WO2023182426A1 - メタクリル酸製造用触媒、その製造方法、並びにこれを用いたメタクリル酸およびメタクリル酸エステルの製造方法 - Google Patents

メタクリル酸製造用触媒、その製造方法、並びにこれを用いたメタクリル酸およびメタクリル酸エステルの製造方法 Download PDF

Info

Publication number
WO2023182426A1
WO2023182426A1 PCT/JP2023/011498 JP2023011498W WO2023182426A1 WO 2023182426 A1 WO2023182426 A1 WO 2023182426A1 JP 2023011498 W JP2023011498 W JP 2023011498W WO 2023182426 A1 WO2023182426 A1 WO 2023182426A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
methacrylic acid
producing
peak
producing methacrylic
Prior art date
Application number
PCT/JP2023/011498
Other languages
English (en)
French (fr)
Inventor
翔悟 早川
純 平田
充 菅野
航 二宮
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2023182426A1 publication Critical patent/WO2023182426A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid

Definitions

  • the present invention relates to a catalyst for producing methacrylic acid, a method for producing the same, and a method for producing methacrylic acid and methacrylic ester using the same.
  • a catalyst for producing methacrylic acid (hereinafter also simply referred to as "catalyst") used when producing methacrylic acid by oxidizing methacrolein, for example, a heteropolyacid catalyst containing molybdenum and phosphorus is known.
  • a heteropolyacid is a condensed oxygen acid formed by 12 coordinating atoms (hereinafter referred to as polyatoms) forming the basic skeleton of a polyacid and an oxide of a heteroatom.
  • heteropolyacid-based catalysts include proton-type heteropolyacids in which the counter cation is a proton, and heteropolyacid salts in which some of the protons are replaced with cations other than protons (hereinafter, proton-type heteropolyacids are simply referred to as "heteropolyacids").
  • proton-type heteropolyacids are simply referred to as "heteropolyacids"
  • '' at least one selected from proton-type heteropolyacids and heteropolyacids is also simply expressed as ⁇ heteropolyacid (salt)'').
  • Non-Patent Document 1 states that phosphorus, silicon, arsenic, germanium, titanium, antimony, etc. are heteroatoms, and tungsten, molybdenum, vanadium, niobium, tantalum, etc. are heteroatoms of heteropolyacids (salts). It is stated that it can be an atom. Furthermore, Keggin type, Dawson type, Preysler type, etc. are described as basic structures of heteropolyacids (salts).
  • Patent Document 1 discloses a catalyst made of a Keggin type heteropolyacid salt having a composition represented by the following formula as a catalyst for producing methacrylic acid.
  • P a Mo b V c X d Y e Of (In the formula, P, Mo, V and O each represent phosphorus, molybdenum, vanadium and oxygen, X represents at least one element selected from potassium, rubidium, cesium and thallium, and Y represents copper, arsenic, antimony, Represents at least one element selected from boron, silver, bismuth, iron, cobalt, lanthanum, and cerium.
  • a, b, c, d, e, and f are the atomic ratios of P, Mo, V, X, Y, and O, respectively.
  • b 12
  • a, c, d, and e are each independently greater than 0 and less than or equal to 3
  • f is a value determined by the oxidation state and atomic ratio of each element other than oxygen. .
  • Keggin-type heteropolyacids include H 3 PMo 12 O 40 , H 4 PMo 11 VO 40 H 3 , PW 12 O 40, etc.
  • Non-Patent Document 1 describes H 3 PMo 12 O 40 and H 4 It has been shown that the thermal decomposition temperature of PW 12 O 40 is higher compared to PMo 11 VO 40 H 3 .
  • Non-Patent Document 2 states that when H 3 PMo 12 O 40 is used as a catalyst for methacrylic acid production, methacrylic acid can be obtained satisfactorily, but when PW 12 O 40 is used, both activity and selectivity are very low. Are listed.
  • An object of the present invention is to provide a catalyst that has high heat resistance and can produce methacrylic acid in high yield. Another object of the present invention is to provide a method for producing methacrylic acid and methacrylic ester using this catalyst.
  • the present inventors conducted extensive studies in view of the above-mentioned problems, and as a result, discovered that the above-mentioned problems could be solved by using a catalyst having a specific peak in powder X-ray measurement, and completed the present invention. That is, the present invention includes the following.
  • a catalyst used when producing methacrylic acid by oxidizing methacrolein Contains heteropolyacids including phosphorus, molybdenum and tungsten,
  • a diffraction peak (peak E) at 2 ⁇ 27.1 ⁇ 0.2° was observed.
  • a catalyst for producing methacrylic acid which has a minimum temperature T1 of 440°C or higher.
  • [3]: (a2) In powder X-ray diffraction measurement at 25°C, when the intensity of the diffraction peak (peak C) at 2 ⁇ 34.1 ⁇ 0.2° is defined as IC, IC/IA is 0. 0055 or less, the catalyst for producing methacrylic acid according to [1] or [2].
  • [5] The catalyst for producing methacrylic acid according to [3] or [4], wherein the IC/IA is 0.001 to 0.0053.
  • [6]: (a3) In powder X-ray diffraction measurement at 25°C, when ID is the intensity of the diffraction peak (peak D) at 2 ⁇ 48.3 ⁇ 0.2°, ID/IA is 0. 003 or less, the catalyst for producing methacrylic acid according to any one of [1] to [5].
  • [7] The catalyst for producing methacrylic acid according to any one of [1] to [6], wherein the T1 is 440 to 500°C.
  • [8] The catalyst for producing methacrylic acid according to any one of [1] to [7], which has a composition represented by the following formula (I).
  • P, Mo, W, V, Cu and O represent phosphorus, molybdenum, tungsten, vanadium, copper and oxygen, respectively.
  • A represents at least one element selected from the group consisting of antimony, bismuth, arsenic, germanium, tellurium, selenium, and silicon.
  • E represents at least one element selected from the group consisting of iron, zinc, chromium, tantalum, cobalt, nickel, manganese, titanium, and niobium.
  • G represents at least one element selected from the group consisting of potassium, rubidium and cesium.
  • [10] A method for producing the catalyst for producing methacrylic acid according to any one of [1] to [9], (i) a step of mixing a phosphorus raw material, a molybdenum raw material, and a tungsten raw material with a solvent to prepare a solution or slurry (liquid A) having a pH of 0.1 to 4; (ii) drying the liquid A to obtain a dried product; (iii) firing the dried product to obtain a fired product; A method for producing a catalyst for producing methacrylic acid, comprising: [11]: The methacrylic acid production according to [10], wherein in the step (i), the tungsten raw material having a solubility in water at 20°C of 4.1 g/100 mL or more accounts for 50% by mass or more of the entire tungsten raw material.
  • Method for producing catalyst for use [12] The method for producing a catalyst for producing methacrylic acid according to [10] or [11], wherein in the step (i), the pH of the liquid A is 0.1 to 3.
  • a method for producing methacrylic acid comprising a step of producing methacrylic acid by oxidizing methacrolein using the catalyst for producing methacrylic acid according to any one of [1] to [9].
  • Methacrylic acid comprising the step of oxidizing methacrolein to produce methacrylic acid using the catalyst for producing methacrylic acid produced by the method according to any one of [10] to [12].
  • manufacturing method [15]: A method for producing a methacrylic ester, comprising the step of esterifying the methacrylic acid produced by the method described in [13] or [14].
  • a numerical range expressed using " ⁇ ” means a range that includes the numerical values written before and after " ⁇ " as the lower limit and upper limit, and "A to B” means A This means that it is greater than or equal to B and less than or equal to B.
  • peak B originates from a structure in which the heteroatom is mainly phosphorus, 6 to 11 of the polyatoms are elements other than molybdenum such as tungsten or vanadium, and the remainder is molybdenum (hereinafter also referred to as structure B). do.
  • Structure B causes a decrease in activity in the oxidation reaction of methacrolein.
  • peak C mainly originates from the molybdenum-containing oxide structure.
  • peak D mainly originates from the tungsten-containing oxide structure.
  • oxides promote sequential oxidation in the oxidation reaction of methacrolein, causing a decrease in methacrylic acid selectivity.
  • IB/IA is 0.015 or less.
  • the upper limit of IB/IA is preferably 0.01 or less, more preferably 0.005 or less.
  • IC/IA is preferably 0.0055 or less.
  • the upper limit of IC/IA is more preferably 0.0053 or less, and even more preferably 0.0052 or less. Further, from the viewpoint of improving the activity of methacrolein oxidation reaction, the lower limit of IC/IA is preferably 0.0005 or more, and more preferably 0.001 or more.
  • the catalyst is manufactured by a method including steps (i) to (iii) described below, and the amount of tungsten raw material used in step (i) is and a method of adjusting the pH of the obtained liquid A.
  • ID/IA is preferably 0.003 or less, more preferably 0.002 or less, and even more preferably 0.001 or less.
  • the catalyst is manufactured by a method including steps (i) to (iii) described below, and in step (i), the solubility in water at 20° C. is 4.
  • a tungsten raw material having a concentration of 1 g/100 mL or more is used in an amount of 50% by mass or more of the entire tungsten raw material.
  • the heteropolyacid in the catalyst forms a thermodynamically metastable crystal structure.
  • the heteropolyacid has high heat resistance and has active sites suitable for the oxidation reaction of methacrolein.
  • the lower limit of T1 is preferably 450°C or higher, more preferably 460°C or higher, and even more preferably 470°C or higher.
  • the upper limit of T1 is preferably 500°C or less, more preferably 490°C or less, and even more preferably 480°C or less.
  • the catalyst is manufactured by a method including steps (i) to (iii) described below, and the amount of the tungsten raw material and the G element raw material used in step (i) is One way to do this is to make adjustments.
  • X-ray diffractometer X'PertProMPD manufactured by PANalytical and a high temperature strip heater chamber manufactured by Anton Paar.
  • the goniometer radius is 240 mm, and an automatic continuously variable slit or a fixed slit is used as the diverging slit.
  • the slit size is 0 to 8.0 mm, and when using a fixed slit, the slit size is 1.75 mm and the slit opening angle is 1.00°.
  • K ⁇ 2 rays are separated and peak search is performed to determine IA, IB, IC, and ID.
  • the conditions for the peak search are: minimum significance: 1 degree, minimum peak tip: 0.2 degrees, maximum peak tip: 1 degree, peak base width: 2 degrees, method: minimum value of second derivative.
  • the peak search can be performed using, for example, High Score Plus manufactured by Panalytical.
  • the catalyst for producing methacrylic acid according to the present embodiment preferably has a composition represented by the following formula (I) from the viewpoint of methacrylic acid yield.
  • the catalyst may contain a small amount of an element not described in the following formula (I).
  • P, Mo, W, V, Cu and O represent phosphorus, molybdenum, tungsten, vanadium, copper and oxygen, respectively.
  • A represents at least one element selected from the group consisting of antimony, bismuth, arsenic, germanium, tellurium, selenium, and silicon.
  • E represents at least one element selected from the group consisting of iron, zinc, chromium, tantalum, cobalt, nickel, manganese, titanium, and niobium.
  • G represents at least one element selected from the group consisting of potassium, rubidium and cesium.
  • the lower limit of c is preferably 0.23 or more, more preferably 0.3 or more.
  • the upper limit of c is preferably 3 or less, more preferably 2 or less, even more preferably 1 or less, and particularly preferably 0.8 or less.
  • the lower limit of a is preferably 0.6 or more, and more preferably 0.7 or more.
  • the upper limit of a is preferably 2.5 or less, more preferably 2 or less.
  • the lower limit of d is preferably 0.1 or more, preferably 0.15 or more, and more preferably 0.2 or more.
  • the upper limit of d is preferably 2.5 or less, more preferably 2 or less, and even more preferably 1.5 or less.
  • the lower limit of e is preferably 0.03 or more, more preferably 0.05 or more. Further, the upper limit of e is preferably 2.5 or less, more preferably 2 or less.
  • the lower limit of f is preferably 0.01 or more, more preferably 0.1 or more. Further, the upper limit of f is preferably 2.5 or less, more preferably 2 or less. The upper limit of g is preferably 2 or less, more preferably 1.5 or less, and even more preferably 1 or less. The lower limit of h is preferably 0.1 or more, more preferably 0.3 or more. Further, the upper limit of h is preferably 2.8 or less, more preferably 2.5 or less.
  • the molar ratio of each component is a value determined by analyzing the component obtained by dissolving the catalyst in aqueous ammonia using ICP emission spectrometry.
  • the catalyst for producing methacrylic acid according to the present embodiment contains phosphorus, molybdenum, and tungsten, and can be produced according to known catalyst production methods as long as the above conditions (a1) and (b) are satisfied.
  • it is produced by a method including steps (i) to (iii).
  • (ii) Drying the liquid A to obtain a dried product.
  • a step of firing the dried product to obtain a fired product may further include a molding step, which will be described later.
  • a phosphorus raw material, a molybdenum raw material, and a tungsten raw material are mixed with a solvent to prepare a solution or slurry (liquid A) having a pH of 0.1 to 4.
  • the liquid A may contain raw materials for elements other than phosphorus, molybdenum, and tungsten in the formula (I), and preferably contains raw materials for element G.
  • Liquid A can be prepared by dissolving or suspending catalyst component raw materials, including a phosphorus raw material, a molybdenum raw material, and a tungsten raw material, in a solvent.
  • the raw materials for the catalyst component are not particularly limited, and nitrates, carbonates, acetates, ammonium salts, oxides, halides, oxo acids, oxo acid salts, etc. of each constituent element of the catalyst may be used alone or in combination of two or more. can be used.
  • Examples of the phosphorus raw material include phosphoric acid, phosphorus pentoxide, ammonium phosphate, and the like.
  • Examples of the molybdenum raw material include molybdenum oxide such as molybdenum trioxide, ammonium molybdate such as ammonium paramolybdate and ammonium dimolybdate, and molybdenum chloride.
  • tungsten raw materials include tungsten oxide, sodium tungstate, phosphotungstic acid, ammonium metatungstate, etc., but tungsten raw materials with a solubility in water of 4.1 g/100 mL or more at 20°C account for 50% of the total tungsten raw materials. It is preferable that it is at least % by mass. Thereby, a catalyst that satisfies conditions (a1) and (b) can be easily obtained.
  • the tungsten raw material having a solubility in water at 20° C. of 4.1 g/100 mL or more include phosphotungstic acid and ammonium metatungstate.
  • the tungsten raw material it is more preferable that the tungsten raw material has a solubility in water of 4.1 g/100 mL or more at 20° C. in an amount of 70% by mass or more, and even more preferably 90% by mass or more.
  • vanadium raw materials include, for example, ammonium metavanadate, vanadium pentoxide, vanadium chloride, vanadyl oxalate, and the like.
  • copper raw materials include copper sulfate, copper nitrate, copper oxide, copper carbonate, copper acetate, and copper chloride.
  • the concentration of the raw material for the catalyst component in liquid A is not particularly limited, but it is preferably within the range of 5 to 90% by mass.
  • solvent examples include water, ethyl alcohol, acetone, and the like. These may be used alone or in combination of two or more. Among these, it is preferable to use water from an industrial viewpoint.
  • the heating temperature can usually be carried out in the range of 30 to 150°C, but preferably in the range of 60 to 150°C.
  • the lower limit of the heating temperature is more preferably 80°C or higher, and even more preferably 90°C or higher.
  • the upper limit of the heating temperature is more preferably 130°C or lower, and even more preferably 110°C or lower.
  • the solvent may be concentrated or refluxed during heating, or heated under pressurized conditions by operating in a closed container.
  • the heating rate is not particularly limited, but is preferably 0.8 to 15°C/min.
  • the temperature increase rate is preferably 0.8 to 15°C/min.
  • the time required for step (i) can be shortened.
  • the temperature increase rate is 15° C./min or less, the temperature can be increased using ordinary temperature increase equipment.
  • Stirring is preferably performed at a stirring power of 0.01 kW/m 3 or more, more preferably 0.05 kW/m 3 or more.
  • the stirring power By setting the stirring power to 0.01 kW/m 3 or more, the temperature, components, and local unevenness of temperature of liquid A are reduced, and the structure suitable as a catalyst for producing ⁇ , ⁇ -unsaturated carboxylic acid is stabilized. It is formed by Further, from the viewpoint of catalyst manufacturing cost, it is preferable that stirring is normally performed at a stirring power of 3.5 kW/m 3 or less.
  • the pH of liquid A is 0.1 to 4, with a lower limit of 0.5 or more and an upper limit of 3 or less. This stabilizes the reaction for producing a heteropolyacid suitable for producing ⁇ , ⁇ -unsaturated carboxylic acid.
  • Methods for adjusting the pH of Solution A to 0.1 to 4 include, for example, using molybdenum trioxide as a molybdenum raw material, or selecting appropriate raw material compounds and adjusting the content of nitrate ions and oxalate ions. can be mentioned.
  • step (ii) the liquid A obtained in step (i) is spray-dried to obtain a dried product.
  • the drying method include known methods such as a drum drying method, a flash drying method, an evaporation drying method, and a spray drying method. Among these, it is preferable to use the spray drying method because it yields a particulate dried product and the dried product has a well-defined spherical shape.
  • the drying temperature varies depending on the drying method, but it can usually be carried out at 100 to 500°C, with the lower limit preferably being 140°C or higher and the upper limit preferably being 400°C or lower.
  • the drying is preferably carried out so that the moisture content of the dried product obtained is 4.5% by mass or less, more preferably from 0.1 to 4.5% by mass. These conditions are not particularly limited and can be appropriately selected depending on the desired shape and size of the dried product.
  • the dried product obtained in step (ii) may be molded as described below, if necessary.
  • step (ii) the dried product obtained in step (ii) is molded as necessary. Note that the molding may be performed after the step (iii) described below.
  • the molding method is not particularly limited, and known dry and wet molding methods can be applied, such as tablet molding, press molding, extrusion molding, granulation molding, etc.
  • the shape of the molded product is not particularly limited, and examples include shapes such as a columnar shape, a ring shape, and a spherical shape. Further, during molding, it is preferable to mold only the dried product without adding a carrier or the like to the dried product, but if necessary, known additives such as graphite and talc may be added. Note that when a carrier is used, the carrier is not particularly limited, but silica is preferably used.
  • Step (iii)> In the firing step, the dried product obtained in step (iii) and the molded dried product obtained in the molding step are fired to obtain a fired product.
  • the firing can be performed under the flow of at least one of an oxygen-containing gas such as air and an inert gas, and it is preferable to perform the firing under the flow of an oxygen-containing gas such as air.
  • an oxygen-containing gas such as air
  • the inert gas refers to a gas that does not reduce catalyst activity, and includes nitrogen, carbon dioxide, helium, argon, and the like. These may be used alone or in combination of two or more.
  • the shape of the firing container is not particularly limited, but a box-shaped, tubular, etc. container can be used. Moreover, it is possible to divide and fill a plurality of containers and bake them. Among these, it is preferable to use a tubular container with a cross-sectional area of 1 to 100 cm 2 .
  • the firing temperature (maximum temperature during firing) is preferably 200 to 700°C, more preferably the lower limit is 320°C or higher and the upper limit is 450°C or lower.
  • the calcined product obtained as described above can be used as a catalyst for producing methacrylic acid. Further, the fired product may be molded as described in the molding step. In this embodiment, the fired product and the fired product after molding are collectively referred to as a catalyst.
  • methacrolein is oxidized using the catalyst for producing methacrylic acid according to the present embodiment. Furthermore, in the method for producing methacrylic acid according to the present embodiment, methacrolein is oxidized using the catalyst for producing methacrylic acid produced by the method for producing methacrylic acid according to the present embodiment. According to these methods, methacrylic acid can be produced in high yield.
  • the method for producing methacrylic acid according to this embodiment can be carried out by bringing the catalyst for producing methacrylic acid according to this embodiment into contact with a raw material gas containing methacrolein.
  • a fixed bed reactor can be used in this reaction.
  • the reaction can be carried out by filling a reactor with a catalyst and supplying raw material gas to the reactor.
  • the catalyst layer may be one layer, or a plurality of catalysts having different activities may be divided into a plurality of layers and packed therein. Further, in order to control the activity, the catalyst may be diluted and packed with an inert carrier.
  • the methacrolein concentration in the raw material gas is preferably 1 to 20% by volume, with a lower limit of 3% by volume or more and an upper limit of 10% by volume or less.
  • the raw material methacrolein may contain a small amount of impurities such as lower saturated aldehydes that do not substantially affect the reaction.
  • the oxygen source for the raw material gas is not particularly limited, but it is industrially advantageous to use air. Further, if necessary, a gas such as air mixed with pure oxygen can also be used.
  • the proportion of oxygen in the raw material gas is not particularly limited, but is preferably 0.4 to 4 moles per mole of methacrolein, and more preferably the lower limit is 0.5 mole or more and the upper limit is 3 moles or less.
  • the raw material gas may be diluted with an inert gas such as nitrogen or carbon dioxide. Furthermore, water vapor may be added to the raw material gas. By carrying out the reaction in the presence of water vapor, methacrylic acid can be obtained in higher yields.
  • concentration of water vapor in the raw material gas is preferably 0.1 to 50% by volume, the lower limit is preferably 1% by volume or more, and the upper limit is more preferably 40% by volume.
  • the contact time between the raw material gas and the catalyst for producing methacrylic acid is preferably 1.5 to 15 seconds, with a lower limit of 2 seconds or more and an upper limit of 10 seconds or less.
  • the reaction pressure is preferably 0.1 to 1 MPa (G). However, (G) means gauge pressure.
  • the reaction temperature is preferably 200 to 450°C, more preferably the lower limit is 250°C or higher and the upper limit is 400°C or lower.
  • the position of the catalyst in the reactor, the proportion of the catalyst in the reactor, etc. are not particularly limited, and commonly used forms can be applied.
  • methacrylic acid produced by the production method according to the present embodiment is esterified. That is, the method for producing methacrylic acid ester according to the present embodiment includes a step of producing methacrylic acid by the method according to the present embodiment, and a step of esterifying the methacrylic acid.
  • the alcohol to be reacted with methacrylic acid is not particularly limited, and examples thereof include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, and the like.
  • Examples of the resulting methacrylic ester include methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, butyl methacrylate, and isobutyl methacrylate.
  • the esterification reaction can be carried out in the presence of an acidic catalyst such as a sulfonic acid type cation exchange resin.
  • the temperature during the esterification reaction is preferably 50 to 200°C.
  • the pressure during the esterification reaction, the position of the catalyst in the reactor, the ratio of the catalyst in the reactor, etc. are not particularly limited, and commonly used forms can be applied.
  • Catalyst composition ratio The molar ratio of each component was determined by analyzing the components obtained by dissolving the catalyst in aqueous ammonia using ICP emission spectrometry.
  • the slit size was 0 to 8.0 mm, and when a fixed slit was used, the slit size was 1.75 mm and the slit opening angle was 1.00°.
  • a peak search was performed by separating the K ⁇ 2 ray using High Score Plus manufactured by Panalytical, and IA, IB, IC, and ID were determined. The conditions for the peak search were: minimum significance: 1 degree, minimum peak tip: 0.2 degrees, maximum peak tip: 1 degree, peak base width: 2 degrees, method: minimum value of second derivative.
  • the thermal decomposition temperature which is an index of the heat resistance of the catalyst, was measured using a TG/DTA measuring device as follows. Using 50 mg of alumina as a reference, 50 mg of a powdered catalyst was heated from room temperature to 550° C. at a rate of 10° C./min in an air atmosphere. In the temperature range of 380° C. or higher in the obtained DTA curve, the exothermic start temperature at which a heat generation of 1.8 ⁇ V or higher was observed when the temperature was increased by 15° C. was defined as the thermal decomposition temperature. The higher the thermal decomposition temperature of the catalyst, the higher the heat resistance.
  • tungsten raw material The tungsten raw materials used in the examples and comparative examples are as follows. Ammonium metatungstate (manufactured by Japan Inorganic Chemical Industry) Solubility in water at 20°C: 10g/100mL Phosphortungstic acid (manufactured by Japan Inorganic Chemical Industry) Solubility in water at 20°C: 40g/100mL or more
  • Example 1 In 1200 parts of pure water at room temperature, 294.0 parts of molybdenum trioxide, 10.2 parts of ammonium metavanadate, 10.6 parts of ammonium metatungstate, and 30.0 parts of an 85% by mass phosphoric acid aqueous solution were diluted with 36 parts of pure water. The diluted solution was mixed with a solution of 6.3 parts of copper (II) nitrate trihydrate dissolved in 9.0 parts of pure water. The resulting slurry was heated to 95°C at 2°C/min and stirred for 2 hours. Next, a solution of 40.4 parts of cesium bicarbonate dissolved in 60 parts of pure water at room temperature was mixed and stirred at 95° C. for 15 minutes.
  • Solution A a solution prepared by dissolving 27.5 parts of ammonium carbonate in 78 parts of pure water was mixed and stirred at 95° C. for 15 minutes to obtain Solution A.
  • Table 1 shows the pH of Solution A.
  • the obtained liquid A was heated and evaporated to dryness to obtain a dried product.
  • the obtained dried product was pressure-molded, crushed, and classified using a sieve so that the particle size was within the range of 710 ⁇ m to 2.36 mm.
  • the obtained sized body was fired at 380° C. for 5 hours under air circulation, and the obtained fired product was used as a catalyst.
  • the composition of the catalyst excluding oxygen was P 1.5 Mo 11.8 W 0.2 V 0.5 Cu 0.15 Cs 1.2 .
  • Example 2 Solution A was obtained in the same manner as in Example 1, except that molybdenum trioxide was changed to 292.1 parts and ammonium metatungstate was changed to 13.6 parts. Table 1 shows the pH of Solution A. The obtained liquid A was heated and evaporated to dryness to obtain a dried product. A catalyst was obtained in the same manner as in Example 1 using the obtained dried product. The composition of the catalyst excluding oxygen was P 1.5 Mo 11.7 W 0.3 V 0.5 Cu 0.15 Cs 1.2 . Further, powder X-ray diffraction measurements and thermal decomposition temperature measurements were performed on the catalyst. The results are shown in Table 1. Using the obtained catalyst, an oxidation reaction of methacrolein was carried out in the same manner as in Example 1.
  • Example 3 Solution A was obtained in the same manner as in Example 1, except that molybdenum trioxide was changed to 287.1 parts and ammonium metatungstate was changed to 22.6 parts. Table 1 shows the pH of Solution A. The obtained liquid A was heated and evaporated to dryness to obtain a dried product. A catalyst was obtained in the same manner as in Example 1 using the obtained dried product. The composition of the catalyst excluding oxygen was P 1.5 Mo 11.5 W 0.5 V 0.5 Cu 0.15 Cs 1.2 . Further, powder X-ray diffraction measurements and thermal decomposition temperature measurements were performed on the catalyst. The results are shown in Table 1. Using the obtained catalyst, an oxidation reaction of methacrolein was carried out in the same manner as in Example 1. The reaction results are shown in Table 1.
  • Example 4 Example 1 except that molybdenum trioxide was used as 285.0 parts, 85% by mass phosphoric acid aqueous solution was used as 29.0 parts, and phosphotungstic acid was used as 29.7 parts instead of 10.6 parts of ammonium metatungstate.
  • Solution A was obtained in the same manner. Table 1 shows the pH of Solution A. The obtained liquid A was heated and evaporated to dryness to obtain a dried product. A catalyst was obtained in the same manner as in Example 1 using the obtained dried product. The composition of the catalyst excluding oxygen was P 1.5 Mo 11.4 W 0.6 V 0.5 Cu 0.15 Cs 1.2 . Further, powder X-ray diffraction measurements and thermal decomposition temperature measurements were performed on the catalyst. The results are shown in Table 1.
  • Example 5 Using the obtained catalyst, an oxidation reaction of methacrolein was carried out in the same manner as in Example 1. The reaction results are shown in Table 1.
  • Example 5 Solution A was obtained in the same manner as in Example 1, except that molybdenum trioxide was changed to 277.2 parts and ammonium metatungstate was changed to 40.8 parts.
  • Table 1 shows the pH of Solution A.
  • the obtained liquid A was heated and evaporated to dryness to obtain a dried product.
  • a catalyst was obtained in the same manner as in Example 1 using the obtained dried product.
  • the composition of the catalyst excluding oxygen was P 1.5 Mo 11.1 W 0.9 V 0.5 Cu 0.15 Cs 1.2 . Further, powder X-ray diffraction measurements and thermal decomposition temperature measurements were performed on the catalyst. The results are shown in Table 1.
  • an oxidation reaction of methacrolein was carried out in the same manner as in Example 1. The reaction results are shown in Table 1.
  • Solution A was obtained in the same manner as in Example 1, except that molybdenum trioxide was changed to 270.0 parts and ammonium metatungstate was changed to 53.2 parts.
  • Table 1 shows the pH of Solution A.
  • the obtained liquid A was heated and evaporated to dryness to obtain a dried product.
  • a catalyst was produced in the same manner as in Example 1 using the obtained dried product.
  • the composition of the catalyst excluding oxygen was P 1.5 Mo 10.8 W 1.2 V 0.5 Cu 0.15 Cs 1.2 .
  • powder X-ray diffraction measurements and thermal decomposition temperature measurements were performed on the catalyst. The results are shown in Table 1.
  • an oxidation reaction of methacrolein was carried out in the same manner as in Example 1. The reaction results are shown in Table 1.
  • Example 1 except that the molybdenum trioxide was 270.0 parts, the 85% by mass phosphoric acid aqueous solution was 27.4 parts, and 59.4 parts of phosphotungstic acid was used instead of 10.6 parts of ammonium metatungstate.
  • Solution A was obtained in the same manner. Table 1 shows the pH of Solution A. The obtained liquid A was heated and evaporated to dryness to obtain a dried product. A catalyst was produced in the same manner as in Example 1 using the obtained dried product. The composition of the catalyst excluding oxygen was P 1.5 Mo 10.8 W 1.2 V 0.5 Cu 0.15 Cs 1.2 . Further, powder X-ray diffraction measurements and thermal decomposition temperature measurements were performed on the catalyst. The results are shown in Table 1. Using the obtained catalyst, an oxidation reaction of methacrolein was carried out in the same manner as in Example 1. The reaction results are shown in Table 1.
  • the obtained sized body was fired at 380° C. for 5 hours under air circulation, and the obtained fired product was used as a catalyst.
  • the composition of the catalyst excluding oxygen was P 1 W 12 .
  • powder X-ray diffraction measurements and thermal decomposition temperature measurements were performed on the catalyst. The results are shown in Table 1. Using the obtained catalyst, an oxidation reaction of methacrolein was carried out in the same manner as in Example 1. The reaction results are shown in Table 1.
  • a catalyst was produced by firing the obtained sized particles at 380° C. for 5 hours under air circulation. The composition of the catalyst excluding oxygen was P 1 Mo 12 . Further, powder X-ray diffraction measurements and thermal decomposition temperature measurements were performed on the catalyst. The results are shown in Table 1. Using the obtained catalyst, an oxidation reaction of methacrolein was carried out in the same manner as in Example 1. The reaction results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

耐熱性が高く、かつ高い収率でメタクリル酸を製造できる触媒を提供すること、および該触媒を用いたメタクリル酸およびメタクリル酸エステルの製造方法を提供することを課題とし、粉末X線測定において特定のピークを有する触媒を用いることにより、課題を解決する。

Description

メタクリル酸製造用触媒、その製造方法、並びにこれを用いたメタクリル酸およびメタクリル酸エステルの製造方法
 本発明はメタクリル酸製造用触媒、その製造方法、並びにこれを用いたメタクリル酸およびメタクリル酸エステルの製造方法に関する。
 メタクロレインの酸化によりメタクリル酸を製造する際に用いられるメタクリル酸製造用触媒(以下、単に「触媒」とも記す)としては、例えばモリブデンおよびリンを含むヘテロポリ酸系触媒が知られている。ヘテロポリ酸とは、ポリ酸の基本骨格を形成する12個の配位原子(以下、ポリ原子と記す)と、ヘテロ原子の酸化物による縮合酸素酸である。ヘテロポリ酸系触媒としては、カウンターカチオンがプロトンであるプロトン型ヘテロポリ酸、およびそのプロトンの一部をプロトン以外のカチオンで置換したヘテロポリ酸塩が挙げられる(以下、プロトン型ヘテロポリ酸を単に「ヘテロポリ酸」、プロトン型ヘテロポリ酸およびヘテロポリ酸塩より選ばれる少なくとも1種類を単に「ヘテロポリ酸(塩)」とも表現する)。
 ヘテロポリ酸(塩)の構造に関して、非特許文献1には、リン、ケイ素、ヒ素、ゲルマニウム、チタン、アンチモン等がヘテロ原子、タングステン、モリブデン、バナジウム、ニオブ、タンタル等がヘテロポリ酸(塩)のポリ原子になり得ることが記載されている。またヘテロポリ酸(塩)の基本構造として、ケギン型、ドーソン型、プレイスラー型等が記載されている。
 また特許文献1には、メタクリル酸製造用触媒として、下記式で示される組成を有するケギン型ヘテロポリ酸塩からなる触媒が開示されている。
  PMo
(式中、P、Mo、VおよびOはそれぞれリン、モリブデン、バナジウムおよび酸素を表し、Xはカリウム、ルビジウム、セシウムおよびタリウムから選ばれる少なくとも一種の元素を表し、Yは銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタンおよびセリウムから選ばれる少なくとも一種の元素を表す。a、b、c、d、eおよびfはそれぞれP、Mo、V、X、YおよびOの原子比を表し、b=12としたとき、a、c、dおよびeはそれぞれ独立して0を越える3以下の値であり、fは酸素以外の各元素の酸化状態および原子比によって定まる値である。)
 ケギン型ヘテロポリ酸としては、HPMo1240、HPMo11VO40、PW1240等が知られており、非特許文献1には、HPMo1240やHPMo11VO40と比較して、PW1240の熱分解温度が高いことが示されている。一方で非特許文献2には、メタクリル酸製造用触媒としてHPMo1240を用いるとメタクリル酸が良好に得られるが、PW1240を用いると活性、選択率ともに非常に低いことが記載されている。
特開2003-010691号公報
Toshio Okuhara,Noritaka Mizuno,Makoto Misono,Advances in Catalysis,volume41. Shuhei Yasuda,Atsuki Iwakura,Jun Hirata,Mitsuru Kanno,Wataru Ninomiya,Ryoichi Otomo,Yuichi Kamiya,Catalysis Communications,125(2019),43-47.
 しかしながら、公知のメタクリル酸製造用触媒は耐熱性が低く、触媒寿命がいまだ不充分である。そのため工業触媒として用いるには、耐熱性が高く、かつ高い収率でメタクリル酸を製造できる触媒の開発が望まれている。
 本発明の目的は、耐熱性が高く、かつ高い収率でメタクリル酸を製造できる触媒を提供することである。また本発明の目的は、この触媒を用いたメタクリル酸およびメタクリル酸エステルの製造方法を提供することにある。
 本発明者らは、上記課題に鑑み鋭意検討を行った結果、粉末X線測定において特定のピークを有する触媒を用いることにより、上記課題が解決できることを見出し、本発明を完成させた。
 すなわち、本発明は以下のものを含む。
 [1]:メタクロレインの酸化によりメタクリル酸を製造する際に用いられる触媒であって、
 リン、モリブデンおよびタングステンを含むヘテロポリ酸を含有し、
 (a1)25℃での粉末X線回折測定において、2θ=26.1±0.2°である回折ピーク(ピークA)の強度をIA、2θ=23.0±0.2°である回折ピーク(ピークB)の強度をIBとしたとき、IB/IAが0.015以下であり、
 (b)10℃/minで昇温しながら、400℃から10℃間隔で粉末X線回折測定を行った際に、2θ=27.1±0.2°である回折ピーク(ピークE)が現れる最低温度T1が440℃以上である、メタクリル酸製造用触媒。
 [2]:前記IB/IAが0.01以下である、[1]に記載のメタクリル酸製造用触媒。
 [3]:(a2)25℃での粉末X線回折測定において、2θ=34.1±0.2°である回折ピーク(ピークC)の強度をICとしたとき、IC/IAが0.0055以下である、[1]または[2]に記載のメタクリル酸製造用触媒。
 [4]:前記IC/IAが0.0005~0.0055である、[3]に記載のメタクリル酸製造用触媒。
 [5]:前記IC/IAが0.001~0.0053である、[3]または[4]に記載のメタクリル酸製造用触媒。
 [6]:(a3)25℃での粉末X線回折測定において、2θ=48.3±0.2°である回折ピーク(ピークD)の強度をIDとしたとき、ID/IAが0.003以下である、[1]から[5]のいずれかに記載のメタクリル酸製造用触媒。
 [7]:前記T1が440~500℃である、[1]から[6]のいずれかに記載のメタクリル酸製造用触媒。
 [8]:下記式(I)で表される組成を有する、[1]から[7]のいずれかに記載のメタクリル酸製造用触媒。
  PMoCu   (I)
 式(I)中、P、Mo、W、V、CuおよびOは、それぞれ、リン、モリブデン、タングステン、バナジウム、銅および酸素を表す。Aはアンチモン、ビスマス、砒素、ゲルマニウム、テルル、セレンおよびケイ素からなる群から選択される少なくとも1種の元素を表す。Eは鉄、亜鉛、クロム、タンタル、コバルト、ニッケル、マンガン、チタンおよびニオブからなる群より選択される少なくとも1種の元素を示す。Gはカリウム、ルビジウムおよびセシウムからなる群から選択される少なくとも1種の元素を表す。a~iは各成分のモル比率を表し、b+c=12、a=0.5~3、c=0.22~5、d=0.01~3、e=0.01~2、f=0~3、g=0~3、h=0.01~3であり、iは前記各成分の価数を満足するのに必要な酸素のモル比率である。
 [9]:前記式(I)において、c=0.22~3である、[8]に記載のメタクリル酸製造用触媒。
 [10]:[1]から[9]のいずれか1項に記載のメタクリル酸製造用触媒の製造方法であって、
 (i)リン原料、モリブデン原料およびタングステン原料を溶媒と混合し、pHが0.1~4である溶液またはスラリー(A液)を調製する工程と、
 (ii)前記A液を乾燥して乾燥物を得る工程と、
 (iii)前記乾燥物を焼成して焼成物を得る工程と、
を含むメタクリル酸製造用触媒の製造方法。
 [11]:前記工程(i)において、20℃における水に対する溶解度が4.1g/100mL以上であるタングステン原料が、タングステン原料全体の50質量%以上である、[10]に記載のメタクリル酸製造用触媒の製造方法。
 [12]前記工程(i)において、前記A液のpHが0.1~3である、[10]または[11]に記載のメタクリル酸製造用触媒の製造方法。
 [13]:[1]から[9]のいずれかに記載のメタクリル酸製造用触媒を用いてメタクロレインを酸化し、メタクリル酸を製造する工程を含む、メタクリル酸の製造方法。
 [14]:[10]から[12]のいずれか1項に記載の方法により製造されたメタクリル酸製造用触媒を用いて、メタクロレインを酸化し、メタクリル酸を製造する工程を含む、メタクリル酸の製造方法。
 [15]:[13]または[14]に記載の方法により製造されたメタクリル酸をエステル化する工程を含む、メタクリル酸エステルの製造方法。
 本発明によれば、耐熱性が高く、かつ高い収率でメタクリル酸を製造できる触媒を提供することができる。
 以下、本発明に係る実施形態について説明するが、本発明は以下に限定されるものではない。なお本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載された数値を下限値および上限値として含む範囲を意味し、「A~B」は、A以上B以下であることを意味する。
 [メタクリル酸製造用触媒]
 本実施形態に係るメタクリル酸製造用触媒は、メタクロレインの酸化によりメタクリル酸を製造する際に用いられる触媒であって、リン、モリブデンおよびタングステンを含むヘテロポリ酸を含有し、下記条件(a1)および(b)を満たす。
 (a1)25℃での粉末X線回折測定において、2θ=26.1±0.2°である回折ピーク(ピークA)の強度をIA、2θ=23.0±0.2°である回折ピーク(ピークB)の強度をIBとしたとき、IB/IAが0.015以下である。
 (b)10℃/minで昇温しながら、400℃から10℃間隔で粉末X線回折測定を行った際に、2θ=27.1±0.2°である回折ピーク(ピークE)が現れる最低温度T1が440℃以上である。
 このような触媒は耐熱性が高く、かつメタクリル酸を高収率で製造できる。
 また本実施形態に係るメタクリル酸製造用触媒は、さらに下記条件(a2)または(a3)を満たすことが好ましく、(a2)および(a3)を満たすことがより好ましい。
 (a2)25℃での粉末X線回折測定において、2θ=34.1±0.2°である回折ピーク(ピークC)の強度をICとしたとき、IC/IAが0.0055以下である。
 (a3)25℃での粉末X線回折測定において、2θ=48.3±0.2°である回折ピーク(ピークD)の強度をIDとしたとき、ID/IAが0.003以下である。
 <触媒の粉末X線回折測定>
 (条件(a1)~(a3))
 リン、モリブデンおよびタングステンを含むヘテロポリ酸を含有する触媒を、25℃で粉末X線回折測定したとき、2θ=26.1±0.2°に観察される回折ピーク(ピークA)および2θ=23.0±0.2°に観察される回折ピーク(ピークB)は、主にヘテロポリ酸構造に由来するピークである。具体的には、ピークAは主にヘテロ原子がリンであり、ポリ原子のうち10個以上がモリブデンである構造(以下、構造Aとも記す)に由来する。またピークBは主にヘテロ原子がリンであり、ポリ原子のうち6~11個がタングステンやバナジウム等のモリブデン以外の元素であり、残りがモリブデンである構造(以下、構造Bとも記す)に由来する。構造Bは、メタクロレインの酸化反応における活性低下の原因となる。
 また2θ=34.1±0.2°に観察される回折ピーク(ピークC)および2θ=48.3±0.2°に観察される回折ピーク(ピークD)は、主にヘテロポリ酸構造を形成していない元素から構成される、酸化物構造に由来するピークである。具体的には、ピークCは主にモリブデン含有酸化物構造に由来する。またピークDは主にタングステン含有酸化物構造に由来する。このような酸化物は、メタクロレインの酸化反応において逐次酸化を促進し、メタクリル酸選択率低下の原因となる。
 本実施形態に係るメタクリル酸製造用触媒の、25℃での粉末X線回折測定において、ピークAの強度をIA、ピークBの強度をIBとしたとき、IB/IAは0.015以下である。このとき、メタクリル酸製造に不適な構造Bの含有量が十分に少なく、良好なメタクリル酸収率が得られると考えられる。IB/IAの上限は0.01以下が好ましく、0.005以下がより好ましい。
 また、ピークCの強度をICとしたとき、IC/IAは0.0055以下であることが好ましい。このとき、メタクリル酸製造に不適なモリブデン含有酸化物の含有量が十分に少なく、良好なメタクリル酸収率が得られると考えられる。IC/IAの上限は0.0053以下がより好ましく、0.0052以下がさらに好ましい。また、メタクロレイン酸化反応の活性向上の観点から、IC/IAの下限は0.0005以上が好ましく、0.001以上がより好ましい。
 規定範囲のIB/IAおよびIC/IAを有する触媒を得る方法としては、例えば、後述する工程(i)~(iii)を含む方法により触媒を製造し、工程(i)において用いるタングステン原料の量および得られるA液のpHを調整する方法が挙げられる。
 またピークDの強度をIDとしたとき、ID/IAは0.003以下が好ましく、0.002以下がより好ましく、0.001以下がさらに好ましい。
 規定範囲のID/IAを有する触媒を得る方法としては、例えば、後述する工程(i)~(iii)を含む方法により触媒を製造し、工程(i)において20℃における水に対する溶解度が4.1g/100mL以上であるタングステン原料を、タングステン原料全体の50質量%以上用いる方法が挙げられる。
 (条件(b))
 リン、モリブデンおよびタングステンを含むヘテロポリ酸を含有する触媒を昇温しながら粉末X線測定を行った際に、2θ=27.1±0.2°に観察されるピーク(ピークE)は、ヘテロポリ酸の分解等により生成したモリブデン酸化物に由来する。本実施形態に係るメタクリル製造用触媒は、10℃/minで昇温しながら、400℃から10℃間隔で粉末X線回折測定を行った際に、ピークDが現れる最低温度T1が440℃以上である。T1が440℃以上である触媒は、触媒中のヘテロポリ酸が熱力学的に準安定な結晶構造を形成していることを意味する。このとき、ヘテロポリ酸は耐熱性が高く、かつメタクロレインの酸化反応に好適な活性点を有すると考えられる。T1の下限は450℃以上が好ましく、460℃以上がより好ましく、470℃以上がさらに好ましい。またT1の上限は500℃以下が好ましく、490℃以下がより好ましく、480℃以下がさらに好ましい。
 規定範囲のT1を示す触媒を得る方法としては、例えば、後述する工程(i)~(iii)を含む方法により触媒を製造し、工程(i)において用いるタングステン原料やG元素の原料の量を調整する方法が挙げられる。
 触媒の粉末X線測定には、例えばPANalytical製X線回折装置X‘PertProMPDおよびAnton Paar製高温ストリップヒーターチャンパーを用いることができる。測定にはCuKα線(λ=0.154nm)を用い、出力45kV、40mA、測定範囲5~60°とする。ゴニオメーター半径は240mmとし、発散スリットには自動連続可変スリットまたは固定スリット使用する。なお自動連続可変スリットを使用する場合はスリットサイズ0~8.0mmとし、固定スリットを用いる場合はスリットサイズ1.75mm、スリット開き角1.00°とする。得られたX線回折パターンは、Kα2線を分離してピークサーチを行い、IA、IB、ICおよびIDを求める。ピークサーチの条件は、最小有意度:1度、最小ピークチップ:0.2度、最大ピークチップ:1度、ピークベース幅:2度、方法:2次微分の最小値とする。ピークサーチは、例えばPanalytical製High Score Plusを用いて行うことができる。またピークEが現れる最低温度とは、触媒を10℃/minで昇温しながら、400℃から10℃間隔で粉末X線回折測定を行って得られるX線回折パターンついて、上記の方法でピークサーチを行い、2θ=27.1±0.2°にピークが検出される最低温度である。
 <触媒の組成>
 本実施形態に係るメタクリル酸製造用触媒は、メタクリル酸収率の観点から、下記式(I)で表される組成を有することが好ましい。なお、触媒は下記式(I)に記載のない元素を少量含んでいてもよい。
  PMoCu   (I)
 式(I)中、P、Mo、W、V、CuおよびOは、それぞれ、リン、モリブデン、タングステン、バナジウム、銅および酸素を表す。Aはアンチモン、ビスマス、砒素、ゲルマニウム、テルル、セレンおよびケイ素からなる群から選択される少なくとも1種の元素を表す。Eは鉄、亜鉛、クロム、タンタル、コバルト、ニッケル、マンガン、チタンおよびニオブからなる群より選択される少なくとも1種の元素を示す。Gはカリウム、ルビジウムおよびセシウムからなる群から選択される少なくとも1種の元素を表す。a~iは各成分のモル比率を表し、b+c=12、a=0.5~3、c=0.22~5、d=0.01~3、e=0.01~2、f=0~3、g=0~3、h=0.01~3であり、iは前記各成分の価数を満足するのに必要な酸素のモル比率である。
 前記式(I)において、W(タングステン)のモル比率であるcはc=0.22~5を満たす。これにより、条件(a1)および(b)を満たす触媒を容易に得ることができる。cの下限は0.23以上であることが好ましく、0.3以上であることがより好ましい。またcの上限は3以下であることが好ましく、2以下であることがより好ましく、1以下であることがさらに好ましく、0.8以下であることが特に好ましい。
 また前記式(I)において、メタクリル酸収率向上の観点から、aの下限は0.6以上が好ましく、0.7以上がより好ましい。またaの上限は2.5以下が好ましく、2以下がより好ましい。dの下限は0.1以上が好ましく、0.15以上が好ましく、0.2以上がさらに好ましい。またdの上限は2.5以下が好ましく、2以下がより好ましく、1.5以下がさらに好ましい。eの下限は0.03以上が好ましく、0.05以上がより好ましい。またeの上限は2.5以下が好ましく、2以下がより好ましい。fの下限は0.01以上が好ましく、0.1以上がより好ましい。またfの上限は2.5以下が好ましく、2以下がより好ましい。gの上限は2以下が好ましく、1.5以下がより好ましく、1以下がさらに好ましい。hの下限は0.1以上が好ましく、0.3以上がより好ましい。またhの上限は2.8以下が好ましく、2.5以下がより好ましい。
 なお、各成分のモル比率は、触媒をアンモニア水に溶解した成分をICP発光分析法で分析することによって求めた値とする。
 [メタクリル酸製造用触媒の製造方法]
 本実施形態に係るメタクリル酸製造用触媒は、リン、モリブデンおよびタングステンを含み、前記条件(a1)および(b)を満たせば、公知の触媒の製造方法に準じて製造することができるが、下記の工程(i)~(iii)を含む方法により製造されることが好ましい。
 (i)リン原料、モリブデン原料およびタングステン原料を溶媒と混合し、pHが0.1~4である溶液またはスラリー(A液)を調製する工程。
 (ii)前記A液を乾燥して乾燥物を得る工程。
 (iii)前記乾燥物を焼成して焼成物を得る工程。
 また本実施形態に係るメタクリル酸製造用触媒の製造方法は、後述する成形工程をさらに有していてもよい。
 以下、各工程について詳細に説明する。
 <工程(i)>
 工程(i)では、リン原料、モリブデン原料およびタングステン原料を溶媒と混合し、pHが0.1~4である溶液またはスラリー(A液)を調製する。A液は、前記式(I)におけるリン、モリブデンおよびタングステン以外の元素の原料を混合してもよく、G元素の原料を混合することが好ましい。
 A液は、リン原料、モリブデン原料およびタングステン原料を含む触媒成分の原料を、溶媒に溶解または懸濁させることにより調製することができる。
 (触媒成分の原料)
 前記触媒成分の原料は特に限定されず、触媒の各構成元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物、オキソ酸、オキソ酸塩等を単独でまたは2種以上を組み合わせて使用することができる。
 リン原料としては、例えば、リン酸、五酸化リン、リン酸アンモニウム等が挙げられる。モリブデン原料としては、例えば、三酸化モリブデン等の酸化モリブデン、パラモリブデン酸アンモニウム、ジモリブデン酸アンモニウム等のモリブデン酸アンモニウム、塩化モリブデン等が挙げられる。
 タングステン原料としては、酸化タングステン、タングステン酸ナトリウム、リンタングステン酸、メタタングステン酸アンモニウム等が挙げられるが、20℃における水に対する溶解度が4.1g/100mL以上であるタングステン原料が、タングステン原料全体の50質量%以上であることが好ましい。これにより、条件(a1)および(b)を満たす触媒を容易に得ることができる。20℃における水に対する溶解度が4.1g/100mL以上であるタングステン原料としては、例えばリンタングステン酸、メタタングステン酸アンモニウム等が挙げられる。タングステン原料としては、20℃における水に対する溶解度が4.1g/100mL以上であるタングステン原料が70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
 さらにバナジウム、銅を含む触媒を製造する場合、バナジウム原料としては、例えば、メタバナジン酸アンモニウム、五酸化バナジウム、塩化バナジウム、蓚酸バナジル等が挙げられる。銅原料としては、例えば、硫酸銅、硝酸銅、酸化銅、炭酸銅、酢酸銅、塩化銅などが挙げられる。
 A液中の触媒成分の原料の濃度は特に限定されないが、5~90質量%の範囲内とすることが好ましい。
 (溶媒)
 前記溶媒としては、例えば、水、エチルアルコール、アセトン等が挙げられる。これらは1種を用いてもよく、2種以上を併用してもよい。これらの中でも、工業的な観点から水を用いることが好ましい。
 (A液の調製)
 A液は、調製容器を用いて、溶媒に触媒成分の原料を加え、加熱しながら撹拌して調製することが好ましい。これにより、メタクリル酸の製造において好適なヘテロポリ酸が十分に生成される。
 加熱温度は通常30~150℃の範囲で行うことができるが、60~150℃の範囲で行うことが好ましい。加熱温度を60℃以上とすることで、ヘテロポリ酸の生成速度を十分に速めることができ、150℃以下とすることで、溶媒の蒸発を抑制することができる。加熱温度の下限は80℃以上がより好ましく、90℃以上がさらに好ましい。また加熱温度の上限は130℃以下がより好ましく、110℃以下がさらに好ましい。また用いる溶媒の蒸気圧に応じて、加熱時に濃縮、還流したり、密閉容器の中で操作することにより加圧条件にて加熱処理したりしてもよい。
 昇温速度は特に限定されないが、0.8~15℃/分が好ましい。昇温速度が0.8℃/分以上であることにより、工程(i)に要する時間を短縮できる。また、昇温速度が15℃/分以下であることにより、通常の昇温設備を用いて昇温を行うことができる。
 攪拌は、攪拌動力0.01kW/m3以上で行うことが好ましく、0.05kW/m3以上で行うことがより好ましい。撹拌動力を0.01kW/m3以上とすることで、A液の温度、成分、および温度の局所的な斑が小さくなり、α、β-不飽和カルボン酸製造用触媒として好適な構造が安定して形成される。また触媒の製造コストの観点から、撹拌は、通常撹拌動力3.5kW/m3以下で行うことが好ましい。
 (A液の物性)
 A液のpHは0.1~4であり、下限は0.5以上、上限は3以下が好ましい。これにより、α、β-不飽和カルボン酸製造に好適なヘテロポリ酸の生成反応が安定化する。A液のpHを0.1~4とする方法としては、例えばモリブデン原料として三酸化モリブデンを使用する、または原料化合物を適宜選択し、硝酸イオンやシュウ酸イオンの含有量を調整する等の方法が挙げられる。
 <工程(ii)>
 工程(ii)では、前記工程(i)で得られたA液を噴霧乾燥して乾燥物を得る。
 乾燥方法としては、例えば、ドラム乾燥法、気流乾燥法、蒸発乾固法、噴霧乾燥法等の公知の方法が挙げられる。これらの中では、粒子状の乾燥物が得られること、乾燥物の形状が整った球形であることから、噴霧乾燥法を用いることが好ましい。
 乾燥温度は乾燥方法により異なるが、通常100~500℃で行うことができ、下限は140℃以上が好ましく、上限は400℃以下であることが好ましい。乾燥は、得られる乾燥物の水分含有率が4.5質量%以下となるように行うこと好ましく、0.1~4.5質量%となるように行うことがより好ましい。これらの条件は特に限定されず、所望する乾燥物の形状や大きさにより適宣選択することができる。
 工程(ii)で得られた乾燥物は、必要に応じて後述する成形を行ってもよい。
 <成形工程>
 成形工程では、前記工程(ii)で得られた乾燥物を必要に応じて成形する。なお、成形は後述する工程(iii)の後に行ってもよい。
 成形方法には特に限定されず、公知の乾式および湿式の成形方法が適用でき、例えば、打錠成形、プレス成形、押出成形、造粒成形等が挙げられる。成形品の形状は特に限定されず、例えば、円柱状、リング状、球状等の形状が挙げられる。また成形時には、乾燥物に担体等を添加せず、乾燥物のみを成形することが好ましいが、必要に応じて、例えばグラファイトやタルク等の公知の添加剤を加えてもよい。なお、担体を使用する場合、担体は特に限定されないが、好ましくはシリカが挙げられる。
 <工程(iii)>
 焼成工程では、前記工程(iii)で得られた乾燥物、および前記成形工程で得られた成形後の乾燥物を焼成して焼成物を得る。
 焼成は、空気等の酸素含有ガスおよび不活性ガスの少なくとも一方の流通下で行うことができ、空気等の酸素含有ガス流通下で焼成することが好ましい。ここで不活性ガスとは、触媒活性を低下させない気体のことを指し、窒素、炭酸ガス、ヘリウム、アルゴン等が挙げられる。これらは一種のみを用いてもよく、二種以上を混合して使用してもよい。
 焼成容器の形状は特に限定されないが、箱型、管状などの容器を用いることができる。また、複数の容器に分けて充填し、焼成することができる。なかでも、断面積が1~100cmである管状容器を用いることが好ましい。
 焼成温度(焼成時の最高温度)は、200~700℃が好ましく、下限は320℃以上、上限は450℃以下がより好ましい。
 以上のようにして得られた焼成物を、メタクリル酸製造用触媒として用いることができる。また焼成物は、前記成形工程に記載の通り成形してもよい。本実施形態では、焼成物、成形後の焼成物を含めて触媒と総称する。
 [メタクリル酸の製造方法]
 本実施形態に係るメタクリル酸の製造方法では、本実施形態に係るメタクリル酸製造用触媒を用いてメタクロレインを酸化する。また本実施形態に係るメタクリル酸の製造方法では、本実施形態に係る製造方法により製造されたメタクリル酸製造用触媒を用いて、メタクロレインを酸化する。これらの方法によれば、高い収率でメタクリル酸を製造することができる。
 本実施形態に係るメタクリル酸の製造方法は、本実施形態に係るメタクリル酸製造用触媒と、メタクロレインを含む原料ガスとを接触させることにより実施することができる。この反応では固定床型反応器を使用することができる。反応器内に触媒を充填し、該反応器へ原料ガスを供給することにより反応を行うことができる。触媒層は1層でもよく、活性の異なる複数の触媒をそれぞれ複数の層に分けて充填してもよい。また、活性を制御するために触媒を不活性担体により希釈し充填してもよい。
 原料ガス中のメタクロレイン濃度は、1~20容量%が好ましく、下限は3容量%以上、上限は10容量%以下がより好ましい。原料であるメタクロレインは、低級飽和アルデヒド等の本反応に実質的な影響を与えない不純物を少量含んでいてもよい。
 原料ガスの酸素源としては、特に限定されないが、空気を用いるのが工業的に有利である。また必要に応じて、空気等に純酸素を混合したガスを用いることもできる。原料ガス中の酸素の割合は、特に限定されないが、メタクロレインに1モルに対して0.4~4モルが好ましく、下限は0.5モル以上、上限は3モル以下がより好ましい。
 原料ガスは、経済的な観点から窒素、炭酸ガス等の不活性ガスで希釈したものであってもよい。さらに、原料ガスに水蒸気を加えてもよい。水蒸気の存在下で反応を行うことにより、メタクリル酸をより高い収率で得ることができる。原料ガス中の水蒸気の濃度は、0.1~50容量%が好ましく、下限は1容量%以上、上限は40容量%がより好ましい。
 原料ガスとメタクリル酸製造用触媒との接触時間は、1.5~15秒が好ましく、下限は2秒以上、上限は10秒以下がより好ましい。反応圧力は、0.1~1MPa(G)が好ましい。ただし、(G)はゲージ圧であることを意味する。反応温度は200~450℃が好ましく、下限は250℃以上、上限は400℃以下がより好ましい。
 メタクリル酸の製造における、反応器中の触媒の位置、反応器における触媒の占める割合などは特に限定されず、通常用いられる形態を適用できる。
 [メタクリル酸エステルの製造方法]
 本実施形態に係るメタクリル酸エステルの製造方法では、本実施形態に係る製造方法により製造されたメタクリル酸をエステル化する。すなわち、本実施形態に係るメタクリル酸エステルの製造方法は、本実施形態に係る方法によりメタクリル酸を製造する工程と、該メタクリル酸をエステル化する工程とを含む。
 メタクリル酸と反応させるアルコールは特に限定されず、例えばメタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール等が挙げられる。得られるメタクリル酸エステルとしては、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸ブチル、メタクリル酸イソブチル等が挙げられる。エステル化反応は、スルホン酸型カチオン交換樹脂等の酸性触媒の存在下で行うことができる。エステル化反応中の温度は50~200℃が好ましい。
 エステル化反応中の圧力、反応器中の触媒の位置、反応器における触媒の占める割合などは特に限定されず、通常用いられる形態を適用できる。
 以下、本実施形態に係る触媒の製造例、およびそれを用いての反応例を、比較例と共に説明する。下記の実施例および比較例中の「部」は質量部である。
 (触媒の組成比)
 各成分のモル比率は、触媒をアンモニア水に溶解した成分をICP発光分析法で分析することによって求めた。
 (触媒の粉末X線回折測定)
 触媒の粉末X線回折測定には、PANalytical製X線回折装置X‘PertProMPDおよびAnton Paar製高温ストリップヒーターチャンパーを用いた。測定にはCuKα線(λ=0.154nm)を用い、出力45kV、40mA、測定範囲5~60°とした。ゴニオメーター半径は240mmとし、発散スリットには自動連続可変スリットまたは固定スリット使用した。なお自動連続可変スリットを使用する場合はスリットサイズ0~8.0mmとし、固定スリットを用い、スリットサイズ1.75mm、スリット開き角1.00°とした。得られたX線回折パターンについて、Panalytical製High Score Plusを用いて、Kα2線を分離してピークサーチを行い、IA、IB、ICおよびIDを求めた。ピークサーチの条件は、最小有意度:1度、最小ピークチップ:0.2度、最大ピークチップ:1度、ピークベース幅:2度、方法:2次微分の最小値とした。また触媒を10℃/minで昇温しながら、400℃から10℃間隔で粉末X線回折測定を行って得られるX線回折パターンついて、上記の方法でピークサーチを行い、2θ=27.1±0.2°にピークが検出される最低温度をT1とした。
 (触媒の熱分解温度)
 触媒の耐熱性の指標である熱分解温度は、TG/DTA測定装置により以下の通り測定した。リファレンスとしてアルミナ50mgを用い、粉末状の触媒50mgについて、空気雰囲気で室温から550℃まで10℃/分で昇温を行った。得られたDTA曲線の380℃以上の温度領域において、15℃の昇温で1.8μV以上の発熱が見られたときの発熱開始温度を熱分解温度とした。触媒の熱分解温度が高いほど、耐熱性が高いことを意味する。
 (原料ガス及び生成物の分析)
 原料ガス及び生成物の分析は、以下のガスクロマトグラフィーを用いて行った。
  島津製作所製GC-2014(カラム:J&W社製DB-FFAP、30m×0.32mm、膜厚1.0μm)
  島津製作所製GC-8A(カラム:モレキュラーシーブ、2.0M×3.0mmID)
  島津製作所製GC-8A(カラム:ポラパックQ、2.0M×3.0mmID)
生成したメタクリル酸の収率は次式により算出した。
  メタクリル酸の収率(%)=(N2/N1)×100
ここで、N1は供給したメタクロレインのモル数、N2は生成したメタクリル酸のモル数である。
(タングステン原料)
 実施例および比較例で用いたタングステン原料は以下の通りである。
 メタタングステン酸アンモニウム(日本無機化学工業製) 20℃における水に対する溶解度:10g/100mL
 リンタングステン酸(日本無機化学工業製) 20℃における水に対する溶解度:40g/100mL以上
 <実施例1>
 室温の純水1200部に、三酸化モリブデン294.0部、メタバナジン酸アンモニウム10.2部、メタタングステン酸アンモニウム10.6部、85質量%リン酸水溶液30.0部を純水36部で希釈した希釈物、および硝酸銅(II)三水和物6.3部を純水9.0部に溶解した溶解物を混合した。得られたスラリーを2℃/分で95℃まで加熱し、2時間撹拌した。次いで、重炭酸セシウム40.4部を室温の純水60部に溶解した溶解物を混合し、95℃で15分撹拌した。次いで、炭酸アンモニウム27.5部を純水78部に溶解した溶解物を混合し、95℃で15分撹拌してA液を得た。A液のpHを表1に示す。
 得られたA液を加熱して蒸発乾固させ、乾燥物を得た。
 得られた乾燥物を加圧成形し、破砕し、粒径が710μm~2.36mmの範囲内になるように篩いを用いて分級した。得られた整粒体を空気流通下、380℃で5時間焼成し、得られた焼成物を触媒とした。該触媒の酸素を除く組成は、P1.5Mo11.80.20.5Cu0.15Cs1.2であった。また、該触媒について粉末X線回折測定および熱分解温度の測定を行った。結果を表1に示す。
 得られた触媒8gをシリコンカーバイド10gで希釈し、固定床流通式反応器に充填した。次いで、メタクロレイン5容量%、酸素10容量%、水蒸気30容量%および窒素55容量%からなる原料ガスを、接触時間178hr・g/molで流通させ、反応温度300℃にてメタクロレインの酸化反応を行った。反応成績を表1に示す。
 <実施例2>
 三酸化モリブデンを292.1部とし、メタタングステン酸アンモニウムを13.6部とした以外は、実施例1と同様の方法でA液を得た。A液のpHを表1に示す。
 得られたA液を加熱して蒸発乾燥固させ、乾燥物を得た。
 得られた乾燥物を用い、実施例1と同様の方法で触媒を得た。該触媒の酸素を除く組成は、P1.5Mo11.70.30.5Cu0.15Cs1.2であった。また、該触媒について粉末X線回折測定および熱分解温度の測定を行った。結果を表1に示す。
 得られた触媒を用い、実施例1と同様の方法でメタクロレインの酸化反応を行った。反応成績を表1に示す。
 <実施例3>
三酸化モリブデンを287.1部とし、メタタングステン酸アンモニウムを22.6部とした以外は、実施例1と同様の方法でA液を得た。A液のpHを表1に示す。
 得られたA液を加熱して蒸発乾燥固させ、乾燥物を得た。
 得られた乾燥物を用い、実施例1と同様の方法で触媒を得た。該触媒の酸素を除く組成は、P1.5Mo11.50.50.5Cu0.15Cs1.2であった。また、該触媒について粉末X線回折測定および熱分解温度の測定を行った。結果を表1に示す。
 得られた触媒を用い、実施例1と同様の方法でメタクロレインの酸化反応を行った。反応成績を表1に示す。
 <実施例4>
 三酸化モリブデンを285.0部とし、85質量%リン酸水溶液29.0部とし、メタタングステン酸アンモニウム10.6部の代わりにリンタングステン酸29.7部を用いた以外は、実施例1と同様の方法でA液を得た。A液のpHを表1に示す。
 得られたA液を加熱して蒸発乾燥固させ、乾燥物を得た。
 得られた乾燥物を用い、実施例1と同様の方法で触媒を得た。該触媒の酸素を除く組成は、P1.5Mo11.40.60.5Cu0.15Cs1.2であった。また、該触媒について粉末X線回折測定および熱分解温度の測定を行った。結果を表1に示す。
 得られた触媒を用い、実施例1と同様の方法でメタクロレインの酸化反応を行った。反応成績を表1に示す。
 <実施例5>
 三酸化モリブデンを277.2部とし、メタタングステン酸アンモニウムを40.8部とした以外は、実施例1と同様の方法でA液を得た。A液のpHを表1に示す。
 得られたA液を加熱して蒸発乾燥固させ、乾燥物を得た。
 得られた乾燥物を用い、実施例1と同様の方法で触媒を得た。該触媒の酸素を除く組成は、P1.5Mo11.10.90.5Cu0.15Cs1.2であった。また、該触媒について粉末X線回折測定および熱分解温度の測定を行った。結果を表1に示す。
 得られた触媒を用い、実施例1と同様の方法でメタクロレインの酸化反応を行った。反応成績を表1に示す。
 <比較例1>
 三酸化モリブデンを270.0部とし、メタタングステン酸アンモニウムを53.2部とした以外は、実施例1と同様の方法でA液を得た。A液のpHを表1に示す。
 得られたA液を加熱して蒸発乾燥固させ、乾燥物を得た。
 得られた乾燥物を用い、実施例1と同様の方法で触媒を製造した。該触媒の酸素を除く組成は、P1.5Mo10.81.20.5Cu0.15Cs1.2であった。また、該触媒について粉末X線回折測定および熱分解温度の測定を行った。結果を表1に示す。
 得られた触媒を用い、実施例1と同様の方法でメタクロレインの酸化反応を行った。反応成績を表1に示す。
 <比較例2>
 三酸化モリブデンを270.0部とし、85質量%リン酸水溶液27.4部とし、メタタングステン酸アンモニウム10.6部の代わりにリンタングステン酸59.4部を用いた以外は、実施例1と同様の方法でA液を得た。A液のpHを表1に示す。
 得られたA液を加熱して蒸発乾燥固させ、乾燥物を得た。
 得られた乾燥物を用い、実施例1と同様の方法で触媒を製造した。該触媒の酸素を除く組成は、P1.5Mo10.81.20.5Cu0.15Cs1.2であった。また、該触媒について粉末X線回折測定および熱分解温度の測定を行った。結果を表1に示す。
 得られた触媒を用い、実施例1と同様の方法でメタクロレインの酸化反応を行った。反応成績を表1に示す。
 <比較例3>
 リンタングステン酸300.0部を加圧成形し、破砕し、粒径が710μm~2.36mmの範囲内になるように篩いを用いて分級した。得られた整粒体を空気流通下、380℃で5時間焼成し、得られた焼成物を触媒とした。該触媒の酸素を除く組成は、P12であった。また、該触媒について粉末X線回折測定および熱分解温度の測定を行った。結果を表1に示す。
 得られた触媒を用い、実施例1と同様の方法でメタクロレインの酸化反応を行った。反応成績を表1に示す。
 <比較例4>
 リンモリブデン酸(日本無機化学工業製)300.0部を380℃で5時間焼成し、得られた粉体を破砕し、粒径が710μm~2.36mmの範囲内になるように篩いを用いて分級した。得られた整粒体を空気流通下、380℃で5時間焼成することで、触媒を製造した。該触媒の酸素を除く組成は、PMo12であった。また、該触媒について粉末X線回折測定および熱分解温度の測定を行った。結果を表1に示す。
 得られた触媒を用い、実施例1と同様の方法でメタクロレインの酸化反応を行った。反応成績を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、条件(a1)および(b)を満たす触媒を用いた実施例1~5は、触媒中のヘテロポリ酸が熱力学的に準安定な結晶構造を形成しているため、耐熱性が高く、かつ高い収率でメタクリル酸を得ることができた。
 なお、本実施例で得られたメタクリル酸をエステル化することで、メタクリル酸エステルを得ることができる。
 本発明によれば、耐熱性が高く、かつメタクリル酸を高収率で製造できる触媒を提供することができる。
 

Claims (15)

  1.  メタクロレインの酸化によりメタクリル酸を製造する際に用いられる触媒であって、
     リン、モリブデンおよびタングステンを含むヘテロポリ酸を含有し、
     (a1)25℃での粉末X線回折測定において、2θ=26.1±0.2°である回折ピーク(ピークA)の強度をIA、2θ=23.0±0.2°である回折ピーク(ピークB)の強度をIBとしたとき、IB/IAが0.015以下であり、
     (b)10℃/minで昇温しながら、400℃から10℃間隔で粉末X線回折測定を行った際に、2θ=27.1±0.2°である回折ピーク(ピークE)が現れる最低温度T1が440℃以上である、メタクリル酸製造用触媒。
  2.  前記IB/IAが0.01以下である、請求項1に記載のメタクリル酸製造用触媒。
  3.  (a2)25℃での粉末X線回折測定において、2θ=34.1±0.2°である回折ピーク(ピークC)の強度をICとしたとき、IC/IAが0.0055以下である、請求項1または2に記載のメタクリル酸製造用触媒。
  4.  前記IC/IAが0.0005~0.0055である、請求項3に記載のメタクリル酸製造用触媒。
  5.  前記IC/IAが0.001~0.0053である、請求項3または4に記載のメタクリル酸製造用触媒。
  6.  (a3)25℃での粉末X線回折測定において、2θ=48.3±0.2°である回折ピーク(ピークD)の強度をIDとしたとき、ID/IAが0.003以下である、請求項1から5のいずれか1項に記載のメタクリル酸製造用触媒。
  7.  前記T1が440~500℃である、請求項1から6のいずれか1項に記載のメタクリル酸製造用触媒。
  8.  下記式(I)で表される組成を有する、請求項1から7のいずれか1項に記載のメタクリル酸製造用触媒。
      PMoCu   (I)
     式(I)中、P、Mo、W、V、CuおよびOは、それぞれ、リン、モリブデン、タングステン、バナジウム、銅および酸素を表す。Aはアンチモン、ビスマス、砒素、ゲルマニウム、テルル、セレンおよびケイ素からなる群から選択される少なくとも1種の元素を表す。Eは鉄、亜鉛、クロム、タンタル、コバルト、ニッケル、マンガン、チタンおよびニオブからなる群より選択される少なくとも1種の元素を示す。Gはカリウム、ルビジウムおよびセシウムからなる群から選択される少なくとも1種の元素を表す。a~iは各成分のモル比率を表し、b+c=12、a=0.5~3、c=0.22~5、d=0.01~3、e=0.01~2、f=0~3、g=0~3、h=0.01~3であり、iは前記各成分の価数を満足するのに必要な酸素のモル比率である。
  9.  前記式(I)において、c=0.22~3である、請求項8に記載のメタクリル酸製造用触媒。
  10.  請求項1から9のいずれか1項に記載のメタクリル酸製造用触媒の製造方法であって、
     (i)リン原料、モリブデン原料およびタングステン原料を溶媒と混合し、pHが0.1~4である溶液またはスラリー(A液)を調製する工程と、
     (ii)前記A液を乾燥して乾燥物を得る工程と、
     (iii)前記乾燥物を焼成して焼成物を得る工程と、
    を含むメタクリル酸製造用触媒の製造方法。
  11.  前記工程(i)において、20℃における水に対する溶解度が4.1g/100mL以上であるタングステン原料が、タングステン原料全体の50質量%以上である、請求項10に記載のメタクリル酸製造用触媒の製造方法。
  12.  前記工程(i)において、前記A液のpHが0.1~3である、請求項10または11に記載のメタクリル酸製造用触媒の製造方法。
  13.  請求項1から9のいずれか1項に記載のメタクリル酸製造用触媒を用いてメタクロレインを酸化し、メタクリル酸を製造する工程を含む、メタクリル酸の製造方法。
  14.  請求項10から12のいずれか1項に記載の方法により製造されたメタクリル酸製造用触媒を用いて、メタクロレインを酸化し、メタクリル酸を製造する工程を含む、メタクリル酸の製造方法。
  15.  請求項13または14に記載の方法により製造されたメタクリル酸をエステル化する工程を含む、メタクリル酸エステルの製造方法。
PCT/JP2023/011498 2022-03-24 2023-03-23 メタクリル酸製造用触媒、その製造方法、並びにこれを用いたメタクリル酸およびメタクリル酸エステルの製造方法 WO2023182426A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022048075 2022-03-24
JP2022-048075 2022-03-24

Publications (1)

Publication Number Publication Date
WO2023182426A1 true WO2023182426A1 (ja) 2023-09-28

Family

ID=88101699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011498 WO2023182426A1 (ja) 2022-03-24 2023-03-23 メタクリル酸製造用触媒、その製造方法、並びにこれを用いたメタクリル酸およびメタクリル酸エステルの製造方法

Country Status (1)

Country Link
WO (1) WO2023182426A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551880A (en) * 1979-03-05 1980-01-09 Nippon Kayaku Co Ltd Catalyst
US4522934A (en) * 1981-04-27 1985-06-11 Atlantic Richfield Company Vanadotungstomolybdophosphoric acid oxidation catalyst
JP2016168591A (ja) * 2015-03-11 2016-09-23 国立大学法人北海道大学 メタクリル酸製造用触媒及びその製造方法、並びにメタクリル酸の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551880A (en) * 1979-03-05 1980-01-09 Nippon Kayaku Co Ltd Catalyst
US4522934A (en) * 1981-04-27 1985-06-11 Atlantic Richfield Company Vanadotungstomolybdophosphoric acid oxidation catalyst
JP2016168591A (ja) * 2015-03-11 2016-09-23 国立大学法人北海道大学 メタクリル酸製造用触媒及びその製造方法、並びにメタクリル酸の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARCHAL, C. ET AL.: "Influence of Small Amounts of Tungsten on the Physico-chemical and Catalytic Properties of PMo11 -x Wx VO40 4- Heteropolyanions", JOURNAL OF THE CHEMICAL SOCIETY, FARADAY TRANSACTIONS, vol. 89, no. 17, 1993, pages 3301 - 3306, XP000387723, DOI: 10.1039/ft9938903301 *

Similar Documents

Publication Publication Date Title
US20140316160A1 (en) Catalyst For Methacrylic Acid Production And Process For Producing Methacrylic Acid
JP6414343B2 (ja) メタクリル酸製造用触媒およびその製造方法、並びにメタクリル酸およびメタクリル酸エステルの製造方法
JP6819699B2 (ja) メタクリル酸製造用触媒、メタクリル酸製造用触媒前駆体、およびそれらの製造方法、メタクリル酸の製造方法、並びにメタクリル酸エステルの製造方法
JP7356923B2 (ja) ヘテロポリ酸化合物の製造方法、ヘテロポリ酸化合物及びメタクリル酸の製造方法
JPS6123020B2 (ja)
WO2023182426A1 (ja) メタクリル酸製造用触媒、その製造方法、並びにこれを用いたメタクリル酸およびメタクリル酸エステルの製造方法
JP5560596B2 (ja) メタクリル酸製造用触媒の製造方法
JP6680367B2 (ja) α,β−不飽和カルボン酸製造用触媒前駆体の製造方法、α,β−不飽和カルボン酸製造用触媒の製造方法、α,β−不飽和カルボン酸の製造方法およびα,β−不飽和カルボン酸エステルの製造方法
WO2023182425A1 (ja) メタクリル酸製造用触媒、その製造方法、並びにこれを用いたメタクリル酸およびメタクリル酸エステルの製造方法
JP4372573B2 (ja) メタクリル酸製造用触媒の製造方法
JP6798617B2 (ja) 触媒の製造方法、不飽和カルボン酸の製造方法、不飽和アルデヒド及び不飽和カルボン酸の製造方法、並びに不飽和カルボン酸エステルの製造方法
JP5885019B2 (ja) メタクリル酸製造用触媒の製造方法
KR102476427B1 (ko) α,β-불포화 카복실산 제조용 촉매의 제조 방법, 및 α,β-불포화 카복실산 및 α,β-불포화 카복실산 에스터의 제조 방법
JP7031737B2 (ja) メタクリル酸製造用触媒の製造方法、並びにメタクリル酸及びメタクリル酸エステルの製造方法
JP5149138B2 (ja) 不飽和カルボン酸合成用触媒の製造方法
US20240017247A1 (en) Catalyst, Method for Producing Catalyst, and Method for Producing alpha,beta-Unsaturated Aldehyde, alpha,beta-Unsaturated Carboxylic Acid and alpha,beta-Unsaturated Carboxylic Acid Ester
JP7224351B2 (ja) 触媒及びそれを用いた化合物の製造方法
JP4895303B2 (ja) メタクリル酸製造用触媒の製造方法、メタクリル酸製造用触媒およびメタクリル酸の製造方法
JP5063493B2 (ja) 不飽和カルボン酸合成用触媒の製造方法
WO2000072964A1 (fr) Production d'acide methacrylique et catalyseur a cet effet
WO2019026640A1 (ja) 触媒前駆体、触媒の製造方法、メタクリル酸及びアクリル酸の製造方法、並びにメタクリル酸エステル及びアクリル酸エステルの製造方法
KR20200069340A (ko) α,β-불포화 카복실산 제조용 촉매의 제조 방법, α,β-불포화 카복실산의 제조 방법 및 α,β-불포화 카복실산 에스터의 제조 방법
JP2002095972A (ja) メタクリル酸製造用触媒、その製造方法、およびメタクリル酸の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23775020

Country of ref document: EP

Kind code of ref document: A1