JP2009538438A - 周辺光吸収スクリーン - Google Patents

周辺光吸収スクリーン Download PDF

Info

Publication number
JP2009538438A
JP2009538438A JP2009501682A JP2009501682A JP2009538438A JP 2009538438 A JP2009538438 A JP 2009538438A JP 2009501682 A JP2009501682 A JP 2009501682A JP 2009501682 A JP2009501682 A JP 2009501682A JP 2009538438 A JP2009538438 A JP 2009538438A
Authority
JP
Japan
Prior art keywords
substrate
light
screen
features
projection screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009501682A
Other languages
English (en)
Inventor
トーマス イー. ノヴェット
ギルバート ジー. スミス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/496,774 external-priority patent/US7911693B2/en
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of JP2009538438A publication Critical patent/JP2009538438A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface

Abstract

プロジェクタに面する方向からプロジェクタ光(30)を受ける投射スクリーン(600)は、複数の特徴部(504)を有する基体(502)を備える。特徴部のぞれぞれは、プロジェクタに面する方向を向いた反射表面(504)を備える。反射表面のぞれぞれは、第1の方向(510)に湾曲して所望の水平視角を提供すると共に、第2の方向(504)に湾曲して所望の垂直視角を提供する。

Description

[関連出願の相互参照]
本願は、2006年7月31日に出願された米国特許出願第11/496,774号の一部継続出願であり、2006年3月20日に出願された米国仮特許出願第60/784,125号の利益を主張するものであり、これらの両出願を参照により本明細書に援用する。
前面投射スクリーン及び背面投射スクリーンに投射される画像のコントラスト比は、観賞環境に存在する周辺光によって大幅に低減する。すなわち、ユーザが知覚するスクリーン上の最暗レベルは、スクリーンからユーザに向けられる周辺光の程度によって影響を受ける。スクリーン上の最明レベルは、プロジェクタの出力によって決まる。コントラスト比は、最明レベルを最暗レベルで除算したものである。例えば、映画館では、館内の照明が点灯しているとき、スクリーンは白色又は銀色に見え、これが観賞者に提供される最暗画像レベルである。この影響が、上映前の宣伝が色あせて見えることの原因である。しかし、映画の開始前に、照明はそれに従って減光されるか又は電源が切られ、スクリーンが暗く見え、そのため、この最暗レベルが低くなる。周辺光のこの減光は、雄大で美しい映画上映を可能にするために行われる。しかし、会議室、教会、及びセミナー等の環境によっては、メモ取り、参加者の移動を可能にするか、又は会話に対する意識を維持するために周辺光を維持する必要がある。
周辺光の影響を低減する従来の手法は、グレースクリーンを使用してコントラストレベルを向上させることであったが、この技法は画像の全体明度を低減させもする。したがって、これらのグレースクリーンは、補償するより多量の光を投射することができる、より高価なプロジェクタを必要とした。別の従来の技法は、反射層の前に透明拡散層を含むようにスクリーンの表面形状を変更することを含んでいた。この手法は、反射されたプロジェクタ光のうち、より多くの光を、スクリーン利得と呼ばれる、制限された視錐体内に収束する効果を有していた。この視錐体の外側では画質が低下したのに対して、視錐体の内側では明度が増大したが、周辺光もスクリーン利得によって影響を受けたため、コントラスト比の向上に対する効果は限られていた。高利得投射スクリーンによっては、反射背景にわたるレンズ配列を利用して、投射された光を再び観賞者に向けるものもあった。これらのスクリーンは、投射された光よりも周辺光を優先的に排除したが、視角が大幅に制限され、比較的高価な傾向にあるという欠点があった。
残念なことに、大半の人々は、より強力なプロジェクタ及びカスタムスクリーンの指数的に増大するコストにお金を出すことよりも、単に低コントラスト比を受け入れることを選択する。ただ、よりよい方法がありさえすれば、投射画像を観賞者が受け入れることが改善され、直視型ディスプレイとの競争力が増す。
以下の詳細な説明及び図面のいくつかの図では、同様の要素が同様の参照符号を使用して識別される。図は一定の縮尺ではなく、相対的な特徴部のサイズは、説明のために誇張されていることがある。
前面投射ディスプレイであれ、背面投射ディスプレイであれ、投射システムのコントラスト比を向上させるために、本開示は、プロジェクタ光反射性及び周辺光吸収性の向上の釣り合いをとる技法を記載する。すなわち、観賞者に向けるべき投射光に面するスクリーンの表面特徴部の部分は反射性であるべきであるのに対して、表面の他の部分は吸収性であるべきである。したがって、本開示は、「角度反射」を制限するだけの、高利得スクリーンで使用される従来の技法と比較して、「角度吸収」及び「角度反射」を実行するスクリーン及び技法を記載する。
したがって、本開示は、従来のスクリーンの上述した欠点及び短所を克服する前面投射スクリーン及び背面投射スクリーンの両方を可能にする。これらの新しいスクリーンは、プロジェクタ光よりも周辺光を優先的に吸収し、それによって知覚画像明度を犠牲にすることなく知覚コントラスト比を高めることによって知覚画質を向上させる。
単純であり、安価に製造され、且つ軽量の投射スクリーンが開示される。開示される一実施形態は、複数の概して均一な(少なくともスクリーンの表面にわたって平均して)幾何学的特徴部でテクスチャード加工される基体で構成される投射スクリーンを対象とする。この実施形態では、反射材料層が、特徴部のそれぞれの表面の一部に選択的に堆積され、それによって、いくつかのスクリーン入射角で入射する光の大部分を反射し、他の角度で入射する光の大部分を吸収する表面配列を形成する。基体は、特定の用途の必要性に応じて剛性又は可撓性としてもよく、平坦にしても又は湾曲させてもよい。特徴部の幾何学的形状及び材料が堆積される角度は、周辺光源の位置、スクリーンの向き、及びスクリーンに対するプロジェクタの相対位置等の要因を考慮して特定の用途に従って変更が可能である。
スクリーンの表面特徴部の1つの例示的な幾何学的形状は、エンボス、フォトリソグラフィ、化学的エッチング若しくはレーザエッチング、又は当業者が思い付く他の方法で作成される凹凸の配列である。表面特徴部上の反射のパターンが、独自のマイクロリフレクタ配列を形成する。一般に、特徴部の表面の反射部分は、プロジェクタによって照明される部分である。したがって、特徴部の表面の反射部分の特定の部分に衝突しないプロジェクタからの光は、周辺光が観賞者に向けられないようにするために吸光される。
したがって、例示的な一技法は吸収表面で開始され、スクリーン表面に対して視射角で真空金属堆積を使用して、各特徴部の表面の制限された部分上に反射表面を作成する。所与の堆積角度で、各特徴部の幾何学的形状は特徴部の表面の一部を堆積から隠し、その隠された部分の光吸収性が残る。アルミニウム又は高反射率を示す他の任意の材料を利用して、反射を実現することができる。スクリーンの高さ及び幅にわたって真空堆積角度を変えることによって、所望のパターンの反射を実現することができる。このような独自の反射表面配列の組み合わせられた効果は、1つの角度セットでプロジェクタからの光を反射しながら、その一方でその角度セット外からの周辺光を吸収し、それによって、知覚コントラスト比を向上させることである。
投射スクリーンの実施形態は、複数の特徴部でテクスチャード加工される基体を含む。これらの特徴部は、概して均一な幾何学的形状の特徴部であってもよく、又は不規則形状若しくはランダム形状であってもよく、又は一貫した形状であるがランダムな向きであってもよい。これらの特徴部は、表面からの突起であってもよく、又は表面の窪みであってもよい。表面配列を形成するように、材料層を特徴部のそれぞれの表面の一部に選択的に堆積させてもよく、又は特徴部のそれぞれの表面の一部から選択的に除去してもよい。これらの表面は、いくつかの角度で入射する光をおおかた反射し、他の角度で入射する光をおおかた吸収する。基体自体は、剛性又は可撓性としてもよく、平坦にしても又は湾曲させてもよい。特徴部は基体の表面にわたって連続していなくてもよく、これによって、反射される画像光内の知覚可能なラインを低減又は除去することができる。
他の実施形態では、投射スクリーンは、観賞者に向けての反射を強化せずに周辺光の反射又は吸収を提供することができる。すなわち、非吸収部分は、付加的にコーティング又は堆積されていない基体の通常の表面であることができる。他の実施形態では、投射スクリーンは、周辺光の吸収又は反射を強化してスクリーンから観賞者に反射される周辺光を低減せずに、プロジェクタ光を観賞者に向かって反射するように角度が付けられた表面を提供することができる。しかし、知覚コントラスト比を最大にするために、スクリーンの表面特徴部の、観賞者に向けて反射されることが望ましい投射光に面する部分は反射性であるのに対して、通常、スクリーンの横からであれ、上からであれ、又は下からであれ、投射光以外の方向から、例えば窓、天光、ドア等からの周辺光に面するその他の部分は吸収性である。
特徴部の幾何学的形状及び材料の堆積角度は、周辺光、スクリーン、及びプロジェクタ位置等の用途に特定の事項に従って変更が可能である。1つの特定の幾何学的形状は凹凸の配列を含む。特徴部は、エンボス又は他の技法で作成することができる。一実施形態では、特徴部上の反射パターンはマイクロリフレクタ配列を形成することができる。一般に、特徴部表面の反射部分は、プロジェクタによって照明される部分である。プロジェクタからの光が面の特定の部分に衝突しない場合、それは吸光性に構成される。
例えば、一実施形態では、スクリーン基体は吸光材料で形成され、反射層が表面特徴部のプロジェクタに面する部分に選択的に堆積される。
別の実施形態では、スクリーン基体は光反射材料で形成され、吸光材料の層が、表面特徴部の、周辺光源に向かって面することになる部分に選択的に堆積される。別記すれば、吸光材料の層が、プロジェクタに面しない表面特徴部の部分に選択的に堆積される。別の実施形態では、吸光材料の層が、スクリーン基体の表面特徴部の、周辺光源に向かって面することになる部分に選択的に堆積され、反射層が表面特徴部の、プロジェクタに面する部分に選択的に堆積される。
別の実施形態では、表面層、例えば吸光層又は光反射層が選択的に除去されて、それぞれ、基体の光反射部分すなわち下層が露出されるか、又は基体の吸光部分すなわち下層が露出される。
別の実施形態では、吸光材料で形成される基体は、真空中において視射角で堆積される金属を有して、各特徴部の表面の限られた部分に反射表面を作成する。所与の堆積角度で、各特徴部の幾何学的形状は特徴部の表面の一部を堆積から隠し、その部分の光吸収性を残す。反射エリアと吸収エリアとの比は特定の表面の幾何学的特徴部に応じて約20/80、約40/60、約50/50、約60/40、又は約80/20であることができる。例えば、表面特徴部がランダムに離間されるが、表面特徴部の平均高さと概ね同じ平均空間分布を有する場合、反射エリアと吸収エリアとの比は約50/50である。
アルミニウム又は高反射率を示す他の任意の材料を利用して、反射を実現することができる。スクリーンの高さ及び幅にわたって堆積角度を変えることによって、所望のパターンの反射を実現することができる。このような反射表面配列の効果は、プロジェクタからの光を反射しながら、同じ角度からではない周辺光を吸収し、それによってスクリーン性能を強化することである。
特定の実施形態の詳細をさらに説明するが、これは、特許請求する主な対象のための例を意図するにすぎない。特に、正面ビュースクリーン及び背面ビュースクリーンの例示的な実施形態並びにいくつかの例示的な製造方法が提示される。他の実施形態も存在し、開示される特定の実施形態は、特許請求される本発明を記載し、当業者が本発明を実施することができるようにすることを意図するにすぎない。したがって、本発明の範囲は特許請求の範囲によって制限だけされて、これらの特定の実施形態だけではない。
[正面ビュー実施形態]
図1Aは、プロジェクタ光30をスクリーン上に向けるプロジェクタ40を備える投射システムで使用可能な投射スクリーン10の一実施形態を示す。スクリーン10は、テクスチャード加工の表面14を有する基体12を備える。一実施形態では、基体12の正面向きの表面は、概して均一に離間される複数の概して均一の特徴部16でテクスチャード加工される。特徴部16の幾何学的形状は、様々な可能な幾何学的形状の代表である。プロファイル、高さ、及び側面の傾き等の特徴部の寸法は、表面反射パターン及び反射エリアと吸収エリアとの比に影響するように変更が可能である。代替的な特徴部の幾何学的形状は、用途の要件に従って異なる実施形態において利用され得る対称、非対称、又は不規則形状を含む。特徴部は、凸型半球若しくは円錐断面、凹型半球若しくは円錐断面、又は凸型円錐断面と凹型円錐断面の組み合わせを含むことができる。
例えば、基体12は、黒色顔料、SiC研磨紙等の粒子コーティング繊維、炭化ケイ素(SiC)、窒化アルミニウム(ALN)、若しくは窒化チタン(TiN)等の高吸収率を有する薄膜コーティング吸収材、調整された誘発吸収材積層(厚さが高吸収率に向けて調整された誘電体/金属積層)、又は高吸収率を有する金属−セラミック複合材等の暗色吸光材料で製造することができる。
各特徴部16は、プロジェクタ40から離れた方向を向いている表面領域、例えば表面領域18、及びプロジェクタに面する表面領域、例えば表面領域20を有する。例示的な一実施形態では、プロジェクタに面する表面領域は、基体の表面の法線から、例えば、約5度〜約45度の角度範囲内で傾斜することができるが、これは、スクリーンに対するプロジェクタの配置及び表面特徴部のサイズを含む様々な要因に応じて変更が可能である。プロジェクタに面する領域20は、例えば、アルミニウムであることができる光反射層又はコーティング22を使用して反射することができる。代替的に、基体の選択された領域に光反射性を実現する他の材料又は技法を利用してもよい。プロジェクタに面しない表面部分18は、入射光を反射しない。
プロジェクタ40から入射するプロジェクタ光30は、プロジェクタに面する高反射性の領域20で反射される。例えば、スクリーンの上又は横から非反射領域18に入射する周辺光32は、表面領域18によって吸収され、且つ/又は弱く反射される。投射光は、反射層22の配置によって周辺光よりも効率的に反射されることから、観賞者に反射される入射光の大半は投射光であり、周辺光は従来のスクリーンほどは黒レベルに影響しないため、知覚される画像コントラストが増大する。
[背面ビュー実施形態]
図1Bは、背面投射スクリーン50の一実施形態を示す。スクリーンは透明基体52を含む。基体52は、アクリル系又はポリカーボネート等の半透明材料又は透明材料で製造される。基体の正面向き表面54は、概して均一に離間される複数の概して均一の特徴部56でテクスチャード加工される。図示の特徴部の幾何学的形状は、様々な可能な幾何学的形状の代表である。プロファイル、高さ、及び側面の傾き等の特徴部の寸法は、表面反射パターンに影響するように変更が可能である。代替的な幾何学的形状は、用途の要件に従って異なる実施形態において利用され得る対称、非対称、又は不規則形状を含む。
各特徴部56は、プロジェクタから離れた方向を向いた表面領域58、及びプロジェクタからの光を反射するように角度が付けられた表面領域60を有する。角度が付けられた反射表面は、例えば、アルミニウム又は保護銀であることができる、例えば光反射層62を使用して反射性を有する。プロジェクタに面しない表面部分は透明であり、周辺光を反射するよりもむしろ、観賞者から離れた方向に向けて透過する。
画像ソース40からスクリーンに、基体52の表面51の背後から入射する投射光30は基体を透過し、反射領域62によって観賞者に向かって反射される。図1Bに示す方向で表面54に入射する周辺光32は、主に吸収されるか、周辺光源に向けて反射して戻されるか、又は透明部分を透過し、観賞者に反射されない。これに加えて、又はこれに代えて、周辺光からのあらゆる表面反射を観賞者以外の方向、例えば再び周辺光源に向けることができる。
一実施形態では、基体は透明材料であり、表面の部分が反射状態に変えられる。別の実施形態では、基体表面は光反射材料であることができ、プロジェクタ40に面しないその表面の部分が、エッチング又は他の手段によって透明にされる。
図1Cは、背面ビュースクリーン100の別の実施形態を示す。この実施形態では、スクリーン100は、テクスチャコーティング104が塗布された正面表面を有する透明材料の基体102を備える。コーティング104は、コーティングを透過する光を拡散させる拡散コーティングであることができる。コーティング104はテクスチャード加工された表面を有し、このテクスチャード加工された表面上に、吸収要素106が周辺光源に面する方向に塗布される。スクリーンの背後にあるソースからの画像光は、スクリーンを透過して観賞者まで届くのに対して、周辺光源からの周辺光は、観賞者に反射されずに吸収要素106によってほぼ吸収される。画像ソースは、例えば、プロジェクタ、ライトボックス固定ディスプレイ、又はLCDであることができる。
黒色顔料又は薄膜コーティング吸収材等の様々な吸光材料を吸光表面として利用することができる。
特徴部は、エンボス加工によって基体に形成することができる。代替的に、基体に特徴部を形成する他の技法を利用してもよい。基体に特徴部を形成する代替的な方法は、ホットスタンプローリング及びマイクロマシニングを含む。
正面ビュースクリーン又は背面ビュースクリーンの代替的な実施形態は、例えば、暗色基体上の暗色ガラスビーズ、基体表面上の不規則形状粒子、適切な模様を有する織物材料、マイクロポストを有する基体、及び固有の表面構造を有する布様材料を含む。スクリーンが織物材料から製造される実施形態では、材料は、織物材料の他に追加の特徴部又は粒子を有してもよく、又は有しなくてもよい。織物材料は3次元表面プロファイルを有することができる。織物材料の表面に被着される粒子等の追加される特徴部は、応答のランダム性を強化する傾向を有することができる。織物材料の糸には、表面の「特徴部」であるとみなされる材料の模様を有する反射材料又は吸収材料でコーティングすることができる。スクリーンを製造することができるさらなる例示的な材料は、約3mil〜12milの例示的な厚さのポリ塩化ビニル(PVC)、ポリプロピレン(PP)、及びポリエチレンテレフタレート(PET)を含む。可撓性スクリーンの場合、基体のさらなる例示的な材料は、PVC/織物/PVCを有する3層材料を含むことができ、例示的な織物はガラス繊維布である。3層材料の例示的な厚さ範囲は、8mil〜30mil又は10mil〜15milである。
[例示的な製造方法]
正面ビュースクリーン又は背面ビュースクリーンを製造する1つの方法は、テクスチャード加工される表面を有する基体を提供すること、及び低角度堆積によって表面をコーティングすることを含む。基体は、テクスチャード加工金属表面又は白色表面等の高反射性を有することができる。この場合、低角度堆積は、暗色塗装吸収材又は薄膜吸収材等の低反射性を提供することができる。代替的な実施形態では、基体は良好な吸光材であることができ、低角度堆積は、白色の塗料コーティング又は金属コーティング等の高反射堆積であることができる。スクリーンの一実施形態は、アルミニウムを低角度でテクスチャード加工された表面基体に蒸着させることによって製造することができる。代替的に、低コストでエンボス加工された基体を、周期的構造、ランダム構造、又は疑似ランダム構造を有するテクスチャード加工された表面基体として利用することができる。
冒頭のテクスチャード加工された基体の他の様々な実施形態は、マイクロマシン加工された基体若しくはマイクロエンボス加工された基体、エンボス加工されたプラスチック、紙の表面、若しくは布の表面、又はガラスビーズ付き表面を含む。これらの表面は、周期的構造、ランダム構造、又は疑似ランダム構造を含むこともできる。低角度堆積の様々な実施形態は、高真空蒸着及び真空堆積を含む。堆積の特定の1つ又は複数の堆積角度は、用途及び基体表面の幾何学的形状によって決まり得る。低角度堆積の1つの例示的な角度範囲は、基体の表面から測定して5度〜45度の範囲を含む。反射材料を堆積させる場合、反射表面角度は、プロジェクタ光の入射角と観賞者の視角との間であることができる。堆積角度は、いくつかの実施形態では、例えば、上部が平坦な特徴部を含む表面特徴部の製造技法及び形状に応じて45度よりも大きくてもよく、例えば90度であってもよい。
特定の実施形態では、特徴部サイズは、回折及び干渉の影響を回避するのに十分大きく、且つ人間の目へのピクシレーション又は火花を回避するのに十分小さなサイズであることができる。1つの例示的な範囲は、約75ミクロン〜150ミクロン幅であり、且つ観賞距離、プロジェクタ位置、周辺位置、及び所望の周辺光阻止特性に応じて妥当な高さのものである。別の例示的な範囲は4ミクロン〜20ミクロンである。さらに別の例示的な特徴部サイズの範囲は、約75ミクロン〜500ミクロン又はそれ以上である。他の実施形態は、例えば、スクリーンからの観賞距離が比較的長い場合、より大きな規模の特徴部を使用することができる。
図2は、投射スクリーンとして使用されるテクスチャード加工される基体12の一実施形態の等角図である。基体12の正面向き表面は、概して均一に離間された複数の概して均一の特徴部16でテクスチャード加工される。特徴部16は、ピットすなわち窪み17で隔てられる実質的に凸型の半球表面部分(隠線で示される)を含む。一実施形態では、基体12は吸光材料で形成され、金属が真空中で基体12に視射角で堆積されて、各特徴部16の表面の限られた部分上に反射表面を作成する。所与の堆積角度で、各特徴部16の幾何学的形状は特徴部の表面の部分を堆積から隠し、その部分の吸光性を残す。
図3は、アルミニウムが水平表面から低い視射角で堆積された黒色不規則形状粒子が埋め込まれた基体の一実施形態の走査型電子顕微鏡像からの図である。この実施形態の基体は、粗くランダムなテクスチャード加工された表面、すなわち粗い表面を有する。暗色領域は基体のコーティングされていない部分であり、より明るい領域は、基体のコーティング(すなわちアルミニウムでコーティングされた)部分である。
図4は、材料層を低角度でテクスチャード加工される基体10に堆積させる1つの例示的な蒸着システム200を示し、この堆積は、例えば基体10の一般平面に対して垂直未満の視射角でされ、又は通常はプロジェクタ光の基体表面への入射角度に類似する低い角度でされるがこれに制限されない。システムは堆積材料ソース210を含む。堆積材料粒子のストリームが、基体の表面に向けられ支持されるバッフル230の開口部232を通じて方向付けられるため、粒子が基体に対して概して低い、例えば5度〜45度の入射角度Aを有する。一実施形態では、バッフルの開口部は、角度範囲の制限された粒子のストリーム240を提供して、いくらか平行にさせるように機能する。バッフル230が基体への実際の堆積角度範囲、ひいては各特徴部の表面のいずれの部分が反射材料でコーティングされるかを決めることができることが分かる。特徴部の表面のいくつかの部分は、他の特徴部によって堆積から隠されることができる。
図5及び図6は、テクスチャード加工の基体10’に低角度で材料層を堆積させる方法及びシステム350の別の概略的な実施形態を示す。この実施形態での基体10’は、ロール352上に形成される可撓性基体である。基体ロールの一端部は、巻き取りローラ354に固定され、基体10’の表面を堆積材料ストリームに通して進められるようにする。コーティング層が堆積プロセスを通じて被着された後、基体ロールを所与のスクリーン用途に適したサイズの長さ/幅に切断することができる。
システム350は、ロッドの形であることができる堆積材料ソース360を含む。堆積すべき層が、例えばアルミニウム層の場合、ソース360はアルミニウムロッドであることができる。
この特定の実施形態では、システム350は、ソース材料ターゲット360に相対して動的に移動するバッフルシステム370を備える。バッフルシステム370の一実施形態は、湾曲バッフル部分372、及びエッジ376で終端するほぼ平坦なバッフル部分374を含む。直立バッフルフィン部分375が平坦部分374から上方に延び、方位角方向での基体への堆積入射角度の制御を提供する。フィンを共に近づけて配置することによって、方位角方向がより厳密に制御される。法線方向に近い角度での粒子ストリームは、フィン部分間を通過し、フィン部分に衝突する粒子ストリームはブロックされる。
平坦部分374の長さは、堆積仰角範囲を制御するようにバッフルエッジ376を位置決めするように選択することができる。粒子ストリームは、図6では362として示され、堆積プロセスを受けている基体の平面に対して様々な入射角度の粒子ストリーム362−1、・・・、362−6を含む。ストリームの範囲は、浅いストリーム(ストリーム362−6)からよりダイレクトなストリーム362−1までである。ソース360とエッジ376との間の平坦部分374の長さに応じて、粒子ストリームのうちの1つ又は複数をバッフルによってブロックすることができる。図6の例では、バッフルは、比較的浅い角度のストリーム(362−5及び362−6)が、バッフルがストリーム362−1、・・・、362−4をブロックした状態で基体10’と交差するように設計及び位置決めされる。
バッフル370は、バッフルを軸378に沿って移動させて、静止した堆積ソース360に対して位置を変化させるシャトル装置上に位置決めすることができる。こうして、この技法は堆積入射角度を変化させることができる。
ターゲット360上のソース材料は、真空堆積、蒸着、又はスパッタリングの分野で既知のように真空中でスパッタリング又は蒸着される。ソース材料ストリーム362は、バッフル構造375及び376で遮断されるか、又は基体上の特徴部に視射角で衝突するまで線形に移動する。ソース材料が、ソースターゲットからバッフルのエッジ376の軌道よりも大きな角度で基体特徴部に衝突しないことが分かる。垂直フィンの幾何学的形状及び配置が、特徴部表面の異なる部分上へのソース材料堆積の程度を支配する。基体がバッフルを通過して巻かれている間に、ソース材料ターゲットに対するバッフル位置を変更することによって、堆積角度を、プロジェクタからの光がスクリーンに衝突する1つ又は複数の角度に対応するようにスクリーンの底部から上部に変化させることができる。
特徴部表面の選択された領域を吸収性から反射性に変える代替的な方法は、以下を含む。すなわち、基体のすべての特徴部を、例えばハロゲン化銀乳剤等の吸光性又は光反射性いずれかの感光材料で完全にコーティングすることができる。次に、スクリーン表面が、点放射源に露出されるか、すなわち、放射状露出、又は線形放射源に露出される、すなわち、線形露出か、又は感光材料を逆の状態に永久的に変える放射ビームを走査する。代替的に、コーティング材料は感熱性であることができる。表面特徴部を吸光性から光反射性に変える追加の方法は、視射角で噴射材料を使用することである。これは走査様式で行うことができる。追加の方法は、特徴部の表面を吸光性から光反射性に機械的に変えることである。これらの機械的な方法は研磨及び切断を含む。表面を変更する追加の方法は、エッチング、電気化学、光化学、又は静電等の化学を含む。別の方法は、基体を感光性吸収材料でコーティングし、感光性吸光材料を視射角で露出させて、露出された面を反射性にさせて、露出面上に反射エリアのセットを作成する。代替的に、基体は、感光性反射材料でコーティングし、感光性反射材料を視射角で露出させて、露出面を暗化させ、露出面上に吸収エリアのセットを作成する。別の方法は、電子写真プロセス、電気化学プロセス、又はこれらの両方の組み合わせを使用して、画像光源に面する第1の角度セットに向けられた吸光性基体の特定の面に光反射材料を堆積させて、反射エリアのセットを作成することを含む。代替的に、方法は、電子写真プロセス、電気化学プロセス、又はこれらの両方の組み合わせのいずれかを使用して、第1の角度セット以外に向けられた光反射性基体の特定の面に吸光材料を堆積させて、吸収性エリアのセットを作成することを含むことができる。
スクリーンは、可視光ではなく、又は可視光に加えて不可視プロジェクタ光及び/又は不可視周辺光に使用することができる。例えば、用途によっては、紫外線光又は赤外線光のスクリーンコントラストを増大するように設計されるものもある。
図7は、吸収性要素又は反射性要素420を、特徴部を有する基体410の露出表面上に噴射する方法を概略的に示す。噴射ノズル402がコーティング槽404に接続され、コーティング流体又はコーティング粒子を低角度で基体に噴射するように位置決めされる。噴射ノズルは、流体又は粒子を低角度で放射する角ノズルであることができる。噴射ノズルは、例示としてのみ、流体圧力下で動作することができる。他の実施形態は、コーティング材料を噴出する他の機構を使用することができる。基体410は、図7に示す方向で噴射ノズルを通って移動することができ、シート又はロールの形態であることができる。
図8は、スクリーン基体430の別の実施形態を示し、ここでは、吸光材料の第1の層440が、周辺光源に面することになるスクリーン基体の表面特徴部432の部分に選択的に堆積され、反射材料の第2の層442が、プロジェクタに面する表面特徴部の部分に選択的に堆積される。反射材料が最初に堆積され、吸光材料が次に堆積されるように、第1の層及び第2の層の配置順は逆であってもよい。
[周辺光阻止投射スクリーンの実施形態]
図9は、本発明の一実施形態による周辺光阻止投射スクリーンの部分500の正面図を示す図である。図10は、本発明の一実施形態による図9に示す投射スクリーン部分500の側面図を示す図である。スクリーン部分500は、プロジェクタに面する方向からプロジェクタ光を受け、スクリーンに入射した周辺光を吸収するか又は観賞者から離れる方向に向けながら、受けたプロジェクタ光を観賞者に向けて反射するように構成される。スクリーン部分500は、複数の特徴部504及び複数の窪みすなわちキャビティ506を備える基体502を含む。特徴部504のそれぞれは、プロジェクタに面する方向に向けられた反射表面508を備える。反射表面508のそれぞれは、510に示すように第1の方向に(すなわち、水平X軸に沿って)湾曲して、所望の水平視角を提供する。反射表面508のぞれぞれは、512に示すように第2の方向に(すなわち、垂直Y軸に沿って)湾曲して、所望の垂直視角を提供する。図9に示す実施形態では、特徴部504のそれぞれは、底面514及び反射表面508を有するアーチ状又は弓状の円錐曲線部である。反射表面508は、円錐曲線部の底面514から先端516に延在する。一実施形態では、特徴部504のそれぞれの底面514は、投射スクリーンの平面(すなわち、図9の用紙平面)にほぼ垂直な向きの吸収表面である。
図示の実施形態では、複数の特徴部504及び複数の窪み506は、基体502の表面にわたって二次元において均一に位置決めされる。複数の特徴部504は、基体502の表面にわたって連続せず、複数の窪み506によって互いに隔てられる。一実施形態では、窪み506は吸収性窪みであり、窪み506のそれぞれは複数の吸光表面518を備える。図9及び図10に示す実施形態では、窪み506のそれぞれは3つの吸光表面518を備え、吸収性窪み506のそれぞれは概してピラミッド形である。図示の実施形態では、吸光表面518のそれぞれは平坦であるか、又はほぼ平坦であり、概して三角形である。図示の実施形態では、特徴部504及び窪み506はそれぞれ、六角格子上に位置決めされてモアレ効果を最小化する。
一実施形態では、基体502は、エンボス加工されて特徴部504及び窪み506を形成する吸光性プラスチック膜(例えば、ポリ塩化ビニル(PVC)、ポリプロピレン(PP)、又はポリエチレンテレフタレート(PET))であり、反射表面508は、光反射材料(例えば、アルミニウム)を視射角で基体502に堆積させることによって形成される。図9に示す実施形態では、光反射材料はY方向での視射角で堆積される。窪み506は、堆積中に特徴部504の影になるため、反射材料は窪み506又は基体504の底面514には堆積されず、窪み506及び底面514は吸光性のまま残る。
特定の実施形態では、特徴部504のサイズは、回折及び干渉の影響を回避するのに十分大きく、且つ人間の目へのピクセレーション又は輝きを回避するのに十分小さい。特徴部504は、一実施形態では、投射スクリーンが粒状に見えないように十分に小さい。特徴部504の適切なサイズは、スクリーンサイズ、観賞距離、プロジェクタ位置、及び周辺位置を含む特定のプロジェクタシステム実施態様に応じて様々であり得る。一実施形態では、特徴部504は、約75ミクロン〜500ミクロンの範囲の平均特徴部長さ及び幅を有する。さらに別の例示的な特徴部サイズの範囲は、約25ミクロン〜500ミクロン又はそれ以上である。会議室設定では、200〜300ミクロン以下の特徴部サイズが許容可能に見える。より大きなスクリーンほど、より大きな特徴部を許容可能であることができる。
図11は、本発明の一実施形態による図9及び図10に示すような基体特徴部を有する投射スクリーン600を示す図である。投射スクリーン600は、プロジェクタ光30をスクリーン600に向けるプロジェクタ40を含む投射システムに使用されるように構成される。一実施形態では、投射スクリーン600は、投射スクリーン600の正面表面全体にわたって図9及び図10に示す同じパターンの特徴部504及び窪み506を備える。1つの特徴部504を図11に拡大して示して、一実施形態による表面パターンの向きを示す。
プロジェクタ40から入射するプロジェクタ光30は、特徴部504の湾曲した反射表面508(図9及び図10)によって反射される。反射された光36は、スクリーン600から観賞者に向けて外側に向けられる。特徴部504の吸収性窪み506又は吸収性底面514に入射した周辺光32(例えば、スクリーン600の上又は横からの周辺光)は、吸収性窪み506又は吸収性底面514によって吸収され、且つ/又は弱く反射される。投射光は、特徴部504及び窪み506の設計によって周辺光よりも効率的に反射されることから、観賞者に反射される入射光の大半が投射光であり、周辺光は従来のスクリーンほどは黒色レベルに影響しないため、知覚される画像コントラストが増大する。
スクリーン600は、関連付けられる水平視角602(X−Z平面内)及び垂直視角604(Y−Z平面内)を有する。本発明の一実施形態による視角は、明度又はコントラストが最大の50%未満に低下する角度として定義される。視角602及び604は、スクリーン600の視錐体を画定する。水平軸(すなわち、X軸)及び垂直軸(すなわち、Y軸)の両方において特徴部504及び窪み506の表面の幾何学的形状を適宜選択することによって、水平視角602及び垂直視角604並びにスクリーン600の全体明度を独立して調整することができる。一実施形態では、投射スクリーン600の特徴部504及び窪み506は、表面から反射される周辺光と投射光とのコントラスト比を最大化するように設計される。視錐体を調整することによって、光がどこに行くかを管理することができ、それによって、より明るいスクリーンにすることができる。スクリーン600の表面の幾何学的形状を制御することによって、既知の特性を有する信頼性の高い明るいスクリーンを保証することができる。
図9及び図10に示すように、特徴部504の光反射表面508は、矢印510で示すように水平軸(すなわち、X軸)及び矢印512で示すように垂直軸(すなわち、Y軸)の両方において湾曲する。水平軸及び垂直軸での曲率の程度は、所望の視錐体の形状によって決まる。垂直軸での表面508の傾きは、スクリーン600に対するプロジェクタ40の位置によって決まる。窪み506を画定する吸光表面518は、一実施形態では、これらの表面から反射された光が観賞者に届かないようにするために、概して急(例えば、スクリーン600の平面に対して垂直に近い)である。
特徴部504の形状は、スクリーン600が設計される特定の用途に応じて様々である。例えば、短距離投射プロジェクタ(例えば、スクリーン600の底部の約1〜2フィート下、且つスクリーンから背後に約12〜14インチ離れて位置決めされるプロジェクタ)用に設計されるスクリーン600の場合、反射表面508はプロジェクタに面するように下向きに向けられ、垂直軸での表面508の傾きは比較的大きくなる。卓上プロジェクタ(例えば、スクリーン600の底部とほぼ同一平面上に、且つスクリーンから背後に約6〜10フィート離れて卓上に位置決めされるプロジェクタ)用に設計されるスクリーン600の場合、反射表面508はプロジェクタに面するように下向きに向けられ、垂直軸での表面508の傾きは比較的小さくなる(すなわち、表面508は、短距離投射プロジェクタ用に設計されるスクリーンよりも垂直軸において平坦になる)。天井取り付けプロジェクタ(例えば、スクリーン600の上、且つスクリーンから背後に約6〜8フィート離れて位置決めされるプロジェクタ)用に設計されるスクリーン600の場合、反射表面508はプロジェクタに面して上向きに向けられ、垂直軸での表面508の傾きは比較的小さくなる(すなわち、表面508は、短距離投射プロジェクタ用に設計されるスクリーンよりも垂直軸において平坦になる)。
一実施形態による投射スクリーン600は、優れた周辺光阻止、広い視角を提供し、製造が比較的安価である。本発明の一形態では、いくつかの従来の周辺光阻止スクリーンと異なり、投射スクリーン600は短距離投射プロジェクタに適合する。本発明の実施形態は、従来の投射スクリーンに対する改良を提供する。従来の手法の一例は、細溝が付けられ、細溝の下面で光を反射し、細溝の上面に落ちる光を吸収する表面形状を含む投射スクリーンである。この細溝表面形状は、本発明の実施形態において使用される湾曲反射表面と異なり、面のそれぞれが平坦であるため、結果として視錐体がかなり制限される。さらに、この従来の設計を使用して水平軸において光を管理する試みは行われていない。従来の手法の第2の例は、個々に向きを有するミラーの配列で構成される表面形状を有する投射スクリーンである。この従来の手法は構成の柔軟性の欠如という欠点を有し、これらのスクリーンは製造が難しい。従来の手法の第3の例は、レンズ配列を反射背景にわたって利用して、投射光を観賞者に向ける投射スクリーンである。これらのスクリーンはひどく制限された視錐体を有し、比較的高価である傾向を有し、短距離投射システムに適さない。
図12は、本発明の一実施形態による投射スクリーン600を作成する方法700を示すフローチャートである。702において、複数の特徴部504が吸収性基体502上に形成される(図9及び図10)。一実施形態では、702において形成される特徴部504のそれぞれは、第1の方向510に湾曲して所望の水平視角602を提供すると共に、第2の方向512に湾曲して所望の垂直視角604を提供する第1の表面508を備える。704において、複数の吸収性窪み506が基体502に形成され、複数の特徴部504の間に位置決めされる。706において、反射材料が特徴部504のそれぞれの第1の表面508に堆積される。
図13は、本発明の一実施形態による画像ソース40から画像光30を受ける投射スクリーン600を使用する方法800を示すフローチャートである。802において、複数の特徴部504を有する基体502が提供される。特徴部504のそれぞれは反射表面508を備える。反射表面508のそれぞれは、第1の方向510に湾曲して所望の水平視角602を提供すると共に、第2の方向512に湾曲して所望の垂直視角604を提供する。804において、画像ソース40は、反射表面508の形状及び向きに対応する位置に位置決めされる。806において、画像ソースからの画像光が、特徴部504の反射表面508に向けられる。
上記は特定の実施形態の説明及び例示であるが、対象の範囲及び精神から逸脱することなく、当業者によって様々な修正及び変更を行うことが可能である。
反射性になるように材料が選択的に追加されたテクスチャード加工された表面を有する前面投射スクリーンの一実施形態の概略側面図である。 反射性になるように材料が選択的に追加されたテクスチャード加工された表面を有する透明基体を有する背面投射スクリーンの一実施形態の概略側面図である。 背面投射スクリーン又はLCDディスプレイの別の実施形態を示す図である。 テクスチャード加工された基体の一実施形態の等角図である。 低角度堆積が実行された基体の一実施形態の写真図である。 基体上に物質を低角度堆積させる堆積システムの一実施形態を概略的に示す図である。 基体上に物質を低角度堆積させる堆積システムの別の実施形態を概略的に示す図である。 基体上に物質を低角度堆積させる堆積システムの別の実施形態を概略的に示す図である。 特徴部を有する基体の露出表面上に吸収性又は反射性の要素を噴射する方法を概略的に示す図である。 第1の吸光材料層がスクリーン基体の表面特徴部の周辺光源に面する部分に選択的に堆積され、第2の反射材料層が表面特徴部のプロジェクタに面する部分に選択的に堆積されるスクリーン基体の別の実施形態を示す図である。 本発明の一実施形態による周辺光阻止投射スクリーンの部分の正面図を示す図である。 本発明の一実施形態による図9に示す投射スクリーン部分の側面図を示す図である。 本発明の一実施形態による図9及び図10に示すような基体特徴部を有する投射スクリーンを示す図である。 本発明の一実施形態による投射スクリーンを作成する方法を示すフローチャートである。 本発明の一実施形態による画像ソースから画像光を受ける投射スクリーンを使用する方法を示すフローチャートである。

Claims (10)

  1. プロジェクタに面する方向からプロジェクタ光(30)を受ける投射スクリーン(600)であって、
    それぞれが前記プロジェクタに面する方向を向いている反射表面(504)を含む複数の特徴部(504)を有する基体(502)であって、前記反射表面のそれぞれは、第1の方向(510)に湾曲して所望の水平視角を提供すると共に、第2の方向(504)に湾曲して所望の垂直視角を提供する基体(502)を備えることを特徴とする投射スクリーン。
  2. 前記特徴部のそれぞれは、底面(514)及び前記反射表面を有するアーチ状円錐曲線部であり、
    前記反射表面は前記底面から前記円錐曲線部の先端(516)に延在することを特徴とする請求項1に記載の投射スクリーン。
  3. 前記特徴部のそれぞれの前記底面は、前記投射スクリーンの平面に対して実質的に垂直の向きを有する吸収表面であることを特徴とする請求項2に記載の投射スクリーン。
  4. 前記基体内に形成される複数の吸収性窪み(506)をさらに備えることを特徴とする請求項1に記載の投射スクリーン。
  5. 前記吸収性窪みのそれぞれは複数の吸光表面(518)を備え、
    前記複数の特徴部は前記複数の吸収性窪みによって互いに隔てられ、
    前記複数の特徴部及び前記複数の窪みは前記基体の表面にわたって二次元において均一に位置決めされることを特徴とする請求項4に記載の投射スクリーン。
  6. 前記吸収性窪みのそれぞれは概してピラミッド形であることを特徴とする請求項5に記載の投射スクリーン。
  7. 前記複数の特徴部は六角格子上に形成されることを特徴とする請求項1に記載の投射スクリーン。
  8. 前記基体は吸光材料から製造され、前記反射表面は光反射材料を視射角で前記基体に堆積させることによって形成されることを特徴とする請求項1に記載の投射スクリーン。
  9. 前記複数の特徴部は、約75ミクロン〜500ミクロンの範囲の平均特徴部長さ及び幅を有することを特徴とする請求項1に記載の投射スクリーン。
  10. 投射スクリーン(600)を作成する方法であって、
    吸収性基体(502)上に複数の特徴部(504)を形成することであって、各特徴部は、第1の方向(510)に湾曲して所望の水平視角を提供すると共に、第2の方向(504)に湾曲して所望の垂直視角を提供する第1の表面(504)を含む、形成することと、
    前記基体内に、前記複数の特徴部の間に位置決めされる複数の吸収性窪み(506)を形成することと、
    前記特徴部のそれぞれの前記第1の表面上に反射材料(706)を堆積させることとを含むことを特徴とする方法。
JP2009501682A 2006-03-20 2007-03-19 周辺光吸収スクリーン Withdrawn JP2009538438A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US78412506P 2006-03-20 2006-03-20
US11/496,774 US7911693B2 (en) 2006-03-20 2006-07-31 Ambient light absorbing screen
US11/590,506 US7499214B2 (en) 2006-03-20 2006-10-31 Ambient light absorbing screen
PCT/US2007/064307 WO2007109614A2 (en) 2006-03-20 2007-03-19 Ambient light absorbing screen

Publications (1)

Publication Number Publication Date
JP2009538438A true JP2009538438A (ja) 2009-11-05

Family

ID=38472976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009501682A Withdrawn JP2009538438A (ja) 2006-03-20 2007-03-19 周辺光吸収スクリーン

Country Status (4)

Country Link
US (1) US7499214B2 (ja)
EP (1) EP1996977A2 (ja)
JP (1) JP2009538438A (ja)
WO (1) WO2007109614A2 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193034A (ja) * 2008-02-18 2009-08-27 Seiko Epson Corp 反射スクリーンの製造方法
JP2009192970A (ja) * 2008-02-18 2009-08-27 Seiko Epson Corp 反射スクリーンの製造方法
JP2010020210A (ja) * 2008-07-14 2010-01-28 Seiko Epson Corp スクリーンの製造方法及び製造装置、並びにスクリーン
JP2012212035A (ja) * 2011-03-31 2012-11-01 Kuraray Co Ltd 反射型スクリーン
JP2012212036A (ja) * 2011-03-31 2012-11-01 Kuraray Co Ltd 反射型スクリーン
WO2013042168A1 (ja) * 2011-09-21 2013-03-28 株式会社有沢製作所 反射型スクリーン
JP2013137379A (ja) * 2011-12-28 2013-07-11 Dainippon Printing Co Ltd フレネルレンズシートに対する蒸着方法、反射スクリーンの製造方法
JP2016114629A (ja) * 2014-12-11 2016-06-23 大日本印刷株式会社 反射スクリーン、映像表示システム
JP2017111429A (ja) * 2015-12-11 2017-06-22 パナソニックIpマネジメント株式会社 スクリーン及び映像表示システム
JP2017194613A (ja) * 2016-04-22 2017-10-26 株式会社Wonder Wall 投映システムおよびこれを用いた投映方法
JP2018132546A (ja) * 2017-02-13 2018-08-23 大日本印刷株式会社 透過型スクリーン、映像表示装置
JP2021144229A (ja) * 2017-03-02 2021-09-24 大日本印刷株式会社 反射スクリーン、映像表示装置

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006015722A1 (de) * 2004-08-04 2006-02-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und verfahren zur darstellung statischer oder bewegter bilder
JP2008116911A (ja) * 2006-10-13 2008-05-22 Seiko Epson Corp スクリーン及びプロジェクションシステム
CN201035305Y (zh) * 2007-04-06 2008-03-12 扬昕科技(苏州)有限公司 投影幕布
WO2008150934A1 (en) * 2007-05-29 2008-12-11 University Of Utah Research Foundation Micro-lens arrays and curved surface fabrication techniques
DE102007032371A1 (de) * 2007-07-06 2009-01-15 Carl Zeiss Laser Optics Gmbh Verfahren zum Beschichten eines optischen Bauelements für eine Laseranordnung
JP5125271B2 (ja) * 2007-07-13 2013-01-23 セイコーエプソン株式会社 反射スクリーンの製造方法および反射スクリーン
US7974005B2 (en) * 2007-12-12 2011-07-05 Texas Instruments Incorporated Display screen for use in front projectors
DE102008005598A1 (de) * 2008-01-22 2009-07-30 Lumin Visual Technologies Ag Projektionsbildschirm-Emulsion
DE102008005597A1 (de) * 2008-01-22 2009-07-30 Lumin Visual Technologies Ag Projektionsbildschirm
JP5298585B2 (ja) * 2008-03-17 2013-09-25 セイコーエプソン株式会社 スクリーン及びプロジェクタ
JP2010066750A (ja) * 2008-08-12 2010-03-25 Seiko Epson Corp スクリーンの製造方法及びスクリーン
JP2010097190A (ja) * 2008-09-16 2010-04-30 Seiko Epson Corp スクリーン及びスクリーンの製造方法
JP5262554B2 (ja) * 2008-10-15 2013-08-14 セイコーエプソン株式会社 スクリーン
JP2011022556A (ja) * 2009-06-18 2011-02-03 Seiko Epson Corp スクリーン、投影システム、フロントプロジェクションテレビ及びスクリーンの製造方法
JP2011048138A (ja) * 2009-08-27 2011-03-10 Seiko Epson Corp スクリーン及びスクリーンの製造方法
US8004760B2 (en) 2009-10-28 2011-08-23 Microsoft Corporation Rear-projection display
EP2514275B1 (en) 2009-12-17 2015-04-22 Koninklijke Philips N.V. Ambience cinema lighting system
JP2011145582A (ja) * 2010-01-18 2011-07-28 Seiko Epson Corp スクリーン生地及びスクリーン
TW201202837A (en) * 2010-07-09 2012-01-16 Coretronic Corp Projection screen and manufacturing method thereof
JP2012128137A (ja) * 2010-12-15 2012-07-05 Seiko Epson Corp 反射型スクリーンおよび反射型スクリーンの製造方法
KR20130022987A (ko) * 2011-08-26 2013-03-07 삼성전자주식회사 프로젝션용 스크린 및 그를 포함하는 프로젝션 시스템
KR20140019608A (ko) * 2012-08-06 2014-02-17 삼성전자주식회사 프론트 프로젝션 장치용 스크린 및 그 제조 방법
FR3014566B1 (fr) * 2013-12-11 2017-02-10 Thales Sa Systeme de visualisation comprenant un ecran comportant un reseau de motifs diffusants tridimentionnels
CN106030404B (zh) * 2014-03-10 2018-12-14 杜比实验室特许公司 用于激光投影的高性能屏幕
CN206930896U (zh) * 2017-04-12 2018-01-26 株式会社有泽制作所 反射型屏幕
TWI686661B (zh) * 2018-04-20 2020-03-01 億立材料有限公司 可多角度投影成像之投影幕
TWI742592B (zh) * 2020-03-30 2021-10-11 弘勝光電股份有限公司 短焦抗光幕之結構
CN112691689B (zh) * 2020-12-28 2022-07-15 中国工程物理研究院核物理与化学研究所 一种单原子催化剂的蒸气辐照还原合成方法

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1279262A (en) * 1913-06-26 1918-09-17 Paul L Clark Projection-screen.
US3180214A (en) * 1962-08-28 1965-04-27 Aerojet General Co Projection screen
US3191495A (en) * 1963-03-14 1965-06-29 Wendell S Miller Projection screen
US4241980A (en) * 1978-05-24 1980-12-30 William C. McGeehon Beam emission control means
US4235513A (en) * 1978-11-13 1980-11-25 National Association Of Theatre Owners, Inc. High-gain projection screen
JPS5924061Y2 (ja) * 1979-04-27 1984-07-17 シャープ株式会社 マトリツクス型液晶表示装置の電極構造
US5061049A (en) * 1984-08-31 1991-10-29 Texas Instruments Incorporated Spatial light modulator and method
US4662746A (en) * 1985-10-30 1987-05-05 Texas Instruments Incorporated Spatial light modulator and method
EP0511721A3 (en) 1987-10-06 1992-11-25 Koninklijke Philips Electronics N.V. Front projection screen with reflected light concentrating lens array
US4811003A (en) * 1987-10-23 1989-03-07 Rockwell International Corporation Alternating parallelogram display elements
US4956619A (en) * 1988-02-19 1990-09-11 Texas Instruments Incorporated Spatial light modulator
GB8922415D0 (en) 1989-10-05 1989-11-22 Emi Plc Thorn A screen and projector for use in a front projection system
US5696625A (en) * 1989-12-29 1997-12-09 Malifaud; Pierre Leon A. Distributor for electromagnetic radiation, particularly a projection screen
GB9008031D0 (en) * 1990-04-09 1990-06-06 Rank Brimar Ltd Projection systems
US5083857A (en) * 1990-06-29 1992-01-28 Texas Instruments Incorporated Multi-level deformable mirror device
US5146356A (en) * 1991-02-04 1992-09-08 North American Philips Corporation Active matrix electro-optic display device with close-packed arrangement of diamond-like shaped
US5319744A (en) * 1991-04-03 1994-06-07 General Electric Company Polygon fragmentation method of distortion correction in computer image generating systems
US5317409A (en) * 1991-12-03 1994-05-31 North American Philips Corporation Projection television with LCD panel adaptation to reduce moire fringes
US5309241A (en) * 1992-01-24 1994-05-03 Loral Fairchild Corp. System and method for using an anamorphic fiber optic taper to extend the application of solid-state image sensors
US5210641A (en) * 1992-05-01 1993-05-11 Lewis Richard B High contrast front projection display screen
JP3547015B2 (ja) * 1993-01-07 2004-07-28 ソニー株式会社 画像表示装置および画像表示装置の解像度改善方法
US5402184A (en) * 1993-03-02 1995-03-28 North American Philips Corporation Projection system having image oscillation
US5475533A (en) * 1993-08-02 1995-12-12 Applied Physics Research, L.P. Apparatus for enhancing the brightness of an image and method of making the same
US5409009A (en) * 1994-03-18 1995-04-25 Medtronic, Inc. Methods for measurement of arterial blood flow
US5557353A (en) * 1994-04-22 1996-09-17 Stahl; Thomas D. Pixel compensated electro-optical display system
US5920365A (en) * 1994-09-01 1999-07-06 Touch Display Systems Ab Display device
US6184969B1 (en) * 1994-10-25 2001-02-06 James L. Fergason Optical display system and method, active and passive dithering using birefringence, color image superpositioning and display enhancement
US6243055B1 (en) * 1994-10-25 2001-06-05 James L. Fergason Optical display system and method with optical shifting of pixel position including conversion of pixel layout to form delta to stripe pattern by time base multiplexing
US5490009A (en) 1994-10-31 1996-02-06 Texas Instruments Incorporated Enhanced resolution for digital micro-mirror displays
GB9513658D0 (en) * 1995-07-05 1995-09-06 Philips Electronics Uk Ltd Autostereoscopic display apparatus
CA2187044C (en) * 1995-10-06 2003-07-01 Vishal Markandey Method to reduce perceptual contouring in display systems
DE19605938B4 (de) * 1996-02-17 2004-09-16 Fachhochschule Wiesbaden Bildabtaster
GB9605056D0 (en) * 1996-03-09 1996-05-08 Philips Electronics Nv Interlaced image projection apparatus
GB9614887D0 (en) * 1996-07-16 1996-09-04 Philips Electronics Nv Colour interlaced image projection apparatus
JP3724882B2 (ja) * 1996-08-14 2005-12-07 シャープ株式会社 カラー固体撮像装置
JPH1096806A (ja) * 1996-09-20 1998-04-14 Dainippon Printing Co Ltd ディスプレイ用反射材
GB2317734A (en) * 1996-09-30 1998-04-01 Sharp Kk Spatial light modulator and directional display
US6025951A (en) * 1996-11-27 2000-02-15 National Optics Institute Light modulating microdevice and method
US5978518A (en) * 1997-02-25 1999-11-02 Eastman Kodak Company Image enhancement in digital image processing
US5912773A (en) * 1997-03-21 1999-06-15 Texas Instruments Incorporated Apparatus for spatial light modulator registration and retention
JP3813693B2 (ja) * 1997-06-24 2006-08-23 オリンパス株式会社 画像表示装置
US6317171B1 (en) * 1997-10-21 2001-11-13 Texas Instruments Incorporated Rear-screen projection television with spatial light modulator and positionable anamorphic lens
US6104375A (en) * 1997-11-07 2000-08-15 Datascope Investment Corp. Method and device for enhancing the resolution of color flat panel displays and cathode ray tube displays
US6695451B1 (en) * 1997-12-12 2004-02-24 Hitachi, Ltd. Multi-projection image display device
JP3926922B2 (ja) * 1998-03-23 2007-06-06 オリンパス株式会社 画像表示装置
US6067143A (en) * 1998-06-04 2000-05-23 Tomita; Akira High contrast micro display with off-axis illumination
US6456339B1 (en) * 1998-07-31 2002-09-24 Massachusetts Institute Of Technology Super-resolution display
US6188385B1 (en) * 1998-10-07 2001-02-13 Microsoft Corporation Method and apparatus for displaying images such as text
JP4101954B2 (ja) 1998-11-12 2008-06-18 オリンパス株式会社 画像表示装置
US6393145B2 (en) * 1999-01-12 2002-05-21 Microsoft Corporation Methods apparatus and data structures for enhancing the resolution of images to be rendered on patterned display devices
DE19915038A1 (de) * 1999-04-01 2000-10-26 Vaw Ver Aluminium Werke Ag Leichtmetallzylinderblock, Verfahren zu seiner Herstellung und Vorrichtung zur Durchführung des Verfahrens
US6657603B1 (en) * 1999-05-28 2003-12-02 Lasergraphics, Inc. Projector with circulating pixels driven by line-refresh-coordinated digital images
US20030020809A1 (en) * 2000-03-15 2003-01-30 Gibbon Michael A Methods and apparatuses for superimposition of images
EP1306712B1 (en) * 2000-06-16 2006-12-13 Sharp Kabushiki Kaisha Projection type image display device
US6600600B2 (en) 2000-08-14 2003-07-29 Cid, Inc. Projection screen and projection method
US6728032B2 (en) * 2001-10-17 2004-04-27 Infocus Corporation Rear projection display system
US6788301B2 (en) * 2001-10-18 2004-09-07 Hewlett-Packard Development Company, L.P. Active pixel determination for line generation in regionalized rasterizer displays
US6847483B2 (en) * 2001-12-21 2005-01-25 Bose Corporation Selective reflecting
KR100467614B1 (ko) * 2002-10-15 2005-01-24 삼성전자주식회사 배면 투사 스크린 및 이를 채용한 프로젝터
US7019713B2 (en) * 2002-10-30 2006-03-28 The University Of Chicago Methods and measurement engine for aligning multi-projector display systems
US7038727B2 (en) * 2002-10-30 2006-05-02 The University Of Chicago Method to smooth photometric variations across multi-projector displays
US7097311B2 (en) * 2003-04-19 2006-08-29 University Of Kentucky Research Foundation Super-resolution overlay in multi-projector displays
JP4386249B2 (ja) 2003-07-01 2009-12-16 三菱電機株式会社 背面投写スクリーン用拡散構造板及び背面投写スクリーン
US7262911B2 (en) * 2004-03-15 2007-08-28 Arisawa Mfg. Co., Ltd. Reflex-type screen assembly
US7110176B2 (en) * 2004-05-07 2006-09-19 Arisawa Mfg. Co., Ltd. Reflex-type screen

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193034A (ja) * 2008-02-18 2009-08-27 Seiko Epson Corp 反射スクリーンの製造方法
JP2009192970A (ja) * 2008-02-18 2009-08-27 Seiko Epson Corp 反射スクリーンの製造方法
JP2010020210A (ja) * 2008-07-14 2010-01-28 Seiko Epson Corp スクリーンの製造方法及び製造装置、並びにスクリーン
JP2012212035A (ja) * 2011-03-31 2012-11-01 Kuraray Co Ltd 反射型スクリーン
JP2012212036A (ja) * 2011-03-31 2012-11-01 Kuraray Co Ltd 反射型スクリーン
WO2013042168A1 (ja) * 2011-09-21 2013-03-28 株式会社有沢製作所 反射型スクリーン
JP2013137379A (ja) * 2011-12-28 2013-07-11 Dainippon Printing Co Ltd フレネルレンズシートに対する蒸着方法、反射スクリーンの製造方法
JP2016114629A (ja) * 2014-12-11 2016-06-23 大日本印刷株式会社 反射スクリーン、映像表示システム
JP2017111429A (ja) * 2015-12-11 2017-06-22 パナソニックIpマネジメント株式会社 スクリーン及び映像表示システム
JP2017194613A (ja) * 2016-04-22 2017-10-26 株式会社Wonder Wall 投映システムおよびこれを用いた投映方法
JP2018132546A (ja) * 2017-02-13 2018-08-23 大日本印刷株式会社 透過型スクリーン、映像表示装置
JP2021144229A (ja) * 2017-03-02 2021-09-24 大日本印刷株式会社 反射スクリーン、映像表示装置
JP7060137B2 (ja) 2017-03-02 2022-04-26 大日本印刷株式会社 反射スクリーン、映像表示装置

Also Published As

Publication number Publication date
EP1996977A2 (en) 2008-12-03
US20070217005A1 (en) 2007-09-20
WO2007109614A3 (en) 2007-11-15
WO2007109614A2 (en) 2007-09-27
US7499214B2 (en) 2009-03-03

Similar Documents

Publication Publication Date Title
JP2009538438A (ja) 周辺光吸収スクリーン
US7911693B2 (en) Ambient light absorbing screen
US6600600B2 (en) Projection screen and projection method
TWI288291B (en) Reflection type screen
JP4956950B2 (ja) 反射型スクリーン
TWI385467B (zh) Optical projection screen
JP2006215162A (ja) 反射スクリーン及び反射投影システム
CN105378560A (zh) 多屏幕放映机装置
WO2006044039A1 (en) Screen
JP2007508589A (ja) 周囲光の中で機能する投影受像面
JP2007508589A6 (ja) 周囲光の中で機能する投影受像面
JP2006065266A (ja) 反射スクリーン、反射投影システム、及び、反射スクリーンの製造方法
JP4083191B2 (ja) 反射型スクリーン
KR20070090140A (ko) 정지 화상 또는 동화상을 표시하는 장치 및 방법
US9992462B2 (en) Multi-screen projector setting
CN109388014A (zh) 投影屏幕和投影系统
JP2949844B2 (ja) 反射型映写スクリーン
JP4285259B2 (ja) 反射型スクリーン
CN112255877A (zh) 一种反射式侧向投影屏幕及投影系统
US7123411B2 (en) Reflective multi-image surface
JPH06123920A (ja) 反射型映写スクリーン
KR20060092501A (ko) 휘도개선광학시트 및 이를 사용하는 고휘도 반사형 스크린
JP2006162966A (ja) 投射画像表示用スクリーン
JPS6289941A (ja) 反射型映写幕
AU2004299885A1 (en) Viewing screen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100226

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601