JP2010021361A - 太陽電池およびその製造方法 - Google Patents

太陽電池およびその製造方法 Download PDF

Info

Publication number
JP2010021361A
JP2010021361A JP2008180491A JP2008180491A JP2010021361A JP 2010021361 A JP2010021361 A JP 2010021361A JP 2008180491 A JP2008180491 A JP 2008180491A JP 2008180491 A JP2008180491 A JP 2008180491A JP 2010021361 A JP2010021361 A JP 2010021361A
Authority
JP
Japan
Prior art keywords
laser
electrode
solar cell
substrate
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008180491A
Other languages
English (en)
Inventor
Hitoshi Ueda
仁 上田
Yasuo Shimizu
康男 清水
Yuko Taguchi
遊子 田口
Toshihide Okatsu
敏秀 大勝
Hiroto Uchida
寛人 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2008180491A priority Critical patent/JP2010021361A/ja
Publication of JP2010021361A publication Critical patent/JP2010021361A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】シャント成分を低減でき、短絡部分のない高性能な太陽電池を得る。
【解決手段】基板上に、第1導電層、光電変換層、第2導電層をこの順に重ねた構造体を設けた太陽電池の製造方法において、前記基板の第1端部の周辺領域に形成された構造体部分を、第1レーザの照射によって除去し(ステップS5)、前記除去により生じた前記構造体の第2端部に、前記第1レーザよりも発光波長が短い第2レーザを照射して、前記第1導電層の第2端部を残したまま、前記光電変換層の第2端部および前記第2導電層の第2端部をクリーニングする(ステップS6)。
【選択図】図2

Description

本発明は、太陽電池およびその製造方法に関する。
従来の太陽電池モジュールは、例えば、ガラス基板上に、光透過性を有する第1電極(透明電極)、シリコン(アモルファスシリコンおよび/またはマイクロクリスタルシリコン)の半導体光電変換層、第2電極(裏面電極)を積層した発電体を設けたものがある(例えば特許文献1参照)。発電体は、第1電極を分離した第1セル電極と、光電変換層を分離した光電変換セル層と、第2電極を分離した第2セル電極とによってそれぞれ構成された複数の発電セルを直列接続したものである。
このような従来の太陽電池モジュールでは、絶縁耐圧特性向上のため、裏面電極の形成後に発電体の周辺領域を、アルミセラミックスの吹き付け等のサンドブラスト処理により除去するものがある。しかし、このようなサンドブラスト処理をすると、飛び散った研磨剤が裏面電極、光電変換層、透明電極の端面にぶつかり、ダメージとしてセル電極間の短絡部分が数多く発生し、シャント成分の多い太陽電池になってしまうことがあった。
上記ブラスト処理による不具合を解消するために、発電体(透明電極/光電変換層/裏面電極の積層体)の周辺領域をレーザエッチングして、上記周辺領域に絶縁溝を形成した太陽電池がある(例えば特許文献1参照)。
特開2006−253417号公報
太陽電池の上記発電体において、第1電極(透明電極)は一般にTCO(Transparent Conducting Oxide)電極であるが、このTCO電極をエッチングできるのはIR(InfraRed laser)レーザ(赤外光レーザ)である。このため、発電体(TCO電極/光電変換層/裏面電極の積層体)の周辺領域をエッチングして絶縁溝を形成する際には、IRレーザが使用される。
しかしながら、IRレーザを照射して上記積層体をエッチング加工すると、レーザ照射時の発熱、蒸発した除去パーティクル(主にTCO)の再付着、光電変換層の吸収波長に赤外波長が含まれることによるエレクトロマイグレーション等、発電体(主に光電変換層および裏面電極)の加工端面にダメージを生じ、これにより短絡部分が形成され、シャント成分の多い太陽電池になってしまうという課題があった。
本発明は、このような従来の課題を解決するためになされたものであり、シャント成分を低減でき、短絡部分のない高性能な太陽電池を得ることを目的とするものである。
本発明の太陽電池の製造方法は、基板上に、第1導電層、光電変換層、第2導電層をこの順に重ねた構造体を設けた太陽電池の製造方法において、前記基板の第1端部の周辺領域に形成された構造体部分を、第1レーザの照射によって除去するステップと、前記除去により生じた前記構造体の第2端部に、前記第1レーザよりも発光波長が短い第2レーザを照射して、前記第1導電層の第2端部を残したまま、前記光電変換層の第2端部および前記第2導電層の第2端部をクリーニングするステップとを含むことを特徴とするものである。
また、本発明の太陽電池は、基板上に、第1導電層、光電変換層、第2導電層をこの順に重ねた構造体を備えた太陽電池において、前記構造体は、互いに分離された複数の発電セルを直列接続したものであり、前記発電セルの配列方向に沿った前記基板の2辺の第1端部に、前記第1導電層の第2端部が前記基板の第1端部よりも内側に位置しており、前記光電変換層の第3端部および前記第2導電層の第3端部が、互いに略面位置にあって、かつ前記第2端部よりも前記基板の中央寄りに位置している構造を有することを特徴とするものである。
本発明によれば、第1レーザによって基板の第1端部の周辺領域に形成された構造体部分を除去したあと、残った構造体の第2端部に第2レーザを照射して、第1導電層の第2端部を残したまま、第1レーザの照射により生じた光電変換層の第2端部のダメージおよび第2導電層の第2端部のダメージをクリーニングすることにより、シャント成分を低減できるので、短絡部分のない高性能な太陽電池を得ることができるという効果がある。
以下、本発明を、図面を参照して詳細に説明するが、本発明はこれに限定されるものではなく、本発明の主旨を逸脱しない範囲において種々の変更が可能である。
実施の形態1
図1は本発明の実施の形態1の太陽電池モジュールの構成図である。図1において、(a)は基板裏面側から見た平面図、(b)は(a)においてのX1−X1間の部分断面部、(c)は(a)においてのY1−Y1間の部分断面図である。この実施の形態1の太陽電池モジュール10は、光透過性を有する基板11と、光透過性を有する第1電極(TCO電極)12(第1導電層)と、光電変換層13と、第2電極(裏面電極)14(第2導電層)とを備えている。この太陽電池モジュール10において、第1電極12、光電変換層13、第2電極14をこの順に重ねた構造体は、発電体16(構造体)を構成している。
この実施の形態1の太陽電池モジュール10において、発電体16は、複数の発電セル16aに分割されている。1つの発電セル16aは、1つの第1セル電極12aと、1つの光電変換セル層13aと、1つの第2セル電極14aとによって構成されている。そして、これら複数の発電セル16aは、直列に接続されている。
図2は本発明の太陽電池モジュールの製造手順を説明するフローチャートである。また、図3および図4は本発明の実施の形態1の太陽電池モジュール10の製造手順を説明する部分断面図であり、図3は図1(b)に相当する断面図、図4は図1(c)に相当する断面図である。
図2の本発明の製造手順では、基板端部11c(第1端部)の周辺領域f1内の発電体16部分の除去のためのIRレーザ照射によってダメージを生じた残りの発電体16端部(第2端部)に、SHG(Second Harmonic Generation)グリーンレーザ(緑色レーザ)を照射してクリーニングすることを特徴とする。
[基板11の用意]
まず、基板11を用意する(図2のステップS1)。基板11は、例えば、ガラスや透明樹脂等、太陽光の透過性に優れ、かつ耐久性のある絶縁材料からなる。なお、太陽電池10は、基板11の一方の面(裏面)11a側に発電体16(TCO電極12,光電変換層13,裏面電極14)を形成し、基板11の他方の面(表面)11b側から太陽光を入射させる。
[第1電極(TCO電極)13の形成]
次に、基板裏面11a上に第1電極12を形成する(図2のステップS2)。この第1電極12は、光透過性を有する金属酸化物、例えばAZO(Alを添加したZnO)、GZO(Gaを添加したZnO)やITO(Indium Tin Oxide)等のTCO(Transparent Conducting Oxide)からなるTCO電極である。
基板11の裏面11a上に上記のTCO電極12を成膜し、このTCO電極12に分離溝12bを形成して、それぞれ発電セル16aを構成する複数のTCOセル電極12aとする(図3(a)および図4(a)参照)。
[光電変換層13の形成]
次に、TCO電極12を形成した基板裏面11a上に、光電変換層13を形成する(図2のステップS3)。この光電変換層13は、p型シリコン膜(アモルファスシリコン膜および/またはマイクロクリスタルシリコン膜)と、n型シリコン膜(アモルファスシリコン膜および/またはマイクロクリスタルシリコン膜)との間に、i型シリコン膜(アモルファスシリコン膜および/またはマイクロクリスタルシリコン膜)を挟んだp−i−n接合構造またはn−i−p接合構造をなしている。
TCO電極12を形成した基板裏面11a上に、p−i−n接合構造またはn−i−p接合構造の光電変換層13を成膜し、この光電変換層13に分離溝13bを形成して、複数の光電変換セル層13aとする(図3(b)および図4(b)参照)。
なお、この光電変換層13は、アモルファスシリコンのp−i―n接合構造もしくはn−i―p接合構造に、マイクロクリスタルシリコンのp−i―n接合構造もしくはn−i―p接合構造を積層したタンデム構造とすることも可能である。
この光電変換層13に、基板11およびTCO電極12を通過して太陽光が入射し、太陽光に含まれるエネルギー粒子がi型シリコンに当たると、光起電力効果により、電子とホールとが発生する。すると、電子はn型シリコン、ホールはp型シリコンに向かって移動する。これら電子とホールとをTCO電極12と裏面電極14によりそれぞれ取り出すことで、光エネルギーを電気エネルギーに変換することができる(光電変換)。
[第2電極(裏面電極)14の形成]
次に、光電変換層13を形成した基板裏面11a上に、第2電極(裏面電極)16を形成する(図2のステップS4)。この裏面電極14は、TCOと金属または合金の積層構造からなる電極である。TCOは、例えばAZO、GZO、ITO等であり、金属または合金は、例えば銀(Ag)またはAg合金(例えば錫(Sn)と金(Au)を含有したAg)である。
光電変換層13を形成した基板裏面11a上に上記の裏面電極14を成膜し、この裏面電極14およびその下層の光電変換層13に、セル分離溝14bを形成して、それぞれ発電セル16aを構成する複数の裏面セル電極14aとする(図3(c)および図4(c)参照)。
[周辺発電体の除去]
次に、基板周辺領域f1内の発電体16(TCO電極12,光電変換層13,裏面電極14)の4辺全ての部分に、基板表面11b側または基板裏面11a側からIRレーザ(第1レーザ)を照射して、上記発電体部分を除去する(図2のステップS5)。
基板周辺領域f1において、IRレーザ光rの照射スポットrpを、基板端部11cに垂直な方向にスキャンしながら、基板端部11cに沿った方向にスキャンし、この領域f1内に形成されているTCO電極12,光電変換層13,裏面電極14を除去する。IRレーザは、光電変換層13および裏面電極14のみならず、TCO電極12を除去することが可能である。しかし、このとき、IRレーザ照射時の発熱、蒸発した除去パーティクル(主にTCO)の再付着、光電変換層13の吸収波長に赤外波長が含まれることによるエレクトロマイグレーション等、発電体16(主に光電変換層および裏面電極)の加工端部(第2端部)にダメージrdを生じる(図3(d)および図4(d)参照)。このTCO電極12から裏面電極14まで連なる発電体16端部のダメージrdは、発電セル16aに短絡部分を形成するシャント成分の要因となる。
IR(InfraRed)レーザは、赤外光を発振するレーザ発振器である。赤外光は、波長780nmより長い光であり、熱線とも呼ばれているように熱作用の大きい光である。このIRレーザとしては、COレーザやYAGレーザがある。YAGレーザの場合には、IRレーザ光は基本波(波長1064nm)であり、そのスポットrpの径は、例えば60μm以上に大きくすることができる。なお、このIRレーザは、基板11上に形成されたTCOを除去することができるので、TCO電極12の分離溝12bの形成にも使用可能である。
[光電変換層13端面および裏面電極14端面のクリーニング]
次に、IRレーザによる基板周辺領域f1内の発電体16部分の除去によってダメージrdを受けた発電体16(TCO電極12,光電変換層13,裏面電極14)の端部に、基板表面11b側からSHGグリーンレーザ(第1レーザよりも発光波長の短い第2レーザ)を照射して、光電変換層13端部(第2端部)および裏面電極14端部(第2端部)のダメージrdを除去し、クリーニングする(図2のステップS6)。
なお、このSHGグリーンレーザ照射では、TCO電極14端部(第2端部)のダメージrdは除去されずに残る。また、発電セル16aの配列方向(X方向)に沿った発電体16の2辺の端部についてはSHGグリーンレーザ照射によるクリーニングをするが、発電セル16aの分離方向(Y方向)に沿った発電体16の2辺の端部についてはSHGグリーンレーザ照射によるクリーニングをしない。
IRレーザによる除去がされずに残った発電体16(TCO電極12,光電変換層13,裏面電極14)の4辺の端部の内、発電セル16aの配列方向に沿った方向(発電セル16aの分離方向に垂直な方向)の2辺の端部において、SHGグリーンレーザ光gの照射スポットgpを基板端部11cに沿った方向にスキャンして、照射スポットgpの位置をずらしながら、TCO電極12および裏面電極14の4辺の端部に存在するダメージrdの内、発電セル16aの配列方向に沿った方向の2辺の端部に存在していたダメージrdを除去する(図3(e)および図4(e)参照)。
SHGグリーンレーザは、光電変換層13を除去でき、かつその上層のTCOを含む裏面電極14を光電変換層13とともに除去することはできるが、基板裏面11a上に形成されたTCO電極12を除去することはできない。このSHGグリーンレーザは、IRレーザに比較して照射時の発熱がほとんどなく、TCO電極12を除去しないので蒸発した除去パーティクルの再付着もほとんどなく、緑色光波長が光電変換層13の吸収波長に含まれていないのでエレクトロマイグレーションを生じることもなく、発電体16の光電変換層13端部(SHGグリーンレーザ照射により生じた第3端部)および裏面電極15(SHGグリーンレーザ照射により生じた第3端部)にダメージを生じさせることなく、IRレーザ照射によるダメージrdを除去できる(図4(f)参照)。なお、このSHGグリーンレーザを、基板11上に形成されたTCO電極12を残して、光電変換層13、あるいは光電変換層13および裏面電極14を除去することができるので、光電変換層13の分離溝13bの形成、あるいはセル分離溝14bの形成にも使用可能である。
SHG(Second Harmonic Generation)レーザは、レーザ第2高調波(レーザ基本波の2倍の周波数(波長の2分の1))のレーザ光を発振するレーザ発信器であり、SHGグリーンレーザは、レーザ第2高調波として緑色光を発振するレーザ発振器である。このSHGグリーンレーザとしてはCOレーザやYAGレーザの第2高調波によるものがある。YAGレーザの場合には、グリーンレーザ光波長は第2高調波の波長532nmであり、その照射スポットgpの径は、例えば5μm〜60μmである。なお、図2のステップS6には、SHGレーザではない緑色レーザを使用することも勿論可能である。
そして、例えば、SHGグリーンレーザ光gのスポットgpの半分が発電体16(TCO電極12,光電変換層13,裏面電極14)の端部に照射されるようにスキャンする(図4(e)参照)。パルス駆動のSHGグリーンレーザの場合には、1パルスで照射部分のTCO電極12および光電変換層13を除去できる。また、SHGグリーンレーザのスキャンによる隣り合う照射スポットgpの重なり寸法は、例えば10μmである。
なお、1つのレーザ発振器に、IRレーザとSHGグリーンレーザを設け、IRレーザを照射しながら、その照射の済んだ部位にSHGグリーンを照射することにより、つまり図2のステップS5の処理をしながら、ステップS6の処理をすることにより、ステップS5およびS6の作業時間を短縮でき、量産効率を上げることができる。
[最終洗浄]
次に、SHGレーザを照射した発電セル(TCO電極12,光電変換層13,)の端部を洗浄する。例えば、洗剤を使用してシャワーとブラシで上記端面を洗浄する(図2のステップS7、図4(f)参照)。そして、エアー乾燥させる。なお、IRレーザ照射後およびSHGグリーンレーザ照射後ごとに基板のレーザ照射部分を洗浄することが望ましい。
このように、図2による製造手順は、基板端部11cの周辺領域内に形成された発電体16部分をIRレーザで除去したあと、発電体16端部に生じたIRレーザによるダメージrdをSHGグリーンレーザで除去・クリーニングするものであるが、SHGグリーンレーザではTCO電極12を除去できないため、TCO電極12端部には、IRレーザ照射によるダメージrdが残る。しかし、TCO電極12の上層の光電変換層13端部および裏面電極14端部に生じた上記ダメージは除去されているので、隣り合う発電セルの電極間および同じ発電セルの電極間に生じるシャント成分を低減できる。
従って、太陽電池モジュール10は、発電セル16aの配列方向に沿った方向(分離方向に垂直な方向)の発電体16の2辺において、TCO電極12の端部が基板端部11cよりも内側に位置しており、光電変換層13端部(第3端部)および裏面電極14端部(第3端部)が、互いに略面位置にあり、かつTCO電極12端部よりも基板11の中央寄りに位置している構造を有している。
以上のように本発明の実施の形態1によれば、IRレーザによって基板11の端部11c周辺領域に形成された発電体16部分を除去したあと、残った発電体16端部にSHGグリーンレーザを照射して、TCO電極12端部を残したまま、IRレーザの照射により生じた光電変換層13端部および裏面電極14端部のダメージrdを除去してクリーニングすることにより、シャント成分を低減できるので、短絡部分のない高性能な太陽電池を得ることができる。
つまり、本発明の実施の形態1では、IRレーザを使用したあとにSHGグリーンレーザを使用し、IRレーザ光の照射による付着物等のダメージを受けた部位を、SHGグリーンレーザ光を照射して除去するので、シャント成分低減という効果が得られるのである。これとは逆に、SHGグリーンレーザ加工をしたあとに、その部位にIRレーザを使用すると、IRレーザを使用した際に飛ばされたTCO成分の再付着等のダメージを生じ、シャント成分の多い太陽電池となってしまい、上記本発明の効果を得ることはできない。
また、SHGグリーン発電体16端部をSHGグリーンレーザによってクリーニングしたあとに、水洗浄等することにより、さらにシャント成分を低減でき、より高性能な太陽電池を得ることができる。
さらに、この実施の形態1の太陽電池モジュール10では、発電セル16aの分離方向(Y方向)と垂直な方向(X方向)の発電体16端部にはSHGグリーンレーザによるクリーニングが施されているが(図1(c)参照)、発電セル16aの分離方向(Y方向)の発電体16端部にはSHGグリーンレーザによるクリーニングが施されていない(図1(b)参照)。
つまり、この実施の形態1の太陽電池モジュール10では、IRレーザ照射された発電体16の4辺の端部(第2端部)の内、X方向の対向する2辺の端部にのみSHGグリーンレーザを照射して、ダメージrdを除去し、クリーニングしている。この太陽電池モジュール20の製造手順は、図2のステップS6において、IRレーザ照射によって基板周辺部分を除去された発電体16のX方向の端部のみにSHGグリーンレーザを照射するものである。
従って、この太陽電池モジュール10では、発電セル16aの分離方向(Y方向)と垂直な方向(X方向)の発電体16の2辺においては、光電変換層13端部(第3端部)および裏面電極14端部(第3端部)のIRレーザ照射によるダメージrdがクリーニング・除去されているが、発電セル16aの分離方向(Y方向)に沿った発電体16の2辺の端部においては、TCO電極12端部のみならず、光電変換層13端部および裏面電極14端部にも、IRレーザ照射によるダメージrdが存在している(図1(b)参照)。
しかしながら、直列接続された複数の発電セル16aの内、その配列の両端に位置するセルについては、裏面セル電極14a上にはんだ層を形成してリードワイヤを設ける。このとき、セル内の裏面セル電極14aとTCOセル電極12aとが接続されてしまうため、上記両端に位置する発電セルにおいては、セル内の両電極が短絡しても、全く支障がない。また、ダメージrdが存在することで生じるシャント成分に起因する短絡部分は、発電体16のY方向の2辺の端部よりも、発電セル16aの分離方向(Y方向)と垂直な方向の2辺の端部において多く発生する。このため、発電体16のY方向の2辺の端部についてSHGレーザによるクリーリングを省略しても、太陽電池の性能劣化は全くない。
以上のように、発電セル16aの配列方向(X方向)に沿った発電体16の2辺の端部のみをSHGレーザ照射によってクリーニングすれば足りるので、製造にかかる時間を短縮することができる。
実施の形態2
図5は本発明の実施の形態2の太陽電池モジュールの構成図である。図5において、(a)は基板裏面側から見た平面図、(b)は(a)においてのX2−X2間の部分断面部、(c)は(a)においてのY2−Y2間の部分断面図である。この図5において、上記図1と同様のものには同じ符号を付してある。この実施の形態2の太陽電池モジュール20は、光透過性を有する基板11(第1導電層)と、光透過性を有する第1電極(TCO電極)12と、光電変換層13と、第2電極(裏面電極)14(第2導電層)とを備えている。この太陽電池モジュール20において、第1電極12、光電変換層13、第2電極14をこの順に重ねた構造体は、発電体16(構造体)を構成している。
図5のように、この実施の形態2の太陽電池モジュール20は、上記実施の形態1の太陽電池モジュール10(図1参照)において、製品となったときに実際に太陽電池として発電動作をする発電体16の有効領域部分の周囲に、基板11の裏面11bを露出させる絶縁溝16dを介して、無効発電体16c(無効TCO電極12c、無効光電変換層13c、無効裏面電極14cの積層体)を残したものである。つまり、基板周辺領域f2内の発電体16(TCO電極12,光電変換層13,裏面電極14)の部分を全て除去するのではなく、絶縁溝16dを形成するため部分のみを除去している。
図6および図7は本発明の実施の形態2の太陽電池モジュール20の製造手順を説明する部分断面図であり、図6は図5(b)に相当する断面図、図7は図5(c)に相当する断面図である。
この実施の形態2の太陽電池モジュール20の製造手順は、図2のステップS1〜S4(図3(a)〜(c)および図4(a)〜(c)参照)を実施したあと、図2のステップS5において、基板周辺領域f2の発電体16部分にIRレーザを照射するときに、IRレーザ光rの照射スポットrpを基板端部11cの辺に沿った方向にのみスキャンし、基板端部11cの辺に垂直な方向にはスキャンしない(図6(a)および図7(a)参照)。このため、基板端部11cに至るまでの全ての発電体16部分が除去されるのではなく、IRレーザ照射により形成された絶縁溝16dの基板端部11c側に、実際には太陽電池として機能しない無効発電体16cが残る。
そして、無効発電体16cおよび絶縁溝16dに囲まれた発電体16有効領域部分の4辺の端部の内、発電セル16aの配列方向に沿った方向(発電セル16aの分離方向に垂直な方向)の2辺の端部に、SHGレーザ光gのスポットgpを照射してクリーニングし、光電変換層13端部および裏面電極14端部に生じたIRレーザによるダメージrdを除去する(図2のステップS6、図6(b)および図7(b)参照)。そして、最終洗浄および乾燥処理をする(図2のステップS7、図7(c)参照)。
従って、この太陽電池モジュール20では、無効発電体16cの内側端部(基板11の中央寄りの端部)にIRレーザ照射によるダメージrdが残る(図5(b)および(c)参照)。しかし、発電体16の有効領域部分の光電変換層13端部および裏面電極14端部に生じたダメージrdはSHGレーザ照射によるクリーニングによって除去されているので、この発電体16の有効領域部分に生じるシャント成分を低減することができる。
以上のように本発明の実施の形態2によれば、発電体16の有効領域部分について上記実施の形態1と同様の効果を得られるとともに、基板端部11cの周辺領域に形成された発電体16部分をIRレーザによって除去する際に、IRレーザ光rの照射スポットrpを、基板端部11cの辺に沿ってスキャンするだけで、基板端部11cの辺と垂直な方向にはスキャンしないので、IRレーザ照射に要する時間を短縮できる。
また、この実施の形態2の太陽電池モジュール20では、発電体16の有効領域部分において、発電セル16aの分離方向(Y方向)と垂直な方向(X方向)の2辺の端部にはSHGレーザによるクリーニングが施されているが(図5(c)参照)、発電セル16aの分離方向(Y方向)の2辺の端部にはSHGグリーンレーザによるクリーニングが施されていない(図5(b)参照)。
つまり、この実施の形態2の太陽電池モジュール20では、発電体16の有効領域部分の4辺の端部の内、X方向の対向する2辺の端部にのみSHGグリーンレーザを照射して、ダメージrdを除去し、クリーニングしている。この太陽電池モジュール40の製造手順は、図2のステップS5において、基板周辺領域f2の発電体16部分にIRレーザを照射するときに、IRレーザ光rの照射スポットrpを基板端部11cの辺に沿った方向にのみスキャンし、基板端部11cの辺に垂直な方向にはスキャンせず、図2のステップS6において、発電体16の有効領域部分のX方向の端部のみにSHGグリーンレーザを照射するものである。
従って、この太陽電池モジュール20では、発電セル16aの分離方向(Y方向)に沿った発電体16の有効領域部分の2辺の端部においては、TCO電極12端部のみならず、光電変換層13端部および裏面電極14端部にも、IRレーザ照射によるダメージrdが存在している(図5(b)参照)。
しかしながら、発電体16の有効領域部分において、直列接続された複数の発電セル16aの内、その配列の両端に位置するセルについては、裏面セル電極14a上にはんだ層を形成してリードワイヤを設ける。このとき、セル内の裏面セル電極14aとTCOセル電極12aとが接続されてしまうため、上記両端に位置する発電セルにおいては、セル内の両電極が短絡しても、全く支障がない。また、ダメージrdが存在することで生じるシャント成分に起因する短絡部分は、発電体16の有効領域部分のY方向の2辺の端部よりも、発電セル16aの分離方向(Y方向)と垂直な方向の2辺の端部において多く発生する。このため、発電体16の有効領域部分のY方向の2辺の端部についてSHGレーザによるクリーリングを省略しても、太陽電池の性能劣化は全くない。
以上のように、発電セル分離方向と垂直な方向の発電体16の有効領域部分の2辺の端部のみをSHGレーザ照射によってクリーニングすれば足りるので、製造にかかる時間を短縮することができる。
本発明の実施の形態1の太陽電池モジュールの構成図である。 本発明の太陽電池モジュールの製造手順を説明するフローチャートである。 本発明の実施の形態1の太陽電池モジュールの製造手順を説明する部分断面図である(X1−X1断面)。 本発明の実施の形態1の太陽電池モジュールの製造手順を説明する部分断面図である(Y1−Y1断面)。 本発明の実施の形態2の太陽電池モジュールの構成図である。 本発明の実施の形態2の太陽電池モジュールの製造手順を説明する部分断面図である(X2−X2断面)。 本発明の実施の形態2の太陽電池モジュールの製造手順を説明する部分断面図である(Y2−Y2断面)。
符号の説明
10,20,30,40 太陽電池モジュール、 11 基板、 11a 基板裏面、
11b 基板表面、 11c 基板端部(第1端部)、 12 第1電極(TCO電極)(第1導電層)、 12a 第1セル電極(TCOセル電極)、 12b 分離溝、 12c 無効第1電極(無効TCO電極)、 13 光電変換層、 13a 光電変換セル層、
13b 分離溝、 13c 無効光電変換層、 14 第2電極(裏面電極)(第2導電層)、 14a 第2セル電極(裏面セル電極)、 14b セル分離溝、 14c 無効第2電極(無効裏面電極)、 16 発電体(構造体)、 16a 発電セル、 16c 無効発電体、 16d 絶縁溝。

Claims (5)

  1. 基板上に、第1導電層、光電変換層、第2導電層をこの順に重ねた構造体を設けた太陽電池の製造方法において、
    前記基板の第1端部の周辺領域に形成された構造体部分を、第1レーザの照射によって除去するステップと、
    前記除去により生じた前記構造体の第2端部に、前記第1レーザよりも発光波長が短い第2レーザを照射して、前記第1導電層の第2端部を残したまま、前記光電変換層の第2端部および前記第2導電層の第2端部をクリーニングするステップと
    を含むことを特徴とする太陽電池の製造方法
  2. 前記クリーニングにより生じた前記光電変換層の第3端部および前記第2導電層の第3端部を洗浄するステップをさらに含むことを特徴とする請求項1に記載の太陽電池の製造方法。
  3. 前記構造体は、互いに分離された複数の発電セルを直列接続したものであり、
    前記構造体の4辺の第2端部の内、前記発電セルの配列方向に沿った前記構造体の第2端部のみに前記第2レーザを照射してクリーニングすることを特徴とする請求項1に記載の太陽電池の製造方法。
  4. 前記第1導電層はTCO電極であり、前記第1レーザは赤外レーザであり、前記第2レーザは緑色レーザであることを特徴とする請求項1ないし3のいずれかに記載の太陽電池の製造方法。
  5. 基板上に、第1導電層、光電変換層、第2導電層をこの順に重ねた構造体を備えた太陽電池において、
    前記構造体は、互いに分離された複数の発電セルを直列接続したものであり、
    前記発電セルの配列方向に沿った前記基板の2辺の第1端部に、前記第1導電層の第2端部が前記基板の第1端部よりも内側に位置しており、前記光電変換層の第3端部および前記第2導電層の第3端部が、互いに略面位置にあって、かつ前記第2端部よりも前記基板の中央寄りに位置している構造を有することを特徴とする太陽電池。
JP2008180491A 2008-07-10 2008-07-10 太陽電池およびその製造方法 Pending JP2010021361A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008180491A JP2010021361A (ja) 2008-07-10 2008-07-10 太陽電池およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008180491A JP2010021361A (ja) 2008-07-10 2008-07-10 太陽電池およびその製造方法

Publications (1)

Publication Number Publication Date
JP2010021361A true JP2010021361A (ja) 2010-01-28

Family

ID=41705966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008180491A Pending JP2010021361A (ja) 2008-07-10 2008-07-10 太陽電池およびその製造方法

Country Status (1)

Country Link
JP (1) JP2010021361A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027532A1 (ja) * 2009-09-04 2011-03-10 株式会社アルバック 太陽電池モジュールの製造方法及び太陽電池モジュールの製造装置
WO2012056715A1 (ja) * 2010-10-29 2012-05-03 株式会社アルバック 薄膜太陽電池モジュールの製造装置及び製造方法
JP2012151282A (ja) * 2011-01-19 2012-08-09 Mitsubishi Electric Corp 薄膜太陽電池の製造方法
JP2014027032A (ja) * 2012-07-25 2014-02-06 Showa Shell Sekiyu Kk 薄膜太陽電池モジュールの製造方法
KR20180027179A (ko) * 2016-09-06 2018-03-14 주식회사 이오테크닉스 레이저 가공 장치 및 이를 이용한 레이저 가공 방법
CN114985955A (zh) * 2022-08-03 2022-09-02 苏州光昛智能科技有限公司 一种双划线激光清边工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11330513A (ja) * 1998-05-08 1999-11-30 Kanegafuchi Chem Ind Co Ltd 集積型シリコン系薄膜光電変換装置の製造方法
JP2001274446A (ja) * 2000-03-23 2001-10-05 Kanegafuchi Chem Ind Co Ltd 集積型ハイブリッド薄膜太陽電池の製造方法
JP2002373997A (ja) * 2001-04-10 2002-12-26 Kanegafuchi Chem Ind Co Ltd 集積型ハイブリッド薄膜光電変換モジュール
JP2006245507A (ja) * 2005-03-07 2006-09-14 Sharp Corp 薄膜太陽電池およびその製造方法
JP2006253417A (ja) * 2005-03-10 2006-09-21 Mitsubishi Heavy Ind Ltd 太陽電池パネル及び太陽電池パネルの製造方法
JP2006332453A (ja) * 2005-05-27 2006-12-07 Sharp Corp 薄膜太陽電池の製造方法および薄膜太陽電池
WO2007074683A1 (ja) * 2005-12-26 2007-07-05 Kaneka Corporation 積層型光電変換装置
JP2008109041A (ja) * 2006-10-27 2008-05-08 Sharp Corp 薄膜太陽電池および薄膜太陽電池の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11330513A (ja) * 1998-05-08 1999-11-30 Kanegafuchi Chem Ind Co Ltd 集積型シリコン系薄膜光電変換装置の製造方法
JP2001274446A (ja) * 2000-03-23 2001-10-05 Kanegafuchi Chem Ind Co Ltd 集積型ハイブリッド薄膜太陽電池の製造方法
JP2002373997A (ja) * 2001-04-10 2002-12-26 Kanegafuchi Chem Ind Co Ltd 集積型ハイブリッド薄膜光電変換モジュール
JP2006245507A (ja) * 2005-03-07 2006-09-14 Sharp Corp 薄膜太陽電池およびその製造方法
JP2006253417A (ja) * 2005-03-10 2006-09-21 Mitsubishi Heavy Ind Ltd 太陽電池パネル及び太陽電池パネルの製造方法
JP2006332453A (ja) * 2005-05-27 2006-12-07 Sharp Corp 薄膜太陽電池の製造方法および薄膜太陽電池
WO2007074683A1 (ja) * 2005-12-26 2007-07-05 Kaneka Corporation 積層型光電変換装置
JP2008109041A (ja) * 2006-10-27 2008-05-08 Sharp Corp 薄膜太陽電池および薄膜太陽電池の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027532A1 (ja) * 2009-09-04 2011-03-10 株式会社アルバック 太陽電池モジュールの製造方法及び太陽電池モジュールの製造装置
JPWO2011027532A1 (ja) * 2009-09-04 2013-01-31 株式会社アルバック 太陽電池モジュールの製造方法及び太陽電池モジュールの製造装置
JP5490808B2 (ja) * 2009-09-04 2014-05-14 株式会社アルバック 太陽電池モジュールの製造方法及び太陽電池モジュールの製造装置
US8822255B2 (en) 2009-09-04 2014-09-02 Ulvac, Inc. Method of manufacturing a solar cell module and apparatus of manufacturing a solar cell module
WO2012056715A1 (ja) * 2010-10-29 2012-05-03 株式会社アルバック 薄膜太陽電池モジュールの製造装置及び製造方法
JP2012151282A (ja) * 2011-01-19 2012-08-09 Mitsubishi Electric Corp 薄膜太陽電池の製造方法
JP2014027032A (ja) * 2012-07-25 2014-02-06 Showa Shell Sekiyu Kk 薄膜太陽電池モジュールの製造方法
KR20180027179A (ko) * 2016-09-06 2018-03-14 주식회사 이오테크닉스 레이저 가공 장치 및 이를 이용한 레이저 가공 방법
CN114985955A (zh) * 2022-08-03 2022-09-02 苏州光昛智能科技有限公司 一种双划线激光清边工艺

Similar Documents

Publication Publication Date Title
JP4340246B2 (ja) 薄膜太陽電池およびその製造方法
JP6404474B2 (ja) 太陽電池および太陽電池モジュール
AU2004204637B2 (en) Transparent thin-film solar cell module and its manufacturing method
TWI387115B (zh) 薄膜型太陽能電池及其製造方法
TWI529958B (zh) 太陽能電池之製造方法
JP2006013403A (ja) 太陽電池、太陽電池モジュール、その製造方法およびその修復方法
JP2010021361A (ja) 太陽電池およびその製造方法
WO2011093361A1 (ja) 太陽電池及び太陽電池の製造方法
JP6127047B2 (ja) 相互嵌合型電極形成
JP5283749B2 (ja) 光電変換モジュールおよびその製造方法
US20120094425A1 (en) Ablative scribing of solar cell structures
JP4875439B2 (ja) 太陽電池モジュールの製造方法
JP2010251667A (ja) 太陽電池
CN102239571B (zh) 薄膜光电变换装置的制造方法
JP4902472B2 (ja) 太陽電池及び太陽電池モジュール
CN112136218A (zh) 用于太阳能电池电路形成的激光辅助金属化工艺
JP2018521515A (ja) 細線のメタライゼーションを有する光起電力デバイス及びその製造方法
US11646387B2 (en) Laser assisted metallization process for solar cell circuit formation
KR101368903B1 (ko) 박막형 태양전지 및 그 제조방법
TWI495136B (zh) 太陽能電池及其製造方法
JP2005101383A (ja) 集積型光起電力装置及びその製造方法
JP2006237100A (ja) 光起電力装置およびその製造方法
JP2013229427A (ja) 薄膜太陽電池の製造方法
JPH069251B2 (ja) 光電変換半導体装置作製方法
JP5327859B2 (ja) 太陽電池セルおよびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120717