JP2010520042A - 担体及び担体に塗布した触媒活性材料から成る触媒の製法 - Google Patents

担体及び担体に塗布した触媒活性材料から成る触媒の製法 Download PDF

Info

Publication number
JP2010520042A
JP2010520042A JP2009551205A JP2009551205A JP2010520042A JP 2010520042 A JP2010520042 A JP 2010520042A JP 2009551205 A JP2009551205 A JP 2009551205A JP 2009551205 A JP2009551205 A JP 2009551205A JP 2010520042 A JP2010520042 A JP 2010520042A
Authority
JP
Japan
Prior art keywords
catalyst
fine
active material
support
moo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009551205A
Other languages
English (en)
Other versions
JP6150450B2 (ja
JP2010520042A5 (ja
Inventor
クレーマー ウルリヒ
ライヒレ アンドレアス
ロゾフスキー フランク
ハモン ウルリヒ
ヨアヒム ミュラー−エンゲル クラウス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of JP2010520042A publication Critical patent/JP2010520042A/ja
Publication of JP2010520042A5 publication Critical patent/JP2010520042A5/ja
Application granted granted Critical
Publication of JP6150450B2 publication Critical patent/JP6150450B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本発明は、担体の表面に活性材料として、元素Mo及びVを含有する複合元素酸化物及び酸化モリブデン又は酸化モリブデン形成剤から成る微細混合物を塗布する、シェル触媒の製法に関する。

Description

本発明は、担体及び担体表面に塗布した触媒活性材料から成る触媒(シェル触媒)の製法に関するが、その際、活性材料は結合剤を用いて担体表面に接着させる。
前記したようなシェル触媒の製法は、公知である(例えばWO95/11081、WO2004/108267、Wo2004/108284、US−A2006/0205978、EP−A714700及びDE−A102005010645参照)。
その際、活性材料は非常に多くの場合に、元素Mo及びVを含有する複合元素酸化物である。複合元素酸化物の記載は、活性材料がMo、V及びO(酸素)の他になお少なくとも1種のその他の化学元素を含有することを表す。
触媒活性複合元素酸化物材料の酸素とは異なる全ての元素の全量に対する元素Moのモル割合は、その際通常5〜95モル%、しばしば10〜90モル%であり、多くの場合に15〜85モル%又は20〜80モル%である。触媒活性複合元素酸化物材料中に含有されるMo対触媒活性複合元素酸化物材料中に含有されるVのモル比、Mo/Vは、通常15:1〜1:1、しばしば12:1〜2:1である。
前記したような触媒は、アクロレインからアクリル酸への不均一系触媒作用による部分的気相酸化の触媒用に特に好適である。
DE−A10350822及びDE−A102004025445から、アクロレインからアクリル酸へのこのような不均一系触媒作用による気相部分酸化の方法を、同じ触媒固定床で実質的に連続的に比較的長時間行うことができることは公知である。
もちろんその際、触媒固定床は操業時間の経過と共に品質が損なわれる。特にその活性は劣化する。
その製造及び交換には比較的費用がかかりかつ高価である触媒固定床を、それにも拘わらず触媒固定床を装入した反応器中で可能な限り長時間操業させることができるように、公知技術では様々な方法で触媒固定床の老化過程を阻止する試みがなされている。
EP−A990636(例えば8頁、13〜15行)及びEP−A1106598(例えば13頁、43〜45行)では、触媒固定床を通る反応混合物の1回の通過に際してアクロレイン変換率を実質上維持するために、操業時間の経過中触媒固定床の活性の減少を、その他は完全に同じである操業条件下で触媒固定床の温度を徐々に高めることによって、十分補うことが提案されている。
EP−A990636並びにEP−A1106598で推奨されている方法の欠点は、触媒固定床の温度上昇に伴ってその老化過程がますます加速することである(例えば、老化に関与する触媒内部の特定の運動過程がますます速く進む)。触媒固定床の温度の最高値に達する場合には、触媒固定床を完全に交換せねばならない。
しかしながらこのような完全交換の欠点は、それにかなりの費用がかかることである。アクリル酸製造方法を長時間中断せねばならず、触媒製造費用も高くなる。
従って、反応器中の触媒固定床の寿命を十分に長くするために役立つ方法が必要とされている。
これに関してDE−A10232748は、触媒固定床を全部交換する代わりに、その一部の量を新しい触媒装入量で置き換えることを推奨している。この方法の欠点は、触媒床部分交換でも既に比較的高価であり、アクロレインからアクリル酸への部分酸化を中断する必要があることである。
DE−A102004025445は、アクロレインからアクリル酸への不均一系触媒作用による部分的気相酸化の長時間操業用の方法として、気相中の操作圧力を触媒固定床の操業時間の増加に伴って高めることによって、触媒固定床の脱活性化を阻止することを提案している。この方法の欠点は、不均一系触媒作用による部分的気相酸化の際に操作圧力の上昇に伴って高い圧縮力が必要とされることである。
DE−A614872は、触媒固定床の数年間の操業時間後にその温度を15℃から30℃以上にまで高め、部分酸化の方法を中断し、触媒固定床の高めた温度で、固定床中を酸素、水蒸気及び不活性ガスから成る再生気体混合物を通し、次いで部分酸化を行うことによって、触媒固定床の寿命を延ばすことを推奨している(これに関して、この明細書では不活性ガス、特定の条件下で触媒固定床を通して誘導する気体混合物中の不活性ガスとは、触媒固定床中を気体混合物が通過する際に少なくとも95モル%、有利には少なくとも98モル%、極めて特に有利には少なくとも99モル%又は99.5モル%まで不変のまま保たれるような気体であることを意味する)。
しかしEP−A614872の方法の欠点は、中断の時点まで触媒固定床の老化が抑制されずに進み、促進されることである。
DE−A10350822では、操業時間中の触媒固定床の脱活性化を阻止するために触媒固定床の温度を高めるが、しかしこの温度上昇が8℃になる前に部分酸化を中断し、再生的に酸素含有気体を触媒固定床中を通すことによって、EP−A614872の欠点を除去する試みがなされている。しかしDE−A10350822の方法の欠点は、各再生で本来の部分酸化方法を中断する必要があることである。
アクロレインからアクリル酸への不均一系触媒作用による部分酸化を実施するために好適な触媒固定床の寿命を延ばすための公知技術の前記方法全ての欠点は更に、これら方法は全て触媒固定床の脱活性化の開始を前以て予防的に阻止するためのものではなく、このような触媒固定床の脱活性化が既に始まっている時点で初めてこのような脱活性化のマイナスの影響を抑えるために用いられることである。
従って本発明の課題は、活性材料を担体に塗布したMo及びVを含有する微細複合元素酸化物であるシェル触媒の脱活性化を、アクロレインからのアクリル酸への不均一系触媒作用による部分的気相酸化の進行中に予防的に制御する(即ち脱活性化の開始を阻止する)ために好適な方法を提供することである。
この課題の解決法として、担体及び担体表面に塗布した触媒活性材料から成り、その際活性材料を結合剤により担体表面に接着させる触媒の製法を見出したが、これは、活性材料が、
− 元素Mo及びVを含有する少なくとも1種の微細な複合元素酸化物及び
− モリブデンの酸化物及び高めた温度及び分子酸素の作用下でモリブデンの酸化物を形成するモリブデンの化合物から成る群から選択した少なくとも1種の微細物質Sから成る微細混合物であることを特徴とする。
本発明の利点は、Mo及びVを含有する微細な複合元素酸化物を、担体に触媒活性材料を塗布する前に、別個に製造することである。その結果、アクロレインのアクリル酸への部分酸化に関してその触媒作用が、微細物質Sの混合によって実質的に損なわれなくなる。
微細物質Sが既にモリブデンの酸化物でない場合には、その代わりに本発明によれば、高めた温度及び分子酸素の作用下でモリブデンの酸化物を形成するモリブデンの化合物を使用することができる。高めた温度及び分子酸素の作用は、例えば担体表面への微細活性混合物の塗布に引き続いて行うことができる。使用技術的には、その際使用される温度は、Mo及びVを含有する複合元素酸化物の製造に使用される最高温度より下であるように選択するのが有利である。分子酸素の調製用には、熱処理を例えば分子酸素下又は分子酸素及び不活性ガス(例えば空気)から成る混合物下で行うことができる。
モリブデンの酸化物とは異なる本発明により好適な微細物質Sの例としては、アンモニウムモリブデート[(NHMoO]並びにアンモニウムポリモリブデート、例えばアンモニウムヘプタモリブデートテトラヒドレート[(NHMo24・4HO]が挙げられる。もう一つの例は、酸化モリブデン水和物(MoO・xHO)である。しかしこのような物質Sとして水酸化モリブデンも挙げられる。
しかし、酸化モリブデンとは異なる物質Sに対する高めた温度及び分子酸素の作用は、アクロレインからアクリル酸への不均一系触媒作用による部分酸化自体によって行うこともできる。この場合に、酸化モリブデン形成は、本発明により製造したシェル触媒の使用下でアクロレインからアクリル酸への不均一系触媒作用による部分酸化の実施中にはじめて行われる。
しかし本発明によれば、微細物質Sとしてモリブデンの酸化物(MoO)を使用するのが有利である(これは本明細書では、≧98質量%まで、有利には≧99質量%まで、特に有利には≧99.9質量%及びそれ以上までMo及びOのみから成る物質を意味する)。特に本発明による方法では微細物質Sとして三酸化モリブデン(MoO)を使用するのが有利である。
しかし原則的には微細物質Sとして酸化モリブデン、例えばMo1852、Mo23及びMo11も挙げられる(例えば、"Synthese und strukturelle Untersuchungen von Molybdaen−、Vanadium−und Wolframoxiden als Referenzverbindungen fuer die heterogene Katalyse"、Dr. Andreas Blumeの論文、Fakultaet II Mathematik− und Naturwissenschaften der Technischen Universitaet Berlin、2004又はSurface Science 292(1993)261−6又はJ.Solid State Chem.124(1996)104参照)。
本発明による方法で微細物質Sとして有利に使用される酸化モリブデンの比表面積Oは、有利には≦10m/g、特に有利には≦5m/g及び極めて特に有利には≦2m/gであるのが使用技術的に有利である。しかし通常比表面積Oは、≧0.01m/g、屡≧0.05m/g及び多くの場合に≧0.1m/gである。その際、比表面積はBET表面積である(Brunauer−Emmet−Teller(BET)により気体吸着(N)により測定)。Oに関する前記記載は、特に微細酸化モリブデンがMoOである場合に当てはまる。Oに関する僅かな値の利点の根拠は、Oの低い値を有する酸化モリブデンがアクロレインからアクリル酸への不均一系触媒作用による部分気相酸化中に挙動が十分不活性である点に存する。即ち、本発明により微細物質Sとして、シェル触媒(同じ担体、同じシェル厚さ、同じ粒度の担体上に塗布した微細物質)を"活性材料"として酸化モリブデン(特にMoO)のみを使用して、活性材料として元素Mo及びVを含有する微細複合元素酸化物のみを使用して製造したシェル触媒を使用する場合に、95〜100モル%のアクロレイン変換率(各々のシェル触媒でその他は同じように装入した触媒固定床中を通す反応気体混合物の1回の通過に関して)が達成されるような条件下で製造される場合に、≦10モル%、有利には≦5モル%、極めて有利には≦2モル%又は≦1モル%のアクロレイン変換率が達成されるように調製した酸化モリブデン(特にMoO)を使用するのが特に有利である。
微細物質の粒度(粒径又は粒径分布)は、本発明によれば有利には元素Mo及びVを含有する微細複合元素酸化物と同じである(これは微細複合元素酸化物との特に均質な混合を可能にする)。同じことが特に微細物質Sが酸化モリブデン(特にMoO)である場合に当てはまる。
しかし勿論本発明による方法で微細物質Sの粒度は、元素Mo及びVを含有する微細複合元素酸化物の粒度と異なるものであってもよい。
粒径分布並びにこれから引き出される粒径d(例えばd10又はd50又はd90)は、レーザー回折分光計Malvern Mastersizer S(Malvern Instruments、Worcestshire WR14 1AT、United Kingdom)を用いてISO13320による測定に関する。その際測定結果として記載される粒径dは、全粒子容量のX%がこれ以下の直径を有する粒子から成ると定義される。
粒径分布を測定するために、各々微細な粉末を使用技術的に有利には分散チャンネルを介して乾式分散器Sympatec RODOS(Sympatec GmbH、System−Partikel−Technik、Am Pulverhaus1、D−38678 Clausthal−Zellerfeld)に導びき、そこで圧縮空気で乾燥分散させ、フリージェットで測定セル中に吹き込む。このセル中で実際のレーザー回折測定を行う。
極めて一般的に、本発明により一緒に使用される微細物質S(特に、酸化モリブデン(例えばMoO)である場合には)の粒度は、本発明による方法では、全粒子の全容量の≧50%、有利には≧75%の最長寸法d(粒子表面に存在する2点を結ぶ最長直線)が、≦800μm、有利には≦600μm、特に有利には≦400μm又は≦300μm及び特別有利には≦200μm又は≦100μmであるようにする。
通常本発明により一緒に使用される微細物質S(特に酸化モリブデン(例えばMoO)である場合には)の粒度は、本発明による方法では、全粒子の全容量の≧50%、有利には≧75%のdが、≧0.1μm、屡≧0.5μm及び多くの場合に≧1μmであるようにする。
即ち、本発明による方法には特に、0.1μm≦d50≦800μm、有利には0.5μm≦d50≦600μm、有利には0.75μm≦d50≦400μm(又は≦300μm)、特に有利には1μm≦d50≦200μm(又は≦100μm)のような微細物質S(特に酸化モリブデン(例えばMoO))が挙げられる。
基本的には本発明による方法では微細物質S(特に酸化モリブデン(例えばMoO)である場合には)の粒度は、担体表面上の活性材料シェルの所望の厚さDに適合させる。
即ち、通常d50≦D、有利には≦0.75・D、特に有利には≦0.5・D及び極めて特に有利には≦0.3・Dである。
しかし通常はd50≧0.001・D、又は≧0.01・D、屡≧0.05・D及び多くの場合には≧0.1・Dである。
微細物質Sの全使用量は、Mo及びVを含有する微細複合元素酸化物の全使用量に対して、本発明による方法では使用技術的に有利には、>0かつ≦50質量%である。本発明によれば有利には、前記した同じ定義の使用量は、≧0.1、大抵は≧0.5及び屡≧1質量%である。前記した同じ定義の使用量は、多くの場合に≦40質量%又は≦30質量%である。本発明により有利には、前記の同じ定義の使用量は≧5かつ≦20質量%(又は≦15質量%)である。前記した量の記載は、特に微細物質Sが酸化モリブデン(例えばMoO)である場合に当てはまる。
基本的には、本発明による方法で微細物質Sとして好適な酸化モリブデン(例えばMoO)はその他のMoを含有する物質から適切な方法で製造することができる。
この目的のために例えばアンモニウムヘプタモリブテートテトラヒドレート[(NHMo24・4HO]から出発することができる。例えば350℃で同じく350℃の温度を有する空気流中における3時間の熱処理によって、これをMoOに変える。MoOの粒度は、任意の方法で適切な粉砕及び篩分けによって、要求に応じて調節することができる。相応した方法でMoOの比表面積も要求に応じて調節することができる。熱処理時間の増大及び/又は熱処理温度の上昇に伴って(不活性ガス又は分子酸素を含有する気体雰囲気(例えば空気)下でのMoO生成完了後)、比表面積は減少する。
350℃におけるMoOの生成完了後、通常550〜650℃で相応する温度を有する空気流中における4〜8時間の熱処理で、MoOの比表面積Oを≦2m/gに抑えるために、十分である。
しかし勿論、本発明による方法用に微細物質Sとして好適な酸化モリブデンが市販のものであってもよい。
例えば本発明による方法用に、Mo含量66.60質量%及び比表面積O3.7m/gを有するClimax Molybdenum Marketing Corporation(Phoenix、USA)のMoO(市販名:"pure Moly Oxide Crystalline POC")が好適である。図1は、このMoOに関してISO13320により測定した粒径分布(Laser、Malvern)を表す。その際、横座標は直径[μm]を対数目盛で表す。縦座標は、各直径又はそれより小さい直径を有するMoOの容量割合を表す。市販製品は図1で示した粒径分布Xを有する。しかしこの粒子は一次粒子から成る凝集体である。例えば超音波の作用によって凝集体を一次粒子に分解することができる。これは第1図に記載した粒径分布Oを有する。本発明による方法用に、図1に示した粒径分布X及びOの混合によって(任意の量比(例えば1000:1〜1:1000、又は100:1〜1:100又は10:1〜1:10又は5:1〜1:5又は2:1〜1:2)で)得ることができる全ての粒径分布が挙げられる。実際にこの粒径分布は、例えば一次粒子及び凝集体を相応する(質量)量比で相互に混合することによって得られる。
通常前記MoOは付加的に下記の異質成分を有する:
Na ≦8質量ppm
K ≦29質量ppm
Fe ≦4質量ppm
Pb ≦1質量ppm
Al ≦4質量ppm
Cr ≦2質量ppm
Ca ≦2質量ppm
Cu ≦2質量ppm
Mg ≦5質量ppm
Ni ≦2質量ppm
Si ≦5質量ppm
Sn ≦1質量ppm、及び
Ti ≦2質量ppm
しかし勿論、市販名"POS"のClimax Molybdenum Marketing CorporationのMoOを本発明により使用することもできる。
代わりに市販のMoOとして、Fa.H.C.Stark、D−38615GoslarのMoOを本発明による方法に使用してもよい(市販名:"Molybdenum Trioxide I")。
これは1m/gの比表面積Oを有する。このMoOのMo含量は66.6質量%である。
その他の点ではこの本発明により好適なFa.H.C.StarkのMoOは下記の異質成分を有する:
NH ≦0.01質量%
Al ≦10質量ppm
Ca ≦5質量ppm
Co ≦10質量ppm
Cr ≦5質量ppm
Cu ≦5質量ppm
Fe ≦10質量ppm
K ≦80質量ppm
Mg ≦5質量ppm
Mn ≦10質量ppm
Na ≦20質量ppm
Ni ≦5質量ppm
P ≦10質量ppm
Pb ≦10質量ppm
Si ≦10質量ppm
Sn ≦10質量ppm
Ti ≦5質量ppm
V ≦10質量ppm
Zn ≦10質量ppm、及び
Zr ≦10質量ppm
付随する粒径分布を図2に表す。その際、横座標は直径[μm]を対数目盛で表す。縦座標は、各直径又はそれより小さい直径を有するMoOの容量割合を表す。
Fa.H.C.StarkのMoOにも同じく一次粒子から成る凝集物が該当する。しかし Fa.ClimaxのMoO−粒子と異なり、一次粒子の凝集は遥かに著しく、そのために例えば超音波の作用によって一次粒子への分解を起こすことができない。
勿論、Fa.H.C.Starkの"II"型の三酸化モリブデンを本発明により使用してもよい。
しかしその他、本発明による方法用に下記製造会社のMoOを使用してもよい:−Fa.Metal−Tech.−Ldt(イスラエル)、純度>98質量%、O=1.1m/g;−Gulf Chemical(テキサス、USA)、Mo65.76質量%、O=1.2m/g;−Nanjing Chemical Industries(中国)、Mo66.6質量%、O=0.8m/g;−Kanal Export(インド)、純度≧99質量%、O=1.7m/g;−Taiyo Koko Co.、Ltd(日本)、純度≧99.7質量%、O=1.6m/g;−Anhui Chizhou Huangshanling Lead and Zinc Mine(中国)、純度≧99.7質量%、Mo66.5質量%、O=0.3m/g;−CCl Moly B.V.(オランダ)、純度≧99.5質量%、Mo>66質量%、O=2.5m/g。
元素Mo及びVを含有する微細複合酸化物としては、アクロレインからアクリル酸への部分酸化で触媒作用を行うことができる公知技術で公知の全ての複合元素酸化物材料が挙げられる。
これらは特に、DE−A102005010645、WO95/11081、DE−A10350822、US−A2006/0205978、EP−A714700、DE−A102004025445、WO2004/108267、WO2004/108284並びに公知技術文書として前記した全ての文書のMo及びVを含有する複合元素酸化物である。本発明による方法用に特に有利なMo及びVを含有する複合元素酸化物は、WO2004/108267の実施態様(特に実施例1)である。本発明により好適なMo及びVを含有する複合元素酸化物材料を製造するために、これら文書に公開された全ての製法を使用することもできる。同じく本発明により得られるシェル触媒を、アクロレインからアクリル酸への不均一系触媒作用による部分気相酸化の前記文書に公開された全ての方法で触媒固定床を製造するために使用することができる。担体としては本発明による方法用に基本的には前記文書で推奨された全ての担体が挙げられる。
本発明により好適な微細なMo及びVを含有する複合元素酸化物の酸素とは異なる全ての元素の全量に対する元素Moのモル割合は、通常5〜95モル%、屡10〜90モル%及び多くの場合に15〜85モル%又は20〜80モル%である。Mo対Vのモル比は、本発明による方法に好適なMo及びVを含有する微細複合元素酸化物中で、通常15:1〜1:1、屡12:1〜2:1である。
本発明により好適な微細複合元素酸化物は、Mo及びOの他になおNb及びWの少なくとも1種を含有することが多い。多くの場合に、このような複合元素酸化物中のモル比Mo/(W及びNbから成る全量)は80:1〜1:4である。このような本発明により好適な複合元素酸化物材料は、屡なおCuを、30:1〜1:3の相応するモル比Mo/Cuで含有する。元素Nb及び/又はW並びにMo、V、O及び場合によりCuの他に、本発明による方法に好適な微細複合元素酸化物は、付加的に例えば少なくとも1種の元素Ta、Cr、Ce、Ni、Co、Fe、Mn、Zn、Sb、Bi、アルカリ(Li、Na、K、Rb、Cs)、H、アルカリ土類(Mg、Ca、Sr、Ba)、Si、Al、Ti及びZrを含有することができる。しかし勿論、本発明により使用される微細複合元素酸化物材料は、元素Nb及び/又はW並びにMo、V、O及び場合によりCuだけから成っていてもよい。
本発明により使用されるMo及びVを含有する複合元素酸化物は、基本的には複合元素酸化物材料の酸素とは異なる元素成分を成分として含有する出発化合物から緊密な乾燥混合物(先駆物質材料とも称する)を製造し、これを温度200〜600℃、有利には300〜450℃(材料温度)で熱処理(焼成)することによって得られる。有利には熱処理をO及びNHを有する気体雰囲気中で行う。その際、NHが先駆物質材料自体から、その中に相応する量のアンモニウムイオンを加えることによって発生する。特に有利には(EP−A72448、WO2004/108267及びWO95/11081参照)熱処理は、その中で熱処理を行う気体雰囲気が−どの時点でもO0.5〜4容量%、−熱処理の全時間中平均NH1〜8容量%並びに−水蒸気及び/又は不活性気体を残量として含有し、その際、雰囲気のNH−含量は最高で熱処理の間20容量%より下であるように行う。
本発明により有利なMo及びVを含有する複合元素酸化物材料の部分量は、下記一般化学量論I
Mo12 (I)
[式中、変数は下記のものを表す:X=W、Nb、Ta、Cr及び/又はCe、X=Cu、Ni、Co、Fe、Mn及び/又はZn、X=Sb及び/又はBi、X=1種以上のアルカリ金属(Li、Na、K、Rb、Cs)及び/又はH、X=1種以上のアルカリ土類金属(Mg、Ca、Sr、Ba)、X=Si、Al、Ti及び/又はZr、a=1〜6、b=0.2〜4、c=0〜18、有利には0.5〜18、d=0〜40、e=0〜2、f=0〜4、g=0〜40及びn=I中の酸素と異なる元素の原子価及び頻度により決まる数]を満たす。
本発明により好適な微細複合元素酸化物材料(I)下で、変数が下記範囲であるようなものが有利である:X=W、Nb及び/又はCr、X=Cu、Ni、Co及び/又はFe、X=Sb、X=Na及び/又はK、X=Ca、Sr及び/又はBa、X=Si、Al及び/又はTi、a=2.5〜5、b=0.5〜2、c=0.5〜3、d=0〜2、e=0〜0.2、f=0〜1、g=0〜15及びn=I中の酸素と異なる元素の原子価及び頻度により決まる数。
極めて特に有利な本発明により好適な複合元素酸化物材料は、一般化学量論II
Mo12 (II)
[式中、変数は下記のものを表す:X=W及び/又はNb、X=Cu及び/又はNi、X=Co及び/又はSr、X=Si及び/又はAl、a=3〜4.5、b=1〜1.5、c=0.75〜2.5、f=0〜0.5、g=0〜8及びn=II中の酸素と異なる元素の原子価及び頻度により決まる数]を満たす。
このような及びその他の本発明により好適な微細複合元素酸化物を製造するために、既に記載したように、複合元素酸化物材料で所望される各々の化学量論的比の所望の複合元素酸化物材料の酸素とは異なる元素成分の公知方法で好適な原料(出発化合物)から出発し、これからできる限り緊密な、有利には微細な乾燥混合物を製造し、次いでこれに熱処理を行う。その際、原料としては既に酸化物であってもよいし、少なくとも酸素の存在で、加熱によって酸化物に変わり得る化合物であってもよい。従って酸化物の他に出発化合物として、特にハロゲン化物、硝酸塩、蟻酸塩、蓚酸塩、酢酸塩、炭酸塩又は水酸化物が挙げられる。
Mo、V、W及びNbの好適な出発化合物は、そのオキソ化合物(モリブデン酸塩、バナジン酸塩、タングステン酸塩及びニオブ酸塩)並びにこれから誘導される酸である。酸素含有原料も有利である。
アンモニウムイオンの緊密な乾燥混合物の既に前記したような有利な含量は、簡単な方法で緊密な乾燥混合物中に相応する量のアンモニウムイオンを加えることによって実現することができる。有利にはアンモニウムイオンを緊密な乾燥混合物中に例えば元素Mo、V、W又はNb源として、相応するアンモニウムオキソメタレートを使用することによって加える。この例は、アンモニウムメタニオベート、アンモニウムメタバナデート、アンモニウムヘプタモリブデートテトラヒドレート及びアンモニウムパラタングステートヘプタヒドレートである。しかし勿論熱処理すべき緊密な乾燥混合物は、複合元素酸化物材料成分源として必要な出発化合物と無関係にアンモニウム供給物、例えばNHNO又はNHCl又は酢酸アンモニウム又は炭酸アンモニウム又は炭酸水素アンモニウム又はNHOH又はNHCHO又は蓚酸アンモニウムを加えてもよい。
出発化合物の緊密な混合は、原則として乾燥又は湿式形で行うことができる。
緊密な混合を湿式形で行うのが有利である。その際、通常出発化合物を水溶液及び/又は懸濁液の形で相互に混合する。特に緊密な乾燥混合物は、前記混合方法では、専ら溶解形で存在する原料及び出発化合物から出発する場合に得られる。溶剤としては有利には水を使用する。次いで水性材料(溶液又は懸濁液)を乾燥させ、こうして得た緊密な乾燥混合物を場合により直接熱処理する。有利には乾燥工程は、噴霧乾燥(出口温度は通常100〜150℃である)によって及び水性の溶液又は懸濁液の製造直後に行う。その際得られる粉末は、直接更に加工するためには微細すぎる場合が多いので、そのため次いで例えば水の添加によって混練する。多くの場合に混練で低級有機カルボン酸(例えば酢酸)の添加が有利であると実証された(典型的な添加量は、使用される粉末材料に対して5〜10質量%である)。
得られた混練物を次いで使用技術的に有利には押出物に成形し、これを既に記載したように熱処理し、その後粉砕して微細な粉末にし、これをそれ自体又は所望の粒度に濃縮して本発明による方法で使用することができる。
本発明により得られるシェル触媒用に好適な担体材料は、例えば多孔性又は非孔性(有利)の酸化アルミニウム、二酸化珪素、二酸化トリウム、二酸化ジルコニウム、炭化珪素又は珪酸塩、例えば珪酸マグネシウム又は珪酸アルミニウム(例えばFa.Ceram TecのTyps C220のステアタイト)である。担体の材料は有利には化学的に不活性であり、即ち本発明により製造したシェル触媒による触媒作用を受ける気相部分酸化の経過を実質的に妨害しない。
担体は規則的な形であってもよいし、不規則な形であってもよく、その際、著しい表面粗面性を有する規則的に成形された担体、例えば砕片被覆を有する球、円筒又は中空円筒が有利である。最長長さは通常1〜10mmである。担体材料は多孔性であってもよいし、非孔性であってもよい。有利には担体材料は非孔性である(担体の容量に対する孔の全容量は有利には≦1容量%である)。
担体の高めた表面粗面度は、通常微細な活性物質から成る塗布されたシェルの高められた接着性を可能にする。
有利には担体の表面粗面度Rは、30〜100μm、有利には50〜70μm(Fa.Hommelwerkeの"Hommel Tester fuer DIN−ISO−Oberflaechenmessgroessen"を用いてDIN4768 Blatt1により測定)の範囲である。特にFa.Ceram TecのSteatit C220から成る表面粗面性担体が好適である。
直径が1〜8mm、有利には4〜5mmであるステアタイト(例えばFa.Ceram TecのSteatit C220型)から成る実質的に非孔性の表面粗面性の球形担体が、本発明により特に好適である。しかし長さが2〜10mm及び外径4〜10mmである円筒を担体として使用することも好適である。担体が環の場合には、更に壁厚は通常1〜4mmである。有利に使用される環形担体は、長さ2〜6mm、外径4〜8mm及び壁厚1〜2mmである。特に外形7mm×3mm×4mm(外径×長さ×内径)の環も担体として好適である。
元素Mo及びVを含有する少なくとも1種の微細複合元素酸化物及び少なくとも1種の微細物質Sから成る本発明により担体表面に塗布される微細混合物は、できる限り均質な混合物でなければならない。微細出発物質からこのような均質な混合物を製造するために、例えばAachen(DE)のFa.AMKのTyp R645のミキサーを使用することができる。これは、切断翼を有する傾斜ミキサー(強力ミキサー)である。混合アームは、例えば39rpmで回転し、切断翼は3000rpmで回転する。しかし勿論その他のミキサーを使用することもできる。例えば、Maschinenfabrik Gustav Eirich GmbH&Co.KG、D−74736HardheimのEirich−Intensivmischer(Typ R02)を使用することもできる。
本発明による方法で担体上に塗布される活性材料の(シェル)厚Dは、通常有利には10〜1000μmである。特に環形担体では、10〜500μm、特に有利には100〜500μm及び極めて特に有利には200〜300又は150〜250μmが有利である。
Mo及びVを含有する微細な複合元素酸化物の粒度(粉末度)は、勿論微細物質Sの粒度と同じように、使用技術的に有利には求められるシェル厚Dに適合させる。従って、微細物質Sの最長寸法に関する全ての記載は、相応してMo及びVを含有する微細な複合元素酸化物の最長寸法dに当てはまる。
100〜500μmのシェル厚の有利な範囲用には、特に全粒子の全容量の≧50%、有利には≧75%が1〜20μm、有利には1〜10μmのメッシュの大きさの篩を通過し、50μmより上かつ0.2μmより下の最長寸法dを有する粒子の割合が全粒子の全容量の1%より少ないような、Mo及びVを含有する微細複合元素酸化物が好適である。通常、微細物質S並びにMo及びVを含有する微細な複合元素酸化物の最長寸法dの分布は、製造条件によりガウス分布に相応する。本発明により極めて特に有利には、Mo及びVを含有する微細複合元素酸化物は、100〜500μmのシェル厚D−範囲に関して図3に示した粒径分布を有する。横座標は直径[μm]を対数目盛で表す。縦座標は、各直径又はそれより小さい直径を有する容量割合を表す。担体表面への微細活性材料の接着(塗布)は本発明による方法では、これに関して公知技術に記載されている方法により行うことができる(例えばUS−A2006/0205978並びにEP−A714700及びこの両方の文書に記載されている公知技術参照)。
本発明により有利には担体表面への活性材料の塗布は、液体結合剤を用いて行う。このような液体結合剤としては、例えば水、有利溶剤又は水中又は有機溶剤中の有機物質(例えば有機溶剤)の溶液が挙げられる。
例えば有機結合剤としては、1価又は多価有機アルコール、例えばエチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール又はグリセリン、1価又は多価有機カルボン酸、例えばプロピオン酸、蓚酸、マロン酸、グルタル酸又はマレイン酸、アミノアルコール、例えばエタノールアミン又はジエタノールアミン並びに1価又は多価有機アミド、例えばホルムアミドが好適である。水中、有機液体中又は水及び有機液体から成る混合物中に可溶性の有機結合剤促進剤は、例えば単糖類及び少糖類、例えばグルコース、フルクトース、スクロース及び/又はラクトースが好適である。
液体結合剤として、水20〜90質量%及び有機化合物10〜80質量%から成る溶液を使用するのが特に有利である。前記液体結合剤の有機割合は、有利には10〜50、特に有利には20〜30質量%である。
通常、沸点又は昇華温度が常圧(1atm)で≧100℃、有利には≧150℃であるような有機結合剤又は結合剤分が有利である。極めて特には、このような有機結合剤又は結合剤分の常圧での沸点又は昇華温度が、同時に元素Mo及びVを含有する微細な複合元素酸化物の製造範囲で使用される最高(焼成)温度より下であるのが有利である。通常この最高焼成温度は≦600℃、屡≦500℃又は≦400℃、しかし多くの場合には≦300℃である。特に有利な液体結合剤は、水20〜90質量%及びグリセリン10〜80質量%から成る溶液である。有利にはこの水溶液中のグリセリン割合は、10〜50、特に有利には20〜30質量%である。本発明による有利な結合剤の利点は、特にこれが微細な活性材料並びに担体の両方を十分完全に湿潤させることができる点にある。
元素Mo及びVを含有する少なくとも1種の微細複合元素酸化物及び少なくとも1種の微細物質Sから成る微細混合物の塗布(接着)は、微細混合物を液体結合剤中で分散分布させ、その際得られる懸濁液を可動させかつ場合により熱い担体上に噴霧することによって、特に簡単に行うことができる(例えばDE−A1642921、DE−A2106796及びDE−A2626887参照)。噴霧終了後、DE−A2909670の教えに従って熱空気を通過させることによって、生じたシェル触媒の湿分を減少させることができる。本発明により製造したシェル触媒中に残留する残湿度に関しては、使用技術的に有利にはDE−A102005010645の教えに従う。
しかし、本発明により有利には微細活性材料の担体表面への接着は、本発明による方法では、担体を先ず液体結合剤で湿潤させ、次いで湿らせた担体材料を微細な活性材料中で圧延することによって、微細活性材料を結合剤で湿らせた担体材料に接着(この表面に塗布)するようにして行う(DE−A2526238、US−A3956377、DE−A235151、DE−A2909671及びEP−A714700参照)。所望のシェル厚を達成するために、前記方法を有利には周期的に繰り返す。即ち下塗りした担体を、次のサイクルで先ず湿潤させ、次いで乾燥した微細活性材料と接触させることによって、被覆される担体を生成する。
従って本発明による方法を工業的規模で実施するために、有利にはDE−A2909671に公開された方法原則を、使用することが推奨されるが、しかしその際有利にはEP−A714700で推奨された結合剤を使用して行う。
即ち被覆すべき担体は、有利には傾斜した(傾斜角は通常30〜90°)回転する回転容器(例えば回転皿又は塗布釜)に入れる。回転する回転容器は、特に球形又は円筒形、特に中空円筒形の担体を2個の一定の間隔で連続的に配置された配量添加装置の下を通して導く。二つの配量添加装置の一つは、有利にはノズルであり、これを通って回転する回転皿中を転がる担体に使用される液体結合剤を噴霧し、調節下で湿潤させる。第二の配量添加装置は、噴霧された液体結合剤の噴霧コーンの外側にあり、微細な活性材料を供給する(例えば振動管を介して)ために役立つ。調節下で湿潤された担体球は、供給された活性材料粉末を吸収し、これは円筒形又は球形担体の外表面で回転運動によって圧縮されて凝集シェルになる(中空円筒形担体の内側円周ではこのような圧縮運動は起こらず、従ってこれは実質的に被覆されないままである)。所望の場合にはこうして下塗りされた担体は、次の運動経過中に微細な酸化物活性材料のもう一つの層を吸収形成することができる(中間乾燥は通常必要でない)ようにするために、次の回転の経過中再び噴霧ノズルを通るが、その際調節下で湿潤される。本発明により使用された液体結合剤の除去は、DE−A102005010645の教えに従って、引き続いての熱供給によって、例えば熱い気体、例えばN又は空気の作用によって、部分的又は完全に行うことができる。本発明による方法の前記実施態様の特別な利点は、一つの工程で2種以上の異なる活性材料からなる層状のシェルを有するシェル触媒を製造することができるという点に存する。その際、本発明による方法は、連続する層の相互並びに担体表面への下塗層の極めて十分な接着を生じる。これは環形担体の場合にも当てはまる。本発明による方法の前記実施態様に関して本質的なことは、担体の被覆すべき表面の湿潤が調節下で行われるということである。簡単にいえば、担体表面を有利にはこれが液体結合剤を吸収して有するが、しかし担体表面に液相自体が肉眼的に明らかにならないことを意味する。担体表面が過度に湿潤されると、表面に吸収される代わりに、微細活性材料が凝集して別々の凝集体を作る。詳細は、DE−A2909671に記載されている。
前記方法の利点は、使用した液体結合剤の除去を調節下で、例えば蒸発及び/又は昇華によって行うことができるという点に存する。最も簡単な場合には、これは相応する温度(例えば50〜200℃、多くの場合100〜150℃)の熱い気体の作用によって行うことができる。しかし熱い気体の作用によってDE−A102005010645の教えに従って部分乾燥をもたらすだけでもよい。その場合に最終乾燥は、例えば適切な部分酸化自体用の反応器中で行うことができる(勿論、引き続き乾燥を完全乾燥まで任意の種類の乾燥炉(例えばベルト乾燥器)中で行ってもよい)。基本的に乾燥で作用をする温度は、本発明によれば有利には元素Mo及びVを含有する微細複合酸化物材料の製造用に使用される焼成温度より上であってはならない。
ここでもう一度、本発明による方法用に酸素とは異なる元素として元素Mo及びVの他に二つの元素Te及びSbの少なくとも1種及びNb、Pb、Ta、W、Ti、Al、Zr、Cr、Mn、Ga、Fe、Ru、Co、Rh、Ni、Pd、Pt、La、Bi、B、Ce、Sn、Zn、Si、Na、Li、K、Mg、Ag、Au及びInを含む群からなる少なくとも1種の元素を組合せて含有する微細複合元素酸化物材料も好適である、と書き留めておきたい。
その製造は、例えばWO2004/108267の25、26頁に記載されているように行うことができる。その際、組合せは有利には後者元素群から元素Nb、Ta、W及び/又はTi及び特に有利には元素Nbを含有する。
有利には前記微細複合元素酸化物材料は、化学量論III
Mo (III)
[式中、M=Te及び/又はSb、M=Nb、Ta、W、Ti、Al、Zr、Cr、Mn、Ga、Fe、Ru、Co、Rh、Ni、Pd、Pt、La、Bi、Ce、Sn、Zn、Si、Na、Li、K、Mg、Ag、Au及びInを含む群からなる少なくとも1種の元素、b=0.01〜1、c=>0〜1及びd=>0〜1である]の前記元素組合せを含有する。
有利には、M=Te及びM=Nb、Ta、W及び/又はTiである。有利にはM=Nbである。
化学量論的係数bは有利には0.1〜0.6である。相応して化学量論的係数cの有利な範囲は0.01〜1又は0.05〜0.4であり、dに関する有利な値は0.01〜1又は0.1〜0.6である。
化学量論的係数b、c及びdが同時に本発明による有利な範囲であるのが特に有利である。
前記のことは特に、活性材料が酸素とは異なるその前記元素に関して、前記元素組合せから成る場合に当てはまる。
その場合にはこれは特に、一般化学量論IV
Mo (IV)
[式中、変数は化学量論IIIに関して記載したものを表し、n=(IV)中の酸素とは異なる元素の原子価及び頻度により決まる数である]の複合元素酸化物活性材料である。
更に本発明による方法用に、一方では前記元素組合せを含有するか又は酸素とは異なる元素に関してそれらから成りかつ同時に、そのピークが回折角(2Θ)22.2±0.5°(h)及び27.3±0.5°(i)である回折反射h及びiを示すX線回折図を有するような複合元素酸化物材料が好適である(本明細書でX線回折図に関する全ての記載は、X線としてCu−Kα−線の使用下で作成したX線回折図(Siemens−Diffraktometer Theta−Theta D−5000、管電圧:40kV、管電流40mA、アパーチャ絞りV20(可変)、散乱線絞りV20(可変)、二次モノクロメーター絞り(0.1mm)、検出器絞り(0.6mm)、測定間隔(2Θ):0.02°、工程当たりの測定時間:2.4s、検出器:シンチレーション計数管)に関する。
その際、これらの回折反射の半価幅は非常に小さくともよいし、非常に際立っていてもよい。
特に本発明による方法用には、そのX線回折図が回折反射h及びiに加えてそのピークが28.2±0.5°(k)である回折反射kを有するようなものが好適である。
後者の中で、本発明により使用するために、回折反射hがX線回折図内で強度が最強であり、並びに最高0.5゜の半値幅を有するものが有利であり、極めて特に有利には本発明による方法は、回折反射i及び回折反射kの半値幅が同時に各々≦1゜であり、回折反射kの強度P及び回折反射iの強度Pが0.2≦R≦0.85、より良好には0.3≦R≦0.85、有利には0.4≦R≦0.85、特に有利には0.65≦R≦0.85、更に有利には0.67≦R≦0.75及び極めて特に有利にはR=0.70〜0.75又はR=0.72の関係を満たし、ここでRは式
R=P/(P+P
により定義された強度比であるものであるようなものに好適である。有利には前記X線回折図は、最大値が2Θ=50±0.3゜である回折反射を有さない。
X線回折図における回折反射の強度の定義は、本明細書ではDE−A19835247、DE−A10122027並びにDE−A10051419及びDE−A10046672において記載された定義に関する。同じことは半値幅の定義に当てはまる。
回折反射h、i及びkの他に、本発明により有利に使用される複合元素酸化物活性材料の前記X線回折図は、更にピークが下記回折角(2Θ):9.0±0.4゜(l)、6.7±0.4゜(o)及び7.9±0.4゜(p)である、その他の回折反射を含む。
更に、X線回折図が付加的に、ピークが回折角(2Θ)=45.2±0.4゜(q)である回折反射を含む場合に有利である。
屡、X線回折図はなお反射29.2±0.4゜(m)及び35.4±0.4゜(n)も含む。
更に、式III及びIVで定義された元素の組合せが純粋なi−相として存在する場合に有利である。複合元素酸化物材料がなおk−相も含む場合には、それらのX線回折図は前記のものの他になお、ピークが下記回折角(2Θ)である、その他の回折反射を含む:36.2±0.4゜(m)及び50±0.4゜(概念i−及びk−相は本明細書においてDE−A10122027及びDE−A10119933に規定されたように使用する)。
回折反射hを強度100と割り当てる場合に、回折反射i、l、m、n、o、p、qが同じ強度スケールで下記の強度を有する場合が有利である:i:5〜95、屡5〜80、部分的に10〜60;l:1〜30;m:1〜40;n:1〜40;o:1〜30;p:1〜30及びq:5〜60。
X線回折図が前記の付加的な回折反射を含む場合には、その半値幅は通常≦1゜である。
本発明により使用される一般式IVの複合元素酸化物材料又は一般式IIIの元素組合せを含有する複合元素酸化物材料の比表面積は、多くの場合に1〜30m/g(BET表面積、窒素)であり、これは特にそれらのX線回折図が記載されたように構成されている場合には、そうである。
既に前記したように、本発明により得られるシェル触媒は特に不均一系触媒作用によるアクロレインからアクリル酸への部分気相酸化を実施するために好適である。その際、これは特にそれで被覆された触媒固定床が前記部分酸化の実施で高められた寿命を有することによって優れている。このことは特に、例えばDE−A10307983、DE−A19948523及びDE−A19910508に記載されているような、高いアクロレイン積載量におけるアクロレインからアクリル酸への不均一系触媒作用による部分気相酸化である場合に当てはまる。
その際、通常アクロレインの気相部分酸化は、例えばEP−A700714、EP−A700893、DE−A19910508、DE−A19948523、DE−A19910506、DE−A19948241、DE−C2830765、DE−C2513405、US−A3147084、DE−A2201528、EP−A383224及びDE−A2903218に記載されているように、1個以上の温度帯域を有する管束反応器中で行う。
その際、固体触媒装入物は、管束反応器の金属管(触媒管)にあり、金属管の周りに熱媒体が誘導されている(1個以上の温度帯域の場合には、相応する数の空間的に分けられた熱媒体が金属管の周りに誘導されている)。熱媒体は通常塩溶融物である。触媒管を通して反応気体混合物が導かれる。
固定床触媒装入物は、本発明により得られる触媒からのみ成っていてもよいが、不活性成形体で希釈したこのような触媒から成っていてもよい。その際、不活性成形体としては例えば本発明によるシェル触媒を製造するために使用される担体成形体(担体)を使用することができる。固定床触媒装入物の前方及び/又は後方に純粋な不活性成形体装入物が存在してよい(このような純粋な不活性成形体装入物は、触媒固定床の反応気体又は反応気体成分による負荷の計算で通常含まれない)。
触媒管は、通常フェライト系鋼から製造され、典型的には壁厚1〜3mmを有する。その内径は通常20〜30mm、屡21〜26mmである。その長さは有利には2〜4mmである。
使用技術的に有利には管束反応器中に納められた触媒管の数は、合計少なくとも5000、有利には少なくとも10000になる。管束反応器中に納められた触媒管の数は、屡15000〜40000である。50000より上の数の触媒管を有する管束反応器はむしろ例外である。容器内部で触媒管は通常均質に分配されて配置されており(有利には触媒管当たり6個の等間隔の隣接管)、その際分配は有利には相互に隣接する触媒管の中心内部軸の間隔(いわゆる触媒管距離)が35〜45mmであるように選択する(例えばEP−B468290参照)。
熱交換媒体としては、塩、例えば硝酸カリウム、亜硝酸カリウム、亜硝酸ナトリウム及び/又は硝酸ナトリウムの溶融物又は低温で溶融する金属、例えばナトリウム、水銀並びに種々の金属の合金の使用が特に有利である。
管束反応器中の触媒管への本発明により得られる触媒の装填は、特に管束反応器が≧135Nl/l・h又は≧150Nl/l・h又は≧160Nl/l・h又は≧170Nl/l・h又は≧180Nl/l・h又は≧200Nl/l・h又は≧220Nl/l・h又は≧240Nl/l・hである触媒装入物のアクロレイン−負荷で操作する場合に有利である。もちろんこのような触媒層装入物が小さい(例えば≦130Nl/l・h又は≦100Nl/l・h又は≦80Nl/l・h)アクロレイン負荷でも有利である。
しかし通常、触媒装入物のアクロレイン負荷は≦350Nl/l・h又は≦300Nl/l・h又は≦250Nl/l・hである。
その際、触媒固定床の容量比活性は、通常反応気体の流れ方向で増大するようにする。これは例えば反応気体の流れ方向で触媒固定床の不活性成形体を用いる希釈度が減少するように設計することによって簡単に実現される。
その他の点では本発明により得られるシェル触媒を用いる不均一系触媒作用による部分酸化は全ての点で、DE−A10350822に記載されているように実施することができる。反応気体装入混合物中のアクロレイン含量は、例えば3又は6〜15容量%、屡4又は6〜10容量%又は5〜8容量%の値である(各々全容量に関する)。
反応気体装入混合物中のO:アクロレインのモル比は、通常≧1である。この比は通常≦3の値である。多くの場合に不均一系触媒作用によるアクリル酸へのアクロレイン部分酸化は、反応気体装入混合物中に存在するアクロレイン:酸素:水蒸気:不活性ガス−容量比(Nl)1:(1〜3):(0:20):(3〜30)、有利には1:(1〜3):(0.5〜10):(7〜10)で実施する。その際、不活性希釈ガスとしては特に、N、CO、CO、希ガス、プロパン、エタン、メタン、ブタン及び/又はペンタン(即ち、各々単一の希釈気体として又はこれら不活性希釈気体の1種以上のその他の不活性希釈気体との混合物で)が挙げられる。その際このような不均一系触媒作用によるアクロレイン部分酸化の反応温度は、一般に200〜380℃の範囲、通常220〜350℃、屡245〜285℃又は245〜265℃である。操作圧力は、通常1〜3バールである。
反応気体混合物の触媒固定床の1回の通過に関するアクロレイン変換率は、通常≧96モル%、屡≧98%、多くの場合に≧99モル%である。
要約すると、本出願は、特に担体及び担体表面上に塗布した触媒活性材料並びに場合により結合剤から成る(シェル)触媒を含むが、その際触媒活性材料は、−元素Mo及びVを含有する少なくとも1種の微細複合元素酸化物及び−モリブデンの酸化物及び高めた温度及び分子酸素の作用下でモリブデンの酸化物を生成するモリブデンの化合物から成る群から選択した少なくとも1種の微細物質Sから成る微細混合物である。
本発明による種類のシェル触媒は、特にアクロレインからアクリル酸の不均一系触媒作用による部分酸化で寿命が長くなったことによって好適である。しかし基本的には、EP−A714700、DE−A10350822並びにWO2004/108267に記載されているその他の全ての不均一系触媒作用による部分酸化用に長い寿命を有する触媒として好適である。本発明の方法により得られる触媒は特にUS2006/0161019に記載の部分酸化法及び再生法(特にそこに記載のアクロレインからアクリル酸への部分酸化)用に好適である。
図1は、本発明による方法に好適なClimax Molybdenum Marketing Corporation(Phoenix、USA)のMoO(市販名:"pure Moly Oxide Crystalline POC")に関してISO13320により測定した粒径分布を表す。 図2は、本発明による方法に好適なFa.H.C.Stark、D−38615GoslarのMoO(市販名:"Molybdenum Trioxide I")の粒径分布を表す。 図3は、本発明により極めて特に有利なMo及びVを含有する微細複合元素酸化物の粒径分布を表す。
実施例及び比較例
1.比較例
WO2004/108267の実施例1に記載されているようにして、化学量論Mo121,2Cu2,4の複合元素酸化物を製造した。
得られた触媒活性複合元素酸化物をBiplex逆流分級ミル(BQ500)(Fa.Hosokawa−Alpine、Augsburg)を用いて粉砕して微細粉末にしたが、これは図3に示した粒径分布を有する。
粉砕した粉末を用いて、EP−A714700の例S1のようにして環状担体(外径7mm、長さ3mm、内径4mm(7×3×4mm)、Steatit C220、Fa.Ceram Tec、表面粗面度R62μm、名称"Steatitring7×3×4poroes beschichtet")を被覆した。結合剤はEP−A714700の例S1に記載したように水75質量%及びグリセリン25質量%から成る水溶液であった。しかし生じるシェル触媒の活性材料割合は、前記例S1とは異なり、20質量%(担体及び活性材料から成る全質量に対して)に選択した。粉末及び結合剤の量比は、相対的に調節した。しかし更なる乾燥は例S1に記載したように棚段炉中250℃ではなく、Memert空気循環乾燥箱中300℃(2h)で行う。こうして比較シェル触媒VS1が得られた。
2.実施例
比較例と同じように操作した。しかし、粉砕したMo121,2Cu2,4粉末(400g)に、Mo121,2Cu2,4粉末の質量に対して、15質量%の微細MoO(60g)を加えた(MoO Fa.H.C.Starckの("Molybdenum Trioxide I")、Mo含量=66.6質量%、O=1m/g、粒径分布は図2に相応する)。
引き続き混合物をFa.Rotor Lips AG、CH−361UetendorfのGT550型Multimixerで1分間レベル8まで均質に混合した。生じる微細混合物を用いて比較例と同様にして環状シェル触媒を製造した。しかしシェル割合は22.33質量%(担体及びシェルの全質量に対して)に選択した。粉末及び結合剤の量比は、相応して調節した。実施例シェル触媒AS1が得られた。
2.シェル触媒VS1及びAS1の試験
シェル触媒を各々下記のようにして塩浴(硝酸カリウム53質量%、亜硝酸ナトリウム40質量%及び硝酸ナトリウム7質量%から成る混合物)で回りを洗うようにしたモデル触媒管中で試験した:モデル触媒管:V2A−鋼、壁厚2mm、内径26mm、外径4mmの中心にサーモウェル(サーモエレメントの収納用)、管長320cm。不活性環(SteatitC220、7×3×4mm)から成る長さ20cmの予備床の後に、流れ方向に先ず100cmには各シェル触媒70質量%及びSteatitC220から成る環形不活性担体(外径7mm、長さ3mm、内径4mm)30質量%から成る混合物を装入した。流れ方向に次の200cmには希釈した形で各シェル触媒を装入した。
反応混合物は、下記の出発組成を有した:アクロレイン4.4容量%、O5.4容量%、HO10.8容量%、CO0.5容量%、CO0.9容量%、アクリル酸0.4容量%、プロピレン0.3容量%及び残量100容量%までN
触媒固定床のアクロレイン負荷は各々90Nl/l・hに調整した(その際、1反応工程で反応気体又は反応気体成分を用いる触媒作用を有する触媒固定床の負荷とは、1時間当たり1リットルの触媒床に導かれる、反応気体又は反応気体成分の量(標準リットル)(=Nl;標準条件下、即ち25℃及び1バールにおける相応する反応気体−又は反応気体成分量を受入れるであろう、リットルで表した容量)と解する)。
塩浴の温度は、各々、触媒固定床を通る反応混合物の1回の通過に関して、アクロレインの変換率が99.6モル%であるように調節した(このために必要な初期塩浴温度は使用されるシェル触媒に無関係に261℃であった)。反応気体混合物の入口温度は各塩浴温度に調節した。
シェル触媒AS1を使用した場合には、58日間の操業時間に亘って塩浴温度を上昇させる必要はなかった。アクリル酸生成の選択性は全操業時間に亘って94.8モル%であった。
シェル触媒VS1を使用した場合には、54日間の操業時間で既に、伴って現れる触媒脱活性化を補い、99.6モル%のアクロレイン変換率を維持するためには、塩浴温度を1℃上昇させる必要があった。
US暫定特許出願No.60/829419、2007年3月1日出願、は文献参照までに本出願に組み入れる。前記教えに関して、本発明で多数の変更及び変形が可能である。従って、本発明は、添付した特許請求の範囲内で、本明細書に特に記載してない他の方法で実施することができると解されたい。

Claims (10)

  1. 担体及び担体表面に塗布した触媒活性材料から成り、その際活性材料を結合剤により担体表面に接着させる、触媒の製造において、活性材料が、
    − 元素Mo及びVを含有する少なくとも1種の微細複合元素酸化物、及び
    − モリブデンの酸化物及び高めた温度及び分子酸素の作用下でモリブデンの酸化物を生成するモリブデンの化合物から成る群から選択した少なくとも1種の微細物質Sから成る微細な混合物であることを特徴とする、担体及び担体表面に塗布した触媒活性材料から成る触媒の製法。
  2. 微細物質SがMoOであることを特徴とする、請求項1に記載の方法。
  3. 微細物質Sの比表面積Oが≧0.1m/gかつ≦5m/gであることを特徴とする、請求項1又は2に記載の方法。
  4. 微細物質Sの粒径d50が≧1μmかつ≦200μmであることを特徴とする、請求項1から3までのいずれか1項に記載の方法。
  5. 活性材料を層厚100〜300μmで担体表面上に塗布することを特徴とする、請求項1から4までのいずれか1項に記載の方法。
  6. 活性材料が、Mo及びVを含有する微細複合元素酸化物の全量に対して≧1質量%かつ≦30質量%の微細物質Sを含有することを特徴とする、請求項1から5までのいずれか1項に記載の方法。
  7. 結合剤が、水20〜90質量%及び有機化合物10〜80質量%から成る溶液であることを特徴とする、請求項1から6までのいずれか1項に記載の方法。
  8. 請求項1から7までのいずれか1項に記載の方法により得られる触媒。
  9. 担体及び担体表面に塗布した触媒活性材料並びに場合により結合剤から成り、その際、触媒活性材料が、
    − 元素Mo及びVを含有する少なくとも1種の微細複合元素酸化物、及び
    − モリブデンの酸化物及び高めた温度及び分子酸素の作用下でモリブデンの酸化物を生成するモリブデンの化合物から成る群から選択した少なくとも1種の微細物質Sから成る微細な混合物である触媒。
  10. 触媒が請求項8又は9に記載の触媒であることを特徴とする、アクロレインからアクリル酸への不均一系触媒作用による部分気相酸化の方法。
JP2009551205A 2007-03-01 2008-02-28 担体及び担体に塗布した触媒活性材料から成る触媒の製法 Active JP6150450B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US89241907P 2007-03-01 2007-03-01
US60/892,419 2007-03-01
DE102007010422.9 2007-03-01
DE102007010422A DE102007010422A1 (de) 2007-03-01 2007-03-01 Verfahren zur Herstellung eines Katalysators bestehend aus einem Trägerkörper und einer auf der Oberfläche des Trägerkörpers aufgebrachten katalytisch aktiven Masse
PCT/EP2008/052402 WO2008104577A1 (de) 2007-03-01 2008-02-28 Verfahren zur herstellung eines katalysators bestehend aus einem trägerkörper und einer auf der oberfläche des trägerkörpers aufgebrachten katalytisch aktiven masse

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015094719A Division JP2015166088A (ja) 2007-03-01 2015-05-07 担体及び担体に塗布した触媒活性材料から成る触媒の製法

Publications (3)

Publication Number Publication Date
JP2010520042A true JP2010520042A (ja) 2010-06-10
JP2010520042A5 JP2010520042A5 (ja) 2014-11-13
JP6150450B2 JP6150450B2 (ja) 2017-06-21

Family

ID=39670120

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009551205A Active JP6150450B2 (ja) 2007-03-01 2008-02-28 担体及び担体に塗布した触媒活性材料から成る触媒の製法
JP2015094719A Ceased JP2015166088A (ja) 2007-03-01 2015-05-07 担体及び担体に塗布した触媒活性材料から成る触媒の製法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015094719A Ceased JP2015166088A (ja) 2007-03-01 2015-05-07 担体及び担体に塗布した触媒活性材料から成る触媒の製法

Country Status (12)

Country Link
US (1) US8318631B2 (ja)
EP (1) EP2134465B1 (ja)
JP (2) JP6150450B2 (ja)
KR (1) KR101463281B1 (ja)
CN (2) CN101622066B (ja)
BR (1) BRPI0807659A2 (ja)
DE (1) DE102007010422A1 (ja)
MY (1) MY151135A (ja)
RU (1) RU2464085C2 (ja)
TW (1) TWI460012B (ja)
WO (1) WO2008104577A1 (ja)
ZA (1) ZA200906800B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060175A1 (ja) * 2010-11-05 2012-05-10 旭化成ケミカルズ株式会社 酸化物触媒、酸化物触媒の製造方法、不飽和酸の製造方法及び不飽和ニトリルの製造方法
JP2013023414A (ja) * 2011-07-21 2013-02-04 Sumitomo Metal Mining Co Ltd 易溶解性三酸化モリブデン
JP2017165663A (ja) * 2016-03-14 2017-09-21 株式会社 東邦アーステック 3−メチルシクロペンタデセノン類の製造方法
WO2019078244A1 (ja) * 2017-10-20 2019-04-25 三菱ケミカル株式会社 α,β-不飽和カルボン酸製造用触媒の製造方法、α,β-不飽和カルボン酸の製造方法、及びα,β-不飽和カルボン酸エステルの製造方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY145398A (en) * 2006-05-19 2012-02-15 Basf Se Production of phthalic anhydride by gas phase oxidation of o-xylol
ES2343443T3 (es) * 2006-05-19 2010-07-30 Basf Se Obtencion de anhidrido de acido ftalico a traves de la oxidacion en fase gaseosa de o-xileno en un reactor principal y un postreactor.
WO2008077791A1 (de) 2006-12-21 2008-07-03 Basf Se Katalysatorsystem und verfahren zur gasphasenoxidation unter verwendung einer vorlage
DE102007017080A1 (de) 2007-04-10 2008-10-16 Basf Se Verfahren zur Beschickung eines Längsabschnitts eines Kontaktrohres
DE102007025869A1 (de) 2007-06-01 2008-07-03 Basf Se Verfahren der Wiederbeschickung der Reaktionsrohre eines Rohrbündelreaktors mit einem neuen Katalysatorfestbett
DE102007028332A1 (de) 2007-06-15 2008-12-18 Basf Se Verfahren zum Beschicken eines Reaktors mit einem Katalysatorfestbett, das wenigstens ringförmige Katalysatorformkörper K umfasst
DE102007028333A1 (de) 2007-06-15 2008-12-18 Basf Se Verfahren zum Einbringen einer wenigstens einer Produktionscharge von ringförmigen Schalenkatalysatoren K entnommenen Teilmenge in ein Reaktionsrohr eines Rohrbündelreaktors
BRPI0910946A2 (pt) 2008-04-07 2016-01-05 Basf Se processo para iniciar um reator de oxidação de fase gasosa
BRPI0910954A2 (pt) * 2008-04-07 2016-01-05 Basf Se método para iniciar um reator de oxidação em fase gasosa
TW200950880A (en) * 2008-04-09 2009-12-16 Basf Se Coated catalysts comprising a multimetal oxide comprising molybdenum, bismuth and iron
TW200948474A (en) * 2008-04-09 2009-12-01 Basf Se Coated catalysts comprising a multimetal oxide comprising molybdenum
US8933254B2 (en) * 2008-07-14 2015-01-13 Basf Se Process for making ethylene oxide
CN102325592B (zh) 2008-12-22 2014-12-10 巴斯夫欧洲公司 用于生产马来酸酐的催化剂及方法
US9149799B2 (en) * 2010-04-28 2015-10-06 Basf Se Eggshell catalyst consisting of a hollow cylindrical support body and a catalytically active oxide material applied to the outer surface of the support body
DE102011076931A1 (de) 2011-06-03 2012-12-06 Basf Se Wässrige Lösung, enthaltend Acrylsäure und deren konjugierte Base
DE102012207811A1 (de) 2012-05-10 2012-07-12 Basf Se Verfahren der heterogen katalysierten Gasphasenpartialoxidation von (Meth)acrolein zu (Meth)acrylsäure
DE102013202048A1 (de) * 2013-02-07 2013-04-18 Basf Se Verfahren zur Herstellung einer katalytisch aktiven Masse, die ein Gemisch aus einem die Elemente Mo und V enthaltenden Multielementoxid und wenigstens einem Oxid des Molybdäns ist
DE102013006251A1 (de) * 2013-04-11 2014-10-16 Clariant International Ltd. Verfahren zur Herstellung eines Katalysators zur partiellen Oxidation von Olefinen
EP3027314A2 (en) * 2013-07-31 2016-06-08 Saudi Basic Industries Corporation Catalyst for conversion of synthesis gas
DE102013218628A1 (de) 2013-09-17 2014-03-06 Basf Se Katalysator zur Herstellung einer ungesättigten Carbonsäure durch Gasphasenoxidationeines ungesättigten Aldehyds
JP6534328B2 (ja) * 2015-09-29 2019-06-26 株式会社日本触媒 アクリル酸製造用触媒の製造方法とその触媒、ならびに該触媒を用いたアクリル酸の製造方法
KR102353146B1 (ko) 2018-03-13 2022-01-18 주식회사 엘지화학 페라이트계 코팅 촉매의 제조방법 및 이를 이용한 부타디엔의 제조방법
CN110586076A (zh) * 2018-06-12 2019-12-20 中国石油化工股份有限公司 合成丙烯酸的催化剂
CN112705215B (zh) * 2019-10-25 2023-08-29 中国石油化工股份有限公司 核壳型催化剂及其制备方法与应用
JP2023522261A (ja) 2020-04-21 2023-05-29 ベーアーエスエフ・エスエー 元素Mo、W、V及びCuを含む触媒活性多元素酸化物を生成する方法
RU2737698C1 (ru) * 2020-05-14 2020-12-02 Общество с ограниченной ответственностью "Экострим" Применение агарозы в качестве загустителя водного раствора соединения платиноида при изготовлении катализатора, способ изготовления катализатора и водный раствор соединения платиноида для получения каталитического слоя на подложке при изготовлении катализатора
CN116490275A (zh) 2020-10-29 2023-07-25 巴斯夫欧洲公司 制备核壳催化剂的方法
CN114289031B (zh) * 2021-11-12 2023-11-07 中海油天津化工研究设计院有限公司 一种用于丙烯氧化制丙烯醛的环形涂层催化剂及其制备方法
WO2024120861A1 (de) 2022-12-07 2024-06-13 Basf Se Verfahren zur herstellung eines die elemente mo, w, v, cu und sb enthaltenden katalytisch aktiven multielementoxids

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567773A (en) * 1966-05-21 1971-03-02 Nippon Kayaku Kk Production of unsaturated aliphatic acids
JPS5111709A (ja) * 1974-06-17 1976-01-30 Standard Oil Co
US4259211A (en) * 1976-06-16 1981-03-31 Basf Aktiengesellschaft Catalyst for the oxidation of acrolein and methacrolein to acrylic acid and methacrylic acid, respectively
JPS5810134B2 (ja) * 1973-10-25 1983-02-24 ザ スタンダ−ド オイル カンパニ− 不飽和酸の製造に特に有用な触媒組成物
JPH07267647A (ja) * 1994-02-22 1995-10-17 Basf Ag 複合金属酸化物材料、その製法およびアクリル酸の気相接触酸化的製法
JPH0847641A (ja) * 1994-05-31 1996-02-20 Nippon Shokubai Co Ltd アクリル酸製造用触媒およびこの触媒を用いたアクリル酸の製造方法
JPH0970534A (ja) * 1995-09-05 1997-03-18 Babcock Hitachi Kk 脱硝触媒の製造方法
JP2004509051A (ja) * 2000-09-21 2004-03-25 ビーエーエスエフ アクチェンゲゼルシャフト 多相の多重金属酸化物材料の製造法
US20050065370A1 (en) * 2003-09-23 2005-03-24 Basf Aktiengesellschaft Preparation of (meth) acrylic acid
JP2006297290A (ja) * 2005-04-21 2006-11-02 Nippon Kayaku Co Ltd 複合金属酸化物触媒の製造方法
JP2006526495A (ja) * 2003-06-04 2006-11-24 ビーエーエスエフ アクチェンゲゼルシャフト 低酸素雰囲気中での熱処理による、元素Nb及びWの少なくとも1種及び元素Mo、V及びCuを含有する触媒活性多種元素酸化物材料の製法
JP2007509864A (ja) * 2003-10-29 2007-04-19 ビーエーエスエフ アクチェンゲゼルシャフト アクロレインからアクリル酸への不均一系触媒作用による気相部分酸化の長期運転のための方法
JP2007538034A (ja) * 2004-05-19 2007-12-27 ビーエーエスエフ アクチェンゲゼルシャフト 少なくとも1種の有機化合物の不均一触媒使用気相部分酸化の長時間稼働方法

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE235151C (ja)
US3147084A (en) 1962-03-08 1964-09-01 Shell Oil Co Tubular catalytic reactor with cooler
DE1642921C3 (de) 1965-05-18 1978-11-23 Basf Ag, 6700 Ludwigshafen Vanadium- und titanhaltiger Trägerkatalysator
DE2106796C3 (de) 1971-02-12 1981-09-24 Wacker-Chemie GmbH, 8000 München Verfahren zur Herstellung Festbettkatalysatoren mit einem Überzug aus Vanadiumpentoxid und Titandioxid
BE793928A (fr) 1972-01-13 1973-05-02 Deggendorfer Werft Eisenbau Appareil pour la mise en oeuvre de processus chimiques exothermiques et endothermiques
DE2513405C2 (de) 1975-03-26 1982-10-21 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von Acrylsäure durch Oxidation von Propylen mit Sauerstoff enthaltenden Gasen in zwei getrennten Katalysatorstufen, die in einem Röhrenreaktor hintereinander angeordnet sind
AU529228B2 (en) 1977-07-13 1983-06-02 Nippon Shokubai Kagaku Kogyo Co. Ltd. Catalytic vapour phase oxidation
DE2903218A1 (de) 1979-01-27 1980-08-07 Basf Ag Verfahren zur herstellung von papier mit hoher trockenfestigkeit und niedriger nassfestigkeit
DE2909671A1 (de) 1979-03-12 1980-10-02 Basf Ag Verfahren zur herstellung von schalenkatalysatoren
DE2909670A1 (de) 1979-03-12 1980-10-02 Basf Ag Verfahren zur herstellung von schalenkatalysatoren
US4429991A (en) 1981-08-17 1984-02-07 The Perkin-Elmer Corporation Method for detecting physical anomalies of U.S. currency
DE69000306T2 (de) 1989-02-17 1993-02-25 Jgc Corp Rohrbuendelapparat mit einer zwischenrohrplatte.
DE4023239A1 (de) 1990-07-21 1992-01-23 Basf Ag Verfahren zur katalytischen gasphasenoxidation von propen oder iso-buten zu acrolein oder methacrolein
JP2610090B2 (ja) 1993-03-12 1997-05-14 株式会社日本触媒 固体有機物の除去方法
JP3314457B2 (ja) * 1993-06-25 2002-08-12 住友化学工業株式会社 不飽和アルデヒド及び不飽和カルボン酸の製造方法
DE4335973A1 (de) * 1993-10-21 1995-04-27 Basf Ag Verfahren zur Herstellung von katalytisch aktiven Multimetalloxidmassen, die als Grundbestandteile die Elemente V und Mo in oxidischer Form enthalten
DE4405059A1 (de) * 1994-02-17 1995-08-24 Basf Ag Multimetalloxidmassen
KR100247524B1 (ko) * 1994-05-31 2000-03-15 겐지 아이다 아크릴산 제조용 촉매 및 이 촉매를 이용한 아크릴산의 제조방법
DE4431957A1 (de) 1994-09-08 1995-03-16 Basf Ag Verfahren zur katalytischen Gasphasenoxidation von Propen zu Acrolein
DE4431949A1 (de) 1994-09-08 1995-03-16 Basf Ag Verfahren zur katalytischen Gasphasenoxidation von Acrolein zu Acrylsäure
EP0811597B1 (en) * 1994-11-14 2000-08-23 Nippon Shokubai Co., Ltd. Process for production of acrylic acid
DE4442346A1 (de) * 1994-11-29 1996-05-30 Basf Ag Verfahren zur Herstellung eines Katalysators, bestehend aus einem Trägerkörper und einer auf der Oberfläche des Trägerkörpers aufgebrachten katalytisch aktiven Oxidmasse
DE19542755A1 (de) * 1995-11-16 1997-05-22 Basf Ag Multimetalloxide
ID20670A (id) 1997-08-05 1999-02-11 Asahi Chemical Ind Katalis amoksidasi untuk digunakan dalam memproduksi akrilonitril atau metakrilonitril dari propana atau isobutana dengan amoksidasi
US6384274B1 (en) 1998-09-27 2002-05-07 Rohm And Haas Company Single reactor process for preparing acrylic acid from propylene having improved capacity
DE19910508A1 (de) 1999-03-10 2000-09-21 Basf Ag Verfahren der katalytischen Gasphasenoxidation von Acrolein zu Acrylsäure
DE19948523A1 (de) 1999-10-08 2001-04-12 Basf Ag Verfahren der katalytischen Gasphasenoxidation von Propen zu Acrylsäure
DE19948241A1 (de) 1999-10-07 2001-04-12 Basf Ag Verfahren der katalytischen Gasphasenoxidation von Propen zu Acrolein
DE19910506A1 (de) 1999-03-10 2000-09-14 Basf Ag Verfahren der katalytischen Gasphasenoxidation von Propen zu Acrolein
US6620968B1 (en) 1999-11-23 2003-09-16 Rohm And Haas Company High hydrocarbon space velocity process for preparing unsaturated aldehydes and acids
JP4484995B2 (ja) * 2000-01-31 2010-06-16 旭化成ケミカルズ株式会社 不飽和ニトリルを製造する方法
DE10119933A1 (de) 2001-04-23 2002-10-24 Basf Ag Verfahren zur Herstellung von Acrylsäure durch heterogen katalysierte Gasphasenoxidation von Propan
DE10051419A1 (de) 2000-10-17 2002-04-18 Basf Ag Katalysator bestehend aus einem Trägerkörper und einer auf der Oberfläche des Trägerkörpers aufgebrachten katalytisch aktiven Oxidmasse
DE10122027A1 (de) 2001-05-07 2002-05-23 Basf Ag Verfahren zur Herstellung von Acrylsäure durch heterogen katalysierte Partialoxidation von Propan
DE10046672A1 (de) 2000-09-20 2002-03-28 Basf Ag Verfahren zur Herstellung von Acrylsäure durch heterogen katalysierte Gasphasenoxidation von Propan
US7115776B2 (en) 2002-07-18 2006-10-03 Basf Aktiengesellschaft Heterogeneously catalyzed gas-phase partial oxidation of at least one organic compound
US20060205978A1 (en) 2002-08-20 2006-09-14 Nippon Shokubai Co., Ltd. Production process for catalyst
MY140509A (en) * 2003-04-09 2009-12-31 Basf Ag Method for the heterogeneously catalyzed partial direct oxidation of propane and/or isobutane
US7589046B2 (en) * 2003-06-04 2009-09-15 Basf Aktiengesellschaft Thermal treatment of the precursor material of a catalytically active material
US7524792B2 (en) * 2003-06-04 2009-04-28 Basf Aktiengesellschaft Preparation of catalytically active multielement oxide materials which contain at least one of the elements Nb and W and the elements Mo, V and Cu
EP1633467B1 (de) 2003-06-04 2017-02-22 Basf Se Verfahren zur thermischen behandlung einer katalytischen aktivmasse
DE10350822A1 (de) 2003-10-29 2005-06-02 Basf Ag Verfahren zum Langzeitbetrieb einer heterogen katalysierten Gasphasenpartialoxidation von Acrolein zu Acrylsäure
DE102004025445A1 (de) * 2004-05-19 2005-02-10 Basf Ag Verfahren zum Langzeitbetrieb einer heterogen katalysierten Gasphasenpartialoxidation wenigstens einer organischen Verbindung
DE102005010645A1 (de) * 2005-03-08 2005-08-04 Basf Ag Verfahren zum Befüllen eines Reaktors

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567773A (en) * 1966-05-21 1971-03-02 Nippon Kayaku Kk Production of unsaturated aliphatic acids
JPS5810134B2 (ja) * 1973-10-25 1983-02-24 ザ スタンダ−ド オイル カンパニ− 不飽和酸の製造に特に有用な触媒組成物
JPS5111709A (ja) * 1974-06-17 1976-01-30 Standard Oil Co
US4259211A (en) * 1976-06-16 1981-03-31 Basf Aktiengesellschaft Catalyst for the oxidation of acrolein and methacrolein to acrylic acid and methacrylic acid, respectively
JPS598178B2 (ja) * 1976-06-16 1984-02-23 バスフ アクチェン ゲゼルシャフト アクロレィンを酸化してアクリル酸を製造するための触媒
JPH07267647A (ja) * 1994-02-22 1995-10-17 Basf Ag 複合金属酸化物材料、その製法およびアクリル酸の気相接触酸化的製法
JPH0847641A (ja) * 1994-05-31 1996-02-20 Nippon Shokubai Co Ltd アクリル酸製造用触媒およびこの触媒を用いたアクリル酸の製造方法
JPH0970534A (ja) * 1995-09-05 1997-03-18 Babcock Hitachi Kk 脱硝触媒の製造方法
JP2004509051A (ja) * 2000-09-21 2004-03-25 ビーエーエスエフ アクチェンゲゼルシャフト 多相の多重金属酸化物材料の製造法
JP2006526495A (ja) * 2003-06-04 2006-11-24 ビーエーエスエフ アクチェンゲゼルシャフト 低酸素雰囲気中での熱処理による、元素Nb及びWの少なくとも1種及び元素Mo、V及びCuを含有する触媒活性多種元素酸化物材料の製法
US20050065370A1 (en) * 2003-09-23 2005-03-24 Basf Aktiengesellschaft Preparation of (meth) acrylic acid
JP2007509864A (ja) * 2003-10-29 2007-04-19 ビーエーエスエフ アクチェンゲゼルシャフト アクロレインからアクリル酸への不均一系触媒作用による気相部分酸化の長期運転のための方法
JP2007538034A (ja) * 2004-05-19 2007-12-27 ビーエーエスエフ アクチェンゲゼルシャフト 少なくとも1種の有機化合物の不均一触媒使用気相部分酸化の長時間稼働方法
JP2006297290A (ja) * 2005-04-21 2006-11-02 Nippon Kayaku Co Ltd 複合金属酸化物触媒の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060175A1 (ja) * 2010-11-05 2012-05-10 旭化成ケミカルズ株式会社 酸化物触媒、酸化物触媒の製造方法、不飽和酸の製造方法及び不飽和ニトリルの製造方法
JP5866292B2 (ja) * 2010-11-05 2016-02-17 旭化成ケミカルズ株式会社 酸化物触媒、酸化物触媒の製造方法、不飽和酸の製造方法及び不飽和ニトリルの製造方法
US9427727B2 (en) 2010-11-05 2016-08-30 Asahi Kasei Chemicals Corporation Oxide catalyst, process for producing oxide catalyst, process for producing unsaturated acid, and process for producing unsaturated nitrile
JP2013023414A (ja) * 2011-07-21 2013-02-04 Sumitomo Metal Mining Co Ltd 易溶解性三酸化モリブデン
JP2017165663A (ja) * 2016-03-14 2017-09-21 株式会社 東邦アーステック 3−メチルシクロペンタデセノン類の製造方法
WO2019078244A1 (ja) * 2017-10-20 2019-04-25 三菱ケミカル株式会社 α,β-不飽和カルボン酸製造用触媒の製造方法、α,β-不飽和カルボン酸の製造方法、及びα,β-不飽和カルボン酸エステルの製造方法
JPWO2019078244A1 (ja) * 2017-10-20 2020-04-09 三菱ケミカル株式会社 α,β−不飽和カルボン酸製造用触媒の製造方法、α,β−不飽和カルボン酸の製造方法、及びα,β−不飽和カルボン酸エステルの製造方法
CN111050906A (zh) * 2017-10-20 2020-04-21 三菱化学株式会社 α,β-不饱和羧酸制造用催化剂的制造方法、α,β-不饱和羧酸的制造方法和α,β-不饱和羧酸酯的制造方法
KR20200069340A (ko) * 2017-10-20 2020-06-16 미쯔비시 케미컬 주식회사 α,β-불포화 카복실산 제조용 촉매의 제조 방법, α,β-불포화 카복실산의 제조 방법 및 α,β-불포화 카복실산 에스터의 제조 방법
KR102318486B1 (ko) * 2017-10-20 2021-10-27 미쯔비시 케미컬 주식회사 α,β-불포화 카복실산 제조용 촉매의 제조 방법, α,β-불포화 카복실산의 제조 방법 및 α,β-불포화 카복실산 에스터의 제조 방법

Also Published As

Publication number Publication date
TW200916188A (en) 2009-04-16
JP6150450B2 (ja) 2017-06-21
US8318631B2 (en) 2012-11-27
BRPI0807659A2 (pt) 2014-06-10
TWI460012B (zh) 2014-11-11
CN101622066A (zh) 2010-01-06
EP2134465B1 (de) 2018-06-13
KR101463281B1 (ko) 2014-11-18
CN102872856A (zh) 2013-01-16
EP2134465A1 (de) 2009-12-23
US20080214863A1 (en) 2008-09-04
MY151135A (en) 2014-04-30
RU2464085C2 (ru) 2012-10-20
WO2008104577A1 (de) 2008-09-04
CN102872856B (zh) 2014-06-11
DE102007010422A1 (de) 2008-09-04
RU2009136186A (ru) 2011-04-10
KR20090127310A (ko) 2009-12-10
CN101622066B (zh) 2013-06-05
JP2015166088A (ja) 2015-09-24
ZA200906800B (en) 2010-12-29

Similar Documents

Publication Publication Date Title
JP6150450B2 (ja) 担体及び担体に塗布した触媒活性材料から成る触媒の製法
US7091377B2 (en) Multimetal oxide materials
JP5517407B2 (ja) 多金属酸化物材料の製造方法
JP6173436B2 (ja) (メタ)アクロレインを(メタ)アクリル酸とする、不均一系触媒作用により気相部分酸化する方法
TWI527623B (zh) 由中空圓柱形載體及施加於該載體外表面上之催化活性氧化物材料所組成之蛋殼型觸媒
JP5866292B2 (ja) 酸化物触媒、酸化物触媒の製造方法、不飽和酸の製造方法及び不飽和ニトリルの製造方法
JP4204327B2 (ja) 反応帯域中で分子酸素を用いてプロペンを不均一系触媒により気相酸化することによりアクリル酸を製造する方法
US8461074B2 (en) Coated catalysts comprising a multimetal oxide comprising molybdenum
JP2006502950A5 (ja)
ZA200503901B (en) Multimetallic oxide composition
CN1119638A (zh) 用于生产不饱和醛和不饱和羧酸的催化剂及用此催化剂生产不饱和醛和不饱和羧酸的方法
US20050277546A1 (en) Process for the preparation of a multimetal oxide material
US20240091756A1 (en) Method for producing a core-shell catalyst
US7019169B2 (en) Preparation of (meth)acrylic acid
JP4455081B2 (ja) 酸化物触媒
JP2008229627A (ja) アクロレイン酸化用触媒の製造方法
JP4606897B2 (ja) 流動層アンモ酸化プロセス用複合酸化物触媒の製造方法
WO2024135496A1 (ja) 触媒及びそれを用いた化合物の製造方法
US7253310B2 (en) Preparation of (meth)acrylic acid
WO2024135497A1 (ja) 触媒及びそれを用いた化合物の製造方法
RU2352390C2 (ru) Массы оксидов металлов
BRPI0807659B1 (pt) Process for preparing a catalyst, catalyst, and process for heterogeneally catalysed partial oxidation phase of acrylene to acrylic acid

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130423

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130501

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130523

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130530

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130624

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140428

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140724

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140731

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140825

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140901

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20140926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150507

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150610

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150807

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160520

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170523

R150 Certificate of patent or registration of utility model

Ref document number: 6150450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250