WO2019078244A1 - α,β-不飽和カルボン酸製造用触媒の製造方法、α,β-不飽和カルボン酸の製造方法、及びα,β-不飽和カルボン酸エステルの製造方法 - Google Patents

α,β-不飽和カルボン酸製造用触媒の製造方法、α,β-不飽和カルボン酸の製造方法、及びα,β-不飽和カルボン酸エステルの製造方法 Download PDF

Info

Publication number
WO2019078244A1
WO2019078244A1 PCT/JP2018/038646 JP2018038646W WO2019078244A1 WO 2019078244 A1 WO2019078244 A1 WO 2019078244A1 JP 2018038646 W JP2018038646 W JP 2018038646W WO 2019078244 A1 WO2019078244 A1 WO 2019078244A1
Authority
WO
WIPO (PCT)
Prior art keywords
carboxylic acid
producing
unsaturated carboxylic
catalyst
molybdenum
Prior art date
Application number
PCT/JP2018/038646
Other languages
English (en)
French (fr)
Inventor
悠 栗原
拓朗 渡邉
雄一 田川
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to SG11202002211PA priority Critical patent/SG11202002211PA/en
Priority to CN201880058027.2A priority patent/CN111050906A/zh
Priority to KR1020207013491A priority patent/KR102318486B1/ko
Priority to JP2019549315A priority patent/JP6922993B2/ja
Priority to CN202310449250.2A priority patent/CN116603547A/zh
Publication of WO2019078244A1 publication Critical patent/WO2019078244A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a process for producing a catalyst for producing ⁇ , ⁇ -unsaturated carboxylic acid, a process for producing ⁇ , ⁇ -unsaturated carboxylic acid, and a process for producing ⁇ , ⁇ -unsaturated carboxylic acid ester.
  • a catalyst used when producing an ⁇ , ⁇ -unsaturated carboxylic acid by vapor phase catalytic oxidation of an ⁇ , ⁇ -unsaturated aldehyde with molecular oxygen to produce an ⁇ , ⁇ -unsaturated carboxylic acid a heteropoly acid such as phosphomolybdic acid or phosphomolybdate or Catalysts based on the salts are known.
  • a heteropoly acid such as phosphomolybdic acid or phosphomolybdate or Catalysts based on the salts are known.
  • the catalyst is produced by first preparing an aqueous slurry or an aqueous solution containing each element constituting the catalyst, and then drying and calcining this. ing.
  • the basic performance of such a catalyst mainly depends on the elemental composition, crystal structure, particle size and the like, but control thereof is required to control the conditions of the preparation process of the aqueous slurry or aqueous solution.
  • a raw material used for preparation of aqueous slurry or aqueous solution both a water-soluble raw material and a water-insoluble raw material can be used.
  • the physical properties of the raw material greatly affect the catalyst performance, particularly when using a water-insoluble raw material.
  • Patent Document 1 describes that a molybdenum-containing solid catalyst having high catalytic activity and selectivity can be produced by using a molybdenum oxide having a degree of compression of 60 or less as a raw material.
  • Patent Document 2 discloses a method for producing a catalyst using, as a raw material, a molybdenum oxide whose diffraction peak position and diffraction intensity are defined in an X-ray diffraction diagram using CuK ⁇ rays as X-rays.
  • An object of the present invention is to provide a catalyst capable of producing an ⁇ , ⁇ -unsaturated carboxylic acid in high yield.
  • the present invention is the following [1] to [13].
  • aqueous slurry (I) obtained by mixing water and a catalyst raw material containing at least the molybdenum raw material and the phosphorus raw material is heated to 90 to 150 ° C.
  • Obtaining II) (Ii) adding a metal cation-containing compound to the aqueous slurry or aqueous solution (II) to obtain an aqueous slurry (III) in which a heteropolyacid salt is precipitated; (Iii) drying the aqueous slurry (III) to obtain a dried catalyst precursor; (Iv) heat treating the dried catalyst precursor to obtain a catalyst; [Alpha] as described in [1], wherein in the step (i), the time for the temperature of the aqueous slurry (I) to reach 60.degree. C. to reach 90.degree. C. is 5 to 40 minutes. , A process for producing a catalyst for producing ⁇ -unsaturated carboxylic acid.
  • the catalyst for producing an ⁇ , ⁇ -unsaturated carboxylic acid is used when producing an ⁇ , ⁇ -unsaturated carboxylic acid by gas phase catalytic oxidation of an ⁇ , ⁇ -unsaturated aldehyde with molecular oxygen Any one of [1] to [8] which is a catalyst, wherein the ⁇ , ⁇ -unsaturated aldehyde is (meth) acrolein and the ⁇ , ⁇ -unsaturated carboxylic acid is (meth) acrylic acid 4.
  • a catalyst for producing an ⁇ , ⁇ -unsaturated carboxylic acid is produced by the method according to any one of [1] to [9], and the ⁇ , ⁇ -unsaturated aldehyde is reacted with molecular oxygen using the catalyst.
  • a process for producing an ⁇ , ⁇ -unsaturated carboxylic acid which comprises the step of gas phase catalytic oxidation to produce an ⁇ , ⁇ -unsaturated carboxylic acid.
  • an ⁇ , ⁇ -unsaturated aldehyde can be in the gas phase with molecular oxygen
  • a process for producing an ⁇ , ⁇ -unsaturated carboxylic acid which is catalytically oxidized to produce an ⁇ , ⁇ -unsaturated carboxylic acid is a process for producing an ⁇ , ⁇ -unsaturated carboxylic acid which is catalytically oxidized to produce an ⁇ , ⁇ -unsaturated carboxylic acid.
  • [12] A method for producing an ⁇ , ⁇ -unsaturated carboxylic acid ester, which esterifies an ⁇ , ⁇ -unsaturated carboxylic acid produced by the method according to [10] or [11].
  • An ⁇ , ⁇ -unsaturated carboxylic acid ester is produced by the method according to [10] or [11], which produces the ⁇ , ⁇ -unsaturated carboxylic acid and esterifies the ⁇ , ⁇ -unsaturated carboxylic acid Production method.
  • a catalyst capable of producing an ⁇ , ⁇ -unsaturated carboxylic acid in high yield can be provided.
  • the catalyst for producing an ⁇ , ⁇ -unsaturated carboxylic acid produced by the method according to the present invention contains at least molybdenum but preferably contains phosphorus and molybdenum, and has a composition represented by the following formula (1) Is more preferred. This makes it possible to produce ⁇ , ⁇ -unsaturated carboxylic acids with high yield in the production of ⁇ , ⁇ -unsaturated carboxylic acids.
  • the elemental composition of a catalyst be the value calculated
  • P, Mo, V, Cu and O are element symbols which show phosphorus, molybdenum, vanadium, copper and oxygen, respectively.
  • A represents at least one element selected from the group consisting of antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium, silicon, tungsten and boron
  • E represents iron, zinc, chromium, magnesium, calcium
  • G represents lithium, at least one element selected from the group consisting of strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin, lead, niobium, indium, sulfur, palladium, gallium, cerium and lanthanum; It represents at least one element selected from the group consisting of sodium, potassium, rubidium, cesium and thallium.
  • the catalyst may also contain a small amount of an element not described in the formula (1).
  • the catalyst for producing an ⁇ , ⁇ -unsaturated carboxylic acid produced by the method according to the present invention is produced by catalytic oxidation of an ⁇ , ⁇ -unsaturated aldehyde with molecular oxygen to produce an ⁇ , ⁇ -unsaturated carboxylic acid It is preferable to use it when Further, it is preferable that the ⁇ , ⁇ -unsaturated aldehyde is (meth) acrolein and the ⁇ , ⁇ -unsaturated carboxylic acid is (meth) acrylic acid.
  • the ratio of particles having a particle diameter of 6 ⁇ m or less is 2 to 55 in a frequency distribution curve obtained by particle size distribution measurement as a molybdenum raw material. % Molybdenum oxide is used.
  • the particle size distribution of the molybdenum oxide is measured using a laser diffraction type particle size distribution measuring apparatus SALD-7000 (product name, manufactured by Shimadzu Corporation), 0.02 to 0.1 g of molybdenum oxide per 500 g of pure water. Are dispersed and stirred for 30 seconds.
  • SALD-7000 laser diffraction type particle size distribution measuring apparatus
  • a frequency distribution curve is obtained by using the integrated volume of particles having a particle diameter of 1000 ⁇ m or less as the total particle volume.
  • a molybdenum oxide is used as a molybdenum raw material in which the ratio of particles having a particle diameter of 6 ⁇ m or less in particles having a particle diameter of 1000 ⁇ m or less is 2 to 55% by volume.
  • a catalyst for producing ⁇ , ⁇ -unsaturated carboxylic acid is produced.
  • a suitable active site is formed in the obtained catalyst, and it is considered that the catalytic activity can be improved and the yield of the ⁇ , ⁇ -unsaturated carboxylic acid can be improved.
  • the method for producing the catalyst for producing an ⁇ , ⁇ -unsaturated carboxylic acid according to the present invention is not particularly limited except that the molybdenum oxide is used as a molybdenum raw material, and for example, a raw material containing the molybdenum oxide and water are mixed And the step of obtaining an aqueous slurry or an aqueous solution.
  • the method preferably includes the following steps (i) to (iv).
  • An aqueous slurry (I) obtained by mixing water and a catalyst raw material containing at least a molybdenum raw material and a phosphorus raw material is heated to 90 to 150 ° C. to obtain an aqueous slurry or an aqueous solution (II) containing heteropoly acid Process.
  • drying the aqueous slurry (III) to obtain a dried catalyst precursor.
  • heat treating the dried catalyst precursor to obtain a catalyst.
  • the method for producing the catalyst for producing an ⁇ , ⁇ -unsaturated carboxylic acid according to the present invention may further include a forming step described later.
  • step (i) an aqueous slurry (I) obtained by mixing water and a catalyst raw material containing at least a molybdenum raw material and a phosphorus raw material is heated to 90 to 150 ° C. to form an aqueous slurry or an aqueous solution containing heteropoly acid (II Get).
  • aqueous slurry or aqueous solution (II) After heating aqueous slurry (I), it may become an aqueous slurry and may become an aqueous solution. Therefore, these are collectively referred to as "aqueous slurry or aqueous solution (II)".
  • a catalyst has a composition represented by said Formula (1), elements other than G contained in the composition represented by said Formula (1) are mixed with water as said catalyst raw material, and aqueous slurry (I It is preferred to obtain
  • the molybdenum raw material dissolves in water, but the dissolution rate at this time changes according to the particle size distribution of the molybdenum raw material. It is presumed that this dissolution rate affects the active point of the obtained catalyst.
  • a molybdenum oxide is used in which the ratio of particles having a particle diameter of 6 ⁇ m or less in the frequency distribution curve obtained by particle diameter distribution measurement is 2 to 55% by volume. This forms an active site suitable for gas phase catalytic oxidation of the ⁇ , ⁇ -unsaturated aldehyde with molecular oxygen.
  • the lower limit of the ratio is preferably 5% by volume or more, and more preferably 10% by volume or more.
  • the upper limit is preferably 35% by volume or less, more preferably 30% by volume or less, further preferably 25% by volume or less, particularly preferably 20% by volume or less, and most preferably 15% by volume or less.
  • the proportion of particles having a particle diameter of 30 to 200 ⁇ m is preferably 35 to 90% by volume.
  • the lower limit of the ratio is more preferably 40% by volume or more, further preferably 50% by volume or more, particularly preferably 60% by volume or more, and most preferably 70% by volume or more.
  • 85 volume% or less is more preferable, and 80 volume% or less of an upper limit is more preferable.
  • the atomic ratio of molybdenum to oxygen in the molybdenum oxide is not particularly limited, and examples thereof include molybdenum dioxide having an atomic ratio of molybdenum: oxygen of 1: 2 and molybdenum trioxide having a molar ratio of 1: 3.
  • molybdenum dioxide having an atomic ratio of molybdenum: oxygen of 1: 2
  • molybdenum trioxide having a molar ratio of 1: 3.
  • 50 mass% or more of molybdenum trioxide having a proportion of particles having a particle diameter of 6 ⁇ m or less of 2 to 55 volume% is used as a molybdenum raw material It is preferable to do.
  • the molybdenum oxide may contain, for example, a small amount of impurities such as sodium, potassium, iron, lead, sulfate root, nitrate root, and ammonium root, but the content of these impurities is preferably as low as possible. It is particularly preferred not to contain the impurities of
  • Examples of the method for producing the molybdenum oxide according to the present invention include the following methods.
  • the crude molybdenum trioxide obtained by roasting the ore containing molybdenum is dispersed in pure water and then dissolved in aqueous ammonia. After filtering this solution, hydrochloric acid is added to adjust the pH, and the resulting precipitate is dispersed and washed with an aqueous solution containing a small amount of pure water, ammonium nitrate, ammonium chloride and the like. Thereafter, the water content is reduced by centrifugal filtration or the like to obtain a precursor precipitate, which is dried and fired to obtain a molybdenum oxide.
  • dissolving and crystallizing is also mentioned.
  • the latter method can make the particle size of the obtained molybdenum oxide smaller than the former method.
  • the particle diameter of the molybdenum oxide can be adjusted also by the above-mentioned calcination temperature. There is a tendency that the particle size of the molybdenum oxide obtained by lowering the firing temperature becomes smaller, and the particle size of the molybdenum oxide obtained by increasing the firing temperature becomes larger.
  • the proportion of particles having a particle diameter of 6 ⁇ m or less is 2 to 55% by volume, preferably 2 to 35% by volume, more preferably 2 to 15% by volume, as necessary, with respect to the molybdenum oxide produced by the above method.
  • Pulverizing operation and classification operation may be performed so as to be%.
  • the grinding operation include methods using an apparatus such as a ball mill, a rod mill, a SAG mill, an autogenous grinding mill, a pebble mill, a high pressure grinding roll, a vertical axis impactor mill, and a jet mill.
  • the classification operation include a method using a sieve and a method using gravity or centrifugal force (semi-free vortex classifier, forced vortex classifier), and the like.
  • Examples of phosphorus raw materials include orthophosphoric acid, phosphorus pentoxide, ammonium phosphate, cesium phosphate and the like. One of these may be used, or two or more may be used in combination.
  • the types of catalyst raw materials other than the molybdenum raw material and the phosphorus raw material are not particularly limited, and sulfates, nitrates, carbonates, bicarbonates, acetates, ammonium salts, oxides, hydroxides, chlorides, halides of the respective elements are not particularly limited. , Oxo acids, oxo acid salts and the like.
  • the copper source include copper sulfate, copper nitrate, copper acetate, copper oxide, copper chloride and the like.
  • the vanadium source include ammonium vanadate, ammonium metavanadate, vanadium pentoxide, vanadium chloride and the like. One of these may be used, or two or more may be used in combination.
  • aqueous slurry or aqueous solution (II) containing the heteropoly acid it is convenient to prepare the aqueous slurry or aqueous solution (II) containing the heteropoly acid by heating and stirring the aqueous slurry (I) obtained by adding a part or all of the catalyst raw material to water.
  • the aqueous slurry (I) can also be obtained by adding an aqueous solution of the catalyst raw material, an aqueous slurry or an aqueous sol to water. It is preferable to obtain the aqueous slurry or aqueous solution (II) by heating the aqueous slurry (I) to 90 to 150.degree.
  • the lower limit of the heating temperature is more preferably 95 ° C. or higher, and the upper limit is more preferably 130 ° C. or lower.
  • the heating temperature By setting the heating temperature to 90 ° C. or more, the heteropoly acid is efficiently generated from the catalyst raw material. Further, by setting the heating temperature to 150 ° C. or less, evaporation of water in the aqueous slurry or aqueous solution can be suppressed.
  • the aqueous slurry (I) when using a molybdenum oxide in which the proportion of particles having a particle size of 6 ⁇ m or less in the frequency distribution curve obtained by particle size distribution measurement is 2 to 55 volume% as the molybdenum raw material, the aqueous slurry (I It is inferred that the dissolution rate when the above-mentioned molybdenum raw material is dissolved in water by heating is affecting the active point of the obtained catalyst. At this time, the molybdenum raw material dissolves in water while the temperature of the aqueous slurry (I) reaches 60 ° C. and reaches 90 ° C.
  • the time for the temperature of the aqueous slurry (I) to reach 60 ° C. to reach 90 ° C. is preferably 5 to 40 minutes, more preferably 7 to 30 minutes.
  • the time from the temperature reaching 60 ° C. to the temperature reaching 90 ° C. can be controlled by adjusting the temperature rising rate or the like. Further, the temperature of the aqueous slurry (I) may be monotonously increased, and may be controlled while changing the temperature rising rate as appropriate.
  • the pH of the aqueous slurry or aqueous solution (II) to be prepared is preferably 4 or less, more preferably 2 or less, from the viewpoint of improving the yield of the ⁇ , ⁇ -unsaturated carboxylic acid.
  • the pH of the aqueous slurry or aqueous solution (II) is high, it is preferable to select each raw material so as to contain a large amount of nitric acid roots and the like.
  • Whether or not the heteropoly acid is formed in the aqueous slurry or aqueous solution (II) in step (i) can be determined by infrared absorption analysis and X-ray diffractometer using NICOLET 6700FT-IR (product name, manufactured by Thermo electron) etc. It can confirm by the X-ray-diffraction analysis using X'Pert PRO MPD (a product name, product made by PANaltical) etc.
  • step (ii) the metal cation-containing compound is added to the aqueous slurry or aqueous solution (II) obtained in step (i) to obtain an aqueous slurry (III) in which the heteropolyacid salt is precipitated.
  • the metal cation-containing compound it is preferable to use a compound containing at least one element (corresponding to G in formula (1) above) selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium.
  • an ammonium compound in addition to the metal cation-containing compound.
  • ammonium compound forms a crystal structure suitable for gas phase catalytic oxidation of the ⁇ , ⁇ -unsaturated aldehyde with molecular oxygen.
  • ammonium compound include ammonium hydrogen carbonate, ammonium carbonate, ammonium nitrate, aqueous ammonia and the like. These ammonium compounds may be used alone or in combination of two or more.
  • the metal cation-containing compound and the ammonium compound are preferably dissolved or suspended in a solvent and added.
  • the solvent include water, ethyl alcohol, acetone and the like.
  • the stirring time of the aqueous slurry or aqueous solution after addition of the metal cation-containing compound and the ammonium compound added as needed is preferably 1 to 300 minutes, and the lower limit is 10 minutes or more, and the upper limit is more preferably 30 minutes or less.
  • the temperature of the aqueous slurry or aqueous solution at the time of stirring is preferably 50 to 100 ° C., and the lower limit is more preferably 80 ° C. or more.
  • the stirring time is set to 1 minute or more and the temperature to 50 ° C. or more, the metal salt and the ammonium salt of the heteropolyacid can be sufficiently formed.
  • the stirring time is set to 300 minutes or less and the temperature to 100 ° C. or less, formation of compounds other than the target metal salt and ammonium salt of the heteropoly acid can be suppressed.
  • the heteropoly acid salt (metal salt and ammonium salt of heteropoly acid) to be deposited may have a Keggin type structure or a structure other than the Keggin type such as a Dawson type structure, but ⁇ , ⁇ From the viewpoint of improving the yield of unsaturated carboxylic acid, it is preferable to have a Keggin type structure.
  • a method of precipitating the heteropoly acid salt which has a Keggin type structure the method of adjusting pH of aqueous slurry (III) obtained in process (ii) to 3 or less is mentioned.
  • the structure of the precipitated heteropolyacid salt uses infrared absorption analysis and X-ray diffractometer X'Pert PRO MPD (product name, manufactured by PANaltical) manufactured by NICOLET 6700FT-IR (product name, manufactured by Thermo electron). It can be confirmed by X-ray diffraction analysis.
  • step (iii) the aqueous slurry (III) obtained in step (ii) is dried to obtain a dried catalyst precursor.
  • the drying method include drum drying, flash drying, evaporation to dryness, and spray drying.
  • the drying temperature is preferably 120 to 500 ° C.
  • the lower limit is 140 ° C. or more
  • the upper limit is more preferably 350 ° C. or less. Drying can be carried out until the aqueous slurry (III) becomes dry.
  • the water content of the dried catalyst precursor is preferably 0.1 to 4.5% by mass.
  • these conditions can be suitably selected by the shape and magnitude
  • the dried catalyst precursor obtained in the step (iii) can be formed.
  • powder-forming machines such as a tablet forming machine, an extrusion machine, a pressure forming machine, a rolling granulator etc.
  • the shape of the molded product is not particularly limited, and may be any shape such as spherical particles, rings, cylindrical pellets, stars, and granules obtained by crushing and classification after molding.
  • it may be supported on a carrier, and if necessary, known additives such as graphite and talc, or known binders derived from organic substances and inorganic substances may be added.
  • the dried catalyst precursor obtained in step (iii) and the shaped product of the dried catalyst precursor are collectively referred to as dried catalyst precursor.
  • step (iv) the dried catalyst precursor obtained in step (iii) or the forming step is heat-treated to obtain a catalyst.
  • the heat treatment conditions are not particularly limited, but can be performed, for example, in the flow of at least one of an oxygen-containing gas such as air and an inert gas.
  • the heat treatment temperature is preferably 200 to 500 ° C., and the lower limit is more preferably 300 ° C. or more, and the upper limit is more preferably 450 ° C. or less.
  • the heat treatment time is preferably 0.5 to 40 hours, and the lower limit is more preferably 1 hour or more.
  • a catalyst for producing an ⁇ , ⁇ -unsaturated carboxylic acid is produced by the method according to the present invention, and catalytic oxidation of ⁇ , ⁇ -unsaturated aldehyde with molecular oxygen is carried out using the catalyst to obtain ⁇ , Produces ⁇ -unsaturated carboxylic acids.
  • a method for producing an ⁇ , ⁇ -unsaturated carboxylic acid according to the present invention is an ⁇ , ⁇ -unsaturated aldehyde using the catalyst for producing an ⁇ , ⁇ -unsaturated carboxylic acid produced by the method according to the present invention Is a method of producing ⁇ , ⁇ -unsaturated carboxylic acid by gas phase catalytic oxidation with molecular oxygen.
  • examples of the ⁇ , ⁇ -unsaturated aldehyde include (meth) acrolein, crotonaldehyde ( ⁇ -methylacrolein), cinnamaldehyde ( ⁇ -phenylacrolein) and the like. Among them, from the viewpoint of the yield of the target product, (meth) acrolein is preferable, and methacrolein is more preferable.
  • the ⁇ , ⁇ -unsaturated carboxylic acid to be produced is an ⁇ , ⁇ -unsaturated carboxylic acid in which the aldehyde group of the ⁇ , ⁇ -unsaturated aldehyde is converted to a carboxyl group.
  • (meth) acrylic acid is obtained.
  • (meth) acrolein shows acrolein and methacrolein
  • (meth) acrylic acid shows acrylic acid and methacrylic acid.
  • methacrylic acid is produced by contacting a source gas containing methacrolein and molecular oxygen with the catalyst according to the present invention.
  • a fixed bed reactor can be used. Specifically, the reaction can be carried out by charging a catalyst in a reaction tube and supplying a raw material gas to the reactor.
  • the catalyst layer may be a single layer, or a plurality of catalysts with different activities may be divided into a plurality of layers and packed. Also, in order to control the activity, the catalyst for producing methacrylic acid may be diluted with an inert carrier and packed.
  • the concentration of methacrolein in the raw material gas is not particularly limited, but is preferably 1 to 20% by volume, the lower limit is 3% by volume or more, and the upper limit is 10% by volume or less.
  • the starting material methacrolein may contain a small amount of impurities such as lower saturated aldehydes which do not substantially affect the reaction.
  • the concentration of molecular oxygen in the raw material gas is preferably 0.4 to 4 moles with respect to 1 mole of methacrolein, the lower limit is 0.5 moles or more, and the upper limit is more preferably 3 moles or less.
  • a molecular oxygen source air is preferable from an economical viewpoint. If necessary, pure oxygen may be added to air to use a gas enriched in molecular oxygen.
  • the source gas may be one obtained by diluting methacrolein and molecular oxygen with an inert gas such as nitrogen or carbon dioxide gas. Furthermore, steam may be added to the source gas. By carrying out the reaction in the presence of steam, methacrylic acid can be obtained in higher yields.
  • concentration of water vapor in the raw material gas is preferably 0.1 to 50% by volume, the lower limit is 1% by volume or more, and the upper limit is 40% by volume or less.
  • the contact time between the raw material gas and the catalyst for producing methacrylic acid is preferably 1.5 to 15 seconds.
  • the reaction pressure is preferably 0.1 to 1 MPa (G). However, (G) means being gauge pressure.
  • the reaction temperature is preferably 200 to 450 ° C., the lower limit is more than 250 ° C., and the upper limit is more preferably 400 ° C. or less.
  • the method for producing an ⁇ , ⁇ -unsaturated carboxylic acid ester according to the present invention is a method for esterification of an ⁇ , ⁇ -unsaturated carboxylic acid produced by the method according to the present invention. Further, in the method for producing an ⁇ , ⁇ -unsaturated carboxylic acid ester according to the present invention, an ⁇ , ⁇ -unsaturated carboxylic acid is produced by the method according to the present invention, and the ⁇ , ⁇ -unsaturated carboxylic acid is esterified.
  • ⁇ , ⁇ -unsaturated carboxylic acid esters can be obtained using ⁇ , ⁇ -unsaturated carboxylic acids obtained by gas phase catalytic oxidation of ⁇ , ⁇ -unsaturated aldehydes.
  • the alcohol to be reacted with the ⁇ , ⁇ -unsaturated carboxylic acid is not particularly limited, and examples thereof include methanol, ethanol, isopropanol, n-butanol, isobutanol and the like.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid ester to be obtained include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate and butyl (meth) acrylate.
  • the reaction can be carried out in the presence of an acidic catalyst such as a sulfonic acid type cation exchange resin.
  • the reaction temperature is preferably 50 to 200 ° C.
  • Part in an Example and a comparative example means a mass part.
  • the analysis of the source gas and the product was performed using gas chromatography. From the results of gas chromatography, the methacrylic acid yield was determined by the following equation.
  • Methacrylic acid yield (%) (B / A) ⁇ 100
  • A is the number of moles of methacrolein supplied to the reactor
  • B is the number of moles of methacrylic acid formed.
  • the particle size distribution of molybdenum trioxide is measured by dispersing 0.02 to 0.1 g of molybdenum trioxide to 500 g of pure water using a laser diffraction type particle size distribution measuring apparatus SALD-7000 (product name, manufactured by Shimadzu Corporation) And allowed to stir for 30 seconds.
  • SALD-7000 product name, manufactured by Shimadzu Corporation
  • Example 1 100 parts of molybdenum trioxide (proportion of particles having a particle diameter of 6 ⁇ m or less: 2.9% by volume) having a particle size distribution shown as Example 1 in FIG. 1 in 400 parts of pure water, 3.4 parts of ammonium metavanadate, A diluted product of 9.4 parts of an 85% by weight aqueous phosphoric acid solution diluted with 6.0 parts of pure water and a dissolved product of 2.1 parts of copper (II) nitrate trihydrate dissolved in 4.5 parts of pure water The addition gave an aqueous slurry (I). The temperature of the aqueous slurry (I) was raised from 25 ° C. to 95 ° C.
  • aqueous slurry (II) containing a heteropoly acid containing a heteropoly acid.
  • the time for the temperature of the aqueous slurry (I) to reach 60 ° C. to reach 90 ° C. was 15 minutes.
  • a solution obtained by dissolving 13.5 parts of cesium bicarbonate in 24 parts of pure water and a solution obtained by dissolving 9.2 parts of ammonium carbonate in 26 parts of pure water are dropped Stir to precipitate cesium salt and ammonium salt of heteropoly acid.
  • the cesium salt and ammonium salt of the precipitated heteropolyacid had a Keggin type structure.
  • aqueous slurry (III) was dried by a spray dryer to obtain a dried catalyst precursor.
  • the resulting dried catalyst precursor was extruded into a cylindrical shape having a diameter of 5.5 mm and a height of 5.5 mm, and a catalyst was produced by heat treatment at 380 ° C. for 10 hours under air flow.
  • the composition other than oxygen of the catalyst was P 1.4 Mo 12 V 0.5 Cu 0.15 Cs 1.2 .
  • the catalyst is charged in a reaction tube, and a raw material gas containing 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of steam, and 55% by volume of nitrogen is reacted at a reaction temperature of 310 ° C., the contact time between the raw material gas and the catalyst It reached in 7.1 seconds.
  • the product obtained from the reactor was collected and analyzed by gas chromatography to calculate the methacrylic acid yield. The results are shown in Table 1.
  • Example 2 to 4 and Comparative Examples 1 to 3 Instead of 100 parts of molybdenum trioxide used in Example 1, molybdenum trioxide having a particle size distribution shown as each example and comparative example in FIG. 1 (the proportion of particles having a particle size of 6 ⁇ m or less is described in Table 1) A catalyst was produced in the same manner as in Example 1 except that 100 parts were used, and the methacrylic acid yield was calculated. The results are shown in Table 1. In Examples 2 to 4 and Comparative Examples 1 to 3, as in Example 1, the cesium salt and ammonium salt of the heteropoly acid precipitated had a Keggin-type structure.
  • Example 5 to 8 The catalyst was prepared in the same manner as in Example 1 except that the time for the temperature of aqueous slurry (I) to reach 60 ° C. to reach 90 ° C. was adjusted as shown in Table 1 in Example 1. It manufactured and the methacrylic acid yield was computed. The results are shown in Table 1. Also in Examples 5 to 8, as in Example 1, the cesium salt and ammonium salt of the heteropolyacid precipitated had a Keggin type structure.
  • Examples 1 to 8 in which a molybdenum oxide in which the ratio of particles having a particle diameter of 6 ⁇ m or less in the particle diameter distribution is 2 to 55% by volume is used as the molybdenum raw material, methacryl is obtained in high yield. An acid was obtained. Further, among Examples 1 to 8, Examples 1 to 6 in which the time from the temperature of the aqueous slurry (I) to reach 60 ° C. to the temperature of 90 ° C. is in the range of 5 to 40 minutes are more preferable. Examples 1 to 4 in which the methacrylic acid yield is high and in the range of 7 to 30 minutes were particularly high in methacrylic acid yield.
  • a catalyst for producing an ⁇ , ⁇ -unsaturated carboxylic acid capable of producing an ⁇ , ⁇ -unsaturated carboxylic acid in high yield from an ⁇ , ⁇ -unsaturated aldehyde, It is useful industrially.

Abstract

高い収率でα,β-不飽和カルボン酸を製造できるα,β-不飽和カルボン酸製造用触媒を提供する。モリブデン原料として、粒子径分布測定により得られる頻度分布曲線において、粒子径が6μm以下の粒子の割合が2~55体積%であるモリブデン酸化物を使用するα,β-不飽和カルボン酸製造用触媒の製造方法。

Description

α,β-不飽和カルボン酸製造用触媒の製造方法、α,β-不飽和カルボン酸の製造方法、及びα,β-不飽和カルボン酸エステルの製造方法
 本発明は、α,β-不飽和カルボン酸製造用触媒の製造方法、α,β-不飽和カルボン酸の製造方法、及びα,β-不飽和カルボン酸エステルの製造方法に関する。
 α,β-不飽和アルデヒドを分子状酸素により気相接触酸化してα,β-不飽和カルボン酸を製造する際に用いられる触媒としては、リンモリブデン酸、リンモリブデン酸塩等のヘテロポリ酸又はその塩を主成分とする触媒が知られている。該触媒の製造方法については数多くの検討がなされており、その多くは、まず触媒を構成する各元素を含む水性スラリー又は水溶液を調製し、その後これを乾燥し、焼成することで触媒を製造している。
 このような触媒の基本的な性能は、主に元素組成、結晶構造、粒子径などに依存するが、その制御には、水性スラリー又は水溶液の調製過程の条件を制御することが求められる。一般に、水性スラリー又は水溶液の調製に用いられる原料としては、水溶性の原料及び水に不溶性の原料ともに使用可能である。しかしながら、特に水に不溶性の原料を用いる場合、原料の物性が触媒性能に大きな影響を与えることが知られている。例えば特許文献1には、圧縮度が60以下のモリブデン酸化物を原料に用いることで、高い触媒活性及び選択性を有するモリブデン含有固体触媒を製造できることが記載されている。また、特許文献2には、X線としてCuKα線を用いたX線回折図における回折ピーク位置と回折強度が規定されたモリブデン酸化物を原料として使用する触媒の製造方法が開示されている。
特開2007-229561号公報 特開2004-8834号公報
 しかしながら、特許文献1、2に開示されているモリブデン酸化物を用いて製造した触媒では、α,β-不飽和カルボン酸の収率が未だ不十分であり、更なる触媒の改良が望まれる。
 本発明は、高い収率でα,β-不飽和カルボン酸を製造できる触媒を提供することを目的とする。
 本発明は、以下の[1]から[13]である。
 [1]モリブデン原料として、粒子径分布測定により得られる頻度分布曲線において、粒子径が6μm以下の粒子の割合が2~55体積%であるモリブデン酸化物を使用するα,β-不飽和カルボン酸製造用触媒の製造方法。
 [2](i)少なくとも前記モリブデン原料及びリン原料を含む触媒原料と水を混合して得られた水性スラリー(I)を、90~150℃に加熱してヘテロポリ酸を含む水性スラリー又は水溶液(II)を得る工程と、
 (ii)前記水性スラリー又は水溶液(II)に金属カチオン含有化合物を添加して、ヘテロポリ酸塩が析出した水性スラリー(III)を得る工程と、
 (iii)前記水性スラリー(III)を乾燥し、触媒前駆体乾燥物を得る工程と、
 (iv)前記触媒前駆体乾燥物を熱処理し、触媒を得る工程と、
を有し、前記工程(i)において、前記水性スラリー(I)の温度が60℃に到達してから90℃に到達するまでの時間が5~40分である、[1]に記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
 [3]前記工程(i)において、前記水性スラリー(I)の温度が60℃に到達してから90℃に到達するまでの時間が7~30分である、[2]に記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
 [4]前記モリブデン原料が、粒子径が6μm以下の粒子の割合が2~35体積%であるモリブデン酸化物である、[1]から[3]のいずれかに記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
 [5]前記モリブデン原料が、粒子径が6μm以下の粒子の割合が2~15体積%であるモリブデン酸化物である、[4]に記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
 [6]前記α,β-不飽和カルボン酸製造用触媒が、下記式(1)で表される組成を有する、[1]から[5]のいずれかに記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
  PaMobcCudefgh   (1)
 (式(1)中、P、Mo、V、Cu及びOは、それぞれ、リン、モリブデン、バナジウム、銅及び酸素を示す元素記号である。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群から選択される少なくとも1種の元素を表し、Eは鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群から選択される少なくとも1種の元素を表し、Gはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群から選択される少なくとも1種の元素を表す。a~hは、各元素の原子比率を表し、b=12のとき、a=0.5~3、c=0.01~3、d=0.01~2、e=0~3、f=0~3、g=0.01~3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比率である。)。
 [7]前記モリブデン原料として三酸化モリブデンを50質量%以上使用する、[1]から[6]のいずれかに記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
 [8]前記モリブデン原料として三酸化モリブデンを70質量%以上使用する、[7]に記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
 [9]前記α,β-不飽和カルボン酸製造用触媒は、α,β-不飽和アルデヒドを分子状酸素により気相接触酸化してα,β-不飽和カルボン酸を製造する際に用いられる触媒であって、前記α,β-不飽和アルデヒドが(メタ)アクロレインであり、かつ前記α,β-不飽和カルボン酸が(メタ)アクリル酸である、[1]から[8]のいずれかに記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
 [10][1]から[9]のいずれかに記載の方法によりα,β-不飽和カルボン酸製造用触媒を製造し、該触媒を用いてα,β-不飽和アルデヒドを分子状酸素により気相接触酸化してα,β-不飽和カルボン酸を製造するα,β-不飽和カルボン酸の製造方法。
 [11][1]から[9]のいずれかに記載の方法により製造されたα,β-不飽和カルボン酸製造用触媒を用いて、α,β-不飽和アルデヒドを分子状酸素により気相接触酸化してα,β-不飽和カルボン酸を製造するα,β-不飽和カルボン酸の製造方法。
 [12][10]又は[11]に記載の方法により製造されたα,β-不飽和カルボン酸をエステル化するα,β-不飽和カルボン酸エステルの製造方法。
 [13][10]又は[11]に記載の方法によりα,β-不飽和カルボン酸を製造し、該α,β-不飽和カルボン酸をエステル化するα,β-不飽和カルボン酸エステルの製造方法。
 本発明によれば、高い収率でα,β-不飽和カルボン酸を製造できる触媒を提供することができる。
実施例1~4及び比較例1~3における三酸化モリブデンの粒子径分布を示す図である。
 [α,β-不飽和カルボン酸製造用触媒]
 本発明に係る方法により製造されるα,β-不飽和カルボン酸製造用触媒は、少なくともモリブデンを含むが、リン及びモリブデンを含むことが好ましく、下記式(1)で表される組成を有することがより好ましい。これにより、α,β-不飽和カルボン酸の製造において高収率でα,β-不飽和カルボン酸を製造できる。なお、触媒の元素組成は、触媒をアンモニア水に溶解した溶液をICP発光分析法で分析することによって求めた値とする。
  PaMobcCudefgh   (1)
 式(1)中、P、Mo、V、Cu及びOは、それぞれ、リン、モリブデン、バナジウム、銅及び酸素を示す元素記号である。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群から選択される少なくとも1種の元素を表し、Eは鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群から選択される少なくとも1種の元素を表し、Gはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群から選択される少なくとも1種の元素を表す。a~hは、各元素の原子比率を表し、b=12のとき、a=0.5~3、c=0.01~3、d=0.01~2、e=0~3、f=0~3、g=0.01~3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比率である。
 また、触媒は、式(1)に記載のない元素を少量含んでいても良い。
 本発明に係る方法により製造されるα,β-不飽和カルボン酸製造用触媒は、α,β-不飽和アルデヒドを分子状酸素により気相接触酸化してα,β-不飽和カルボン酸を製造する際に用いられることが好ましい。また、α,β-不飽和アルデヒドが(メタ)アクロレインであり、かつα,β-不飽和カルボン酸が(メタ)アクリル酸であることが好ましい。
 [α,β-不飽和カルボン酸製造用触媒の製造方法]
 本発明に係るα,β-不飽和カルボン酸製造用触媒の製造方法では、モリブデン原料として、粒子径分布測定により得られる頻度分布曲線において、粒子径が6μm以下の粒子の割合が2~55体積%であるモリブデン酸化物を使用する。なお、モリブデン酸化物の粒子径分布測定は、レーザー回折式粒度分布測定装置SALD-7000(製品名、島津製作所社製)を用い、純水500gに対してモリブデン酸化物0.02~0.1gを分散させ、30秒間撹拌させた後に行われる。また、本発明では、粒子径が1000μm以下の粒子の積算体積を全粒子体積として頻度分布曲線を求める。
 本発明では、上述の粒子径分布測定により得られる頻度分布曲線において、粒子径1000μm以下の粒子における粒子径が6μm以下の粒子の割合が2~55体積%であるモリブデン酸化物をモリブデン原料に用いてα,β-不飽和カルボン酸製造用触媒を製造する。これにより、得られた触媒に好適な活性点が形成され、触媒活性が向上し、α,β-不飽和カルボン酸の収率を向上させることができると考えられる。
 本発明に係るα,β-不飽和カルボン酸製造用触媒の製造方法は、前記モリブデン酸化物をモリブデン原料として使用する以外は特に限定されず、例えば前記モリブデン酸化物を含む原料と水を混合して水性スラリー又は水溶液を得る工程を有することができる。しかしながら、α,β-不飽和カルボン酸の収率がより向上する観点から、前記方法は以下の工程(i)から(iv)を有することが好ましい。
 (i)少なくともモリブデン原料及びリン原料を含む触媒原料と水を混合して得られた水性スラリー(I)を、90~150℃に加熱してヘテロポリ酸を含む水性スラリー又は水溶液(II)を得る工程。
 (ii)前記水性スラリー又は水溶液(II)に金属カチオン含有化合物を添加して、ヘテロポリ酸塩が析出した水性スラリー(III)を得る工程。
 (iii)前記水性スラリー(III)を乾燥し、触媒前駆体乾燥物を得る工程。
 (iv)前記触媒前駆体乾燥物を熱処理し、触媒を得る工程。
 また、本発明に係るα,β-不飽和カルボン酸製造用触媒の製造方法は、後述する成形工程をさらに有しても良い。
 (工程(i))
 工程(i)では、少なくともモリブデン原料及びリン原料を含む触媒原料と水を混合して得られた水性スラリー(I)を、90~150℃に加熱してヘテロポリ酸を含む水性スラリー又は水溶液(II)を得る。なお、水性スラリー(I)を加熱した後、水性スラリーになる場合も水溶液になる場合もある。そのため、これらを「水性スラリー又は水溶液(II)」と総称する。また、触媒が前記式(1)で表される組成を有する場合、前記式(1)で表される組成に含まれるG以外の元素を、前記触媒原料として水と混合し、水性スラリー(I)を得ることが好ましい。
 水性スラリー(I)を加熱するとモリブデン原料が水に溶解するが、このときの溶解速度は、モリブデン原料の粒子径分布により変化する。この溶解速度が、得られる触媒の活性点に影響を与えていると推測される。
 モリブデン原料としては、粒子径分布測定により得られる頻度分布曲線において、粒子径が6μm以下の粒子の割合が2~55体積%であるモリブデン酸化物を使用する。これにより、α,β-不飽和アルデヒドの分子状酸素による気相接触酸化に好適な活性点が形成される。該割合の下限は5体積%以上が好ましく、10体積%以上がより好ましい。また、上限は35体積%以下が好ましく、30体積%以下がより好ましく、25体積%以下がさらに好ましく、20体積%以下が特に好ましく、15体積%以下が最も好ましい。
 また、前記モリブデン酸化物は、粒子径が30~200μmの粒子の割合が35~90体積%であることが好ましい。該割合の下限は40体積%以上がより好ましく、50体積%以上がさらに好ましく、60体積%以上が特に好ましく、70体積%以上が最も好ましい。また、上限は85体積%以下がより好ましく、80体積%以下がさらに好ましい。これにより、α,β-不飽和アルデヒドの分子状酸素による気相接触酸化に、より好適な活性点が形成される。
 モリブデン酸化物中のモリブデンと酸素の原子比率は特に限定されず、例えば、モリブデン:酸素の原子比率が1:2の二酸化モリブデン、1:3の三酸化モリブデン等が挙げられる。ただし、α,β-不飽和カルボン酸の収率がより向上する観点から、モリブデン原料として、粒子径が6μm以下の粒子の割合が2~55体積%である三酸化モリブデンを50質量%以上使用することが好ましい。三酸化モリブデンの割合の下限は70質量%以上がより好ましく、90質量%以上がさらに好ましい。モリブデン酸化物には、例えば、ナトリウム、カリウム、鉄、鉛、硫酸根、硝酸根、及びアンモニウム根などの不純物が微量含まれていても良いが、これらの不純物の含有量は少ないほど好ましく、これらの不純物を含まないことが特に好ましい。
 本発明に係るモリブデン酸化物の製造方法としては、例えば以下の方法が挙げられる。モリブデンを含む鉱石を焙焼して得られた粗三酸化モリブデンを純水に分散させた後、アンモニア水に溶解する。この溶液を濾過後、塩酸を添加してpH調整を行って得られた沈殿物を、純水、硝酸アンモニウムや塩化アンモニウム等を少量含む水溶液で分散・洗浄する。その後、遠心濾過等により含水量を低減して前駆体沈殿物を得て、これを乾燥後焼成し、モリブデン酸化物を得ることができる。また、前記前駆体沈殿物にアンモニア水を添加して溶解・晶析して得られたパラモリブデン酸アンモニウムを焼成する方法も挙げられる。後者の方法の方が、前者の方法よりも得られるモリブデン酸化物の粒子径を小さくすることができる。さらに、前記焼成温度によってもモリブデン酸化物の粒子径を調整することができる。焼成温度を低くすることで得られるモリブデン酸化物の粒子径が小さくなり、焼成温度を高くすることで得られるモリブデン酸化物の粒子径が大きくなる傾向がある。また、上記方法で製造したモリブデン酸化物に対して、必要に応じて、粒子径が6μm以下の粒子の割合が2~55体積%、好ましくは2~35体積%、より好ましくは2~15体積%となるように粉砕操作や分級操作をしても良い。粉砕操作としては、ボールミル、ロッドミル、SAGミル、自生粉砕ミル、小石ミル、高圧粉砕ロール、縦軸インパクタミル、ジェットミル等の装置を用いる方法が挙げられる。分級操作としては、ふるいによる方法、重力や遠心力を用いる方法(半自由渦式分級機、強制渦式分級機)等が挙げられる。また、本発明に係るモリブデン酸化物として、前述の方法により製造された、異なる粒度分布を有する複数のモリブデン酸化物を混合したものを用いても良い。
 リン原料としては、例えば正リン酸、五酸化リン、リン酸アンモニウム、リン酸セシウム等が挙げられる。これらは一種を用いても良く、二種以上を併用しても良い。
 モリブデン原料及びリン原料以外の触媒原料の種類は特に限定されず、各元素の硫酸塩、硝酸塩、炭酸塩、重炭酸塩、酢酸塩、アンモニウム塩、酸化物、水酸化物、塩化物、ハロゲン化物、オキソ酸、オキソ酸塩等が挙げられる。銅原料としては、例えば硫酸銅、硝酸銅、酢酸銅、酸化銅、塩化銅等が挙げられる。バナジウム原料としては、例えばバナジン酸アンモニウム、メタバナジン酸アンモニウム、五酸化バナジウム、塩化バナジウム等が挙げられる。これらは一種を用いても良く、二種以上を併用しても良い。
 ヘテロポリ酸を含む水性スラリー又は水溶液(II)の調製は、水に前記触媒原料の一部又は全てを加えて得られる水性スラリー(I)を、加熱しながら攪拌する方法により行うことが簡便であり好ましい。水性スラリー(I)は、水に前記触媒原料の水溶液、水性スラリー又は水性ゾルを添加して得ることもできる。水性スラリー(I)を、90~150℃に加熱することで水性スラリー又は水溶液(II)を得ることが好ましい。加熱温度の下限は95℃以上、上限は130℃以下がより好ましい。該加熱温度を90℃以上とすることで、前記触媒原料から効率的にヘテロポリ酸が生成される。また、該加熱温度を150℃以下とすることで、水性スラリー又は水溶液中の水の蒸発を抑制することができる。
 前述の通り、モリブデン原料として、粒子径分布測定により得られる頻度分布曲線において、粒子径が6μm以下の粒子の割合が2~55体積%であるモリブデン酸化物を使用した場合、前記水性スラリー(I)を加熱し、前記モリブデン原料が水に溶解するときの溶解速度が、得られる触媒の活性点に影響を与えていると推測される。このとき、前記水性スラリー(I)の温度が60℃に到達してから90℃に到達するまでの間に前記モリブデン原料が水に溶解する。そのため、この時間を調整することで、α,β-不飽和アルデヒドの分子状酸素による気相接触酸化に、より好適な活性点を形成させることができる。前記水性スラリー(I)の温度が60℃に到達してから90℃に到達するまでの時間は、好ましくは5~40分、より好ましくは7~30分である。
 前記水性スラリー(I)において、温度が60℃に到達してから90℃に到達するまでの時間は、昇温速度の調整等により制御することができる。また、前記水性スラリー(I)の温度は単調増加させても良く、昇温速度を適宜変化させながら制御しても良い。
 調製される水性スラリー又は水溶液(II)のpHは、α,β-不飽和カルボン酸の収率向上の観点から4以下が好ましく、2以下がより好ましい。水性スラリー又は水溶液(II)のpHが高い場合には、硝酸根等を多く含むように各原料を選択することが好ましい。
 工程(i)において水性スラリー又は水溶液(II)中にヘテロポリ酸が形成されているか否かは、NICOLET6700FT-IR(製品名、Thermo electron社製)等を用いた赤外吸収分析及びX線回折装置X’Pert PRO MPD(製品名、PANaltical社製)等を用いたX線回折分析により確認することができる。
 (工程(ii))
 工程(ii)では、工程(i)で得られた水性スラリー又は水溶液(II)に金属カチオン含有化合物を添加して、ヘテロポリ酸塩が析出した水性スラリー(III)を得る。金属カチオン含有化合物としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群から選択される少なくとも1種の元素(前記式(1)のGに相当)を含む化合物を用いることが好ましい。また、工程(ii)では、金属カチオン含有化合物に加えて、アンモニウム化合物を添加することが好ましい。アンモニウム化合物を添加することにより、α,β-不飽和アルデヒドの分子状酸素による気相接触酸化に好適な結晶構造が形成される。アンモニウム化合物としては、炭酸水素アンモニウム、炭酸アンモニウム、硝酸アンモニウム、アンモニア水等が挙げられる。これらのアンモニウム化合物は、一種を用いても良く、二種以上を併用しても良い。
 金属カチオン含有化合物及びアンモニウム化合物は、溶媒に溶解又は懸濁させて添加することが好ましい。溶媒としては、水、エチルアルコール、アセトン等が挙げられる。ただし、前記工程(i)で得られる水性スラリー又は水溶液(II)と同じ水を溶媒として用いることが好ましい。金属カチオン含有化合物及び必要に応じて添加されるアンモニウム化合物を添加した後の水性スラリー又は水溶液の攪拌時間は、1~300分が好ましく、下限は10分以上、上限は30分以下がより好ましい。また、攪拌時の水性スラリー又は水溶液の温度は、50~100℃が好ましく、下限は80℃以上がより好ましい。攪拌時間を1分以上、温度を50℃以上とすることで、ヘテロポリ酸の金属塩及びアンモニウム塩を十分に形成させることができる。一方、攪拌時間を300分以下、温度を100℃以下とすることで、目的とするヘテロポリ酸の金属塩及びアンモニウム塩以外の化合物の形成を抑制することができる。
 析出させるヘテロポリ酸塩(ヘテロポリ酸の金属塩及びアンモニウム塩)は、ケギン型構造を有していても、ドーソン型構造等のケギン型以外の構造を有していても構わないが、α,β-不飽和カルボン酸の収率向上の観点から、ケギン型構造を有することが好ましい。ケギン型構造を有するヘテロポリ酸塩を析出させる方法としては、工程(ii)において得られる水性スラリー(III)のpHを3以下に調整する方法が挙げられる。なお、析出したヘテロポリ酸塩の構造は、NICOLET6700FT-IR(製品名、Thermo electron社製)を用いた赤外吸収分析及びX線回折装置X’Pert PRO MPD(製品名、PANaltical社製)を用いたX線回折分析により確認することができる。
 (工程(iii))
 工程(iii)では、工程(ii)で得られた水性スラリー(III)を乾燥し、触媒前駆体乾燥物を得る。乾燥方法としては、例えば、ドラム乾燥法、気流乾燥法、蒸発乾固法、噴霧乾燥法等が挙げられる。乾燥温度は120~500℃が好ましく、下限は140℃以上、上限は350℃以下がより好ましい。乾燥は、水性スラリー(III)が乾固するまで行うことができる。触媒前駆体乾燥物の水分含有率は、0.1~4.5質量%が好ましい。なお、これらの条件は、所望する触媒前駆体乾燥物の形状や大きさにより適宣選択することができる。
 (成形工程)
 成形工程では、工程(iii)で得られた触媒前駆体乾燥物を成形することができる。成形に用いられる装置としては、打錠成形機、押出成形機、加圧成形機、転動造粒機等の粉体用成形機が挙げられる。成形品の形状としては特に制限はなく、球形粒状、リング状、円柱形ペレット状、星型状、成形後に粉砕分級した顆粒状等の任意の形状が挙げられる。成形する際には、担体に担持しても良く、また、必要に応じて例えばグラファイト、タルク等の公知の添加剤や有機物、無機物由来の公知のバインダーを添加しても良い。本発明では、工程(iii)で得られた触媒前駆体乾燥物、及び該触媒前駆体乾燥物を成形したものをまとめて触媒前駆体乾燥物と示す。
 (工程(iv))
 工程(iv)では、工程(iii)又は成形工程で得られた触媒前駆体乾燥物を熱処理し、触媒を得る。熱処理条件としては特に限定はないが、例えば空気等の酸素含有ガス及び不活性ガスの少なくとも一方の流通下で行うことができる。熱処理温度は200~500℃であることが好ましく、下限は300℃以上、上限は450℃以下であることがより好ましい。熱処理時間は0.5~40時間が好ましく、下限は1時間以上であることがより好ましい。なお、工程(iii)の後に前記成形工程を行わない場合、工程(iv)で得られた熱処理後の触媒に対し、前記成形工程を実施しても良い。
 [α,β-不飽和カルボン酸の製造方法]
 本発明では、本発明に係る方法によりα,β-不飽和カルボン酸製造用触媒を製造し、該触媒を用いてα,β-不飽和アルデヒドを分子状酸素により気相接触酸化してα,β-不飽和カルボン酸を製造する。また、本発明に係るα,β-不飽和カルボン酸の製造方法は、本発明に係る方法により製造されたα,β-不飽和カルボン酸製造用触媒を用いて、α,β-不飽和アルデヒドを分子状酸素により気相接触酸化してα,β-不飽和カルボン酸を製造する方法である。
 本発明に係る方法において、前記α,β-不飽和アルデヒドとしては、(メタ)アクロレイン、クロトンアルデヒド(β-メチルアクロレイン)、シンナムアルデヒド(β-フェニルアクロレイン)等が挙げられる。中でも、目的生成物の収率の観点から、(メタ)アクロレインであることが好ましく、メタクロレインであることがより好ましい。製造されるα,β-不飽和カルボン酸は、α,β-不飽和アルデヒドのアルデヒド基がカルボキシル基に変換されたα,β-不飽和カルボン酸である。具体的には、α,β-不飽和アルデヒドが(メタ)アクロレインの場合、(メタ)アクリル酸が得られる。なお、「(メタ)アクロレイン」はアクロレイン及びメタクロレインを示し、「(メタ)アクリル酸」はアクリル酸及びメタクリル酸を示す。
 以下、代表例として、本発明に係る方法により製造されたメタクリル酸製造用触媒の存在下、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する方法について説明する。
 この方法では、メタクロレイン及び分子状酸素を含む原料ガスと、本発明に係る触媒とを接触させることでメタクリル酸を製造する。この反応では、固定床型反応器を使用することができる。具体的には、反応管内に触媒を充填し、該反応器へ原料ガスを供給することにより反応を行うことができる。触媒層は1層でも良く、活性の異なる複数の触媒をそれぞれ複数の層に分けて充填しても良い。また、活性を制御するために、メタクリル酸製造用触媒を不活性担体により希釈し充填しても良い。
 原料ガス中のメタクロレインの濃度は特に限定されないが、1~20容量%が好ましく、下限は3容量%以上、上限は10容量%以下がより好ましい。原料であるメタクロレインは、低級飽和アルデヒド等の本反応に実質的な影響を与えない不純物を少量含んでいても良い。
 原料ガス中の分子状酸素の濃度は、メタクロレイン1モルに対して0.4~4モルが好ましく、下限は0.5モル以上、上限は3モル以下がより好ましい。なお、分子状酸素源としては、経済性の観点から空気が好ましい。必要であれば、空気に純酸素を加えて分子状酸素を富化した気体を用いても良い。
 原料ガスは、メタクロレイン及び分子状酸素を、窒素、炭酸ガス等の不活性ガスで希釈したものであっても良い。さらに、原料ガスに水蒸気を加えても良い。水蒸気の存在下で反応を行うことにより、メタクリル酸をより高い収率で得ることができる。原料ガス中の水蒸気の濃度は、0.1~50容量%が好ましく、下限は1容量%以上、上限は40容量%以下がより好ましい。
 原料ガスとメタクリル酸製造用触媒との接触時間は、1.5~15秒が好ましい。反応圧力は、0.1~1MPa(G)が好ましい。ただし、(G)はゲージ圧であることを意味する。反応温度は200~450℃が好ましく、下限は250℃以上、上限は400℃以下がより好ましい。
 [α,β-不飽和カルボン酸エステルの製造方法]
 本発明に係るα,β-不飽和カルボン酸エステルの製造方法は、本発明に係る方法により製造されたα,β-不飽和カルボン酸をエステル化する方法である。また、本発明に係るα,β-不飽和カルボン酸エステルの製造方法は、本発明に係る方法によりα,β-不飽和カルボン酸を製造し、該α,β-不飽和カルボン酸をエステル化する方法である。これらの方法によれば、α,β-不飽和アルデヒドの気相接触酸化により得られるα,β-不飽和カルボン酸を用いて、α,β-不飽和カルボン酸エステルを得ることができる。α,β-不飽和カルボン酸と反応させるアルコールとしては特に限定されず、例えばメタノール、エタノール、イソプロパノール、n-ブタノール、イソブタノール等が挙げられる。得られるα,β-不飽和カルボン酸エステルとしては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル等が挙げられる。反応は、スルホン酸型カチオン交換樹脂等の酸性触媒の存在下で行うことができる。反応温度は50~200℃が好ましい。
 以下、実施例及び比較例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。実施例及び比較例中の「部」は質量部を意味する。原料ガス及び生成物の分析は、ガスクロマトグラフィーを用いて行った。ガスクロマトグラフィーの結果から、メタクリル酸収率を下記式にて求めた。
  メタクリル酸収率(%)=(B/A)×100
 式中、Aは反応器へ供給したメタクロレインのモル数、Bは生成したメタクリル酸のモル数である。
 三酸化モリブデンの粒子径分布測定は、レーザー回折式粒度分布測定装置SALD-7000(製品名、島津製作所社製)を用い、純水500gに対して三酸化モリブデン0.02~0.1gを分散させ、30秒間撹拌させた後に行った。
 (実施例1)
 純水400部に、図1において実施例1として示す粒子径分布を有する三酸化モリブデン(粒子径が6μm以下の粒子の割合:2.9体積%)100部、メタバナジン酸アンモニウム3.4部、85質量%リン酸水溶液9.4部を純水6.0部で希釈した希釈物、及び硝酸銅(II)三水和物2.1部を純水4.5部に溶解した溶解物を添加して、水性スラリー(I)を得た。該水性スラリー(I)を攪拌しながら25℃から95℃に昇温し、液温を95℃に保ちつつ2時間攪拌し、ヘテロポリ酸を含む水性スラリー(II)を得た。このとき、前記水性スラリー(I)の温度が60℃に到達してから90℃に到達するまでの時間は15分であった。さらに液温を95℃に保ち撹拌しながら、重炭酸セシウム13.5部を純水24部に溶解した溶解物と炭酸アンモニウム9.2部を純水26部に溶解した溶解物を滴下して攪拌し、ヘテロポリ酸のセシウム塩及びアンモニウム塩を析出させた。析出したヘテロポリ酸のセシウム塩及びアンモニウム塩は、ケギン型構造を有していた。その後、液温を95℃に保ちつつ15分間撹拌した。得られた水性スラリー(III)をスプレードライヤーで乾燥し、触媒前駆体乾燥物を得た。得られた触媒前駆体乾燥物を押出成形することで直径5.5mm、高さ5.5mmの円柱状に成形し、空気流通下、380℃で10時間熱処理することで触媒を製造した。該触媒の酸素以外の組成は、P1.4Mo120.5Cu0.15Cs1.2であった。
 前記触媒を反応管に充填し、メタクロレイン5容量%、酸素10容量%、水蒸気30容量%、及び窒素55容量%の原料ガスを、反応温度310℃、前記原料ガスと前記触媒との接触時間7.1秒で通じた。反応器から得られる生成物を捕集し、ガスクロマトグラフィーで分析してメタクリル酸収率を算出した。結果を表1に示す。
 (実施例2~4、比較例1~3)
 実施例1において用いた三酸化モリブデン100部の代わりに、図1において各実施例、比較例として示す粒子径分布を有する三酸化モリブデン(粒子径が6μm以下の粒子の割合は表1に記載)100部を用いた以外は、実施例1と同様に触媒を製造し、メタクリル酸収率を算出した。結果を表1に示す。なお、実施例2~4及び比較例1~3においても、実施例1と同様に、析出したヘテロポリ酸のセシウム塩及びアンモニウム塩はケギン型構造を有していた。
 (実施例5~8)
 実施例1において、水性スラリー(I)の温度が60℃に到達してから90℃に到達するまでの時間を、それぞれ表1に示すとおりに調整した以外は、実施例1と同様に触媒を製造し、メタクリル酸収率を算出した。結果を表1に示す。なお実施例5~8においても、実施例1と同様に、析出したヘテロポリ酸のセシウム塩及びアンモニウム塩はケギン型構造を有していた。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、モリブデン原料として、粒子径分布における粒子径が6μm以下の粒子の割合が2~55体積%であるモリブデン酸化物を使用した実施例1~8では、高い収率でメタクリル酸が得られた。また実施例1~8の中でも、水性スラリー(I)の温度が60℃に到達してから90℃に到達するまでの時間が5~40分の範囲内である実施例1~6は、よりメタクリル酸収率が高く、7~30分の範囲内である実施例1~4は、特にメタクリル酸収率が高かった。一方、モリブデン原料として、粒子径分布における粒子径が6μm以下の粒子の割合が前記範囲外であるモリブデン酸化物を使用した比較例1~3では、いずれも実施例と比較してメタクリル酸収率が低いものとなった。
 この出願は、2017年10月20日に出願された日本出願特願2017-203592を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 本発明によれば、α,β-不飽和アルデヒドから高い収率でα,β-不飽和カルボン酸を製造することができるα,β-不飽和カルボン酸製造用触媒を提供することができ、工業的に有用である。
 

Claims (13)

  1.  モリブデン原料として、粒子径分布測定により得られる頻度分布曲線において、粒子径が6μm以下の粒子の割合が2~55体積%であるモリブデン酸化物を使用するα,β-不飽和カルボン酸製造用触媒の製造方法。
  2.  (i)少なくとも前記モリブデン原料及びリン原料を含む触媒原料と水を混合して得られた水性スラリー(I)を、90~150℃に加熱してヘテロポリ酸を含む水性スラリー又は水溶液(II)を得る工程と、
     (ii)前記水性スラリー又は水溶液(II)に金属カチオン含有化合物を添加して、ヘテロポリ酸塩が析出した水性スラリー(III)を得る工程と、
     (iii)前記水性スラリー(III)を乾燥し、触媒前駆体乾燥物を得る工程と、
     (iv)前記触媒前駆体乾燥物を熱処理し、触媒を得る工程と、
    を有し、前記工程(i)において、前記水性スラリー(I)の温度が60℃に到達してから90℃に到達するまでの時間が5~40分である、請求項1に記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
  3.  前記工程(i)において、前記水性スラリー(I)の温度が60℃に到達してから90℃に到達するまでの時間が7~30分である、請求項2に記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
  4.  前記モリブデン原料が、粒子径が6μm以下の粒子の割合が2~35体積%であるモリブデン酸化物である、請求項1から3のいずれか1項に記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
  5.  前記モリブデン原料が、粒子径が6μm以下の粒子の割合が2~15体積%であるモリブデン酸化物である、請求項4に記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
  6.  前記α,β-不飽和カルボン酸製造用触媒が、下記式(1)で表される組成を有する、請求項1から5のいずれか1項に記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
      PaMobcCudefgh   (1)
     (式(1)中、P、Mo、V、Cu及びOは、それぞれ、リン、モリブデン、バナジウム、銅及び酸素を示す元素記号である。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群から選択される少なくとも1種の元素を表し、Eは鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群から選択される少なくとも1種の元素を表し、Gはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群から選択される少なくとも1種の元素を表す。a~hは、各元素の原子比率を表し、b=12のとき、a=0.5~3、c=0.01~3、d=0.01~2、e=0~3、f=0~3、g=0.01~3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比率である。)
  7.  前記モリブデン原料として三酸化モリブデンを50質量%以上使用する、請求項1から6のいずれか1項に記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
  8.  前記モリブデン原料として三酸化モリブデンを70質量%以上使用する、請求項7に記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
  9.  前記α,β-不飽和カルボン酸製造用触媒は、α,β-不飽和アルデヒドを分子状酸素により気相接触酸化してα,β-不飽和カルボン酸を製造する際に用いられる触媒であって、前記α,β-不飽和アルデヒドが(メタ)アクロレインであり、かつ前記α,β-不飽和カルボン酸が(メタ)アクリル酸である、請求項1から8のいずれか1項に記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
  10.  請求項1から9のいずれか1項に記載の方法によりα,β-不飽和カルボン酸製造用触媒を製造し、該触媒を用いてα,β-不飽和アルデヒドを分子状酸素により気相接触酸化してα,β-不飽和カルボン酸を製造するα,β-不飽和カルボン酸の製造方法。
  11.  請求項1から9のいずれか1項に記載の方法により製造されたα,β-不飽和カルボン酸製造用触媒を用いて、α,β-不飽和アルデヒドを分子状酸素により気相接触酸化してα,β-不飽和カルボン酸を製造するα,β-不飽和カルボン酸の製造方法。
  12.  請求項10又は11に記載の方法により製造されたα,β-不飽和カルボン酸をエステル化するα,β-不飽和カルボン酸エステルの製造方法。
  13.  請求項10又は11に記載の方法によりα,β-不飽和カルボン酸を製造し、該α,β-不飽和カルボン酸をエステル化するα,β-不飽和カルボン酸エステルの製造方法。
     
PCT/JP2018/038646 2017-10-20 2018-10-17 α,β-不飽和カルボン酸製造用触媒の製造方法、α,β-不飽和カルボン酸の製造方法、及びα,β-不飽和カルボン酸エステルの製造方法 WO2019078244A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11202002211PA SG11202002211PA (en) 2017-10-20 2018-10-17 Method for producing a catalyst for the production of a,ß-unsaturated carboxylic acid, method for producing a,ß-unsaturated carboxylic acid and method for producing a,ß-unsaturated carboxylic acid ester
CN201880058027.2A CN111050906A (zh) 2017-10-20 2018-10-17 α,β-不饱和羧酸制造用催化剂的制造方法、α,β-不饱和羧酸的制造方法和α,β-不饱和羧酸酯的制造方法
KR1020207013491A KR102318486B1 (ko) 2017-10-20 2018-10-17 α,β-불포화 카복실산 제조용 촉매의 제조 방법, α,β-불포화 카복실산의 제조 방법 및 α,β-불포화 카복실산 에스터의 제조 방법
JP2019549315A JP6922993B2 (ja) 2017-10-20 2018-10-17 α,β−不飽和カルボン酸製造用触媒の製造方法、α,β−不飽和カルボン酸の製造方法、及びα,β−不飽和カルボン酸エステルの製造方法
CN202310449250.2A CN116603547A (zh) 2017-10-20 2018-10-17 α,β-不饱和羧酸制造用催化剂的制造方法、α,β-不饱和羧酸的制造方法和α,β-不饱和羧酸酯的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-203592 2017-10-20
JP2017203592 2017-10-20

Publications (1)

Publication Number Publication Date
WO2019078244A1 true WO2019078244A1 (ja) 2019-04-25

Family

ID=66174155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038646 WO2019078244A1 (ja) 2017-10-20 2018-10-17 α,β-不飽和カルボン酸製造用触媒の製造方法、α,β-不飽和カルボン酸の製造方法、及びα,β-不飽和カルボン酸エステルの製造方法

Country Status (5)

Country Link
JP (1) JP6922993B2 (ja)
KR (1) KR102318486B1 (ja)
CN (2) CN111050906A (ja)
SG (1) SG11202002211PA (ja)
WO (1) WO2019078244A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509904A (ja) * 1998-03-31 2002-04-02 ビーエーエスエフ アクチェンゲゼルシャフト (メタ)アクリル酸および(メタ)アクリル酸エステルの製造方法
JP2004346049A (ja) * 2003-05-26 2004-12-09 Sanyo Chem Ind Ltd カルボン酸エステルの製造方法
JP2005336110A (ja) * 2004-05-27 2005-12-08 Mitsubishi Chemicals Corp (メタ)アクリル酸および(メタ)アクリル酸エステルの製造方法
JP2007523734A (ja) * 2003-06-04 2007-08-23 ビーエーエスエフ アクチェンゲゼルシャフト 触媒活物質を熱処理する方法
JP2010520042A (ja) * 2007-03-01 2010-06-10 ビーエーエスエフ ソシエタス・ヨーロピア 担体及び担体に塗布した触媒活性材料から成る触媒の製法
JP2013006162A (ja) * 2011-06-27 2013-01-10 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4222721B2 (ja) * 2000-12-25 2009-02-12 三菱レイヨン株式会社 メタクリル酸の製造方法
JP2004008834A (ja) * 2002-06-03 2004-01-15 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒の製造方法
JP5030438B2 (ja) 2006-02-28 2012-09-19 三菱レイヨン株式会社 触媒の製造方法及びメタクリル酸の製造方法
KR102005358B1 (ko) * 2011-11-17 2019-07-30 닛뽄 가야쿠 가부시키가이샤 메타크릴산 제조용 촉매 및 그것을 이용한 메타크릴산의 제조 방법
CN105749944A (zh) * 2016-03-23 2016-07-13 重庆紫光海力催化剂有限公司 一种由2-甲基丙烯醛气相催化氧化法制备α-甲基丙烯酸的催化剂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509904A (ja) * 1998-03-31 2002-04-02 ビーエーエスエフ アクチェンゲゼルシャフト (メタ)アクリル酸および(メタ)アクリル酸エステルの製造方法
JP2004346049A (ja) * 2003-05-26 2004-12-09 Sanyo Chem Ind Ltd カルボン酸エステルの製造方法
JP2007523734A (ja) * 2003-06-04 2007-08-23 ビーエーエスエフ アクチェンゲゼルシャフト 触媒活物質を熱処理する方法
JP2005336110A (ja) * 2004-05-27 2005-12-08 Mitsubishi Chemicals Corp (メタ)アクリル酸および(メタ)アクリル酸エステルの製造方法
JP2010520042A (ja) * 2007-03-01 2010-06-10 ビーエーエスエフ ソシエタス・ヨーロピア 担体及び担体に塗布した触媒活性材料から成る触媒の製法
JP2013006162A (ja) * 2011-06-27 2013-01-10 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒の製造方法

Also Published As

Publication number Publication date
SG11202002211PA (en) 2020-04-29
CN111050906A (zh) 2020-04-21
CN116603547A (zh) 2023-08-18
KR102318486B1 (ko) 2021-10-27
JPWO2019078244A1 (ja) 2020-04-09
JP6922993B2 (ja) 2021-08-18
KR20200069340A (ko) 2020-06-16

Similar Documents

Publication Publication Date Title
JP5152867B2 (ja) オレフィンから不飽和アルデヒドを製造するための混合金属酸化物触媒を製造する方法
WO2007032228A1 (ja) モリブデンの回収方法及び触媒の製造方法
JP2015096497A (ja) 不飽和カルボン酸の製造方法、及び担持触媒
JP2008272626A (ja) メタクリル酸製造用触媒、その製造方法、およびメタクリル酸の製造方法
CN110300622B (zh) 甲基丙烯酸制造用催化剂、甲基丙烯酸制造用催化剂前体和它们的制造方法、甲基丙烯酸的制造方法以及甲基丙烯酸酯的制造方法
JP5680373B2 (ja) 触媒及びアクリル酸の製造方法
JP5030438B2 (ja) 触媒の製造方法及びメタクリル酸の製造方法
JP6653871B2 (ja) メタクリル酸製造用触媒及びその製造方法、並びにメタクリル酸の製造方法
JP4022047B2 (ja) メタクリル酸合成用触媒の製造方法、メタクリル酸合成用触媒およびメタクリル酸の製造方法
JP7006477B2 (ja) メタクリル酸製造用触媒の製造方法、およびメタクリル酸の製造方法
JP6922993B2 (ja) α,β−不飽和カルボン酸製造用触媒の製造方法、α,β−不飽和カルボン酸の製造方法、及びα,β−不飽和カルボン酸エステルの製造方法
JP6680367B2 (ja) α,β−不飽和カルボン酸製造用触媒前駆体の製造方法、α,β−不飽和カルボン酸製造用触媒の製造方法、α,β−不飽和カルボン酸の製造方法およびα,β−不飽和カルボン酸エステルの製造方法
JP4809692B2 (ja) 不飽和アルデヒドおよび不飽和カルボン酸合成用触媒の製造方法
JP2008229515A (ja) メタクリル酸製造用触媒の製造方法
JP4745766B2 (ja) メタクリル酸製造用触媒及びその製造方法並びにメタクリル酸の製造方法
JP5885019B2 (ja) メタクリル酸製造用触媒の製造方法
JP2002306970A (ja) メタクリル酸製造用触媒、その製造方法、および、メタクリル酸の製造方法
JP2011115681A (ja) 不飽和アルデヒドおよび不飽和カルボン酸合成用触媒
CN106881128B (zh) 杂多酸盐催化剂及其制备方法和用途
CN111770795B (zh) α,β-不饱和羧酸制造用催化剂的制造方法、以及α,β-不饱和羧酸的制造方法
JP5070089B2 (ja) 不飽和アルデヒド及び不飽和カルボン酸製造用触媒並びにその製造方法
JP2008149263A (ja) モリブデン、ビスマス、及び鉄含有酸化物触媒の製造方法
WO2019208715A1 (ja) メタクリル酸製造用触媒の製造方法、並びにメタクリル酸及びメタクリル酸エステルの製造方法
KR20230073177A (ko) 촉매 전구체, 그것을 이용한 촉매, 화합물의 제조 방법 및 촉매의 제조 방법
WO2023182426A1 (ja) メタクリル酸製造用触媒、その製造方法、並びにこれを用いたメタクリル酸およびメタクリル酸エステルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549315

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207013491

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18868824

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 520411650

Country of ref document: SA