JP2009129893A - 負極、電池およびそれらの製造方法 - Google Patents

負極、電池およびそれらの製造方法 Download PDF

Info

Publication number
JP2009129893A
JP2009129893A JP2007307436A JP2007307436A JP2009129893A JP 2009129893 A JP2009129893 A JP 2009129893A JP 2007307436 A JP2007307436 A JP 2007307436A JP 2007307436 A JP2007307436 A JP 2007307436A JP 2009129893 A JP2009129893 A JP 2009129893A
Authority
JP
Japan
Prior art keywords
negative electrode
group
chemical formula
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007307436A
Other languages
English (en)
Other versions
JP5262085B2 (ja
JP2009129893A5 (ja
Inventor
Hiroyuki Yamaguchi
裕之 山口
Masayuki Ihara
将之 井原
Hideki Nakai
秀樹 中井
Atsumichi Kawashima
敦道 川島
Tadahiko Kubota
忠彦 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007307436A priority Critical patent/JP5262085B2/ja
Priority to US12/274,940 priority patent/US8613873B2/en
Priority to KR1020080115536A priority patent/KR101643532B1/ko
Priority to CN2008101790505A priority patent/CN101447569B/zh
Publication of JP2009129893A publication Critical patent/JP2009129893A/ja
Publication of JP2009129893A5 publication Critical patent/JP2009129893A5/ja
Application granted granted Critical
Publication of JP5262085B2 publication Critical patent/JP5262085B2/ja
Priority to KR1020160035930A priority patent/KR101731237B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Composite Materials (AREA)

Abstract

【課題】サイクル特性および膨れ特性を向上させることが可能な電池を提供する。
【解決手段】正極21および負極22と共に電解液を備え、正極21と負極22との間に設けられたセパレータ23に電解液が含浸されている。負極22は、負極集電体22Aに設けられた負極活物質層22B上に被膜22Cを有している。この被膜22Cは、金属塩を含有しており、その金属塩は、水酸基と、スルホン酸基およびカルボン酸基のうちの少なくとも一方とを有している。負極22においてリチウムイオンが吸蔵および放出されやすくなると共に、電解液の分解が抑制される。
【選択図】図7

Description

本発明は、負極集電体上に負極活物質層を有する負極、その負極を備えた電池、およびそれらの製造方法に関する。
近年、カメラ一体型VTR(Video Tape Recorder )、携帯電話あるいはノートパソコンなどのポータブル電子機器が広く普及しており、その小型化、軽量化および長寿命化が強く求められている。これに伴い、電源として、電池、特に軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。
中でも、充放電反応にリチウム(Li)の吸蔵および放出を利用する二次電池(いわゆるリチウムイオン二次電池)は、鉛電池やニッケルカドミウム電池よりも高いエネルギー密度が得られるため、大いに期待されている。このリチウムイオン二次電池は、正極および負極と共に電解液を備えており、その負極は、負極集電体上に負極活物質層を有している。
負極活物質層に含まれる負極活物質としては、黒鉛などの炭素材料が広く用いられている。また、最近では、ポータブル電子機器の高性能化および多機能化に伴って電池容量のさらなる向上が求められていることから、炭素材料に代えてケイ素やスズなどを用いることが検討されている。ケイ素の理論容量(4199mAh/g)やスズの理論容量(994mAh/g)は黒鉛の理論容量(372mAh/g)よりも格段に大きいため、電池容量の大幅な向上を期待できるからである。
ところが、リチウムイオン二次電池では、充放電時にリチウムを吸蔵した負極活物質が高活性になり、電解液が分解されやすくなると共にリチウムが不活性化しやすくなるため、十分なサイクル特性を得ることが困難である。しかも、電解液の分解時に発生するガスの影響を受けて二次電池が膨らみやすくなるため、膨れ特性が低下する可能性もある。前者の問題は、負極活物質として高理論容量のケイ素等を用いた場合に顕著となり、後者の問題は、電池構造がフィルム状の外装部材を用いたラミネートフィルム型である場合に顕著となる。
そこで、リチウムイオン二次電池の諸問題を解決するために、さまざまな検討がなされている。具体的には、負荷特性および低温特性を向上させるために、電解液にフェニルスルホン酸金属塩を含有させる技術が提案されている(例えば、特許文献1参照。)。また、電池特性を向上させるために、電解液に有機アルカリ金属塩を含有させる技術が提案されている(例えば、特許文献2参照。)。さらに、保存特性やサイクル特性を向上させるために、電解液にヒドロキシカルボン酸を含有させる技術が提案されている(例えば、特許文献3参照。)。この他、電池容量の低下を抑制するために、負極活物質である炭素材料をリチウムアルコキシド化合物で被覆する技術が提案されている(例えば、特許文献4参照。)。
特開2002−056891号公報 特開2000−268863号公報 特開2003−092137号公報 特開平08−138745号公報
近年、ポータブル電子機器は益々高性能化および多機能化しており、その消費電力も増大する傾向にあるため、二次電池の充放電が頻繁に繰り返され、そのサイクル特性が低下しやすい状況にある。また、ポータブル電子機器は多岐分野に渡って広く普及しており、輸送時、使用時あるいは携帯時などにおいて二次電池が高温雰囲気中に晒される可能性があるため、その二次電池が膨れやすい状況にある。これらのことから、二次電池のサイクル特性および膨れ特性に関して、より一層の向上が望まれている。
本発明はかかる問題点に鑑みてなされたもので、その目的は、サイクル特性および膨れ特性を向上させることが可能な負極、電池およびそれらの製造方法を提供することにある。
本発明の負極は、負極集電体に設けられた負極活物質層上に被膜を有し、被膜が化1で表される金属塩を含有するものである。
Figure 2009129893
(R1は(a1+b1+c1)価の基であり、M1は金属元素である。a1、d1、e1およびf1は1以上の整数であり、b1およびc1は0以上の整数である。ただし、(b1+c1)≧1である。)
本発明の負極の製造方法は、負極集電体に設けられた負極活物質層上に被膜を有する負極の製造方法であって、化2で表される金属塩を含有する溶液を用いて負極活物質層に被膜を形成するようにしたものである。
Figure 2009129893
(R1は(a1+b1+c1)価の基であり、M1は金属元素である。a1、d1、e1およびf1は1以上の整数であり、b1およびc1は0以上の整数である。ただし、(b1+c1)≧1である。)
本発明の電池は、正極および負極と共に電解液を備えた電池であって、負極が負極集電体に設けられた負極活物質層上に被膜を有し、被膜が化3で表される金属塩を含有するものである。
Figure 2009129893
(R1は(a1+b1+c1)価の基であり、M1は金属元素である。a1、d1、e1およびf1は1以上の整数であり、b1およびc1は0以上の整数である。ただし、(b1+c1)≧1である。)
本発明の電池の製造方法は、正極および負極と共に電解液を備え、負極が負極集電体に設けられた負極活物質層上に被膜を有する電池の製造方法であって、化4で表される金属塩を含有する溶液を用いて負極活物質層に被膜を形成するようにしたものである。
Figure 2009129893
(R1は(a1+b1+c1)価の基であり、M1は金属元素である。a1、d1、e1およびf1は1以上の整数であり、b1およびc1は0以上の整数である。ただし、(b1+c1)≧1である。)
本発明の負極およびその製造方法によれば、化1に示した金属塩を含有する被膜を負極活物質層に形成しているので、その被膜を形成しない場合と比較して、負極の化学的安定性が向上する。このため、負極が電池などの電気化学デバイスに用いられた場合に、負極において電極反応物質が効率よく吸蔵および放出されると共に、負極が電解液などの他の物質と反応しにくくなる。これにより、本発明の負極およびその製造方法を用いた電池およびその製造方法によれば、サイクル特性および膨れ特性を向上させることができる。この場合には、化1に示した金属塩を含有する溶液を用いて被膜を形成しているので、減圧環境などの特殊な環境条件を要する方法を用いる場合と比較して、良好な被膜を簡単に形成することができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
図1は、本発明の一実施の形態に係る負極の断面構成を表している。この負極は、例えば電池などの電気化学デバイスに用いられるものであり、一対の面を有する負極集電体1と、その負極集電体1に設けられた負極活物質層2と、その負極活物質層2に設けられた被膜3とを有している。この負極活物質層2は、負極集電体1の両面に設けられていてもよいし、片面だけに設けられていてもよい。被膜3も同様である。
負極集電体1は、良好な電気化学的安定性、電気伝導性および機械的強度を有する金属材料によって構成されているのが好ましい。このような金属材料としては、例えば、銅、ニッケルあるいはステンレスなどが挙げられ、中でも銅が好ましい。高い電気伝導性が得られるからである。
特に、上記した金属材料は、電極反応物質と金属間化合物を形成しない金属元素のいずれか1種あるいは2種以上を含んでいるのが好ましい。電極反応物質と金属間化合物を形成すると、電気化学デバイスの動作時(例えば電池の充放電時)に負極活物質層2の膨張および収縮による応力の影響を受けやすいため、集電性が低下する可能性があると共に、負極活物質層2が負極集電体1から剥離する可能性もあるからである。このような金属元素としては、例えば、銅、ニッケル、チタン、鉄あるいはクロム(Cr)などが挙げられる。
また、上記した金属材料は、負極活物質層2と合金化する金属元素のいずれか1種あるいは2種以上を含んでいるのが好ましい。負極集電体1と負極活物質層2との間の密着性が向上するため、その負極活物質層2が負極集電体1から剥離しにくくなるからである。電極反応物質と金属間化合物を形成せず、しかも負極活物質層2と合金化する金属元素としては、例えば、負極活物質層2が負極活物質としてケイ素を含む場合には、銅、ニッケルあるいは鉄などが挙げられる。これらの金属元素は、強度および導電性の観点からも好ましい。
なお、負極集電体1は、単層構造を有していてもよいし、多層構造を有していてもよい。負極集電体1が多層構造を有する場合には、例えば、負極活物質層2と隣接する層がそれと合金化する金属材料によって構成され、隣接しない層が他の金属材料によって構成されるのが好ましい。
負極集電体1の表面は、粗面化されているのが好ましい。いわゆるアンカー効果によって負極集電体1と負極活物質層2との間の密着性が向上するからである。この場合には、少なくとも負極活物質層2と対向する領域において、負極集電体1の表面が粗面化されていればよい。この粗面化の方法としては、例えば、電解処理によって微粒子を形成する方法などが挙げられる。この電解処理とは、電解槽中において電解法によって負極集電体1の表面に微粒子を形成して凹凸を設ける方法である。この電解処理が施された銅箔は、一般に「電解銅箔」と呼ばれている。
負極活物質層2は、負極活物質として、電極反応物質を吸蔵および放出することが可能な負極材料のいずれか1種あるいは2種以上を含んでいる。この負極活物質層2は、必要に応じて、導電剤あるいは結着剤などの他の材料を含んでいてもよい。
電極反応物質を吸蔵および放出することが可能な負極材料としては、例えば、電極反応物質を吸蔵および放出することが可能であると共に金属元素および半金属元素のうちの少なくとも1種を構成元素として有する材料が挙げられる。高いエネルギー密度が得られるからである。このような負極材料は、金属元素あるいは半金属元素の単体でも合金でも化合物でもよく、それらの1種あるいは2種以上の相を少なくとも一部に有するようなものでもよい。
なお、本発明における「合金」には、2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含まれる。また、「合金」は、非金属元素を含んでいてもよい。この組織には、固溶体、共晶(共融混合物)、金属間化合物、あるいはそれらのうちの2種以上が共存するものがある。
上記した金属元素あるいは半金属元素としては、例えば、電極反応物質と合金を形成することが可能な金属元素あるいは半金属元素が挙げられる。具体的には、マグネシウム(Mg)、ホウ素(B)、アルミニウム、ガリウム(Ga)、インジウム(In)、ケイ素、ゲルマニウム(Ge)、スズ、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛、ハフニウム(Hf)、ジルコニウム(Zr)、イットリウム(Y)、パラジウム(Pd)あるいは白金(Pt)などである。中でも、ケイ素およびスズのうちの少なくとも1種が好ましく、ケイ素がより好ましい。電極反応物質を吸蔵および放出する能力が大きいため、高いエネルギー密度が得られるからである。
ケイ素およびスズのうちの少なくとも1種を有する負極材料としては、例えば、ケイ素の単体、合金あるいは化合物や、スズの単体、合金あるいは化合物や、それらの1種あるいは2種以上の相を少なくとも一部に有する材料が挙げられる。これらは単独でもよいし、複数種が混合されてもよい。
ケイ素の合金としては、例えば、ケイ素以外の第2の構成元素として、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムからなる群のうちの少なくとも1種を有するものが挙げられる。ケイ素の化合物としては、例えば、酸素あるいは炭素(C)を有するものが挙げられ、ケイ素に加えて、上記した第2の構成元素を有していてもよい。ケイ素の合金あるいは化合物の一例としては、SiB4 、SiB6 、Mg2 Si、Ni2 Si、TiSi2 、MoSi2 、CoSi2 、NiSi2 、CaSi2 、CrSi2 、Cu5 Si、FeSi2 、MnSi2 、NbSi2 、TaSi2 、VSi2 、WSi2 、ZnSi2 、SiC、Si3 4 、Si2 2 O、SiOv (0<v≦2)、SnOw (0<w≦2)あるいはLiSiOなどが挙げられる。
スズの合金としては、例えば、スズ以外の第2の構成元素として、ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムからなる群のうちの少なくとも1種を有するものが挙げられる。スズの化合物としては、例えば、酸素あるいは炭素を有するものが挙げられ、スズに加えて、上記した第2の構成元素を有していてもよい。スズの合金あるいは化合物の一例としては、SnSiO3 、LiSnO、Mg2 Snなどが挙げられる。
特に、ケイ素およびスズのうちの少なくとも1種を有する負極材料としては、例えば、スズを第1の構成元素とし、それに加えて第2および第3の構成元素を有するものが好ましい。第2の構成元素は、コバルト、鉄、マグネシウム、チタン、バナジウム(V)、クロム、マンガン、ニッケル、銅、亜鉛、ガリウム、ジルコニウム、ニオブ(Nb)、モリブデン、銀、インジウム、セリウム(Ce)、ハフニウム、タンタル(Ta)、タングステン(W)、ビスマスおよびケイ素からなる群のうちの少なくとも1種である。第3の構成元素は、ホウ素、炭素、アルミニウムおよびリン(P)からなる群のうちの少なくとも1種である。第2および第3の構成元素を有することにより、負極が電池などの電気化学デバイスに用いられた場合にサイクル特性が向上するからである。
中でも、スズ、コバルトおよび炭素を構成元素として有し、炭素の含有量が9.9質量%以上29.7質量%以下、スズおよびコバルトの合計に対するコバルトの割合(Co/(Sn+Co))が30質量%以上70質量%以下であるSnCoC含有材料が好ましい。このような組成範囲において、高いエネルギー密度が得られるからである。
このSnCoC含有材料は、必要に応じて、さらに他の構成元素を有していてもよい。この他の構成元素としては、例えば、ケイ素、鉄、ニッケル、クロム、インジウム、ニオブ、ゲルマニウム、チタン、モリブデン、アルミニウム、リン、ガリウムあるいはビスマスなどが好ましく、それらの2種以上を有していてもよい。より高い効果が得られるからである。
なお、SnCoC含有材料は、スズ、コバルトおよび炭素を含む相を有しており、その相は、低結晶性あるいは非晶質の構造を有しているのが好ましい。また、SnCoC含有材料では、構成元素である炭素の少なくとも一部が、他の構成元素である金属元素あるいは半金属元素と結合しているのが好ましい。スズなどの凝集あるいは結晶化が抑制されるからである。
SnCoC含有材料は、例えば、各構成元素の原料を混合した混合物を電気炉、高周波誘導炉あるいはアーク溶解炉などで溶解させてから凝固させる方法によって形成可能である。また、ガスアトマイズあるいは水アトマイズなどの各種アトマイズ法や、各種ロール法や、メカニカルアロイング法あるいはメカニカルミリング法などのメカノケミカル反応を利用した方法などを用いてもよい。中でも、メカノケミカル反応を利用した方法が好ましい。負極活物質が低結晶性あるいは非晶質の構造になるからである。メカノケミカル反応を利用した方法では、例えば、遊星ボールミルやアトライタなどの製造装置を用いることができる。
また、元素の結合状態を調べる測定方法としては、例えば、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)が挙げられる。このXPSでは、金原子の4f軌道(Au4f)のピークが84.0eVに得られるようにエネルギー較正された装置において、グラファイトであれば、炭素の1s軌道(C1s)のピークは284.5eVに現れる。また、表面汚染炭素であれば、284.8eVに現れる。これに対して、炭素元素の電荷密度が高くなる場合、例えば、炭素が金属元素あるいは半金属元素と結合している場合には、C1sのピークは284.5eVよりも低い領域に現れる。すなわち、SnCoC含有材料について得られるC1sの合成波のピークが284.5eVよりも低い領域に現れる場合には、SnCoC含有材料に含まれる炭素の少なくとも一部が他の構成元素である金属元素あるいは半金属元素と結合している。
なお、XPSでは、例えば、スペクトルのエネルギー軸の補正に、C1sのピークを用いる。通常、表面には表面汚染炭素が存在しているので、表面汚染炭素のC1sのピークを284.8eVとし、これをエネルギー基準とする。XPSにおいて、C1sのピークの波形は、表面汚染炭素のピークとSnCoC含有材料中の炭素のピークとを含んだ形として得られるので、例えば、市販のソフトウエアを用いて解析することにより、表面汚染炭素のピークと、SnCoC含有材料中の炭素のピークとを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。
負極材料としてケイ素の単体、合金あるいは化合物や、スズの単体、合金あるいは化合物や、それらの1種あるいは2種以上の相を少なくとも一部に有する材料を用いた負極活物質層2は、例えば、気相法、液相法、溶射法、塗布法あるいは焼成法、またはそれらの2種以上の方法を用いて形成される。この場合には、負極集電体1と負極活物質層2とが界面の少なくとも一部において合金化しているのが好ましい。具体的には、界面において負極集電体1の構成元素が負極活物質層2に拡散していてもよいし、負極活物質層2の構成元素が負極集電体1に拡散していてもよいし、それらの構成元素が互いに拡散し合っていてもよい。充放電時における負極活物質層2の膨張および収縮に起因する破壊が抑制されると共に、負極集電体1と負極活物質層2との間の電子伝導性が向上するからである。
なお、気相法としては、例えば、物理堆積法あるいは化学堆積法、具体的には真空蒸着法、スパッタ法、イオンプレーティング法、レーザーアブレーション法、熱化学気相成長(Chemical Vapor Deposition :CVD)法、あるいはプラズマ化学気相成長法などが挙げられる。液相法としては、電解鍍金あるいは無電解鍍金などの公知の手法を用いることができる。塗布法とは、例えば、粒子状の負極活物質を結着剤などと混合したのち、溶剤に分散させて塗布する方法である。焼成法とは、例えば、塗布法によって塗布したのち、結着剤などの融点よりも高い温度で熱処理する方法である。焼成法に関しても公知の手法が利用可能であり、例えば、雰囲気焼成法、反応焼成法あるいはホットプレス焼成法が挙げられる。
上記した他、電極反応物質を吸蔵および放出することが可能な負極材料としては、例えば、炭素材料が挙げられる。この炭素材料としては、例えば、易黒鉛化性炭素や、(002)面の面間隔が0.37nm以上の難黒鉛化性炭素や、(002)面の面間隔が0.34nm以下の黒鉛などが挙げられる。より具体的には、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭あるいはカーボンブラック類などがある。このコークス類には、ピッチコークス、ニードルコークスあるいは石油コークスなどが含まれる。有機高分子化合物焼成体とは、フェノール樹脂やフラン樹脂などを適当な温度で焼成して炭素化したものである。炭素材料は電極反応物質の吸蔵および放出に伴う結晶構造の変化が非常に少ないため、例えば、他の負極材料と一緒に用いることにより、高いエネルギー密度が得られると共に、負極が電池などの電気化学デバイスに用いられた場合に優れたサイクル特性も得られ、さらに導電剤としても機能するので好ましい。なお、炭素材料の形状は、繊維状、球状、粒状あるいは鱗片状のいずれでもよい。
また、電極反応物質を吸蔵および放出することが可能な負極材料としては、例えば、電極反応物質を吸蔵および放出することが可能な金属酸化物あるいは高分子化合物も挙げられる。金属酸化物としては、例えば、酸化鉄、酸化ルテニウム、あるいは酸化モリブデンなどが挙げられ、高分子化合物としては、例えば、ポリアセチレン、ポリアニリンあるいはポリピロールなどが挙げられる。
もちろん、負極材料は、上記以外のものであってもよい。また、上記した一連の負極材料を任意の組み合わせで2種類以上混合してもよい。
負極活物質は、複数の粒子状をなしている。すなわち、負極活物質層2は、複数の負極活物質粒子を有している。この負極活物質粒子は、例えば、上記した気相法などによって形成されている。ただし、負極活物質粒子は、気相法以外の方法によって形成されていてもよい。
負極活物質粒子が気相法によって形成されている場合には、その負極活物質粒子が単一の堆積工程を経て形成された単層構造を有していてもよいし、複数回の堆積工程を経て形成された多層構造を有していてもよい。ただし、堆積時に高熱を伴う蒸着法などによって負極活物質粒子を形成する場合には、その負極活物質粒子が多層構造を有しているのが好ましい。負極材料の堆積工程を複数回に分割して行う(負極材料を順次薄く形成して堆積させる)ことにより、その堆積工程を1回で行う場合と比較して、負極集電体1が高熱に晒される時間が短くなり、熱的ダメージを受けにくくなるからである。
この負極活物質粒子は、例えば、負極集電体1の表面から負極活物質層2の厚さ方向に成長しており、その根本において負極集電体1に連結されている。この場合には、負極活物質粒子が気相法によって形成されており、負極集電体1との界面の少なくとも一部において合金化しているのが好ましい。具体的には、両者の界面において、負極集電体1の構成元素が負極活物質粒子に拡散していてもよいし、負極活物質粒子の構成元素が負極集電体1に拡散していてもよいし、両者の構成元素が互いに拡散し合っていてもよい。上記したように、充放電時における負極活物質層2の膨張および収縮に起因する破壊が抑制されると共に、負極集電体1と負極活物質層2との間の電子伝導性が向上するからである。
特に、負極活物質層2は、必要に応じて、負極活物質粒子の表面(電解液と接する領域)を被覆する酸化物含有膜を有しているのが好ましい。電解液を備えた電池などの電気化学デバイスに負極が用いられた場合に、酸化物含有膜が電解液に対する保護膜として機能するため、充放電を繰り返しても電解液の分解反応が抑制されるからである。この酸化物含有膜は、負極活物質粒子の表面のうちの一部を被覆していてもよいし、全部を被覆していてもよい。
この酸化物含有膜は、例えば、ケイ素、ゲルマニウムおよびスズからなる群のうちの少なくとも1種の酸化物を含有しており、中でもケイ素の酸化物を含有しているのが好ましい。負極活物質粒子の表面を全体に渡って容易に被覆しやすいと共に、優れた保護機能が得られるからである。もちろん、酸化物含有膜は、上記以外の他の酸化物を含有していてもよい。この酸化物含有膜は、例えば、気相法あるいは液相法によって形成されており、中でも液相析出法、ゾルゲル法、塗布法あるいはディップコーティング法などの液相法が好ましく、液相析出法がより好ましい。負極活物質粒子の表面を広い範囲に渡って容易に被覆しやすいからである。
また、負極活物質層2は、必要に応じて、負極活物質粒子の粒子間の隙間および粒子内の隙間に、電極反応物質と合金化しない金属材料を有しているのが好ましい。金属材料を介して複数の負極活物質粒子が結着されると共に、上記した隙間に金属材料が存在することで負極活物質層2の膨張および収縮が抑制されるため、負極が電池などの電気化学デバイスに用いられた場合にサイクル特性が向上するからである。
この金属材料は、例えば、電極反応物質と合金化しない金属元素を有している。このような金属元素としては、例えば、鉄、コバルト、ニッケル、亜鉛および銅からなる群のうちの少なくとも1種が挙げられ、中でもコバルトが好ましい。上記した隙間に金属材料が容易に入り込みやすいと共に、優れた結着機能が得られるからである。もちろん、金属材料は、上記以外の他の金属元素を有していてもよい。ただし、ここで言う「金属材料」とは、単体に限らず、合金や金属化合物まで含む広い概念である。この金属材料は、例えば、気相法あるいは液相法によって形成されており、中でも電解鍍金法あるいは無電解鍍金法などの液相法が好ましく、電解鍍金法がより好ましい。上記した隙間に金属材料が入り込みやすくなると共に、その形成時間が短くて済むからである。
なお、負極活物質層2は、上記した酸化物含有膜あるいは金属材料のいずれか一方だけを有していてもよいし、双方を有していてもよい。ただし、電池などの電気化学デバイスのサイクル特性をより向上させるためには、双方を含んでいるのが好ましい。
ここで、図2〜図5を参照して、負極の詳細な構成について説明する。
まず、負極活物質層2が複数の負極活物質粒子と共に酸化物含有膜を有する場合について説明する。図2は本発明の負極の断面構造を模式的に表しており、図3は参考例の負極の断面構造を模式的に表している。図2および図3では、負極活物質粒子が単層構造を有している場合を示している。
本発明の負極では、図2に示したように、例えば、蒸着法などの気相法によって負極集電体1上に負極材料が堆積されると、その負極集電体1上に複数の負極活物質粒子201が形成される。この場合には、負極集電体1の表面が粗面化され、その表面に複数の突起部(例えば、電解処理により形成された微粒子)が存在すると、負極活物質粒子201が上記した突起部ごとに厚さ方向に成長するため、複数の負極活物質粒子201が負極集電体1上において配列されると共に根本において負極集電体1に連結される。こののち、例えば、液相析出法などの液相法によって負極活物質粒子201の表面に酸化物含有膜202が形成されると、その酸化物含有膜202は負極活物質粒子201の表面をほぼ全体に渡って被覆し、特に、負極活物質粒子201の頭頂部から根本に至る広い範囲を被覆する。この酸化物含有膜202による広範囲な被覆状態は、その酸化物含有膜202が液相法によって形成された場合に得られる特徴である。すなわち、液相法によって酸化物含有膜202を形成すると、その被覆作用が負極活物質粒子201の頭頂部だけでなく根本まで広く及ぶため、その根本まで酸化物含有膜202によって被覆される。
これに対して、参考例の負極では、図3に示したように、例えば、気相法によって複数の負極活物質粒子201が形成されたのち、同様に蒸着法などの気相法によって酸化物含有膜203が形成されると、その酸化物含有膜203は負極活物質粒子201の頭頂部だけを被覆する。この酸化物含有膜203による狭範囲な被覆状態は、その酸化物含有膜203が気相法によって形成された場合に得られる特徴である。すなわち、気相法によって酸化物含有膜203を形成すると、その被覆作用が負極活物質粒子201の頭頂部に及ぶものの根本まで及ばないため、その根本までは酸化物含有膜203によって被覆されない。
なお、図2では、気相法によって負極活物質層2が形成される場合について説明したが、焼結法などによって負極活物質層2が形成される場合においても同様に、複数の負極活物質粒子の表面をほぼ全体に渡って被覆するように酸化物含有膜が形成される。
次に、負極活物質層2が複数の負極活物質粒子と共に電極反応物質と合金化しない金属材料を有する場合について説明する。図4は負極の断面構造を拡大して表しており、(A)は走査型電子顕微鏡(scanning electron microscope:SEM)写真(二次電子像)、(B)は(A)に示したSEM像の模式絵である。図4では、複数の負極活物質粒子が粒子内に多層構造を有している場合を示している。
負極活物質粒子201が多層構造を有する場合には、その複数の負極活物質粒子201の密集構造、多層構造および表面構造に起因して、負極活物質層2中に複数の隙間204が生じている。この隙間204は、主に、発生原因に応じて分類された2種類の隙間204A,204Bを含んでいる。隙間204Aは、隣り合う負極活物質粒子201間に生じるものであり、隙間204Bは、負極活物質粒子201内の各階層間に生じるものである。
なお、負極活物質粒子201の露出面(最表面)には、空隙205が生じる場合がある。この空隙205は、負極活物質粒子201の表面にひげ状の微細な突起部(図示せず)が生じることに伴い、その突起部間に生じた空隙である。この空隙205は、負極活物質粒子201の露出面において、全体に渡って生じる場合もあれば、一部だけに生じる場合もある。ただし、上記したひげ状の突起部は、負極活物質粒子201の形成時ごとにその表面に生じるため、空隙205は、負極活物質粒子201の露出面だけでなく、各階層間にも生じる場合がある。
図5は負極の他の断面構造を表しており、図4に対応している。負極活物質層2は、隙間204A,204Bに、電極反応物質と合金化しない金属材料206を有している。この場合には、隙間204A,204Bのうちのいずれか一方だけに金属材料206を有していてもよいが、双方に金属材料206を有しているのが好ましい。より高い効果が得られるからである。
この金属材料206は、隣り合う負極活物質粒子201間の隙間204Aに入り込んでいる。詳細には、気相法などによって負極活物質粒子201が形成される場合には、上記したように、負極集電体1の表面に存在する突起部ごとに負極活物質粒子201が成長するため、隣り合う負極活物質粒子201間に隙間204Aが生じる。この隙間204Aは、負極活物質層2の結着性を低下させる原因となるため、その結着性を高めるために、上記した隙間204Aに金属材料206が充填されている。この場合には、隙間204Aの一部でも充填されていればよいが、その充填量が多いほど好ましい。負極活物質層2の結着性がより向上するからである。金属材料206の充填量は、20%以上が好ましく、40%以上がより好ましく、80%以上がさらに好ましい。
また、金属材料206は、負極活物質粒子201内の隙間204Bに入り込んでいる。詳細には、負極活物質粒子201が多層構造を有する場合には、各階層間に隙間204Bが生じる。この隙間204Bは、上記した隙間204Aと同様に、負極活物質層2の結着性を低下させる原因となるため、その結着性を高めるために、上記した隙間204Bに金属材料206が充填されている。この場合には、隙間204Bの一部でも充填されていればよいが、その充填量が多いほど好ましい。負極活物質層2の結着性がより向上するからである。
なお、負極活物質層2は、最上層の負極活物質粒子201の露出面に生じるひげ状の微細な突起部(図示せず)が電気化学デバイスの性能に悪影響を及ぼすことを抑えるために、空隙205に金属材料206を有していてもよい。詳細には、気相法などによって負極活物質粒子201が形成される場合には、その表面にひげ状の微細な突起部が生じるため、その突起部間に空隙205が生じる。この空隙205は、負極活物質粒子201の表面積の増加を招き、その表面に形成される不可逆性の被膜の量も増加させるため、電極反応の進行度を低下させる原因となる可能性がある。したがって、電極反応の進行度の低下を抑えるために、上記した空隙205に金属材料206が埋め込まれている。この場合には、空隙205の一部でも埋め込まれていればよいが、その埋め込む量が多いほど好ましい。電極反応の進行度の低下がより抑えられるからである。図5において、最上層の負極活物質粒子201の表面に金属材料206が点在していることは、その点在箇所に上記した微細な突起部が存在していること表している。もちろん、金属材料206は、必ずしも負極活物質粒子201の表面に点在していなければならないわけではなく、その表面全体を被覆していてもよい。
特に、隙間204Bに入り込んだ金属材料206は、各階層における空隙205を埋め込む機能も果たしている。詳細には、負極活物質粒子201が複数回に渡って堆積される場合には、その堆積時ごとに負極活物質粒子201の表面に上記した微細な突起部が生じる。このことから、金属材料206は、各階層における隙間204Bに充填されているだけでなく、各階層における空隙205も埋め込んでいる。
確認までに、図4および図5では、負極活物質粒子201が多層構造を有しており、負極活物質層2中に隙間204A,204Bの双方が存在している場合について説明したため、負極活物質層2が隙間204A,204Bに金属材料206を有している。これに対して、負極活物質粒子201が単層構造を有しており、負極活物質層2中に隙間204Aだけが存在する場合には、負極活物質層2が隙間204Aだけに金属材料206を有することとなる。もちろん、空隙205は両者の場合において生じるため、いずれの場合においても空隙205に金属材料206を有する。
導電剤としては、例えば、黒鉛、カーボンブラック、アセチレンブラック、あるいはケチェンブラックなどの炭素材料が挙げられる。これらは単独でもよいし、複数種が混合されてもよい。なお、導電剤は、導電性を有する材料であれば、金属材料あるいは導電性高分子などであってもよい。
結着剤としては、例えば、スチレンブタジエン系ゴム、フッ素系ゴムあるいはエチレンプロピレンジエンなどの合成ゴムや、ポリフッ化ビニリデンなどの高分子材料が挙げられる。これらは単独でもよいし、複数種が混合されてもよい。
被膜3は、化5で表される金属塩を含有している。この化5に示した金属塩を含有する被膜3が設けられているのは、負極の化学的安定性が向上するからである。これにより、負極が電池などの電気化学デバイスに用いられた場合に、負極において電極反応物質が効率よく吸蔵および放出されると共に、負極が他の物質(例えば電池における電解液)と反応しにくくなるため、サイクル特性および膨れ特性が向上する。
Figure 2009129893
(R1は(a1+b1+c1)価の基であり、M1は金属元素である。a1、d1、e1およびf1は1以上の整数であり、b1およびc1は0以上の整数である。ただし、(b1+c1)≧1である。)
この被膜3は、負極活物質層2の全面を覆うように設けられていてもよいし、その表面の一部を覆うように設けられていてもよい。また、被膜3の一部は、負極活物質層2の内部に入り込んでいてもよい。
化5に示した金属塩は、水酸基(−OH)と、スルホン酸基(−SO3 -)およびカルボン酸基(−COO- )のうちの少なくとも一方とを有している。水酸基、スルホン酸基およびカルボン酸基の数は、任意に設定可能である。
化5中のR1は、(a1+b1+c1)価の基であればどのような基であってよいが、中でも炭素を構成元素として有する基であるのが好ましい。このようなR1としては、鎖状の飽和炭化水素基、鎖状の不飽和炭化水素基、環状の飽和炭化水素基、環状の不飽和炭化水素基、あるいはそれらをハロゲン化した基が挙げられる。この場合には、上記した水酸基等がR1中の炭素原子に結合されているのが好ましい。なお、上記した「鎖状の炭化水素基」は、直鎖状であってもよいし、分岐状であってもよい。また、「ハロゲン化した基」とは、炭化水素基のうちの少なくとも一部の水素がハロゲンによって置換された基という意味である。このハロゲンの種類は特に限定されないが、中でもフッ素あるいは塩素が好ましく、フッ素がより好ましい。
化5中のM1は、金属元素であればどのような元素であってもよいが、中でもアルカリ金属元素あるいはアルカリ土類金属元素であるのが好ましい。具体的には、M1としては、例えば、リチウム、ナトリウム(Na)、マグネシウムあるいはカルシウム(Ca)などが挙げられる。もちろん、M1は、2種類以上の金属元素であってもよい。
化5に示した金属塩の具体例を挙げると、以下の通りである。
化5に示した金属塩は、例えば、化6で表される金属塩である。この金属塩は、水酸基と、スルホン酸基とを有している。
Figure 2009129893
(R2は(a2+b2)価の基であり、M2は金属元素である。a2、b2、c2、d2およびe2は1以上の整数である。)
あるいは、化5に示した金属塩は、化7で表される金属塩である。この金属塩は、水酸基と、カルボン酸基とを有している。
Figure 2009129893
(R3は(a3+b3)価の基であり、M3は金属元素である。a3、b3、c3、d3およびe3は1以上の整数である。)
あるいは、化5に示した金属塩は、化8で表される金属塩である。この金属塩は、水酸基と、スルホ酸基と、カルボン酸基とを有している。
Figure 2009129893
(R4は(a4+b4+c4)価の基であり、M4は金属元素である。a4、b4、c4、d4、e4およびf4は1以上の整数である。)
化6に示した金属塩としては、例えば、化9〜化13で表される金属塩が挙げられる。化7に示した金属塩としては、例えば、化14〜化17で表される金属塩が挙げられる。化8に示した金属塩としては、化18で表される金属塩が挙げられる。これらは単独でもよいし、複数種が混合されてもよい。また、化9〜化18に示した金属塩では、少なくとも一部の水素がハロゲンによって置換されていてもよい。中でも、化5に示した金属塩としては、化9(4),(8)、化13(3)、化14(5),(8)あるいは化15(1)に示した金属塩が好ましく、化9(4),(8)、化14(5),(8)あるいは化15(1)に示した金属塩がより好ましい。容易に入手可能であると共に、高い効果が得られるからである。
Figure 2009129893
Figure 2009129893
Figure 2009129893
Figure 2009129893
Figure 2009129893
Figure 2009129893
Figure 2009129893
Figure 2009129893
Figure 2009129893
Figure 2009129893
特に、被膜3は、化5に示した金属塩と共に、アルカリ金属塩あるいはアルカリ土類金属塩(化5に示した金属塩に該当するものを除く)を含有しているのが好ましい。被膜抵抗が抑えられるため、サイクル特性がより向上するからである。
このようなアルカリ金属塩あるいはアルカリ土類金属塩としては、例えば、アルカリ金属元素あるいはアルカリ土類金属元素の炭酸塩、ハロゲン化物塩、ホウ酸塩、リン酸塩あるいはスルホン酸塩などが挙げられる。具体的には、例えば、炭酸リチウム(Li2 CO3 )、フッ化リチウム(LiF)、四ホウ酸リチウム(Li2 4 7 )、メタホウ酸リチウム(LiBO2 )、ピロリン酸リチウム(Li4 2 7 )、トリポリリン酸リチウム(Li5 3 10)、オルトケイ酸リチウム(Li4 SiO4 )、メタケイ酸リチウム(Li2 SiO3 )、エタンジスルホン酸二リチウム、プロパンジスルホン酸二リチウム、スルホ酢酸二リチウム、スルホプロピオン酸二リチウム、スルホブタン酸二リチウム、スルホ安息香酸二リチウム、コハク酸二リチウム、スルホコハク酸三リチウム、スクエア酸二リチウム、エタンジスルホン酸マグネシウム、プロパンジスルホン酸マグネシウム、スルホ酢酸マグネシウム、スルホプロピオン酸マグネシウム、スルホブタン酸マグネシウム、スルホ安息香酸マグネシウム、コハク酸マグネシウム、二スルホコハク酸三マグネシウム、エタンジスルホン酸カルシウム、プロパンジスルホン酸カルシウム、スルホ酢酸カルシウム、スルホプロピオン酸カルシウム、スルホブタン酸カルシウム、スルホ安息香酸カルシウム、コハク酸カルシウム、あるいは二スルホコハク酸三カルシウムなどである。これらは単独でもよいし、複数種が混合されてもよい。
被膜3を形成する方法としては、例えば、塗布法、浸漬法あるいはディップコーティング法などの液相法や、蒸着法、スパッタ法あるいはCVD(Chemical Vapor Deposition:化学気相成長)法などの気相法が挙げられる。これらの方法を単独で用いてもよいし、2種以上の方法を用いてもよい。中でも、液相法として、化5に示した金属塩を含有する溶液を用いて被膜3を形成するのが好ましい。具体的には、例えば、浸積法では、化5に示した金属塩を含有する溶液中に、負極活物質層2が形成された負極集電体1を浸漬し、あるいは塗布法では、上記した溶液を負極活物質層2に塗布する。化学的安定性の高い良好な被膜3が容易に形成されるからである。化5に示した金属塩を溶解させる溶媒としては、例えば、水などの極性の高い溶媒が挙げられる。
この負極は、例えば、以下の手順によって製造される。
まず、負極集電体1の両面に、負極活物質層2を形成する。この負極活物質層2を形成する場合には、蒸着法などの気相法によって負極集電体1の表面に負極材料を堆積させて、複数の負極活物質粒子を形成する。続いて、必要に応じて、液相析出法などの液相法によって酸化物含有膜を形成し、あるいは電解鍍金法などの液相法によって金属材料を形成する。最後に、負極活物質層2の表面に被膜3を形成する。この被膜3を形成する場合には、化5に示した金属塩を含有する溶液として、例えば、1重量%以上5重量%以下の濃度の水溶液を準備し、負極活物質層2が形成された負極集電体1を溶液中に数秒間浸漬したのちに引き上げ、室温で乾燥する。あるいは、上記した溶液を準備し、それを負極活物質層2の表面に塗布して乾燥させる。これにより、負極が完成する。
この負極およびその製造方法によれば、化5に示した金属塩を含有する被膜3を負極活物質層2に形成しているので、その被膜3を形成しない場合と比較して、負極の化学的安定性が向上する。したがって、負極が電池などの電気化学デバイスに用いられた場合に、負極において電極反応物質が効率よく吸蔵および放出されると共に、負極が電解液などの他の物質と反応しにくくなるため、サイクル特性および膨れ特性の向上に寄与することができる。この場合には、化5に示した金属塩を含有する溶液を用いて被膜3を形成しており、具体的には浸積処理や塗布処理などの簡単な処理を用いているので、減圧環境などの特殊な環境条件を要する方法を用いる場合と比較して、良好な被膜3を簡単に形成することができる。
特に、被膜3がアルカリ金属塩あるいはアルカリ土類金属塩(化5に示した金属塩に該当するものを除く)を含むようにすれば、より高い効果を得ることができる。
また、負極活物質層2が複数の負極活物質粒子を有する場合に、酸化物含有膜や電極反応物質と合金化しない金属材料を併せて有していれば、サイクル特性をより向上させることができる。
次に、上記した負極の使用例について説明する。ここで、電気化学デバイスの一例として電池を例に挙げると、負極は以下のように用いられる。
(第1の電池)
図6および図7は第1の電池の断面構成を表しており、図7では図6に示した巻回電極体20の一部を拡大して示している。ここで説明する電池は、例えば、負極22の容量が電極反応物質であるリチウムの吸蔵および放出に基づいて表されるリチウムイオン二次電池である。
この二次電池は、主に、ほぼ中空円柱状の電池缶11の内部に、セパレータ23を介して正極21と負極22とが巻回された巻回電極体20と、一対の絶縁板12,13とが収納されたものである。この電池缶11を含む電池構造は、円筒型と呼ばれている。
電池缶11は、例えば、鉄、アルミニウムあるいはそれらの合金などの金属材料によって構成されており、その一端部は閉鎖されていると共に他端部は開放されている。一対の絶縁板12,13は、巻回電極体20を挟み、その巻回周面に対して垂直に延在するように配置されている。
電池缶11の開放端部には、電池蓋14と、その内側に設けられた安全弁機構15および熱感抵抗素子(Positive Temperature Coefficient:PTC素子)16とがガスケット17を介してかしめられて取り付けられている。これにより、電池缶11の内部は密閉されている。電池蓋14は、例えば、電池缶11と同様の材料によって構成されている。安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されている。この安全弁機構15では、内部短絡、あるいは外部からの加熱などに起因して内圧が一定以上となった場合に、ディスク板15Aが反転して電池蓋14と巻回電極体20との間の電気的接続が切断されるようになっている。熱感抵抗素子16は、温度の上昇に応じた抵抗の増大によって電流を制限し、大電流に起因する異常な発熱を防止するものである。ガスケット17は、例えば、絶縁材料によって構成されており、その表面にはアスファルトが塗布されている。
巻回電極体20の中心には、センターピン24が挿入されていてもよい。この巻回電極体20では、アルミニウムなどの金属材料によって構成された正極リード25が正極21に接続されていると共に、ニッケルなどの金属材料によって構成された負極リード26が負極22に接続されている。正極リード25は、安全弁機構15に溶接されて電池蓋14と電気的に接続されており、負極リード26は、電池缶11に溶接されて電気的に接続されている。
正極21は、例えば、一対の面を有する正極集電体21Aの両面に正極活物質層21Bが設けられたものである。この正極集電体21Aは、例えば、アルミニウム、ニッケル、あるいはステンレスなどの金属材料によって構成されている。なお、正極活物質層21Bは、正極活物質を含んでおり、必要に応じて結着剤や導電剤などの他の材料を含んでいてもよい。
正極活物質は、電極反応物質であるリチウムを吸蔵および放出することが可能な正極材料のいずれか1種あるいは2種以上を含んでいる。この正極材料としては、例えば、リチウム含有化合物が好ましい。高いエネルギー密度が得られるからである。このリチウム含有化合物としては、例えば、リチウムと遷移金属元素とを含む複合酸化物、あるいはリチウムと遷移金属元素とを含むリン酸化合物が挙げられ、特に、遷移金属元素としてコバルト、ニッケル、マンガンおよび鉄からなる群のうちの少なくとも1種を含むものが好ましい。より高い電圧が得られるからである。その化学式は、例えば、Lix M1O2 あるいはLiy M2PO4 で表される。式中、M1およびM2は、1種類以上の遷移金属元素を表す。xおよびyの値は、電池の充放電状態によって異なり、通常、0.05≦x≦1.10、0.05≦y≦1.10である。
リチウムと遷移金属元素とを含む複合酸化物としては、例えば、リチウムコバルト複合酸化物(Lix CoO2 )、リチウムニッケル複合酸化物(Lix NiO2 )、リチウムニッケルコバルト複合酸化物(Lix Ni(1-z) Coz 2 (z<1))、リチウムニッケルコバルトマンガン複合酸化物(Lix Ni(1-v-w) Cov Mnw 2 (v+w<1))、あるいはスピネル型構造を有するリチウムマンガン複合酸化物(LiMn2 4 )などが挙げられる。中でも、コバルトを含む複合酸化物が好ましい。高い容量が得られると共に優れたサイクル特性も得られるからである。また、リチウムと遷移金属元素とを含むリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO4 )あるいはリチウム鉄マンガンリン酸化合物(LiFe(1-u) Mnu PO4 (u<1))などが挙げられる。
この他、正極材料としては、例えば、酸化チタン、酸化バナジウムあるいは二酸化マンガンなどの酸化物や、二硫化チタンあるいは硫化モリブデンなどの二硫化物や、セレン化ニオブなどのカルコゲン化物や、硫黄、ポリアニリンあるいはポリチオフェンなどの導電性高分子も挙げられる。
負極22は、上記した負極と同様の構成を有しており、例えば、一対の面を有する負極集電体22Aの両面に負極活物質層22Bおよび被膜22Cが設けられたものである。負極集電体22A、負極活物質層22Bおよび被膜22Cの構成は、それぞれ上記した負極における負極集電体1、負極活物質層2および被膜3の構成と同様である。この負極22では、リチウムを吸蔵および放出することが可能な負極材料の充電容量が正極21の充電容量よりも大きくなっているのが好ましい。
セパレータ23は、正極21と負極22とを隔離し、両極の接触に起因する電流の短絡を防止しながら電極反応物質のイオンを通過させるものである。このセパレータ23は、例えば、ポリテトラフルオロエチレン、ポリプロピレンあるいはポリエチレンなどの合成樹脂からなる多孔質膜や、セラミックからなる多孔質膜などによって構成されており、これらの2種以上の多孔質膜が積層されたものであってもよい。
このセパレータ23には、液状の電解質である電解液が含浸されている。この電解液は、溶媒と、それに溶解された電解質塩とを含んでいる。
溶媒は、例えば、有機溶剤などの非水溶媒のいずれか1種あるいは2種以上を含有している。この非水溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルあるいは炭酸メチルプロピルなどの炭酸エステル系溶媒などが挙げられる。優れた容量特性、サイクル特性および保存特性が得られるからである。中でも、炭酸エチレンあるいは炭酸プロピレンなどの高粘度溶媒と、炭酸ジメチル、炭酸エチルメチルあるいは炭酸ジエチルなどの低粘度溶媒とを混合したものが好ましい。電解質塩の解離性およびイオンの移動度が向上するため、より高い効果が得られるからである。
この溶媒は、化19で表されるハロゲンを構成元素として有する鎖状炭酸エステルおよび化20で表されるハロゲンを構成元素として有する環状炭酸エステルのうちの少なくとも1種を含有しているのが好ましい。負極22の表面に安定な保護膜(被膜)が形成されて電解液の分解反応が抑制されるため、サイクル特性が向上するからである。
Figure 2009129893
(R11〜R16は水素基、ハロゲン基、アルキル基あるいはハロゲン化アルキル基であり、それらのうちの少なくとも1つはハロゲン基あるいはハロゲン化アルキル基である。)
Figure 2009129893
(R21〜R24は水素基、ハロゲン基、アルキル基あるいはハロゲン化アルキル基であり、それらのうちの少なくとも1つはハロゲン基あるいはハロゲン化アルキル基である。)
なお、化19中のR11〜R16は、互いに同一でもよいし、異なってもよい。このことは、化20中のR21〜24についても同様である。また、R11〜R14およびR21〜R24について説明した「ハロゲン化アルキル基」とは、アルキル基のうちの少なくとも一部の水素がハロゲンによって置換された基である。このハロゲンの種類は、特に限定されないが、例えば、フッ素、塩素および臭素からなる群のうちの少なくとも1種が挙げられ、中でもフッ素が好ましい。高い効果が得られるからである。もちろん、他のハロゲンであってもよい。
ハロゲンの数は、1つよりも2つが好ましく、さらに3つ以上であってもよい。保護膜を形成する能力が高くなり、より強固で安定な保護膜が形成されるため、電解液の分解反応がより抑制されるからである。
化19に示したハロゲンを有する鎖状炭酸エステルとしては、例えば、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)あるいは炭酸ジフルオロメチルメチルなどが挙げられる。これらは単独でもよいし、複数種が混合されてもよい。
化20に示したハロゲンを有する環状炭酸エステルとしては、例えば、化21および化22で表される一連の化合物が挙げられる。すなわち、化21に示した(1)の4−フルオロ−1,3−ジオキソラン−2−オン、(2)の4−クロロ−1,3−ジオキソラン−2−オン、(3)の4,5−ジフルオロ−1,3−ジオキソラン−2−オン、(4)のテトラフルオロ−1,3−ジオキソラン−2−オン、(5)の4−フルオロ−5−クロロ−1,3−ジオキソラン−2−オン、(6)の4,5−ジクロロ−1,3−ジオキソラン−2−オン、(7)のテトラクロロ−1,3−ジオキソラン−2−オン、(8)の4,5−ビストリフルオロメチル−1,3−ジオキソラン−2−オン、(9)の4−トリフルオロメチル−1,3−ジオキソラン−2−オン、(10)の4,5−ジフルオロ−4,5−ジメチル−1,3−ジオキソラン−2−オン、(11)の4−メチル−5,5−ジフルオロ−1,3−ジオキソラン−2−オン、(12)の4−エチル−5,5−ジフルオロ−1,3−ジオキソラン−2−オンなどである。また、化22に示した(1)の4−トリフルオロメチル−5−フルオロ−1,3−ジオキソラン−2−オン、(2)の4−トリフルオロメチル−5−メチル−1,3−ジオキソラン−2−オン、(3)の4−フルオロ−4,5−ジメチル−1,3−ジオキソラン−2−オン、(4)の4,4−ジフルオロ−5−(1,1−ジフルオロエチル)−1,3−ジオキソラン−2−オン、(5)の4,5−ジクロロ−4,5−ジメチル−1,3−ジオキソラン−2−オン、(6)の4−エチル−5−フルオロ−1,3−ジオキソラン−2−オン、(7)の4−エチル−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、(8)の4−エチル−4,5,5−トリフルオロ−1,3−ジオキソラン−2−オン、(9)の4−フルオロ−4−メチル−1,3−ジオキソラン−2−オンなどである。これらは単独でもよいし、複数種が混合されてもよい。
Figure 2009129893
Figure 2009129893
中でも、4−フルオロ−1,3−ジオキソラン−2−オンあるいは4,5−ジフルオロ−1,3−ジオキソラン−2−オンが好ましく、4,5−ジフルオロ−1,3−ジオキソラン−2−オンがより好ましい。特に、4,5−ジフルオロ−1,3−ジオキソラン−2−オンとしては、シス異性体よりもトランス異性体が好ましい。容易に入手可能であると共に、高い効果が得られるからである。
また、溶媒は、不飽和結合を有する環状炭酸エステルを含有しているのが好ましい。サイクル特性が向上するからである。この不飽和結合を有する環状炭酸エステルとしては、例えば、炭酸ビニレンあるいは炭酸ビニルエチレンなどが挙げられる。これらは単独でもよいし、複数種が混合されてもよい。
さらに、溶媒は、スルトン(環状スルホン酸エステル)を含有しているのが好ましい。サイクル特性が向上すると共に、二次電池の膨れが抑制されるからである。このスルトンとしては、例えば、プロパンスルトンあるいはプロペンスルトンなどが挙げられる。これらは単独でもよいし、複数種が混合されてもよい。
加えて、溶媒は、酸無水物を含有しているのが好ましい。サイクル特性が向上するからである。この酸無水物としては、例えば、コハク酸無水物、グルタル酸無水物、マレイン酸無水物、スルホ安息香酸無水物、スルホプロピオン酸無水物、スルホ酪酸無水物、エタンジスルホン酸無水物、プロパンジスルホン酸無水物、あるいはベンゼンジスルホン酸無水物などが挙げられる。これらは単独でもよいし、複数種が混合されてもよい。中でも、スルホ安息香酸無水物あるいはスルホプロピオン酸無水物が好ましい。十分な効果が得られるからである。溶媒中における酸無水物の含有量は、例えば、0.5重量%以上3重量%以下である。
電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種あるいは2種以上を含んでいる。このリチウム塩としては、例えば、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウムあるいは六フッ化ヒ酸リチウムなどが挙げられる。優れた容量特性、サイクル特性および保存特性が得られるからである。中でも、六フッ化リン酸リチウムが好ましい。内部抵抗が低下するため、より高い効果が得られるからである。
この電解質塩は、化23〜化25で表される化合物からなる群のうちの少なくとも1種を含有しているのが好ましい。上記した六フッ化リン酸リチウム等と一緒に用いられた場合に、より高い効果が得られるからである。なお、化23中のR31およびR33は、互いに同一でもよいし、異なってもよい。このことは、化24中のR41〜R43および化25中のR51およびR52についても同様である。
Figure 2009129893
(X31は短周期型周期表における1A族元素あるいは2A族元素、またはアルミニウムである。M31は遷移金属、または短周期型周期表における3B族元素、4B族元素あるいは5B族元素である。R31はハロゲン基である。Y31は−OC−R32−CO−、−OC−CR332 −あるいは−OC−CO−である。ただし、R32はアルキレン基、ハロゲン化アルキレン基、アリーレン基あるいはハロゲン化アリーレン基である。R33はアルキル基、ハロゲン化アルキル基、アリール基あるいはハロゲン化アリール基である。なお、a3は1〜4の整数であり、b3は0、2あるいは4の整数であり、c3、d3、m3およびn3は1〜3の整数である。)
Figure 2009129893
(X41は短周期型周期表における1A族元素あるいは2A族元素である。M41は遷移金属、または短周期型周期表における3B族元素、4B族元素あるいは5B族元素である。Y41は−OC−(CR412 b4−CO−、−R432 C−(CR422 c4−CO−、−R432 C−(CR422 c4−CR432 −、−R432 C−(CR422 c4−SO2 −、−O2 S−(CR422 d4−SO2 −あるいは−OC−(CR422 d4−SO2 −である。ただし、R41およびR43は水素基、アルキル基、ハロゲン基あるいはハロゲン化アルキル基であり、それぞれのうちの少なくとも1つはハロゲン基あるいはハロゲン化アルキル基である。R42は水素基、アルキル基、ハロゲン基あるいはハロゲン化アルキル基である。なお、a4、e4およびn4は1あるいは2の整数であり、b4およびd4は1〜4の整数であり、c4は0〜4の整数であり、f4およびm4は1〜3の整数である。)
Figure 2009129893
(X51は短周期型周期表における1A族元素あるいは2A族元素である。M51は遷移金属、または短周期型周期表における3B族元素、4B族元素あるいは5B族元素である。Rfはフッ素化アルキル基あるいはフッ素化アリール基であり、いずれの炭素数も1〜10である。Y51は−OC−(CR512 d5−CO−、−R522 C−(CR512 d5−CO−、−R522 C−(CR512 d5−CR522 −、−R522 C−(CR512 d5−SO2 −、−O2 S−(CR512 e5−SO2 −あるいは−OC−(CR512 e5−SO2 −である。ただし、R51は水素基、アルキル基、ハロゲン基あるいはハロゲン化アルキル基である。R52は水素基、アルキル基、ハロゲン基あるいはハロゲン化アルキル基であり、そのうちの少なくとも1つはハロゲン基あるいはハロゲン化アルキル基である。なお、a5、f5およびn5は1あるいは2の整数であり、b5、c5およびe5は1〜4の整数であり、d5は0〜4の整数であり、g5およびm5は1〜3の整数である。)
化23に示した化合物としては、例えば、化26で表される化合物などが挙げられる。化24に示した化合物としては、例えば、化27で表される化合物などが挙げられる。化25に示した化合物としては、例えば、化28で表される化合物などが挙げられる。なお、化23〜化25に示した構造を有する化合物であれば、化26〜化28に示した化合物に限定されないことは言うまでもない。
Figure 2009129893
Figure 2009129893
Figure 2009129893
また、電解質塩は、化29〜化31で表される化合物からなる群のうちの少なくとも1種を含有していてもよい。上記した六フッ化リン酸リチウム等と一緒に用いられた場合に、より高い効果が得られるからである。なお、化29中のmおよびnは、互いに同一でもよいし、異なってもよい。このことは、化31中のp、qおよびrについても同様である。
Figure 2009129893
(mおよびnは1以上の整数である。)
Figure 2009129893
(R61は炭素数が2以上4以下の直鎖状あるいは分岐状のパーフルオロアルキレン基である。)
Figure 2009129893
(p、qおよびrは1以上の整数である。)
化29に示した鎖状の化合物としては、例えば、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF3 SO2 2 )、ビス(ペンタフルオロエタンスルホニル)イミドリチウム(LiN(C2 5 SO2 2 )、(トリフルオロメタンスルホニル)(ペンタフルオロエタンスルホニル)イミドリチウム(LiN(CF3 SO2 )(C2 5 SO2 ))、(トリフルオロメタンスルホニル)(ヘプタフルオロプロパンスルホニル)イミドリチウム(LiN(CF3 SO2 )(C3 7 SO2 ))、あるいは(トリフルオロメタンスルホニル)(ノナフルオロブタンスルホニル)イミドリチウム(LiN(CF3 SO2 )(C4 9 SO2 ))などが挙げられる。これらは単独でもよいし、複数種が混合されてもよい。
化30に示した環状の化合物としては、例えば、化32で表される一連の化合物が挙げられる。すなわち、化32に示した(1)の1,2−パーフルオロエタンジスルホニルイミドリチウム、(2)の1,3−パーフルオロプロパンジスルホニルイミドリチウム、(3)の1,3−パーフルオロブタンジスルホニルイミドリチウム、(4)の1,4−パーフルオロブタンジスルホニルイミドリチウムなどである。これらは単独でもよいし、複数種が混合されてもよい。中でも、1,2−パーフルオロエタンジスルホニルイミドリチウムが好ましい。高い効果が得られるからである。
Figure 2009129893
化31に示した鎖状の化合物としては、例えば、リチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CF3 SO2 3 )などが挙げられる。
電解質塩の含有量は、溶媒に対して0.3mol/kg以上3.0mol/kg以下であるのが好ましい。この範囲外では、イオン伝導性が極端に低下する可能性があるからである。
この二次電池は、例えば、以下の手順によって製造される。
まず、正極21を作製する。最初に、正極活物質と、結着剤と、導電剤とを混合して正極合剤としたのち、有機溶剤に分散させてペースト状の正極合剤スラリーとする。続いて、ドクタブレードあるいはバーコータなどによって正極集電体21Aの両面に正極合剤スラリーを均一に塗布して乾燥させる。最後に、必要に応じて加熱しながらロールプレス機などによって塗膜を圧縮成型して正極活物質層21Bを形成する。この場合には、圧縮成型を複数回に渡って繰り返してもよい。
また、上記した負極の作製手順と同様の手順により、負極集電体22Aの両面に負極活物質層22Bおよび被膜22Cを形成して負極22を作製する。
次に、正極21および負極22を用いて巻回電極体20を作製する。最初に、正極集電体21Aに正極リード25を溶接などして取り付けると共に、負極集電体22Aに負極リード26を溶接などして取り付ける。こののち、セパレータ23を介して正極21と負極22とを積層させたのち、長手方向において巻回させる。
二次電池の組み立ては、以下のようにして行う。最初に、正極リード25の先端部を安全弁機構15に溶接すると共に、負極リード26の先端部を電池缶11に溶接する。続いて、巻回電極体20を一対の絶縁板12,13で挟みながら電池缶11の内部に収納する。続いて、電池缶11の内部に電解液を注入してセパレータ23に含浸させる。最後に、電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16をガスケット17を介してかしめることにより固定する。これにより、図6および図7に示した二次電池が完成する。
この二次電池では、充電を行うと、例えば、正極21からリチウムイオンが放出され、セパレータ23に含浸された電解液を介して負極22に吸蔵される。一方、放電を行うと、例えば、負極22からリチウムイオンが放出され、セパレータ23に含浸された電解液を介して正極21に吸蔵される。
この円筒型の二次電池によれば、負極22が上記した負極と同様の構成を有しているので、負極22においてリチウムイオンが吸蔵および放出されやすくなると共に電解液の分解が抑制される。したがって、サイクル特性および膨れ特性を向上させることができる。
この場合には、負極22が高容量化に有利なケイ素等(リチウムを吸蔵および放出することが可能であると共に金属元素および半金属元素のうちの少なくとも1種を有する材料)を含む場合にサイクル特性が向上するため、炭素材料などの他の負極材料を含む場合よりも高い効果を得ることができる。
この二次電池に関する他の効果は、上記した負極と同様である。
(第2の電池)
図8は第2の電池の分解斜視構成を表しており、図9は図8に示した巻回電極体30のIX−IX線に沿った断面を拡大して示している。この電池は、例えば、上記した第1の電池と同様にリチウムイオン二次電池であり、主に、フィルム状の外装部材40の内部に、正極リード31および負極リード32が取り付けられた巻回電極体30が収納されたものである。この外装部材40を含む電池構造は、ラミネートフィルム型と呼ばれている。
正極リード31および負極リード32は、例えば、いずれも外装部材40の内部から外部に向かって同一方向に導出されている。正極リード31は、例えば、アルミニウムなどの金属材料によって構成されており、負極リード32は、例えば、銅、ニッケルあるいはステンレスなどの金属材料によって構成されている。これらの金属材料は、例えば、薄板状あるいは網目状になっている。
外装部材40は、例えば、ナイロンフィルム、アルミニウム箔およびポリエチレンフィルムがこの順に貼り合わされたアルミラミネートフィルムによって構成されている。この外装部材40は、例えば、ポリエチレンフィルムが巻回電極体30と対向するように、2枚の矩形型のアルミラミネートフィルムの外縁部同士が融着あるいは接着剤によって互いに接着された構造を有している。
外装部材40と正極リード31および負極リード32との間には、外気の侵入を防止するために密着フィルム41が挿入されている。この密着フィルム41は、正極リード31および負極リード32に対して密着性を有する材料によって構成されている。この種の材料としては、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンあるいは変性ポリプロピレンなどのポリオレフィン樹脂が挙げられる。
なお、外装部材40は、上記したアルミラミネートフィルムに代えて、他の積層構造を有するラミネートフィルムによって構成されていてもよいし、ポリプロピレンなどの高分子フィルムあるいは金属フィルムによって構成されていてもよい。
巻回電極体30は、セパレータ35および電解質36を介して正極33と負極34とが積層されたのちに巻回されたものであり、その最外周部は保護テープ37によって保護されている。
図10は、図9に示した巻回電極体30の一部を拡大して表している。正極33は、例えば、一対の面を有する正極集電体33Aの両面に正極活物質層33Bが設けられたものである。負極34は、上記した負極と同様の構成を有しており、例えば、一対の面を有する負極集電体34Aの両面に負極活物質層34Bおよび被膜34Cが設けられたものである。正極集電体33A、正極活物質層33B、負極集電体34A、負極活物質層34B、被膜34Cおよびセパレータ35の構成は、それぞれ上記した第1の電池における正極集電体21A、正極活物質層21B、負極集電体22A、負極活物質層22B、被膜22Cおよびセパレータ23の構成と同様である。
電解質36は、電解液と、それを保持する高分子化合物とを含んでおり、いわゆるゲル状の電解質である。ゲル状の電解質は、高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に漏液が防止されるので好ましい。
高分子化合物としては、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリフッ化ビニリデンとポリヘキサフルオロピレンとの共重合体、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン−ブタジエンゴム、ニトリル−ブタジエンゴム、ポリスチレン、あるいはポリカーボネートなどが挙げられる。これらは単独でもよいし、複数種が混合されてもよい。中でも、高分子化合物としては、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンあるいはポリエチレンオキサイドが好ましい。電気化学的に安定だからである。
電解液の組成は、第1の電池における電解液の組成と同様である。ただし、この場合の溶媒とは、液状の溶媒だけでなく、電解質塩を解離させることが可能なイオン伝導性を有するものまで含む広い概念である。したがって、イオン伝導性を有する高分子化合物を用いる場合には、その高分子化合物も溶媒に含まれる。
なお、電解液を高分子化合物に保持させたゲル状の電解質36に代えて、電解液をそのまま用いてもよい。この場合には、電解液がセパレータ35に含浸される。
ゲル状の電解質36を備えた二次電池は、例えば、以下の3種類の方法によって製造される。
第1の製造方法では、最初に、例えば、上記した第1の電池における正極21および負極22の作製手順と同様の手順により、正極集電体33Aの両面に正極活物質層33Bを形成して正極33を作製すると共に、負極集電体34Aの両面に負極活物質層34Bおよび被膜34Cを形成して負極34を作製する。続いて、電解液と、高分子化合物と、溶剤とを含む前駆溶液を調製して正極33および負極34に塗布したのち、溶剤を揮発させてゲル状の電解質36を形成する。続いて、正極33に正極リード31を取り付けると共に、負極34に負極リード32を取り付ける。続いて、電解質36が形成された正極33と負極34とをセパレータ35を介して積層させてから長手方向に巻回し、その最外周部に保護テープ37を接着させて巻回電極体30を作製する。最後に、例えば、2枚のフィルム状の外装部材40の間に巻回電極体30を挟み込んだのち、その外装部材40の外縁部同士を熱融着などで接着させて巻回電極体30を封入する。この際、正極リード31および負極リード32と外装部材40との間に、密着フィルム41を挿入する。これにより、図8〜図10に示した二次電池が完成する。
第2の製造方法では、最初に、正極33に正極リード31を取り付けると共に負極34に負極リード32を取り付けたのち、セパレータ35を介して正極33と負極34とを積層して巻回させると共に最外周部に保護テープ37を接着させて、巻回電極体30の前駆体である巻回体を作製する。続いて、2枚のフィルム状の外装部材40の間に巻回体を挟み込んだのち、一辺の外周縁部を除いた残りの外周縁部を熱融着などで接着させて、袋状の外装部材40の内部に巻回体を収納する。続いて、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤などの他の材料とを含む電解質用組成物を調製して袋状の外装部材40の内部に注入したのち、外装部材40の開口部を熱融着などで密封する。最後に、モノマーを熱重合させて高分子化合物とすることにより、ゲル状の電解質36を形成する。これにより、二次電池が完成する。
第3の製造方法では、最初に、高分子化合物が両面に塗布されたセパレータ35を用いることを除き、上記した第2の製造方法と同様に、巻回体を形成して袋状の外装部材40の内部に収納する。このセパレータ35に塗布する高分子化合物としては、例えば、フッ化ビニリデンを成分とする重合体、すなわち単独重合体、共重合体あるいは多元共重合体などが挙げられる。具体的には、ポリフッ化ビニリデンや、フッ化ビニリデンおよびヘキサフルオロプロピレンを成分とする二元系共重合体や、フッ化ビニリデン、ヘキサフルオロプロピレンおよびクロロトリフルオロエチレンを成分とする三元系共重合体などである。なお、高分子化合物は、上記したフッ化ビニリデンを成分とする重合体と共に、他の1種あるいは2種以上の高分子化合物を含んでいてもよい。続いて、電解液を調製して外装部材40の内部に注入したのち、その外装部材40の開口部を熱融着などで密封する。最後に、外装部材40に加重をかけながら加熱し、高分子化合物を介してセパレータ35を正極33および負極34に密着させる。これにより、電解液が高分子化合物に含浸し、その高分子化合物がゲル化して電解質36が形成されるため、二次電池が完成する。
この第3の製造方法では、第1の製造方法と比較して、二次電池の膨れが抑制される。また、第3の製造方法では、第2の製造方法と比較して、高分子化合物の原料であるモノマーや溶媒などが電解質36中にほとんど残らず、しかも高分子化合物の形成工程が良好に制御されるため、正極33、負極34およびセパレータ35と電解質36との間において十分な密着性が得られる。
このラミネートフィルム型の二次電池によれば、負極34が上記した負極と同様の構成を有しているので、サイクル特性および膨れ特性を向上させることができる。この二次電池に関する上記以外の効果は、第1の電池と同様である。
本発明の実施例について詳細に説明する。
(実施例1−1)
以下の手順により、図8〜図10に示したラミネートフィルム型の二次電池を作製した。この際、負極34の容量がリチウムの吸蔵および放出に基づいて表されるリチウムイオン二次電池となるようにした。
まず、正極33を作製した。最初に、炭酸リチウム(Li2 CO3 )と炭酸コバルト(CoCO3 )とを0.5:1のモル比で混合したのち、空気中において900℃×5時間の条件で焼成してリチウムコバルト複合酸化物(LiCoO2 )を得た。続いて、正極活物質としてリチウムコバルト複合酸化物91質量部と、導電剤としてグラファイト6質量部と、結着剤としてポリフッ化ビニリデン3質量部とを混合して正極合剤としたのち、N−メチル−2−ピロリドンに分散させてペースト状の正極合剤スラリーとした。続いて、バーコータによって帯状のアルミニウム箔(厚さ=12μm)からなる正極集電体33Aの両面に正極合剤スラリーを均一に塗布して乾燥させたのち、ロールプレス機によって圧縮成形して正極活物質層33Bを形成した。
次に、負極34を作製した。最初に、電解銅箔からなる負極集電体34A(厚さ=10μm)を準備したのち、電子ビーム蒸着法によって負極集電体34Aの両面に負極活物質としてケイ素を片面側の厚さが5μmとなるように堆積させて複数の負極活物質粒子を形成することにより、負極活物質層34Bを形成した。この負極活物質層34Bを形成する場合には、1回の堆積工程で負極活物質粒子を形成して単層構造を有するようにした。続いて、化5に示した金属塩を含有する溶液として、化9(4)に示した金属塩を溶解させた3%水溶液を準備したのち、負極活物質層34Bが形成された負極集電体34Aを溶液中に数秒間浸漬させた。最後に、溶液中から負極集電体34Aを引き上げたのち、60℃の減圧環境中において乾燥させて負極活物質層34B上に被膜34Cを形成した。
次に、溶媒として炭酸エチレン(EC)と炭酸ジエチル(DEC)とを混合したのち、電解質塩として六フッ化リン酸リチウム(LiPF6 )を溶解させて、電解液を調製した。この際、溶媒の組成(EC:DEC)を重量比で30:70とし、電解液中における六フッ化リン酸リチウムの濃度を1mol/kgとした。
最後に、正極33および負極34と共に電解液を用いて二次電池を組み立てた。最初に、正極集電体33Aの一端にアルミニウム製の正極リード31を溶接すると共に、負極集電体34Aの一端にニッケル製の負極リード32を溶接した。続いて、正極33と、微多孔性ポリプロピレンフィルムからなるセパレータ35(厚さ=25μm)と、負極54とをこの順に積層してから長手方向に巻回させたのち、粘着テープからなる保護テープ37で巻き終わり部分を固定して、巻回電極体30の前駆体である巻回体を形成した。続いて、外側から、ナイロンフィルム(厚さ=30μm)と、アルミニウム箔(厚さ=40μm)と、無延伸ポリプロピレンフィルム(厚さ=30μm)とが積層された3層構造のラミネートフィルム(総厚=100μm)からなる外装部材40の間に巻回体を挟み込んだのち、一辺を除く外縁部同士を熱融着して、袋状の外装部材40の内部に巻回体を収納した。続いて、外装部材40の開口部から電解液を注入してセパレータ35に含浸させて巻回電極体30を作製した。最後に、真空雰囲気中において外装部材40の開口部を熱融着して封止することにより、ラミネートフィルム型の二次電池が完成した。この二次電池については、負極34の充放電容量が正極33の充放電容量よりも大きくなるように正極活物質層33Bの厚さを調節することにより、充放電の途中で負極34にリチウム金属が析出しないようにした。
(実施例1−2〜1−6)
化9(4)に示した金属塩に代えて、化9(8)(実施例1−2)、化13(3)(実施例1−3)、化14(5)(実施例1−4)、化14(8)(実施例1−5)、あるいは化15(1)(実施例1−6)に示した金属塩を用いたことを除き、実施例1−1と同様の手順を経た。
(比較例1−1)
被膜34Cを形成しなかったことを除き、実施例1−1と同様の手順を経た。
(比較例1−2,1−3)
被膜34Cを形成する代わりに、電解液中に化9(4)(比較例1−2)あるいは化13(3)(比較例1−3)に示した金属塩を含有させたことを除き、実施例1−1と同様の手順を経た。電解液中に金属塩を含有させる場合には、電解液中における含有量が0.5重量%となるように金属塩を添加したが、その金属塩の全てが溶解しなかったことから、上澄み液(飽和溶液)を電解液として用いた。
これらの実施例1−1〜1−6および比較例1−1〜1−3の二次電池についてサイクル特性および膨れ特性を調べたところ、表1に示した結果が得られた。
サイクル特性を調べる際には、23℃の雰囲気中において2サイクル充放電させて放電容量を測定し、引き続き同雰囲気中においてサイクル数の合計が100サイクルとなるまで充放電させて放電容量を測定したのち、放電容量維持率(%)=(100サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。この際、1サイクルの充放電条件としては、1mA/cm2 の定電流密度で電池電圧が4.2Vに達するまで充電し、さらに4.2Vの定電圧で電流密度が0.02mA/cm2 に達するまで充電したのち、1mA/cm2 の定電流密度で電池電圧が2.5Vに達するまで放電した。
膨れ特性を調べる際には、23℃の雰囲気中において2サイクル充放電させてから再び充電して厚さを測定し、引き続き充電状態のままで90℃の恒温槽中に4時間保存してから厚さを測定したのち、膨れ(mm)=(保存後の厚さ−保存前の厚さ)を算出した。この際、1サイクルの充放電条件としては、0.2Cの定電流で電池電圧が4.2Vに達するまで充電したのち、0.2Cの定電流で電池電圧が2.5Vに達するまで放電した。「0.2C」とは、理論容量を5時間で放電しきる電流値である。
Figure 2009129893
表1に示したように、被膜34Cを形成した実施例1−1〜1−6では、それを形成しなかった比較例1−1と比較して、放電容量維持率が高くなると共に膨れが小さくなった。この結果は、被膜34Cを形成することにより、負極34においてリチウムイオンが吸蔵および放出しやすくなると共に、充放電を繰り返しても電解液が分解しにくくなることを表している。
また、金属塩を電解液中に含有させた比較例1−2,1−3では、比較例1−1と比較して放電容量維持率および膨れがほとんど変わらなかったが、金属塩を含有する被膜34Cを形成した実施例1−1,1−3では、比較例1−1〜1−3と比較して放電容量維持率が高くなると共に膨れが小さくなった。この結果は、金属塩を電解液中に含有させても放電容量維持率や膨れにほとんど寄与しないが、その金属塩を被膜34Cとして形成すれば放電容量維持率および膨れに大きく寄与できることを表している。
なお、ここでは化9〜化18に示した金属塩のうちの一部を用いた場合の結果だけを示しており、他の金属塩を用いた場合の結果を示していない。しかしながら、表1の結果から明らかなように、化9(4)等に示した金属塩はいずれも単独で放電容量維持率を高くすると共に膨れを小さくする役割を果たし、他の金属塩も同様の役割を果たすことから、その他の金属塩を用いた場合においても同様の結果が得られることは、明らかである。このことは、金属塩を2種以上混合させた場合においても同様である。
これらのことから、本発明の二次電池では、気相法によって負極活物質層34Bを形成した場合に、その負極活物質層34B上に化5に示した金属塩を含有する被膜34Cを形成することにより、サイクル特性および膨れ特性が向上することが確認された。
(実施例2−1)
溶媒として炭酸プロピレン(PC)を加え、溶媒の組成(EC:PC:DEC)を重量比で10:20:70としたことを除き、実施例1−1と同様の手順を経た。
(実施例2−2)
溶媒としてECの代わりに化20に示したハロゲンを有する環状炭酸エスエルである4−フルオロ−1,3−ジオキソラン−2−オン(FEC)を加え、溶媒の組成(DEC:FEC)を重量比で70:30としたことを除き、実施例1−1と同様の手順を経た。
(実施例2−3)
溶媒としてPCおよびFECを加え、溶媒の組成(EC:PC:DEC:FEC)を重量比で10:10:70:10としたことを除き、実施例1−1と同様の手順を経た。
(実施例2−4)
溶媒として化20に示したハロゲンを有する環状炭酸エステルである4,5−ジフルオロ−1,3−ジオキソラン−2−オン(DFEC)を加え、溶媒の組成(EC:DEC:DFEC)を重量比で10:70:20としたことを除き、実施例1−1と同様の手順を経た。
(実施例2−5)
溶媒としてPCおよびDFECを加え、溶媒の組成(EC:PC:DEC:DFEC)を重量比で10:10:70:10としたことを除き、実施例1−1と同様の手順を経た。
(実施例2−6)
溶媒としてのECの代わりにPC、FECおよびDFECを加え、溶媒の組成(PC:DEC:FEC:DFEC)を重量比で30:50:10:10としたことを除き、実施例1−1と同様の手順を経た。
(実施例2−7)
溶媒としてECの代わりにFECおよび化19に示したハロゲンを有する鎖状炭酸エステルである炭酸ビス(フルオロメチル)(DFDMC)を加え、溶媒の組成(DEC:FEC:DFDMC)を重量比で65:30:5としたことを除き、実施例1−1と同様の手順を経た。
(実施例2−8,2−9)
溶媒としてPCおよび不飽和結合を有する環状炭酸エステルである炭酸ビニレン(VC)を加え、溶媒の組成(EC:PC:DEC:VC)を重量比で10:19:70:1(実施例2−8)、あるいは10:10:70:10(実施例2−9)としたことを除き、実施例1−1と同様の手順を経た。
(比較例2−1,2−2)
被膜34Cを形成しなかったことを除き、実施例2−2,2−4と同様の手順を経た。
これらの実施例2−1〜2−9および比較例2−1,2−2の二次電池についてサイクル特性および膨れ特性を調べたところ、表2に示した結果が得られた。
Figure 2009129893
表2に示したように、溶媒としてPC等を加えた場合においても、表1の結果と同様の結果が得られた。すなわち、被膜34Cを形成した実施例2−1〜2−9では、それを形成しなかった比較例2−1,2−2と比較して、放電容量維持率が高くなると共に膨れが小さくなった。
この場合には、電解液に加えた溶媒の種類によって、以下の傾向が得られた。まず、PCを含有する実施例2−1では、それを含有しない実施例1−1と比較して、放電容量維持率がより高くなると共に膨れがより小さくなった。FEC、DFECあるいはDFDMCを含有する実施例2−2〜2−7では、それらを含有しない実施例1−1,2−1と比較して、膨れは大きくなるが放電容量維持率が著しく高くなった。VCを含有する実施例2−8,2−9では、それを含有しない実施例2−1と比較して、VCの含有量が少ないと放電容量維持率が高くなると共に膨れが小さくなるが、VCの含有量が多くなると膨れは大きくなるが放電容量維持率が著しく高くなった。
これらのことから、本発明の二次電池では、化5に示した金属塩を含有する被膜34Cを形成することにより、電解液中の溶媒の組成を変更した場合においても、サイクル特性および膨れ特性が向上することが確認された。
この場合には、溶媒として炭酸プロピレンを用いれば、サイクル特性および膨れ特性がより向上することも確認された。また、溶媒として化19に示したハロゲンを有する鎖状炭酸エステルあるいは化20に示したハロゲンを有する環状炭酸エステルを用いれば、サイクル特性がより向上することも確認された。さらに、溶媒として不飽和結合を有する環状炭酸エステルを用いれば、サイクル特性あるいは膨れ特性が向上することも確認された。
(実施例3−1)
電解質塩として四フッ化ホウ酸リチウム(LiBF4 )を加え、電解液中におけるLiPF6 の濃度を0.9mol/kg、LiBF4 の濃度を0.1mol/kgとしたことを除き、実施例2−2と同様の手順を経た。
(実施例3−2,3−3)
電解質塩として、化23に示した化合物である化26(6)(実施例3−2)、あるいは化24に示した化合物である化27(2)(実施例3−3)に示した化合物を加え、電解液中におけるLiPF6 の濃度を0.9mol/kg、化26(6)に示した化合物等の濃度を0.1mol/kgとしたことを除き、実施例1−1と同様の手順を経た。
(実施例3−4)
電解質塩として、化30に示した化合物である化32(2)に示した化合物を加え、電解液中におけるLiPF6 の濃度を0.9mol/kg、化32(2)に示した化合物の濃度を0.1mol/kgとしたことを除き、実施例2−2と同様の手順を経た。
(実施例3−5〜3−7)
電解液中にスルトンであるプロペンスルトン(PRS:実施例3−5)や、酸無水物であるコハク酸無水物(SCAH:実施例3−6)あるいはスルホ安息香酸無水物(SBAH:実施例3−7)を加えたことを除き、実施例2−2と同様の手順を経た。この際、電解液中におけるPRS等の含有量を1重量%とした。この「1重量%」は、溶媒全体を100重量%としたとき、1重量%に相当する分だけPRS等を添加したという意味である。
(比較例3)
被膜34Cを形成せず、電解液中にPRS(1重量%)を加えたことを除き、実施例1−1と同様の手順を経た。
これらの実施例3−1〜3−7および比較例3の二次電池についてサイクル特性および膨れ特性を調べたところ、表3に示した結果が得られた。
Figure 2009129893
表3に示したように、電解質塩としてLiBF4 等を加えたり、電解液中にPRS等を加えた場合においても、表1の結果と同様の結果が得られた。すなわち、被膜34Cを形成した実施例3−1〜3−7では、それを形成しなかった比較例3と比較して、放電容量維持率が高くなると共に膨れが小さくなった。
この場合には、電解質塩としてLiBF4 等を含有する実施例3−1〜3−4では、それらを含有しない実施例1−1,2−2と比較して、放電容量維持率が同等以上になると共に膨れがより小さくなる傾向を示した。また、PRS等を含有する実施例3−5〜3−7では、それらを含有しない実施例2−2と比較して、放電容量維持率が同等以上になると共に膨れがより小さくなる傾向を示した。
なお、ここでは電解質塩として化23、化24および化30に示した化合物を用いた場合の結果だけを示しており、化25、化29および化31に示した化合物を用いた場合の結果を示していない。しかしながら、表3の結果から明らかなように、化23に示した化合物等はいずれも単独で放電容量維持率を高くすると共に膨れを小さくする役割を果たし、化25に示した化合物等も同様の役割を果たすことから、その化25に示した化合物等を用いた場合においても同様の結果が得られることは、明らかである。このことは、上記した化合物を2種以上混合させた場合においても同様である。
これらのことから、本発明の二次電池では、化5に示した金属塩を含有する被膜34Cを形成することにより、電解液中の電解質塩の種類を変更したり、電解液中にスルトンや酸無水物を添加しても、サイクル特性および膨れ特性が向上することが確認された。
この場合には、電解質塩として四フッ化ホウ酸リチウムや化23〜化25あるいは化29〜化31に示した化合物を用いたり、電解液中にスルトンや酸無水物を添加すれば、サイクル特性および膨れ特性がより向上することも確認された。
(実施例4−1)
被膜34C中にアルカリ土類金属塩であるスルホプロピオン酸マグネシウムを含有させたことを除き、実施例2−2と同様の手順を経た。この被膜34Cを形成する場合には、化9(4)に示した金属塩を溶解させた3%水溶液にスルホプロピオン酸マグネシウムを加えた溶液を用いた。
(実施例4−2)
負極活物質層34Bを形成する場合に、複数の負極活物質粒子を形成したのち、液相析出法によって負極活物質粒子の表面に酸化物含有膜としてケイ素の酸化物(SiO2 )を析出させたことを除き、実施例2−2と同様の手順を経た。この酸化物含有膜を形成する場合には、ケイフッ化水素酸にアニオン補足剤としてホウ素を溶解させた溶液中に、負極活物質粒子が形成された負極集電体34Aを3時間浸積し、その負極活物質粒子の表面にケイ素の酸化物を析出させたのち、水洗して減圧乾燥した。
(実施例4−3)
負極活物質層34Bを形成する場合に、複数の負極活物質粒子を形成したのち、電解鍍金法によって金属材料としてコバルト(Co)の鍍金膜を成長させたことを除き、実施例2−2と同様の手順を経た。この金属材料を形成する場合には、鍍金浴にエアーを供給しながら通電して負極集電体34Aの両面にコバルトを堆積させた。この際、鍍金液として日本高純度化学株式会社製のコバルト鍍金液を用い、電流密度を2A/dm2 〜5A/dm2 とし、鍍金速度を10nm/秒とした。
(比較例4−1,4−2)
被膜34Cを形成しなかったことを除き、実施例4−2,4−3と同様の手順を経た。
これらの実施例4−1〜4−3および比較例4−1,4−2の二次電池についてサイクル特性および膨れ特性を調べたところ、表4に示した結果が得られた。
Figure 2009129893
表4に示したように、被膜34中にアルカリ土類金属塩を含有させたり、その被膜34Cの形成前に酸化物含有膜や金属材料を形成した場合においても、表1の結果と同様の結果が得られた。すなわち、被膜34Cを形成した実施例4−1〜4−3では、それを形成しなかった比較例4−1,4−2と比較して、放電容量維持率が高くなると共に膨れが小さくなった。
この場合には、被膜34中にアルカリ土類金属塩を含有させたり、その被膜34Cの形成前に酸化物含有膜や金属材料を形成した実施例4−1〜4−3において、それらを含有等させなかった実施例2−2よりも、放電容量維持率が高くなると共に膨れが小さくなる傾向を示した。特に、被膜34C中にアルカリ土類金属塩を含有させた実施例4−1よりも、酸化物含有膜を形成した実施例4−2において放電容量維持率がより高くなり、金属材料を形成した実施例4−3において放電容量維持率がさらに高くなった。
なお、ここでは被膜34C中にアルカリ土類金属塩を含有させた場合の結果だけを示しており、アルカリ金属塩を含有させた場合の結果を示していない。しかしながら、表4の結果から明らかなように、アルカリ土類金属塩はいずれも単独で放電容量維持率を高くすると共に膨れを小さくする役割を果たし、アルカリ金属塩も同様の役割を果たすことから、そのアルカリ金属塩を含有させた場合においても同様の結果が得られることは、明らかである。このことは、アルカリ金属塩およびアルカリ土類金属塩を2種以上混合させた場合においても同様である。
これらのことから、本発明の二次電池では、化5に示した金属塩を含有する被膜34Cを形成することにより、被膜34中にアルカリ金属塩やアルカリ土類金属塩を含有させたり、被膜34Cの形成前に酸化物含有膜や金属材料を形成しても、サイクル特性および膨れ特性が向上することが確認された。
この場合には、被膜34中にアルカリ金属塩やアルカリ土類金属塩を含有させたり、被膜34Cの形成前に酸化物含有膜や金属材料を形成すれば、サイクル特性がより向上することも確認された。このサイクル特性は、アルカリ土類金属塩、酸化物含有膜および金属材料の順に向上する。
(実施例5−1〜5−6)
気相法(電子ビーム蒸着法)の代わりに、焼結法によって負極活物質層34Bを片面側の厚さが10μmとなるように形成したことを除き、実施例1−1〜1−6と同様の手順を経た。焼結法によって負極活物質層34Bを形成する場合には、負極活物質としてケイ素(平均粒径=1μm)95質量部と、結着剤としてポリイミド5質量部とを混合した負極正極合剤をN−メチル−2−ピロリドンに分散させてペースト状の負極合剤スラリーとし、バーコータによって電解銅箔(厚さ=18μm)からなる負極集電体34Aの両面に均一に塗布して乾燥させたのち、ロールプレス機によって圧縮成形し、真空雰囲気中において400℃×12時間の条件で加熱した。この場合においても、負極34の充放電容量が正極33の充放電容量よりも大きくなるように正極活物質層33Bの厚さを調節することにより、充放電の途中で負極34にリチウム金属が析出しないようにした。
(比較例5−1〜5−3)
実施例5−1〜5−6と同様に焼結法によって負極活物質層34Bを形成したことを除き、比較例1−1〜1−3と同様の手順を経た。
これらの実施例5−1〜5−6および比較例5−1〜5−3の二次電池についてサイクル特性および膨れ特性を調べたところ、表5に示した結果が得られた。
Figure 2009129893
表5に示したように、焼結法によって負極活物質層34Bを形成した場合においても、表1の結果と同様の結果が得られた。すなわち、被膜34Cを形成した実施例5−1〜5−6では、それを形成しなかった比較例5−1〜5−3と比較して、放電容量維持率が高くなると共に膨れが小さくなった。
このことから、本発明の二次電池では、焼結法によって負極活物質層34Bを形成した場合に、その負極活物質層34B上に化5に示した金属塩を含有する被膜34Cを形成することにより、サイクル特性および膨れ特性が向上することが確認された。
(実施例6−1〜6−9)
実施例5−1〜5−6と同様に焼結法によって負極活物質層34Bを形成したことを除き、実施例2−1〜2−9と同様の手順を経た。
(比較例6−1,6−2)
実施例5−1〜5−6と同様に焼結法によって負極活物質層34Bを形成したことを除き、比較例2−1,2−2と同様の手順を経た。
これらの実施例6−1〜6−9および比較例6−1,6−2の二次電池についてサイクル特性および膨れ特性を調べたところ、表6に示した結果が得られた。
Figure 2009129893
表6に示したように、焼結法によって負極活物質層34Bを形成した場合においても、表2の結果と同様の結果が得られた。すなわち、被膜34Cを形成した実施例6−1〜6−9では、それを形成しなかった比較例6−1,6−2と比較して、放電容量維持率が高くなると共に膨れが小さくなった。
このことから、本発明の二次電池では、化5に示した金属塩を含有する被膜34Cを形成することにより、電解液中の溶媒の組成を変更しても、サイクル特性および膨れ特性が向上することが確認された。
(実施例7−1〜7−7)
実施例5−1〜5−6と同様に焼結法によって負極活物質層34Bを形成したことを除き、実施例3−1〜3−7と同様の手順を経た。
(比較例7)
実施例5−1〜5−6と同様に焼結法によって負極活物質層34Bを形成したことを除き、比較例3と同様の手順を経た。
これらの実施例7−1〜7−7および比較例7の二次電池についてサイクル特性および膨れ特性を調べたところ、表7に示した結果が得られた。
Figure 2009129893
表7に示したように、焼結法によって負極活物質層34Bを形成した場合においても、表3の結果と同様の結果が得られた。すなわち、被膜34Cを形成した実施例7−1〜7−7では、それを形成しなかった比較例7と比較して、放電容量維持率が高くなると共に膨れが小さくなった。
このことから、本発明の二次電池では、化5に示した金属塩を含有する被膜34Cを形成することにより、電解液中の電解質塩の種類を変更したり、電解液中にスルトンや酸無水物を添加しても、サイクル特性および膨れ特性が向上することが確認された。
(実施例8)
実施例5−1〜5−6と同様に焼結法によって負極活物質層34Bを形成したことを除き、実施例4−1と同様の手順を経た。
この実施例8の二次電池についてサイクル特性および膨れ特性を調べたところ、表8に示した結果が得られた。
Figure 2009129893
表8に示したように、焼結法によって負極活物質層34Bを形成した場合においても、表4の結果と同様の結果が得られた。すなわち、被膜34Cを形成した実施例8では、それを形成しなかった比較例6−1と比較して、放電容量維持率が高くなると共に膨れが小さくなり、被膜34Cを形成した実施例6−2と比較しても、放電容量維持率が高くなると共に膨れが小さくなった。
このことから、本発明の二次電池では、化5に示した金属塩を含有する被膜34Cを形成することにより、被膜34中にアルカリ金属塩やアルカリ土類金属塩を含有させても、サイクル特性および膨れ特性が向上することが確認された。
上記した表1〜表8の結果から明らかなように、本発明の二次電池では、化5に示した金属塩を含有する被膜を負極活物質層上に形成することにより、電解液中の溶媒の組成や負極活物質層の形成方法などに依存せずに、サイクル特性および膨れ特性が向上することが確認された。
以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は上記した実施の形態および実施例において説明した態様に限定されず、種々の変形が可能である。例えば、本発明の負極の使用用途は、必ずしも電池に限らず、電池以外の他の電気化学デバイスであっても良い。他の用途としては、例えば、キャパシタなどが挙げられる。
また、上記した実施の形態および実施例では、電池の種類として、負極の容量がリチウムの吸蔵および放出に基づいて表されるリチウムイオン二次電池について説明したが、必ずしもこれに限られるものではない。本発明の電池は、負極がリチウムを吸蔵および放出することが可能な負極材料を含む場合に、リチウムを吸蔵および放出することが可能な負極材料の充電容量を正極の充電容量よりも小さくすることにより、負極の容量がリチウムの吸蔵および放出に伴う容量とリチウムの析出および溶解に伴う容量とを含み、かつ、それらの容量の和によって表される二次電池についても同様に適用可能である。
また、上記した実施の形態および実施例では、本発明の電池の電解質として、電解液や、電解液を高分子化合物に保持させたゲル状電解質を用いる場合について説明したが、他の種類の電解質を用いるようにしてもよい。他の電解質としては、例えば、イオン伝導性セラミックス、イオン伝導性ガラスあるいはイオン性結晶などのイオン伝導性無機化合物と電解液とを混合したものや、他の無機化合物と電解液とを混合したものや、これらの無機化合物とゲル状電解質とを混合したものなどが挙げられる。
また、上記した実施の形態および実施例では、電池構造が円筒型およびラミネートフィルム型である場合、ならびに電池素子が巻回構造を有する場合を例に挙げて説明したが、本発明の電池は、角型、コイン型およびボタン型などの他の電池構造を有する場合や、電池素子が積層構造などの他の構造を有する場合についても同様に適用可能である。
また、上記した実施の形態および実施例では、電極反応物質としてリチウムを用いる場合について説明したが、ナトリウムあるいはカリウム(K)などの他の1A族元素や、マグネシウムあるいはカルシウムなどの2A族元素や、アルミニウムなどの他の軽金属を用いてもよい。これらの場合においても、負極活物質として、上記した実施の形態で説明した負極材料を用いることが可能である。
本発明の一実施の形態に係る負極の構成を表す断面図である。 図1に示した負極の一部を拡大して表す断面図である。 図2に示した負極に対する参考例の負極を表す断面図である。 図1に示した負極の断面構造を表すSEM写真およびその模式図である。 図1に示した負極の他の断面構造を表すSEM写真およびその模式図である。 本発明の一実施の形態に係る負極を備えた第1の電池の構成を表す断面図である。 図6に示した巻回電極体の一部を拡大して表す断面図である。 本発明の一実施の形態に係る負極を備えた第2の電池の構成を表す断面図である。 図8に示した巻回電極体のIX−IX線に沿った断面図である。 図9に示した巻回電極体の一部を拡大して表す断面図である。
符号の説明
1,22A,34A…負極集電体、2,22B,34B…負極活物質層、3,22C,34C…被膜、11,31…電池缶、12,13…絶縁板、14…電池蓋、15…安全弁機構、15A…ディスク板、16…熱感抵抗素子、17…ガスケット、20,30…巻回電極体、21,33…正極、21A,33A…正極集電体、21B,33B…正極活物質層、22,34…負極、23,35…セパレータ、24…センターピン、25,31…正極リード、26,32…負極リード、36…電解質、37…保護テープ、40…外装部材、41…密着フィルム、201…負極活物質粒子、202…酸化物含有膜、204(204A,204B)…隙間、205…空隙、206…金属材料。

Claims (43)

  1. 負極集電体に設けられた負極活物質層上に被膜を有し、
    前記被膜は、化1で表される金属塩を含有する
    ことを特徴とする負極。
    Figure 2009129893
    (R1は(a1+b1+c1)価の基であり、M1は金属元素である。a1、d1、e1およびf1は1以上の整数であり、b1およびc1は0以上の整数である。ただし、(b1+c1)≧1である。)
  2. 前記化1中のR1は、鎖状の飽和炭化水素基、鎖状の不飽和炭化水素基、環状の飽和炭化水素基、環状の不飽和炭化水素基、あるいはそれらをハロゲン化した基であることを特徴とする請求項1記載の負極。
  3. 前記化1中のM1は、アルカリ金属元素あるいはアルカリ土類金属元素であることを特徴とする請求項1記載の負極。
  4. 前記化1に示した金属塩は、化2で表される金属塩であることを特徴とする請求項1記載の負極。
    Figure 2009129893
    (R2は(a2+b2)価の基であり、M2は金属元素である。a2、b2、c2、d2およびe2は1以上の整数である。)
  5. 前記化1に示した金属塩は、化3で表される金属塩であることを特徴とする請求項1記載の負極。
    Figure 2009129893
    (R3は(a3+b3)価の基であり、M3は金属元素である。a3、b3、c3、d3およびe3は1以上の整数である。)
  6. 前記化2に示した金属塩は、化4で表される金属塩のうちの少なくとも1種であることを特徴とする請求項4記載の負極。
    Figure 2009129893
  7. 前記化3に示した金属塩は、化5で表される金属塩のうちの少なくとも1種であることを特徴とする請求項5記載の負極。
    Figure 2009129893
  8. 前記被膜は、アルカリ金属塩およびアルカリ土類金属塩のうちの少なくとも1種(前記化1に示した金属塩に該当するものを除く)を含有することを特徴とする請求項1記載の負極。
  9. 前記負極活物質層は、ケイ素(Si)の単体、合金および化合物、ならびにスズ(Sn)の単体、合金および化合物のうちの少なくとも1種を含有する負極活物質を含むことを特徴とする請求項1記載の負極。
  10. 前記負極活物質層は、複数の負極活物質粒子を有すると共に、前記負極活物質粒子の表面を被覆する酸化物含有膜を有することを特徴とする請求項1記載の負極。
  11. 前記酸化物含有膜は、ケイ素、ゲルマニウム(Ge)およびスズのうちの少なくとも1種の酸化物を含有することを特徴とする請求項10記載の負極。
  12. 前記負極活物質層は、複数の負極活物質粒子を有すると共に、前記負極活物質粒子間の隙間に電極反応物質と合金化しない金属材料を有することを特徴とする請求項1記載の負極。
  13. 前記負極活物質粒子は、その粒子内に多層構造を有し、前記負極活物質層は、前記負極活物質粒子内の隙間に前記金属材料を有することを特徴とする請求項12記載の負極。
  14. 前記金属材料は、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)および銅(Cu)のうちの少なくとも1種であることを特徴とする請求項12記載の負極。
  15. 負極集電体に設けられた負極活物質層上に被膜を有する負極の製造方法であって、
    化6で表される金属塩を含有する溶液を用いて、前記負極活物質層に前記被膜を形成する
    ことを特徴とする負極の製造方法。
    Figure 2009129893
    (R1は(a1+b1+c1)価の基であり、M1は金属元素である。a1、d1、e1およびf1は1以上の整数であり、b1およびc1は0以上の整数である。ただし、(b1+c1)≧1である。)
  16. 前記化6に示した金属塩を含有する溶液中に前記負極活物質層を浸漬し、あるいは前記化6に示した金属塩を含有する溶液を前記負極活物質層に塗布することを特徴とする請求項15記載の負極の製造方法。
  17. 前記化6に示した金属塩を含有する溶液は、アルカリ金属塩およびアルカリ土類金属塩のうちの少なくとも1種(前記化6に示した金属塩に該当するものを除く)を含有することを特徴とする請求項15記載の負極の製造方法。
  18. 正極および負極と共に電解液を備えた電池であって、
    前記負極は、負極集電体に設けられた負極活物質層上に被膜を有し、
    前記被膜は、化7で表される金属塩を含有する
    ことを特徴とする電池。
    Figure 2009129893
    (R1は(a1+b1+c1)価の基であり、M1は金属元素である。a1、d1、e1およびf1は1以上の整数であり、b1およびc1は0以上の整数である。ただし、(b1+c1)≧1である。)
  19. 前記化7中のR1は、鎖状の飽和炭化水素基、鎖状の不飽和炭化水素基、環状の飽和炭化水素基、環状の不飽和炭化水素基、あるいはそれらをハロゲン化した基であることを特徴とする請求項18記載の電池。
  20. 前記化7中のM1は、アルカリ金属元素あるいはアルカリ土類金属元素であることを特徴とする請求項18記載の電池。
  21. 前記化7に示した金属塩は、化8で表される金属塩であることを特徴とする請求項18記載の電池。
    Figure 2009129893
    (R2は(a2+b2)価の基であり、M2は金属元素である。a2、b2、c2、d2およびe2は1以上の整数である。)
  22. 前記化7に示した金属塩は、化9で表される金属塩であることを特徴とする請求項18記載の電池。
    Figure 2009129893
    (R3は(a3+b3)価の基であり、M3は金属元素である。a3、b3、c3、d3およびe3は1以上の整数である。)
  23. 前記化8に示した金属塩は、化10で表される金属塩のうちの少なくとも1種であることを特徴とする請求項21記載の電池。
    Figure 2009129893
  24. 前記化9に示した金属塩は、化11で表される金属塩のうちの少なくとも1種であることを特徴とする請求項22記載の電池。
    Figure 2009129893
  25. 前記被膜は、アルカリ金属塩およびアルカリ土類金属塩のうちの少なくとも1種(前記化7に示した金属塩に該当するものを除く)を含有することを特徴とする請求項18記載の電池。
  26. 前記負極活物質層は、ケイ素の単体、合金および化合物、ならびにスズの単体、合金および化合物のうちの少なくとも1種を含有する負極活物質を含むことを特徴とする請求項18記載の電池。
  27. 前記負極活物質層は、複数の負極活物質粒子を有すると共に、前記負極活物質粒子の表面を被覆する酸化物含有膜を有することを特徴とする請求項18記載の電池。
  28. 前記酸化物含有膜は、ケイ素、ゲルマニウムおよびスズのうちの少なくとも1種の酸化物を含有することを特徴とする請求項27記載の電池。
  29. 前記負極活物質層は、複数の負極活物質粒子を有すると共に、前記負極活物質粒子間の隙間に電極反応物質と合金化しない金属材料を有することを特徴とする請求項18記載の電池。
  30. 前記負極活物質粒子は、その粒子内に多層構造を有し、前記負極活物質層は、前記負極活物質粒子内の隙間に前記金属材料を有することを特徴とする請求項29記載の電池。
  31. 前記金属材料は、鉄、コバルト、ニッケル、亜鉛および銅のうちの少なくとも1種であることを特徴とする請求項29記載の電池。
  32. 前記電解液は、不飽和結合を有する環状炭酸エステルを含有する溶媒を含むことを特徴とする請求項18記載の電池。
  33. 前記電解液は、化12で表されるハロゲンを有する鎖状炭酸エステルおよび化13で表されるハロゲンを有する環状炭酸エステルのうちの少なくとも1種を含有する溶媒を含むことを特徴とする請求項18載の電池。
    Figure 2009129893
    (R11〜R16は水素基、ハロゲン基、アルキル基あるいはハロゲン化アルキル基であり、それらのうちの少なくとも1つはハロゲン基あるいはハロゲン化アルキル基である。)
    Figure 2009129893
    (R21〜R24は水素基、ハロゲン基、アルキル基あるいはハロゲン化アルキル基であり、それらのうちの少なくとも1つはハロゲン基あるいはハロゲン化アルキル基である。)
  34. 前記化12に示したハロゲンを有する鎖状炭酸エステルは、炭酸フルオロメチルメチル、炭酸ジフルオロメチルメチルおよび炭酸ビス(フルオロメチル)のうちの少なくとも1種であり、
    前記化13に示したハロゲンを有する環状炭酸エステルは、4−フルオロ−1,3−ジオキソラン−2−オンおよび4,5−ジフルオロ−1,3−ジオキソラン−2−オンのうちの少なくとも1種であることを特徴とする請求項33記載の電池。
  35. 前記電解液は、スルトンを含有する溶媒を含むことを特徴とする請求項18記載の電池。
  36. 前記電解液は、酸無水物を含有する溶媒を含むことを特徴とする請求項18記載の電池。
  37. 前記電解液は、六フッ化リン酸リチウム(LiPF6 )、四フッ化ホウ酸リチウム(LiBF4 )、過塩素酸リチウム(LiClO4 )および六フッ化ヒ酸リチウム(LiAsF6 )のうちの少なくとも1種を含有する電解質塩を含むことを特徴とする請求項18記載の電池。
  38. 前記電解液は、化14〜化16で表される化合物のうちの少なくとも1種を含有する電解質塩を含むことを特徴とする請求項18記載の電池。
    Figure 2009129893
    (X31は短周期型周期表における1A族元素あるいは2A族元素、またはアルミニウム(Al)である。M31は遷移金属、または短周期型周期表における3B族元素、4B族元素あるいは5B族元素である。R31はハロゲン基である。Y31は−OC−R32−CO−、−OC−CR332 −あるいは−OC−CO−である。ただし、R32はアルキレン基、ハロゲン化アルキレン基、アリーレン基あるいはハロゲン化アリーレン基である。R33はアルキル基、ハロゲン化アルキル基、アリール基あるいはハロゲン化アリール基である。なお、a3は1〜4の整数であり、b3は0、2あるいは4の整数であり、c3、d3、m3およびn3は1〜3の整数である。)
    Figure 2009129893
    (X41は短周期型周期表における1A族元素あるいは2A族元素である。M41は遷移金属、または短周期型周期表における3B族元素、4B族元素あるいは5B族元素である。Y41は−OC−(CR412 b4−CO−、−R432 C−(CR422 c4−CO−、−R432 C−(CR422 c4−CR432 −、−R432 C−(CR422 c4−SO2 −、−O2 S−(CR422 d4−SO2 −あるいは−OC−(CR422 d4−SO2 −である。ただし、R41およびR43は水素基、アルキル基、ハロゲン基あるいはハロゲン化アルキル基であり、それぞれのうちの少なくとも1つはハロゲン基あるいはハロゲン化アルキル基である。R42は水素基、アルキル基、ハロゲン基あるいはハロゲン化アルキル基である。なお、a4、e4およびn4は1あるいは2の整数であり、b4およびd4は1〜4の整数であり、c4は0〜4の整数であり、f4およびm4は1〜3の整数である。)
    Figure 2009129893
    (X51は短周期型周期表における1A族元素あるいは2A族元素である。M51は遷移金属、または短周期型周期表における3B族元素、4B族元素あるいは5B族元素である。Rfはフッ素化アルキル基あるいはフッ素化アリール基であり、いずれの炭素数も1〜10である。Y51は−OC−(CR512 d5−CO−、−R522 C−(CR512 d5−CO−、−R522 C−(CR512 d5−CR522 −、−R522 C−(CR512 d5−SO2 −、−O2 S−(CR512 e5−SO2 −あるいは−OC−(CR512 e5−SO2 −である。ただし、R51は水素基、アルキル基、ハロゲン基あるいはハロゲン化アルキル基である。R52は水素基、アルキル基、ハロゲン基あるいはハロゲン化アルキル基であり、そのうちの少なくとも1つはハロゲン基あるいはハロゲン化アルキル基である。なお、a5、f5およびn5は1あるいは2の整数であり、b5、c5およびe5は1〜4の整数であり、d5は0〜4の整数であり、g5およびm5は1〜3の整数である。)
  39. 前記化14に示した化合物は、化17で表される化合物からなる群のうちの少なくとも1種であり、前記化15に示した化合物は、化18で表される化合物からなる群のうちの少なくとも1種であり、前記化16に示した化合物は、化19で表される化合物であることを特徴とする請求項38記載の電池。
    Figure 2009129893
    Figure 2009129893
    Figure 2009129893
  40. 前記電解液は、化20〜化22で表される化合物からなる群のうちの少なくとも1種を含有する電解質塩を含むことを特徴とする請求項18記載の電池。
    Figure 2009129893
    (mおよびnは1以上の整数である。)
    Figure 2009129893
    (R61は炭素数が2以上4以下の直鎖状あるいは分岐状のパーフルオロアルキレン基である。)
    Figure 2009129893
    (p、qおよびrは1以上の整数である。)
  41. 正極および負極と共に電解液を備え、前記負極が負極集電体に設けられた負極活物質層上に被膜を有する電池の製造方法であって、
    化23で表される金属塩を含有する溶液を用いて、前記負極活物質層に前記被膜を形成する
    ことを特徴とする電池の製造方法。
    Figure 2009129893
    (R1は(a1+b1+c1)価の基であり、M1は金属元素である。a1、d1、e1およびf1は1以上の整数であり、b1およびc1は0以上の整数である。ただし、(b1+c1)≧1である。)
  42. 前記化23に示した金属塩を含有する溶液中に前記負極活物質層を浸漬し、あるいは前記化23に示した金属塩を含有する溶液を前記負極活物質層に塗布することを特徴とする請求項41記載の電池の製造方法。
  43. 前記化23に示した金属塩を含有する溶液は、アルカリ金属塩およびアルカリ土類金属塩のうちの少なくとも1種(前記化23に示した金属塩に該当するものを除く)を含有することを特徴とする請求項41記載の電池の製造方法。
JP2007307436A 2007-11-28 2007-11-28 負極、二次電池および電子機器 Active JP5262085B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007307436A JP5262085B2 (ja) 2007-11-28 2007-11-28 負極、二次電池および電子機器
US12/274,940 US8613873B2 (en) 2007-11-28 2008-11-20 Anode, battery, and methods of manufacturing them
KR1020080115536A KR101643532B1 (ko) 2007-11-28 2008-11-20 음극, 전지 및 그것들의 제조 방법
CN2008101790505A CN101447569B (zh) 2007-11-28 2008-11-27 负极、电池及其制造方法
KR1020160035930A KR101731237B1 (ko) 2007-11-28 2016-03-25 음극, 전지 및 그것들의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007307436A JP5262085B2 (ja) 2007-11-28 2007-11-28 負極、二次電池および電子機器

Publications (3)

Publication Number Publication Date
JP2009129893A true JP2009129893A (ja) 2009-06-11
JP2009129893A5 JP2009129893A5 (ja) 2010-12-24
JP5262085B2 JP5262085B2 (ja) 2013-08-14

Family

ID=40670013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007307436A Active JP5262085B2 (ja) 2007-11-28 2007-11-28 負極、二次電池および電子機器

Country Status (4)

Country Link
US (1) US8613873B2 (ja)
JP (1) JP5262085B2 (ja)
KR (2) KR101643532B1 (ja)
CN (1) CN101447569B (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001892A1 (ja) * 2008-07-04 2010-01-07 ソニー株式会社 二次電池および電子機器
JP2010015885A (ja) * 2008-07-04 2010-01-21 Sony Corp 負極、正極および二次電池、ならびにそれらの製造方法
JP2010049928A (ja) * 2008-08-21 2010-03-04 Sony Corp 二次電池、負極、正極および電解質
JP2012204181A (ja) * 2011-03-25 2012-10-22 National Institute Of Advanced Industrial & Technology 電極、および電極形成方法
US8329343B2 (en) 2008-08-05 2012-12-11 Sony Corporation Battery and electrode
WO2013002186A1 (ja) * 2011-06-27 2013-01-03 三洋化成工業株式会社 電極保護膜形成剤、電極、電解液、リチウム二次電池、リチウムイオンキャパシタ、及び、電極保護膜の形成方法
WO2014073378A1 (ja) * 2012-11-07 2014-05-15 三洋化成工業株式会社 電極保護膜形成剤、電極、電解液、リチウム二次電池、リチウムイオンキャパシタ、および、電極保護膜の製造方法
JP2016138079A (ja) * 2015-01-29 2016-08-04 Tdk株式会社 イオン導電性固体電解質
WO2016203920A1 (ja) * 2015-06-18 2016-12-22 日本電気株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びこれらの製造方法
US11069886B2 (en) 2016-09-23 2021-07-20 Panasonic Intellectual Property Management Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary battery

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710916B2 (ja) * 2008-02-13 2011-06-29 ソニー株式会社 非水電解質二次電池用正極活物質、これを用いた非水電解質二次電池用正極および非水電解質二次電池
EP2276698A1 (en) * 2008-04-14 2011-01-26 Dow Global Technologies Inc. Lithium metal phosphate/carbon nanocomposites as cathode active materials for secondary lithium batteries
US9196901B2 (en) * 2010-06-14 2015-11-24 Lee Se-Hee Lithium battery electrodes with ultra-thin alumina coatings
US11631841B2 (en) * 2019-12-20 2023-04-18 Enevate Corporation Methods of preparing an electrode material with metal alkoxide or metal aryloxide
KR102107373B1 (ko) * 2012-02-14 2020-05-07 미쯔비시 케미컬 주식회사 비수계 이차 전지 부극용 활물질 그리고 그것을 사용한 부극 및 비수계 이차 전지
CN102593514B (zh) * 2012-03-09 2016-08-17 巴斯夫电池材料(苏州)有限公司 一种锂离子电池高电压电解液添加剂及其电解液
US10367203B2 (en) * 2013-09-13 2019-07-30 Murata Manufacturing Co., Ltd Secondary battery-use anode, secondary battery, battery pack, electric vehicle, electri power storage system, electric power tool, and electronic apparatus
US11996564B2 (en) * 2015-06-01 2024-05-28 Forge Nano Inc. Nano-engineered coatings for anode active materials, cathode active materials, and solid-state electrolytes and methods of making batteries containing nano-engineered coatings
CN110100331B (zh) * 2016-12-18 2022-05-20 微宏动力系统(湖州)有限公司 阳极、其制备方法及锂离子二次电池
KR102411732B1 (ko) 2017-11-21 2022-06-21 주식회사 엘지에너지솔루션 첨가제, 이를 포함하는 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차 전지
WO2023054128A1 (ja) 2021-09-30 2023-04-06 セントラル硝子株式会社 非水電解液、非水電解液電池、化合物及び非水電解液用添加剤
CN114361594A (zh) * 2021-12-31 2022-04-15 远景动力技术(江苏)有限公司 一种锂电池用非水电解液及锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765863A (ja) * 1993-08-24 1995-03-10 Fuji Photo Film Co Ltd 非水電池
JP2004095445A (ja) * 2002-09-02 2004-03-25 Matsushita Electric Ind Co Ltd 非水電解液二次電池およびこれに用いる非水電解液
JP2004171874A (ja) * 2002-11-19 2004-06-17 Sony Corp 負極およびそれを用いた電池
WO2007046327A1 (ja) * 2005-10-20 2007-04-26 Mitsui Mining & Smelting Co., Ltd. 非水電解液二次電池用負極

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3062907A (en) * 1959-07-06 1962-11-06 John T Macht Anti-emulsion agents in the separation of olefins
JP3419119B2 (ja) 1994-11-15 2003-06-23 日本電池株式会社 非水電解質二次電池
JP3218170B2 (ja) * 1995-09-06 2001-10-15 キヤノン株式会社 リチウム二次電池及びリチウム二次電池の製造方法
JP3359220B2 (ja) * 1996-03-05 2002-12-24 キヤノン株式会社 リチウム二次電池
EP0855752B1 (en) * 1997-01-28 2006-11-29 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and process for the production of said electrode structural body and said rechargeable battery
US6110442A (en) * 1997-05-30 2000-08-29 Hughes Electronics Corporation Method of preparing Lix Mn2 O4 for lithium-ion batteries
DE19910968A1 (de) 1999-03-12 2000-11-09 Merck Patent Gmbh Anwendung von Additiven in Elektrolyten für elektrochemische Zellen
US6835332B2 (en) * 2000-03-13 2004-12-28 Canon Kabushiki Kaisha Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode structural body is used, and a process for producing said rechargeable lithium battery
JP4726282B2 (ja) 2000-08-09 2011-07-20 三井化学株式会社 非水電解液およびそれを用いた二次電池
US6617078B1 (en) * 2000-08-10 2003-09-09 Delphi Technologies, Inc. Lithium ion rechargeable batteries utilizing chlorinated polymer blends
JP2002334695A (ja) * 2001-03-09 2002-11-22 Canon Inc 二次電池および二次電池の製造方法
JP4302366B2 (ja) 2001-07-10 2009-07-22 三菱化学株式会社 非水系電解液及びこれを用いた二次電池
EP1313158A3 (en) * 2001-11-20 2004-09-08 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof
JP4150202B2 (ja) * 2002-04-02 2008-09-17 ソニー株式会社 電池
KR100449761B1 (ko) * 2002-05-18 2004-09-22 삼성에스디아이 주식회사 전해액의 분해반응이 억제된 리튬 2차 전지 및 그 제조방법
CN1957040B (zh) * 2004-05-21 2010-05-12 昭和电工株式会社 导电组合物及其应用
JP2006032300A (ja) * 2004-07-21 2006-02-02 Sony Corp 電解質および電池
JP4117573B2 (ja) * 2004-07-21 2008-07-16 ソニー株式会社 電池
JP4967321B2 (ja) * 2005-11-21 2012-07-04 ソニー株式会社 リチウムイオン二次電池
EP1989747B1 (en) * 2006-02-14 2017-04-12 Dow Global Technologies LLC Lithium manganese phosphate positive material for lithium secondary battery
JP2008308421A (ja) 2007-06-13 2008-12-25 Sony Corp イオン性化合物、負極、電解液、電気化学デバイスおよび電池
JP5278657B2 (ja) * 2008-03-10 2013-09-04 ソニー株式会社 二次電池および電子機器
KR20110022633A (ko) * 2008-07-04 2011-03-07 소니 주식회사 이차 전지 및 전자 기기
JP5948243B2 (ja) * 2009-08-26 2016-07-06 エヴォクア ウォーター テクノロジーズ ピーティーイー リミテッド イオン交換膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765863A (ja) * 1993-08-24 1995-03-10 Fuji Photo Film Co Ltd 非水電池
JP2004095445A (ja) * 2002-09-02 2004-03-25 Matsushita Electric Ind Co Ltd 非水電解液二次電池およびこれに用いる非水電解液
JP2004171874A (ja) * 2002-11-19 2004-06-17 Sony Corp 負極およびそれを用いた電池
WO2007046327A1 (ja) * 2005-10-20 2007-04-26 Mitsui Mining & Smelting Co., Ltd. 非水電解液二次電池用負極

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8628885B2 (en) 2008-07-04 2014-01-14 Sony Corporation Secondary battery and electronic device
JP2010015885A (ja) * 2008-07-04 2010-01-21 Sony Corp 負極、正極および二次電池、ならびにそれらの製造方法
WO2010001892A1 (ja) * 2008-07-04 2010-01-07 ソニー株式会社 二次電池および電子機器
US8329343B2 (en) 2008-08-05 2012-12-11 Sony Corporation Battery and electrode
JP2010049928A (ja) * 2008-08-21 2010-03-04 Sony Corp 二次電池、負極、正極および電解質
JP2012204181A (ja) * 2011-03-25 2012-10-22 National Institute Of Advanced Industrial & Technology 電極、および電極形成方法
WO2013002186A1 (ja) * 2011-06-27 2013-01-03 三洋化成工業株式会社 電極保護膜形成剤、電極、電解液、リチウム二次電池、リチウムイオンキャパシタ、及び、電極保護膜の形成方法
WO2014073378A1 (ja) * 2012-11-07 2014-05-15 三洋化成工業株式会社 電極保護膜形成剤、電極、電解液、リチウム二次電池、リチウムイオンキャパシタ、および、電極保護膜の製造方法
JPWO2014073378A1 (ja) * 2012-11-07 2016-09-08 三洋化成工業株式会社 電極保護膜形成剤、電極、電解液、リチウム二次電池、リチウムイオンキャパシタ、および、電極保護膜の製造方法
JP2016138079A (ja) * 2015-01-29 2016-08-04 Tdk株式会社 イオン導電性固体電解質
WO2016203920A1 (ja) * 2015-06-18 2016-12-22 日本電気株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びこれらの製造方法
JP2017010923A (ja) * 2015-06-18 2017-01-12 日本電気株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びこれらの製造方法
WO2017126276A1 (ja) * 2015-06-18 2017-07-27 日本電気株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びこれらの製造方法
US11069886B2 (en) 2016-09-23 2021-07-20 Panasonic Intellectual Property Management Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary battery
US12051796B2 (en) 2016-09-23 2024-07-30 Panasonic Intellectual Property Management Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
KR20160040160A (ko) 2016-04-12
JP5262085B2 (ja) 2013-08-14
KR101643532B1 (ko) 2016-07-29
CN101447569B (zh) 2012-02-29
US8613873B2 (en) 2013-12-24
KR20090055483A (ko) 2009-06-02
KR101731237B1 (ko) 2017-04-28
US20090136855A1 (en) 2009-05-28
CN101447569A (zh) 2009-06-03

Similar Documents

Publication Publication Date Title
JP5262085B2 (ja) 負極、二次電池および電子機器
JP5470696B2 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP5453738B2 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池用負極の製造方法、リチウムイオン二次電池、リチウムイオン二次電池の製造方法、および電子機器
JP5407273B2 (ja) 負極集電体、負極および二次電池
JP5234247B2 (ja) 負極、二次電池、スルホン化合物および電子機器
JP4952680B2 (ja) リチウムイオン二次電池およびリチウムイオン二次電池用負極
JP5382413B2 (ja) 二次電池用負極および二次電池
JP5424011B2 (ja) 二次電池およびその製造方法、ならびに二次電池用負極および二次電池用正極
JP5422923B2 (ja) 負極および二次電池、ならびに負極および二次電池の製造方法
JP2009176719A (ja) 電解液、二次電池およびスルホン化合物
JP5278657B2 (ja) 二次電池および電子機器
JP5239473B2 (ja) 二次電池用電解液、二次電池および電子機器
JP5181754B2 (ja) 二次電池用電解液、二次電池および電子機器
JP2009193696A (ja) 負極、二次電池およびそれらの製造方法
JP5463632B2 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池用正極、リチウムイオン二次電池および電子機器
JP5532559B2 (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池用電解液
JP5217536B2 (ja) 二次電池および電子機器
JP2010165549A (ja) 二次電池
JP5256798B2 (ja) 二次電池用電解液、二次電池および電子機器
JP2009170146A (ja) 電解液および二次電池
JP2010080229A (ja) 電極及び電池
JP5181740B2 (ja) 二次電池用電解液、二次電池および電子機器
JP2010010080A (ja) 負極、二次電池およびそれらの製造方法
JP2010177025A (ja) 電池
JP2010103005A (ja) 負極の形成方法および二次電池の製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R151 Written notification of patent or utility model registration

Ref document number: 5262085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250