JP2009131824A - 選択透過材料及び空調システム - Google Patents

選択透過材料及び空調システム Download PDF

Info

Publication number
JP2009131824A
JP2009131824A JP2007335056A JP2007335056A JP2009131824A JP 2009131824 A JP2009131824 A JP 2009131824A JP 2007335056 A JP2007335056 A JP 2007335056A JP 2007335056 A JP2007335056 A JP 2007335056A JP 2009131824 A JP2009131824 A JP 2009131824A
Authority
JP
Japan
Prior art keywords
membrane
vehicle
polymer
outside air
selectively permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007335056A
Other languages
English (en)
Other versions
JP4912290B2 (ja
Inventor
Junya Ishida
純也 石田
Sachiko Oide
祥子 大出
Katsunori Iwase
勝則 岩瀬
Tetsuo Toyama
哲男 外山
Shigeru Oyanagi
茂 大柳
Hitoshi Hayashi
仁志 林
Mika Kawakita
美香 川北
Manabu Maeda
学 前田
Akira Yamamoto
昭 山本
Masahiko Minemura
正彦 峯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Denso Corp
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd, Denso Corp filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2007335056A priority Critical patent/JP4912290B2/ja
Publication of JP2009131824A publication Critical patent/JP2009131824A/ja
Application granted granted Critical
Publication of JP4912290B2 publication Critical patent/JP4912290B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00793Dispersing a component, e.g. as particles or powder, in another component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/106Membranes in the pores of a support, e.g. polymerized in the pores or voids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/06Filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • B60R11/0217Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof for loud-speakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • C01B13/0255Physical processing only by making use of membranes characterised by the type of membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/027Silicium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/60Polyamines

Abstract

【課題】SPM、nSPM等の大気中の浮遊物質を除去することが可能であり、且つ気体の透過性が十分である膜を形成することができる選択透過材料、及びそれを用いる空調システムを提供すること。
【解決手段】オルガノシロキサン骨格を有するポリマーに固形添加剤が分散されてなる選択透過材料であって、前記選択透過材料から形成される膜に酸素及び窒素を透過させた場合に、23±2℃、膜間の圧力差1.05〜1.20atmにおける酸素及び窒素の透過係数(cm3・cm・sec-1・cm-2・cmHg-1)の関係が下記式(1)で表される、選択透過材料。なお、式中、P(O)は酸素の透過係数、P(N)は窒素の透過係数を示す。

【選択図】なし

Description

本発明は、選択透過材料及び空調システムに関する。
近年、技術の進歩に伴い、例えば自動車等の気密性を高めることが難しかった空間においても気密性を高めることが可能となった。このような気密性の高い自動車に多くの乗員が長時間の乗車をした場合には、酸素濃度の低下や二酸化炭素濃度の上昇が起こり、乗員に頭痛や不快感をもたらすおそれがあるため、適度に車室内に外気を導入する必要がある。
しかしながら、都会の道路や幹線道路等は粉塵等の汚染物質により汚染されているため、乗員の健康を考えると外気をそのまま車内に導入することは大きな問題であった。この問題を解決するための1つの方法としては、大気中の汚染物質、例えば浮遊物質を除去するためのフィルタを、外気導入のための取り入れ口に設置する方法がある。
このようなフィルタとしては従来、不織布やメカニカルフィルタ等が用いられていた。また、特許文献1では、自動車全体の空調システムが提案されている。
特開2004−203367号公報
しかしながら、従来の不織布やメカニカルフィルタ等のフィルタでは、大気中の浮遊物質のうち粒径が10μm以下のもの(以下「SPM」という。)、特に粒径が100nm以下のもの(以下「nSPM」という。)を除去することが非常に困難であった。また、高分子材料からなる気体選択透過膜をフィルタに適用したとしても、SPM、nSPMの除去は可能であるものの、気体の透過性が不十分であり、外気を十分に導入する目的を達成することができないという問題があった。
そこで、本発明は、SPM、nSPM等の大気中の浮遊物質を除去することが可能であり、且つ気体の透過性が十分である膜を形成することができる選択透過材料、及びそれを用いる空調システムを提供することを目的とする。
本発明者らは、オルガノシロキサン骨格を有するポリマー(以下、場合により「シリコーン系ポリマー」ともいう。)と固形添加剤とからなる選択透過材料であって、選択透過材料から形成される膜に気体を透過させた場合に、膜を透過する気体の流れにおいてクヌーセン流(Knudsen flow)が支配的である選択透過材料により、上記目的を達成できることを見出した。なお、「固形添加剤」とは、常温常圧で固形の添加剤をいい、可塑剤やイオン性液体等の液状物質は含まれない。また、「クヌーセン流」とは、分子の動きが問題となるほどの希薄な気体の流れをいい(化学大辞典3、化学大辞典編集委員会編、縮刷版44頁参照)、ガスの透過速度がその分子量に依存するという特徴を有する。また、「クヌーセン流が支配的である」とは、ガスの透過速度がその分子量に依存するようになることをいう。
すなわち、本発明は、シリコーン系ポリマーに固形添加剤が分散されてなる選択透過材料であって、選択透過材料から形成される膜に酸素及び窒素を透過させた場合に、23±2℃、膜間の圧力差1.05〜1.20atmにおける酸素及び窒素の透過係数(cm3・cm・sec-1・cm-2・cmHg-1)の関係が下記式(1)で表される、選択透過材料を提供する。

[式中、P(O)は酸素の透過係数、P(N)は窒素の透過係数を示す。]
このような選択透過材料によれば、SPM、nSPM等の大気中の浮遊物質を除去することが可能であり、且つ気体の透過性が十分である膜を形成することができる。なお、本明細書中において、「気体の透過性が十分である」とは、23±2℃、膜間の圧力差1.05〜1.20atmにおける酸素及び窒素の透過係数が8.0×10−8cm3・cm・sec-1・cm-2・cmHg-1以上、好ましくは1.0×10−7cm3・cm・sec-1・cm-2・cmHg-1以上であることをいう。また、本明細書中において、「SPM、nSPM等の大気中の浮遊物質を除去することが可能」とは、nSPMの遮断率が80wt%以上(好ましくは90wt%以上、より好ましくは99wt%以上)であることをいう。nSPMの遮断率が80wt%以上である場合には、当然に、nSPMよりも粒径の大きいSPM等の大気中の浮遊物質も遮断することができる。nSPMの遮断率は、例えば実施例に記載の方法により測定することができる。
上記選択透過材料から形成される膜に気体を透過させた場合に、この膜を透過する気体の流れにおいてクヌーセン流(Knudsen flow)が生じる。この場合おいて、シリコーン系ポリマーと固形添加剤との界面、隣接する固形添加剤同士の界面、固形添加剤自身、及び前記シリコーン系ポリマー中の空泡からなる群より選ばれる少なくとも1つに、クヌーセン流が生じる空隙が形成されていることが好ましく、シリコーン系ポリマーと固形添加剤との界面、及び/又は隣接する固形添加剤同士の界面にクヌーセン流が生じる空隙が形成されていることがより好ましい。
固形添加剤は、フィラー、導電性ポリマー、又はこれらの混合物であることが好ましい。フィラーは、膜における気体の透過性の更なる向上の観点から、シリカ系フィラーであることが好ましく、多孔質フィラーであることが特に好ましい。なお、固形添加剤がフィラーである場合において、以下の(1)〜(3)のいずれかの条件を満たすことが好ましい。
(1)前記フィラーが、多孔質シリカ粒子であり、シリコーン系ポリマー100質量部に対して前記固形添加剤の添加量が25〜1560質量部である、
(2)前記フィラーが、平均粒径10〜120nmの、疎水性若しくは親水性表面を有する非多孔質シリカ粒子であり、シリコーン系ポリマー100質量部に対して前記固形添加剤の含有量が65〜3800質量部である、
(3)前記フィラーが、平均粒径10〜60nmの、親水性表面を有する非多孔質酸化チタン粒子であり、シリコーン系ポリマー100質量部に対する前記固形添加剤の含有量が330〜6400質量部である。
導電性ポリマーとしては、ポリアニリン又は酸処理ポリアリニンを採用することもできる。ポリアニリン又は酸処理ポリアニリンは、シリコーン系ポリマーと同様に例えばトルエン等の溶媒に可溶である。このため、ポリアニリンを溶媒に溶解させることにより、シリコーン系ポリマーとの混合、分散を、容易かつ安定して行うことができる。
本発明の空調システムは、空調対象空間への気体の供給及び/又は空調対象空間からの気体の排出が行われる膜を備え、上記膜は上述の選択透過材料から形成される膜であるものである。これによれば、本発明の選択透過材料を用いていることから、SPM、nSPM等の大気中の浮遊物質の空調対象空間への流入を防止することができ、且つ空調対象空間内にSPM、nSPM等の浮遊物質が存在する場合にはそれを除去することもできる。
本発明によれば、SPM、nSPM等の大気中の浮遊物質を除去することが可能であり、且つ気体の透過性が十分である膜を形成可能な選択透過材料、及びそれを用いる空調システムを提供することができる。
以下、場合により図面を用いて本発明を詳細に説明するが、本発明はこれらに限られるものではない。
(選択透過材料)
本発明の選択透過材料は、シリコーン系ポリマーに固形添加剤が分散されてなる選択透過材料であって、選択透過材料から形成される膜に酸素及び窒素を透過させた場合に、23±2℃、膜間の圧力差1.05〜1.20atmにおける酸素及び窒素の透過係数(cm3・cm・sec-1・cm-2・cmHg-1)の関係が下記式(1)で表されるもの、である。

[式中、P(O)は酸素の透過係数、P(N)は窒素の透過係数を示す。]
以下、上記式(1)における酸素の透過係数を窒素の透過係数で除した値(P(O)/P(N):以下、「分離比α」ともいう。)が、0.94以上1未満である場合は、選択透過材料からなる膜を透過する気体の流れにおいてクヌーセン流が支配的であるということができる。上述のように「クヌーセン流」は、ガスの透過速度がその分子量に依存するような流れであるが、膜を透過する気体の流れが理想的なクヌーセン流である場合には、気体の透過係数Pはその分子量の平方根に逆比例する。例えば、透過するガス成分が酸素及び窒素である場合には、それらの分離比αは、下記式(2)で表されるように0.935となる。

[式中、P(O)及びP(N)はそれぞれ酸素及び窒素の透過係数を示し、M(O)及びM(N)はそれぞれ酸素及び窒素の分子量を示す。]
これに対して、「溶解拡散流」と呼ばれる気体の流れがある。溶解拡散流とは、膜に対する気体の溶解度と膜内での気体の拡散係数との積に依存する流れをいい、一般にクヌーセン流に比べ膜中の気体の透過速度が遅い。従来のシリコーン系ポリマーを含有する膜においては、膜を透過する気体の流れにおいて溶解拡散流が支配的であり、酸素及び窒素の分離比αが1以上であることが知られている。
これらのことから、本発明の選択透過材料から形成される膜においては、分離比α(P(O)/P(N))が上記式(1)で表されるものであることにより、膜を気体が透過する際にクヌーセン流が生じ、従来のものと比較して、気体の透過性が飛躍的に向上すると考えられる。
本発明の選択透過材料から形成される膜により、クヌーセン流が生じる理由は必ずしも明らかでないが、本発明者らの考えを、図面を用いて以下に説明する。
図1は、本発明の選択透過材料から形成される膜20の模式断面図である。膜20は、シリコーン系ポリマー21と固形添加剤23とから構成され、それらの境界には、クヌーセン流を生じる空隙25(例えば1〜100nmの空隙)が存在する。シリコーン系ポリマー21と固形添加剤23との親和性が低いことに起因して空隙25が生じているものと考えられる。
このような膜20において、気体は、シリコーン系ポリマー21中を溶解拡散流により、空隙25中をクヌーセン流により透過する。また、固形添加剤23が多孔質体等のようにそれ自身が気体を通す性質を有するものであった場合には、気体が固形添加剤23中を透過することも考えられる。さらに、固形添加剤23同士が隣接する場合には、その隣接する固形添加剤23同士の界面に形成された空隙を気体がクヌーセン流により透過することも考えられ、シリコーン系ポリマー21中に空泡が存在する場合には、その空泡中を気体がクヌーセン流により透過することも考えられる。
本発明の選択透過材料から形成される膜20においては、気体がクヌーセン流により透過する距離が溶解拡散流により透過する距離よりも長くなるため、気体の透過性が飛躍的に向上すると推察される。また、溶解拡散流により気体が透過する部分に関しては、SPM及びnSPMはブロックされるので、SPM、nSPM等の大気中の浮遊物質を除去することが可能となると考えられる。
「シリコーン系ポリマー」としては、下記一般式(3),(4),(5)及び(6)で示されるシロキシ基(式中のRとしてはそれぞれ独立して炭素数1〜30までのアルキル基、アリール基、アラルキル基、アルケニル基、更にはハロゲン原子が置換した上述の置換基等が挙げられる。)から選択される1つ又は2つ以上で構成される、ポリオルガノシロキサン、又は、ポリオルガノシロキシ単位とシリコーン以外の有機ポリマーとの共重合体、例えば、シリコーン変性シクロオレフィンポリマー、シリコーン変性プルランポリマー(例えば、特開平8−208989号公報に記載のもの)及びシリコーン変性ポリイミドポリマー(例えば特開2002−332305号公報に記載のもの)が挙げられる。
SiO1/2 …(3)
SiO2/2 …(4)
RSiO3/2 …(5)
SiO4/2 …(6)
「固形添加剤」は、フィラー、導電性ポリマー、又はこれらの混合物であることが好ましい。「フィラー」としては、有機物フィラー又は無機物フィラーを用いることができ、親水性表面を有する無機物フィラーが好ましい。このような無機物フィラーとしては、例えば、表面水酸基が存在するために親水性表面を有する、シリカ、ゼオライト、アルミナ、酸化チタン、酸化マグネシウム及び酸化亜鉛等の酸化物からなる酸化物系フィラーが挙げられる。これらの中で、シリコーン系ポリマーとのぬれ性の観点から、シリカ系フィラーが好ましい。シリカ系フィラーとしては、例えば、球状シリカ、多孔質シリカ(ゼオライト及びメソポーラスシリカを含む)、石英パウダー、ガラスパウダー、ガラスビーズ、タルク及びシリカナノチューブが挙げられる。
なお、添加されるフィラーの表面は疎水化されていないことが好ましい。必要に応じて、カップリング剤等を用いた表面処理、又は水和処理による親水化を施したフィラーを用いてもよい。
また、気体の透過性の観点から、フィラーは多孔質フィラーであることが好ましい。多孔質フィラーとしては、メソポーラスシリカ及びゼオライトが好ましい。フィラーの形状については、シリコーン系ポリマーとのぬれ性の観点から、表面の凹凸が実用上無視できるほど小さく、表面積が小さく、配向による特性に影響しない球状であることが好ましい。
フィラーの粒径に関しては、選択材料から形成される膜の膜厚が薄くなる観点から、1nm〜100μmであることが好ましく、10nm〜10μmであることがより好ましい。また、フィラーが疎水性若しくは親水性表面を有する非多孔質シリカ粒子である場合には、膜における気体の透過性の更なる向上の観点から、その平均粒径が10〜120nmであることが好ましく、10〜60nmであることがより好ましい。さらに、フィラーが親水性表面を有する非多孔質酸化チタン粒子である場合には、膜における気体の透過性の更なる向上の観点から、その平均粒径が10〜60nmであることが好ましい。
このようなフィラーをシリコーン系ポリマーに添加する場合には、その添加量は、シリコーン系ポリマー100質量部に対して、25〜500質量部であることが好ましく、25〜300質量部であることがより好ましい。フィラーの添加量が25質量部未満である場合には、形成される膜の気体透過性を向上させる効果が得られ難くなる傾向にあり、500質量部を超える場合には、形成される膜の機械的強度が低下し、薄膜化し難くなる傾向にある。
「導電性ポリマー」としては、例えば、ポリアニリン、ポリアセチレン、ポリチオフェン及びポリピロールが挙げられ、ポリアニリンが好ましい。ポリアニリンは、シリコーン系ポリマーに対する親和性が低く、且つ良溶媒がシリコーン系ポリマーと異なる。これにより、ポリアニリンとシリコーン系ポリマーとの間の空隙が大きくなり、気体の透過性が向上すると考えられる。
導電性ポリマーは、気体の透過性の観点から、酸により処理した後に添加することが好ましい。ポリアニリン等の導電性ポリマーは、酸と接触すると、ロイコ−エメラルディン(Leuco−Emeraldine)塩及び/又はエメラルディン(Emeraldine)塩を形成し、シリコーン系ポリマーに対する親和性が著しく低下する。これにより、シリコーン系ポリマーと導電性ポリマーとの間の空隙がより大きくなり、気体の透過性が向上すると考えられる。添加する酸としては、塩酸、過塩素酸、硫酸、硝酸、ビニルホスホン酸及びアクリル酸が挙げられる。
このように酸により導電性ポリマーを処理する場合における酸の好ましい添加量は、シリコーン系ポリマーと導電性ポリマーとの組み合わせによって異なるが、導電性ポリマー100質量部に対して、0.5〜45.6質量部であることが好ましい。特に、シリコーン系ポリマーがシリコーン変性プルランポリマーであり、導電性ポリマーがポリアニリンである場合には、導電性ポリマー100質量部に対して0.9〜1.4質量部の2規定塩酸を添加することが好ましい。また、シリコーン系ポリマーがシリコーン変性シクロオレフィンポリマーであり、導電性ポリマーがポリアニリンである場合には、導電性ポリマー100質量部に対して4.6〜9.1質量部の2規定塩酸を添加することが好ましい。
このような導電性ポリマー(導電性高分子であるポリアニリン(アルドリッチ社製、分子量:2万)をシクロへキサノンに溶解して固形分を2wt%に調整した溶液)をシリコーン系ポリマーに添加する場合には、その添加量は、シリコーン系ポリマー100質量部に対して、2.2〜80.0質量部であることが好ましく、5.0〜30質量部であることがより好ましい。導電性ポリマーの添加量が2.2質量部未満である場合には、形成される膜の気体透過性を向上させる効果が得られ難くなる傾向にあり、80.0質量部を超える場合には、形成される膜の気体透過性を向上させる効果が得られ難くなるとともに、成膜性が低下し、形成される膜の機械的強度が低下する傾向にある。
選択透過材料には、必要に応じて溶剤を添加してもよい。溶剤としては、例えば、トルエン、メチルエチルケトン、酢酸エチル、N−メチルピロリドン(以下、「NMP」という。)、シクロヘキサン、シクロヘキサノンが挙げられる。溶剤の種類は、シリコーン系ポリマーの種類に応じて選択することができ、例えば、シリコーン変性プルランポリマーである場合には、トルエン、メチルエチルケトン、酢酸エチル、NMP等を用いることができる。また、ポリアニリン等の導電性ポリマーを添加する場合には、シリコーン系ポリマーと導電性ポリマーとを別々の溶媒に溶解させた後に混合することが好ましい。例えば、シリコーン系ポリマーをトルエンに、ポリアニリンをシクロヘキサノンにそれぞれ溶解させた後に混合することが好ましい。
選択透過材料は、必要に応じて混合されていてもよい。例えば、シリコーン系ポリマーがペレット状やベール状等である場合には、押出機やニーダー等を用いて他の成分と混合させてもよい。また、シリコーン系ポリマーが溶媒に溶解したものである場合には、その溶液に他の成分を添加し攪拌することにより、混合させてもよい。さらに、混合した後に、溶媒を除去してもよい。
上述の選択透過材料を用いて膜を形成させる場合には、用いる成分に対応する成膜加工方法を利用することができる。例えば、シリコーン系ポリマーが、ペレット状等である場合には、融解押出法、カレンダー法等の加工方法により、膜を得ることができる。また、シリコーン系ポリマーが溶媒に溶解したものである場合には、キャスト法、コーター法、水面展開法等の加工方法により、膜を得ることができる。
(空調システム)
本発明の空調システムは、空調対象空間への気体の供給及び/又は空調対象空間からの気体の排出が行われる膜を備え、上記膜が選択透過材料から形成される膜であるものであり、例えば、外気導入のための取り入れ口(外気導入口)に上述の膜が設置されたものが挙げられる。空調対象空間としては、例えば、車両(自動車)、住宅、新幹線、飛行機等の、空間内の気体と外気とを交換することが必要な空間が挙げられ、その具体例としては、図2に示されるような車両が挙げられる。
図2は、本発明の空調システムの一形態である車両を前後方向に切断した概略断面図である。車両10の車室19は、車室壁11と選択透過膜(透過膜)13(本発明の選択透過材料からなる)とを備え、外気導入のための取り入れ口に設置された選択透過膜13以外の部分では、実質的に外気と遮断されている。
車室壁11は、鉄、アルミニウム、ガラス等の気体を実質的に透過させない材料により構成されている。選択透過膜13は、上述の選択透過材料から形成される膜により構成されており、その厚さは、0.1〜10μmであることが好ましい。車両10における選択透過膜13の具体的な設置場所としては、例えば図3に示すエアコンユニット内の外気導入のための取り入れ口が挙げられる。
図3は、本発明の空調システムの一形態である車両におけるエアコンユニット30の一部を示す模式断面図である。図3に示すように、エアコンユニット30は、エアコンユニットケース35、遠心式送風ファン37及び選択透過膜構造体(透過部材)40を備える。エアコンユニットケース35は、外気導入口35a、内気導入口35b及び開口部35cを有する。送風ファン37は、エアコンユニットケース35において、内気が循環する経路上に設置されている。選択透過膜構造体40は、エアコンユニットケース35に、外気導入口35aを閉塞するように設置されている。
このようなエアコンユニット30によれば、外気導入口35aから選択透過膜構造体40を通して外気が、内気導入口35bから内気がエアコンユニット内に導入され、開口部35cを通して車両の車室に外気及び/又は内気が供給される。また、外気導入口35aから選択透過膜構造体40を通して内気が車外へ排出される場合もある。
エアコンユニットケース35は、ポリプロピレンのようなある程度の弾性を有し、機械的強度に優れた樹脂により形成されている。遠心式送風ファン37としては、従来車両における内気循環のために用いられているものを用いることができる。選択透過膜構造体40は、選択透過膜13を有し、選択透過膜13を通して外気を取り入れることができるものであればよく、例えば、図4及び図5に示すような支持体42a,42bによって選択透過膜13が支持されている選択透過膜構造体40a,40bを用いることができる。
図4は、選択透過膜構造体40の好ましい形態を示す斜視図である。本実施形態における選択透過膜構造体40aは、選択透過膜13a及び支持体42aを備える。選択透過膜13aは平面状であり、その片面に密着する平面状の支持体42aによって支持されている。なお、支持体42aは、例えば選択透過膜13aの外周部等、選択透過膜13aの一部のみに密着していてもよく、選択透過膜13aに完全に密着していてもよい。
図5は、選択透過膜構造体40の他の好ましい形態を示す斜視図である。本実施形態における選択透過膜構造体40bは、選択透過膜13b及び支持体42bを備える。選択透過膜13bは襞状であり、その片面に密着する襞状の支持体42bによって支持されている。なお、支持体42bは、選択透過膜13bの一部のみに密着していてもよく、選択透過膜13bに完全に密着していてもよい。
選択透過膜13a及び13bは、上述の選択透過材料から形成される膜により構成されており、その厚さは0.1〜10μmであることが好ましい。支持体42a及び42bは、気体を透過するものであればよく、例えば、紙状の繊維部材、並びに孔径が0.1〜500μmの多孔質体及びメッシュが挙げられる。支持体の厚さは50〜500μmであることが好ましい。
これらの選択透過膜構造体40a及び40bによれば、選択透過膜13a及び13bが支持体により支持されているため、選択透過膜13a及び13bを薄くして透過する気体量を増加させるとともに、選択透過膜構造体の強度を確保することができる。さらに、選択透過膜構造体40bによれば、選択透過膜13a及び13bの表面積が大きくなるため、気体の透過量をさらに増加させることができる。
なお、上述の選択透過膜構造体は、例えば、後工程で除去可能なフィルム上に上述の成膜加工方法により選択透過膜を形成し、形成された選択透過膜上に支持体を転写した後に、上記フィルムを除去することにより製造することができる。後工程で除去可能なフィルムとしては、水、溶剤、薬品等による洗浄により除去されるフィルムや、UV、EB等の照射により改質した後に除去されるフィルムが挙げられる。また、選択透過膜上に支持体を転写する方法としては、選択透過膜と支持体との間に接着剤や粘着剤を介在させ接着する方法や、加熱や溶剤による溶解等によって選択透過膜と支持体とを接着する方法が挙げられる。
また、車両10における選択透過膜13は、圧力調整用換気装置(図6)、天井(図7〜9)、ガラス(図10〜12)、ピラー(図13、14)、床(図15)、又はドア(図16〜20)等に設置されていてもよい。また、設置される選択透過膜13は、単独で用いられてもよく、上述した支持体によって支持されたものであってもよい。以下、これらの設置場所の詳細な例について説明する。
(圧力調整用換気装置)
図6は、本発明の選択透過材料からなる選択透過膜を圧力調整用換気装置内に備える、本発明の空調システムの一形態である車両を示す概略構成図である。
本実施形態の圧力調整用換気装置110は、図6(a)に示すように、車両10後部のバンパ34近傍の左右両側面に配置されている。そして、車両10の後方から見た車両10の後部部分の断面図である図6(b)に示すように、圧力調整用換気装置110は、筐体38、ダンパ32、及び選択透過膜13から構成される。
圧力調整用換気装置110は、一部が略長方形に切り取られた車両10のボディ122部分に、ボディ122内部に埋め込まれるように取り付けられている。
つまり、圧力調整用換気装置110の筐体38が角筒状に形成され、角筒状に形成された筐体38の車両10外側の端面にはフランジが設けられている。そして、そのフランジが溶接等でボディ122に固定されている。
筐体38は、ボディ122に固定されている端部と反対側の端部(奥端部)の下面が車室19側に上向き斜めに曲げられている。この曲げられている部分をダンパ受け部38aと呼ぶ。後述するように、ドアが閉じた状態でダンパ32の下端部が、ダンパ受け部38aに車両10外側から車室19に向かって接触するようになっている。
そして、ダンパ32が筐体38にヒンジ32aで取り付けられている。具体的には、ダンパ32の上辺部分と、角筒状の筐体38の奥部の内側の上壁内側とがヒンジ32aによって結合され、ダンパ32がヒンジ32aを中心として回動可能に取り付けられている。
圧力調整用換気装置110においては、車両10のドア(図示せず)が閉ると、車室19内の圧力が上昇する。すると、その上昇した圧力によって、ダンパ32が車室19側から車両10外側に向かって押される。すると、ダンパ32は、ヒンジ32aを中心として回動し開状態、つまり、図6(b)中のβの状態になる。
ダンパ32が開状態になると図6(a)の矢印で示すドア閉時の空気の流れが生じ、車室19内の空気が車室19外に逃れる。このように、ドアが閉まるとダンパ32が開状態になって、車室19内圧力の上昇を緩和する。
一方、ドアが閉じた状態では、車室19内の圧力上昇がないので、ダンパ32には車室19側から圧力が加わらない。ダンパ32に車室19側から圧力が加わらなければ、ダンパ32は、自重によりヒンジ32aを中心として車室19側に回動する。ダンパ32が回動してダンパ32の下端部がダンパ受け部38aに接触すると、それ以上回動できなくなる。したがって、ダンパ32が閉状態、つまり、図6(b)中のαの状態になって車室19が密閉状態になる。
なお、車両10外側から車室19に向かってダンパ32に圧力が加わったときにも、ダンパ32はヒンジ32aを中心として車室19側に回動しようとするが、そのときもダンパ32の下端部がダンパ受け部38aに接触する。したがって、ダンパ32はそれ以上回動できないので、ダンパ32は閉状態となり、車室19が密閉状態になる。
(天井)
図7〜9は、本発明の選択透過材料からなる選択透過膜を天井部分に備える、本発明の空調システムの一形態である車両を示す概略構成図である。図7(a)に示すように本実施形態における車両10は、天井部分に選択透過膜13が設けられている。以下、本実施形態における天井部分の具体的な形態について説明する。
[実施形態1A]
実施形態1Aの天井部分は、図7(b)に示すように、車両10の天井部分に設けられた空洞70、車両10の外壁22の一部に設けられた外気導入口26及び外気排出口28、空洞70の一部に設けられた選択透過膜13等からなる。
空洞70は、車両10の天井部分の車室19内に面する内壁24と車室19外に面する外壁22とで形成されている。なお、外壁22及び内壁24は、鉄、アルミニウム、ガラス等の実質的に気体を透過させない材質の材料によって構成されている。
外気導入口26は、車両10の進行方向側から空洞70へ外気を導入するために、空洞70を形成する外壁22に設けられた孔であり、外気排出口28は、空洞70へ導入した外気を車両10の進行方向反対側へ排出するために空洞70を形成する外壁22に設けられた孔である。
外気導入口26及び外気排出口28は、車両10の横方向を長手方向として穿たれた略四角形状の細長い孔であり、長手方向及び短手方向の長さは、車種や空洞70に導入する外気の量によって決定される。
選択透過膜13は、空洞70を形成する内壁24に、選択透過膜13の少なくとも一部が外気導入口26により空洞70へ導入された外気と接し、他の部分が車室19内の空気と接するように配置されている。
具体的には、図7(b)に示すように、車両10の内壁24の一部を略四角形状に切り取る。そして、選択透過膜13を略四角形状に切り取った内壁24部分と同じ大きさの略四角平板形状に形成し、周囲を補強材で補強する。ここで、選択透過膜13の周囲を補強する補強材のうち、車両10の進行方向の補強材を前方補強材12a、車両10の進行方向反対側の補強材を後方補強材12bという。
そして、内壁24を略四角形状に切り取った部分に、補強材で周囲を補強した選択透過膜13を取り付ける。
なお、ここでは内壁24を略四角形状に切り取ったが、特に略四角形状に切り取る必要はなく、天井の形状等に合わせて他の形状、例えば、円形や台形あるいは、複数の直線や曲線からなるより複雑な形状に切り取ってもよい。
次に、外気導入口26及び外気排出口28から空洞70へ水滴が浸入しないようにした空調システムについて図8に基づいて説明する。図8(a)〜(c)は、空洞70へ水滴が浸入しないようにするための構造を示す図である。
[実施形態2A]
図8(a)は、空洞70へ水滴が浸入しないようにする手段、すなわち水滴浸入防止手段として前部開閉扉27a及び後部開閉扉27cが備えられた形態(実施形態2A)を示す図である。前部開閉扉27a及び後部開閉扉27cは、各々外壁22にヒンジ27b,27dで取り付けられており、ヒンジ27b,27dを中心として回動することによって車両10の進行方向に沿って開閉する。
ヒンジ27bの取り付け位置は、車両10の進行方向に沿って、外気導入口26の後方、かつ、前方補強材12aの前方である。また、ヒンジ27dの取り付け位置は、車両10の進行方向に沿って外気排出口28の前方、かつ、後方補強材12bの後方である。
前部開閉扉27a及び後部開閉扉27cは、外気の圧力によって開閉する。つまり、車両10が走行すると外気導入口26から空洞70内に外気が導入される。外気導入口26から導入された外気は前部開閉扉27aに当たる。すると、前部開閉扉27aの外気導入口26側の面には外気によって圧力が生じるので、その圧力によって前部開閉扉27aは開く。
逆に、車両10が停止すると、外気導入口26から外気が導入されない。したがって、前部開閉扉27aの外気導入口26側の面には圧力が発生しないので、前部開閉扉27aは閉じる。
後部開閉扉27cも前部開閉扉27aと同じように空洞70へ導入される外気によって開閉する。
前部開閉扉27aが開いたときの最大角度θは、前方補強材12aの位置によって決まる。つまり、前部開閉扉27aが最大に開いたときに前部開閉扉27aの下端部分が前方補強材12aよりも車両10の進行方向側に位置するように最大角度θが決まるのである。
このようにすれば、前部開閉扉27aに外気が当たって前部開閉扉27aが最大角度θまで開いた場合であっても、前部開閉扉27aに外気に含まれる水滴が当たって、その水滴が図中下方に滴下しても選択透過膜13の表面に付着することがない。つまり、選択透過膜13の表面に水滴が付着しなくなるので、選択透過膜13の気体透過性能を保持することができる。
[実施形態3A]
図8(b)は、水滴浸入防止手段として堰を用いた形態、すなわち、外気導入口26と前方補強材12aとの間に前部堰27eが配置され、後方補強材12bと外気排出口28との間に後部堰27fが配置された形態(実施形態3A)を示す図である。
前部堰27eは、車両10の進行方向に前後に配置された略四角形状の細長い一対の板材から構成されている。一対の板材は、その長手方向が車両10の車幅方向となるように
取り付けられており、一対の板材のうち、外気導入口26側に配置された板材は、車両10の外壁22に取り付けられ、内壁24との間に隙間ができるように取り付けられている。また、選択透過膜13側に配置された板材は、車両10の内壁24に取り付けられ、外壁22との間に隙間ができるように取り付けられている。なお、各板材の長手方向は、水滴が選択透過膜13へ浸入させないようにするため、車両10の車幅方向における選択透過膜13の長さよりも若干長くなっている。
後部堰27fは、1枚の板材から構成されている。板材は、外気排出口28を形成する外壁22の端部に車両10の下方、かつ、車両10の進行方向に向かって斜め前方に向かって取り付けられている。この板材も車両10の車幅方向における選択透過膜13の長さ以上の長さを有している。
このような前部堰27eによれば、空洞70へ導入される外気に含まれる水滴は、まず前部堰27eを構成する板材のうち外気導入口26側の板材により除去され、内壁24の外面上に滴下し、内壁24の外面上を伝わってドレイン(図示せず)から車両10の外部へ排出される。また、外気導入口26側の板材によって除去仕切れずに残った水滴は、選択透過膜13側の板材で除去され、内壁24の外面を伝わってドレイン(図示せず)から車両10の外部へ排出される。したがって、外気導入口26から空洞70へ水滴が浸入することがなくなる。
また、後部堰27fでは、外気排出口28から外気が排出されるので、外気排出口28への外気の流入に伴う水滴の浸入よりも車両10を形成する外板からの雨粒等の跳ね返りを防ぐことができればよい。したがって、上記のように板材を外気排出口28の端部に板材を取り付ければ、空洞70への水滴の浸入を防止することができる。
このように、外気導入口26や外気排出口28から空洞70へ水滴が浸入することがなくなるので、空洞70に設置された選択透過膜13の表面に水滴が付着することがない。よって、選択透過膜13の気体透過性能を保持することができる。
[実施形態4A]
次に、車室19内の酸素濃度に応じて、空洞70に外気を導入する場合(実施形態4A)について図7及び図8(c)により説明する。
(構成)
実施形態4Aにおける空調システムは、図7及び図8(c)に示すように、実施形態1A〜3Aに示す空調システムに、前部ファン29a、後部ファン29b、酸素センサ18及び制御部90が加えられた構成となっている。
前部ファン29a及び後部ファン29bは、外気を導入する旨の外気導入指令に基づき空洞70へ導入する外気の量を調整可能とするためのものである。
前部ファン29aは、図8(c)に示すように、実施形態3Aの前部堰27e(図8(b)参照)と同様に、空洞70において外気導入口26と前方補強材12aとの間に配置されている。また、後部ファン29bは、図8(c)に示すように、空洞70において、外気排出口28と後方補強材12bとの間に配置されている。
酸素センサ18は、車室19内の酸素濃度を検出するためのものであり、図7に示すよ
うに、車両10のダッシュボードに埋め込まれている。
制御部90は、酸素センサ18により検出された車室19内の酸素濃度が所定の濃度である場合に、外気を導入する旨の外気導入指令を前部ファン29a及び後部ファン29bへ出力するものであり、CPU(Central Processing Unit),ORM(Object/Relational Mapping).RAM(RandomAccess Memory),I/O(Input/Output)等(図示せず)から構成されている。なお、制御部90は、図7に示すように、車両10のダッシュボード内部に格納されている。
(作動と特徴)
以上のように構成された空調システムでは、酸素センサ18で検出された酸素濃度の情報が制御部90へ送られる。
制御部90では、酸素センサ18から送られてきた酸素濃度の情報に基づいて、酸素濃度が所定の値以下であるか否かが判定される。そして、酸素濃度が所定の値以下であると判定された場合には、前部ファン29a及び後部ファン29bに外気導入指令が出力され、外気が空洞70へ導入される。逆に、制御部90において、酸素濃度が所定の値を超えていると判定された場合には、前部ファン29a及び後部ファン29bに外気導入指令が出力されない。なお、酸素濃度の「所定の値」とは、車室19内の快適性を保つために必要とされる酸素濃度を示す。
前部ファン29a及び後部ファン29bは、制御部90からの指令を受けると作動し、単に外気導入口26が設けられているだけの場合よりも、外気をより多く空洞70内に導入する。
このように、実施形態4Aの空調システムによれば、車室19内の酸素濃度が所定の値以下のときだけ空洞70へ外気が導入される。したがって、炭化水素等を一定量含んだ外気が選択透過膜13に常に接することがなくなるので、炭化水素等が常に選択透過膜13に吸着あるいは吸収されることがなくなる。よって、選択透過膜13の選択分離性能の劣化を遅く、つまり、選択透過膜13を長寿命化することができる。
なお、ここでは、酸素センサ18を用いる場合について説明したが、酸素センサ18に代えて二酸化炭素センサを用い、車室19内の二酸化炭素濃度が高くなったときに前部ファン29a及び後部ファン29bを作動させて外気を空洞70へ導入するようにしてもよい。
また、上述の酸素センサ18や二酸化炭素センサの他にも、微小固体成分の濃度を検出するセンサや微小固体成分の個数をカウントするセンサ等を用いて、それらの濃度等に応じて外気を空洞70内に導入するようにしてもよい。
[その他の実施形態]
(1)上記実施形態1A〜4Aでは、車両10の天井部分の内壁24の一部を選択透過膜13で形成していたが、図9に示すように、内壁24の天井部分に穴を開けるようにしてもよい。
つまり、図9(a)に示すように、内壁24の天井部分に多数の小穴を開け、穴の空いた部分を選択透過膜13で覆う。このとき、開けられた多数の小穴が全て選択透過膜13で覆われるようにし、かつ、選択透過膜13の周囲を補強するための補強材12が内壁24に密着して、外気導入口26から導入された外気が直接車室19に進入しないようにする。
このとき図9(b)に示すように、微小固体成分に比べて比較的大きい塵等を除去するためのフィルタを選択透過膜13の表面に設けるようにしてもよい。
さらに、上述の小穴の代りに図9(c)に示すように、内壁24の天井部分を切り取り、その部分をメッシュ状の材料で塞ぎ、その表面に選択透過膜13を配置するようにしてもよい。
(ガラス)
[実施形態1B:フロントガラス]
図10は、本発明の選択透過材料からなる選択透過膜をフロントガラス部分に備える、本発明の空調システムの一形態である車両(実施形態1B)を示す概略構成図である。図10(b)に示すように、車両10のフロントガラスの下部に選択透過膜13が設けられており、選択透過膜13の他に、カバー112、外気導入口126、外気排出口128、前部堰127a、後部堰127b等が設けられている。
カバー112は、水滴を遮断するために、選択透過膜13の外気に接する側を覆うものである。カバー112は、車両10の正面から見て略長方形となるように、また、車両10の横方向から見てフロントガラス130に沿って湾曲するように形成されている。
カバー112の長手方向及び短手方向の長さは、各々後述する平板状に形成された選択透過膜13の長手方向及び短手方向の長さよりも若干長くなっており、平板状の選択透過膜13の片面全体を覆うことができるようになっている。
カバー112の車両進行方向側の端部に、カバー112で覆われた空間120(以下、単に空間120と呼ぶ。)へ外気を導入するための外気導入口126が設けられており、車両進行方向反対側の端部に、空間120に導入された外気を排出するための外気排出口128が設けられている。
外気導入口126及び外気排出口128は、車両10の横方向を長手方向として穿たれた略長方形の細長い孔であり、孔の大きさ、つまり、孔の長手方向及び短手方向の長さは、車種や空間120に導入する外気の量によって決定される。
また、外気導入口126の空間120側の近傍に前部堰127aが配置されており、フロントガラス130と選択透過膜13の上側の境界近傍の空間120内のフロントガラス130の外部に後部堰127bが配置されている。
前部堰127aは、車両10の進行方向に前後に配置された略長方形の細長い板材から構成されている。板材は、その長手方向が車両10の車幅方向となるように取り付けられており、選択透過膜13との間に隙間ができるように取り付けられている。なお、板材の長手方向は、水滴が選択透過膜13へ浸入させないようにするため、車両10の車幅方向における選択透過膜13の長さよりも若干長くなっている。
後部堰127bは、前部堰127aと同様の板材から構成されている。この板材も車両10の車幅方向における選択透過膜13の長さ以上の長さを有している。
このような前部堰127aによって、空間120へ導入される外気に含まれる水滴は、前部堰127aにより除去され、車両10のボディ外面上に滴下し、ボディの外面上を伝わってドレイン(図示せず)から車両10の外部へ排出される。
また、後部堰127bによって、フロントガラス130の外表面を伝わって空間120に浸入しようとする水滴が遮断され、遮断された水滴は、ドレイン(図示せず)により車両10の外部へ排出される。
選択透過膜13は、車両10のフロントガラス130の一部を構成するように配置されている。具体的には、図10(b)に示すように、車両10のフロントガラス130の下部の一部を車幅方向が長手方向となるように略長方形に切り取る。そして、略長方形に切り取ったフロントガラス130と同じ大きさの略長方形平板状に選択透過膜13を形成し、略長方形平板状に形成した選択透過膜13をフロントガラス130が切り取られた部分にはめ込む。
選択透過膜13の大きさ、つまり、長手方向及び短手方向の長さは、車両10の車種や空間120に導入する外気の量によって決定される。
[実施形態2B:リアウィンドウ]
次に、選択透過膜13を多孔質ガラス132に装着したものでリアウィンドウ139を形成した形態(実施形態2B)について図11に基づいて説明する。図11は、リアウィンドウ139を、選択透過膜13が装着された多孔質ガラス132で構成したときの概略構成図である。
本実施形態の車両空調システムは、図11(a)に示すようなリアウィンドウ139のガラス部分を、図11(b)に示すような選択透過膜13が装着された多孔質ガラス132で置き換えたものである。
多孔質ガラス132は、その材料の全体に細孔を有しており、空気を車室19内と車室19外との双方向へ透過させる機能を有している。
この多孔質ガラス132の車室19側の全面に選択透過膜13が密着した状態で装着されている。また、多孔質ガラス132に装着された選択透過膜13の車室19側には、選択透過膜13を補強するためにメッシュ状の材料で形成された補強材134が装着されている。
図11(c)に示すように、図11(b)におけるメッシュ状の補強材134と選択透過膜13との間に防塵用フィルタ136を備えるものを用いてもよい。防塵用フィルタ136を備えることにより、車室19内の埃等が直接選択透過膜13に付着することを防止できる。
また、図11(d)に示すように、図11(b)におけるメッシュ状の補強材134を用いる代わりに、選択透過膜13を2枚の多孔質ガラス132a,132bで挟み込みんで、多孔質ガラス132a、選択透過膜13及び多孔質ガラス132bがこの順番に積層されるようにしてもよい。
[実施形態3B:サンルーフ]
次に、選択透過膜13を多孔質ガラス132に装着したものでサンルーフ138を形成した形態(実施形態3B)について図12に基づいて説明する。図12は、サンルーフ138を、選択透過膜13を装着した多孔質ガラス132で構成したときの概略構成図である。
この空調システムは、図12(b)に示すようなサンルーフ138のガラス部分を、図12(a)に示すように選択透過膜13が装着された多孔質ガラス132で置き換えるとともに、サンルーフ138を形成する車両10の内壁24に多数の孔を設けたものである。
このようすると、外気はサンルーフ138を構成する多孔質ガラス132の外表面に沿って、車両進行方向側から車両進行反対側へ向かって流れる。このとき、選択透過膜13を介して車室19内の空気と外気との交換が行われる。
(ピラー)
図13は、本発明の選択透過材料からなる選択透過膜をピラー部分に備える、本発明の空調システムの一形態である車両を示す概略断面図である。車両10は、図13に示すように、実質的に空気を通さないアルミやガラス等の壁面で囲まれ、外気が進入しない車両10と外気が進入することができるトランクやエンジンルーム等の車室19外の空間とからなる。
また、車室19を構成する壁面の一部として、ピラー50,52,54を備えている。このピラー50,52,54には、車室19前部のフロントガラスの両端部分に設けられたフロントピラー50、車両10両側のウィンドウの車両10の長手方向のほぼ中央部分に設けられたセンターピラー52、車室19後部のリアウィンドウの両端部分に設けられたリアピラー54がある。
また、車両10にはエアコン(図示せず)が備えられている。このエアコンは、内気循環モードのみを備えている。
次に、本実施形態の空調システムの構成について図14を用いて説明する。図14(a)は、車両10及び車両10に設けられた各ピラー50,52,54の概略構成図であり、図14(b)はセンターピラー52の構造を模式的に示した概略構造図である。
図14(a)に示すように、車両10には、フロントピラー50、センターピラー52、リアピラー54が備えられている。各ピラー50,52,54は同様の構造を有するので、以下、図14(b)に示すセンターピラー52を例に詳細を説明する。
センターピラー52は、上端部52e及び下端部52fが楕円形状をした中空の円柱状に形成されている。円柱の車室19外側の側面に外気取入れ口52a及び外気排出口52bを有し、車室19内側の側面に内気取入れ口52c及び内気排出口52dを有している。
また、外気取入れ口52aはセンターピラー52の下部に設けられ、外気排出口52bはセンターピラー52の上部に設けられている。さらに、内気取入れ口52cはセンターピラー52の下部に設けられ、内気排出口52dはセンターピラー52の上部に設けられている。
また、センターピラー52の中空部分に、外気取入れ口52aから取り入れられ、外気排出口52bから排出される外気と、内気取入れ口52cから取り入れられ、内気排出口52dから排出される内気とを隔てるように選択透過膜13が設置されている。
具体的には、センターピラー52の楕円形状の上下端部52e,52fの長手軸に、選択透過膜13の上下端部が各々一致するように選択透過膜13が配置される。そして、選択透過膜13の上端部がセンターピラー52の楕円形状の上端部52eの内側に接着剤で密着して固定され、選択透過膜13の下端部がセンターピラー52の楕円形状の下端部52fの内側に接着剤で密着して固定される。
また、選択透過膜13の上下端部は、センターピラー52の楕円断面形状を有する円柱側面の劣弧部分内側面に円柱の中心軸方向に接着剤で密着して固定されている。
なお、図14(b)においては、選択透過膜13を模式的に平板状に図示しているが、蛇腹状に折られた形状を有していてもよい。
また、選択透過膜13の車室19外側の表面には温度センサ60が設けられており、センターピラー52内部には2つのファン56a,56bが設けられている。
温度センサ60は、選択透過膜13の表面温度を計測するためのものであり、熱電対やペルチェ素子等、選択透過膜13の表面温度を電気信号に変換して出力するものである。
ファン56a,56bは、外気取入れ口52aから外気排出口52bに至る外気導入経路及び内気取入れ口52cから内気排出口52dに至る内気循環経路に設置されている。そして、温度センサ60で計測した選択透過膜13の表面温度が選択透過膜13の所定の温度となった場合にファン156a,156bが作動し、外気取入れ口52aから外気、内気取入れ口52cから内気を取り入れて選択透過膜13を冷却(空冷)する。
以上にセンターピラー52を例として説明したが、フロントピラー50、リアピラー54においても同様である。
(床)
図15は、本発明の選択透過材料からなる選択透過膜を床部分に備える、本発明の空調システムの一形態である車両を示す概略断面図である。図15(a)は、車両10の概略縦断面図であり、図15(b)は、床部150の拡大図である。
車両10は、図15(a)に示すように、実質的に空気を通さないアルミニウムやガラス等の壁面で囲まれ、外気が進入しない車室19と外気が進入することができるトランクやエンジンルーム等の車室19外の空間とからなる。
また、車室19の床部150は図15(b)に示すように床板152と外板154との間に空間141が形成されている。
また、車両10にはエアコン(図示せず)が備えられている。このエアコンは、内気循環モードのみを備えている。
(空調システムの構造)
次に、本実施形態の空調システムの構成について説明する。図15(b)は床部150の構造を模式的に示した概略構造図である。
図15(b)に示すように、床部150は、車室19内側に面した床板152及び車室19外側に面した外板154から構成されている。
床板152と外板154との間には、床板152、外板154及び側板153a,153bによって空間141が形成されており、その空間141内部に選択透過膜13が配置されている。
床板152には、車室19内側から空間141内へ内気を取り入れるための内気取入れ口152a、及び空間141内へ取り入れた内気を車室19内側へ排出するための内気排出口152bが設けられている。
内気取入れ口152aは、車両10進行方向に対して運転席よりも前方、具体的には、運転者の足下に配置されている。また、内気排出口152bは、車両10進行方向に対して運転席よりも後方、具体的には後部座席の直前に設けられている。
外板154には、空間141を形成する外板154に、車室19外側から空間141内へ外気を取り入れるための外気取入れ口154c、及び空間141内へ取り入れた外気を車室19外側へ排出するための外気排出口154dが設けられている。
外気取入れ口154cは、車両10進行方向に対して運転席よりも前方、具体的には、運転者の足下に配置されている。また、外気排出口154dは、車両10進行方向に対して運転席よりも後方、具体的には後部座席の直前に設けられている。
空間141内には、車室19内側と車室19外側とを隔てるように選択透過膜13が配置されている。具体的には、選択透過膜13は、その端辺が空間141を形成する側板153a,153bの空間141側の面に接着材やシール材で密着されることにより固定されている。
なお、図15(b)においては、選択透過膜13を模式的に平板状に図示しているが、蛇腹状に折られた形状を有していてもよい。
また、選択透過膜13の車室19外側の表面には温度センサ60が設けられており、空間141内部には2つのファン156a,156bが設けられている。
温度センサ60は、選択透過膜13の表面温度を計測するためのものであり、熱電対、白金抵抗体、サーミスタ等、選択透過膜13の表面温度を電気信号に変換して出力するものである。
ファン156a,156bは、内気取入れ口152aから内気排出口152bに至る内気循環経路、及び外気取入れ口154cから外気排出口154dに至る外気導入経路に設置されている。そして、温度センサ60で計測した選択透過膜13の表面温度が選択透過膜13の所定の温度となった場合にファン156a,156bが作動し、外気取入れ口154cから外気、内気取入れ口152aから内気を取り入れて選択透過膜13を冷却(空冷)する。
(ドア)
[実施形態1C]
(空調システムの構成)
図16(a)は、本発明の選択透過材料からなる選択透過膜をドア部分に備える、本発明の空調システムの一形態である車両10を示す側面図であり、図16(b)は、ドア140を車両10の車幅方向に切った概略断面図である。
空調システムは、図16に示すように、ドア140に設けられた内装材164、選択透過膜13、外気取入れ口52a及び外気排出口52bから構成される。また、ドア140の略中心線上には、ガラス等で形成された窓80が取り付けられている。
外気取入れ口52aは、車室19外側から外気を取り入れるために窓80よりも車室19外側のドア140の上部に設けられた孔である。また、外気排出口52bは、外気取入れ口52aから取り入れた外気を車室19外側へ排出するために窓80よりも車室19外側のドア140の下部に設けられた孔である。
内装材164は、車室19内側に面して装着され、空気を透過させる材料で形成されている。具体的には、無機化合物及び有機化合物を多孔質形状、繊維形状又は薄膜形状のうちの1つあるいはそれらを複合形状で形成したものである。内装材164は、その細孔を空気が透過できるようになっていれば特に限定するものではないが、その細孔のサイズは、好ましくは、数10ナノメートルから数100ナノメートルであると好ましい。
また、内装材164には、図16(d)に示すように、内装材164内部の細孔の壁面に脱臭材17が担持されている。
脱臭材17は、加熱触媒による脱臭材であり、銅、マンガン、白金、ニッケル、鉄、タンタル、アルミニウム、チタンのうちの1つ又は2つ以上を組み合わせた酸化物である。この脱臭材17を、細孔を有する内装材164である無機化合物多孔質体に担持させてある。無機多孔質体の孔径は、選択透過膜13へのガス供給の妨げにならなければ、いずれの孔径でもよいが、数10から数100マイクロメータであると好ましい。
選択透過膜13は、内装材164の車室19外側に密着して配置されている。
そして、選択透過膜13が平板状に形成されたものが図16(c)に示すように、車室19外側から導入される外気の流れる方向に対して平板の面が略平行になるように、換言すれば、蛇腹の凸部が外気の流れと略平行になるように蛇腹状に折られている。
このように、選択透過膜13を内装材164の車室19外側に密着して配置し、外気取入れ口52a及び外気排出口52bをドア140の窓80の車室19外側に設けることにより、ドア140において、車室19内側と車室19外側とを隔て、かつ、外気取入れ口52aから取り入れた外気が選択透過膜13の車室19外側の面に当たるようになっている。
(空調システムの作動と特徴)
以上のように構成された本実施形態の空調システムでは、外気取入れ口52aから取り入れられた外気が選択透過膜13の車室19外側の面に接触する。選択透過膜13の車室19外側の面に接触した外気は外気排出口52bから排出される。
車両10の走行中には、外気取入れ口52aから取り入れられる外気の量が増えるので、車両10走行中には、選択透過膜13の車室19外側の面に外気が当たり続ける。つまり、選択透過膜13の車室19外側の面には、一定濃度の酸素、二酸化炭素及び微小固体成分を有する外気が供給され続ける。
したがって、車両10走行中には、外気をブロワ等で車室19内側へ導入しなくても、選択透過膜13によって車室19内側の酸素と二酸化炭素の濃度を外気と同じ濃度に保つことができる。そして、ブロワを作動させる必要がないので、車載バッテリに対する負荷を低減することができる。
また、内装材164の多孔質体の細孔に脱臭材17が担持されているので、選択透過膜13を透過して選択透過膜13の車室19内側に至った外気に悪臭成分が含まれていても脱臭材17でその悪臭成分が除去される、したがって、車室19内側に悪臭成分が進入することがないので、車室19内側を快適に保つことができる。
また、選択透過膜13が蛇腹状に折られているので、選択透過膜13の表面積が大きい。選択透過膜13の表面積が大きければ、酸素や二酸化炭素の交換量が増えるので、車室19内側の酸素や二酸化炭素の濃度に変化があっても、それらの濃度を短時間で一定の値に戻すことができる。
[実施形態2C]
次に、選択透過膜13に種々の機能を有する機能材等を配置したものについて、図17及び図18に基づいて説明する。図17(a)は、車両10の側面図であり、図17(b)は、ドア140を車両10の車幅方向に切った概略断面図である。また、図18は、ドア140を車両10の車幅方向に切った概略断面図である。
実施形態2Cにおける空調システムでは、図17(b)に示すように、選択透過膜13の車室19外側に除塵フィルタ14を密着させて装着している。
除塵フィルタ14は、選択透過膜13の細孔よりも大きな孔を持つ材料、例えば、活性炭素繊維、不織布、樹脂繊維、帯電繊維等の膜状の材料と繊維状、不織布状、板状、波板状あるいは粒状の基材から構成されている。
樹脂繊維としては、ポリプロピレン、ナイロン、ポリエステル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレン、ポリフッ化ビニリデン、アクリル等が用いられる。そして、それらの何れか1つ又はそのうちの2つ以上を組み合わせて編み込むように構成される。
また帯電繊維には、外部の電極からイオンを強制的に打ち込むエレクトロ・エレクトレット法を用いてポリプロピレン等のポリマーの繊維を帯電させたエレクトレット繊維がある。また、ポリマーとしては、ポリプロピレンの他に、フッ素樹脂、シリコン樹脂、エポキシ樹脂、ポリオレフィン類、ポリスチレン誘導体、ポリスチレン、ポリアミド、ポリビニルハライド、ポリウレタン、ポリ塩化ビニル、ポリカーボネート等を用いることができる。
また、帯電繊維の帯電法として、エレクトロ・エレクトレット法の他に、電界下で紫外線等を照射するフォト・エレクトレット法、高分子ポリマーに応力を加えて塑性流動させるメカノ・エレクトレット法、温度を上昇させた状態で高分子ポリマーの高電界を印加するサーモ・エレクトレット法、温度を上昇させ磁場をかけるマグネット・エレクトレット法、γ線等の電磁波を照射するラジオ・エレクトレット法等を使用することができる。
このように、選択透過膜13の車室19外側に除塵フィルタ14が設けられているので、選択透過膜13の車室19外側の面に接触する外気から粉塵が除去される。したがって、選択透過膜13の車室19外側の面に粉塵が付着することがないので、選択透過膜13の気体の透過性能を保持することができる。
また、図18(a)に示すように、選択透過膜13の車室19外側に除湿材16を密着して配置するようにしてもよい。
除湿材16は、選択透過膜13の車室19外側に密着して配置され、選択透過膜13の車室19外側の面に接触する外気に含まれる湿気を除去するものである。
具体的には、吸水性ポリマー、綿状パルプ、給水紙、シリカゲル、酸化カルシウム、酸化マグネシウム又は塩化カルシウムを多孔質体と混合させたもの、あるいは、電解質ポリマー又は親水性ポリマーからなる吸水性ポリマー、アクリル重合体、ビニルアルコール又はアクリル酸ポリマー等が除湿材16として用いることができる。このような除湿材16は、選択透過膜13の車室19外側に積層されている。
このようにすると、選択透過膜13の車室19外側の面に接触する外気に含まれる湿気を除去することができるので、選択透過膜13の表面に水分が付着することがない。したがって、選択透過膜13における気体の透過性能を保持することができる。
また、選択透過膜13を介して水分が車室19内側に浸入することがないので、車室19の窓80の曇りを防止することができる。なお、「湿気を除去する」とは、湿気を完全になくすということではなく、湿気を許容値の範囲に保つために湿気を除去するという意味である。
さらに、図18(b)に示すように、選択透過膜13の車室19外側に送風機118を備えるようにしてもよい。
送風機118は、選択透過膜13に対して車室19外側に備えられ、外気取入れ口52aから取り入れた車室19外側の外気を選択透過膜13の車室19外側の表面に供給するためのものである。
このようにすれば、送風機118により、車室19外側の外気が選択透過膜13に対して送風される。したがって、選択透過膜13の車室19外側の面に新たな外気が当たり続けるので、選択透過膜13の車室19外側の酸素及び二酸化炭素の濃度は一定になる。したがって、車室19内の酸素及び二酸化炭素の濃度が変化しても短時間でも一定値に戻すことができる。
また、選択透過膜13を介して水分が車室19内側に浸入することがないので、車室19の窓80の曇りを防止することができる。
[実施形態3C]
次に、上述の実施形態1C及び2Cのように選択透過膜13を内装材164に密着させて配置する代わりに、外気取入れ口52a及び外気排出口52bをドア140の内側から覆うように配置した実施形態について図19及び図20に基づいて説明する。図19(a)は、車両10の側面図であり、図19(b)は、ドア140を車両10の車幅方向に切った概略断面図である。また、図20は、ドア140を車両10の車幅方向に切った概略断面図である。
実施形態3Cにおける空調システムでは、図19(b)に示すように、ドア140は、車室19外側に面する外壁50aと車室19内側に面する内壁50bとで構成された空間151を有している。また、外気取入れ口52aは、外壁50aの下部に外気排出口52bよりも上方に設けられている。
また、外気排出口52bは、外壁50aの下部に設けられており、選択透過膜13は、空間151に外気取入れ口52a及び外気排出口52bを覆うように、空間151に図中右上から左下に斜めに配置されている。また、選択透過膜13は、その車室内側の片面全体を補強材13cにより補強されている。さらに、選択透過膜13及び外壁50aに挟まれた部分には、蓄熱体15が設けられている。
補強材13cの材料としては、例えば、ポリオレフィン、ポリカーボネート、ポリエーテルサルホン、ポリフッ化ビニリデン、ポリエチレン、フッ素樹脂(例えば、PTFE、PEFなど)、ガラス(たとえば繊維状)、セルロースなどから選ばれる単一材料もしくは2つ以上の材料が挙げられる。この補強材13cは、多孔構造をとることが好ましく、例えば、数10から数100ナノメータの径の細孔が形成されていることが好ましい。
蓄熱体15は、選択透過膜13を直接又は補強材13cを介して間接的に加熱するものである。また、蓄熱体15は、外部から供給される熱を蓄え、蓄えた熱で選択透過膜13を加熱する。具体的には、ハニカム構造のセラミック、無機塩類水和物、パラフィン又はワックスなどを多孔質体に担持させた、選択透過膜13や補強材13cよりも熱伝導性の高い材料から構成されている。
また、蓄熱体15は、外部から供給される熱として、太陽光の輻射熱を蓄えるようになっている。つまり、選択透過膜13がドア140内部に置かれた場合に車両10を照らす太陽光の輻射熱が蓄積されるのである。
なお、図20(a)に示すように、選択透過膜13の車室19外側に除湿材16を備えるようにすると、選択透過膜13の車室19外側の面に接触する外気に含まれる湿気を除去することができるので、選択透過膜13の表面に水分が付着することがない。したがって、選択透過膜13の気体の透過性能を保持することができる。
また、図20(b)に示すように、補強材13cの車室19内側に送風機118を装着するようにしてもよい。送風機118により車室19内側に外気を吸い込むようにすると、外気取入れ口52aから取り入れられ、選択透過膜13の車室19外側の面に接触する外気の量が増す。
したがって、車室19内側に取り入れられる酸素や車室19外側に排出される二酸化炭素の量が増えるので、車室19内側の酸素や二酸化炭素の濃度が変化しても短い時間で一定値に戻すことができる。
上述の空調システムを備える車両によれば、本発明の選択透過材料からなる選択透過膜を介して気体の排出及び導入が行われるので、SPM、nSPM等の大気中の浮遊物質の車室への流入を防止することができ、且つ車内にSPM、nSPM等の浮遊物質が存在する場合にはそれを除去することもできる。
(合成例1)
攪拌子、温度計、冷却管を備えた5L三つ口フラスコにノルボルネン‐2‐イルトリス(トリメチルシロキシ)シラン150g(0.38mol)とトルエン3000gを混合し40℃に昇温した。これにビス(トリシクロヘキシルホスフィン)ベンジリデンルテニウム(IV)ジクロリド0.31g(0.38mmol)をトルエン330gに溶解した溶液を添加して、40℃において重合反応を行った。重合反応開始後、徐々に溶液の粘度は上昇し、20分後エチルビニルエーテル1gを加えることで重合を停止した。重合溶液を大量のメタノールに注いで沈殿物を凝集させ、粉砕洗浄後、濾別し、70℃で5時間減圧乾燥すると白色粉末のシリコーン変性シクロオレフィンポリマーを得た。得られたポリマーの収量は147gであり、分子量はトルエンを溶媒とするゲル・パーミエーション・クロマトグラフィーによるポリスチレン換算値としてMn=259,000、Mw=604,000であった。なお、得られたシリコーン変性シクロオレフィンポリマーは下記式(7)で表される構造を有する。
(合成例2)
Pluronic P123(BASF社製、(エチレンオキサイド)20(プロピレンオキサイド)70(エチレンオキサイド)20)88g、水2640g、塩酸453.5mlの混合液を室温でメカニカルスターラーを用いて撹拌し、Pluronic P123が溶解した後、テトラエトキシシラン(関東化学社製)187.8gを滴下して、さらに12時間撹拌した。35℃に保ったオーブンで20時間加熱し、さらに100℃に保ったオーブンで24時間加熱した。生成した白色固体を水洗浄、濾取し、真空ポンプを用いて乾燥した。その後、550℃に保った焼成炉で6時間焼成し、メソポーラスシリカ(56.3g)を得た。
(実施例1)
シリコーン変性プルランポリマー(信越化学工業社製、X−22−8400)をトルエンで溶解して固形分を1wt%に調整した。この溶液12gに対して、球状シリカ(信越化学工業社製、X−24−9163A、平均粒径110nm)0.196g(シリコーン変性プルランポリマー100質量部に対して163質量部(シリコーン変性プルランポリマーに対して50vol%))を配合し、超音波分散機を用いて混合した。この調整した溶液をテフロン(米国デュポン社の登録商標)製φ90mmのシャーレに入れて、減圧乾燥機にてトルエンを除去し、平均厚み25μmの膜を得た。
(実施例2)
シリコーン変性プルランポリマー(信越化学工業社製、X−22−8400)をトルエンで溶解して固形分を1wt%に調整した。この溶液12gに対して、合成例2で得られたメソポーラスシリカ0.098g(シリコーン変性プルランポリマー100質量部に対して82質量部(シリコーン変性プルランポリマーに対して50vol%))を配合し、超音波分散機を用いて混合した。この調整した溶液をテフロン(米国デュポン社の登録商標)製φ90mmのシャーレに入れて、減圧乾燥機にてトルエンを除去し、平均厚み25μmの膜を得た。
(実施例3)
シリコーン変性プルランポリマー(信越化学工業社製、X−22−8400)をトルエンで溶解して固形分を1wt%に調整した。この溶液12gに対して、アミノプロピルトリエトキシシラン(信越化学工業社製、KBE903)にて疎水化処理した合成例2で得られたメソポーラスシリカ0.098g(シリコーン変性プルランポリマー100質量部に対して82質量部(シリコーン変性プルランポリマーに対して50vol%))を配合し、超音波分散機を用いて混合した。この調整した溶液をテフロン(米国デュポン社の登録商標)製φ90mmのシャーレに入れて、減圧乾燥機にてトルエンを除去し、平均厚み25μmの膜を得た。
(実施例4)
シリコーン変性プルランポリマー(信越化学工業社製、X−22−8400)をトルエンで溶解して固形分を10wt%に調整した。導電性高分子であるポリアニリン(アルドリッチ社製、エメラルディンベース、分子量:2万)をシクロヘキサノンに溶解して固形分を2wt%に調整した。シリコーン変性プルランポリマーの溶液0.6mlに対して、ポリアニリンの溶液を0.4ml(シリコーン変性プルランポリマー100質量部に対して13.3質量部(シリコーン変性プルランポリマーに対して40vol%))配合し、超音波分散機を用いて混合した。この混合溶液を、支持体アイソポア(日本ミリポア社製、材質:ポリカーボネート、平均孔径0.22μm)上に、水面展開法により成膜した後、乾燥機にてトルエンとシクロヘキサノンを除去し、平均厚み0.1μmの膜を得た。
(実施例5)
シリコーン変性プルランポリマー(信越化学工業社製、X−22−8400)をトルエンで溶解して固形分を10wt%に調整した。導電性高分子であるポリアニリン(アルドリッチ社製、エメラルディンベース、分子量:2万)をシクロヘキサノンに溶解して固形分を2wt%に調整した。シリコーン変性プルランポリマーの溶液0.6mlに対して、ポリアニリンの溶液を0.4ml(シリコーン変性プルランポリマー100質量部に対して13.3質量部(シリコーン変性プルランポリマーに対して40vol%))配合した。そしてこの溶液1mLに対して1μL(シリコーン変性プルランポリマー100質量部に対して0.1質量部(シリコーン変性プルランポリマーに対して0.17vol%))の2N−HClを添加し、超音波分散機を用いて混合した。この混合溶液を、支持体アイソポア(日本ミリポア社製、材質:ポリカーボネート、平均孔径0.22μm)上に、水面展開法により成膜した後、乾燥機にてトルエンとシクロヘキサノンを除去し、平均厚み0.1μmの膜を得た。
(実施例6)
合成例1で得られたシリコーン変性シクロオレフィンポリマーをトルエンで溶解して固形分を10wt%に調整した。導電性高分子であるポリアニリン(アルドリッチ社製、エメラルディンベース、分子量:2万)をシクロヘキサノンに溶解して固形分を2wt%に調整した。シリコーン変性プルランポリマーの溶液0.6mlに対して、ポリアニリンの溶液を0.4ml(シリコーン変性シクロオレフィンポリマー100質量部に対して13.3質量部(シリコーン変性シクロオレフィンポリマーに対して40vol%))配合し、超音波分散機を用いて混合した。この混合溶液を、支持体アイソポア(日本ミリポア社製、材質:ポリカーボネート、平均孔径0.22μm)上に、水面展開法により成膜した後、乾燥機にてトルエンとシクロヘキサノンを除去し、平均厚み0.1μmの膜を得た。
(実施例7)
合成例1で得られたシリコーン変性シクロオレフィンポリマーをトルエンで溶解して固形分を10wt%に調整した。導電性高分子であるポリアニリン(アルドリッチ社製、エメラルディンベース、分子量:2万)をシクロヘキサノンに溶解して固形分を2wt%に調整した。シリコーン変性プルランポリマーの溶液0.6mlに対して、ポリアニリンの溶液を0.4ml(シリコーン変性プルランポリマー100質量部に対して13.3質量部(シリコーン変性シクロオレフィンポリマーに対して40vol%))配合した。そしてこの溶液1mLに対して5μL(シリコーン変性シクロオレフィンポリマー100質量部に対して0.5質量部(シリコーン変性シクロオレフィンポリマーに対して0.83vol%))の2N−HClを添加し、超音波分散機を用いて混合した。この混合溶液を、支持体アイソポア(日本ミリポア社製、材質:ポリカーボネート、平均孔径0.22μm)上に、水面展開法により成膜した後、乾燥機にてトルエンとシクロヘキサノンを除去し、平均厚み0.1μmの膜を得た。
(比較例1)
シリコーン変性プルランポリマー(信越化学工業社製、X−22−8400)をトルエンで溶解して固形分を1wt%に調整した。この溶液をテフロン(米国デュポン社の登録商標)製φ90mmのシャーレに入れて、減圧乾燥機にてトルエンを除去し、平均厚み15μmの膜を得た。
(比較例2)
合成例1で得られたシリコーン変性シクロオレフィンポリマーをトルエンで溶解して固形分を1wt%に調整した。この溶液をテフロン(米国デュポン社の登録商標)製φ90mmのシャーレに入れて、減圧乾燥機にてトルエンを除去し、平均厚み15μmの膜を得た。
[膜の評価]
(気体透過係数の評価)
実施例1〜7及び比較例1,2で得られた膜について、気体透過率測定装置(GTRテック社製、型番:GTR−20XAMDE)を用い、下記の測定条件で、酸素及び窒素についての気体透過係数を測定した。得られた結果を表1及び表2に示す。
<測定条件>
温度 :23±2℃
膜の下流の圧力:約0.0013atm
膜の上流の圧力:1.05〜1.20atm
膜間の圧力差 :1.05〜1.20atm
(nSPM遮断率の評価)
実施例4〜7及び比較例1,2で得られた膜について、図21の概略図に示す装置を用い、次の(1)〜(5)のプロセスで、nSPM遮断率の測定を行った。得られた結果を表2に示す。
(1)ナノ粒子発生装置(Palas社製、型番:GFG−1000)により10〜500nmのカーボン粒子を発生させた。
(2)膜をサンプルホルダー(膜面積:MAX16[cm])にセットし、バルブ(V1)を閉じ、B層を減圧した(差圧1[kPa])。
(3)B層を減圧した後、バルブ(V1)を開き、B層内が大気圧に戻る際に透過するガスに乗せてナノ粒子を膜に供給し、膜を透過した粒子をB層にためた。
(4)B層内の粒子重量を、粒子カウンター(TSI社製、型番:SMPS−3034)で粒子重量を計測した。
(5)以下の式に基づいて遮蔽率を算出した。
nSPM遮断率[wt%]=100×{(Cin−Cout)/Cin}
(式中、「Cin」は、膜上流での粒子濃度[単位:μg/ml]を示し、「Cout」は、膜透過後の粒子濃度[単位:μg/ml]を示す。

シリコーン系ポリマー100質量部に対する添加量。

シリコーン系ポリマー100質量部に対する添加量。
(実施例8〜12、比較例3〜8)
シリコーン変性プルランポリマー(信越化学工業社製、X−22−8400)をトルエンで溶解して固形分を1wt%に調整した。この溶液12gに対して、表3に示す添加剤を所定量を配合し、超音波分散機を用いて混合した。この調整したフィラー含有溶液をテフロン(米国デュポン社の登録商標)製φ90mmのシャーレに入れて、減圧乾燥機にてトルエンを除去し、平均厚み20〜30μmの膜を得た。なお、表3中の添加剤の特性を表4に示す。

a)合成例2で得られたメソポーラスシリカについては、粒径分布を示す。
実施例8〜12及び比較例3〜8で得られた膜について、上述した[膜の評価]と同様の方法で酸素及び窒素についての気体透過係数、及びnSPM遮断率を測定した。得られた結果を表5に示す。
(実施例13)
合成例1で得られたシリコーン変性シクロオレフィンポリマーをトルエンで溶解して固形分を10wt%に調整した。導電性高分子であるポリアニリン(アルドリッチ社製、分子量:2万)をシクロへキサノンに溶解して固形分を2wt%に調整した。シリコーン変性シクロオレフィンポリマーの溶液0.6mlに対して、ポリアニリンの溶液を0.4ml(シリコーン変性シクロオレフィンポリマー100質量部に対して13.3質量部)配合し、同時に、球状シリカ(商品名:NanoTek SiO、シーアイ化成社製)をシリコーン変性シクロオレフィンポリマー100質量部に対して50質量部、及び塩酸をシリコーン変性シクロオレフィンポリマーに対して0.5質量部添加し、超音波分散機を用いて混合した。この調整した混合液を、支持体アイソポア(日本ミリポア社製、材質:ポリカーボネート、平均孔径1.2μm)上に、水面展開法により成膜した後、乾燥機にてトルエンとシクロヘキサノンを除去し、平均厚み1.0μmの膜を得た。
(実施例14)
合成例1で得られたシリコーン変性シクロオレフィンポリマーをトルエンで溶解して固形分を10wt%に調整した。導電性高分子であるポリアニリン(アルドリッチ社製、分子量:2万)をシクロへキサノンに溶解して固形分を2wt%に調整した。シリコーン変性シクロオレフィンポリマーの溶液0.6mlに対して、ポリアニリンの溶液を0.4ml(シリコーン変性シクロオレフィンポリマー100質量部に対して13.3質量部)配合し、同時に、球状シリカ(商品名:NanoTek SiO、シーアイ化成社製)をシリコーン変性シクロオレフィンポリマー100質量部に対して50質量部、及びビニルホスホン酸をシリコーン変性シクロオレフィンポリマー100質量部に対して1.5質量部添加し、超音波分散機を用いて混合した。この調整したポリアニリン+シリカ含有溶液を、支持体アイソポア(日本ミリポア社製、材質:ポリカーボネート、平均孔径1.2μm)上に、水面展開法により成膜した後、乾燥機にてトルエンとシクロヘキサノンを除去し、平均厚み1.0μmの膜を得た。
(実施例15)
合成例1で得られたシリコーン変性シクロオレフィンポリマーをトルエンで溶解して固形分を10wt%に調整した。導電性高分子であるポリアニリン(アルドリッチ社製、分子量:2万)をシクロへキサノンに溶解して固形分を2wt%に調整した。シリコーン変性シクロオレフィンポリマーの溶液0.6mlに対して、ポリアニリンの溶液を0.4ml(シリコーン変性シクロオレフィンポリマー100質量部に対して13.3質量部)配合し、同時に、球状シリカ(商品名:NanoTek SiO、シーアイ化成社製)をシリコーン変性シクロオレフィンポリマー100質量部に対して100質量部、及び塩酸をシリコーン変性シクロオレフィンポリマー100質量部に対して0.5質量部添加し、超音波分散機を用いて混合した。この調整したポリアニリン+シリカ含有溶液を、支持体アイソポア(日本ミリポア社製、材質:ポリカーボネート、平均孔径1.2μm)上に、水面展開法により成膜した後、乾燥機にてトルエンとシクロヘキサノンを除去し、平均厚み1.0μmの膜を得た。
(実施例16)
合成例1で得られたシリコーン変性シクロオレフィンポリマーをトルエンで溶解して固形分を10wt%に調整した。導電性高分子であるポリアニリン(アルドリッチ社製、分子量:2万)をシクロへキサノンに溶解して固形分を2wt%に調整した。シリコーン変性シクロオレフィンポリマーの溶液0.6mlに対して、ポリアニリンの溶液を0.4ml(シリコーン変性シクロオレフィンポリマー100質量部に対して13.3質量部)配合し、同時に、球状シリカ(商品名:NanoTek SiO、シーアイ化成社製)をシリコーン変性シクロオレフィンポリマー100質量部に対して100質量部、及びビニルホスホン酸をシリコーン変性シクロオレフィンポリマー100質量部に対して1.5質量部添加し、超音波分散機を用いて混合した。この調整したポリアニリン+シリカ含有溶液を、支持体アイソポア(日本ミリポア社製、材質:ポリカーボネート、平均孔径1.2μm)上に、水面展開法により成膜した後、乾燥機にてトルエンとシクロヘキサノンを除去し、平均厚み1.0μmの膜を得た。
実施例13〜16で得られた膜について、上述の[膜の評価]と同様の方法で酸素及び窒素についての気体透過係数、及びnSPM遮断率を測定した。得られた結果を表6に示す。

シリコーン系ポリマー100質量部に対する添加量。
以上の結果については、シリカ表面における酸への親和性が大きな影響を与えていると考えられる。今回用いたシリカは、その表面は親水性である。従って塩酸を添加したポリアニンは、シリカの表面に吸着しやすいと想定され、そのことによりシリコーン系ポリマーとシリカとの界面の隙間が少なくなり、結果として、シリカのみを添加した膜に対して透過性が低下したものと考えられる。特にこの傾向は、添加率が低い場合に顕著に現れる(実施例13)。添加率が高い場合は、シリカ−シリカ間にも隙間が出来るため、透過性は低下することなく高透過構造が維持される。これに対し添加する酸を非水溶性のビニルホスホン酸を用いるとポリアニリンがシリカ表面に吸着せず、シリカと共に分散するため、ガスのパスが相乗的に増加する。そのためシリカのみを添加した膜に対して透過性が向上する。実施例16が実施例14より大きいのは、シリカ同士、あるいはポリアニリン同士が作り出す新たな隙間が影響していると考えられる。
(実施例17〜22)
シリコーン変性プルランポリマー(信越化学工業社製、X−22−8400)をトルエンで溶解して固形分を10wt%に調整した。導電性高分子であるポリアニリン(アルドリッチ社製、エメラルディンベース、分子量:2万)をシクロヘキサノンに溶解して固形分を2wt%に調整した。シリコーン変性プルランポリマーの溶液0.6mlに対して、ポリアニリンの溶液を0.4ml(シリコーン変性プルランポリマー100質量部に対して13.3質量部)配合した。そしてこの溶液1mLに対して表7に示す酸を所定量添加し、超音波分散機を用いて混合した。この混合溶液を、支持体アイソポア(日本ミリポア社製、材質:ポリカーボネート、平均孔径0.22μm)上に、水面展開法により成膜した後、乾燥機にてトルエンとシクロヘキサノンを除去し、平均厚み0.1μmの膜を得た。
(実施例23〜28)
合成例1で得られたシリコーン変性シクロオレフィンポリマーをトルエンで溶解して固形分を10wt%に調整した。導電性高分子であるポリアニリン(アルドリッチ社製、エメラルディンベース、分子量:2万)をシクロヘキサノンに溶解して固形分を2wt%に調整した。シリコーン変性プルランポリマーの溶液0.6mlに対して、ポリアニリンの溶液を0.4ml(シリコーン変性シクロオレフィンポリマー100質量部に対して13.3質量部)配合した。そしてこの溶液1mLに対して表7に示す酸を所定量添加し、超音波分散機を用いて混合した。この混合溶液を、支持体アイソポア(日本ミリポア社製、材質:ポリカーボネート、平均孔径0.22μm)上に、水面展開法により成膜した後、乾燥機にてトルエンとシクロヘキサノンを除去し、平均厚み0.1μmの膜を得た。
実施例17〜28で得られた膜について、上述した[膜の評価]と同様の方法で酸素及び窒素についての気体透過係数、及びnSPM遮断率を測定した。得られた結果を表7に示す。

シリコーン系ポリマー100質量部に対する添加量。
本発明の選択透過材料から形成される膜を透過する気体の流れを示すイメージ図である。 本発明の空調システムの一実施形態を示す図である。 本発明の空調システムの一形態である車両におけるエアコンユニット30の一部を示す模式断面図である。 選択透過膜構造体の好ましい形態を示す斜視図である。 選択透過膜構造体の他の好ましい形態を示す斜視図である。 本発明の選択透過材料からなる選択透過膜を圧力調整用換気装置内に備える、本発明の空調システムの一形態である車両を示す概略構成図である。 本発明の選択透過材料からなる選択透過膜を天井部分に備える、本発明の空調システムの一形態である車両を示す概略構成図である。 本発明の選択透過材料からなる選択透過膜を天井部分に備える、本発明の空調システムの一形態である車両を示す概略構成図である。 本発明の選択透過材料からなる選択透過膜を天井部分に備える、本発明の空調システムの一形態である車両を示す概略構成図である。 本発明の選択透過材料からなる選択透過膜をフロントガラス部分に備える、本発明の空調システムの一形態である車両を示す概略構成図である。 本発明の選択透過材料からなる選択透過膜をリアウィンドウ部分に備える、本発明の空調システムの一形態である車両を示す概略構成図である。 本発明の選択透過材料からなる選択透過膜をサンルーフ部分に備える、本発明の空調システムの一形態である車両を示す概略構成図である。 本発明の選択透過材料からなる選択透過膜をピラー部分に備える、本発明の空調システムの一形態である車両を示す概略断面図である。 本発明の選択透過材料からなる選択透過膜をピラー部分に備える、本発明の空調システムの一形態である車両を示す概略断面図である。 本発明の選択透過材料からなる選択透過膜を床部分に備える、本発明の空調システムの一形態である車両を示す概略断面図である。 (a)は、本発明の選択透過材料からなる選択透過膜をドア部分に備える、本発明の空調システムの一形態である車両10を示す側面図であり、(b)は、ドア140を車両10の車幅方向に切った概略断面図である。 本発明の選択透過材料からなる選択透過膜をドア部分に備える、本発明の空調システムの一形態である車両を示す概略断面図である。 本発明の選択透過材料からなる選択透過膜をドア部分に備える、本発明の空調システムの一形態である車両を示す概略断面図である。 本発明の選択透過材料からなる選択透過膜をドア部分に備える、本発明の空調システムの一形態である車両を示す概略断面図である。 本発明の選択透過材料からなる選択透過膜をドア部分に備える、本発明の空調システムの一形態である車両を示す概略断面図である。 nSPM遮蔽率の測定を行った装置の概略図である。
符号の説明
10…車両、11…車室壁、12a…前方補強材、12b…後方補強材、13,13a,13b…選択透過膜、13c…補強材、14,36…除塵フィルタ、16…除湿材、17…脱臭材、18…酸素センサ、19…車室、20…膜、21…シリコーン、22…外壁、23…固形添加剤、24…内壁、25…空隙、26、126…外気導入口、27a…前部開閉扉、27b,27d…ヒンジ、27c…後部開閉扉、27e…前部堰、27f…後部堰、28…外気排出口、29a…前部ファン、29b…後部ファン、30…エアコンユニット、32…ダンパ、32a…ヒンジ、34…バンパ、35…エアコンユニットケース、35a…外気導入口、35b…内気導入口、35c…開口部、37…遠心式送風ファン、38…筐体、40,40a,40b…選択透過膜構造体、42a,42b…支持体、50…フロントピラー、52…センターピラー、52a,154c…外気取入れ口、52b,128,154d…外気排出口、52c,152a…内気取入れ口、52d,152b…内気排出口、52e…上端部、52f…下端部、53…側板、54…リアピラー、60…温度センサ、70…空洞、80…窓、90…制御部、110…圧力調整用換気装置、112…カバー、118…送風機、120…空間、122…ボディ、126…外気導入口、127a…前部堰、127b…後部堰、130…フロントガラス、132…多孔質ガラス、138…サンルーフ、140…ドア、150…床部、151…空間、152…床板、154…外板、156a,156b…ファン、164…内装材

Claims (7)

  1. オルガノシロキサン骨格を有するポリマーに固形添加剤が分散されてなる選択透過材料であって、
    前記選択透過材料から形成される膜に酸素及び窒素を透過させた場合に、23±2℃、膜間の圧力差1.05〜1.20atmにおける酸素及び窒素の透過係数(cm3・cm・sec-1・cm-2・cmHg-1)の関係が下記式(1)で表される、選択透過材料。

    [式中、P(O)は酸素の透過係数、P(N)は窒素の透過係数を示す。]
  2. 前記選択透過材料から形成される膜に気体を透過させた場合に、前記膜を透過する気体の流れにおいてクヌーセン流(Knudsen flow)が生じる請求項1記載の選択透過材料。
  3. 前記オルガノシロキサン骨格を有するポリマーが、ポリオルガノシロキシ単位及び有機単量体単位を備えるシリコーン共重合体又はポリオルガノシロキサンである請求項1又は2記載の選択透過材料。
  4. 前記固形添加剤は、フィラー及び/又は導電性ポリマーである請求項1〜3のいずれか一項に記載の選択透過材料。
  5. 以下の(1)〜(3)のいずれかの条件を満たす請求項4記載の選択透過材料。
    (1)前記フィラーが、多孔質シリカ粒子であり、前記オルガノシロキサン骨格を有するポリマー100質量部に対して前記固形添加剤の添加量が25〜1560質量部である、
    (2)前記フィラーが、平均粒径10〜120nmの、疎水性若しくは親水性表面を有する非多孔質シリカ粒子であり、前記オルガノシロキサン骨格を有するポリマー100質量部に対して前記固形添加剤の含有量が65〜3800質量部である、
    (3)前記フィラーが、平均粒径10〜60nmの、親水性表面を有する非多孔質酸化チタン粒子であり、前記オルガノシロキサン骨格を有するポリマー100質量部に対する前記固形添加剤の含有量が330〜6400質量部である。
  6. 前記導電性ポリマーが、ポリアニリン又は酸処理ポリアリニンである請求項4記載の選択透過材料。
  7. 空調対象空間への気体の供給及び/又は空調対象空間からの気体の排出が行われる膜を備える空調システムであって、
    前記膜は請求項1〜6のいずれか一項記載の選択透過材料からなる膜である空調システム。
JP2007335056A 2006-12-28 2007-12-26 選択透過材料及び空調システム Expired - Fee Related JP4912290B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007335056A JP4912290B2 (ja) 2006-12-28 2007-12-26 選択透過材料及び空調システム

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006355400 2006-12-28
JP2006355400 2006-12-28
JP2007286503 2007-11-02
JP2007286503 2007-11-02
JP2007335056A JP4912290B2 (ja) 2006-12-28 2007-12-26 選択透過材料及び空調システム

Publications (2)

Publication Number Publication Date
JP2009131824A true JP2009131824A (ja) 2009-06-18
JP4912290B2 JP4912290B2 (ja) 2012-04-11

Family

ID=40864287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007335056A Expired - Fee Related JP4912290B2 (ja) 2006-12-28 2007-12-26 選択透過材料及び空調システム

Country Status (5)

Country Link
US (1) US8394181B2 (ja)
EP (1) EP2098281A4 (ja)
JP (1) JP4912290B2 (ja)
CN (2) CN102380322B (ja)
WO (1) WO2008081798A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157196A (ja) * 2019-03-25 2020-10-01 パナソニックIpマネジメント株式会社 気体分離膜複合体及び気体分離膜複合体の製造方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143514A1 (en) * 2007-05-24 2008-11-27 Fujifilm Manufacturing Europe B.V. Membrane comprising oxyethylene groups
KR20100019532A (ko) * 2007-05-24 2010-02-18 후지필름 매뉴팩츄어링 유럽 비.브이. 멤브레인 및 그의 제조방법과 용도
CN101754797A (zh) * 2007-05-24 2010-06-23 富士胶片制造欧洲有限公司 包含氧乙烯基的膜
JP5383146B2 (ja) 2007-10-29 2014-01-08 信越ポリマー株式会社 非対称膜及びこれを用いた空調システム
GB2476123A (en) 2009-12-14 2011-06-15 Graviner Ltd Kidde MOS gas sensor apparatus and method of use
US8383026B1 (en) * 2010-10-21 2013-02-26 U.S Department Of Energy Fabrication of fiber supported ionic liquids and methods of use
DE102010052466A1 (de) * 2010-11-26 2012-05-31 Carl Freudenberg Kg Membranträger, dessen Verwendung und Verfahren zur Herstellung flüssig applizierter Polymermembranen mit einem derartigen Membranträger
JP5937569B2 (ja) * 2011-03-22 2016-06-22 日本碍子株式会社 ハニカム形状セラミック製分離膜構造体
US20130146530A1 (en) * 2011-12-08 2013-06-13 General Electric Company Membrane, water treatment system, and method of making
FI126055B (en) * 2012-05-14 2016-06-15 Upm Kymmene Corp A method of making a film from fibril pulp and a fibril pulp film
DE102012014335A1 (de) 2012-07-19 2014-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dispersion, Verfahren zur Beschichtung von Gegenstädenmit dieser Dispersion und Verwendung der Dispersion
JP6068124B2 (ja) * 2012-12-17 2017-01-25 昭和電工パッケージング株式会社 空気二次電池用の外装材及び空気二次電池
FR3000496B1 (fr) * 2012-12-28 2015-12-04 Pintat Benoit Marcel Composition pour surface exterieure
US9044566B2 (en) * 2013-03-01 2015-06-02 Reaction Systems, Llc Advanced supported liquid membranes for carbon dioxide control in extravehicular activity applications
DE102014003314A1 (de) * 2014-03-08 2015-09-10 Hydac Fluidcarecenter Gmbh Verfahren zur Anpassung eines Filtermediums an vorgebbare Parameter sowie vorzugsweise ein nach diesem Verfahren hergestelltes Filtermedium
EP3120921A4 (en) * 2014-03-18 2017-11-29 Toyo Tire & Rubber Co., Ltd. Separation membrane for treating acidic gas-containing gas, and method for manufacturing separation membrane for treating acidic gas-containing gas
BR112017000278A2 (pt) * 2014-07-08 2017-10-31 Xyleco Inc marcação de produtos à base de plástico
US10207656B2 (en) * 2014-08-12 2019-02-19 Dura Operating, Llc Composite module
DE102015204638A1 (de) * 2015-03-13 2016-09-15 Raumedic Ag Membran für einen Oxygenator für Gausaustausch im Blutkreislauf, Oxygenator mit einer derartigen Membran sowie Verfahren zur Herstellung einer derartigen Membran
US11084001B2 (en) * 2016-09-04 2021-08-10 Ariel Scientific Innovations Ltd. Selectively-permeable membrane
WO2019039242A1 (ja) * 2017-08-21 2019-02-28 東京応化工業株式会社 気体分離方法、及び気体分離膜
CN115121135B (zh) * 2022-06-20 2024-02-27 西安交通大学 一种混合基质膜及其制备方法和应用以及一种空分制氮装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135808A (ja) * 1984-07-26 1986-02-20 Chiyoda Chem Eng & Constr Co Ltd ガス拡散分離用多孔質膜の製造方法
JPH03262523A (ja) * 1990-03-13 1991-11-22 Shin Etsu Polymer Co Ltd 複合酸素富化膜
JPH10192669A (ja) * 1997-01-16 1998-07-28 Dainippon Ink & Chem Inc 脱気膜
JP2004203367A (ja) * 2002-10-28 2004-07-22 Denso Corp 空調システム
WO2005068058A1 (ja) * 2004-01-15 2005-07-28 Sfc Co., Ltd. 水素又はヘリウムの透過膜、貯蔵膜及びその形成方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645722A (en) * 1979-09-25 1981-04-25 Kawasaki Heavy Ind Ltd Structure of packing layer type dust collector and the like
US4444662A (en) * 1979-10-22 1984-04-24 Applied Membrane Technology, Inc. Microporous laminate
JPS57156006A (en) * 1981-03-24 1982-09-27 Shin Etsu Polymer Co Ltd Gas permeable membrane
US5127925A (en) * 1982-12-13 1992-07-07 Allied-Signal Inc. Separation of gases by means of mixed matrix membranes
JPS59112802A (ja) 1982-12-17 1984-06-29 Matsushita Electric Ind Co Ltd 選択気体透過性複合膜
US4740219A (en) * 1985-02-04 1988-04-26 Allied-Signal Inc. Separation of fluids by means of mixed matrix membranes
JPS6349535A (ja) 1986-08-19 1988-03-02 Aisin Seiki Co Ltd 速度制御装置
JPS6419929A (en) 1987-07-15 1989-01-24 Hitachi Ltd Solar power generator
JPH0470048A (ja) 1990-07-09 1992-03-05 Matsushita Electric Ind Co Ltd 電話交換システム
JPH07289864A (ja) 1994-04-25 1995-11-07 Shin Etsu Polymer Co Ltd 微孔性膜
JP3212492B2 (ja) 1994-12-01 2001-09-25 信越化学工業株式会社 シリコーンオイル組成物
US5718789A (en) * 1995-06-07 1998-02-17 The Dexter Corporation Method for making a debossed conductive film composite
JP3261047B2 (ja) 1996-09-13 2002-02-25 大日精化工業株式会社 荷電モザイク膜、その製造方法、該荷電モザイク膜の使用方法及び該荷電モザイク膜を備えた装置
US6103077A (en) * 1998-01-02 2000-08-15 De Nora S.P.A. Structures and methods of manufacture for gas diffusion electrodes and electrode components
JP4070048B2 (ja) * 1998-05-26 2008-04-02 株式会社ケーヒン 電子制御機器の実装構造
US6605140B2 (en) * 2000-08-09 2003-08-12 National Research Council Of Canada Composite gas separation membranes
US6840982B2 (en) * 2001-03-13 2005-01-11 American Moxie, Llc Storage device utilizing a differentially permeable membrane to control gaseous content
JP3865046B2 (ja) 2001-05-08 2007-01-10 信越化学工業株式会社 無溶剤型ポリイミドシリコーン系樹脂組成物
JP2003336874A (ja) * 2002-05-15 2003-11-28 Nitto Denko Corp 通気部材およびこれを用いた通気筐体
CN1327942C (zh) * 2004-01-09 2007-07-25 中国科学院大连化学物理研究所 一种复合金属钯膜或合金钯膜及其制备方法
US7264650B2 (en) * 2004-06-24 2007-09-04 North Carolina Agricultural And Technical State University Ultrahigh-selectivity oxygen enrichment filled elastomeric silicone polymer membrane incorporating nanofillers
US7749312B2 (en) * 2006-03-28 2010-07-06 Denso Corporation Air conditioning system
GB0709115D0 (en) * 2007-05-11 2007-06-20 Katholieke Universltelt Leuven Membrane comprising hollow particles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135808A (ja) * 1984-07-26 1986-02-20 Chiyoda Chem Eng & Constr Co Ltd ガス拡散分離用多孔質膜の製造方法
JPH03262523A (ja) * 1990-03-13 1991-11-22 Shin Etsu Polymer Co Ltd 複合酸素富化膜
JPH10192669A (ja) * 1997-01-16 1998-07-28 Dainippon Ink & Chem Inc 脱気膜
JP2004203367A (ja) * 2002-10-28 2004-07-22 Denso Corp 空調システム
WO2005068058A1 (ja) * 2004-01-15 2005-07-28 Sfc Co., Ltd. 水素又はヘリウムの透過膜、貯蔵膜及びその形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157196A (ja) * 2019-03-25 2020-10-01 パナソニックIpマネジメント株式会社 気体分離膜複合体及び気体分離膜複合体の製造方法

Also Published As

Publication number Publication date
US8394181B2 (en) 2013-03-12
CN101516484B (zh) 2012-07-04
CN101516484A (zh) 2009-08-26
CN102380322A (zh) 2012-03-21
US20100132559A1 (en) 2010-06-03
CN102380322B (zh) 2014-04-23
JP4912290B2 (ja) 2012-04-11
EP2098281A4 (en) 2011-09-21
EP2098281A1 (en) 2009-09-09
WO2008081798A1 (ja) 2008-07-10

Similar Documents

Publication Publication Date Title
JP4912290B2 (ja) 選択透過材料及び空調システム
JP5383146B2 (ja) 非対称膜及びこれを用いた空調システム
Yin et al. Polymer-matrix nanocomposite membranes for water treatment
JP5849889B2 (ja) 空調システム
JP2011012114A (ja) 空調システム
US7749312B2 (en) Air conditioning system
JP5149593B2 (ja) 選択透過材料及び空調システム
JP2004203367A (ja) 空調システム
Bai et al. The Fe3O4@ UiO-66-NH2/PVDF-co-CTFE mixed matrix membrane with enhanced anti-fouling and self-cleaning performances for effectively removing dyes by Fenton reaction
JP5235514B2 (ja) 住宅用選択透過材料及び住宅用空調システム
KR20160135773A (ko) 통기 부재 및 통기 장치
JP4622952B2 (ja) 車両用空調システム
JP6093678B2 (ja) 非対称膜の製造方法
JP2010005514A (ja) 選択透過材料及び空調システム
JP4682951B2 (ja) 圧力調整用換気装置
JP4682950B2 (ja) 車両用空調システム
JP4770631B2 (ja) 車両用空調システム
JP2007290690A (ja) 空調システム
US20230074961A1 (en) Multiscale-porous anion exchange membrane, manufacture of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees