JP2010508616A - 設定可能な遅延のトラッキングを備えたメモリデバイス - Google Patents

設定可能な遅延のトラッキングを備えたメモリデバイス Download PDF

Info

Publication number
JP2010508616A
JP2010508616A JP2009534866A JP2009534866A JP2010508616A JP 2010508616 A JP2010508616 A JP 2010508616A JP 2009534866 A JP2009534866 A JP 2009534866A JP 2009534866 A JP2009534866 A JP 2009534866A JP 2010508616 A JP2010508616 A JP 2010508616A
Authority
JP
Japan
Prior art keywords
dummy
word line
bit line
cells
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009534866A
Other languages
English (en)
Other versions
JP5086360B2 (ja
Inventor
ジュン、ソン−オク
ヨン、セイ・スン
ハン、イ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2010508616A publication Critical patent/JP2010508616A/ja
Application granted granted Critical
Publication of JP5086360B2 publication Critical patent/JP5086360B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/08Control thereof
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • G11C11/419Read-write [R-W] circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/023Detection or location of defective auxiliary circuits, e.g. defective refresh counters in clock generator or timing circuitry
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/028Detection or location of defective auxiliary circuits, e.g. defective refresh counters with adaption or trimming of parameters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/12Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/14Dummy cell management; Sense reference voltage generators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • G11C7/227Timing of memory operations based on dummy memory elements or replica circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/08Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/06Sense amplifier related aspects
    • G11C2207/065Sense amplifier drivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Static Random-Access Memory (AREA)

Abstract

設定可能な遅延トラッキングを備えたメモリデバイスが説明されている。メモリデバイスは、M個のノーマルワード線ドライバ、ダミーワード線ドライバ、メモリアレイ、N個のセンスアンプ、そしてタイミング制御回路、を含んでいる。メモリアレイは、M行およびN列のメモリセル、そして、1列のダミーセルを含む。ワード線ドライバは、複数の行のメモリセルのワード線を駆動する。ダミーワード線ドライバは、1列のダミーセルにおける少なくとも1つのダミーセルについて、ダミーワード線を駆動する。タイミング制御回路は、設定可能な遅延を有しているイネーブル信号を生成しており、それは、1列のメモリセルに結合されるダミービット線についての可変ドライブを提供する加速度回路で得られることができる。センスアンプは、イネーブル信号に基づいて、複数の列のメモリセルのビット線を検出する。

Description

背景
(分野)
本開示は、一般にエレクトロニクス(electronics)に関し、より具体的には、メモリデバイス(memory device)に関する。
(背景)
メモリデバイスは、コンピュータ、無線通信デバイス、携帯情報端末(personal digital assistants)(PDAs)、等、のような多くの電子デバイスにおいて、一般的に使用されている。メモリデバイスは、典型的に、多くの行および列のメモリセル(many rows and columns of memory cells)を含んでいる。各メモリセルは、データ値(data value)でロードされてもよく、それは、二進法の「0」あるいは、「1」であってもよい。与えられた行および列における、与えられたメモリセルを読み取るために、行についてのワード線は、アクティブにされ(activated)、メモリセルは、メモリセルにおいて保存されるデータ値に依存して列についてのビット線をチャージする、あるいは、ディスチャージする。センスアンプ(sense amplifier)は、ビット線上の電圧を検出し、検出された電圧に基づいて、論理値(logic value)を提供する。
センスアンプは、高いオペレーティング速度(high operating speed)と、より少ない電力消費(low power consumption)を達成するために、できるだけ早く、かつ、最小時間の間、ONにされている(turned on)べきである。センスアンプは、ビット線が十分にチャージされたあるいはディスチャージされた後で、アクティブ化されることができるので、メモリセルにおいて保存されたデルタ値は確実に検出されることができる。このチャージ/ディスチャージの時間は、トランジスタの特性(transistor characteristics)および寄生効果(parasitic effects)に依存しており、それは、集積回路(IC)プロセス、温度、および、電力供給変動(power supply variations)によって、幅広く変更されてもよい。プロセス変動(process variation)は、トランジスタのサイズが縮小するにつれ、IC製造技術(IC fabrication technology)が改善され、より厳しい。ビット線をチャージし、ディスチャージするために割り付けられた時間の量は、検知する前にビット線が十分にチャージされたかあるいはディスチャージされたかを確実にするために、最悪のケースのプロセス変動に基づいて、選択されることができる。しかしながら、最悪のケースのプロセス変動のために設計することは、オペレーティングスピードを減らす、および/または、電力消費量を増大する可能性がある。
したがって、プロセスおよび他の変動を効率的に説明する(account for)ことができるメモリデバイスに関しては、当技術分野において必要性がある。
設定可能な遅延トラッキング(configurable delay tracking)を備え、また、プロセスおよび他の変動を構成することができるメモリデバイスがここに説明される。一設計において、メモリデバイスは、複数の(M個の)ノーマルワード線ドライバ(normal word line drivers,)、1つのダミーワード線ドライバ(dummy word line driver)、メモリアレイ、マルチプル(N個の)センスアンプ、そして、1つのタイミング制御回路(timing control circuit)を含んでいる。メモリアレイは、M行およびN列のメモリセル(M rows and N columns of memory cells)、および1列のダミーセル(a column of dummy cells)を備えている。M個のワード線ドライバは、M行のメモリセルのM個のワード線を駆動する。ダミーワード線ドライバは、1列のダミーセルにおける少なくとも1つのダミーセルのダミーワード線を駆動する。
タイミング制御回路は、センスアンプのためのイネーブル信号(enable signals)を生成する。タイミング制御回路は、加速度回路(acceleration circuit)およびセンスアンプドライバを含むことができる。加速度回路は、1列のダミーセルのダミービット線に結合し、そして、ダミービット線についての可変ドライブ(variable drive)を供給することができる。加速度回路は、ダミービット線についての可変ドライブを提供するように選択可能である、マルチプルトランジスタを含むことができる。センスアンプドライバは、加速度回路からレディ信号(ready signal)を受信し、ダミービット線についての可変ドライブによって決定される設定可能な遅延を有するイネーブル信号を生成することができる。センスアンプは、複数列のメモリセルのビット線に結合され、イネーブル信号に基づいて、ビット線を検出する。
ダミーワード線ドライバは、ワード線ドライバと、遅延において、整合をとられる(matched)ことができる。ダミーワード線上のローディング(loading on the dummy word line)は、各ノーマルワード線上のローディング(loading on each normal word line)と整合をとられることができ、また、ダミービット線上のローディング(loading on the dummy bit line)は、各ノーマルビット線上のローディング(loading on each normal bit line)と整合をとられることができる。タイミング制御回路は、(a)ダミーワード線ドライバとノーマルワード線ドライバとの間、ダミーワード線とノーマルワード線との間、およびダミービット線とノーマルビット線との間、の遅延変動、(b)イネーブル信号を生成するために使用された更なる回路構成(additional circuitry)によるさらなる遅延、を説明する(account for)ことができる。
本開示の様々な態様および特徴は、下記で、さらに詳細に説明される。
図1は、設定可能な遅延トラッキングを備えたメモリデバイスのブロック図を示す。 図2は、メモリデバイス内の、ワード線ドライバ、メモリアレイ、およびタイミング制御回路、のブロック図を示す。 図3は、メモリアレイのブロック図を示す。 図4Aは、メモリセルの回路図を示す。 図4Bは、ダミーセルの回路図を示す。 図5は、2つのノーマルワード線ドライバの回路図を示す。 図6は、ダミーワード線ドライバの回路図を示す。 図7は、加速度回路の回路図を示す。 図8は、センスアンプドライバの回路図を示す。 図9は、メモリ読み取りのためのタイミング図を示す。 図10は、メモリ読み取りを実行するプロセスを示す。 図11は、無線通信デバイスのブロック図を示す。
詳細な説明
設定可能な遅延トラッキングを備えたメモリデバイスが、ここに説明される。メモリデバイスは、ランダムアクセスメモリ(random access memory)(RAM)、スタティックRAM(static RAM)(SRAM)、ダイナミックRAM(dynamic RAM)(DRAM)、シンクロナスDRAM(synchronous DRAM)(synchronous graphic RAM)(SDRAM)、ビデオRAM(video RAM)(VRAM)、シンクロナスグラフィックRAM(synchronous graphic RAM)(SGRAM)、読み出し専用メモリ(read only memory)(ROM)、フラッシュメモリ、等、であってもよい。メモリデバイスは、スタンドアロンのデバイス(stand-alone device)であってもよいし、別のデバイス、例えばプロセッサ、内で埋め込まれていてもよい。
図1は、設定可能な遅延トラッキングを備えたメモリデバイス100の設計のブロック図を示す。メモリデバイス100は、行および列のデコーダ(row and column decoders)110、ワード線ドライバ120、メモリアレイ150、タイミング制御ユニット(timing control unit)160、およびセンスアンプ170、を含んでいる。
メモリアレイ150は、下記に説明されるように、M行およびN列のメモリセルを含んでおり、1行および1列のダミーセルをさらに含んでいる。メモリセルは、データ値を保存することができる回路であり、また、様々な回路設計でインプリメントされてもよい。ダミーセルは、既知の値(known value)を保存することができる回路であり、および/または、望ましいローディング効果(a desired loading effect)を達成する特定の方法において接続される。ダミーセルは、メモリセルと同じあるいは同様な回路設計でインプリメントされてもよい。一般的に、MおよびNは、それぞれ、いずれの値であってもよい。M行のメモリセルは、M個のワード線 WL1〜WLMを介して、選択されており、また、1行のダミーセルは、ダミーワード線DWLを介して、選択されている。N列のメモリセルは、N個のビット線 BL1〜BLNに結合されており、1列のダミーセルは、ダミービッド線 DBLに結合される。メモリセルおよびダミーセルは、典型的に、異なる設計でインプリメントされ、各セルは、典型的に、異なるビット線BLおよび
Figure 2010508616
に結合される。簡略化のために、N列についての補足的なビット線
Figure 2010508616
は、図の多くで省略されている。
行および列のデコーダ110は、メモリセルのアドレス(an address for a memory cell)、あるいは、アクセスされる予定であるメモリセルのブロック(a block of memory cells to be accessed)を受信し、受信されたアドレスに基づいて、行アドレスおよび列アドレスを生成する。デコーダ110は、そのあと、行アドレス上でプレデコード化を実行し、行アドレスに基づいてアクティブにする(assert)ために、特定のワード線(a specific word line)を示すプレデコード化された信号を提供する。デコーダ110は、また列アドレス上でプレデコード化を実行し、列アドレスに基づいて選択するために、1つまたは複数の特定のビット線を示す選択信号を提供する。デコーダ110は、また、クロック信号CLKを受信し、メモリデバイス100のオペレーションを制御するために使用されるコマンド信号(command signals)と内部クロック(internal clocks)とを生成する。
ワード線ドライバ120は、プレデコードされた信号をデコーダ110から受信し、そして、プレデコードされた信号によって示された特定のワード線を駆動するので、望ましい行のメモリセル(the desired row of memory cells)は、アクセスされることができる。タイミング制御回路160は、デコーダ110から選択信号を受信し、そして、Nビット線についてのN個のセンスアンプ170についてのイネーブル信号を生成する。タイミング制御回路160は、それぞれの選択されたビット線についてのイネーブル信号をアクティブにする(asserts)ので、そのビット線に結合されたメモリセルは、アクセスされることができる。イネーブル信号は、下記に説明されるように、1列のダミーセルと、タイミング制御回路160とによって決定される設定可能な遅延を有する。
センスアンプ170は、ビット線 BL1〜BLNに結合しており、各ビット線につき1つのセンスアンプを有している。各センスアンプは、タイミング制御回路160からそれぞれのイネーブル信号を受信する。各センスアンプは、イネーブル信号によって選択されたときに、関連するビット線上で電圧を増幅し、増幅された電圧についての論理値(例、ロー(low)あるいはハイ(high))を検出し、そして、検出された論理値を提供する。
図2は、図1における、ワード線ドライバ120、メモリアレイ150、そしてタイミング制御回路160の設計のブロック図である。ワード線ドライバ120は、ノーマルワード線ドライバ220と、ダミーワード線ドライバ222と、を含んでいる。ノーマルワード線ドライバ220は、デコーダ110からプレデコードされた信号を受信し、そしてプレデコードされた信号によって示される、選択されたワード線を駆動する。ダミーワード線ドライバ222は、1つまたは複数のプレデコードされた信号を受信し、ダミーワード線DWLを駆動する。ワード線ドライバ220および222は、ダミーワード線上の信号は、選択されたワード線上の信号に時間的整合をほぼとられる(approximately time aligned)ように、設計されることができる。
メモリアレイ150は、メモリセル250およびダミーセル252を含んでおり、それらは、下記で説明される。メモリセル250は、M個のワード線 WL1〜WLMによって選択されており、N個のビット線 BL1〜BLNをチャージ/ディスチャージする。ダミーセル252は、ダミーワード線DWLによって選択されており、ダミービット線DBLをディスチャージする。
タイミング制御回路160は、加速度回路260とセンスアンプドライバ262とを含んでいる。加速度回路260は、ダミービット線についての可変ドライブを提供しており、また、設定可能な遅延を有しているレディ信号を出力する。センスアンプドライバ262は、回路260からレディ信号を受信し、また、デコーダ110から選択信号 SA_sel1〜SA_selNを受信し、そしてセンスアンプ170のためのイネーブル信号 SA_en1〜SA_enNを生成する。各読み取りオペレーションについては、ドライバ262は、読み取られる予定である1つまたは複数のビット線についての1つまたは複数のセンスアンプをアクティブにさせる1つまたは複数のイネーブル信号をアクティブにする。
図3は、メモリアレイ150の設計のブロック図を示す。この設計において、メモリアレイ150は、M+1個の行およびN+1個の列のセル−1行および1列のダミーセル352とM行およびN列のメモリセル350、を含んでいる。1行のダミーセル(あるいはダミー行)は、ダミーワード線を受信し、また、各残りの行のセル(each remaining row of cells)は、それぞれのワード線を受信する。1列のダミーセル(あるいはダミー列)は、ダミービット線に結合されており、また、各列のメモリセルは、それぞれのビット線に結合する。各メモリセルは、データ値を保存してもよい。各ダミーセルは、あらかじめ決定された値、例、論理ロー(logic low)を保存してもよい。
ダミー行は、各ノーマルの行におけるセルの数と、同じ数のダミーセルを含むことができる。そういうわけで、ダミーワード線上のローディングは、各ノーマルワード線上のローディングと似ている可能性がある。ダミー行における第1のダミーセルは、ダミービット線に結合されており、ダミー行における残りのダミーセル(the remaining dummy cells in the dummy row)は、いずれのビット線にも結合されない。
ダミー列は、各ノーマル列におけるセルの数と、同じ数のダミーセルを含むことができる。各メモリセルおよび各ダミーメモリセルは、そのセルを選択するために使用される、左のWL入力354と、右のWL入力356と、を有している。明瞭にするために、WL入力354および356は、左上のダミーセルだけラベル付けされているが、それらは、すべてのセルにおいて、存在している。図3に示される設計においては、ダミー列における最初の4つのダミーセルは、ダミーワード線に結合されたそれらの右のWL入力を有しており、ダミー列における残りのダミーセルは、回路グラウンド(circuit ground)に接続された(tied to)それらの右のWL入力を有している。ダミー列における各ダミーセルは、それぞれのダミーワード線あるいはノーマルワード線に結合されるそれの左のWL入力を有している。そういうわけで、ダミーワード線上のローディングは、各ノーマルワード線上のローディングと似ている。
1つのワード線は、メモリ読み取りについてアクティブにされる(asserted)。アクティブにされたワード線は、そのワード線に結合されたメモリセルのうちすべてをイネーブルする(enables)。イネーブルされたメモリセルは、これらのメモリセルに結合されたビット線をチャージするかディスチャージする。1つまたは複数のビット線は、メモリ読み取りについて選択されることができる。センスアンプは、選択されたビット線(単数または複数)上で電圧を検出し、対応する論理値(単数または複数)を提供する。
ダミーワード線およびダミービット線は、また、メモリ読み取りについてアクティブにされる。ダミーワード線は、ダミー列における最初の4つのダミーセルをイネーブルし、そのあと、ダミービット線をディスチャージする。タイミング制御回路160は、ダミービット線上の電圧を検出し、センスアンプのためのイネーブル信号を生成する。
図4Aは、図3における、1つのメモリセル350の回路図を示す。メモリセル350は、1ペアのクロス結合された(cross-coupled)インバータ410aおよび410b、そして、1ペアの経路トランジスタ422および424、を含んでいる。各インバータ410は、Pチャネル電界効果トランジスタ(P-channel field effect transistor)(P−FET)412と、N−チャネル電界効果トランジスタ(N-channel field effect transistor)(N−FET)414と、によって形成される。FETs412および414は、一緒に結合されたそれらのドレインと、一緒に結合されたそれらのゲートと、そして電力供給VDDと回路グラウンドとにそれぞれ結合されたそれらのリソースと、を有している。インバータ410a(FETs412aおよび414aのドレインによって形成されており、ノードAとしてラベル付けされている)の出力は、インバータ410b(FETs412bおよび414bのゲートによって形成されている)の入力と結合する。インバータ410b(FETs412bおよび414bのドレインによって形成され、ノードBとしてラベル付けされている)の出力は、インバータ410a(FETs412aおよび414aのゲートによって形成されている)の入力と結合する。N−FET422は、ノードAに結合されたそのドレイン、ワード線WLmに結合されたそのゲート、そして補足的なビット線(complementary bit line)
Figure 2010508616
に結合されたそのソース、を有している。N−FET424は、ノードBに結合されたそのドレイン、ワード線WLmに結合されたそのゲート、そして、ビット線BLnに結合されたそのソース、を有している。
インバータ410aおよび410bは、肯定的なフィードバック(positive feedback)を介して、データ値を保存する。メモリセル350が論理ハイ(「1」)を保存するとき、ノードBは、論理ハイ(logic high)にあり、ノードAは、論理ロー(logic low)にある。メモリセル350が論理ロー(「0」)を保存するとき、ノードBは、論理ローにあり、ノードAは、論理ハイにある。メモリ読み取りについては、ワード線WLmは、論理ハイにアクティブにされており、また、N−FET422および424は、ONにされる(turned on)。メモリセル350が論理ハイを保存する場合には、ビット線BLnは、N−FET424を介してチャージされ、また、補足的なビット線
Figure 2010508616
は、N−FET422を介してディスチャージされる。メモリセル350が論理ローを保存するとき、逆も真である。
図4Bは、図3における、1つのダミーセル352の回路図を示す。ダミーセル352は、次の違いと共に、図4について上記で説明されたように、結合されるN−FETs422および424と、インバータ410aおよび410bと、を含んでいる。インバータ410aおよび410bの入力は、VDDにたいする結合であり、また、インバータ410aおよび410b(ノードAおよびB)の出力は、論理ローにある。N−FET422は、ワード線WLmに結合されたそのゲートと、補足的なダミービット線
Figure 2010508616
に結合されたそのソースと、を有している。N−FET424は、ダミーワード線DWL(図4Bに示されているように)、あるいは、回路グラウンド(示されていない)のいずれかに結合されたそのゲートと、ダミービット線DBLに結合されたそのソースと、を有している。
メモリ読み取りのために、ダミーワード線が、N−FET424のゲートに結合され、また、論理ハイにアクティブにされる場合、そのときには、N−FET424は、ONにされ(turned on)、ダミービット線DBLをディスチャージする。N−FET424のゲートが回路グラウンド(図4Bに示されていない)に接続される場合、そのときには、N−FET424は、その間中ずっとOFFにされており(turned off)、ダミービット線をディスチャージしない。
図3において示される設計においては、ダミー列における最初の4つのダミーセルは、あらかじめ決定された値、例えば図4Bで示されるような論理ロー、を保存することができる。ダミーワード線は、最初の4つのダミーセルの右WL入力に結合され、各メモリ読み取りについてこれらのダミーセルをイネーブルする。ダミー列における残りのダミーセルの右のWLの入力は、回路グラウンドに結合されており、これらのダミーセルは、その間中ずっとディスエーブルされる(disabled)。ダミービット線は、したがって、この設計において4つのダミーセルによって駆動される。一般的に、いずれの数のダミーセルも、ダミービット線を駆動するようにイネーブルされうる。ダミー列における残りのダミーセルは、各ノーマルビット線上のローディングと、ダミービット線上のローディングの整合をとるために使用されている。
図2に戻って参照すると、メモリ読み取りについてのデータ経路は、ノーマルワード線ドライバ220、ワード線 WL1〜WLM、メモリセル250、そしてビット線 BL1〜BLN、を含んでいる。制御経路は、ダミーワード線ドライバ222、ダミーワード線DWL、ダミーセル252、ダミービット線DBL、そしてタイミング制御回路160、を含んでいる。制御経路の遅延は、速いオペレーティングスピードおよび低電力消費量を達成するために、データ経路の遅延の整合をとるべきである。この遅延整合(delay matching)は、下記で説明されるように達成されることができる。
図1におけるデコーダ110は、行アドレスのプレデコードを実行し、プレデコードされた信号を生成する。例として、メモリアレイ150は、64行を含むことができ、また、各行は、6ビットの行アドレスbによって識別されることができ、ここでは、bは、最上位ビット(most significant bit)(MSB)であり、bは、最下位ビット(least significant bit)(LSB)である。デコーダ110は、6ビット行アドレスを、3つの最上位ビッドbを含んでいる3ビットの上位セグメント(a 3-bit upper segment)と、次の2つの最上位ビットbを含んでいる2ビットのミドルセグメント(a 2-bit middle segment)と、最下位ビットbを含んでいる1ビットの下位セグメント(a 1-bit lower segment)と、に配置する(organize)ことができる。デコーダ110は、ペアの2つの可能性のあるワード線(two possible word lines in a pair)のうちの1つを選択する2つのプレデコードされた信号A0およびA1に、1ビットの下位セグメント(lower segment)をデコードすることができる。デコーダ110は、次の2つのより上位のビット(the next two more significant bits)bとbを、グループにおいて4つのワード線ペアのうちの1つを選択する2つのプリデコードされる信号B0とB1として、供給することができる。デコーダ110は、8個のワード線グループのうちの1つを選択する、8個のプレデコードされた信号に、3ビット上位セグメント(the 3-bit upper segment)をデコードすることができ、各グループは、4つのワード線ペアを含んでいる。デコーダ110は、そのあと、ワード線ドライバ120に、12個のプレデコードされた信号を供給する。デコーダ110は、また、様々な他の方法でプレデコード化を実行することができる。
図5は、図2におけるノーマルワード線ドライバ220の設計の回路図を示す。簡略化のために、図5は、それぞれ、2つのワード線WLaおよびWLbだけのためのドライバ回路510aおよび510bを示しており、それらは、図1−3におけるM個のワード線 WL1〜WLMのうちの2つである。
ドライバ回路510aは、トランジスタ522a〜544aを含んでいる。P−FET522aおよびN−FET524aは、インバータ520aとして結合されており、また、N−FETs526aおよび528aの上にさらにスタックされる(stacked)。N−FET526aは、N−FET524aのソースに結合されたそのドレインと、B0信号を受信するそのゲートと、を有している。N−FET528aは、N−FET526aのソースに結合されたそのドレインと、B1信号を受信しているそのゲートと、回路グラウンドに結合されたソースと、を有している。P−FET542aおよびN−FET544aもまた、インバータ540aとして結合され、インバータ520aの出力に結合されるそれらの入力を有している。P−FETs532aおよび534bは、プルアップトランジスタ(pull-up transistors)であり、VDDに結合されたそれらのソース、インバータ540aの入力に結合されたそれらのドレイン、およびB0信号とB1信号を受信するそれらのゲート、をそれぞれ有している。ドライバ回路510aは、A0信号、B0信号およびB1信号を受信し、ワード線WLaを駆動する、3入力ANDゲート(a 3-input AND gate)をインプリメントする。
B0信号とB1信号が論理ハイにあるとき、ドライバ回路510aは、イネーブルされる。B0信号が論理ローにあるとき、N−FET526aは、OFFにされ(turned off)、P−FET532aは、ONにされ(turned on)、インバータ540aの入力をプルアップし(pulls up)、ワード線WLaは、論理ローにさせられる(is forced)。同様に、B1信号が論理ローにあるとき、N−FET528aは、OFFにされ、P−FET534aはONされ、インバータ540aの入力をプルアップし、また、ワード線WLaもまた、論理ローにさせられる。B0信号とB1信号が論理ハイにあるとき、N−FETs526aおよび528aは、ONされ、P−FETs532aおよび534aは、OFFにされ、インバータ520aおよび540は、シリーズで(in series)結合され、また、ワード線WLaは、A0信号の遅延バージョンである。
ワード線WLbについてのドライバ回路510bは、インバータ520bの入力がA0信号の代わりにA1信号を受信するということを除いて、トランジスタ 522a〜544aと同じ方法で結合されるトランジスタ 522b〜544bを含んでいる。ドライバ回路510bもまた、B0信号およびB1信号が論理ハイにあるときイネーブルされ、その場合には、ワード線WLbは、A1信号の遅延バージョンである。
図6は、図2のダミーワード線ドライバ222の設計の概略図を示す。ドライバ222は、一緒にスタックされたP−FETs 622aと622bとを含んでいる。P−FET622aは、VDDに結合されるそのソースと、A0信号を受信するそのゲートと、そして、P−FET622bのソースに結合されるそのドレイン、を有している。P−FET622bは、A1信号を受信するそのゲートと、ノードCに結合されるそのドレインと、を有している。N−FETs624a、626a、および628aも、また、一緒にスタックされる。N−FET624aはノードCに結合されるそのドレインと、A0信号を受信するそのゲートと、を有している。N−FET626aは、P−FET624aのソースに結合されるそのドレインと、VDDに接続された(tied to)そのゲートと、有している。N−FET628aは、P−FET626aのソースに結合されるそのドレインと、VDDに接続されたそのゲートと、回路グラウンドに結合されたそのリソースと、を有している。N−FETs624b、626b、および628bは、また、一緒にスタックされ、N−FETs624a、626a、および628aと同じ方法で、回路グラウンドとノードCとの間で結合される。しかしながら、N−FET624bのゲートは、A0信号の代わりにA1信号を受信する。インバータ640は、ノードCに結合されるその入力と、ダミーワード線DWLを駆動するその出力と、を有している。
メモリ読み取りの前に、ビット線は、論理ハイにプリチャージされ、A0信号とA1信号は、論理ローに設定される。P−FET622aとP−FET622bは、ONにされ、論理ハイにノードCを引っ張る(pulls)。メモリ読み取りについては、A0信号あるいはA1信号のいずれかがアクティブにされ、論理ハイに設定され、そして、他の信号は非アクティブにされる(deactivated)。もしA0信号がアクティブにされる場合、N−FET624aはONにされ、論理ローにノードCを引っ張る。A1信号がアクティブにされる場合には、N−FET624bはONにされ、論理ローにノードCを引っ張る。P−FET622aおよびN−FETs624a、626aおよび628aは、図5のドライバ510aについてのP−FET522a、N−FET524a、N−FET526a、およびN−FET528の整合がとられており、そして、それらのローディング(loading)を真似る。P−FET622b、N−FET624b、N−FET626b、およびN−FET628bは、図5のドライバ510bについてのP−FET522b、N−FET524b、N−FET526b、およびN−FET528bの整合がとられており、そして、それらのローディングを真似る。N−FET524a、N−FET526a、およびN−FET528aは、ドライバ510aが選択されるときにONにされる3つのスタックされたトランジスタである。N−FET624a、N−FET626a、およびN−FET628aは、ドライバ510aが選択されるときONにされる3つのスタックされたトランジスタであり、スタックされたN−FET524a、N−FET526a、およびN−FET528aの整合をとる。同様に、これらのトランジスタがONにされる場合、N−FET624b、N−FET626bおよびN−FET628bは、N−FET524b、N−FET526b、およびN−FET528bの整合をとる。インバータ640は、図5のインバータ540aあるいは540bを真似る。ダミーワード線ドライバ222の遅延は、したがって、図5の1つのワード線についてのドライバ回路510の遅延の整合をとる。このことは、メモリ読み取りについてのノーマルワード線上の信号でおおよその時間位置合わせされているダミーワード線上の信号を結果としてもたらす。
図7は、図2のタイミング制御回路160内の加速度回路260の設計の概略図を示す。加速度回路260は、プリチャージ回路710、設定可能なプルダウン回路720、そして、インバーティングバッファ730、を含んでいる。
プリチャージ回路710は、P−FETs712および714を含んでいる。P−FET712は、VDDに結合されたそのソースと、ビット線プリチャージ信号BL_prebを受信するそのゲートと、そして、補足的なダミービット線
Figure 2010508616
に結合されたそのドレイン、を有している。P−FET714は、VDDに結合されるそのソースと、プリチャージ信号を受信するそのゲートと、ダミービット線DBLに結合されるそのドレイン、とを有している。メモリ読み取りの前に、プリチャージ信号は、論理ローに設定され、P−Fets712および714は、ONにされ、論理ハイに
Figure 2010508616
とDBLを引っ張る。
プルダウン回路720は、L個のペアのスタックされた N−FETs722a〜722lおよび724a〜724lを含んでおり、ここでは、Lは、いずれの値であってもよい。それぞれのスタックされたペア、N−FET722は、ダミービット線に結合されたそのドレインと、アクセレータイネーブル信号Acc_enを受信するそのゲートと、を有している。N−FET724は、N−FET722のソースに結合されたそのドレイン、アクセレータ選択信号Accを受信するそのゲート、そして回路グラウンドに結合されたそのソース、を有している。
N−FETs722a〜722lは、プルダウン回路720をイネーブルにする論理ハイに、あるいは、プルダウン回路をディスエーブルにする論理ハイに、設定されることができる同じアクセレータイネーブル信号を受信する。N−FETs724a〜724lは、それぞれ、L個のアクセレータ選択信号Acc1〜AccLを受信する。各アクセレータ選択信号は、関連づけられたN−FETペアをイネーブルするために論理ハイに、あるいは、N−FETペアをディスエーブルにするために論理ローに、設定されることができる。イネーブルにされる各N−FETペアは、更なるプルダウンを提供し、そして、それゆえに、ダミービット線についてのディスチャージ時間をスピードアップする。N−FETsの大きさ(dimension)は、プルダウン機能を決定する。N−FETsのL個のペアは、(a)温度計デコード(thermometer decoding)については同じ大きさ、(b)二進法デコードについては異なる大きさ、あるいは(c)温度計と二進法デコードの組み合わせ、例えばあらかじめ決定された数のLSBsについては温度計デコード、残りのMSBsについては二進法デコード、を有することができる。
インバーティングバッファ730は、1つのインバータとして結合されるP−FET732およびN−FET734を含んでいる。バッファ730は、ダミービット線に結合されるその入力と、図2のセンスアンプドライバ262に対してレディ信号を提供するその出力と、を有している。
図8は、図2におけるタイミング制御回路160内で、センスアンプドライバ262の設計の概略図を示す。この設計においては、ドライバ262は、Nビット線についてのN個のセンスアンプ170のためのN個の2入力ANDゲート 810a〜810nを含んでいる。ANDゲート810は、加速度回路260からレディ信号と、デコーダ110から関連づけられたセンスアンプのための選択信号SA_selと、を受信し、そして、関連づけられたセンスアンプのためのイネーブル信号SA_enを生成する。1つまたは複数のセンスアンプは、SA_en1〜SA_enN信号のうち選択されたものをアクティブにすることによってイネーブルされることができる。
イネーブル信号のタイミングは、レディ信号によって決定される。ビット線上で電圧の信頼性のある検出(reliable detection of the voltage on the bit lines)を確実にしている一方で、可能な限り早く、イネーブル信号がセンスアンプをアクティブにするように、レディ信号のタイミングは、設定されることができる。レディ信号についての適切なタイミングは、製造している間に(during manufacturing)、例えば既知データパターンをメモリアレイ150に書き込み、そして、アクティブにされているAcc信号の異なる組み合わせに対応する異なるアクセレータセッティングを備えたデータパターンを読み取ることによって、決定されることができる。よいパフォーマンスを提供するアクセレータセッティングは、後続メモリ読み取りオペレーション(subsequent memory read operations)のためにセーブされ、使用されることができる。レディ信号のタイミングもまた、フィールド使用の間に設定されることができる。
図9は、メモリ読み取りのためのタイミング図を示す。プリチャージ信号BL_prebは、ダミービット線DBLを論理ハイにプリチャージするために、最初に論理ローにさせられる(brought to)。A0あるいはA1信号のいずれかは、そのあと、論理ハイに設定される。τdrの遅延の後で、ダミーワード線ドライバ222は、ダミーワード線DWL上で論理ハイを提供する。ダミーワード線上のこの論理ハイは、図3のダミー列における最初の4つのダミーセルを選択しており、それらは、論理ローを保存し、ダミービット線DBLをディスチャージする。τdblの遅延の後で、ダミービット線上の電圧は、論理ロートリガ電圧(logic low trigger voltage)に達し、インバーティングバッファ730は、論理ローを検知し、そしてレディ信号上で論理ハイを提供する。τenの更なる遅延の後で、各選択されたビット線についてのSA_en信号は、論理ハイに遷移する(transitions)。アクセレータイネーブル信号Acc_enは、図9で示されているように、ダミーワード線で位置合わせされることができる。
A0/A1信号からからSA_en信号までのトータル遅延は、(a)固定されている、A0/A1信号からDWLまでの遅延τdr、(b)設定可能である、DWLからレディ信号までの遅延τdbl、(c)これもまた固定されている、レディ信号からSA_en信号までの遅延τen、から成る。DWLとレディ信号との間の遅延τdblは、図7のプルダウン回路720において、異なるペアのN−FETs722および724をイネーブルすることによって変更されてもよい。遅延τdblは、制御経路の遅延がデータ経路の遅延の整合がとられるように、設定されることができる。
図10は、メモリ読み取りを実行するためのプロセス1000を示す。ダミーワード線は、少なくとも1つのダミーセルを選択するようにアクティブにされる(ブロック1012)。ノーマルワード線は、1行のメモリセルを選択するようにアクティブにされる(ブロック1014)。ダミービット線は、少なくとも1つのダミーセルで駆動される(ブロック1016)。設定可能な遅延を有しているレディ信号は、ダミービット線に部分的に基づいて生成される(ブロック1018)。この設定可能な遅延は、例えばダミービット線についての可変ドライブを得るために複数のトランジスタのうちの選択されたものでダミービット線を駆動することによって、得られることができる。少なくとも1つのイネーブル信号は、レディ信号に基づいて生成される(ブロック1020)。1行のメモリセルにおける少なくとも1つのメモリセルに結合された少なくとも1つのノーマルビット線は、少なくとも1つのイネーブル信号で検知される(ブロック1022)。
図2に示されているように、制御経路は、データ経路よりも多くの回路構成を有している。ダミーワード線ドライバ222は、例えば図5および6について上記で説明されているように、ノーマルワード線ドライバ220の整合がとられる。ダミーワード線上のローディングは、各ノーマルワード線上のローディングの整合がとられてもよく、また、ダミービット線上のローディングは、例えば図3について上記で説明されるように、各ノーマルビット線上のローディングの整合がとられてもよい。センスアンプドライバ262は、制御経路についてのさらなる遅延を結果としてもたらす。この遅延は、(a)ダミービット線を駆動するために複数の(例4つ)ダミーセルを使用すること、(b)アクセレータ回路260でダミービット線のディスチャージすることを加速すること、によって構成されることができる。アクセレータ回路260は、データ経路のタイミングで制御経路のタイミングを位置合わせするために使用されることができる、設定可能な遅延を提供することができる。
データ経路の遅延は、ICプロセス変動により、メモリデバイスからメモリデバイスへと、広く変更されてもよい。遅延変動は、IC製造技術が発展し続け、トランジスタサイズが縮小し続けると、より厳しくなる可能性がある。これは、トランジスタ(特にメモリセルについて使用されているもの)が最小可能サイズ(the smallest possible size)で典型的に設計されているからであり、また、したがって、プロセス変動に、影響されやすい(susceptible)。ダミーワード線およびノーマルワード線、ダミービット線およびノーマルビット線、そしてダミーワード線ドライバおよびノーマルワード線ドライバの整合は、制御経路とデータ経路との間の遅延変動を減らす。ダミーセルの整数(an integer number)は、制御経路における更なる回路構成と同様に遅延変動を構成するために使用されることができる。アクセレータ回路260は、良質のタイミング調整(fine timing adjustment)を提供するために使用されることができる。例えば、4.5ダミーセルがデータ経路のタイミングに制御経路のタイミングを整合をとることが必要とされる場合には、そのときには、4つのダミーセルは、ダミービット線をディスチャージするために使用されることができ、また、アクセレータ回路260は、0.5ダミーセルに対応するドライブ機能を提供することができる。
制御経路における設定可能な遅延は、アクセレータ回路260を用いてダミーワード線についての可変ドライブを適用することによって得られることができる。設定可能な遅延は、さらに、ダミービット線を駆動するように異なる数のダミーセルをアクティブにすることによって得られることができる。設定可能な遅延は、また、制御経路において、および/または、いくつかの他の手段を介して、可変遅延線(a variable delay line)で得られることができる。
ここに説明されているメモリデバイスは、無線通信、コンピューティング、ネットワーク、パーソナルエレクトロニクス、等、のために使用されることができる。メモリデバイスは、スタンドアロンデバイスとしてインプリメントされてもよく、プロセッサ、デジタル信号プロセッサ(DSP)、減らされたインストラクションセットコンピュータ(reduced instruction set computer)(RISC)、アドバンスドRISCマシン(advanced RISC machine)(ARM)、グラフィックプロセッサ、グラフィック処理ユニット(graphics processing unit)(GPU)、コントローラ、マイクロプロセッサ、等、内で埋め込まれていてもよい。無線通信デバイスのためのメモリデバイスの例示的な使用は、下記で説明される。
図11は、無線通信システムにおける無線デバイス1100のブロック図を示す。無線デバイス1100は、セルラ電話、端末、ハンドセット、携帯情報端末(personal digital assistant)(PDA)あるいは他のあるデバイス、であってもよい。無線通信システムは、符号分割多元接続(CDMA)システム、モバイル通信のためのグローバルシステム(Global System for Mobile Communications)(GSM)システム、あるいは他のあるシステムであってもよい。
無線デバイス1100は、受信経路および送信経路を介して、双方向通信(bi-directional communication)を提供することができる。受信経路上で、基地局によって送信された信号は、アンテナ1112によって受信され、受信機(RCVR)1114に対して提供される。受信機1114は、受信された信号をコンディションしデジタル化し、そして、さらなる処理についてのデジタルセクション1120に対してサンプルを提供する。送信経路上で、送信機(TMTR)1116は、デジタルセクション1120から送信されるべきデータを受信し、データを処理し、コンディションし、そして変調された信号を生成し、それは、基地局へとアンテナ1112を介して送信される。
デジタルセクション1120は、様々な処理と、インタフェースおよびメモリユニット(interface and memory units)と、を含んでおり、例えば、モデムプロセッサ1122、ビデオプロセッサ1124、コントローラ/プロセッサ1126、ディスプレイ1128、ARM/DSP1132、グラフィックプロセッサ1134、内部メモリ1136、外部バスインタフェース(external bus interface)(EBI)1138、がある。モデムプロセッサ1122は、データ伝送および受信について処理、例えば符号化、復調、および復号化、を実行する。ビデオプロセッサ1124は、例えばカムコーダ、ビデオプレイバック(video playback)、およびビデオ会議のため、のようなビデオアプリケーションについてのビデオコンテンツ(例、静止画、動画、およびムービングテキスト(moving texts))に関する処理を実行する。コントローラ/プロセッサ1126は、デジタルセクション1120内で、様々な処理およびインタフェースユニットのオペレーションを指示することができる。ディスプレイプロセッサ1128は、ビデオ、グラフィック、およびディスプレイユニット1130上のテキスト、の表示を容易にする処理を実行する。ARM/DSP1132は、無線デバイス1100についての様々なタイプの処理を実行することができる。グラフィックスプロセッサ1134は、例えばグラフィック、ビデオゲーム、等のためのグラフィック処理を実行する。内部メモリ1136は、デジタルセクション1120内で様々なユニットについてのデータおよび/またはインストラクションを保存する。EBI1138は、デジタルセクション1120(例えば内部メモリ1136)とメインメモリ1140との間のデータの移行(transfer)を容易にする。
プロセッサ 1122〜1134のそれぞれは、埋め込まれたメモリを含んでいてもよく、それは、上記で説明されているように、インプリメントされることができる。内部メモリ1136およびメインメモリ1140は、また、上記で説明されるようにインプリメントされることができる。デジタルセクション1120は、1つまたは複数の特定用途向けIC(application specific integrated circuits)(ASICs)および/または他のあるタイプの集積回路(ICs)でインプリメントされることができる。
ここに説明されているメモリデバイスは、メモリIC、ASIC、DSP、デジタル信号プロセッシングデバイス(digital signal processing device)(DSPD)、プログラマブル論理デバイス(programmable logic device)(PLD)、フィールドプログラマブルゲートアレイ(field programmable gate array)(FPGA)、コントローラ、プロセッサ、および他の電子デバイス、のような様々なハードウェアユニットにおいてインプリメントされることができる。メモリデバイスは、また、CMOS、N−MOS、P−MOS、バイポーラCMOS(bipolar-CMOS)(Bi−CMOS)、バイポーラ、等、のような様々なICプロセス技術において、製造されることができる(fabricated)。CMOS技術は、同じICダイ上でN−FETsおよびP−FETsの両方を製造することができ、ただし、N−MOS技術は、N−FETsのみを製造することができ、そして、P−MOS技術は、P−FETsのみを製造することができる。メモリデバイスは、いずれのデバイスのサイズ、例えば130ナノメータ(nanometer)(nm)、65nm、30nm、等、の技術を用いて製造されてもよい。
本開示の以上の説明は、いずれの当業者も本開示を作り、使用することができるように提供される。本開示に対する様々な修正は、当業者にとって容易に明らかであろう、そして、ここにおいて定義された包括的な原理は、本開示の精神あるいは範囲から逸脱することなく、他の変更に適用されることができる。したがって、本開示は、ここに示された例に限定されるようには意図されておらず、ここに開示された原理および新規な特徴に整合する最も広い範囲が与えられるべきである。

Claims (27)

  1. 複数の行と複数の列のメモリセルと、1列のダミーセルと、を備えているメモリアレイと;
    前記複数の列のメモリセルの複数のビット線に結合された複数のセンスアンプと;
    前記複数のセンスアンプのためのイネーブル信号を生成するように構成されたタイミング制御回路と、なお、前記イネーブル信号は、前記1列のダミーセルに部分的に基づいて決定される設定可能な遅延を有している;
    を備えている集積回路。
  2. 前記タイミング制御回路は、
    前記1列のダミーセルのダミービット線に結合され、また、前記イネーブル信号について前記設定可能な遅延を得るために前記ダミービット線についての可変ドライブを提供するように構成された加速度回路、
    を備えている、
    請求項1に記載の集積回路。
  3. 前記加速度回路は、前記ダミービット線についての前記可変ドライブを提供するのに選択可能な複数のトランジスタを備えている、請求項2に記載の集積回路。
  4. 前記複数のトランジスタのうち選択されたものは、前記複数のビット線のタイミングで前記イネーブル信号のタイミングを位置合わせするようにイネーブルされる、請求項3に記載の集積回路。
  5. 前記加速度回路は、1つのダミーセルによって適用される遅延よりも少ない遅延を提供するように設定可能である、請求項2に記載の集積回路。
  6. 前記加速度回路は、前記ダミービット線についての可変プルダウンを提供するのに選択可能な、複数のNチャネル電界効果トランジスタ(N−FETs)を備えている、請求項2に記載の集積回路。
  7. 前記タイミング制御回路は、
    設定可能な遅延を有しているレディ信号を前記加速度回路から受信するように、また、前記レディ信号に基づいて前記イネーブル信号を生成するように、構成された複数のドライバと、
    をさらに備えている、
    請求項2に記載の集積回路。
  8. 前記複数の行のメモリセルの複数のワード線を駆動するように構成された複数のワード線ドライバと、
    前記1列のダミーセルにおける少なくとも1つのダミーセルのダミーワード線を駆動するように構成されたダミーワード線ドライバと、
    をさらに備えている請求項1に記載の集積回路。
  9. 前記ダミーワード線ドライバは、遅延において、前記複数のワード線ドライバのそれぞれの整合をとられる、請求項8に記載の集積回路。
  10. 前記ダミーワード線上のローディングは、前記複数のワード線のそれぞれ上のローディングの整合をとられる、請求項8に記載の集積回路。
  11. 前記メモリアレイは、1行のダミーセルをさらに備えている、請求項1に記載の集積回路。
  12. 前記メモリセルおよび前記ダミーセルは、等しい数のトランジスタを用いて、インプリメントされる、請求項1に記載の集積回路。
  13. 前記1列のダミーセルは、ダミービット線に結合されており、また、あらかじめ決定された数のダミーセルは、前記ダミービット線を駆動するように構成されている、請求項1に記載の集積回路。
  14. 前記ダミービット線を駆動している前記ダミーセルは、あらかじめ決定された論理値を保存するように構成されている、請求項13に記載の集積回路。
  15. 前記1列のダミーセルは、ダミービット線に結合されており、前記ダミービット線上のローディングは、前記複数のビット線のうちそれぞれ上のローディングの整合がとられる、請求項1に記載の集積回路。
  16. 前記メモリアレイは、スタティックランダムアクセスメモリ(SRAM)である、請求項1に記載の集積回路。
  17. 複数の行と複数の列のメモリセルと、1列のダミーセルと、を備えているメモリアレイと;
    前記複数の列のメモリセルの複数のビット線に結合された複数のセンスアンプと;
    前記複数のセンスアンプのためのイネーブル信号を生成するように構成されたタイミング制御回路と、なお、前記イネーブル信号は、前記1列のダミーセルに部分的に基づいて決定される設定可能な遅延を有している;
    を備えているメモリデバイス。
  18. 前記タイミング制御回路は、
    前記1行のダミーセルのダミービット線に結合され、また、前記イネーブル信号について前記設定可能な遅延を得るために前記ダミービット線についての可変ドライブを提供するように構成された加速度回路、
    を備えている、請求項17に記載のメモリデバイス。
  19. 前記1列のダミーセルは、ダミービット線に結合されており、前記ダミービット線上のローディングは、前記複数のビット線のそれぞれ上のローディングの整合がとられる、請求項17に記載のメモリデバイス。
  20. 少なくとも1行のメモリセルの少なくとも1つのワード線を駆動するように構成された少なくとも1つのワード線ドライバと;
    少なくとも1つのダミーセルのダミーワード線を駆動するように構成されたダミーワード線ドライバと、なお、前記ダミーワード線ドライバは、遅延において、前記少なくとも1つのワード線ドライバのそれぞれの整合がとられる;
    を備えている集積回路。
  21. 前記少なくとも1つのワード線ドライバのそれぞれは、
    前記ワード線ドライバがイネーブルされるときにされるN個のスタックされたトランジスタを備えており、なお、Nは、1よりも大きく、
    前記ダミーワード線ドライバは、各ワード線ドライバにおける前記N個のスタックされたトランジスタの整合をとるために、N個のスタックされたトランジスタを備えている、
    請求項20に記載の集積回路。
  22. 無線デバイスであって
    前記無線デバイスのための処理を実行するように動作するプロセッサと;
    複数の行および複数の列のメモリセルと、1列のダミーセルと、を備えているメモリアレイと、
    前記複数の列のメモリセルの複数のビット線に結合された、複数のセンスアンプと、
    前記複数のセンスアンプのためのイネーブル信号を生成するように構成されたタイミング制御回路と、なお、前記イネーブル信号は、前記1列のダミーセルに部分的に基づいて決定される設定可能な遅延を有している、
    を備えているメモリデバイスと;
    を備えている無線デバイス。
  23. 前記プロセッサと前記メモリデバイスは、単一の集積回路上で製造されている、請求項22に記載の無線デバイス。
  24. 少なくとも1つのダミーセルを選択するようにダミーワード線をアクティブにすることと、
    1行のメモリセルを選択するためにノーマルワード線をアクティブにすることと、
    前記少なくとも1つのダミーセルを用いてダミービット線を駆動することと、
    設定可能な遅延を有し、前記ダミービット線に基づいて、少なくとも1つのイネーブル信号を生成することと、
    前記少なくとも1つのイネーブル信号を用いて、前記1行のメモリセルにおける少なくとも1つのメモリセルに結合された少なくとも1つのノーマルビット線を検知することと、
    を備えているメモリデバイスを読み取る方法。
  25. 前記ダミービット線についての可変ドライブを得るために複数のトランジスタのうちの選択されたものを用いて前記ダミービット線を駆動することと;
    前記複数のトランジスタのうち前記選択されたものによって決定される設定可能な遅延を有するレディ信号を生成することと、なお、前記少なくとも1つのイネーブル信号は、前記レディ信号に基づいて生成される;
    をさらに備えている請求項24に記載の方法。
  26. 少なくとも1つのダミーセルを選択するためにダミーワード線をアクティブ化するための手段と、
    1行のメモリセルを選択するためにノーマルワード線をアクティブ化するための手段と、
    前記少なくとも1つのダミーセルを用いてダミービット線を駆動するための手段と、
    設定可能な遅延を有し、前記ダミービット線に基づいて、少なくとも1つのイネーブル信号を生成するための手段と、
    前記少なくとも1つのイネーブル信号を用いて前記1行のメモリセルにおける少なくとも1つのメモリセルに結合される少なくとも1つのノーマルビット線を検知するための手段と、
    を備えている装置。
  27. 前記ダミービット線についての可変ドライブを得るために複数のトランジスタのうち選択されたものを用いて前記ダミービット線を駆動するための手段と;
    前記複数のトランジスタのうち前記選択されたものによって決定される設定可能な遅延を有するレディ信号を生成するための手段と、なお、前記少なくとも1つのイネーブル信号は、前記レディ信号に基づいて生成される;
    をさらに備えている請求項26に記載の装置。
JP2009534866A 2006-10-25 2007-10-25 設定可能な遅延のトラッキングを備えたメモリデバイス Active JP5086360B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/552,893 2006-10-25
US11/552,893 US7755964B2 (en) 2006-10-25 2006-10-25 Memory device with configurable delay tracking
PCT/US2007/082555 WO2008052130A1 (en) 2006-10-25 2007-10-25 Memory device with configurable delay tracking

Publications (2)

Publication Number Publication Date
JP2010508616A true JP2010508616A (ja) 2010-03-18
JP5086360B2 JP5086360B2 (ja) 2012-11-28

Family

ID=39114000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009534866A Active JP5086360B2 (ja) 2006-10-25 2007-10-25 設定可能な遅延のトラッキングを備えたメモリデバイス

Country Status (7)

Country Link
US (1) US7755964B2 (ja)
EP (1) EP2092527B1 (ja)
JP (1) JP5086360B2 (ja)
KR (1) KR101045464B1 (ja)
CN (1) CN101523500B (ja)
TW (1) TW200832442A (ja)
WO (1) WO2008052130A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015503818A (ja) * 2012-01-17 2015-02-02 マーベル ワールド トレード リミテッド センス増幅器のアクティブ化を修正するシステムおよび方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7929419B2 (en) * 2006-08-04 2011-04-19 Tekelec Methods, systems, and computer program products for inhibiting message traffic to an unavailable terminating SIP server
US7944754B2 (en) * 2008-12-31 2011-05-17 Sandisk Corporation Non-volatile memory and method with continuous scanning time-domain sensing
JP5244713B2 (ja) * 2009-06-24 2013-07-24 パナソニック株式会社 半導体記憶装置
US8279659B2 (en) * 2009-11-12 2012-10-02 Qualcomm Incorporated System and method of operating a memory device
US8976614B2 (en) * 2011-02-11 2015-03-10 Taiwan Semiconductor Manufacturing Company, Ltd. Tracking scheme for memory
CN102682827B (zh) * 2011-03-14 2015-03-04 复旦大学 Dram的读出放大器的控制电路及包括其的dram
CN103123806B (zh) * 2011-11-20 2016-08-03 复旦大学 Dram的列选择信号的控制电路及包括其的存取存储器
US9196330B2 (en) 2012-01-17 2015-11-24 Qualcomm Incorporated Mimicking multi-voltage domain wordline decoding logic for a memory array
US9093126B2 (en) * 2012-07-31 2015-07-28 Taiwan Semiconductor Manufacturing Company, Ltd. Memory circuit
US8879303B2 (en) * 2013-01-03 2014-11-04 Lsi Corporation Pre-charge tracking of global read lines in high speed SRAM
US9715909B2 (en) 2013-03-14 2017-07-25 Micron Technology, Inc. Apparatuses and methods for controlling data timing in a multi-memory system
US9099200B2 (en) 2013-06-27 2015-08-04 International Business Machines Corporation SRAM restore tracking circuit and method
US9564193B2 (en) 2013-09-27 2017-02-07 Taiwan Semiconductor Manufacturing Company, Ltd. Circuit to generate a sense amplifier enable signal
CN103500584B (zh) * 2013-10-07 2016-10-26 复旦大学 一种fpga内嵌独立双端口bram ip硬核
US9389786B2 (en) * 2014-03-31 2016-07-12 Taiwan Semiconductor Manufacturing Company, Ltd. Memory device with tracking mechanism
KR101616262B1 (ko) * 2014-04-09 2016-04-28 (주)에이디테크놀로지 정적 램용 센스앰프인에이블 신호 생성회로 및 그 방법과, 그 생성회로를 구비한 정적 램
KR101586848B1 (ko) * 2015-06-05 2016-01-19 주식회사 써니아이씨 스태틱 랜덤 액세스 메모리
KR101586850B1 (ko) * 2015-06-05 2016-01-19 주식회사 써니아이씨 스태틱 랜덤 액세스 메모리
US9865316B2 (en) * 2016-01-21 2018-01-09 Qualcomm Incorporated Memory with a word line assertion delayed by a bit line discharge for write operations with improved write time and reduced write power
US9959912B2 (en) * 2016-02-02 2018-05-01 Qualcomm Incorporated Timed sense amplifier circuits and methods in a semiconductor memory
US9858217B1 (en) * 2016-06-29 2018-01-02 Qualcomm Incorporated Within-die special oscillator for tracking SRAM memory performance with global process variation, voltage and temperature
US9858988B1 (en) * 2016-07-08 2018-01-02 Qualcomm Incorporated Timing circuit for memories
US9978442B2 (en) * 2016-09-07 2018-05-22 Qualcomm Incorporated Lower power high speed decoding based dynamic tracking for memories
US10854280B2 (en) 2017-08-30 2020-12-01 Arm Limited Read assist circuitry for memory applications
US10217506B1 (en) * 2017-08-30 2019-02-26 Arm Limited Dummy wordline underdrive circuitry
US10269416B1 (en) * 2017-10-20 2019-04-23 Arm Limited Dummy wordline tracking circuitry
KR20190047217A (ko) 2017-10-27 2019-05-08 삼성전자주식회사 메모리 셀 어레이에 대한 테스트를 수행하는 메모리 장치 및 이의 동작 방법
JP6963994B2 (ja) * 2017-12-22 2021-11-10 ルネサスエレクトロニクス株式会社 半導体装置
US10283191B1 (en) * 2018-03-09 2019-05-07 Stmicroelectronics International N.V. Method and circuit for adaptive read-write operation in self-timed memory
DE102018128927B4 (de) 2018-08-31 2024-06-27 Taiwan Semiconductor Manufacturing Co., Ltd. Wortleitungsaktivierung für eine variable Verzögerung
US10892007B2 (en) * 2018-08-31 2021-01-12 Taiwan Semiconductor Manufacturing Company, Ltd. Variable delay word line enable
US10726923B2 (en) 2018-11-21 2020-07-28 Sandisk Technologies Llc Bias scheme for dummy lines of data storage devices
US10878866B2 (en) * 2019-03-14 2020-12-29 Kabushiki Kaisha Toshiba Semiconductor storage device
US20230147106A1 (en) * 2020-06-29 2023-05-11 Google Llc Efficient image data delivery for an array of pixel memory cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177792A (ja) * 1996-09-03 1998-06-30 Townsend & Townsend & Crew Llp センスアンプタイミング回路
JP2002056682A (ja) * 2000-08-07 2002-02-22 Fujitsu Ltd 半導体記憶装置
JP2003109379A (ja) * 2001-09-27 2003-04-11 Fujitsu Ltd 半導体記憶装置
JP2005092925A (ja) * 2003-09-12 2005-04-07 Renesas Technology Corp 半導体集積回路
JP2006134487A (ja) * 2004-11-05 2006-05-25 Nec Micro Systems Ltd 半導体記憶装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5384737A (en) * 1994-03-08 1995-01-24 Motorola Inc. Pipelined memory having synchronous and asynchronous operating modes
US5596539A (en) * 1995-12-28 1997-01-21 Lsi Logic Corporation Method and apparatus for a low power self-timed memory control system
US6172925B1 (en) * 1999-06-14 2001-01-09 Transmeta Corporation Memory array bitline timing circuit
US6282131B1 (en) * 2000-09-27 2001-08-28 Virage Logic Corp. Self-timed clock circuitry in a multi-bank memory instance using a common timing synchronization node
JP2002216481A (ja) * 2001-01-19 2002-08-02 Hitachi Ltd 半導体集積回路装置
US6545923B2 (en) * 2001-05-04 2003-04-08 Samsung Electronics Co., Ltd. Negatively biased word line scheme for a semiconductor memory device
JP4339532B2 (ja) * 2001-07-25 2009-10-07 富士通マイクロエレクトロニクス株式会社 セルフタイミング回路を有するスタティックメモリ
JP4408610B2 (ja) 2002-08-09 2010-02-03 株式会社ルネサステクノロジ スタティック型半導体記憶装置
US6831853B2 (en) 2002-11-19 2004-12-14 Taiwan Semiconductor Manufacturing Company Apparatus for cleaning a substrate
US6885610B2 (en) * 2003-04-11 2005-04-26 Sun Microsystems, Inc. Programmable delay for self-timed-margin
CA2537632A1 (en) * 2003-09-05 2005-03-17 Zmos Technology, Inc. Low voltage operation dram control circuits
WO2005052944A1 (ja) 2003-11-28 2005-06-09 Fujitsu Limited セルフタイミング回路を有する半導体メモリ
US7376032B2 (en) * 2006-06-01 2008-05-20 Qualcomm Incorporated Method and apparatus for a dummy SRAM cell
KR100840636B1 (ko) * 2006-06-27 2008-06-24 후지쯔 가부시끼가이샤 셀프 타이밍 회로를 갖는 반도체 메모리
US7499347B2 (en) * 2006-08-09 2009-03-03 Qualcomm Incorporated Self-timing circuit with programmable delay and programmable accelerator circuits
US7359272B2 (en) * 2006-08-18 2008-04-15 Taiwan Semiconductor Manufacturing Company, Ltd. Circuit and method for an SRAM with reduced power consumption

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177792A (ja) * 1996-09-03 1998-06-30 Townsend & Townsend & Crew Llp センスアンプタイミング回路
JP2002056682A (ja) * 2000-08-07 2002-02-22 Fujitsu Ltd 半導体記憶装置
JP2003109379A (ja) * 2001-09-27 2003-04-11 Fujitsu Ltd 半導体記憶装置
JP2005092925A (ja) * 2003-09-12 2005-04-07 Renesas Technology Corp 半導体集積回路
JP2006134487A (ja) * 2004-11-05 2006-05-25 Nec Micro Systems Ltd 半導体記憶装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015503818A (ja) * 2012-01-17 2015-02-02 マーベル ワールド トレード リミテッド センス増幅器のアクティブ化を修正するシステムおよび方法

Also Published As

Publication number Publication date
EP2092527B1 (en) 2016-03-16
EP2092527A1 (en) 2009-08-26
CN101523500B (zh) 2015-07-08
CN101523500A (zh) 2009-09-02
KR20090077834A (ko) 2009-07-15
US7755964B2 (en) 2010-07-13
WO2008052130A1 (en) 2008-05-02
US20080101143A1 (en) 2008-05-01
TW200832442A (en) 2008-08-01
JP5086360B2 (ja) 2012-11-28
KR101045464B1 (ko) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5086360B2 (ja) 設定可能な遅延のトラッキングを備えたメモリデバイス
KR101093336B1 (ko) 고성능 메모리 디바이스들에 대한 클록 및 제어 신호 생성
JP5175344B2 (ja) 改善されたタイミングマージンのための遅延トラッキングを有するメモリデバイス
KR100416623B1 (ko) 프로세스 트랙킹 회로를 구비하는 감지증폭기 인에이블신호 발생회로 및 이를 구비하는 반도체 메모리장치
US7130236B2 (en) Low power delay controlled zero sensitive sense amplifier
US20140003160A1 (en) High-Speed Sensing Scheme for Memory
WO2003060918A2 (en) Matchline sensing for content addressable memories
US7170805B2 (en) Memory devices having bit line precharge circuits with off current precharge control and associated bit line precharge methods
US7468929B2 (en) Apparatus for SRAM array power reduction through majority evaluation
US20150357013A1 (en) Tracking scheme for floating bitline precharge
US20080062792A1 (en) Memory device and method for precharging a memory device
US9019751B2 (en) Process tolerant circuits
EP3405954A1 (en) Static random access memory with improved write time and reduced write power

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111205

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120106

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120206

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Ref document number: 5086360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250