WO2012165289A1 - 太陽電池の製造方法 - Google Patents

太陽電池の製造方法 Download PDF

Info

Publication number
WO2012165289A1
WO2012165289A1 PCT/JP2012/063313 JP2012063313W WO2012165289A1 WO 2012165289 A1 WO2012165289 A1 WO 2012165289A1 JP 2012063313 W JP2012063313 W JP 2012063313W WO 2012165289 A1 WO2012165289 A1 WO 2012165289A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
layer
type
transparent conductive
conductive oxide
Prior art date
Application number
PCT/JP2012/063313
Other languages
English (en)
French (fr)
Inventor
島 正樹
義宏 松原
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to EP12793109.5A priority Critical patent/EP2717332A4/en
Publication of WO2012165289A1 publication Critical patent/WO2012165289A1/ja
Priority to US14/085,931 priority patent/US20140073083A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for manufacturing a solar cell.
  • Patent Document 1 describes a solar cell including a photoelectric conversion unit, a transparent conductive oxide (TCO) layer disposed on the photoelectric conversion unit, a p-side electrode, and an n-side electrode. Has been.
  • TCO transparent conductive oxide
  • the present invention has been made in view of such a point, and an object thereof is to provide a method capable of manufacturing a solar cell having improved output characteristics.
  • a method for manufacturing a solar cell according to the present invention includes a photoelectric conversion unit having a p-type surface and an n-type surface, a p-side transparent conductive oxide layer disposed on the p-type surface, and an n-type surface.
  • An n-side transparent conductive oxide layer, a p-side electrode disposed on the p-side transparent conductive oxide layer, and an n-side electrode disposed on the n-side transparent conductive oxide layer It is related with the manufacturing method of a solar cell provided with.
  • the n-side transparent conductive oxide layer is formed after the p-side transparent conductive oxide layer is formed.
  • a method capable of producing a solar cell having improved output characteristics can be provided.
  • FIG. 1 is a cross-sectional view of a solar cell manufactured in one embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a solar cell manufactured in the present embodiment. First, the structure of the solar cell manufactured in the present embodiment will be described with reference to FIG.
  • the solar cell 1 includes a semiconductor substrate 10.
  • the semiconductor substrate 10 can be composed of, for example, a single crystal semiconductor substrate or a polycrystalline semiconductor substrate. Specifically, the semiconductor substrate 10 can be constituted by a single crystal silicon substrate, for example.
  • the conductivity type of the semiconductor substrate 10 is n-type.
  • the conductivity type of the semiconductor substrate 10 may be p-type.
  • a p-type semiconductor layer 11 different from the conductivity type of the semiconductor substrate 10 is disposed on the first main surface 10 a of the semiconductor substrate 10.
  • the p-type semiconductor layer 11 can be composed of, for example, a p-type amorphous silicon layer.
  • the p-type semiconductor layer 11 preferably contains hydrogen.
  • the thickness of the p-type semiconductor layer 11 can be, for example, about 3 nm to 20 nm, preferably about 5 nm to 15 nm.
  • amorphous silicon is a non-single-crystal silicon-based semiconductor material and includes microcrystalline silicon.
  • a substantially intrinsic semiconductor layer 12 is disposed between the first main surface 10 a of the semiconductor substrate 10 and the p-type semiconductor layer 11.
  • the substantially intrinsic semiconductor layer 12 can be composed of, for example, an i-type amorphous silicon layer.
  • the substantially intrinsic semiconductor layer 12 preferably contains hydrogen.
  • the thickness of the substantially intrinsic semiconductor layer 12 is preferably such that it does not substantially contribute to power generation.
  • the thickness of the substantially intrinsic semiconductor layer 12 can be, for example, about 3 nm to 15 nm, preferably about 5 nm to 10 nm.
  • an n-type semiconductor layer 13 having the same conductivity type as that of the semiconductor substrate 10 is disposed on the second main surface 10 b of the semiconductor substrate 10.
  • the n-type semiconductor layer 13 can be composed of, for example, an n-type amorphous silicon layer.
  • the n-type semiconductor layer 13 preferably contains hydrogen.
  • the thickness of the n-type semiconductor layer 13 can be, for example, about 3 nm to 25 nm, preferably about 5 nm to 15 nm.
  • a substantially intrinsic semiconductor layer 14 is disposed between the second main surface 10 b of the semiconductor substrate 10 and the n-type semiconductor layer 13.
  • the substantially intrinsic semiconductor layer 14 can be composed of, for example, an i-type amorphous silicon layer.
  • the thickness of the substantially intrinsic semiconductor layer 14 is preferably such that it does not substantially contribute to power generation.
  • the substantially intrinsic semiconductor layer 14 preferably contains hydrogen.
  • the thickness of the substantially intrinsic semiconductor layer 14 can be, for example, about 3 nm to 15 nm, preferably about 5 nm to 10 nm.
  • the semiconductor layers 11 to 14 and the semiconductor substrate 10 constitute a photoelectric conversion unit 20.
  • the photoelectric conversion unit 20 has a p-type surface 20 p constituted by the surface of the p-type semiconductor layer 11 and an n-type surface 20 n constituted by the surface of the n-type semiconductor layer 13.
  • a p-side transparent conductive oxide (TCO) layer 15 is disposed on the p-type surface 20p.
  • a p-side collector electrode 17 is disposed on the TCO layer 15. Holes are collected by the p-side collector electrode 17.
  • the n-side TCO layer 16 is disposed on the n-type surface 20n.
  • An n-side collector electrode 18 is disposed on the TCO layer 16. Electrons are collected by the n-side collector electrode 18.
  • the transparent conductive oxide that is a constituent material of the TCO layers 15 and 16 include, for example, indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and cadmium stannate. (Cd 2 SnO 2 ) and the like.
  • indium oxide when used as a constituent material of the TCO layers 15 and 16, when at least one of Sn, W, Ce, Ti, Nb, and Zn is used, or when zinc oxide is used.
  • F may be contained if it contains at least one of Al and Ga, and further if tin oxide is used.
  • substantially intrinsic semiconductor layers 12 and 14 are formed on the semiconductor substrate 10.
  • the p-type semiconductor layer 11 is formed on the substantially intrinsic semiconductor layer 12, and the n-type semiconductor layer 13 is formed on the substantially intrinsic semiconductor layer 14.
  • the photoelectric conversion part 20 is produced by the above process.
  • the substantially intrinsic semiconductor layers 12 and 14 and the p-type semiconductor layer 11 and the n-type semiconductor layer 13 can be formed by a vapor deposition method such as a sputtering method or a CVD (Chemical Vapor Deposition) method.
  • the method for forming the TCO layers 15 and 16 is not particularly limited.
  • the TCO layers 15 and 16 can be formed by, for example, a PVD (Physical Vapor Deposition) method such as a sputtering method, an ion plating method, a vacuum evaporation method, and an electron beam evaporation method in addition to the CVD method.
  • the ion plating method is preferably used for forming the TCO layers 15 and 16.
  • the energy of ions when forming the TCO layers 15 and 16 on the p-type amorphous silicon layer can be reduced to about 10 eV to about 20 eV.
  • the energy of ions can be significantly reduced.
  • damage to the p-type semiconductor layer 11, the substantially intrinsic semiconductor layers 12, 14 and the semiconductor substrate 10 can be reduced.
  • the TCO layers 15 and 16 are formed by an ion plating method, for example, a target made of a sintered body of In 2 O 3 powder containing about 1 to about 5 mass% of SnO 2 powder for doping is used.
  • the TCO layers 15 and 16 are formed by being installed at positions facing the substrate in the chamber. In this case, the amount of Sn in the ITO film constituting the TCO layers 15 and 16 can be changed by changing the amount of SnO 2 powder.
  • the chamber is evacuated in a state where the semiconductor substrate 10 is disposed facing and parallel to the target. Thereafter, a mixed gas of Ar and O 2 is flowed to maintain the pressure at about 0.4 Pa to about 1.0 Pa, and discharge is started. As described above, after the TCO layers 15 and 16 made of an ITO film are formed to a thickness of about 100 nm, the discharge is stopped.
  • the formation temperature of the p-side TCO layer 15 may be the same as the formation temperature of the n-side TCO layer 16 or may be higher than the formation temperature of the n-side TCO layer 16.
  • the solar cell 1 can be completed by forming the p-side collector electrode 17 and the n-side collector electrode 18.
  • the collector electrodes 17 and 18 can be formed by, for example, applying a conductive paste or plating.
  • the solar cell 1 having excellent output characteristics can be obtained.
  • the p-side TCO layer 15 is heated when the n-side TCO layer 16 is formed.
  • the crystallinity of the p-side TCO layer 15 is improved, the ohmic property between the p-type semiconductor layer 11 and the p-side TCO layer 15 is improved.
  • the curve factor of the obtained solar cell is improved, and thus the solar cell 1 having excellent output characteristics can be obtained.
  • the p-type semiconductor layer 11 is formed on the first main surface 10a of the semiconductor substrate 10, and the n-type semiconductor layer 13 is formed on the second main surface 10b.
  • the solar cell according to the present invention may be a back junction type solar cell including a photoelectric conversion unit having one main surface including a p-type surface and an n-type surface.
  • the present invention is not limited to this configuration.
  • the p-type surface may be constituted by a p-type dopant diffusion region formed in the semiconductor substrate.
  • the n-type surface may be constituted by an n-type dopant diffusion region formed on the semiconductor substrate.
  • the present invention is not particularly limited as long as the p-side TCO layer is formed prior to the n-side TCO layer.
  • the n-type semiconductor layer may be formed, and then the n-side TCO layer may be formed.
  • Example 1 A solar cell having a configuration substantially similar to that of the solar cell 1 according to the first embodiment was produced under the following conditions by the method described in the first embodiment. That is, in the example, the p-side TCO layer 15 was formed first, and then the n-side TCO layer 16 was formed.
  • Conditions in the examples Conditions for forming the TCO layers 15 and 16: Materials of TCO layers 15 and 16: ITO 1% by mass Gas flow rate: Argon gas 300sccm, oxygen gas 90sccm Input power: 3kW Pressure: 0.6Pa TCO layers 15 and 16 thickness: 100 nm
  • a solar cell was fabricated in the same manner as in the example except that the n-side TCO layer 16 was formed first and then the p-side TCO layer 15 was formed.
  • the fill factor (FF) and maximum output (Pmax) of the solar cells produced in each of the examples and comparative examples were measured.
  • the results are shown in Table 1 below.
  • the values shown in Table 1 are values normalized by setting the value of the comparative example to 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

改善された出力特性を有する太陽電池を製造し得る方法を提供する。 p側透明導電性酸化物層15を形成した後にn側透明導電性酸化物層16を形成する。

Description

太陽電池の製造方法
 本発明は、太陽電池の製造方法に関する。
 近年、環境負荷が低いエネルギー源として、太陽電池に対する注目が高まってきている。例えば特許文献1には、光電変換部と、光電変換部の上に配された透明導電性酸化物(Transparent Conductive Oxide:TCO)層と、p側電極及びn側電極とを備える太陽電池が記載されている。
特開2004-289058号公報
 近年、太陽電池の出力特性をさらに向上したいという要望が高まってきている。
 本発明は、斯かる点に鑑みてなされたものであり、その目的は、改善された出力特性を有する太陽電池を製造し得る方法を提供することにある。
 本発明に係る太陽電池の製造方法は、p型表面及びn型表面を有する光電変換部と、p型表面の上に配されたp側透明導電性酸化物層と、n型表面の上に配されたn側透明導電性酸化物層と、p側透明導電性酸化物層の上に配されたp側電極と、n側透明導電性酸化物層の上に配されたn側電極とを備える太陽電池の製造方法に関する。本発明に係る太陽電池の製造方法では、p側透明導電性酸化物層を形成した後にn側透明導電性酸化物層を形成する。
 本発明によれば、改善された出力特性を有する太陽電池を製造し得る方法を提供することができる。
図1は、本発明を実施した一実施形態において製造する太陽電池の断面図である。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
 (太陽電池1の構成)
 図1は、本実施形態において製造する太陽電池の断面図である。まず、図1を参照しながら本実施形態において製造する太陽電池の構成について説明する。
 太陽電池1は、半導体基板10を備えている。半導体基板10は、例えば、単結晶半導体基板や多結晶半導体基板により構成することができる。具体的には、半導体基板10は、例えば、単結晶シリコン基板により構成することができる。
 なお、本実施形態では、半導体基板10の導電型がn型である例について説明する。但し、本発明は、これに限定されない。半導体基板10の導電型はp型であってもよい。
 半導体基板10の第1の主面10aの上には、半導体基板10の導電型とは異なるp型半導体層11が配されている。p型半導体層11は、例えば、p型アモルファスシリコン層により構成することができる。p型半導体層11は、水素を含んでいることが好ましい。p型半導体層11の厚みは、例えば、3nm~20nm、好ましくは5nm~15nm程度とすることができる。なお、アモルファスシリコンとは、非単結晶シリコン系半導体材料であり、微結晶シリコンをも含むものである。
 半導体基板10の第1の主面10aとp型半導体層11との間には、実質的に真性な半導体層12が配されている。実質的に真性な半導体層12は、例えば、i型アモルファスシリコン層により構成することができる。実質的に真性な半導体層12は、水素を含んでいることが好ましい。実質的に真性な半導体層12の厚みは、実質的に発電に寄与しない程度であることが好ましい。実質的に真性な半導体層12の厚みは、例えば、3nm~15nm、好ましくは5nm~10nm程度とすることができる。
 一方、半導体基板10の第2の主面10bの上には、半導体基板10の導電型と同じであるn型半導体層13が配されている。n型半導体層13は、例えばn型アモルファスシリコン層により構成することができる。n型半導体層13は、水素を含んでいることが好ましい。n型半導体層13の厚みは、例えば、3nm~25nm、好ましくは5nm~15nm程度とすることができる。
 半導体基板10の第2の主面10bとn型半導体層13との間には、実質的に真性な半導体層14が配されている。実質的に真性な半導体層14は、例えば、i型アモルファスシリコン層により構成することができる。実質的に真性な半導体層14の厚みは、実質的に発電に寄与しない程度であることが好ましい。実質的に真性な半導体層14は、水素を含んでいることが好ましい。実質的に真性な半導体層14の厚みは、例えば、3nm~15nm、好ましくは5nm~10nm程度とすることができる。
 本実施形態では、半導体層11~14と、半導体基板10とにより光電変換部20が構成されている。光電変換部20は、p型半導体層11の表面により構成されたp型表面20pと、n型半導体層13の表面により構成されたn型表面20nとを有する。
 p型表面20pの上には、p側透明導電性酸化物(Transparent Conductive Oxide:TCO)層15が配されている。TCO層15の上には、p側集電極17が配されている。このp側集電極17によりホールが収集される。
 n型表面20nの上には、n側TCO層16が配されている。TCO層16の上には、n側集電極18が配されている。このn側集電極18により電子が収集される。
 なお、TCO層15,16の構成材料である透明導電性酸化物の具体例としては、例えば、酸化インジウム(In)、酸化亜鉛(ZnO)、酸化錫(SnO)、スズ酸カドミウム(CdSnO)等が挙げられる。なお、TCO層15,16の構成材料として、酸化インジウムを用いた場合にあっては、Sn,W,Ce,Ti,Nb,Znのうち少なくとも一つを含むもの、酸化亜鉛を用いた場合にあっては、Al,Gaの少なくともいずれかを含むもの、さらに酸化錫を用いた場合にあっては、Fを含むものとしてもよい。
 (太陽電池1の製造方法)
 次に、太陽電池1の製造方法の一例について説明する。
 まず、半導体基板10の上に、実質的に真性な半導体層12,14を形成する。次に、実質的に真性な半導体層12の上にp型半導体層11を形成すると共に、実質的に真性な半導体層14の上にn型半導体層13を形成する。以上の工程により、光電変換部20を作製する。
 なお、実質的に真性な半導体層12,14並びにp型半導体層11及びn型半導体層13の形成は、例えば、スパッタリング法やCVD(Chemical Vapor Deposition)法等の蒸着法により行うことができる。
 次に、p側TCO層15を形成する。その後に、n側TCO層16を形成する。TCO層15,16の形成方法は、特に限定されない。TCO層15,16は、例えば、CVD法に加え、スパッタリング法、イオンプレーティング法、真空蒸着法、電子ビーム蒸着法などのPVD(Physical Vapor Deposition)法等により形成することができる。なかでも、イオンプレーティング法がTCO層15,16の形成に好ましく用いられる。
 さらに、イオンプレーティング法を用いることにより、p型非晶質シリコン層上にTCO層15,16を形成する際のイオンのエネルギーを約10eV~約20eVまで小さくすることが可能である。このため、例えば、通常のスパッタ法を用いて透明導電膜を形成する場合のようにイオンのエネルギーが数100eV以上になる場合に比べて、イオンのエネルギーを大幅に低減することが可能である。これにより、p型半導体層11、実質的に真性な半導体層12,14及び半導体基板10へのダメージを低減することが可能である。
 TCO層15,16の形成をイオンプレーティング法で行う場合は、例えば、ドーピング用としてSnO粉末を約1質量%~約5質量%含むIn粉末の焼結体からなるターゲットを、チャンバ内の基板と対向する位置に設置してTCO層15,16の形成を行う。この場合、SnO粉末の量を変化させることにより、TCO層15,16を構成するITO膜中のSn量を変化させることが可能である。
 より具体的には、例えば、TCO層15,16の形成を形成するために、半導体基板10をターゲットと平行に対向配置した状態で、チャンバを真空排気する。その後、ArとOとの混合ガスを流して圧力を約0.4Pa~約1.0Paに保持し、放電を開始する。以上のようにして、ITO膜からなるTCO層15,16を約100nmの厚みに形成した後、放電を停止する。
 p側TCO層15の形成温度は、n側TCO層16の形成温度と同じであってもよいし、n側TCO層16の形成温度よりも高くてもよい。
 最後に、p側集電極17とn側集電極18とを形成することにより太陽電池1を完成させることができる。なお、集電極17,18の形成は、例えば導電性ペーストの塗布や、めっき法等により行うことができる。
 以上説明したように、本実施形態では、p側TCO層15を形成した後に、n側TCO層16を形成する。従って、優れた出力特性を有する太陽電池1を得ることができる。これは、以下の理由によるものと考えられる。すなわち、p側TCO層15は、n側TCO層16の形成時に加熱される。これにより、p側TCO層15の結晶性が改善されるため、p型半導体層11とp側TCO層15との間のオーミック性が改善される。その結果、得られる太陽電池の曲線因子が改善され、よって、優れた出力特性を有する太陽電池1が得られるものと考えられる。
 なお、上記実施形態では、半導体基板10の第1の主面10aの上にp型半導体層11が形成されており、第2の主面10bの上にn型半導体層13が形成されている例について説明した。但し、本発明は、この構成に限定されない。本発明に係る太陽電池は、p型表面とn型表面を含む一主面を有する光電変換部を備える裏面接合型の太陽電池であってもよい。
 上記実施形態では、p型表面がp型半導体層により構成されており、n型表面がn型半導体層により構成されている例について説明した。但し、本発明は、この構成に限定されない。本発明においては、例えば、p型表面は、半導体基板に形成されたp型ドーパント拡散領域により構成されていてもよい。また、n型表面は、半導体基板に形成されたn型ドーパント拡散領域により構成されていてもよい。
 上記実施形態では、半導体層11~14を形成した後に、p側TCO層15を形成し、その後、n側TCO層16を形成する例について説明した。但し、本発明は、p側TCO層をn側TCO層に先だって形成する限りにおいて特に限定されない。例えば、p側TCO層を形成した後に、n型半導体層を形成し、その後に、n側TCO層を形成してもよい。
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
 (実施例)
 第1の実施形態に係る太陽電池1と実質的に同様の構成を有する太陽電池を、第1の実施形態において説明した方法により、下記の条件で作製した。すなわち、実施例では、p側TCO層15を先に形成し、その後、n側TCO層16を形成した。
 実施例における条件:
 TCO層15,16の形成条件:
 TCO層15,16の材料:ITO 1質量%
 ガス流量:アルゴンガス300sccm、酸素ガス90sccm
 投入電力:3kW
 圧力:0.6Pa
 TCO層15,16の厚み:100nm
 (比較例)
 n側TCO層16を先に形成し、その後、p側TCO層15を形成した以外は、実施例と同様にして太陽電池を作製した。
 実施例及び比較例のそれぞれにおいて作製した太陽電池の曲線因子(F.F.)、最大出力(Pmax)を測定した。結果を、下記の表1に示す。なお、表1に示す値は、比較例の値を100として規格化した値である。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、p側TCO層15を先に形成し、その後にn側TCO層16を形成することにより、太陽電池の出力特性を向上できることが分かる。
1…太陽電池
10…半導体基板
10a…第1の主面
10b…第2の主面
11…p型半導体層
12,14…実質的に真性な半導体層
13…n型半導体層
15,16…TCO層
17…p側集電極
18…n側集電極
20…光電変換部

Claims (5)

  1.  p型表面及びn型表面を有する光電変換部と、前記p型表面の上に配されたp側透明導電性酸化物層と、前記n型表面の上に配されたn側透明導電性酸化物層と、前記p側透明導電性酸化物層の上に配されたp側電極と、前記n側透明導電性酸化物層の上に配されたn側電極とを備える太陽電池の製造方法であって、
     前記p側透明導電性酸化物層を形成した後に前記n側透明導電性酸化物層を形成する、太陽電池の製造方法。
  2.  前記p側透明導電性酸化物層をPVD法により形成する、請求項1に記載の太陽電池の製造方法。
  3.  前記光電変換部は、n型またはp型の半導体基板と、前記半導体基板の上に配されており、前記p型表面を構成しているp型半導体層と、前記半導体基板の上に配されており、前記n型表面を構成しているn型半導体層とを有する、請求項1または2に記載の太陽電池の製造方法。
  4.  前記p型半導体層は、アモルファスシリコンからなる、請求項3に記載の太陽電池の製造方法。
  5.  前記p側透明導電性酸化物層を、酸化インジウム系材料または酸化亜鉛系材料により形成する、請求項1~4のいずれか一項に記載の太陽電池の製造方法。
PCT/JP2012/063313 2011-06-03 2012-05-24 太陽電池の製造方法 WO2012165289A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12793109.5A EP2717332A4 (en) 2011-06-03 2012-05-24 PROCESS FOR THE PRODUCTION OF SOLAR CELLS
US14/085,931 US20140073083A1 (en) 2011-06-03 2013-11-21 Manufacturing method for solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011124937 2011-06-03
JP2011-124937 2011-06-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/085,931 Continuation US20140073083A1 (en) 2011-06-03 2013-11-21 Manufacturing method for solar cell

Publications (1)

Publication Number Publication Date
WO2012165289A1 true WO2012165289A1 (ja) 2012-12-06

Family

ID=47259146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063313 WO2012165289A1 (ja) 2011-06-03 2012-05-24 太陽電池の製造方法

Country Status (4)

Country Link
US (1) US20140073083A1 (ja)
EP (1) EP2717332A4 (ja)
JP (1) JPWO2012165289A1 (ja)
WO (1) WO2012165289A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014033908A1 (ja) * 2012-08-31 2014-03-06 三洋電機株式会社 太陽電池の製造方法
US10508332B2 (en) * 2016-08-25 2019-12-17 Ulvac, Inc. Film formation apparatus, film formation method, and manufacturing method of solar battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080885A (ja) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd 太陽電池の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3869978B2 (ja) * 1998-06-30 2007-01-17 キヤノン株式会社 光起電力素子
JP4556407B2 (ja) * 2002-10-04 2010-10-06 住友金属鉱山株式会社 酸化物透明電極膜とその製造方法、透明導電性基材、太陽電池および光検出素子
JP4152197B2 (ja) * 2003-01-16 2008-09-17 三洋電機株式会社 光起電力装置
JP4401360B2 (ja) * 2006-03-17 2010-01-20 三洋電機株式会社 光起電力素子およびその光起電力素子を備えた光起電力モジュール
US20080153280A1 (en) * 2006-12-21 2008-06-26 Applied Materials, Inc. Reactive sputter deposition of a transparent conductive film
JP5100206B2 (ja) * 2007-05-28 2012-12-19 三洋電機株式会社 太陽電池モジュール
JP4902472B2 (ja) * 2007-09-18 2012-03-21 三洋電機株式会社 太陽電池及び太陽電池モジュール
JP5089456B2 (ja) * 2008-03-26 2012-12-05 三洋電機株式会社 圧着装置及び太陽電池モジュールの製造方法
JP5159725B2 (ja) * 2009-08-27 2013-03-13 三洋電機株式会社 太陽電池ストリング及びそれを用いた太陽電池モジュール
JP2011054660A (ja) * 2009-08-31 2011-03-17 Sanyo Electric Co Ltd 太陽電池ストリング及びそれを用いた太陽電池モジュール
JP5421701B2 (ja) * 2009-09-09 2014-02-19 株式会社カネカ 結晶シリコン太陽電池及びその製造方法
EP2479797A4 (en) * 2009-09-18 2013-08-07 Sanyo Electric Co SOLAR BATTERY, SOLAR BATTERY MODULE AND SOLAR BATTERY SYSTEM
TW201130148A (en) * 2009-09-18 2011-09-01 Sanyo Electric Co Solar battery cell, solar battery module, and solar battery system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080885A (ja) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd 太陽電池の製造方法

Also Published As

Publication number Publication date
EP2717332A1 (en) 2014-04-09
EP2717332A4 (en) 2015-03-25
US20140073083A1 (en) 2014-03-13
JPWO2012165289A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP4945088B2 (ja) 積層型光起電力装置
CN104781445A (zh) 透明导电膜层叠体及其制造方法、以及薄膜太阳能电池及其制造方法
JP4443516B2 (ja) 光起電力素子およびその光起電力素子を備えた光起電力モジュール
Li et al. Enhanced electrical and optical properties of boron-doped ZnO films grown by low pressure chemical vapor deposition for amorphous silicon solar cells
WO2014148499A1 (ja) 光発電素子及びその製造方法
JP2016072523A (ja) 結晶シリコン太陽電池およびその製造方法、ならびに太陽電池モジュール
Chen et al. Optimizing transparent conductive Al-doped ZnO thin films for SiN x free crystalline Si solar cells
JP2012530377A (ja) 太陽電池及びその製造方法
CN112186062B (zh) 一种太阳能电池及其制作方法
CN113782631A (zh) 具有缓冲保护膜的异质结太阳能电池及其制备方法
US20120103407A1 (en) Solar cell and method for manufacturing the solar cell
WO2012165289A1 (ja) 太陽電池の製造方法
JP2012244065A (ja) 薄膜光電変換装置およびその製造方法、薄膜光電変換モジュール
JP2015070255A (ja) 光発電素子及びその製造方法
WO2015050082A1 (ja) 光発電素子及びその製造方法
JP6564767B2 (ja) 光電変換装置
WO2022071302A1 (ja) ペロブスカイト薄膜系太陽電池の製造方法
KR101046358B1 (ko) 태양전지용 투명전극 제조방법
WO2015050083A1 (ja) 光発電素子
CN114171632A (zh) 异质结太阳能电池及光伏组件
JP2014168012A (ja) 光電変換装置およびその製造方法
JP5818789B2 (ja) 薄膜太陽電池
JP2011014635A (ja) 光電変換素子及びその製造方法
US20240063314A1 (en) A solar cell
Ruske et al. ZnO: Al with tuned properties for photovoltaic applications: thin layers and high mobility material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013518014

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012793109

Country of ref document: EP