型樹脂の硬化物は1.50前後の屈折率を示すことが多いので、微粒子としては、その屈折率が1.40〜1.60程度のものから、防眩フィルムの設計に合わせて適宜選択することができる。微粒子としては、樹脂ビーズ、それもほぼ球形のものが好ましく用いられる。かかる好適な樹脂ビーズの例を以下に掲げる。
メラミンビーズ(屈折率1.57)、
ポリメタクリル酸メチルビーズ(屈折率1.49)、
メタクリル酸メチル/スチレン共重合体樹脂ビーズ(屈折率1.50〜1.59)、
ポリカーボネートビーズ(屈折率1.55)、
ポリエチレンビーズ(屈折率1.53)、
ポリスチレンビーズ(屈折率1.6)、
ポリ塩化ビニルビーズ(屈折率1.46)、
シリコーン樹脂ビーズ(屈折率1.46)など。
(基材フィルム)
本発明の防眩フィルムに用いられる基材フィルムは、透明性、耐湿性、耐候性に優れ、機械的強度にも優れたアクリル系樹脂を主成分として構成されるか、またはアクリル系樹脂からなる。ここで、本発明においてアクリル系樹脂とは、メタクリル樹脂および必要に応じて添加される添加剤等を混合し、溶融混練して得られた材料のことを意味する。
上記メタクリル樹脂とは、メタクリル酸エステルを主体とする重合体である。メタクリル樹脂は、1種類のメタクリル酸エステルの単独重合体であってもよいし、メタクリル酸エステルと他のメタクリル酸エステルやアクリル酸エステル等との共重合体であってもよい。メタクリル酸エステルとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル等のメタクリル酸アルキルが挙げられ、そのアルキル基の炭素数は通常1〜4程度である。また、メタクリル酸エステルと共重合し得るアクリル酸エステルとしては、アクリル酸アルキルが好ましく、たとえば、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルへキシル等が挙げられ、そのアルキル基の炭素数は通常1〜8程度である。これらの他、分子内に重合性炭素−炭素二重結合を少なくとも1個有する化合物であるスチレンのような芳香族ビニル化合物や、アクリロニトリルのようなビニルシアン化合物等を共重合体中に含んでいてもよい。
アクリル系樹脂は、基材フィルムの耐衝撃性や製膜性の点で、アクリルゴム粒子を含有することが好ましい。アクリル系樹脂に含まれ得るアクリルゴム粒子の量は、好ましくは5重量%以上、より好ましくは10重量%以上である。アクリルゴム粒子の量の上限は臨界的ではないが、アクリルゴム粒子の量があまり多いと、基材フィルムの表面硬度が低下し、また基材フィルムに表面処理を施す場合、表面処理剤中の有機溶剤に対する耐溶剤性が低下する。したがって、アクリル系樹脂に含まれ得るアクリルゴム粒子の量は、80重量%以下であることが好ましく、より好ましくは60重量%以下である。
上記アクリルゴム粒子は、アクリル酸エステルを主体とする弾性重合体を必須成分とする粒子であり、実質的にこの弾性重合体のみからなる単層構造のものであってもよいし、この弾性重合体を1つの層とする多層構造のものであってもよい。この弾性重合体として、具体的には、アクリル酸アルキル50〜99.9重量%と、これと共重合可能な他のビニル系単量体を少なくとも1種類0〜49.9重量%と、共重合性の架橋性単量体0.1〜10重量%とからなる単量体組成物の重合により得られる架橋弾性共重合体が好ましく用いられる。
上記アクリル酸アルキルとしては、たとえば、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルへキシル等が挙げられ、そのアルキル基の炭素数は通常1〜8程度である。また、上記アクリル酸アルキルと共重合可能な他のビニル系単量体としては、分子内に重合性炭素−炭素二重結合を1個有する化合物を挙げることができ、より具体的には、メタクリル酸メチルのようなメタクリル酸エステル、スチレンのような芳香族ビニル化合物、アクリロニトリルのようなビニルシアン化合物等が挙げられる。また、上記共重合性の架橋性単量体としては、分子内に重合性炭素−炭素二重結合を少なくとも2個有する架橋性の化合物を挙げることができ、より具体的には、エチレングリコールジ(メタ)アクリレートやブタンジオールジ(メタ)アクリレートのような多価アルコールの(メタ)アクリレート、(メタ)アクリル酸アリルや(メタ)アクリル酸メタリルのような(メタ)アクリル酸のアルケニルエステル、ジビニルベンゼン等が挙げられる。なお、本明細書において、(メタ)アクリレートとはメタクリレートまたはアクリレートをいい、(メタ)アクリル酸とはメタクリル酸またはアクリル酸をいう。
アクリル系樹脂には、上記アクリルゴム粒子以外に、通常の添加剤、たとえば、紫外線吸収剤、有機系染料、顔料、無機系色素、酸化防止剤、帯電防止剤、界面活性剤等を含有させてもよい。中でも紫外線吸収剤は、耐候性を高める上で好ましく用いられる。紫外線吸収剤の例としては、2,2’−メチレンビス〔4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール〕、2−(5−メチル−2−ヒドロキシフェニル)−2H−ベンゾトリアゾール、2−〔2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル〕−2H−ベンゾトリアゾール、2−(3,5−ジ−tert−ブチル−2−ヒドロキシフェニル)−2H−ベンゾトリアゾール、2−(3−tert−ブチル−5−メチル−2−ヒドロキシフェニル)−5−クロロ−2H−ベンゾトリアゾール、2−(3,5−ジ−tert−ブチル−2−ヒドロキシフェニル)−5−クロロ−2H−ベンゾトリアゾール、2−(3,5−ジ−tert−アミル−2−ヒドロキシフェニル)−2H−ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)−2H−ベンゾトリアゾールのようなベンゾトリアゾール系紫外線吸収剤;2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクチルオキシベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−4’−クロロベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノンのような2−ヒドロキシベンゾフェノン系紫外線吸収剤;p−tert−ブチルフェニルサリチル酸エステル、p−オクチルフェニルサリチル酸エステルのようなサリチル酸フェニルエステル系紫外線吸収剤等が挙げられ、必要に応じてそれらの2種以上を用いてもよい。アクリル系樹脂に紫外線吸収剤が含まれる場合、その量は、通常0.1重量%以上、好ましくは0.3重量%以上であり、また好ましくは2重量%以下である。
基材フィルムの厚みは、20μm以上100μm以下であることが好ましく、より好ましくは、40μm以上80μm以下である。基材フィルムの厚みが20μm未満である場合には、十分な機械的強度が得られず、ハンドリング性が低下する虞があるし、また、防眩層を形成した際にカールが発生する可能性もある。また、基材フィルムの厚みが100μmを上回ることは、最近の画像表示装置の薄型化への要求およびコスト等の観点から好ましくない。
本発明の防眩フィルムに用いられる基材フィルムの作製方法としては、たとえば、溶融押出成形などの一般に知られる種々の方法を用いることができる。なかでも、Tダイから溶融押出成形し、得られる溶融状フィルムの少なくとも片面をロール表面またはベルト表面に接触させて製膜する方法は、表面性状の良好なフィルムが得られる点で好ましい。とりわけ、基材フィルムの表面平滑性および表面光沢性を向上させる観点からは、上記溶融押出成形して得られる溶融状フィルムの両面をロール表面またはベルト表面に接触させて製膜する方法が好ましい。この際に用いるロールまたはベルトにおいて、アクリル系樹脂と接するロール表面またはベルト表面は、基材フィルム表面への平滑性付与のために、その表面が鏡面となっているものが好ましい。また、基材フィルムは、多層構造からなるものであってもよく、このようなものとしては、アクリルゴム粒子を含有する層と含有しない層との積層構造を挙げることができる。多層構造を有する基材フィルムは、たとえば、フィードブロックやマルチマニホールドダイ等を用いた多層溶融押出成形によって好適に作製することができる。基材フィルムを多層構造とすることによって、基材フィルムに相反する特性を付与することができる。たとえば、アクリルゴム粒子を含有する層を中間層に有し、表裏の最表面にアクリルゴム粒子を含有しない層を有する多層構造の基材フィルムは、アクリルゴム粒子を含有する中間層によって耐衝撃性が向上し、アクリルゴム粒子を含有しない表層によって表面硬度が向上する。
また、本発明の防眩フィルムに用いる基材フィルムは、上記のようにして得られたアクリル系樹脂から構成されるフィルムに延伸処理を施したものであってもよい。延伸処理により、さらなる耐衝撃性を付与することができる。延伸方法は任意であり、特に限定されるものではないが、ガラス転移温度以上の温度においてテンターで横延伸後、熱固定処理を施す方法や、ガラス転移温度以上の温度においてテンターで縦延伸後、熱固定処理を施し、次いで横延伸後、熱固定処理を施す方法を挙げることができる。
<防眩フィルムの製造方法>
上記本発明の防眩フィルムは、下記工程(A)および(B)を含む方法によって好適に製造することができる。
(A)0μm-1より大きく0.04μm-1以下の範囲内に極大値を持たないエネルギースペクトルを示すパターンを用いて、凹凸面を有する金型を作製する工程、および、
(B)基材フィルム上に形成された、光硬化型樹脂等の硬化型樹脂または熱可塑性樹脂などを含む樹脂層の表面に、金型の凹凸面を転写する工程。
0μm-1より大きく0.04μm-1以下の範囲内に極大値を持たないエネルギースペクトルを示すパターンを用いることにより、上記した特定の空間周波数分布を持つ微細凹凸表面を精度よく形成することが可能となる。また、当該パターンを用いて凹凸面を有する金型を作製し、当該金型の凹凸面を、基材フィルム上に形成された樹脂層の表面に転写する方法(エンボス法)により、微細凹凸表面を有する防眩層を精度よく、かつ再現性よく得ることが可能となる。ここで、「パターン」とは、典型的には、防眩フィルムの微細凹凸表面を形成するために用いられる、計算機によって作成された2階調(たとえば、白と黒とに二値化された画像データ)または3階調以上のグラデーションからなる画像データを意味するが、当該画像データへ一義的に変換可能なデータ(行列データなど)も含み得る。画像データへ一義的に変換可能なデータとしては、各画素の座標および階調のみが保存されたデータなどが挙げられる。
上記工程(A)で用いられるパターンのエネルギースペクトルは、たとえば画像データであれば、画像データを2階調の二値化画像データに変換した後、画像データの階調を二次元関数g(x,y)で表し、得られた二次元関数g(x,y)をフーリエ変換して二次元関数G(fx,fy)を計算し、得られた二次元関数G(fx,fy)を二乗することによって求められる。ここで、xおよびyは、画像データ面内の直交座標を表し、fxおよびfyはそれぞれ、x方向の空間周波数およびy方向の空間周波数を表す。
微細凹凸表面の標高のエネルギースペクトルを求める場合と同様に、パターンのエネルギースペクトルを求める場合についても、階調の二次元関数g(x,y)は離散関数として得られる場合が一般的である。その場合は、微細凹凸表面の標高のエネルギースペクトルを求める場合と同様に、離散フーリエ変換によって、エネルギースペクトルが計算される。具体的には、式(5)で定義される離散フーリエ変換によって離散関数G(fx,fy)を計算し、離散関数G(fx,fy)を二乗することによってエネルギースペクトルが求められる。ここで、式(5)中のπは円周率、iは虚数単位である。また、Mはx方向の画素数であり、Nはy方向の画素数であり、lは−M/2以上M/2以下の整数であり、mは−N/2以上N/2以下の整数である。さらに、ΔfxおよびΔfyはそれぞれx方向およびy方向の空間周波数間隔であり、式(6)および式(7)で定義される。式(6)および式(7)中のΔxおよびΔyはそれぞれ、x軸方向、y軸方向における水平分解能である。なお、パターンが画像データである場合には、ΔxおよびΔyは、それぞれ1画素のx軸方向の長さおよびy軸方向の長さと等しい。すなわち、6400dpiの画像データとしてパターンを作成した場合には、Δx=Δy=4μmであり、12800dpiの画像データとしてパターンを作成した場合には、Δx=Δy=2μmである。
図9は、本発明の防眩フィルムを作製するために用いることができるパターンである画像データの一部を示す図であり、階調の二次元離散関数g(x,y)で表したものである。図9に示したパターンである画像データは2mm×2mmの大きさで、12800dpiで作成した。
図10は、図9に示した階調の二次元離散関数g(x,y)を離散フーリエ変換して得られたエネルギースペクトルG2(fx,fy)を白と黒のグラデーションで示した図である。図9に示されるパターンは、ドットをランダムに配置したものであるため、そのエネルギースペクトルは、図10に示されるように、原点を中心に対称となる。よって、パターンのエネルギースペクトルの極大値を示す空間周波数はエネルギースペクトルの原点を通る断面より求めることができる。図11は、図10に示したエネルギースペクトルG2(fx,fy)のfx=0における断面を示す図である。これより図9に示したパターンは、空間周波数0.045μm-1に極大値を持つが、0μm-1より大きく0.04μm-1以下の範囲内には極大値を持たないことがわかる。
防眩フィルムを作製するためのパターンのエネルギースペクトルが0μm-1より大きく0.04μm-1以下の範囲内に極大値を持つ場合には、得られる防眩フィルムの微細凹凸表面が上記した特定の空間周波数分布を示さなくなるため、ギラツキの解消と十分な防眩性を兼備することができない。
エネルギースペクトルG2(fx,fy)が0μm-1より大きく0.04μm-1以下の範囲内に極大値を持たないパターンは、たとえば図9に示されるパターンのように、多数のドットをランダムかつ均一に配置することにより作成することができる。ランダムに配置するドット径は1種類でもよいし、複数種類でもよい。多数のドットをランダムに配置して作成したパターンにおいては、エネルギースペクトルはドット間の平均距離の逆数である空間周波数に第一の極大値(空間周波数が0μm-1より大きく最小の空間周波数における極大値)を示す。よって、エネルギースペクトルが0μm-1より大きく0.04μm-1以下の範囲内に極大値を持たないパターンを作成するためには、ドット間の平均距離が25μm未満となるようにパターンを作成すればよい。また、防眩フィルムの空間周波数0.1μm-1における微細凹凸表面の標高のエネルギースペクトルH3 2と、空間周波数0.04μm-1における標高のエネルギースペクトルH2 2との比H3 2/H2 2を0.1以下とするために、パターンのエネルギースペクトルは、空間周波数が0.04μm-1より大きく0.1μm-1未満の範囲内に極大値を有することが好ましい。このようなパターンは、ドット間の平均距離を10μmより大きく25μm未満の範囲内となるように作成することによって得られる。
また、このような多数のドットをランダムに配置して作成したパターンから、特定の空間周波数以下の低空間周波数成分を除去するハイパスフィルターを通過させて得られたパターンを用いることもできる。さらに、多数のドットをランダムに配置して作成したパターンから、特定の空間周波数以下の低空間周波数成分と特定の空間周波数以上の高空間周波数成分を除去するバンドパスフィルターを通過させて得られたパターンを用いることもできる。図11に示したように多数のドットをランダムに配置して作成したパターンのエネルギースペクトルは、配置するドットのドット径とドット間の平均距離に依存する極大値を示す。このようなパターンを前記ハイパスフィルターもしくは前記バンドパスフィルターに通過させることによって不必要な成分を除去することができる。このようにハイパスフィルターもしくはバンドパスフィルターを通過させたパターンのエネルギースペクトルは、フィルターによって成分を除去しているため、空間周波数が0μm-1より大きく0.04μm-1以下の範囲内に極大値を有さない。また、より効率的に空間周波数が0.04μm-1より大きく0.1μm-1未満の範囲内に極大値を有するパターンを作成することができる。ここで、前記ハイパスフィルターを用いる場合には、空間周波数が0μm-1より大きく0.04μm-1以下の範囲内の極大値を除去するために、除去する低空間周波数成分の上限空間周波数は0.04μm-1以下であることが好ましい。また、前記バンドパスフィルターを用いる場合、空間周波数が0μm-1より大きく0.04μm-1以下の範囲内の極大値を除去し、空間周波数が0.04μm-1より大きく0.1μm-1未満の範囲内に極大値を持つようにするために、除去する低空間周波数成分の上限空間周波数は0.04μm-1以下であることが好ましく、除去する高空間周波数成分の下限空間周波数は0.08μm-1以上であることが好ましい。
ハイパルフィルターやバンドパスフィルターなどを通過させる手法を用いてパターンを作成する場合には、フィルターを通過させる前のパターンとして、乱数もしくは計算機によって生成された擬似乱数により濃淡を決定したランダムな明度分布を有するパターンを用いることもできる。
以上のようにして得られるパターンを用いて金型を作製する方法の詳細については後述する。
上記工程(B)は、エンボス法により、微細凹凸表面を有する防眩層を基材フィルム上に形成する工程である。エンボス法としては、光硬化型樹脂を用いるUVエンボス法、熱可塑性樹脂を用いるホットエンボス法が例示され、なかでも、生産性の観点から、UVエンボス法が好ましい。UVエンボス法においては、基材フィルムの表面に光硬化型樹脂層を形成し、その光硬化型樹脂層を金型の凹凸面に押し付けながら硬化させることで、金型の凹凸面が光硬化型樹脂層表面に転写される。より具体的には、基材フィルム上に光硬化型樹脂を含む塗工液を塗工し、塗工した光硬化型樹脂を金型の凹凸面に密着させた状態で、基材フィルム側から紫外線等の光を照射して光硬化型樹脂を硬化させ、その後金型から、硬化後の光硬化型樹脂層が形成された基材フィルムを剥離することにより、金型の凹凸形状が硬化後の光硬化型樹脂層(防眩層)に転写された防眩フィルムが得られる。
UVエンボス法を用いる場合における光硬化型樹脂としては、紫外線により硬化する紫外線硬化型樹脂が好ましく用いられるが、紫外線硬化型樹脂に適宜選択された光開始剤を組み合わせて、紫外線より波長の長い可視光でも硬化が可能な樹脂を用いることも可能である。紫外線硬化型樹脂の種類は特に限定されず、市販の適宜のものを用いることができる。紫外線硬化型樹脂の好適な例は、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレートなどの多官能アクリレートの1種または2種以上と、イルガキュアー907(チバ・スペシャルティー・ケミカルズ社製)、イルガキュアー184(チバ・スペシャルティー・ケミカルズ社製)、ルシリンTPO(BASF社製)などの光重合開始剤とを混合した樹脂組成物である。これらの紫外線硬化型樹脂に必要に応じて溶媒などを添加し、上記塗工液が調製される。
<防眩フィルム製造用の金型の製造方法>
以下では、本発明の防眩フィルムの製造に用いる金型を製造する方法について説明する。本発明の防眩フィルムの製造に用いる金型の製造方法については、上述したパターンを用いた所定の表面形状が得られる方法であれば、特に制限されないが、微細凹凸表面を精度よく、かつ、再現性よく製造するために、〔1〕第1めっき工程と、〔2〕研磨工程と、〔3〕感光性樹脂膜形成工程と、〔4〕露光工程と、〔5〕現像工程と、〔6〕第1エッチング工程と、〔7〕感光性樹脂膜剥離工程と、〔8〕第2めっき工程とを基本的に含むことが好ましい。図12は、金型の製造方法の前半部分の好ましい一例を模式的に示す図である。図12には、各工程での金型の断面を模式的に示している。以下、図12を参照しながら、上記各工程について詳細に説明する。
〔1〕第1めっき工程
本工程では、金型に用いる基材の表面に、銅めっきまたはニッケルめっきを施す。このように、金型用基材の表面に銅めっきまたはニッケルめっきを施すことにより、後の第2めっき工程におけるクロムめっきの密着性や光沢性を向上させることができる。これは、銅めっきまたはニッケルめっきは、被覆性が高く、また平滑化作用が強いことから、金型用基材の微小な凹凸や鬆などを埋めて平坦で光沢のある表面を形成するためである。これらの銅めっきまたはニッケルめっきの特性によって、後述する第2めっき工程においてクロムめっきを施したとしても、基材に存在していた微小な凹凸や鬆に起因すると思われるクロムめっき表面の荒れが解消され、また、銅めっきまたはニッケルめっきの被覆性の高さから、細かいクラックの発生が低減される。
第1めっき工程において用いられる銅またはニッケルとしては、それぞれの純金属であることができるほか、銅を主体とする合金、またはニッケルを主体とする合金であってもよく、したがって、本明細書でいう「銅」は、銅および銅合金を含む意味であり、また「ニッケル」は、ニッケルおよびニッケル合金を含む意味である。銅めっきおよびニッケルめっきは、それぞれ電解めっきで行なっても無電解めっきで行なってもよいが、通常は電解めっきが採用される。
銅めっきまたはニッケルめっきを施す際には、めっき層が余り薄いと、下地表面の影響が排除しきれないことから、その厚みは50μm以上であるのが好ましい。めっき層厚みの上限は臨界的でないが、コストなどに鑑み、500μm程度までとすることが好ましい。
金型用基材を構成する金属材料としては、コストの観点からアルミニウム、鉄などが挙げられる。さらに取扱いの利便性を考慮すると、軽量なアルミニウムを用いることが好ましい。ここでいうアルミニウムや鉄も、それぞれ純金属であることができるほか、アルミニウムまたは鉄を主体とする合金であってもよい。
また、金型用基材の形状は、当該分野において従来採用されている適宜の形状であってよく、たとえば、平板状のほか、円柱状または円筒状のロールであってもよい。ロール状の基材を用いて金型を作製すれば、防眩フィルムを連続的なロール状で製造することができるという利点がある。
〔2〕研磨工程
続く研磨工程では、上述した第1めっき工程にて銅めっきまたはニッケルめっきが施された基材表面を研磨する。当該工程を経て、基材表面は、鏡面に近い状態に研磨されることが好ましい。これは、基材となる金属板や金属ロールは、所望の精度にするために、切削や研削などの機械加工が施されていることが多く、それにより基材表面に加工目が残っており、銅めっきまたはニッケルめっきが施された状態でも、それらの加工目が残ることがあるし、また、めっきした状態で、表面が完全に平滑になるとは限らないためである。すなわち、このような深い加工目などが残った表面に後述する工程を施したとしても、各工程を施した後に形成される凹凸よりも加工目などの凹凸の方が深いことがあり、加工目などの影響が残る可能性があり、そのような金型を用いて防眩フィルムを製造した場合には、光学特性に予期できない影響を及ぼすことがある。図12(a)には、平板状の金型用基材7が、第1めっき工程において銅めっきまたはニッケルめっきをその表面に施され(当該工程で形成した銅めっきまたはニッケルめっきの層については図示せず)、さらに研磨工程によって鏡面研磨された表面8を有するようにされた状態を模式的に示している。
銅めっきまたはニッケルめっきが施された基材表面を研磨する方法については特に制限されるものではなく、機械研磨法、電解研磨法、化学研磨法のいずれも使用できる。機械研磨法としては、超仕上げ法、ラッピング、流体研磨法、バフ研磨法などが例示される。また、切削工具を用いて鏡面切削することによって、金型用基材表面7を鏡面としてもよい。その際の切削工具の材質や形状などは特に制限されるものではなく、超硬バイト、CBNバイト、セラミックバイト、ダイヤモンドバイトなどを使用することができるが、加工精度の観点からダイヤモンドバイトを用いることが好ましい。
研磨後の表面粗度は、JIS B 0601の規定に準拠した中心線平均粗さRaが0.1μm以下であることが好ましく、0.05μm以下であることがより好ましい。研磨後の中心線平均粗さRaが0.1μmより大きいと、最終的な金型表面の凹凸形状に研磨後の表面粗度の影響が残る可能性がある。また、中心線平均粗さRaの下限については特に制限されず、加工時間や加工コストなどを考慮して適宜決定される。
〔3〕感光性樹脂膜形成工程
続く感光性樹脂膜形成工程では、上述した研磨工程によって鏡面研磨を施した金型用基材7の研磨された表面8に、感光性樹脂を溶媒に溶解した溶液として塗布し、加熱・乾燥することにより、感光性樹脂膜を形成する。図12(b)には、金型用基材7の研磨された表面8に感光性樹脂膜9が形成された状態を模式的に示している。
感光性樹脂としては従来公知の感光性樹脂を用いることができる。感光部分が硬化する性質をもったネガ型の感光性樹脂としては、たとえば、分子中にアクリル基またはメタアクリル基を有するアクリル酸エステルの単量体やプレポリマー、ビスアジドとジエンゴムとの混合物、ポリビニルシンナマート系化合物等を用いることができる。また、現像により感光部分が溶出し、未感光部分だけが残る性質をもったポジ型の感光性樹脂としては、たとえば、フェノール樹脂系やノボラック樹脂系等を用いることができる。また、感光性樹脂には、必要に応じて、増感剤、現像促進剤、密着性改質剤、塗布性改良剤等の各種添加剤を配合してもよい。
これらの感光性樹脂を金型用基材7の研磨された表面8に塗布する際には、良好な塗膜を形成するために、適当な溶媒に希釈して塗布することが好ましい。溶媒としては、セロソルブ系溶媒、プロピレングリコール系溶媒、エステル系溶媒、アルコール系溶媒、ケトン系溶媒、高極性溶媒等を使用することができる。
感光性樹脂溶液を塗布する方法としては、メニスカスコート、ファウンティンコート、ディップコート、回転塗布、ロール塗布、ワイヤーバー塗布、エアーナイフ塗布、ブレード塗布、およびカーテン塗布等の公知の方法を用いることができる。塗布膜の厚さは乾燥後で1〜6μmの範囲とすることが好ましい。
〔4〕露光工程
続く露光工程では、上記エネルギースペクトルが0μm-1より大きく0.04μm-1以下の範囲内に極大値を持たないパターンを、上述した感光性樹脂膜形成工程で形成された感光性樹脂膜9上に露光する。露光工程に用いる光源は、塗布された感光性樹脂の感光波長や感度等に合わせて適宜選択すればよく、たとえば、高圧水銀灯のg線(波長:436nm)、高圧水銀灯のh線(波長:405nm)、高圧水銀灯のi線(波長:365nm)、半導体レーザ(波長:830nm、532nm、488nm、405nm等)、YAGレーザ(波長:1064nm)、KrFエキシマーレーザ(波長:248nm)、ArFエキシマーレーザ(波長:193nm)、F2エキシマーレーザ(波長:157nm)等を用いることができる。
金型の表面凹凸形状、ひいては防眩層の表面凹凸形状を精度良く形成するためには、露光工程において、上記パターンを感光性樹脂膜上に精密に制御された状態で露光することが好ましく、具体的には、コンピュータ上でパターンを画像データとして作成し、その画像データに基づいたパターンを、コンピュータ制御されたレーザヘッドから発するレーザ光によって描画することが好ましい。レーザ描画を行なうに際しては印刷版作成用のレーザ描画装置を使用することができる。このようなレーザ描画装置としては、たとえばLaser Stream FX((株)シンク・ラボラトリー製)等が挙げられる。
図12(c)には、感光性樹脂膜9にパターンが露光された状態を模式的に示している。感光性樹脂膜をネガ型の感光性樹脂で形成した場合には、露光された領域10は露光によって樹脂の架橋反応が進行し、後述する現像液に対する溶解性が低下する。よって、現像工程において露光されていない領域11が現像液によって溶解され、露光された領域10のみ基材表面上に残りマスクとなる。一方、感光性樹脂膜をポジ型の感光性樹脂で形成した場合には、露光された領域10は露光によって樹脂の結合が切断され、後述する現像液に対する溶解性が増加する。よって、現像工程において露光された領域10が現像液によって溶解され、露光されていない領域11のみ基材表面上に残りマスクとなる。
〔5〕現像工程
続く現像工程においては、感光性樹脂膜9にネガ型の感光性樹脂を用いた場合には、露光されていない領域11は現像液によって溶解され、露光された領域10のみ金型用基材上に残存し、続く第1エッチング工程においてマスクとして作用する。一方、感光性樹脂膜9にポジ型の感光性樹脂を用いた場合には、露光された領域10のみ現像液によって溶解され、露光されていない領域11が金型用基材上に残存して、続く第1エッチング工程におけるマスクとして作用する。
現像工程に用いる現像液については従来公知のものを使用することができる。たとえば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n−プロピルアミン等の第一アミン類、ジエチルアミン、ジ−n−ブチルアミン等の第二アミン類、トリエチルアミン、メチルジエチルアミン等の第三アミン類、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、トリメチルヒドロキシエチルアンモニウムヒドロキシド等の第四級アンモニウム塩、ピロール、ピペリジン等の環状アミン類等のアルカリ性水溶液;および、キシレン、トルエン等の有機溶剤等を挙げることができる。
現像工程における現像方法については特に制限されず、浸漬現像、スプレー現像、ブラシ現像、超音波現像等の方法を用いることができる。
図12(d)には、感光性樹脂膜9にネガ型の感光性樹脂を用いて、現像処理を行なった状態を模式的に示している。図12(c)において露光されていない領域11が現像液によって溶解され、露光された領域10のみ基材表面上に残りマスク12となる。図12(e)には、感光性樹脂膜9にポジ型の感光性樹脂を用いて、現像処理を行なった状態を模式的に示している。図12(c)において露光された領域10が現像液によって溶解され、露光されていない領域11のみ基材表面上に残りマスク12となる。
〔6〕第1エッチング工程
続く第1エッチング工程では、上述した現像工程後に金型用基材表面上に残存した感光性樹脂膜をマスクとして用いて、主にマスクの無い箇所の金型用基材をエッチングし、研磨されためっき面に凹凸を形成する。図13は、金型の製造方法の後半部分の好ましい一例を模式的に示す図である。図13(a)には第1エッチング工程によって、主にマスクの無い箇所13の金型用基材7がエッチングされる状態を模式的に示している。マスク12の下部の金型用基材7は金型用基材表面からはエッチングされないが、エッチングの進行とともにマスクの無い箇所13からのエッチングが進行する。よって、マスク12とマスクの無い箇所13との境界付近では、マスク12の下部の金型用基材7もエッチングされる。このようなマスク12とマスクの無い箇所13との境界付近において、マスク12の下部の金型用基材7もエッチングされることをサイドエッチングと呼ぶ。
第1エッチング工程におけるエッチング処理は、通常、塩化第二鉄(FeCl3)液、塩化第二銅(CuCl2)液、アルカリエッチング液(Cu(NH34Cl2)等を用いて、金属表面を腐食させることによって行なわれるが、塩酸や硫酸などの強酸を用いることもできるし、電解めっき時と逆の電位をかけることによる逆電解エッチングを用いることもできる。エッチング処理を施した際の金型用基材に形成される凹形状は、下地金属の種類、感光性樹脂膜の種類およびエッチング手法等によって異なるため、一概にはいえないが、エッチング量が10μm以下である場合には、エッチング液に触れている金属表面から略等方的にエッチングされる。ここでいうエッチング量とは、エッチングにより削られる基材の厚みである。
第1エッチング工程におけるエッチング量は好ましくは1〜50μmであり、より好ましくは2〜10μmである。エッチング量が1μm未満である場合には、金属表面に凹凸形状がほとんど形成されずに、ほぼ平坦な金型となってしまうので、防眩性を示さなくなってしまう。また、エッチング量が50μmを超える場合には、金属表面に形成される凹凸形状の高低差が大きくなり、得られた金型を使用して作製した防眩フィルムを適用した画像表示装置において白ちゃけが生じる虞がある。傾斜角度が5°以下である面を95%以上含む微細凹凸表面を有する防眩フィルムを得るためには、第1エッチング工程におけるエッチング量は、2〜8μmであることがより好ましい。第1エッチング工程におけるエッチング処理は1回のエッチング処理によって行なってもよいし、エッチング処理を2回以上に分けて行なってもよい。エッチング処理を2回以上に分けて行なう場合には、2回以上のエッチング処理におけるエッチング量の合計が上記範囲内とされることが好ましい。
〔7〕感光性樹脂膜剥離工程
続く感光性樹脂膜剥離工程では、第1エッチング工程でマスクとして使用した残存する感光性樹脂膜を完全に溶解し除去する。感光性樹脂膜剥離工程では剥離液を用いて感光性樹脂膜を溶解する。剥離液としては、上述した現像液と同様のものを用いることができる。剥離液のpH、温度、濃度および浸漬時間等を変化させることによって、ネガ型の感光性樹脂膜を用いた場合には露光部の、ポジ型の感光性樹脂膜を用いた場合には非露光部の感光性樹脂膜を完全に溶解して除去する。感光性樹脂膜剥離工程における剥離方法についても特に制限されず、浸漬現像、スプレー現像、ブラシ現像、超音波現像等の方法を用いることができる。
図13(b)は、感光性樹脂膜剥離工程によって、第1エッチング工程でマスク12として使用した感光性樹脂膜を完全に溶解し除去した状態を模式的に示している。感光性樹脂膜からなるマスク12を利用したエッチングによって、第1の表面凹凸形状15が金型用基材表面に形成されている。
〔8〕第2めっき工程
続いて、形成された凹凸面(第1の表面凹凸形状15)にクロムめっきを施すことによって、表面の凹凸形状を鈍らせる。図13(c)には、第1エッチング工程のエッチング処理によって形成された第1の表面凹凸形状15にクロムめっき層16を形成することにより、第1の表面凹凸形状15よりも凹凸が鈍った表面(クロムめっきの表面17)が形成されている状態が示されている。
クロムめっきとしては、平板やロールなどの表面に、光沢があって、硬度が高く、摩擦係数が小さく、良好な離型性を与え得るクロムめっきを採用することが好ましい。このようなクロムめっきとしては特に制限されないが、いわゆる光沢クロムめっきや装飾用クロムめっきなどと呼ばれる、良好な光沢を発現するクロムめっきを用いることが好ましい。クロムめっきは通常、電解によって行なわれ、そのめっき浴としては、無水クロム酸(CrO3)と少量の硫酸を含む水溶液が用いられる。電流密度と電解時間を調節することにより、クロムめっきの厚みを制御することができる。
なお、第2めっき工程において、クロムめっき以外のめっきを施すことは好ましくない。何故なら、クロム以外のめっきでは、硬度や耐摩耗性が低くなるため、金型としての耐久性が低下し、使用中に凹凸が磨り減ったり、金型が損傷したりする。そのような金型から得られた防眩フィルムでは、十分な防眩機能が得られにくい可能性が高く、また、防眩フィルム上に欠陥が発生する可能性も高くなる。
また、めっき後の表面研磨も好ましくない。すなわち、第2のめっき工程後に表面を研磨する工程を設けることなく、クロムめっきが施された凹凸面を、そのまま基材フィルム上の樹脂層表面に転写される金型の凹凸面として用いることが好ましい。研磨することにより、最表面に平坦な部分が生じるため、光学特性の悪化を招く可能性があること、また、形状の制御因子が増えるため、再現性のよい形状制御が困難になることなどの理由による。
このように、微細表面凹凸形状が形成された表面にクロムめっきを施すことにより、凹凸形状が鈍らせられるとともに、その表面硬度が高められた金型が得られる。この際の凹凸の鈍り具合は、下地金属の種類、第1エッチング工程より得られた凹凸のサイズと深さ、まためっきの種類や厚みなどによって異なるため、一概にはいえないが、鈍り具合を制御する上で最も大きな因子は、やはりめっき厚みである。クロムめっきの厚みが薄いと、クロムめっき加工前に得られた凹凸の表面形状を鈍らせる効果が不十分であり、その凹凸形状を転写して得られる防眩フィルムの光学特性があまり良くならない。一方で、めっき厚みが厚すぎると、生産性が悪くなる上に、ノジュールと呼ばれる突起状のめっき欠陥が発生してしまうため好ましくない。そこで、クロムめっきの厚みは1〜10μmの範囲内であるのが好ましく、3〜6μmの範囲内であるのがより好ましい。
当該第2めっき工程で形成されるクロムめっき層は、ビッカース硬度が800以上となるように形成されていることが好ましく、1000以上となるように形成されていることがより好ましい。クロムめっき層のビッカース硬度が800未満である場合には、金型使用時の耐久性が低下する上に、クロムめっきで硬度が低下することはめっき処理時にめっき浴組成、電解条件などに異常が発生している可能性が高く、欠陥の発生状況についても好ましくない影響を与える可能性が高いためである。
また、本発明の防眩フィルムを作製するための金型の製造方法においては、上述した〔7〕感光性樹脂膜剥離工程と〔8〕第2めっき工程との間に、第1エッチング工程によって形成された凹凸面をエッチング処理によって鈍らせる第2エッチング工程を含むことが好ましい。第2エッチング工程では、感光性樹脂膜をマスクとして用いた第1エッチング工程によって形成された第1の表面凹凸形状15を、エッチング処理によって鈍らせる。この第2エッチング処理によって、第1エッチング処理によって形成された第1の表面凹凸形状15における表面傾斜が急峻な部分がなくなり、得られた金型を用いて製造された防眩フィルムの光学特性が好ましい方向へと変化する。図14には、第2エッチング処理によって、金型用基材7の第1の表面凹凸形状15が鈍化し、表面傾斜が急峻な部分が鈍らされ、緩やかな表面傾斜を有する第2の表面凹凸形状18が形成された状態が示されている。
第2エッチング工程のエッチング処理も、第1エッチング工程と同様に、通常、塩化第二鉄(FeCl3)液、塩化第二銅(CuCl2)液、アルカリエッチング液(Cu(NH34Cl2)などを用い、表面を腐食させることによって行なわれるが、塩酸や硫酸などの強酸を用いることもできるし、電解めっき時と逆の電位をかけることによる逆電解エッチングを用いることもできる。エッチング処理を施した後の凹凸の鈍り具合は、下地金属の種類、エッチング手法、および第1エッチング工程により得られた凹凸のサイズと深さなどによって異なるため、一概にはいえないが、鈍り具合を制御する上で最も大きな因子は、エッチング量である。ここでいうエッチング量も、第1エッチング工程と同様に、エッチングにより削られる基材の厚みである。エッチング量が小さいと、第1エッチング工程により得られた凹凸の表面形状を鈍らせる効果が不十分であり、その凹凸形状を転写して得られる防眩フィルムの光学特性があまり良くならない。一方で、エッチング量が大きすぎると、凹凸形状がほとんどなくなってしまい、ほぼ平坦な金型となってしまうので、防眩性を示さなくなってしまう。そこで、エッチング量は1〜50μmの範囲内とすることが好ましく、また、傾斜角度が5°以下である面を95%以上含む微細凹凸表面を有する防眩フィルムを得るために、4〜20μmの範囲内とすることがより好ましい。第2エッチング工程におけるエッチング処理についても、第1エッチング工程と同様に、1回のエッチング処理によって行なってもよいし、エッチング処理を2回以上に分けて行なってもよい。エッチング処理を2回以上に分けて行なう場合には、2回以上のエッチング処理におけるエッチング量の合計が上記範囲内とされることが好ましい。
<防眩性偏光板>
本発明の防眩フィルムは、優れた防眩性を示し、良好なコントラストを発現しながら、「白ちゃけ」および「ギラツキ」の発生による視認性の低下を効果的に防止できるため、画像表示装置に装着したときに視認性に優れたものとなる。画像表示装置が液晶ディスプレイである場合には、この防眩フィルムを偏光板に適用することができる。すなわち、偏光板は一般に、ヨウ素または二色性染料が吸着配向されたポリビニルアルコール系樹脂フィルムからなる偏光フィルムの少なくとも片面に保護フィルムが貼合された形態のものが多いが、その一方の保護フィルムを本発明の防眩フィルムで構成する。偏光フィルムと、本発明の防眩フィルムとを、その防眩フィルムの基材フィルム側で貼り合わせることにより、防眩性偏光板とすることができる。この場合、偏光フィルムの他方の面は、何も積層されていない状態でもよいし、保護フィルムまたは他の光学フィルムが積層されていてもよいし、また液晶セルに貼合するための粘着剤層が積層されていてもよい。また、偏光フィルムの少なくとも片面に保護フィルムが貼合された偏光板の当該保護フィルム上に、本発明の防眩フィルムをその基材フィルム側で貼合して、防眩性偏光板とすることもできる。さらに、偏光フィルムの少なくとも片面に保護フィルムが貼合された偏光板において、当該保護フィルムとして上記基材フィルムを偏光フィルムに貼合した後、この基材フィルム上に防眩層を形成することにより、防眩性偏光板とすることもできる。
以下に実施例を挙げて、本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。以下の例における防眩フィルムおよび防眩フィルム製造用のパターンの評価方法は、次のとおりである。
〔1〕防眩フィルムの表面形状の測定
三次元顕微鏡「PLμ2300」(Sensofar社製)を用いて、防眩フィルムの表面形状を測定した。サンプルの反りを防止するため、光学的に透明な粘着剤を用いて凹凸面が表面となるようにガラス基板に貼合してから、測定に供した。測定の際、対物レンズの倍率は10倍とした。水平分解能ΔxおよびΔyはともに1.66μmであり、測定面積は850μm×850μmであった。
(標高のエネルギースペクトルの比H1 2/H2 2およびH3 2/H2 2
上で得られた測定データから、防眩フィルムの微細凹凸表面の標高を二次元関数h(x,y)として求め、得られた二次元関数h(x,y)を離散フーリエ変換して二次元関数H(fx,fy)を求めた。二次元関数H(fx,fy)を二乗してエネルギースペクトルの二次元関数H2(fx,fy)を計算し、fx=0の断面曲線であるH2(0,fy)より、空間周波数0.01μm-1におけるエネルギースペクトルH1 2および空間周波数0.04μm-1におけるエネルギースペクトルH2 2を求め、エネルギースペクトルの比H1 2/H2 2を計算した。また、空間周波数0.1μm-1におけるエネルギースペクトルH3 2を求め、エネルギースペクトルの比H3 2/H2 2についても計算した。
(微細凹凸表面の傾斜角度)
上で得られた測定データをもとに、前述のアルゴリズムに基づいて計算し、凹凸面の傾斜角度のヒストグラムを作成し、そこから傾斜角度毎の分布を求め、傾斜角度が5°以下である面の割合を計算した。
〔2〕防眩フィルムの光学特性の測定
(ヘイズ)
防眩フィルムのヘイズは、JIS K 7136に規定される方法で測定した。具体的には、この規格に準拠したヘイズメータ「HM−150型」(村上色彩技術研究所製)を用いてヘイズを測定した。防眩フィルムの反りを防止するため、光学的に透明な粘着剤を用いて凹凸面が表面となるようにガラス基板に貼合してから、測定に供した。一般的にヘイズが大きくなると、画像表示装置に適用したときに画像が暗くなり、その結果、正面コントラストが低下しやすくなる。それ故に、ヘイズは低い方が好ましい。
〔3〕防眩フィルムの機械的強度(鉛筆硬度)および透湿度の測定
(鉛筆硬度)
防眩フィルムの鉛筆硬度は、JIS K5600−5−4に規定される方法で測定した。具体的には、この規格に準拠した電動鉛筆引っかき硬度試験機((株)安田精機製作所製)を用いて荷重500gで測定した。
(透湿度)
防眩フィルムの透湿度は、JIS Z0208に規定される方法で、温度40℃、相対湿度90%の条件下で測定した。
〔4〕防眩フィルムの防眩性能の評価
(映り込み、白ちゃけの目視評価)
防眩フィルムの裏面からの反射を防止するために、凹凸面が表面となるように黒色アクリル樹脂板に防眩フィルムを貼合し、蛍光灯のついた明るい室内で凹凸面側から目視で観察し、蛍光灯の映り込みの有無、白ちゃけの程度を目視で評価した。映り込みおよび白ちゃけは、それぞれ1から3の3段階で次の基準により評価した。
映り込み 1:映り込みが観察されない、
2:映り込みが少し観察される、
3:映り込みが明瞭に観察される。
白ちゃけ 1:白ちゃけが観察されない、
2:白ちゃけが少し観察される、
3:白ちゃけが明瞭に観察される。
(ギラツキの評価)
ギラツキは、以下の方法で評価した。すなわち、市販の液晶テレビ(LC−32GH3(シャープ(株)製)から表裏両面の偏光板を剥離した。それらオリジナル偏光板の代わりに、背面側および表示面側とも、偏光板「スミカラン SRDB31E」(住友化学(株)製)を、それぞれの吸収軸がオリジナルの偏光板の吸収軸と一致するように粘着剤を介して貼合し、さらに表示面側偏光板の上には、以下の各例に示す防眩フィルムを凹凸面が表面となるように粘着剤を介して貼合した。この状態で、サンプルから約30cm離れた位置から、目視観察することにより、ギラツキの程度を7段階で官能評価した。レベル1はギラツキが全く認められない状態、レベル7はひどくギラツキが観察される状態に該当し、レベル3はごくわずかにギラツキが観察される状態である。
〔5〕防眩フィルム製造用のパターンの評価
作成したパターンデータの階調を二次元の離散関数g(x,y)で表した。離散関数g(x,y)の水平分解能ΔxおよびΔyはともに2μmとした。得られた二次元関数g(x,y)を離散フーリエ変換して、二次元関数G(fx,fy)を求めた。二次元関数G(fx,fy)を二乗してエネルギースペクトルの二次元関数G2(fx,fy)を計算し、fx=0の断面曲線であるG2(0,fy)より、0μm-1より大きく0.04μm-1以下の空間周波数範囲内における極大値の有無を評価した。
<実施例1>
(防眩フィルム製造用の金型の作製)
直径200mmのアルミロール(JISによるA5056)の表面に銅バラードめっきが施されたものを用意した。銅バラードめっきは、銅めっき層/薄い銀めっき層/表面銅めっき層からなるものであり、めっき層全体の厚みは、約200μmとなるように設定した。その銅めっき表面を鏡面研磨し、研磨された銅めっき表面に感光性樹脂を塗布、乾燥して感光性樹脂膜を形成した。ついで、図15に示される画像データからなるパターンの複数を連続して繰り返し並べたパターンを感光性樹脂膜上にレーザ光によって露光し、現像した。レーザ光による露光、および現像は「Laser Stream FX」((株)シンク・ラボラトリー製)を用いて行なった。感光性樹脂膜にはポジ型の感光性樹脂を使用した。図15に示されるパターンは、ドット径が12μmであるドットを多数ランダムに配置したパターンに対して、空間周波数が0.04μm-1以下の低空間周波数成分と0.1μm-1以上の高空間周波数成分とを除去するバンドパスフィルターを適用して作成したものである。
その後、塩化第二銅液で第1のエッチング処理を行なった。その際のエッチング量は3μmとなるように設定した。第1のエッチング処理後のロールから感光性樹脂膜を除去し、再度、塩化第二銅液で第2のエッチング処理を行なった。その際のエッチング量は10μmとなるように設定した。その後、クロムめっき加工を行ない、金型Aを作製した。このとき、クロムめっき厚みが4μmとなるように設定した。
(基材フィルムの作製)
メタクリル酸メチル/アクリル酸メチル=96/4(重量比)の共重合体(屈折率1.49)70重量部にアクリルゴム粒子を30重量部含有させたアクリル系樹脂組成物を第1の押出機(スクリュー径65mm、一軸、ベント付き(東芝機械(株)製))にて溶融混練し、フィードブロックに供給した。また、メタクリル酸メチル/アクリル酸メチル=96/4(重量比)の共重合体(屈折率1.49)70重量部にアクリルゴム粒子を30重量部含有させたアクリル系樹脂組成物を第2の押出機(スクリュー径45mm、一軸、ベント付き(日立造船(株)製))にて溶融混練し、フィードブロックに供給した。第1の押出機からフィードブロックに供給される樹脂が中間層となり、第2の押出機からフィードブロックに供給される樹脂が表層(両面)となるように、265℃で共押出成形を行ない、85℃に設定したロールユニットを介して、厚さが80μm(中間層50μm、表層15μm×2)である3層構造の基材フィルムAを作製した。
(防眩層の形成)
光硬化性樹脂組成物GRANDIC 806T(大日本インキ化学工業(株)製)を酢酸エチルにて溶解して、50重量%濃度の溶液とし、さらに、光重合開始剤であるルシリンTPO(BASF社製、化学名:2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド)を、硬化性樹脂成分100重量部あたり5重量部添加して塗布液を調製した。基材フィルムA上に、この塗布液を乾燥後の塗布厚みが6μmとなるように塗布し、60℃に設定した乾燥機中で3分間乾燥させた。乾燥後の基材フィルムAを、先に得られた金型Aの凹凸面に、光硬化性樹脂組成物層が金型側となるようにゴムロールで押し付けて密着させた。この状態で基材フィルムA側より、強度20mW/cm2の高圧水銀灯からの光をh線換算光量で200mJ/cm2となるように照射して、光硬化性樹脂組成物層を硬化させた。この後、基材フィルムAを硬化樹脂ごと金型から剥離して、表面に凹凸を有する硬化樹脂(防眩層)と基材フィルムAとの積層体からなる、透明な防眩フィルムAを作製した。
<実施例2>
露光工程において、図16に示される画像データからなるパターンの複数を連続して繰り返し並べたパターンを感光性樹脂膜上にレーザ光によって露光し、第1のエッチング処理におけるエッチング量を5μmとなるように設定し、第2のエッチング処理におけるエッチング量を12μmとなるように設定したこと以外は、実施例1と同様にして金型Bを作製した。得られた金型Bを用いたこと以外は、実施例1と同様にして防眩フィルムBを作製した。図16に示されるパターンは、ドット径が12μmであるドットを多数ランダムに配置したパターンに対して、空間周波数が0.035μm-1以下の低空間周波数成分と0.135μm-1以上の高空間周波数成分とを除去するバンドパスフィルターを適用して作成したものである。
<比較例1>
基材フィルムAの代わりに厚み80μmのトリアセチルセルロース(TAC)フィルムを使用したこと以外は実施例1と同様にして防眩フィルムCを作製した。
<比較例2>
直径300mmのアルミロール(JISによるA5056)の表面を鏡面研磨し、研磨されたアルミ面に、ブラスト装置((株)不二製作所製)を用いて、ジルコニアビーズTZ−SX−17(東ソー(株)製、平均粒径:20μm)を、ブラスト圧力0.1MPa(ゲージ圧)、ビーズ使用量8g/cm2(ロールの表面積1cm2あたりの使用量)でブラストし、表面に凹凸をつけた。得られた凹凸つきアルミロールに対し、無電解ニッケルめっき加工を行ない、金型Cを作製した。このとき、無電解ニッケルめっき厚みが15μmとなるように設定した。得られた金型Cを用いたこと以外は、実施例1と同様にして防眩フィルムDを作製した。
得られた防眩フィルムA〜Dについての上記〔1〕〜〔4〕の測定・評価結果を表1にまとめた。また、図17に金型Aおよび金型Bの作製に使用したパターンより得られたエネルギースペクトルG2(fx,fy)のfx=0における断面を示した。図17より、金型AおよびBの作製に使用したパターンのエネルギースペクトルは、0μm-1より大きく0.04μm-1以下の空間周波数範囲に極大値を示さないことがわかる。
表1に示す結果から、本発明の要件を全て満たす防眩フィルムAおよび防眩フィルムBは、ギラツキが全く発生せず、十分な防眩性を示し、白ちゃけも発生しなかった。また、ヘイズも低いため、画像表示装置に配置した際にもコントラストの低下を引き起こすことが無い。さらに、鉛筆硬度も高く強い機械強度を有しており、また、透湿度も低く、高い耐湿性を有している。一方、アクリル系樹脂からなる基材フィルムを用いなかった防眩フィルムCは優れた防眩性能を示したが、鉛筆硬度および耐湿性が防眩フィルムAおよび防眩フィルムBよりも低かった。また、所定のパターンを用いずに作製した防眩フィルムDは、エネルギースペクトルの比H1 2/H2 2が本発明の要件を満たさないため、ギラツキが発生していた。
1 防眩フィルム、2 微細凹凸表面を構成する凹凸、3 防眩フィルムの投影面、5 防眩フィルムの主法線方向、6 凹凸を加味した局所的な法線、6a,6b,6c,6d ポリゴン面の法線ベクトル、ψ 表面傾斜角度、7 金型用基材、8 研磨工程によって研磨された基材の表面、9 感光性樹脂膜、10 露光工程において露光された感光性樹脂膜、11 露光工程において露光されない感光性樹脂膜、12 マスク、13 マスクの無い箇所、15 第1エッチング工程後の基材表面(第1の表面凹凸形状)、16 クロムめっき層、17 クロムめっきの表面、18 第2エッチング工程後の基材表面(第2の表面凹凸形状)、101 基材フィルム、102 防眩層、103 微細凹凸表面。

Claims (3)

  1. 基材フィルムと、前記基材フィルム上に積層される凹凸表面を有する防眩層とを備える防眩フィルムであって、
    前記基材フィルムは、アクリル系樹脂を含み、
    空間周波数0.01μm-1における前記凹凸表面の標高のエネルギースペクトルH1 2と、空間周波数0.04μm-1における前記凹凸表面の標高のエネルギースペクトルH2 2との比H1 2/H2 2が3〜20の範囲内であり、
    空間周波数0.1μm-1における前記凹凸表面の標高のエネルギースペクトルH3 2と、空間周波数0.04μm-1における前記凹凸表面の標高のエネルギースペクトルH2 2との比H3 2/H2 2が0.1以下であり、かつ、
    前記凹凸表面は、傾斜角度が5°以下である面を95%以上含む、防眩フィルム。
  2. 前記基材フィルムの厚みは、20μm以上100μm以下である、請求項1に記載の防眩フィルム。
  3. 請求項1または2に記載の防眩フィルムと、前記基材フィルムにおける前記防眩層とは反対側の面に積層される偏光フィルムとを備える防眩性偏光板。
JP2011040122A 2010-03-11 2011-02-25 防眩フィルムおよび防眩性偏光板 Active JP5801062B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011040122A JP5801062B2 (ja) 2010-03-11 2011-02-25 防眩フィルムおよび防眩性偏光板

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010054355 2010-03-11
JP2010054355 2010-03-11
JP2011040122A JP5801062B2 (ja) 2010-03-11 2011-02-25 防眩フィルムおよび防眩性偏光板

Publications (2)

Publication Number Publication Date
JP2011209700A true JP2011209700A (ja) 2011-10-20
JP5801062B2 JP5801062B2 (ja) 2015-10-28

Family

ID=44601522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040122A Active JP5801062B2 (ja) 2010-03-11 2011-02-25 防眩フィルムおよび防眩性偏光板

Country Status (4)

Country Link
JP (1) JP5801062B2 (ja)
KR (1) KR20110102838A (ja)
CN (1) CN102193113B (ja)
TW (1) TWI498603B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192901A1 (ja) * 2013-05-28 2014-12-04 住友化学株式会社 防眩フィルム、防眩フィルム製造用金型及びそれらの製造方法
JP2015537250A (ja) * 2012-11-21 2015-12-24 スリーエム イノベイティブ プロパティズ カンパニー 光拡散フィルム及びそれを作製する方法
JP2021525396A (ja) * 2019-01-08 2021-09-24 エルジー・ケム・リミテッド 光学積層体、偏光板、およびディスプレイ装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10557973B2 (en) 2012-12-14 2020-02-11 3M Innovative Properties Company Brightness enhancing film with embedded diffuser
TW201516496A (zh) * 2013-10-31 2015-05-01 Wintek Corp 防眩光之導光結構及其光學膜片
WO2020101396A1 (ko) * 2018-11-15 2020-05-22 주식회사 엘지화학 광학 적층체, 편광판, 및 디스플레이 장치
WO2020145643A1 (ko) * 2019-01-08 2020-07-16 주식회사 엘지화학 광학 적층체, 편광판, 및 디스플레이 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145397A (ja) * 2007-12-11 2009-07-02 Sumitomo Chemical Co Ltd 偏光板のセット、ならびにこれを用いた液晶パネルおよび液晶表示装置
JP2009204837A (ja) * 2008-02-27 2009-09-10 Sumitomo Chemical Co Ltd 防眩フィルム、防眩性偏光板および画像表示装置
JP2009288655A (ja) * 2008-05-30 2009-12-10 Nitto Denko Corp 防眩性ハードコートフィルム、それを用いた偏光板、画像表示装置、防眩性ハードコートフィルムの評価方法および製造方法
JP2009288650A (ja) * 2008-05-30 2009-12-10 Nitto Denko Corp 防眩性ハードコートフィルム、それを用いた偏光板および画像表示装置
JP2010224427A (ja) * 2009-03-25 2010-10-07 Sumitomo Chemical Co Ltd 防眩フィルムおよびその製造方法、ならびに金型の製造方法
JP2011107297A (ja) * 2009-11-16 2011-06-02 Sony Corp 防眩性フィルムおよび表示装置
JP2011209701A (ja) * 2010-03-11 2011-10-20 Sumitomo Chemical Co Ltd 防眩性偏光板およびそれを用いた画像表示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020263A (ja) * 2002-06-13 2004-01-22 Minolta Co Ltd 光輝感評価装置及び光輝感評価方法
KR100959049B1 (ko) * 2005-06-28 2010-05-20 닛토덴코 가부시키가이샤 방현성 하드 코트 필름
US7505104B2 (en) * 2005-09-16 2009-03-17 Fujifilm Corporation Antiglare antireflective film, polarizing plate and liquid crystal display
JP2007246714A (ja) * 2006-03-16 2007-09-27 Nippon Paint Co Ltd 表面に微細凹凸を形成するコーティング組成物およびその応用
JP2010020268A (ja) * 2008-06-09 2010-01-28 Sony Corp 光学フィルムおよびその製造方法、防眩性フィルム、光学層付偏光子、ならびに表示装置
CN101846755B (zh) * 2009-03-25 2014-04-16 住友化学株式会社 防眩膜的制造方法和用于防眩膜制作的模具的制造方法
JP2011017829A (ja) * 2009-07-08 2011-01-27 Sumitomo Chemical Co Ltd 防眩フィルムおよびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145397A (ja) * 2007-12-11 2009-07-02 Sumitomo Chemical Co Ltd 偏光板のセット、ならびにこれを用いた液晶パネルおよび液晶表示装置
JP2009204837A (ja) * 2008-02-27 2009-09-10 Sumitomo Chemical Co Ltd 防眩フィルム、防眩性偏光板および画像表示装置
JP2009288655A (ja) * 2008-05-30 2009-12-10 Nitto Denko Corp 防眩性ハードコートフィルム、それを用いた偏光板、画像表示装置、防眩性ハードコートフィルムの評価方法および製造方法
JP2009288650A (ja) * 2008-05-30 2009-12-10 Nitto Denko Corp 防眩性ハードコートフィルム、それを用いた偏光板および画像表示装置
JP2010224427A (ja) * 2009-03-25 2010-10-07 Sumitomo Chemical Co Ltd 防眩フィルムおよびその製造方法、ならびに金型の製造方法
JP2011107297A (ja) * 2009-11-16 2011-06-02 Sony Corp 防眩性フィルムおよび表示装置
JP2011209701A (ja) * 2010-03-11 2011-10-20 Sumitomo Chemical Co Ltd 防眩性偏光板およびそれを用いた画像表示装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015537250A (ja) * 2012-11-21 2015-12-24 スリーエム イノベイティブ プロパティズ カンパニー 光拡散フィルム及びそれを作製する方法
US10295710B2 (en) 2012-11-21 2019-05-21 3M Innovative Properties Company Optical diffusing films and methods of making same
US10605965B2 (en) 2012-11-21 2020-03-31 3M Innovative Properties Company Optical diffusing films and methods of making same
WO2014192901A1 (ja) * 2013-05-28 2014-12-04 住友化学株式会社 防眩フィルム、防眩フィルム製造用金型及びそれらの製造方法
JP2021525396A (ja) * 2019-01-08 2021-09-24 エルジー・ケム・リミテッド 光学積層体、偏光板、およびディスプレイ装置
JP7164128B2 (ja) 2019-01-08 2022-11-01 エルジー・ケム・リミテッド 光学積層体、偏光板、およびディスプレイ装置
US11860340B2 (en) 2019-01-08 2024-01-02 Lg Chem, Ltd. Optical laminate, polarizing plate, and display device

Also Published As

Publication number Publication date
TW201137409A (en) 2011-11-01
JP5801062B2 (ja) 2015-10-28
CN102193113B (zh) 2014-09-03
TWI498603B (zh) 2015-09-01
CN102193113A (zh) 2011-09-21
KR20110102838A (ko) 2011-09-19

Similar Documents

Publication Publication Date Title
JP5158443B2 (ja) 防眩フィルムおよびその製造方法、ならびに金型の製造方法
JP6181383B2 (ja) 防眩フィルム
JP5674292B2 (ja) 防眩フィルムおよびその製造方法、ならびに金型の製造方法
KR101608091B1 (ko) 방현 필름 및 그 제조 방법
JP5801062B2 (ja) 防眩フィルムおよび防眩性偏光板
JP4844254B2 (ja) 防眩フィルム及び画像表示装置
JP5150945B2 (ja) 金型の製造方法および当該方法によって得られた金型を用いた防眩フィルムの製造方法
JP2012068473A (ja) 液晶表示装置
JP5158444B2 (ja) 防眩フィルムの製造方法および防眩フィルム作製のための金型の製造方法
JP2014126598A (ja) 防眩フィルムおよび防眩性偏光板
WO2014097807A1 (ja) 防眩性偏光板および画像表示装置
JP6585342B2 (ja) 防眩性フィルム、防眩性偏光板及び画像表示装置
JP2016150451A (ja) 金型
KR20100132447A (ko) 방현 필름의 제조 방법, 방현 필름 및 금형의 제조 방법
KR101588460B1 (ko) 금형의 제조 방법 및 방현 필름의 제조 방법
JP6049980B2 (ja) 防眩フィルム
JP2011186386A (ja) 防眩フィルムおよび防眩性偏光板
JP2013176954A (ja) 防眩フィルム製造用金型の製造方法および防眩フィルムの製造方法
JP2011248289A (ja) 防眩性フィルム、防眩性偏光板及び画像表示装置
JP2014119552A (ja) 防眩フィルムおよびそのための金型の製造方法、防眩フィルムの製造方法
JP5294310B2 (ja) 金型の製造方法および当該方法によって得られた金型を用いた防眩フィルムの製造方法
JP2010286528A (ja) 防眩フィルムの製造方法、防眩フィルムおよび金型の製造方法
JP2012068472A (ja) 液晶表示装置
JP2016150450A (ja) 金型

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150826

R150 Certificate of patent or registration of utility model

Ref document number: 5801062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350