JP4902472B2 - 太陽電池及び太陽電池モジュール - Google Patents

太陽電池及び太陽電池モジュール Download PDF

Info

Publication number
JP4902472B2
JP4902472B2 JP2007241651A JP2007241651A JP4902472B2 JP 4902472 B2 JP4902472 B2 JP 4902472B2 JP 2007241651 A JP2007241651 A JP 2007241651A JP 2007241651 A JP2007241651 A JP 2007241651A JP 4902472 B2 JP4902472 B2 JP 4902472B2
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
solar cell
main surface
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007241651A
Other languages
English (en)
Other versions
JP2009076512A (ja
Inventor
大輔 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007241651A priority Critical patent/JP4902472B2/ja
Publication of JP2009076512A publication Critical patent/JP2009076512A/ja
Application granted granted Critical
Publication of JP4902472B2 publication Critical patent/JP4902472B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、受光面の反対側に設けられた裏面にp側、n側の両電極の取出構造を有する太陽電池、及びこの太陽電池を用いて製造される太陽電池モジュールに関する。
太陽電池は、クリーンで無尽蔵に供給される太陽光を直接電気に変換することができるため、新しいエネルギー源として期待されている。
一般的に、太陽電池1枚当りの出力は数W程度である。従って、家屋やビル等の電源として太陽電池を用いる場合には、複数の太陽電池を接続することにより出力を高めた太陽電池モジュールが用いられる。配列方向に従って配列された太陽電池どうしは、配線材によって互いに電気的に接続される。
近年、太陽電池どうしの接続を容易にするために、p側電極及びn側電極の両方を太陽電池の裏面側に設ける手法が提案されている(例えば、特許文献1及び特許文献2参照)。このような太陽電池は、半導体基板の主面に垂直な方向に延びる貫通孔(スルーホール)を有する。太陽電池の受光面側の電極で収集された光生成キャリアは、貫通孔に挿通された導電体により太陽電池の裏面側に導かれる。
特開昭64−82570号公報 特開平4−223378号公報
また、通常の結晶系太陽電池に比べ高い光電変換効率を有する太陽電池として、HIT(Heterojunction with Intrinsic Thin layer)構造の太陽電池が知られている。HIT太陽電池では、n型の結晶系シリコン基板の受光面上にp型の非晶質シリコン系薄膜を有するとともに、裏面上にn型の非晶質シリコン系薄膜を有する。n型の結晶系シリコン基板とp型の非晶質シリコン系薄膜とによって構成されるpn接合界面、及びn型の結晶系シリコン基板とn型の非晶質シリコン系薄膜とによって構成されるBSF接合界面には、実質的に真性の非晶質シリコン薄膜が介挿される。これにより、それぞれの接合界面における特性を向上させることができるため、高い光電変換効率が得られる。
このようなHIT太陽電池の構造を、上述の特許文献1、2に記載された太陽電池の構造に適用する場合、以下のような問題があった。
特許文献1、2に記載の太陽電池では、半導体基板に貫通孔を形成した後に、半導体基板の表面及び貫通孔の内壁面に熱拡散法を用いてpn接合が形成される。そして、半導体基板の裏面上及び貫通孔の内壁面上の所定領域に絶縁膜を形成した後に、半導体基板の表面上及び貫通孔の内部に電極を形成する。
一方、HIT太陽電池では、p型の非晶質シリコン系薄膜上及びn型の非晶質シリコン系薄膜上に透明導電膜が形成される。従って、半導体基板に貫通孔を形成した後に、p型の非晶質シリコン系薄膜と透明導電膜との積層膜、及びn型の非晶質シリコン系薄膜と透明導電膜との積層膜を形成すれば、それぞれの積層膜は貫通孔の内部にまで形成されてしまう。このため、それぞれの積層膜に含まれる透明導電膜を介して貫通孔の内部でリークや短絡が生じる。その結果、太陽電池の光電変換効率が低下してしまうという問題があった。
そこで、本発明は、このような問題に鑑みてなされたものであり、太陽電池の裏面上にp側、n側の両電極の取出構造を有する太陽電池において、貫通孔内におけるリークや短絡の発生を抑制することにより向上した光電変換効率を得ることのできる太陽電池及び太陽電池モジュールを提供することを目的とする。
上述した目的を達成するために、本発明の一の特徴は、一の主面と、一の主面の反対に設けられた他の主面と、一の主面から他の主面まで貫通する貫通孔とを有する半導体基板と、一の主面上から貫通孔の内壁面上に跨って形成された第1導電型を有する第1の半導体層と、第1の半導体層上に形成された第1の透明導電膜と、第1の透明導電膜上に形成された第1の集電電極と、他の主面上から貫通孔の内壁面上に跨って形成された第2導電型を有する第2の半導体層と、第2の半導体層上に形成された第2の透明導電膜と、第2の透明導電膜上に形成された第2の集電電極と、貫通孔に挿通され、第1の集電電極と電気的に接続された導電体と、他の主面上に形成され、導電体と電気的に接続された第1の配線用電極とを備え、第1の配線用電極は、第2の透明導電膜及び第2の集電電極と電気的に絶縁され、貫通孔は、一の主面に設けられた第1の開口と、他の主面に設けられた第2の開口とを有しており、一の主面と平行な投影面上において、第1の開口内には、第1の透明導電膜が形成され、第2の開口内には、第2の透明導電膜が形成され、第1の開口と第2の開口とは、互いに重ならず、第1の透明導電膜と第2の透明導電膜とは電気的に絶縁されていることを要旨とする。
本発明の一の特徴によれば、第1の開口と第2の開口とは、一の主面と平行な投影面上において、互いに重ならない位置にある。ここで、第1の透明導電膜及び第2の透明導電膜は、例えば、物理気相成長法により第1の半導体層上及び第2の半導体層上にそれぞれ形成される。第1の透明導電膜を一の主面側から形成すると、第1の透明導電膜は、第1の半導体層の表面上と、一の主面の法線方向からみえる貫通孔の内壁面上とに形成される。同様に、第2の透明導電膜を他の主面側から形成すると、第2の透明導電膜は、第2の半導体層の表面上と、他の主面の法線方向からみえる貫通孔の内壁面上とに形成される。
換言すれば、第1の開口と前記第2の開口とが互いに重ならないため、一の主面と平行な投影面上において、第1の開口内には第1の透明導電膜が形成され、第2の開口内には第2の透明導電膜が形成され、第1の透明導電膜と第2の透明導電膜とは電気的に絶縁されている。そのため、貫通孔の内壁面上には、第1の透明導電膜と第2の透明導電膜とが形成されない領域ができる。その結果、貫通孔及びその周辺部をマスクすることなく透明導電膜を形成できる。
また、上述した目的を達成するために、本発明の一の特徴は、受光面側保護材と、裏面側保護材と、受光面側保護材と裏面側保護材との間において配列方向に沿って配列された複数の太陽電池と、複数の太陽電池を互いに電気的に接続する配線材とを備える太陽電池モジュールであって、太陽電池は、一の主面と、一の主面の反対に設けられた他の主面と、一の主面から他の主面まで貫通する貫通孔とを有する半導体基板と、一の主面上から貫通孔の内壁面上に跨って形成された第1導電型を有する第1の半導体層と、第1の半導体層上に形成された第1の透明導電膜と、第1の透明導電膜上に形成された第1の集電電極と、他の主面上から貫通孔の内壁面上に跨って形成された第2導電型を有する第2の半導体層と、第2の半導体層上に形成された第2の透明導電膜と、第2の透明導電膜上に形成された第2の集電電極と、貫通孔に挿通され、第1の集電電極と電気的に接続された導電体と、他の主面上に形成され、導電体と電気的に接続された第1の配線用電極と有し、第1の配線用電極は、第2の透明導電膜及び第2の集電電極と電気的に絶縁され、貫通孔は、一の主面に設けられた第1の開口と、他の主面に設けられた第2の開口とを有しており、一の主面と平行な投影面上において、第1の開口内には、第1の透明導電膜が形成され、第2の開口内には、第2の透明導電膜が形成され、第1の開口と第2の開口とは、互いに重ならず、第1の透明導電膜と第2の透明導電膜とは電気的に絶縁されており、配線材は、第1の配線用電極と電気的に接続されていることを要旨とする。
また、本発明の一の特徴は、上述した本発明の一の特徴において、配線材は、配列方向に沿って配設され、第1の開口と第2の開口とは、一の主面と平行な投影面上において、配列方向に沿って並んで設けられることが好ましい。
かかる特徴によれば、太陽電池どうしを配線材により電気的に接続するときに、太陽電池の受光面側から配線材を配設する位置を確認することができる。従って、配線材の配設工程において、太陽電池の裏面側を確認するという煩雑な作業を行う必要がないため、工程の簡略化が図られる。
本発明によれば、太陽電池の裏面上にp側、n側の両電極の取出構造を有する太陽電池において、貫通孔内におけるリークや短絡の発生を抑制することにより向上した光電変換効率を得ることのできる太陽電池及び太陽電池モジュールを提供することができる。
次に、図面を用いて、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。但し、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきである。したがって、具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
(太陽電池モジュールの概略構成)
本発明の実施形態に係る太陽電池モジュール100の概略構成について、図1を参照して説明する。図1は、本実施形態に係る太陽電池モジュール100の構成を示す側面図である。図1に示すように、本実施形態に係る太陽電池モジュール100は、太陽電池ストリング1と、受光面側保護材2と、裏面側保護材3と、封止材4とを備える。太陽電池モジュール100は、受光面側保護材2と裏面側保護材3との間に、太陽電池ストリング1を封止することにより構成されている。
太陽電池ストリング1は、所定の配列方向に従って配列された複数の太陽電池10が配線材11によって互いに接続されている。太陽電池10は、太陽光が入射する受光面(図面中の上面)と、受光面の反対側に設けられた裏面(図面中の下面)とを有する。受光面と裏面とは、太陽電池10の主面である。太陽電池10の受光面上及び裏面上には集電電極が形成されている。太陽電池10の構成については後述する。
配線材11は、一の太陽電池10の裏面上に形成された集電電極に接続された、後述するバスバー電極と、一の太陽電池に隣接する他の太陽電池10の裏面上に形成された集電電極に接続された後述するバスバー電極とに接合されている。これにより、一の太陽電池10と他の太陽電池10とが、電気的に接続されている。配線材11としては、薄板状或いは縒り線状に成形された銅等の導電材を用いることができる。なお、配線材11には、薄板状の銅等の表面に軟導電体(共晶半田など)がメッキされていてもよい。
受光面側保護材2は、封止材4の受光面側に配置され、太陽電池モジュール100の表面を保護している。受光面側保護材2としては、透光性及び遮水性を有するガラス、透光性プラスチック等を用いることができる。
裏面側保護材3は、封止材4の裏面側に配置され、太陽電池モジュール100の背面を保護している。裏面側保護材3としては、PET(Polyethylene Terephthalate)等の樹脂フィルム、Al箔を樹脂フィルムでサンドイッチした構造を有する積層フィルム等を用いることができる。
封止材4は、受光面側保護材2と裏面側保護材3との間に太陽電池ストリング1を封止している。封止材4としては、EVA、EEA、PVB、シリコン、ウレタン、アクリル、エポキシ等の透光性の樹脂を用いることができる。
なお、以上のような構成を有する太陽電池モジュール100の外周には、Alフレーム(不図示)を取り付けることができる。
(太陽電池の構成)
次に、太陽電池10の構成について、図2及び図3を参照しながら説明する。図2は、太陽電池10を受光面側からみた平面図である。図3は、太陽電池10を裏面からみた平面図である。
太陽電池10は、図2に示すように、光電変換部20、受光面側集電電極30、裏面側集電電極31、受光面用バスバー電極34,35、裏面用バスバー電極36,37を備えている。
光電変換部20は、受光面(不図示)において太陽光を受けることにより光生成キャリアを生成する。光生成キャリアとは、太陽光が光電変換部20に吸収されて生成される正孔と電子とをいう。光電変換部20は、内部にn型領域とp型領域とを有し、n型領域とp型領域との界面部分でpn接合が形成されている。光電変換部20は、単結晶Si、多結晶Si等の結晶系半導体材料、GaAs、InP等の化合物半導体材料等の半導体材料などにより構成される半導体基板を用いて形成することができる。
なお、光電変換部20は、互いに異なる導電型を有する単結晶シリコン基板と非晶質シリコン層との間に実質的に真性な非晶質シリコン層を挟み込み、その界面での欠陥を低減し、ヘテロ結合界面の特性を改善した構造、いわゆるHIT(Heterojunction with Intrinsic Thin-layer)構造を有していてもよい。
受光面側集電電極30は、光電変換部20の受光面から光生成キャリアを集電する電極である。図2に示すように、受光面側集電電極30は、配列方向に略直交する方向に沿ってライン状に形成されている。受光面側集電電極30は、光電変換部20の受光面略全域に亘って多数本形成されている。また、裏面側集電電極31は、光電変換部20の裏面から光生成キャリアを集電する電極である。図3に示すように、裏面側集電電極31は、配列方向に略直交する方向に沿ってライン状に形成されている。裏面側集電電極31は、光電変換部20の裏面略全域にわたって多数本形成されている。図2,図3では、説明のために、3本の受光面側集電電極30と裏面側集電電極31が記載されているが、例えば、一辺が100mm程度の略正方形の太陽電池10であれば、受光面側集電電極30が0.1mm程度の幅で60本程度形成される。
受光面側集電電極30及び裏面側集電電極31は、樹脂材料をバインダーとし、銀粒子等の導電性粒子をフィラーとした樹脂型導電性ペーストを用いて形成することができる。
太陽電池10の裏面側は、受光面積の減少を考慮しなくてよいことから、受光面側集電電極30よりも多くの裏面側集電電極31を形成することができ、電気的な抵抗損失を低減することができる。光電変換部20の裏面に形成される裏面側集電電極31は、光電変換部20の裏面全面を覆うように形成されていても良い。
太陽電池10は、受光面側集電電極30に電気的に接続される導電体32を有する。導電体32は、光電変換部20の受光面から裏面まで貫通し、光電変換部20の裏面上に導出されている。光電変換部20の裏面は、受光面側と極性が異なる。そのため、導電体32は、絶縁体によって光電変換部20の裏面と絶縁されている。
光電変換部20の裏面上には、受光面用バスバー電極34,35と、裏面用バスバー電極36,37とが形成されている。受光面用バスバー電極34,35は、導電体32と電気的に接続されている。また、裏面用バスバー電極36,37は、裏面側集電電極31と電気的に接続されている。図示しないが、受光面用バスバー電極34,35と、光電変換部20の裏面とは、絶縁体により電気的に分離されている。
受光面用バスバー電極34,35は、多数本形成された受光面側集電電極30から光生成キャリアを集電する電極である。図2に示すように、受光面用バスバー電極34,35は、配列方向に沿って延びる方向に形成されており、裏面にまで貫通した導電体32と電気的に接続されている。
また、裏面用バスバー電極36,37は、多数本形成された裏面側集電電極31から光生成キャリアを集電する電極である。図2に示すように、裏面用バスバー電極36,37は、裏面側集電電極31と交差するように、配列方向に沿って延びる方向に形成されている。
受光面用バスバー電極34,35及び裏面用バスバー電極36,37は、樹脂材料をバインダーとし、銀粒子等の導電性粒子をフィラーとした樹脂型導電性ペーストを用いて形成することができる。
ここで、受光面用バスバー電極34,35及び裏面用バスバー電極36,37、それぞれの本数は、光電変換部20の大きさなどを考慮して、適宜設定することができる。本実施形態に係る太陽電池10は、受光面用と裏面用のバスバー電極を2本ずつ、ともに裏面に備えている。
図1に示す配線材11は、一の太陽電池10の受光面用バスバー電極34,35と、隣接する他の太陽電池10の裏面用バスバー電極36,37とを電気的に接続する。また、一の太陽電池10の裏面用バスバー電極36,37と他の太陽電池の受光面用バスバー電極34,35とを電気的に接続する。
(光電変換部の構成)
次に、太陽電池10の光電変換部20の構成について説明する。図4(a)は、図2のA−A断面の要部を拡大して示す図である。図4(b)は、n型単結晶シリコン基板21に設けられるスルーホール26における断面図である。
光電変換部20は、半導体基板としてのn型単結晶シリコン基板21と、n型単結晶シリコン基板21の受光面上に形成される第1の半導体層であるp型アモルファスシリコン層22と、裏面上に形成される第2の半導体層であるn型アモルファスシリコン層23とを有する。n型単結晶シリコン基板21は、受光面から裏面まで貫通する貫通孔(以下、スルーホールという)26を有するまた、n型単結晶シリコン基板21は、受光面及び裏面の表面に、微細凹凸(テクスチャ21a,21b)が形成される。
p型アモルファスシリコン層22の受光面側には、第1の透明導電膜(以下、TCO(Transparent Conducting Oxide)薄膜という)24が形成される。また、n型アモルファスシリコン層23の裏面側には、第2のTCO薄膜25が形成される。
n型単結晶シリコン基板21と、p型アモルファスシリコン層22と、n型アモルファスシリコン層23と、p型アモルファスシリコン層22の受光面側に形成された第1のTCO薄膜24と、n型アモルファスシリコン層23の裏面側に形成された第2のTCO薄膜25とが光電変換部20を形成している。
なお、n型単結晶シリコン基板21とp型アモルファスシリコン層22との間、及びn型単結晶シリコン基板21とn型アモルファスシリコン層23との間に、薄膜のi型非晶質シリコン層を介挿した構成としてもよい。
スルーホール26は、受光面上の開口である第1の開口26aと裏面上の開口である第1の開口26bとを有する。図5は、光電変換部20の受光面と平行な投影面上におけるスルーホール26の第1の開口26aの位置と、第1の開口26bの位置とを示している。図5に示す実線の円は、スルーホール26の受光面側にある開口(第1の開口26a)を示す。点線の円は、スルーホール26の裏面側にある開口(第2の開口26b)を示す。
すなわち、スルーホール26は、n型単結晶シリコン基板21の受光面側にある第1の開口26aと、裏面側にある第2の開口26bとが投影面において重ならないように、n型単結晶シリコン基板21の受光面の法線Lに対して斜め方向に形成される。
図4(b)に示すα1は、n型単結晶シリコン基板21の受光面の法線方向からみえているスルーホール26の内壁面を表している。同様に、α2は、裏面の法線方向からみえているスルーホールの内壁面を表している。ここで、スルーホール26の第1の開口26aと第2の開口26bは、受光面に平行な投影面上において重なっておらず、更に所定間隔dを有しているとよい。この間隔dに応じて、第1のTCO薄膜24及び第2のTCO薄膜25がともに形成されない非形成領域(後述する)ができる。
p型アモルファスシリコン層22は、n型単結晶シリコン基板21の受光面にCVD法により形成される。
また、p型アモルファスシリコン層22の受光面側には、第1のTCO薄膜24が形成される。第1のTCO薄膜24は、スパッタ法或いは蒸着法等のPVD法により形成される。第1のTCO薄膜24としては、In,Zn,Sn,Ti,W等の酸化物であり、導電性を有するものを用いることができる。
第1のTCO薄膜24は、n型単結晶シリコン基板21の受光面、及びこの受光面の法線方向からみえるスルーホール26の内壁面(図4(b)に示す内壁面α1)に形成される。
n型アモルファスシリコン層23は、n型単結晶シリコン基板21の裏面にCVDにより形成される。
また、n型アモルファスシリコン層23の裏面側には、第2のTCO薄膜25が形成される。第2のTCO薄膜25は、スパッタ法或いは蒸着法等のPVD法により形成される。第2のTCO薄膜25としては、In,Zn,Sn,Ti,W等の酸化物であり、導電性を有するものを用いることができる。なお、第1のTCO薄膜24と第2のTCO薄膜25は、同一材料であってもよい。
第2のTCO薄膜25は、n型単結晶シリコン基板21の裏面、及びこの裏面の法線方向からみえるスルーホール26の内壁面(図4(b)に示す内壁面α2)に形成される。スルーホール26の内壁面d1,d2は、TCO薄膜が形成されない非形成領域である。
p型アモルファスシリコン層22とn型単結晶シリコン基板21との間には、pn接合が形成されている。また、n型単結晶シリコン基板21とn型アモルファスシリコン層23との界面部分には、BSF接合が形成されている。
スルーホール26の内壁面には、絶縁体27が形成されている。絶縁体27は、スルーホール26の内壁面から第2のTCO薄膜25の表面にまで跨って形成される。また、受光面用バスバー電極34,35と光電変換部20の裏面側の表面との間にも形成される。
また、内壁面に絶縁体27が形成されたスルーホール26には、導電体32が挿通される。導電体32は、光電変換部20の受光面に設けられた受光面側集電電極30と電気的に接続されている。受光面側集電電極30により収集された光生成キャリアは、導電体32によって光電変換部20の裏面側に導かれる。受光面側集電電極30と導電体32は、同一材料であって、スクリーン印刷等により形成されてもよい。
(太陽電池の製造方法)
本発明の一実施形態として示す太陽電池10の製造方法について、図6乃至図11を用いて説明する。
1.スルーホールの形成
図6は、スルーホールを形成する工程を説明する図である。最初に、n型単結晶シリコンのインゴットをスライスしてウエハ(n型単結晶シリコン基板21に相当する)を作製する。スライス後のn型単結晶シリコン基板21の受光面と裏面とを貫通するスルーホール26を形成する。スルーホール26は、受光面と平行な投影面において、第1の開口26aと第2の開口26bとが重ならないように受光面の法線Lに対して傾斜させて形成する。
スルーホールの形成には、フッ硝酸、アルカリ溶液を用いたウェットエッチング法、Cl,CF,BCl等のガスを用いたドライエッチング法、レーザアブレーション加工を適用することができる。
レーザアブレーション加工は、シリコン基板上へのレジストパターン形成が不要であるため、好適に用いることができる。レーザアブレーション加工には、例えば、Nd:YAGレーザ(基本波、2倍波、3倍波)、及びXeClエキシマレーザ、KrFエキシマレーザ、ArFエキシマレーザ等のレーザを用いることができる。
n型単結晶シリコン基板21の受光面の法線Lに対して傾斜したスルーホール26を形成する方法としては、入射するレーザに対して基板を傾斜させてもよいし、水平に載置した基板に対して所定の入射角度でレーザを照射してもよい。一例として、ガルバノミラーを用いてレーザ光の入射角度を変更することができる。基板を水平のままで、レーザ光の入射角度を変更することにより、従来の製造装置の基板ステージ、穴開けの際の位置情報等を流用することができる。
2.テクスチャ処理・洗浄処理
図7は、半導体基板のテクスチャ化及び洗浄を説明する図である。スルーホールの形成後、スライス時及びスルーホール形成時の熱ダメージを取り除くとともに基板表面の不要な金属、有機物を取り除くために、n型単結晶シリコン基板21の受光面及び裏面を酸又はアルカリ溶液で洗浄する。続いて、アルカリ水溶液により異方性エッチング加工することにより、n型単結晶シリコン基板21の表面に微細凹凸(テクスチャ21a,21b)が形成される。なお、n型単結晶シリコン基板21は、多結晶シリコンを主体として形成されてもよい。
3.p層及びn層の形成
図8は、p層及びn層を形成する工程を説明する図である。n型単結晶シリコン基板21の裏面に、CVD(Chemical Vapor Deposition)法により、テクスチャ21aの上にi型アモルファスシリコン層、n型アモルファスシリコン層23をCVD法で製膜する。続いて、n型単結晶シリコン基板21の受光面にi型アモルファスシリコン層、p型アモルファスシリコン層22をCVD法で製膜する。
p型アモルファスシリコン層22、n型アモルファスシリコン層23、i型アモルファスシリコン層を形成する際には、n型単結晶シリコン基板21の第1の開口26a,第2の開口26b及びその周辺部をマスクしてもよいが、p型アモルファスシリコン層22は、導電率が低いこと、また、n型単結晶シリコン基板21とp型アモルファスシリコン層22の間、また、n型単結晶シリコン基板21とn型アモルファスシリコン層23との間には、i型アモルファスシリコン層が存在することなどの理由から、太陽電池特性を著しく低下させるほどのリーク電流は発生しないので、マスクを用いなくてもよい。
4.透明導電膜の形成
図9に、第1のTCO薄膜24と第2のTCO薄膜25とを形成する処理を示す。TCO薄膜の製膜方法としては、蒸着法、スパッタ法、イオンプレーティング法等のPVD(Physical Vapor Deposition)を用いる。PVD法は、反応種が対象物に対して直線的に飛来するため、遮蔽されている部分には殆ど製膜されない。
したがって、p型アモルファスシリコン層22の受光面側に第1のTCO薄膜24を形成する際、受光面に対して略垂直方向から入射する第1のTCO薄膜25の反応種は、p型アモルファスシリコン層22の受光面側表面と、受光面の法線L方向からみえるスルーホール26の内壁面α1の上に製膜される。
また、第2のTCO薄膜25を形成する場合も同様に、裏面に対して略垂直方向から入射する第2のTCO薄膜25の反応種は、n型アモルファスシリコン層23の裏面側表面と、裏面の法線方向からみえるスルーホール26の内壁面α2とに製膜される。したがって、スルーホール26内部には、第1のTCO薄膜24と第2のTCO薄膜25とが製膜されない、TCO薄膜の非形成領域(図4(b),図9に示すd1,d2)ができる。
5.絶縁体の形成
図10は、絶縁体を形成する工程を説明する図である。スルーホール26の内壁面から第2のTCO薄膜25の表面まで跨って、絶縁体27が形成される。絶縁体27は、第1の開口26a,第2の開口26b及びその周辺部をマスクMで覆い、CVD法により形成することができる。また、絶縁体27は、同様の手法を用いて、受光面用バスバー電極34,35が形成される予定の位置にも形成される。
これらの製膜方法を適用する場合には、絶縁体27として、i型アモルファスシリコン、SiO、SiNなどを使用できる。このほか、AlO、TiO、MgFなど絶縁性を示す材料であれば使用することができる。なかでも、i型アモルファスシリコン、SiO、SiNは、単結晶シリコン基板11に対するパッシベート性能が高い。特に、i型アモルファスシリコン層は、良好なパッシベート性を有する。i型アモルファスシリコン層は、絶縁体としてだけでなくパッシベーション層として機能することができる。
また、絶縁体27の製膜方法としては、上述した方法のほかに、コーティング法、ディップ法を使用することができる。コーティング法を適用する場合には、塗布材として、ポリイミド、ポリシラザン等の絶縁性を示す材料であれば使用することができる。また、これらの材料を複数種類組合せて、複数層積層したものでもよい。また、コーティング法の場合、形成時又はキュア時に、基板を200℃以下に保持することができる材料であることが好ましい。形成時又はキュア時における、本実施形態として示す太陽電池の電池特性低下が小さくてすむからである。
6.導電体の形成
図11は、導電体を形成する工程を説明する図である。p型アモルファスシリコン層22の受光面側に形成された第1のTCO薄膜24上に受光面側集電電極30をスクリーン印刷により形成する。また、n型アモルファスシリコン層23の裏面側に形成された第2のTCO薄膜25上にスクリーン印刷により裏面側集電電極31を形成する。
受光面側集電電極30を形成する工程で、同時に、導電体28を形成してもよい。また、光電変換部20に導電体28を挿通し、その後、受光面側又は裏面側の集電電極を形成する、という複数段階の処理を行ってもよい。
n型アモルファスシリコン層23の裏面側表面に形成された絶縁体27の上に、受光面用バスバー電極34,35を形成する。また、n型アモルファスシリコン層23の裏面側表面に裏面用バスバー電極36,37を形成する。裏面用バスバー電極36,37は、裏面側集電電極31とともに、スクリーン印刷により形成してもよい。
(作用・効果)
以上説明したように、太陽電池10の光電変換部20は、n型単結晶シリコン基板21の受光面側の第1の開口26aと裏面側の第2の開口26bとが受光面と平行な投影面上において互いに重ならないスルーホール26を有する。スルーホール26は、n型単結晶シリコン基板21の受光面の法線L方向に対して、斜め方向に形成されており、第1の開口26aと第2の開口26bとが受光面と平行な投影面上において互いに重なっていない。したがって、例えば、PVD法により第1のTCO薄膜24を形成する際、第1のTCO薄膜24の反応種は、p型アモルファスシリコン層22の受光面と、受光面の法線方向からみえているスルーホール26の内壁面(図4(b)に示す内壁面α1)の上に製膜される。また、n型アモルファスシリコン層23の裏面側表面に第2のTCO薄膜25を形成する場合も同様に、裏面に対して略垂直方向から入射する第2のTCO薄膜25の反応種は、裏面の法線方向からみて、n型アモルファスシリコン層23の裏面側表面と、スルーホール26の内壁面(図4(b)に示す内壁面α2)の上に製膜される。
換言すれば、第1の開口26aと第2の開口26bとが互いに重ならないため、一の主面と平行な投影面上において、第1の開口26a内には第1のTCO薄膜24が形成され、第2の開口26b内には第2のTCO薄膜25が形成されており、第1のTCO薄膜24と第2のTCO薄膜25とは電気的に絶縁されている。そのため、スルーホール26の内壁面上には、第1のTCO薄膜24と第2のTCO薄膜25とが形成されない領域ができる。このように、第1のTCO薄膜24と第2のTCO薄膜25とが接触しないので、両薄膜24、25間のリークや短絡を抑制できる。
また、第1の開口26a,第2の開口26b及びその周辺部がマスクで覆われていなくても、スルーホール26内部に、第1のTCO薄膜24と第2のTCO薄膜25とが製膜されないTCO薄膜の非形成領域(図4に示すd1,d2)を形成することができる。これにより、第1の開口26a,第2の開口26b及びその周辺部をマスクしなくても、スルーホール26内部で第1のTCO薄膜24と第2のTCO薄膜25とが電気的に導通することを防止できる。
また、太陽電池10は、第1のTCO薄膜24,第2のTCO薄膜25の製膜時にマスクを用いないので、従来、マスクによって形成されていた不要な無効領域を無くすことができる。これにより、太陽電池10の受光面積を増加させることができる。また、太陽電池モジュール100の発電効率を向上させることができる。
(隣接する太陽電池の接続)
図12は、本発明の実施形態に係る太陽電池モジュールにおいて互いに連結される太陽電池10を説明する図である。図12は、所定の配列方向に配列されて連結される一の太陽電池10と一の太陽電池10に隣接する太陽電池10とを受光面方向からみた平面図である。隣接する太陽電池10同士は、受光面と平行な平面において、互いに反転された関係になっている。これは、隣接する太陽電池の裏面側に形成された、極性の異なるバスバー電極を直線的に接続するための最適な配置である。
図12において、太陽電池10は、図示しない受光面用バスバー電極34,35と、裏面用バスバー電極36,37とが、裏面側において、配線材43,44で接続されることにより電気的に接続されている。また、太陽電池10は、図示しない受光面用バスバー電極34,35と、裏面用バスバー電極36,37とが、裏面側において、配線材41,42で接続されることにより、図示しない隣接した太陽電池10と電気的に接続されている。
図4及び図5を用いて説明したように、光電変換部20のn型単結晶シリコン基板21は、受光面側の第1の開口26aと裏面側の第2の開口26bとが受光面と平行な投影面上において互いに重ならないスルーホール26を有する。すなわち、スルーホール26は、n型単結晶シリコン基板21の受光面の法線L方向に対して斜めに形成されている。
第1の開口26aと第2の開口26bとが受光面と平行な投影面上において互いに重ならない位置関係になっていればよく、スルーホール26の法線Lに対する傾斜方向は、特に限定されないが、受光面と平行な投影面上において、第1の開口26aと第2の開口26bとが配線材の延びる向きに沿って並んでることが好ましい。
本実施形態に係る太陽電池10は、光電変換部20と、受光面側集電電極30と、裏面側集電電極31とを含む。図12に示す黒塗りの円は、光電変換部20の受光面に導出されている導電体32を示す。また、図12における点線の円は、光電変換部20の裏面に導出されている導電体32を示す。
第1の開口26aと第2の開口26bとが配線材の延びる向きに沿って並んでいる。従って、太陽電池10同士を配線材41〜44で接続するとき、太陽電池10の受光面側から配線材41〜44を配設する位置を確認することができる。従って、配線材41〜44の配設工程において、太陽電池10の裏面側を確認するという煩雑な作業を行う必要がないため、工程の簡略化が図られる。
(その他の実施形態)
本発明は、上述した本発明の要旨を逸脱しない範囲で種々の変更が可能であり、この開示の一部をなす論述及び図面は、本発明を限定するものではない。
例えば、上述した実施形態では、n型単結晶シリコン基板の受光面にp型アモルファスシリコン層を備え、基板の裏面にn型アモルファスシリコン層を備えた太陽電池について説明したが、これに限らず、p型単結晶シリコン基板の受光面にn型アモルファスシリコン層を備え、基板の裏面にp型アモルファスシリコン層を備えた太陽電池であってもよい。また、アモルファスシリコン層は、少なくともシリコン基板と逆導電型を有するアモルファスシリコン層が形成されていればよい。このようにすることで、少なくともpn接合が構成されるので、太陽電池として機能する。
また、シリコン基板と逆導電型を有するアモルファスシリコン層は、シリコン基板の裏面に形成されていてもよい。例えば、基板としてn型単結晶シリコン基板を用いた場合、受光面にはn型単結晶シリコン基板或いはn型アモルファスシリコン層が露出しており、裏面にp型アモルファスシリコン層が形成された太陽電池にも本発明は適用することができる。
また、受光面側集電電極30(又は裏面側集電電極31)は、1つの導電体32に対して複数本が集約されるパターンであってもよい。
また、本実施形態では、受光面用バスバー電極34,35、裏面用バスバー電極36,37を介して配線材11を電気的に接続する構成としているが、バスバー電極を用いずに、配線材を樹脂接着剤により太陽電池10上に接続してもよい。
本発明の実施形態として示す太陽電池モジュールの構成を説明する断面図である。 本発明の実施形態として示す太陽電池を受光面側からみた平面図である。 本発明の実施形態として示す太陽電池を裏面側からみた平面図である。 (a)は、図2に示すA−A’断面を示す断面図であり、(b)は、n型単結晶シリコン基板のスルーホールにおける断面図である。 は、n型単結晶シリコン基板を受光面からみた平面図であり、 n型単結晶シリコン基板に斜めスルーホールを形成する工程を説明する図である。 n型単結晶シリコン基板のテクスチャ処理及び洗浄処理を説明する図である。 p型アモルファスシリコン層及びn型アモルファスシリコン層を形成する工程を説明する図である。 p型アモルファスシリコン層の受光面側に第1のTCO薄膜を形成する処理と、n型アモルファスシリコン層の裏面側に第2のTCO薄膜を形成する処理とを説明する図である。 絶縁体を形成する工程を説明する図である。 導電体を形成する工程を説明する図である。 本実施形態に係る太陽電池モジュールを構成する太陽電池の配列を説明する図である。
符号の説明
1…太陽電池モジュール、20…光電変換部、21…n型単結晶シリコン基板、22…p型アモルファスシリコン層、23…n型アモルファスシリコン層、24…第1のTCO薄膜、25…第2のTCO薄膜、26…スルーホール、26a…第1の開口、26b…第2の開口、27…絶縁体、28…導電体

Claims (3)

  1. 一の主面と、前記一の主面の反対に設けられた他の主面と、前記一の主面から前記他の主面まで貫通する貫通孔とを有する半導体基板と、
    前記一の主面上から前記貫通孔の内壁面上に跨って形成された第1導電型を有する第1の半導体層と、
    前記第1の半導体層上に形成された第1の透明導電膜と、
    前記第1の透明導電膜上に形成された第1の集電電極と、
    前記他の主面上から前記貫通孔の内壁面上に跨って形成された第2導電型を有する第2の半導体層と、
    前記第2の半導体層上に形成された第2の透明導電膜と、
    前記第2の透明導電膜上に形成された第2の集電電極と、
    前記貫通孔に挿通され、前記第1の集電電極と電気的に接続された導電体と、
    前記他の主面上に形成され、前記導電体と電気的に接続された第1の配線用電極と
    を備え、
    前記第1の配線用電極は、前記第2の透明導電膜及び前記第2の集電電極と電気的に絶縁され、
    前記貫通孔は、前記一の主面に設けられた第1の開口と、前記他の主面に設けられた第2の開口とを有しており、
    前記一の主面と平行な投影面上において、
    前記第1の開口内には、前記第1の透明導電膜が形成され、
    前記第2の開口内には、前記第2の透明導電膜が形成され、
    前記第1の開口と前記第2の開口とは、互いに重なっておらず、
    前記第1の透明導電膜と前記第2の透明導電膜とは電気的に絶縁されている
    ことを特徴とする太陽電池。
  2. 受光面側保護材と、裏面側保護材と、前記受光面側保護材と前記裏面側保護材との間において配列方向に沿って配列された複数の太陽電池と、前記複数の太陽電池を互いに電気的に接続する配線材とを備える太陽電池モジュールであって、
    前記太陽電池は、
    一の主面と、前記一の主面の反対に設けられた他の主面と、前記一の主面から前記他の主面まで貫通する貫通孔とを有する半導体基板と、
    前記一の主面上から前記貫通孔の内壁面上に跨って形成された第1導電型を有する第1の半導体層と、
    前記第1の半導体層上に形成された第1の透明導電膜と、
    前記第1の透明導電膜上に形成された第1の集電電極と、
    前記他の主面上から前記貫通孔の内壁面上に跨って形成された第2導電型を有する第2の半導体層と、
    前記第2の半導体層上に形成された第2の透明導電膜と、
    前記第2の透明導電膜上に形成された第2の集電電極と、
    前記貫通孔に挿通され、前記第1の集電電極と電気的に接続された導電体と、
    前記他の主面上に形成され、前記導電体と電気的に接続された第1の配線用電極と有し、
    前記第1の配線用電極は、前記第2の透明導電膜及び前記第2の集電電極と電気的に絶縁され、
    前記貫通孔は、前記一の主面に設けられた第1の開口と、前記他の主面に設けられた第2の開口とを有しており、
    前記一の主面と平行な投影面上において、
    前記第1の開口内には、前記第1の透明導電膜が形成され、
    前記第2の開口内には、前記第2の透明導電膜が形成され、
    前記第1の開口と前記第2の開口とは、互いに重ならず、
    前記第1の透明導電膜と前記第2の透明導電膜とは電気的に絶縁されており、
    前記配線材は、前記第1の配線用電極と電気的に接続される
    ことを特徴とする太陽電池モジュール。
  3. 前記配線材は、前記配列方向に沿って配設され、
    前記第1の開口と前記第2の開口とは、前記一の主面と平行な投影面上において、前記配列方向に沿って並んで設けられる
    ことを特徴とする請求項2に記載の太陽電池モジュール。
JP2007241651A 2007-09-18 2007-09-18 太陽電池及び太陽電池モジュール Expired - Fee Related JP4902472B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007241651A JP4902472B2 (ja) 2007-09-18 2007-09-18 太陽電池及び太陽電池モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007241651A JP4902472B2 (ja) 2007-09-18 2007-09-18 太陽電池及び太陽電池モジュール

Publications (2)

Publication Number Publication Date
JP2009076512A JP2009076512A (ja) 2009-04-09
JP4902472B2 true JP4902472B2 (ja) 2012-03-21

Family

ID=40611244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007241651A Expired - Fee Related JP4902472B2 (ja) 2007-09-18 2007-09-18 太陽電池及び太陽電池モジュール

Country Status (1)

Country Link
JP (1) JP4902472B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101108474B1 (ko) * 2009-05-14 2012-01-31 엘지전자 주식회사 태양 전지
US8987582B2 (en) 2009-06-30 2015-03-24 Lg Innotek Co., Ltd. Solar cell apparatus
KR101103929B1 (ko) 2009-06-30 2012-01-12 엘지이노텍 주식회사 태양광 발전장치
JP5073103B2 (ja) * 2009-09-28 2012-11-14 京セラ株式会社 太陽電池素子及びその製造方法
JP5702556B2 (ja) * 2010-07-26 2015-04-15 浜松ホトニクス株式会社 レーザ加工方法
JPWO2012132758A1 (ja) * 2011-03-28 2014-07-28 三洋電機株式会社 光電変換装置及び光電変換装置の製造方法
WO2012165289A1 (ja) * 2011-06-03 2012-12-06 三洋電機株式会社 太陽電池の製造方法
JP7146805B2 (ja) * 2017-12-04 2022-10-04 株式会社カネカ 太陽電池およびその太陽電池を備えた電子機器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2866982B2 (ja) * 1990-08-28 1999-03-08 京セラ株式会社 太陽電池素子
JP2786600B2 (ja) * 1994-08-26 1998-08-13 三菱重工業株式会社 薄膜太陽電池及びその製造方法
JP4155899B2 (ja) * 2003-09-24 2008-09-24 三洋電機株式会社 光起電力素子の製造方法

Also Published As

Publication number Publication date
JP2009076512A (ja) 2009-04-09

Similar Documents

Publication Publication Date Title
US7902454B2 (en) Solar cell, solar cell module, and method of manufacturing the solar cell
US9793422B2 (en) Solar cell
JP5328363B2 (ja) 太陽電池素子の製造方法および太陽電池素子
JP4989549B2 (ja) 太陽電池及び太陽電池モジュール
JP5410050B2 (ja) 太陽電池モジュール
JP4902472B2 (ja) 太陽電池及び太陽電池モジュール
JP6404474B2 (ja) 太陽電池および太陽電池モジュール
JP5546653B2 (ja) 太陽電池素子および太陽電池モジュール
JP2008294080A (ja) 太陽電池セル及び太陽電池セルの製造方法
JP5642355B2 (ja) 太陽電池モジュール
JP2010251667A (ja) 太陽電池
JP4578123B2 (ja) 太陽電池モジュール
JP6656225B2 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
JP2010050350A (ja) 太陽電池モジュール及び太陽電池
WO2018001187A1 (zh) 电池片、电池片矩阵、太阳能电池及电池片的制备方法
CN117727810A (zh) 太阳能电池及其制造方法、光伏组件
WO2013057978A1 (ja) 光電変換装置およびその製造方法、光電変換モジュール
JP2010080885A (ja) 太陽電池の製造方法
KR101889776B1 (ko) 태양 전지 및 이의 제조 방법, 그리고 태양 전지 모듈
JP2017175032A (ja) 太陽電池セル、太陽電池モジュール、および太陽電池セルの製造方法
JP5909662B2 (ja) 太陽電池モジュール
WO2018051659A1 (ja) 太陽電池モジュールおよび太陽電池セル
KR20140040347A (ko) 태양 전지 및 이의 제조 방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111228

R151 Written notification of patent or utility model registration

Ref document number: 4902472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees