WO2017126276A1 - リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びこれらの製造方法 - Google Patents
リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びこれらの製造方法 Download PDFInfo
- Publication number
- WO2017126276A1 WO2017126276A1 PCT/JP2016/087806 JP2016087806W WO2017126276A1 WO 2017126276 A1 WO2017126276 A1 WO 2017126276A1 JP 2016087806 W JP2016087806 W JP 2016087806W WO 2017126276 A1 WO2017126276 A1 WO 2017126276A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- active material
- electrode active
- formula
- lithium secondary
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a positive electrode active material for a lithium secondary battery that suppresses the generation of gas accompanying charge / discharge and suppresses a decrease in battery capacity, a positive electrode for a lithium secondary battery using the same, and a lithium secondary using the same
- the present invention relates to batteries and methods for manufacturing them.
- Lithium secondary batteries have been put to practical use as batteries for small electronic devices such as notebook computers and mobile phones due to advantages such as high energy density, small self-discharge, and excellent long-term reliability. In recent years, the application of lithium secondary batteries to electric vehicles, household storage batteries, and power storage has progressed.
- a positive electrode and a negative electrode each having an active material layer containing an active material formed on a current collector are opposed to each other via a separator, and a plurality of layers are laminated as necessary. These are soaked in a non-aqueous electrolyte solution.
- a lithium metal composite oxide Patent Document 1 having a layered rock salt structure represented by Li 1.19 Mn 0.52 Fe 0.22 O 1.98 , LiNi 0.5 A lithium metal composite oxide represented by Mn 1.5 O 4 (Patent Document 2) is disclosed.
- the battery As the battery is charged and discharged, reductive decomposition of the electrolyte solvent occurs on the negative electrode surface, and oxidative decomposition of the electrolyte solvent occurs on the positive electrode surface. In some cases, the battery may swell due to gas generated by decomposition of the solvent. As a result, the storage characteristics of the battery and the cycle characteristics of the lithium secondary battery are deteriorated, resulting in a problem that the battery characteristics are deteriorated.
- Non-patent Document 1 compounds having a protective film forming function such as vinylene carbonate, fluoroethylene carbonate, and maleic anhydride are added to the electrolyte, and these compounds are intentionally decomposed during initial charging. It is known that the decomposition product forms a protective coating SEI (Solid Electrolyte Interface) on the electrode surface and suppresses decomposition of the solvent (Non-patent Document 1).
- SEI Solid Electrolyte Interface
- a high potential lithium secondary battery using a positive electrode active material having a potential of 4.5 V or more as described above is a positive electrode compared with a voltage of 3.5 to 4.2 V of a conventional general lithium secondary battery.
- gas generation due to oxidative decomposition of the solvent is likely to occur.
- Patent Document 3 As a method of forming a protective film on the surface of the positive electrode active material and suppressing the generation of gas from the positive electrode, a method of coating the positive electrode active material with a silane coupling agent and an epoxy resin (Patent Document 3), A method of wearing (Patent Document 4) is disclosed.
- Patent Document 4 A method of wearing (Patent Document 4) is disclosed.
- the protective film of these positive electrodes in a lithium secondary battery using a high potential positive electrode of 4.5 V or more, decomposition of the electrolyte solution at the positive electrode accompanying charge / discharge cannot be suppressed, and gas generation is sufficiently suppressed. There was a problem that it was not possible.
- a positive electrode active material layer using a positive electrode mixture slurry prepared by mixing phosphorous acid with a positive electrode active material containing a lithium composite oxide, the binder and conductive auxiliary agent in the positive electrode active material layer
- a positive electrode capable of changing the distribution so that the volume density of the positive electrode active material is in a specific range and suppressing breakage during winding or pressing after winding
- Patent Document 5 Inclusion of trimethyl acid and dimethyl phosphite improves the flame retardancy of the electrolyte and prevents large current from flowing when dendrites are formed on the negative electrode due to overcharging or when the positive and negative electrodes are short-circuited.
- a lithium secondary battery that can be used is disclosed (Patent Document 6).
- JP 2013-254605 A International Publication No. 2012/141301 JP 2014-22276 A JP 2010-40382 A JP 2012-160463 A Japanese Patent Laying-Open No. 2015-022952
- the subject of this invention can suppress generation
- the positive electrode active material for a lithium secondary battery of the present invention has the formula (1)
- R 1 and R 2 independently represent a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group, and X represents a hydrogen atom or an alkyl group.
- R 3 to R 5 each independently represents a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group.
- a coated positive electrode active material having a coating containing at least one selected from acid triesters.
- the lithium secondary battery of the present invention is characterized by having the above-described positive electrode for a lithium secondary battery, a negative electrode containing a negative electrode active material capable of occluding and releasing lithium ions, and an electrolytic solution impregnating them.
- the positive electrode for a lithium secondary battery of the present invention has a positive electrode active material layer containing the positive electrode active material for a lithium secondary battery on a positive electrode current collector, and the lithium secondary battery of the present invention comprises: The positive electrode for a lithium secondary battery, a negative electrode containing a negative electrode active material, an electrolytic solution impregnated with these electrodes, and an outer package for housing them.
- R 1 and R 2 independently represent a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group, and X represents a hydrogen atom or an alkyl group.
- R 3 ⁇ R 5 are independently substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group indicates a.
- Phosphite represented by A coated positive electrode active material is formed by immersing in a coating forming liquid containing at least one selected from acid triesters to form a coating on at least a part of the positive electrode active material.
- the manufacturing method of the positive electrode for lithium secondary batteries of this invention is a positive electrode containing the positive electrode active material for lithium secondary batteries obtained by the manufacturing method of the said positive electrode active material for lithium secondary batteries, and a positive electrode binder.
- An active material layer forming liquid is prepared, and a positive electrode active material layer is formed on a positive electrode current collector using the positive electrode active material layer forming liquid.
- the method for producing a positive electrode for a lithium secondary battery of the present invention comprises a positive electrode active material, a positive electrode binder, a formula (1)
- R 1 and R 2 independently represent a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group, and X represents a hydrogen atom or an alkyl group.
- R 3 to R 5 each independently represents a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group.
- a positive electrode active material layer containing a positive electrode active material and a positive electrode binder is formed on a positive electrode current collector, and the positive electrode active material layer is expressed by the formula (1).
- R 1 and R 2 independently represent a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group, and X represents a hydrogen atom or an alkyl group.
- R 3 to R 5 each independently represents a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group.
- a coating positive electrode active material is formed by immersing in a coating forming solution containing at least one selected from acid triesters or applying the coating forming solution to form a coating on at least a part of the positive electrode active material. It is characterized by that.
- the method for producing a lithium secondary battery of the present invention includes a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, a separator, and a formula (1)
- R 1 and R 2 independently represent a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group, and X represents a hydrogen atom or an alkyl group.
- R 3 to R 5 each independently represents a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group.
- the positive electrode active material for lithium secondary battery of the present invention, the positive electrode for lithium secondary battery using the same, and the lithium secondary battery are coated positive electrode active materials having a coating of a specific phosphonic acid ester or a specific phosphorous acid triester Therefore, even when the operating voltage of the lithium battery is set to a high potential, oxidative decomposition of the solvent at the positive electrode can be suppressed, and gas generation can be suppressed.
- the positive electrode active material for a lithium secondary battery of the present invention has the formula (1)
- R 1 and R 2 independently represent a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group, and X represents a hydrogen atom or an alkyl group.
- R 3 to R 5 each independently represents a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group.
- R 3 to R 5 each independently represents a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group.
- the positive electrode active material is not particularly limited, but preferably has an operating voltage of 4.2 V or more.
- Li x Mn 2 O 4 (0, such as LiMnO 2 , LiMn 2 O 4) ⁇ X ⁇ 2)
- a lithium transition metal composite oxide that is an oxide of lithium and two or more transition metals such as LiNi 0.5 Mn 1.5 O 4 , and a phosphate compound having an olivine structure such as LiFePO 4 Can be mentioned. These can be used alone or in combination of two or more.
- examples of the positive electrode active material that can be used in a lithium secondary battery having a working voltage of 4.5 V or higher include lithium transition metal composite oxides composed of lithium and a plurality of types of transition metals such as cobalt, manganese, and nickel.
- a lithium-excess transition metal composite oxide in which Li is excessive in comparison with the stoichiometric composition in these lithium transition metal composite oxides can also be used in a high potential lithium secondary battery of 4.5 V or more.
- a lithium transition metal composite oxide partially substituted with another element is also used in a high potential lithium secondary battery.
- a part of cobalt, manganese, nickel is at least one element such as Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Ge, Zn, Sm, Cu, Bi, Mo, La, etc.
- the positive electrode surface can be coated with 2 O 3 , GeO 2 , Sm 2 O 3 , ZnO, MoO 3 , La 2 O 3, or the like.
- lithium transition metal composite oxides include LiCo 0.8 Ni 0.2 O 2 , LiNi 1/2 Mn 3/2 O 4 , LiNi 1/3 Co 1/3 Mn 1/3 O 2.
- LiNi 0.4 Co 0.3 Mn 0.3 O 2 (abbreviated as NCM433), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (abbreviated as NCM523), LiNi 0.5 Co 0.3 Mn 0.2 O 2 (abbreviated as NCM532), LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , Li 1.2 Mn 0.4 Ni 0.4 O 2 , Li 1.2 Mn 0.6 Ni 0.2 O 2 , Li 1.19 Mn 0.52 Fe 0.22 O 1.98 , Li 1.21 Mn 0.46 Fe 0.15 Ni 0.15 O 2 , LiMn 1.5 Ni 0.5 O 4 , Li 1.2 Mn 0.4 Fe 0.4 O 2 , Li 1.21 Mn 0.4 Fe 0.2 Ni 0.2 O 2 , Li 1.21
- NCM532 or NCM523 and NCM433 can be used in the range of 9: 1 to 1: 9, for example, 2: 1. Further, in the formula (3), a compound having a high Ni content with x being 0.4 or less and a compound having a Ni content not exceeding 0.5, for example, NCM 433 with x being 0.5 or more are mixed. Thus, a battery having a high capacity and high thermal stability can also be configured.
- the coated positive electrode active material comprises at least part of the positive electrode active material, a phosphonic acid ester represented by the formula (1) and a phosphorous acid triester represented by the formula (2) (these are also referred to as phosphites). .) Having a coating containing at least one selected from.
- the formula (4) (formula It is considered that the surface of the positive electrode active material is coated with Mn + in the middle thereof, as shown in FIG. 2), as the phosphonate reacts with a hydroxyl group present on the surface of the positive electrode active material.
- the phosphonic acid ester or phosphite triester may not physically form a chemical bond with the positive electrode active material, but may physically adhere to the positive electrode active material.
- the surface of the positive electrode active material is coated with a phosphonic acid ester or a phosphite ester, the chemical reaction and decomposition of the electrolyte solution on the surface of the positive electrode active material accompanying charging and discharging are suppressed, so that gas generation from the positive electrode is suppressed, and lithium
- the secondary battery is stable over a long period of time, and the effect of extending the life can be obtained.
- a lithium ion secondary battery having a large capacity, high energy density, and excellent charge / discharge cycle stability can be obtained.
- R 1 to R 5 independently represent a substituted or unsubstituted carbon number of 1 to 18 alkyl groups, or substituted or unsubstituted aryl groups.
- X is a hydrogen atom or an alkyl group.
- unsubstituted alkyl group having 1 to 18 carbon atoms represented by R 1 to R 5 include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a t-butyl group.
- one or more hydrogen atoms may be substituted, and examples of the substituent include a fluorine atom, an alkoxy group having 1 to 5 carbon atoms, and an aryl group. These can independently be a substituent of an alkyl group. Specific examples of the alkyl group having a substituent include a trifluoromethyl group, a trifluoroethyl group, a pentafluoroethyl group, a heptafluoropropyl group, and a benzyl group.
- examples of the unsubstituted aryl group include a phenyl group and a naphthyl group.
- examples of the substituent of the aryl group include the same substituents as those in the above alkyl group.
- examples of the aryl group having a substituent include a tolyl group, nonylphenyl group, 4-fluorophenyl group, and pentafluorophenyl. Groups and the like.
- R 1 to R 5 include, for example, methyl group, ethyl group, isopropyl group, n-butyl group, isobutyl group, 2-ethylhexyl group, octyl group, decyl group, dodecyl group, octadecyl group, tridecyl group, Examples thereof include a benzyl group, a phenyl group, a tolyl group, and a nonylphenyl group.
- the alkyl group represented by X preferably has 1 to 8 carbon atoms and may have a substituent such as a fluorine atom. Specifically, a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, pentyl group, n-hexyl group, 2-ethylhexyl group, octyl group and the like are preferable.
- the phosphonic acid ester and the phosphorous acid triester A are in a mass ratio (A / B) to the positive electrode active material B. It is preferably 0.0005 to 0.5, more preferably 0.001 to 0.3.
- the density of the positive electrode active material layer is preferably 1.0 g / cm 3 or more and 3.0 g / cm 3 or less.
- the density of the positive electrode active material layer is 1.0 g / cm 3 or more, the absolute value of the discharge capacity can be suppressed from being reduced.
- the density of the positive electrode active material layer is 3.0 g / cm 3 or less, it is possible to suppress the electrolyte from being easily impregnated into the electrode and the discharge capacity from being lowered.
- Such a coated positive electrode active material can be prepared by immersing in a coating forming solution containing the phosphonic acid ester or phosphite triester to form a coating on at least a part of the positive electrode active material. That is, in the method for producing a positive electrode active material for a lithium secondary battery according to the present application, at least a part of the positive electrode active material is coated by immersing the positive electrode active material in a coating forming solution containing the phosphonic acid ester or phosphite triester. To form a coated positive electrode active material.
- the coating forming solution can be prepared by dissolving phosphonic acid ester and phosphorous acid triester in a non-aqueous solvent such as chain carbonates, chain esters, lactones, ethers and nitriles.
- a non-aqueous solvent such as chain carbonates, chain esters, lactones, ethers and nitriles.
- chain carbonates examples include dimethyl carbonate, diethyl carbonate, dipropyl carbonate, and ethyl methyl carbonate.
- chain esters examples include methyl acetate, ethyl acetate, methyl propionate, and ethyl propionate.
- lactones include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -methyl- ⁇ -butyrolactone, and the like.
- ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2 -Dibutoxyethane and the like.
- nitriles include acetonitrile and propionitrile.
- the content of the phosphonic acid ester and phosphite triester in the coating forming solution is preferably 0.01 to 15% by mass, and more preferably 0.05 to 10% by mass.
- the positive electrode active material is added to the coating forming solution and is immersed, for example, at room temperature to 80 ° C. for 1 hour to 24 hours. Thereafter, the positive electrode active material is filtered off, washed with a non-aqueous solvent, and dried at room temperature to 400 ° C. under vacuum or atmospheric pressure to obtain a coated positive electrode active material.
- the positive electrode for a lithium secondary battery of the present invention is obtained by forming a positive electrode active material layer containing the positive electrode active material for a lithium secondary battery on a positive electrode current collector.
- the positive electrode active material layer only needs to contain the above-described coated positive electrode active material, but a conductive additive may be added for the purpose of reducing impedance.
- a conductive additive may be added for the purpose of reducing impedance.
- the conductive auxiliary agent include graphites such as natural graphite and artificial graphite, and carbon blacks such as acetylene black, ketjen black, furnace black, channel black, and thermal black.
- a plurality of types of conductive assistants may be appropriately mixed and used.
- the amount of the conductive auxiliary agent is preferably 1 to 10% by mass with respect to 100% by mass of the positive electrode active material.
- the positive electrode active material layer is preferably formed on the positive electrode current collector by integrating the coated positive electrode active material using a positive electrode binder.
- the binder for the positive electrode include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene, Examples thereof include polyethylene, polyimide, and polyamideimide.
- the amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. .
- the positive electrode current collector is not particularly limited, and for example, an aluminum foil or a stainless lath plate can be used.
- [Production method of positive electrode] As a method for producing the positive electrode, a method using a coated positive electrode active material in which a phosphonate ester or phosphite triester coating is formed in advance, a positive electrode active material not containing the coated positive electrode active material, Examples thereof include a method of forming a coated positive electrode active material at the same time, or a method of forming a coated positive electrode active material after forming a positive electrode active material layer using a positive electrode active material not containing the above coated positive electrode active material.
- the lithium secondary battery manufacturing method of the present invention is a lithium secondary battery obtained by the above-described positive electrode active material manufacturing method for a lithium secondary battery.
- a positive electrode active material layer forming liquid containing a positive electrode active material for a battery and a positive electrode binder is prepared, and the positive electrode active material layer is formed on the positive electrode current collector using the positive electrode active material layer forming liquid It is characterized by that.
- a liquid for forming a positive electrode active material layer is prepared by adding a solvent such as N-methylpyrrolidone to a mixture obtained by mixing a coated positive electrode active material, a positive electrode binder, and, if necessary, a conductive additive, and kneading the mixture.
- An active material layer forming liquid can be applied to a positive electrode current collector by a doctor blade method, a die coater method, or the like, and dried.
- the method for producing a positive electrode for a lithium secondary battery of the present invention includes a positive electrode active material, A positive electrode active material layer forming liquid containing an adhesive and the phosphonic acid ester or phosphite triester is prepared, and the positive electrode active material layer is formed on the positive electrode current collector using the positive electrode active material layer forming liquid. It is characterized by forming.
- phosphonic acid ester or phosphite triester is preferably added so as to have a mass ratio of 0.0005 to 0.5, more preferably 0, to the positive electrode active material. It can be added in the range of 0.001 to 0.3, and if necessary, a conductive additive and a binder are mixed, and a solvent such as N-methylpyrrolidone is added and kneaded.
- the phosphonic acid ester or phosphorous acid triester may be added as a coating forming solution prepared by preparing the coating forming solution containing the phosphonic acid ester or phosphorous acid triester. Then, it applies to a collector by the method similar to the above, and produces by drying.
- the method for producing a positive electrode for a lithium secondary battery of the present invention includes a positive electrode active material. And a positive electrode active material layer including a positive electrode binder, and the positive electrode active material layer is immersed in a coating forming liquid containing the phosphonic acid ester or phosphorous acid triester, or The coating forming liquid is applied to form a coating on at least a part of the positive electrode active material to form a coated positive electrode active material.
- the coating forming solution the same coating forming solution as that described above can be used.
- the positive electrode is immersed or coated so that at least the positive electrode active material layer is immersed in this coating forming solution, and left at room temperature to 80 ° C. for 1 to 24 hours. Thereafter, the positive electrode is taken out, washed with a non-aqueous solvent, and dried at room temperature to 150 ° C. under vacuum or atmospheric pressure.
- the electrolyte solution contains a predetermined amount of the phosphonic acid ester or phosphite triester as described later. And a method for producing a lithium secondary battery that is allowed to stand at a predetermined temperature before activation of the battery.
- a lithium secondary battery according to the present invention includes the positive electrode, a negative electrode including a negative electrode active material, an electrolytic solution impregnating these electrodes, and an exterior body that stores them.
- the negative electrode may be any material as long as it contains a negative electrode active material, and examples thereof include a material in which the negative electrode active material is integrated by a negative electrode binder and bound so as to cover the negative electrode current collector.
- Examples of the negative electrode active material include metals and alloys that can be alloyed with lithium, oxides and carbon materials that can occlude and release lithium, and the like.
- Examples of the metal include simple silicon and tin.
- Examples of the oxide include silicon oxide represented by SiO x (0 ⁇ x ⁇ 2), niobium pentoxide (Nb 2 O 5 ), lithium titanium composite oxide (Li 4/3 Ti 5/3 O 4 ), Examples thereof include titanium dioxide (TiO 2 ).
- silicon oxide is preferably used from the viewpoint of charge / discharge cycle characteristics because the expansion and contraction due to repeated charge / discharge of the negative electrode active material itself is alleviated.
- the silicon oxide may be crystalline or non-crystalline, and may contain lithium represented by SiLi y O z (y> 0, 2>z> 0), and a trace amount of nitrogen, boron, And one or more elements of sulfur and sulfur may be contained in an amount of 0.1 to 5% by mass.
- the electrical conductivity of the silicon oxide can be improved.
- the negative electrode active material it is preferable to use silicon oxide together with elemental silicon because volume change can be canceled in charge and discharge.
- the negative electrode active material containing simple silicon and silicon oxide can be prepared by mixing simple silicon and silicon oxide and sintering under high temperature and reduced pressure. Further, as the negative electrode active material, a compound of silicon and a transition metal such as silicate, nickel silicide, cobalt silicide, and the like can be used in addition to silicon oxide.
- a negative electrode active material containing a compound of transition metal and silicon as a silicon compound is produced, for example, by mixing and melting simple silicon and transition metal, or coating the surface of simple silicon by vapor deposition or the like can do.
- the carbon material is preferable because it has good cycle characteristics and safety, and excellent continuous charge characteristics.
- Examples of the carbon material include graphite material, amorphous carbon, diamond-like carbon, carbon nanotube, carbon black, coke, mesocarbon microbead, hard carbon, graphite, and the like.
- Examples of natural graphite and carbon black include acetylene black and furnace black. These can be used alone or in combination of two or more.
- Graphite with high crystallinity has high electrical conductivity, and is excellent in adhesion to the negative electrode current collector and voltage flatness.
- amorphous carbon having low crystallinity since amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
- the negative electrode active material a material containing silicon, silicon oxide, or carbon material can cancel the volume change accompanying charging / discharging, and these can be used simply by mixing them.
- a negative electrode composite preferably has a structure in which all or a part of silicon is dispersed in a silicon oxide having an amorphous structure and the surface is covered with carbon.
- the silicon oxide having an amorphous structure can suppress the volume expansion of the carbon material and silicon, and can also suppress the decomposition of the electrolytic solution by dispersing silicon. Although this mechanism is not clear, it is presumed that the silicon oxide has an amorphous structure, which has some influence on the film formation at the interface between the carbon material and the electrolytic solution.
- the amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects. It can be confirmed by X-ray diffraction measurement that all or part of the silicon oxide has an amorphous structure. When the silicon oxide does not have an amorphous structure, a peak inherent to the silicon oxide is strongly observed in the X-ray diffraction measurement. On the other hand, when all or part of the silicon oxide has an amorphous structure, a peak unique to the silicon oxide becomes broad in the X-ray diffraction measurement.
- silicon dispersed in silicon oxide can be confirmed by a combination of observation with a transmission electron microscope and measurement with energy dispersive X-ray spectroscopy. Specifically, the cross section of the sample is observed with a transmission electron microscope, and the oxygen concentration of the silicon portion dispersed in the silicon oxide is measured by energy dispersive X-ray spectroscopy measurement. As a result, it can be confirmed that silicon dispersed in silicon oxide is not an oxide.
- the content of silicon, silicon oxide, and carbon material in the negative electrode composite is preferably 5% by mass or more and 90% by mass or less, and 20% by mass or more and 50% by mass or less. Is more preferable.
- the silicon oxide is preferably 5% by mass or more and 90% by mass or less, and more preferably 40% by mass or more and 70% by mass or less in the negative electrode composite.
- the carbon material is preferably 2% by mass or more and 50% by mass or less, and more preferably 2% by mass or more and 30% by mass or less in the negative electrode composite.
- Such a negative electrode composite can be produced, for example, by the method disclosed in JP-A-2004-47404. That is, when silicon oxide is subjected to CVD treatment in an atmosphere containing an organic gas such as methane gas, silicon is nanoclustered in silicon oxide and the surface is coated with carbon. Furthermore, the surface of the negative electrode composite can be treated with a silane coupling agent or the like.
- the negative electrode active material may be a mixture of particulate single silicon, silicon oxide and carbon material.
- the average particle diameter of simple silicon can be made smaller than the average particle diameter of the carbon material and silicon oxide.
- single silicon having a large volume change during charge / discharge has a relatively small particle size
- carbon materials and silicon oxides having a small volume change have a relatively large particle size. Is more effectively suppressed.
- lithium is occluded and released in the order of large particle size, small particle size, and large particle size. From this point, residual stress and residual strain are generated. It is suppressed.
- the average particle size of the single silicon is preferably 20 ⁇ m or less, and more preferably 15 ⁇ m or less.
- the average particle diameter of the silicon oxide is preferably 1/2 or less of the average particle diameter of the carbon material, and the average particle diameter of the simple silicon is 1/2 or less of the average particle diameter of the silicon oxide. preferable. By controlling the average particle diameter within the above range, the effect of reducing the volume expansion can be obtained more effectively, so that a secondary battery excellent in the balance of energy density, cycle life and efficiency can be obtained.
- the average particle diameter of single silicon or silicon oxide is measured by a measuring method such as a laser diffraction scattering method or a dynamic light scattering method.
- the negative electrode active material in the negative electrode active material layer is preferably 55% by mass or more, and more preferably 65% by mass or more.
- the binder for the negative electrode is not particularly limited.
- polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer For example, rubber (SBR), polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide, alkali-neutralized lithium salt, sodium salt, potassium salt, polyacrylic acid, carboxymethyl cellulose, or the like can be used.
- SBR rubber
- polyimide, polyamideimide, SBR, alkali-neutralized lithium salt, sodium salt, and potassium salt containing polyacrylic acid or carboxymethylcellulose are preferred because of their high binding properties.
- the amount of the binder for the negative electrode to be used is preferably 5 to 25 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. .
- Examples of the negative electrode current collector include those made of metal materials such as copper, nickel, and stainless steel. Among these, copper is particularly preferable from the viewpoint of workability and cost.
- the surface of the negative electrode current collector is preferably subjected to a roughening treatment in advance.
- the shape of the current collector is arbitrary, and examples thereof include a foil shape, a flat plate shape, and a mesh shape. Also, a perforated current collector such as expanded metal or punching metal can be used.
- the negative electrode is a coating liquid obtained by adding a solvent to a mixture of the above-described negative electrode active material, a binder, and various auxiliary agents as necessary, and kneading it into a slurry. Can be produced by applying to a current collector and drying.
- the electrolytic solution is obtained by dissolving an electrolyte mainly in a non-aqueous organic solvent.
- cyclic carbonates chain carbonates, chain esters, lactones, ethers, sulfones, nitriles, phosphate esters and the like can be used.
- cyclic carbonates examples include propylene carbonate, ethylene carbonate, fluoroethylene carbonate, butylene carbonate, vinylene carbonate, vinyl ethylene carbonate, and the like.
- chain carbonates examples include dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, and methyl butyl carbonate.
- chain esters examples include methyl formate, methyl acetate, methyl propionate, ethyl propionate, methyl pivalate, and ethyl pivalate.
- lactones include ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -methyl- ⁇ -.
- ethers such as butyrolactone include tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1, 2-dibutoxyethane and the like can be mentioned.
- Examples of sulfones include sulfolane, 3-methylsulfolane, and 2,4-dimethylsulfolane.
- Examples of nitriles include acetonitrile, propionitrile, succinonitrile, glutaronitrile, and adiponitrile.
- Examples of phosphate esters include phosphorus. And trimethyl phosphate, triethyl phosphate, tributyl phosphate, and trioctyl phosphate.
- the above solvents can be used alone or in combination of two or more.
- these solvents a combination of cyclic carbonates and chain carbonates is preferable.
- fluorinated ethers, chain esters or lactones, ethers, nitriles, sulfones, phosphoric acid are used as the third solvent. Esters may be added.
- electrolyte examples include lithium salts such as LiPF 6 , LiBF 4 , and LiClO 4 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2.
- CF 3 SO 3 Li, C 4 F 9 SO 3 Li, LiAsF 6 and LiAlCl 4, LiSbF 6, LiPF 4 (CF 3) 2, LiPF 3 (C 2 F 5) 3, LiPF 3 (CF 3) 3, (CF 2 ) 2 (SO 2 ) 2 NLi, (CF 2 ) 3 (SO 2 ) 2 Li can be mentioned.
- Lithium bis (oxalate) borate and Lithium oxaltodifluoroborate can also be used. These electrolyte salts can be used alone or in combination of two or more. Of these, LiPF 6 , LiBF 4 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 C 2 F 5 ) 2 are preferable.
- the concentration of the electrolyte in the electrolytic solution is preferably 0.1 to 3M, and more preferably 0.5 to 2M.
- the electrolyte includes other components such as vinylene carbonate, fluoroethylene carbonate, maleic anhydride, ethylene sulfite, boronic acid ester, 1,3-propane sultone, 1,5,2,4-dioxadithiane. -2,2,4,4-tetraoxide and the like may be contained as other components.
- separator As the separator, a single layer or laminated porous film or non-woven fabric such as polyolefin such as polypropylene or polyethylene, aramid or polyimide can be used. Moreover, inorganic materials such as glass fibers, polyolefin films coated with fluorine compounds and fine particles, laminates of polyethylene films and polypropylene films, and polyolefin films laminated with an aramid layer can be exemplified.
- the thickness of the separator is preferably 5 to 50 ⁇ m, and more preferably 10 to 40 ⁇ m from the viewpoint of the energy density of the battery and the mechanical strength of the separator.
- a package includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator, and a formula (1).
- R 1 and R 2 independently represent a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group, and X represents a hydrogen atom or an alkyl group.
- R 3 ⁇ R 5 are independently substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group indicates a.
- the electrolytic solution contains the solvent and the electrolyte, and further contains 0.05 wt% to 10 wt% of phosphite.
- a positive electrode active material layer having no coated positive electrode active material is formed on the positive electrode current collector, a negative electrode active material layer is formed on the negative electrode current collector, housed in the outer package, filled with the electrolyte, and the outer package Is sealed to form a sealed body, which is left at room temperature to 80 ° C. before the activation treatment.
- a coated positive electrode active material having a coating on at least a part of the surface of the positive electrode active material is formed.
- the temperature treatment performed before the activation treatment may be room temperature to 80 ° C., more preferably 40 to 60 ° C.
- the temperature treatment time can be selected in relation to the temperature, and can be set to 10 to 40 hours, for example, from the viewpoint of production efficiency, and more preferably 10 to 30 hours.
- the above-described configuration can be used for a coin battery, a cylindrical battery, a laminated battery, or the like having a single-layer or multi-layer separator.
- each electrode is connected to a metal terminal tab, placed in an outer package such as a laminate film, and an electrolyte solution is injected. And has a sealed shape.
- the exterior body has a strength capable of stably holding a positive electrode and a negative electrode laminated via a separator and an electrolyte solution impregnated therein, and is electrochemically stable and airtight with respect to these substances.
- Those having water tightness are preferred.
- stainless steel, nickel-plated iron, aluminum, titanium, or an alloy thereof, a plated material, a metal laminate resin, or the like can be used.
- the metal laminate film is obtained by laminating a metal thin film on a heat-fusible resin film, and is preferably stable and sufficient in water-tightness and air-tightness in the electrolyte solution.
- heat-fusible resins examples include polypropylene, polyethylene, polypropylene or polyethylene acid-modified products, polyphenylene sulfide, polyesters such as polyethylene terephthalate, polyamide, ethylene-vinyl acetate copolymer, ethylene-methacrylic acid copolymer, and ethylene-acrylic.
- An ionomer resin or the like in which an acid copolymer is intermolecularly bonded with metal ions can be used.
- the thickness of the heat-fusible resin film is preferably 10 to 200 ⁇ m, and more preferably 30 to 100 ⁇ m.
- the metal thin film polypropylene, polyethylene, etc. coated with aluminum, silica, and alumina can be used. From the viewpoint of suppressing volume expansion, an aluminum laminate film is preferred. Further, examples of the laminate film include those obtained by laminating a protective layer made of a film of polyester such as polyethylene terephthalate or polyamide on the surface of the laminate film where the metal thin film is not provided.
- the lithium secondary battery shown in FIG. 1 has a positive electrode 10 in which the positive electrode active material layer 1 is provided on both sides or one side of the positive electrode current collector 1A, and a negative electrode active material layer 2 on both sides or one side of the negative electrode current collector 2A.
- the negative electrode 20 thus laminated is laminated via the porous separator 3, and the aluminum vapor-deposited laminate film outer package 4 is filled together with an electrolytic solution (not shown).
- the formed negative electrode tab 2 ⁇ / b> B is connected, and the tip is drawn out of the exterior body 4.
- Example 1 Production of positive electrode active material for a lithium secondary battery 0.09 g of diethyl phosphonate was dissolved in 90 g of diethyl carbonate (DEC) to prepare a coating forming solution. 50 g of lithium transition metal composite oxide (Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 ) was added to the obtained coating forming solution, and left at 45 ° C. for 18 hours. Lithium oxide is filtered off from the solution and washed with DEC. The washed lithium oxide is dried at 120 ° C. overnight under a nitrogen stream and coated with diethyl phosphonate. Got.
- DEC diethyl carbonate
- Example 2 Production of positive electrode for lithium secondary battery 92% by mass of lithium transition metal composite oxide (Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 ), 4% by mass of ketjen black, and 4% by mass of polyvinylidene fluoride % Slurry was prepared. And the prepared slurry was apply
- lithium transition metal composite oxide Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2
- ketjen black 4% by mass of polyvinylidene fluoride % Slurry was prepared.
- the prepared electrode is put in an aluminum laminate film, and a DEC solution of phosphonate (concentration 1% by mass) is added thereto, vacuum impregnation treatment is performed, the film is sealed, and then left in a constant temperature bath at 45 ° C. for 24 hours. did.
- the electrode was taken out, washed with DEC, and dried at 120 ° C. for 1 hour under a nitrogen stream to obtain a positive electrode having a coated positive electrode active material coated with diethyl phosphonate.
- Example 3 Production of positive electrode for lithium secondary battery 91.8% by mass of lithium transition metal composite oxide (Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 ), 4% by mass of Ketjen Black, and polyvinylidene fluoride A slurry containing 4% by mass and 0.2% by mass of diethyl phosphonate was prepared to obtain a positive electrode active material layer forming liquid. The prepared slurry was applied onto a positive electrode current collector made of aluminum foil (thickness 20 ⁇ m) and dried to prepare a positive electrode active material layer having a thickness of 175 ⁇ m. A positive electrode active material layer was formed on the surface of the positive electrode current collector on which the positive electrode active material layer was not provided in the same procedure, and a positive electrode having positive electrode active material layers on both sides was also produced.
- lithium transition metal composite oxide Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2
- Ketjen Black 4% by mass of Ketjen Black
- polyvinylidene fluoride A s
- Example 4 Manufacture of positive electrode for lithium secondary battery Implementation was carried out except that a DEC solution (concentration 1.2% by mass) of triethyl phosphite was used instead of a DEC solution (concentration 1% by mass) of diethyl phosphonate.
- a positive electrode active material layer was prepared in the same manner as in Example 2 to obtain a positive electrode having a coated positive electrode active material coated with triethyl phosphite.
- Example 5 Manufacture of positive electrode for lithium secondary battery A DEC solution (concentration: 2.2 mass%) of di (2-ethylhexyl) phosphonate was used instead of a DEC solution of diethyl phosphonate (concentration: 1 mass%). Otherwise, a positive electrode active material layer was prepared in the same manner as in Example 2 to obtain a positive electrode having a coated positive electrode active material coated with di (2-ethylhexyl) phosphonate.
- Example 6 Production of positive electrode for lithium secondary battery A DEC solution (concentration 2.7% by mass) of diphenyl monodecyl phosphonate was used instead of a DEC solution (concentration 1% by mass) of diethyl phosphonate. A positive electrode active material layer was prepared in the same manner as in Example 2 to obtain a positive electrode having a coated positive electrode active material coated with diphenyl monodecyl phosphonate.
- Example 7 Manufacture of positive electrode for lithium secondary battery Implementation was conducted except that a DEC solution of tridecyl phosphite (concentration of 3.4% by mass) was used instead of a DEC solution of diethyl phosphonate (concentration of 1% by mass).
- a positive electrode active material layer was prepared in the same manner as in Example 2 to obtain a positive electrode having a coated positive electrode active material coated with tridecyl phosphite.
- Example 8 Production of positive electrode for lithium secondary battery Example 2 except that a DEC solution of diethyl phosphonate (concentration 1% by mass) was used instead of a DEC solution of diethyl phosphonate (concentration 1% by mass).
- a positive electrode active material layer was prepared in the same manner as above to obtain a positive electrode having a coated positive electrode active material coated with diethyl ethylphosphonate.
- Example 9 Production of positive electrode for lithium secondary battery Example except that positive electrode active material Li 1.23 Fe 0.15 Ni 0.15 Mn 0.46 O 2 was used instead of positive electrode active material Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 A positive electrode active material layer was produced in the same manner as in Example 2 to obtain a positive electrode.
- Example 10 Manufacture of positive electrode for lithium secondary battery Example except that positive electrode active material Li 1.2 Ni 0.18 Mn 0.54 Co 0.08 O 2 was used instead of positive electrode active material Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 A positive electrode active material layer was produced in the same manner as in Example 2 to obtain a positive electrode.
- Example 2 is the same as Example 2 except that the positive electrode active material LiNi 0.8 Co 0.15 Al 0.05 O 2 was used instead of the positive electrode active material Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2. Similarly, a positive electrode active material layer was produced to obtain a positive electrode.
- the positive electrode active material LiNi 0.8 Co 0.15 Al 0.05 O 2 was used instead of the positive electrode active material Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2.
- a positive electrode active material layer was produced to obtain a positive electrode.
- Example 12 Production of Positive Electrode for Lithium Secondary Battery Example 2 is different from Example 2 except that the positive electrode active material LiNi 0.8 Co 0.1 Mn 0.1 O 2 was used instead of the positive electrode active material Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2. Similarly, a positive electrode active material layer was produced to obtain a positive electrode.
- the positive electrode active material LiNi 0.8 Co 0.1 Mn 0.1 O 2 was used instead of the positive electrode active material Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2.
- a positive electrode active material layer was produced to obtain a positive electrode.
- Example 13 Production of lithium secondary battery A slurry containing 92% by weight of lithium oxide coated with diethyl phosphonate obtained in Example 1, 4% by weight of ketjen black, and 4% by weight of polyvinylidene fluoride was prepared. did. And the prepared slurry was apply
- a slurry containing 85% by weight of SiO having an average particle size of 15 ⁇ m and 15% by weight of polyamic acid was prepared. And it apply
- EC ethylene carbonate
- DEC diethyl carbonate
- a positive electrode tab and a negative electrode tab were welded to each of the positive electrode current collector and the negative electrode current collector, and then a porous film separator was sandwiched between the produced positive electrode and negative electrode to form a laminate.
- the laminated body was covered with two aluminum laminate film exterior bodies, and three sides of the exterior body were sealed by thermal fusion, and then the produced electrolyte solution was impregnated at an appropriate degree of vacuum. Thereafter, under reduced pressure, one side of the outer package that had not been heat-sealed was heat-sealed and sealed to produce a lithium battery before activation treatment.
- the prepared lithium battery before activation treatment was charged to 4.5 V with a current of 20 mA (20 mA / g) per 1 g of the positive electrode active material. Thereafter, the battery was discharged to 1.5 V at a current of 20 mA (20 mA / g) per 1 g of the positive electrode active material. Similarly, after discharging to 1.5 V, the battery was charged to 4.5 V at 20 mA / g, then discharged to 1.5 V, and an activation treatment was repeated to repeat the charge / discharge cycle twice. Thereafter, the sealed portion of the outer package was broken and the pressure was reduced to remove the gas inside the battery, and the broken portion was resealed, thereby producing a lithium secondary battery.
- the battery was discharged to 1.5 V with a current of 40 mA / g. Under these conditions, charging / discharging was repeated 30 times in total. From the ratio between the initial discharge capacity obtained in the first cycle and the discharge capacity obtained in the 30th cycle, the capacity retention rate after 30 cycles was determined. The results are shown in Table 2. [Gas generation amount] The amount of gas generated after 30 cycles was measured by the Archimedes method, and the amount of gas generated in the comparative example using the same positive electrode active material having no coating was defined as 100. The results are shown in Table 2.
- Example 14 Production of lithium secondary battery A lithium secondary battery was produced in the same manner as in Example 13 except that the positive electrode obtained in Example 2 was used instead of the positive electrode produced in Example 13. Evaluation was performed. Results 2 are shown in Table 2.
- Example 15 Production of lithium secondary battery A lithium secondary battery was produced in the same manner as in Example 13 except that the positive electrode obtained in Example 3 was used instead of the positive electrode produced in Example 13. Evaluation was performed. Results 2 are shown in Table 2.
- Example 16 Production of lithium secondary battery A lithium secondary battery was produced in the same manner as in Example 13 except that the positive electrode obtained in Example 4 was used instead of the positive electrode produced in Example 13. Evaluation was performed. Results 2 are shown in Table 2.
- Example 17 Production of lithium secondary battery A lithium secondary battery was produced in the same manner as in Example 13 except that the positive electrode obtained in Example 5 was used instead of the positive electrode produced in Example 13. Evaluation was performed. Results 2 are shown in Table 2.
- Example 18 Production of lithium secondary battery A lithium secondary battery was produced in the same manner as in Example 13 except that the positive electrode obtained in Example 6 was used instead of the positive electrode produced in Example 13. Evaluation was performed. Results 2 are shown in Table 2.
- Example 19 Production of lithium secondary battery A lithium secondary battery was produced in the same manner as in Example 13 except that the positive electrode obtained in Example 7 was used instead of the positive electrode produced in Example 13. Evaluation was performed. Results 2 are shown in Table 2.
- Example 20 Production of lithium secondary battery A lithium secondary battery was produced in the same manner as in Example 13 except that the positive electrode obtained in Example 8 was used instead of the positive electrode produced in Example 13. Evaluation was performed. Results 2 are shown in Table 2.
- Example 21 Production of lithium secondary battery A lithium secondary battery was produced in the same manner as in Example 13 except that the positive electrode obtained in Example 9 was used instead of the positive electrode produced in Example 13. Evaluation was performed. Results 2 are shown in Table 2.
- Example 22 Production of lithium secondary battery A lithium secondary battery was produced in the same manner as in Example 13 except that the positive electrode obtained in Example 10 was used instead of the positive electrode produced in Example 13. Evaluation was performed. Results 2 are shown in Table 2.
- Example 23 Production of lithium secondary battery A lithium secondary battery was produced in the same manner as in Example 13 except that the positive electrode obtained in Example 11 was used instead of the positive electrode produced in Example 13. Evaluation was performed. Results 2 are shown in Table 2.
- Example 24 A lithium secondary battery was produced and evaluated in the same manner as in Example 13 except that the positive electrode obtained in Example 12 was used instead of the positive electrode produced in Example 13. Results 2 are shown in Table 2.
- Example 25 Instead of the lithium transition metal oxide having a diethyl phosphonate coating obtained in Example 1, a lithium transition metal oxide (Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 ) not forming the diethyl phosphonate coating was used.
- the exterior body was sealed in the same manner as in Example 13 except that an electrolytic solution to which 1% by mass of diethyl phosphonate was added was used to prepare a sealed body.
- the produced sealing body was left to stand in a 45 degreeC thermostat for 24 hours, the lithium secondary battery was produced, and it evaluated similarly to Example 13.
- FIG. Results 2 are shown in Table 2.
- Example 26 Instead of the lithium transition metal oxide having a diethyl phosphonate coating obtained in Example 1, a lithium transition metal oxide (Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 ) not forming the diethyl phosphonate coating was used.
- a lithium secondary battery was produced in the same manner as in Example 25 except that an electrolytic solution to which 1% by mass of triethyl phosphite was added was used instead of the electrolytic solution to which 1% of diethyl phosphonate was added. Evaluation was performed. Results 2 are shown in Table 2.
- Example 27 Instead of the lithium transition metal oxide having a diethyl phosphonate coating obtained in Example 1, a lithium transition metal oxide (Li 1.26 Fe 0.11 Ni 0.11 Mn 0.52 O 2 ) not forming the diethyl phosphonate coating was used.
- a lithium secondary battery was produced in the same manner as in Example 25 except that an electrolytic solution to which 1% by mass of ethylphosphonate was added was used instead of the electrolytic solution to which 1% of diethyl phosphonate was added. Evaluation was performed. Results 2 are shown in Table 2.
- [Comparative Example 1] A lithium secondary battery was prepared and evaluated in the same manner as in Example 13 except that the lithium transition metal composite oxide prepared without using diethyl phosphonate was used. Results 2 are shown in Table 2.
- [Comparative Example 2] A lithium secondary battery was produced and evaluated in the same manner as in Example 13 except that the positive electrode was replaced with the positive electrode produced in the same manner as in Example 8 except that diethyl ethylphosphonate was not used. Results 2 are shown in Table 2.
- [Comparative Example 3] A lithium secondary battery was produced and evaluated in the same manner as in Example 13 except that the positive electrode was replaced with the positive electrode produced in the same manner as in Example 9 except that diethyl phosphonate was not used. Results 2 are shown in Table 2.
- Example 21 is reduced to 31% compared to Comparative Example 2
- Example 22 is reduced to 59% compared to Comparative Example 3
- Example 23 is 60% compared to Comparative Example 4. It was confirmed that Example 24 was reduced to 64% as compared with Comparative Example 5.
- Examples 13 to 27 were improved by 10 points or more compared to Comparative Examples 1 to 5.
- the lithium secondary battery using the positive electrode active material coated with at least one selected from the group consisting of the phosphonate ester and phosphite triester of the present invention suppresses the gas generation accompanying the charge / discharge cycle. And exhibits excellent characteristics that a high capacity retention ratio can be obtained.
- the lithium secondary battery using the positive electrode active material for lithium secondary battery or the positive electrode for lithium secondary battery according to the present invention is applicable to all industrial fields that require a power source, and to industrial fields related to transportation, storage and supply of electrical energy.
- R 1 and R 2 independently represent a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group, and X represents an alkyl group.
- R 3 to R 5 each independently represents a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group.
- a cathode active material for a lithium secondary battery comprising a coated cathode active material having a coating containing at least one selected from acid triesters.
- the positive electrode active material for lithium secondary batteries according to Supplementary Note 1 or 2, including seeds.
- the lithium transition metal composite oxide containing lithium in excess of the stoichiometric composition is Li 1 + a Ni x Mn y O 2 (0 ⁇ a ⁇ 0.5, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), and At least selected from Li 1 + a Ni x Mn y M z O 2 (0 ⁇ a ⁇ 0.5, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, M represents Co or Fe).
- the positive electrode active material for lithium secondary batteries according to supplementary note 3, including one type.
- a positive electrode for a lithium secondary battery comprising a positive electrode active material layer containing the positive electrode active material for a lithium secondary battery according to any one of appendices 1 to 4 on a positive electrode current collector.
- a lithium secondary battery comprising the positive electrode for a lithium secondary battery according to appendix 5, a negative electrode including a negative electrode active material, an electrolytic solution impregnated with these electrodes, and an exterior body that houses them.
- Appendix 7 The lithium secondary battery according to appendix 6, wherein the negative electrode contains one or more selected from a carbon material, silicon, and silicon oxide.
- Appendix 8 The lithium secondary battery according to appendix 6 or 7, wherein the electrolytic solution contains one or more selected from a chain carbonate solvent and a cyclic carbonate solvent.
- R 1 and R 2 independently represent a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group, and X represents an alkyl group.
- R 3 to R 5 each independently represents a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group.
- a lithium secondary battery comprising a coating positive electrode active material formed by immersing in a coating forming liquid containing at least one selected from acid triesters to form a coating on at least a part of the positive electrode active material For producing a positive electrode active material for use.
- a positive electrode active material layer-forming liquid containing a positive electrode active material for a lithium secondary battery obtained by the method for producing a positive electrode active material for a lithium secondary battery according to appendix 9 and a positive electrode binder is prepared.
- R 1 and R 2 independently represent a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group, and X represents an alkyl group.
- R 3 to R 5 each independently represents a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group.
- a positive electrode active material layer including a positive electrode active material and a positive electrode binder is formed on a positive electrode current collector, and the positive electrode active material layer is represented by the formula (1)
- R 1 and R 2 independently represent a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group, and X represents an alkyl group.
- R 3 to R 5 each independently represents a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group.
- a coating positive electrode active material is formed by immersing in a coating forming solution containing at least one selected from acid triesters or applying the coating forming solution to form a coating on at least a part of the positive electrode active material.
- the manufacturing method of the positive electrode for lithium secondary batteries characterized by the above-mentioned.
- the exterior body includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator, and a formula (1)
- R 1 and R 2 independently represent a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group, and X represents an alkyl group.
- R 3 ⁇ R 5 are independently substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group indicates a.
- a method for producing a lithium secondary battery comprising: forming a lithium secondary battery.
- the positive electrode active material has the formula (1)
- R 1 and R 2 are independently a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or indicate the unsubstituted aryl group
- X is a hydrogen atom or an alkyl group
- R 3 to R 5 each independently represents a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group.
- a cathode active material for a lithium secondary battery comprising a coated cathode active material having a coating containing at least one selected from acid triesters.
- the lithium transition metal composite oxide containing lithium in excess of the stoichiometric composition is Li 1 + a Ni x Mn y O 2 (0 ⁇ a ⁇ 0.5, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), and li 1 + a Ni x Mn y M z O 2 (0 ⁇ a ⁇ 0.5,0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1,0 ⁇ z ⁇ 1, M is. showing a Co or Fe) at least selected from The positive electrode active material for lithium secondary batteries according to supplementary note 16, including one type.
- a positive electrode for a lithium secondary battery comprising a positive electrode active material layer containing the positive electrode active material for a lithium secondary battery according to any one of appendices 14 to 17 on a positive electrode current collector.
- a lithium secondary battery comprising: the positive electrode for a lithium secondary battery according to appendix 18, a negative electrode including a negative electrode active material, an electrolytic solution impregnated with these electrodes, and an exterior body that houses them.
- Appendix 20 The lithium secondary battery according to appendix 19, wherein the negative electrode contains one or more selected from a carbon material, silicon, and silicon oxide.
- Appendix 21 The lithium secondary battery according to appendix 19 or 20, wherein the electrolytic solution contains one or more selected from a chain carbonate solvent and a cyclic carbonate solvent.
- R 1 and R 2 independently represent a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group, and X represents a hydrogen atom or an alkyl group.
- R 3 to R 5 each independently represents a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group.
- a lithium secondary battery comprising a coating positive electrode active material formed by immersing in a coating forming liquid containing at least one selected from acid triesters to form a coating on at least a part of the positive electrode active material For producing a positive electrode active material for use.
- a positive electrode active material layer-forming liquid containing a positive electrode active material for a lithium secondary battery obtained by the method for producing a positive electrode active material for a lithium secondary battery described in Appendix 22 and a positive electrode binder is prepared.
- R 1 and R 2 are independently a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or indicate the unsubstituted aryl group
- X is a hydrogen atom or an alkyl group
- R 3 to R 5 each independently represents a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group.
- a positive electrode active material layer including a positive electrode active material and a positive electrode binder is formed on a positive electrode current collector, and the positive electrode active material layer is represented by the formula (1)
- R 1 and R 2 are independently a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or indicate the unsubstituted aryl group
- X is a hydrogen atom or an alkyl group
- R 3 to R 5 each independently represents a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group.
- a coating positive electrode active material is formed by immersing in a coating forming solution containing at least one selected from acid triesters or applying the coating forming solution to form a coating on at least a part of the positive electrode active material.
- the manufacturing method of the positive electrode for lithium secondary batteries characterized by the above-mentioned.
- the exterior body includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator, and a formula (1)
- R 1 and R 2 are independently a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or indicate the unsubstituted aryl group
- X is a hydrogen atom or an alkyl group
- R 3 ⁇ R 5 are independently substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, or a substituted or unsubstituted aryl group indicates a.
- a method for producing a lithium secondary battery comprising: forming a lithium secondary battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
充放電に伴うガスの発生を抑制することができ、充放電に伴うガスの発生を抑制することができる正極活物質、これを用いた正極極及びリチウム二次電池、その製造方法を提供することにある。 正極活物質が、特定のホスホン酸エステル及び特定の亜リン酸トリエステルから選ばれる少なくとも1種を含む被覆を有する被覆正極活物質を含む。
Description
本発明は、充放電に伴うガスの発生を抑制し、電池の容量の低下を抑制したリチウム二次電池用正極活物質、これを用いたリチウム二次電池用正極、これを用いたリチウム二次電池及びこれらの製造方法に関する。
リチウム二次電池は、エネルギー密度が高い、自己放電が小さい、長期信頼性に優れる等の利点により、ノート型パソコンや携帯電話等の小型電子機器などの電池として実用化されている。また、近年では、電気自動車や家庭用蓄電池、電力貯蔵用へのリチウム二次電池の適用が進んでいる。
一般的なリチウム二次電池は、それぞれ活物質を含む活物質層が集電体上に形成された正極と負極がセパレーターを介して対峙して積層され、必要に応じて複数が積層された積層体とされ、これらが非水性の電解液に漬浸されて構成されている。正極活物質として、高エネルギー密度のリチウム二次電池を実現するために、Li1.19Mn0.52Fe0.22O1.98で表される層状岩塩構造を有するリチウム金属複合酸化物(特許文献1)や、LiNi0.5Mn1.5O4で表されるリチウム金属複合酸化物(特許文献2)が開示されている。
このようなリチウム二次電池において、充放電に伴い、負極表面では電解液溶媒の還元分解が生じ、正極表面では電解液溶媒の酸化分解が生じ、その分解生成物が電極表面に堆積して抵抗を増大させたり、場合によっては、溶媒の分解により発生したガスによって電池が膨れたりすることがある。その結果、電池の保存特性の低下や、リチウム二次電池のサイクル特性の低下が起こり、電池特性が低下する問題があった。
このような問題を回避するために、電解液中に、ビニレンカーボネートやフルオロエチレンカーボネート、マレイン酸無水物等の保護被膜生成機能を有する化合物を添加し、初期充電時にこれらの化合物を意図的に分解させ、その分解物が電極表面に保護被膜SEI(Solid Electrolyte Interface)を形成し、溶媒の分解を抑制することが知られている(非特許文献1)。
しかしながら、これらの添加剤は負極表面にSEIを形成するものの、正極における溶媒の酸化分解によるガス発生の抑制に対して十分な効果が得られていない。
特に、上記のような4.5V以上の電位を有する正極活物質を使用した高電位のリチウム二次電池は従来の一般的なリチウム二次電池の電圧3.5~4.2Vに比べ、正極において溶媒の酸化分解によるガス発生が起こりやすくなる。
正極活物質表面に保護被膜を形成させ、正極からのガスの発生を抑制する方法として、正極活物質にシランカップリング剤およびエポキシ樹脂を被覆する方法(特許文献3)や、ホウ酸化合物を被着させる方法(特許文献4)が開示されている。しかしながら、これらの正極の保護被膜では4.5V以上の高電位正極を用いたリチウム二次電池においては、充放電に伴う正極での電解液の分解を抑制できず、ガス発生を十分に抑制することができないという問題点があった。
その他、リチウム複合酸化物を含む正極活物質に亜リン酸を混合して調製した正極合剤スラリーを用いて正極活物質層を形成することにより、正極活物質層中のバインダーや導電助剤の分布を変えて、正極活物質の体積密度を特定の範囲とし、巻回時や巻回後のプレス時の破損を抑制することができる正極が開示され(特許文献5)、電解液に亜リン酸トリメチルや亜リン酸ジメチルを含有させることにより、電解液の難燃性を向上させ、過充電されて負極にデンドライトが形成されたり、正極と負極が短絡したとき、大きな電流が流れるのを抑制できるリチウム二次電池が開示されている(特許文献6)。
Journal.Power Sources、第162号、第2巻、p.1379-1394(2006)
本発明の課題は、リチウム二次電池において充放電に伴うガスの発生を抑制することができ、特にリチウム二次電池の使用電圧が高い場合であっても充放電に伴うガスの発生を抑制することができる正極活物質、これを用いた正極、及びリチウム二次電池、その製造方法を提供することにある。
本発明のリチウム二次電池用正極活物質は、正極活物質が、式(1)
(式(1)中、R1及びR2は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示し、Xは水素原子又はアルキル基を示す。)で表されるホスホン酸エステル、及び式(2)
(式(2)中、R3~R5は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示す。)で表される亜リン酸トリエステルから選ばれる少なくとも1種を含む被覆を有する被覆正極活物質を含むことを特徴とする。
また、本発明のリチウム二次電池は、上記リチウム二次電池用正極と、リチウムイオンを吸蔵放出可能な負極活物質を含む負極と、これらを含浸する電解液とを有することを特徴とする。
また、本発明のリチウム二次電池用正極は、正極集電体上に、上記リチウム二次電池用正極活物質を含む正極活物質層を有することを特徴とし、本発明のリチウム二次電池は、上記リチウム二次電池用正極と、負極活物質を含む負極と、これらの電極を含浸する電解液と、これらを収納する外装体とを含むことを特徴とする。
また、本発明のリチウム二次電池用正極活物質の製造方法は、正極活物質を、式(1)
(式(1)中、R1及びR2は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示し、Xは水素原子又はアルキル基を示す。)で表されるホスホン酸エステル、及び式(2)
(式(2)中、R3~R5は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示す。)で表される亜リン酸トリエステルから選ばれる少なくとも1種を含む被覆形成用液に浸漬して、前記正極活物質の少なくとも一部に被覆を形成して被覆正極活物質を形成することを特徴とする。
また、本発明のリチウム二次電池用正極の製造方法は、上記リチウム二次電池用正極活物質の製造方法により得られたリチウム二次電池用正極活物質と、正極結着剤とを含む正極活物質層形成用液を調製し、該正極活物質層形成用液を用いて、正極集電体上に正極活物質層を形成することを特徴とする。
また、本発明のリチウム二次電池用正極の製造方法は、正極活物質と、正極結着剤と、式(1)
(式(1)中、R1及びR2は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示し、Xは水素原子又はアルキル基を示す。)で表されるホスホン酸エステル、及び式(2)
(式(2)中、R3~R5は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示す。)で表される亜リン酸トリエステルから選ばれる少なくとも1種とを含む正極活物質層形成用液を調製し、該正極活物質層形成用液を用いて、正極集電体上に正極活物質層を形成することを特徴とする。
また、本発明のリチウム二次電池の製造方法は、正極活物質と正極結着剤とを含む正極活物質層を正極集電体上に形成し、前記正極活物質層を、式(1)
(式(1)中、R1及びR2は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示し、Xは水素原子又はアルキル基を示す。)で表されるホスホン酸エステル、及び式(2)
(式(2)中、R3~R5は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示す。)で表される亜リン酸トリエステルから選ばれる少なくとも1種を含む被覆形成用液に浸漬し、又は該被覆形成用液を塗布して、前記正極活物質の少なくとも一部に被覆を形成し被覆正極活物質を形成することを特徴とする。
また、本発明のリチウム二次電池の製造方法は、外装体に、正極活物質を含む正極と、負極活物質を含む負極と、セパレーターと、式(1)
(式(1)中、R1及びR2は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示し、Xは水素原子又はアルキル基を示す。)で表されるホスホン酸エステル、及び式(2)
(式(2)中、R3~R5は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示す。)で表される亜リン酸トリエステルから選ばれる少なくとも1種を0.05wt%から10wt%含有する電解液とを充填し、前記外装体を封止して封止体を形成した後、活性化処理前に、該封止体を室温~80℃に放置して前記正極活物質の表面の少なくとも一部に式(1)で表されるホスホン酸エステル又は式(2)で表される亜リン酸トリエステル由来の被覆を形成することを特徴とする。
本発明のリチウム二次電池用正極活物質やこれを用いたリチウム二次電池用正極、リチウム二次電池は、特定のホスホン酸エステルや特定の亜リン酸トリエステルの被覆を有する被覆正極活物質を含むため、リチウム電池の使用電圧を高電位に設定した場合であっても、正極での溶媒の酸化分解を抑制でき、ガス発生を抑制することができる。
[リチウム二次電池用正極活物質]
本発明のリチウム二次電池用正極活物質は、正極活物質が、式(1)
本発明のリチウム二次電池用正極活物質は、正極活物質が、式(1)
(式(1)中、R1及びR2は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示し、Xは水素原子又はアルキル基を示す。)で表されるホスホン酸エステル、及び式(2)
(式(2)中、R3~R5は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示す。)で表される亜リン酸トリエステルから選ばれる少なくとも1種を含む被覆を有する被覆正極活物質を含むものであればよい。
上記正極活物質としては、特に限定されるものではないが、作動電圧が4.2V以上のものが好ましく、具体的には、LiMnO2、LiMn2O4等のLixMn2O4(0<x<2)、LiCoO2、LiNiO2等のリチウム遷移金属酸化物や、LiCo1-xNixO2(0.01<x<1)、LiNixCoyMnzO2(x+y+z=1)、LiNi0.5Mn1.5O4等のリチウムと2種以上の遷移金属の酸化物であるリチウム遷移金属複合酸化物、LiFePO4等のオリビン構造を有するリン酸化合物を好適なものとして挙げることができる。これらは1種又は2種以上を組み合わせて用いることができる。
これらのうち、使用電圧が4.5V以上のリチウム二次電池で使用できる正極活物質としては、コバルト、マンガン、ニッケル等の複数種の遷移金属とリチウムからなるリチウム遷移金属複合酸化物を挙げることができ、特に、LiNi0.5Mn1.5O4等のスピネル構造を有するものは4.8V以上の作業電圧を有し、好適に用いることができる。
また、これらのリチウム遷移金属複合酸化物において化学量論組成よりもLiを過剰にしたリチウム過剰遷移金属複合酸化物も4.5V以上の高電位リチウム二次電池において使用することができる。リチウム過剰遷移金属複合酸化物としては、Li1+aNixMnyO2(0<a≦0.5、0<x<1、0<y<1)、Li1+aNixMnyMzO2(0<a≦0.5、0<x<1、0<y<1、0<z<1、Mは、CoまたはFe)、LiαNiβCoγAlδO2(1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)等が挙げられる。
更に、サイクル特性や安全性の向上、また高い充電電位での使用を可能にするため、リチウム遷移金属複合酸化物の一部を他の元素で置換したものも高電位リチウム二次電池で使用することができる。例えば、コバルト、マンガン、ニッケルの一部をSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Ge、Zn、Sm、Cu、Bi、Mo、La等の少なくとも1種以上の元素で置換したり、酸素の一部をSやFで置換したり、またはこれらの元素を含有する酸化物、例えば、SnO、MgO、TiO2、Al2O3、ZrO、V2O5、Ga2O3、GeO2、Sm2O3、ZnO、MoO3、La2O3等で正極表面を被覆することもできる。
これらのリチウム遷移金属複合酸化物としては、具体的には、例えば、LiCo0.8Ni0.2O2、LiNi1/2Mn3/2O4、LiNi1/3Co1/3Mn1/3O2、LiNi0.4Co0.3Mn0.3O2(NCM433と略記)、LiNi0.5Co0.2Mn0.3O2(NCM523と略記)、LiNi0.5Co0.3Mn0.2O2(NCM532と略記)、LiNi0.8Co0.15Al0.05O2、LiNi0.8Co0.1Mn0.1O2、Li1.2Mn0.4Ni0.4O2、Li1.2Mn0.6Ni0.2O2、Li1.19Mn0.52Fe0.22O1.98、Li1.21Mn0.46Fe0.15Ni0.15O2、LiMn1.5Ni0.5O4、Li1.2Mn0.4Fe0.4O2、Li1.21Mn0.4Fe0.2Ni0.2O2、Li1.26Mn0.37Ni0.22Ti0.15O2、LiMn1.37Ni0.5Ti0.13O4.0、Li1.2Mn0.56Ni0.17Co0.07O2、Li1.2Mn0.54Ni0.13Co0.13O2、Li1.2Mn0.56Ni0.17Co0.07O2、Li1.2Mn0.54Ni0.13Co0.13O2、LiNi0.8Co0.15Al0.05O2、LiNi0.5Mn1.48Al0.02O4、LiNi0.5Mn1.45Al0.05O3.9F0.05、LiNi0.4Co0.2Mn1.25Ti0.15O4、Li1.23Fe0.15Ni0.15Mn0.46O2、Li1.26Fe0.11Ni0.11Mn0.52O2、Li1.2Fe0.20Ni0.20Mn0.40O2、Li1.29Fe0.07Ni0.14Mn0.57O2、Li1.26Fe0.22Mn0.37Ti0.15O2、Li1.29Fe0.07Ni0.07Mn0.57O2.8、Li1.30Fe0.04Ni0.07Mn0.61O2、Li1.2Ni0.18Mn0.54Co0.08O2、Li1.23Fe0.03Ni0.03Mn0.58O2等を挙げることができる。
これらは1種又は2種以上を組み合わせて用いることができる。具体的には、NCM532またはNCM523とNCM433とを9:1~1:9の範囲、例えば、2:1で混合して使用することもできる。さらに、式(3)において、xが0.4以下のNiの含有量が高い化合物と、Niの含有量が0.5を超えない化合物、例えばxが0.5以上のNCM433とを混合することで、高容量で熱安定性の高い電池を構成することもできる。
式:LiyNi(1-x)MxO2 (3)
(但し、0≦x<1、0<y≦1.2、MはCo、Al、Mn、Fe、Ti及びBからなる群より選ばれる少なくとも1種の元素を示す。)
[被覆正極活物質]
被覆正極活物質は、上記正極活物質の少なくとも一部に、式(1)で表されるホスホン酸エステル及び式(2)で表される亜リン酸トリエステル(これらを亜リン酸エステルともいう。)から選ばれる少なくとも1種を含む被覆を有するものである。
式:LiyNi(1-x)MxO2 (3)
(但し、0≦x<1、0<y≦1.2、MはCo、Al、Mn、Fe、Ti及びBからなる群より選ばれる少なくとも1種の元素を示す。)
[被覆正極活物質]
被覆正極活物質は、上記正極活物質の少なくとも一部に、式(1)で表されるホスホン酸エステル及び式(2)で表される亜リン酸トリエステル(これらを亜リン酸エステルともいう。)から選ばれる少なくとも1種を含む被覆を有するものである。
上記ホスホン酸エステル又は亜リン酸トリエステルが正極活物質に被覆される際の化学反応等の詳細は不明であるが、例えば、ホスホン酸エステルでは、正極活物質表面において、式(4)(式中のMn+は金属イオンを表す。)に示すように、ホスホン酸エステルが正極活物質表面に存在するヒドロキシル基と反応することで、正極活物質表面に被覆されることが考えられる。
しかしながら、ホスホン酸エステル又は亜リン酸トリエステルは、正極活物質と化学結合を形成していなくても、物理的に正極活物質に付着していてもよい。
ホスホン酸エステル又は亜リン酸エステルによって正極活物質表面を被覆すると、充放電に伴う正極活物質の表面における電解液の化学反応や分解が抑制されるため、正極からのガス発生が抑制され、リチウム二次電池が長期に亘って安定性を有し、寿命を延長させる効果が得られる。その結果、容量が大きく、エネルギー密度が高く、充放電サイクルの安定性に優れたリチウムイオン二次電池が得られる。
式(1)で表されるホスホン酸エステル、式(2)で表される亜リン酸トリエステルにおいて、式中、R1~R5は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基である。また、Xは水素原子又はアルキル基である。
R1~R5が示す無置換の炭素数1~18のアルキル基としては、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、ペンチル基、n-ヘキシル基、2-エチルヘキシル基、オクチル基、デシル基、ドデシル基、トリデシル基、又はオクタデシル基等が挙げられる。アルキル基は、一つ以上の水素原子が置換されていてもよく、置換基としては、フッ素原子、炭素数1~5のアルコキシ基、又はアリール基を挙げることができる。これらは独立してアルキル基の置換基となり得る。置換基を有するアルキル基としては、具体的には、トリフルオロメチル基、トリフルオロエチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、又はベンジル基等を挙げることができる。
また、無置換のアリール基としては、フェニル基、ナフチル基等が挙げられる。アリール基の置換基としては、上記アルキル基における置換基と同様の置換基を挙げることができ、置換基を有するアリール基としては、トリル基、ノニルフェニル基、4-フルオロフェニル基、ペンタフルオロフェニル基等を挙げることができる。
R1~R5の好ましい例としては、例えば、メチル基、エチル基、イソプロピル基、n-ブチル基、イソブチル基、2-エチルヘキシル基、オクチル基、デシル基、ドデシル基、オクタデシル基、トリデシル基、ベンジル基、フェニル基、トリル基、又はノニルフェニル基等を挙げることができる。
Xが示すアルキル基としては、炭素数1から8であることが好ましく、フッ素原子等の置換基を有していてもよい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、ペンチル基、n-ヘキシル基、2-エチルヘキシル基、オクチル基等が好ましい。
上記ホスホン酸エステル及び亜リン酸トリエステルの具体例を表1-1~1-3に挙げる。
このようなホスホン酸エステル及び亜リン酸トリエステルを用いて形成される被覆正極活物質において、ホスホン酸エステル及び亜リン酸トリエステルAは、正極活物質Bに対して質量比(A/B)0.0005~0.5であることが好ましく、より好ましくは0.001~0.3である。
上記正極活物質層の密度は1.0g/cm3以上、3.0g/cm3以下であることが好ましい。正極活物質層の密度が1.0g/cm3以上であれば、放電容量の絶対値が小さくなるのを抑制することができる。一方、正極活物質層の密度が3.0g/cm3以下であれば、電解液が電極へ容易に含浸し、放電容量が低下するのを抑制することができる。
[リチウム二次電池用正極活物質の製造方法]
このような被覆正極活物質は、上記ホスホン酸エステル又は亜リン酸トリエステルを含む被覆形成用液に浸漬して、上記正極活物質の少なくとも一部に被覆を形成して調製することができる。即ち、本願のリチウム二次電池用正極活物質の製造方法は、正極活物質を上記ホスホン酸エステル又は亜リン酸トリエステルを含む被覆形成用液に浸漬して正極活物質の少なくとも一部に被覆を形成して被覆正極活物質を形成する方法である。
このような被覆正極活物質は、上記ホスホン酸エステル又は亜リン酸トリエステルを含む被覆形成用液に浸漬して、上記正極活物質の少なくとも一部に被覆を形成して調製することができる。即ち、本願のリチウム二次電池用正極活物質の製造方法は、正極活物質を上記ホスホン酸エステル又は亜リン酸トリエステルを含む被覆形成用液に浸漬して正極活物質の少なくとも一部に被覆を形成して被覆正極活物質を形成する方法である。
被覆形成用液は、ホスホン酸エステル及び亜リン酸トリエステルを鎖状カーボネート類や鎖状エステル類、ラクトン類、エーテル類、ニトリル類などの非水溶媒中に溶解して調製することができる。
上記鎖状カーボネート類としては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、エチルメチルカーボネート等が挙げられる。鎖状エステル類としては、例えば、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル等を用いることができる。ラクトン類としては、例えば、γ-ブチロラクトンやδ-バレロラクトン、α-メチル-γ-ブチロラクトン等が挙げられる。エーテル類としては、例えば、テトラヒドロフランや2-メチルテトラヒドロフラン、1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン等が挙げられる。ニトリル類としては、アセトニトリルやプロピオニトリル等が挙げられる。
被覆形成用液中のホスホン酸エステル及び亜リン酸トリエステルの含有量は、0.01~15質量%であることが好ましく、0.05~10質量%であることがより好ましい。
次に、被覆形成用液に正極活物質を加え、例えば、室温~80℃で1時間から24時間浸漬させる。その後、正極活物質をろ別し、非水溶媒で洗浄後、室温~400℃で真空下または大気圧下で乾燥させ、被覆正極活物質を得る。
[正極]
本発明のリチウム二次電池用正極は、上記リチウム二次電池用正極活物質を含む正極活物質層が正極集電体上に形成されたものである。
本発明のリチウム二次電池用正極は、上記リチウム二次電池用正極活物質を含む正極活物質層が正極集電体上に形成されたものである。
正極活物質層は上記被覆正極活物質を含むものであればよいが、インピーダンスを低下させる目的で、導電補助剤を添加してもよい。導電補助剤としては、例えば、天然黒鉛、人造黒鉛等のグラファイト類、アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルブラック等のカーボンブラック類が挙げられる。導電補助剤は、複数の種類を適宜混合して用いてもよい。導電補助剤の量は、正極活物質100質量%に対して、1~10質量%が好ましい。
正極活物質層は、正極用結着剤を用いて、上記被覆正極活物質を一体化して、正極集電体上に形成することが好ましい。正極用結着剤としては、例えば、ポリフッ化ビニリデンやビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等を挙げることができる。特に、汎用性や低コストの観点から、ポリフッ化ビニリデンを正極用結着剤として使用することが好ましい。使用する正極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」との観点から、正極活物質100質量部に対して2~10質量部が好ましい。
正極集電体としては、特に制限されるものではなく、例えば、アルミニウム箔やステンレス製のラス板等を用いることができる。
[正極の製造方法]
上記正極の製造方法としては、予めホスホン酸エステル又は亜リン酸トリエステル被覆が形成された被覆正極活物質を用いる方法、上記被覆正極活物質を含まない正極活物質を用いて、正極の形成と同時に被覆正極活物質を形成する方法、又は上記被覆正極活物質を含まない正極活物質を用いて、正極活物質層を形成後、被覆正極活物質を形成する方法が挙げられる。
上記正極の製造方法としては、予めホスホン酸エステル又は亜リン酸トリエステル被覆が形成された被覆正極活物質を用いる方法、上記被覆正極活物質を含まない正極活物質を用いて、正極の形成と同時に被覆正極活物質を形成する方法、又は上記被覆正極活物質を含まない正極活物質を用いて、正極活物質層を形成後、被覆正極活物質を形成する方法が挙げられる。
本発明のリチウム二次電池用正極活物質を用いる場合の製造方法として、本発明のリチウム二次電池の製造方法は、上記リチウム二次電池用正極活物質の製造方法により得られたリチウム二次電池用正極活物質と、正極結着剤とを含む正極活物質層形成用液を調製し、該正極活物質層形成用液を用いて、正極集電体上に正極活物質層を形成することを特徴とする。被覆正極活物質と、正極結着剤と、必要に応じて導電補助剤を混合した混合物にN-メチルピロリドン等の溶媒を加えて混練して正極活物質層形成用液を調製し、この正極活物質層形成用液をドクターブレード法やダイコーター法等によって正極集電体に塗布し、乾燥して作製することができる。
上記被覆正極活物質を含まない正極物質を用いて、正極の形成と同時に被覆正極活物質を形成する方法として、本発明のリチウム二次電池用正極の製造方法は、正極活物質と、正極結着剤と、上記ホスホン酸エステル又は亜リン酸トリエステルとを含む正極活物質層形成用液を作製し、該正極活物質層形成用液を用いて、正極集電体上に正極活物質層を形成することを特徴とする。
正極活物質層形成用液は、ホスホン酸エステル又は亜リン酸トリエステルを、正極活物質に対して、質量比0.0005~0.5となるように添加することが好ましく、より好ましくは0.001~0.3の範囲で添加し、必要に応じて導電補助剤と結着剤とを混合し、N-メチルピロリドン等の溶媒を加えて混練して調製することできる。ホスホン酸エステル又は亜リン酸トリエステルはこれを含有する上記被覆形成用液を調製し、この被覆形成用液として添加してもよい。その後、上記と同様の方法で集電体に塗布し、乾燥することにより作製する。
上記被覆正極活物質を含まない正極活物質を用いて、正極活物質層を形成後、被覆正極活物質を形成する方法として、本発明のリチウム二次電池用正極の製造方法は、正極活物質と正極結着剤とを含む正極活物質層を正極集電体上に形成し、前記正極活物質層を、上記ホスホン酸エステル又は亜リン酸トリエステルを含む被覆形成用液に浸漬し、又は該被覆形成用液を塗布して、正極活物質の少なくとも一部に被覆を形成し被覆正極活物質を形成することを特徴とする。
被覆形成用液としては、上記被覆形成用液と同様のものを用いることができる。この被覆形成用液に少なくとも正極活物質層が浸漬するように正極を浸漬させ又は塗布して、室温~80℃で1時間から24時間放置する。その後、正極を取り出し、非水溶媒で洗浄後、室温~150℃で、真空下または大気圧下で乾燥させる。
更に、被覆正極活物質を含まない正極活物質を用いて、被覆正極活物質を形成する方法として、後述するように、電解液に上記ホスホン酸エステル又は亜リン酸トリエステルの所定量を含有させ、電池の活性化前に所定温度に放置するリチウム二次電池の製造方法が挙げられる。
[リチウム二次電池]
本発明のリチウム二次電池は、上記正極と、負極活物質を含む負極と、これらの電極を含浸する電解液と、これらを収納する外装体とを含むことを特徴とする。
本発明のリチウム二次電池は、上記正極と、負極活物質を含む負極と、これらの電極を含浸する電解液と、これらを収納する外装体とを含むことを特徴とする。
[負極]
負極としては負極活物質を含むものであればよいが、負極活物質が負極用結着剤によって一体化され、負極集電体を覆うように結着されたものを挙げることができる。
負極としては負極活物質を含むものであればよいが、負極活物質が負極用結着剤によって一体化され、負極集電体を覆うように結着されたものを挙げることができる。
負極活物質としては、リチウムとの合金化が可能な金属又は合金、リチウムの吸蔵及び放出が可能な酸化物・炭素材料等を挙げることができる。
上記金属としては、例えば、単体ケイ素、スズ等を挙げることができる。酸化物としては、SiOx(0<x≦2)で表されるケイ素酸化物、五酸化ニオブ(Nb2O5)、リチウムチタン複合酸化物(Li4/3Ti5/3O4)、二酸化チタン(TiO2)等を挙げることができる。これらのうち、ケイ素酸化物は負極活物質自体の繰り返し充放電に対する膨脹収縮を緩和するため、充放電サイクル特性の観点から好ましく用いられる。
ケイ素酸化物は結晶性、又は非結晶性であってもよく、SiLiyOz(y>0、2>z>0)で表されるリチウムを含んでいてもよく、微量の窒素、ホウ素、及びイオウの何れか1種以上の元素を、0.1~5質量%含有していてもよい。微量の金属元素や非金属元素をケイ素酸化物に含有させることによって、ケイ素酸化物の電気伝導性を向上させることができる。
負極活物質として、ケイ素酸化物は単体ケイ素と共に用いることが充放電において体積変化を相殺することができるため好ましい。単体ケイ素とケイ素酸化物とを含む負極活性物質は、単体ケイ素とケイ素酸化物とを混合し、高温減圧下にて焼結させることによって作製することができる。また、負極活物質として、ケイ素酸化物の他、ケイ酸塩、ニッケルシリサイド、コバルトシリサイドなどの遷移金属とケイ素との化合物等も用いることができる。ケイ素化合物として遷移金属とケイ素との化合物を含む負極活物質は、例えば、単体ケイ素と遷移金属を混合して溶融させたり、単体ケイ素の表面に遷移金属を蒸着等によって被覆させたりすることによって作製することができる。
上記炭素材料は、サイクル特性及び安全性が良好であるとともに、連続充電特性が優れていることから好ましい。炭素材料としては、例えば、黒鉛材料や非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、カーボンブラック、コークス、メソカーボンマイクロビーズ、ハードカーボン、グラファイト等を挙げることができ、黒鉛材料としては、人造黒鉛や天然黒鉛、カーボンブラックとしては、アセチレンブラックやファーネスブラック等を挙げることができる。これらは1種又は2種以上を組み合わせて用いることができる。結晶性の高い黒鉛は、電気伝導性が高く、負極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。
負極活物質として、ケイ素、ケイ素酸化物、炭素材料を含むものが、充放電に伴う体積変化を相殺することができ好ましく、これらを単に混合して用いることもできるが、これらを含む複合体(以下、負極複合体ともいう。)とすることが好ましい。負極複合体は、全部または一部がアモルファス構造のケイ素酸化物中にケイ素の全部又は一部が分散され、表面を炭素で被覆されている構造を有するものであることが好ましい。アモルファス構造のケイ素酸化物は、炭素材料やケイ素の体積膨張を抑制することができ、ケイ素が分散されることにより電解液の分解も抑制することができる。このメカニズムは明確ではないが、ケイ素酸化物がアモルファス構造であることによって、炭素材料と電解液の界面への皮膜形成に何らかの影響があるものと推定される。また、アモルファス構造は、結晶粒界や欠陥といった不均一性に起因する要素が比較的少ないと考えられる。ケイ素酸化物の全部または一部がアモルファス構造を有することは、X線回折測定によって確認することができる。ケイ素酸化物がアモルファス構造を有しない場合には、X線回折測定において、ケイ素酸化物に固有のピークが強く観測される。一方、ケイ素酸化物の全部または一部がアモルファス構造を有する場合は、X線回折測定において、ケイ素酸化物に固有のピークがブロードとなる。
ケイ素の全部または一部がケイ素酸化物中に分散していることは、透過型電子顕微鏡観察とエネルギー分散型X線分光法測定とを併用することによって確認することができる。具体的には、サンプルの断面を透過型電子顕微鏡によって観察し、ケイ素酸化物中に分散しているケイ素部分の酸素濃度をエネルギー分散型X線分光法測定によって測定する。その結果、ケイ素酸化物中に分散されたケイ素が酸化物となっていないことを確認することができる。
負極複合体において、ケイ素、ケイ素酸化物および炭素材料の含有割合は、ケイ素は負極複合体中、5質量%以上90質量%以下とすることが好ましく、20質量%以上50質量%以下とすることがより好ましい。ケイ素酸化物は、負極複合体中、5質量%以上90質量%以下とすることが好ましく、40質量%以上70質量%以下とすることがより好ましい。炭素材料は、負極複合体中、2質量%以上50質量%以下とすることが好ましく、2質量%以上30質量%以下とすることがより好ましい。
このような負極複合体は、例えば、特開2004-47404号公報に開示されている方法で作製することができる。すなわち、ケイ素酸化物をメタンガスなどの有機物ガスを含む雰囲気下でCVD処理を行うことで、ケイ素がケイ素酸化物中にナノクラスター化し、表面が炭素で被覆されたものが得られる。更に、負極複合体の表面をシランカップリング剤等によって処理することもできる。
また、負極活物質として、粒子状の単体ケイ素、ケイ素酸化物及び炭素材料の混合物であってもよい。例えば、単体ケイ素の平均粒子径を、炭素材料およびシリコン酸化物の平均粒子径よりも小さい構成とすることができる。このようにすれば、充放電時において体積変化の大きい単体ケイ素が相対的に小粒径となり、体積変化の小さい炭素材料やケイ素酸化物が相対的に大粒径となるため、デンドライト生成および合金の微粉化がより効果的に抑制される。また、充放電の過程において、大粒径の粒子、小粒径の粒子、大粒径の粒子の順にリチウムが吸蔵、放出されることとなり、この点からも、残留応力、残留歪みの発生が抑制される。
単体ケイ素の平均粒子径は、例えば20μm以下とすることが好ましく、15μm以下とすることがより好ましい。また、ケイ素酸化物の平均粒子径が炭素材料の平均粒子径の1/2以下であることが好ましく、単体ケイ素の平均粒子径がケイ素酸化物の平均粒子径の1/2以下であることが好ましい。平均粒子径を上記の範囲に制御すれば、体積膨脹の緩和効果をより有効に得ることができるため、エネルギー密度、サイクル寿命および効率のバランスに優れた二次電池を得ることができる。単体ケイ素やケイ素酸化物などの平均粒子径は、レーザー回折散乱法や動的光散乱法などの測定法によって測定される。
負極活物質層中の負極活物質は、55質量%以上であることが好ましく、65質量%以上であることがより好ましい。
負極用結着剤としては、特に制限されるものではないが、例えば、ポリフッ化ビニリデンやビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム(SBR)やポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド、アルカリで中和されたリチウム塩、ナトリウム塩、カリウム塩を含む、ポリアクリル酸又はカルボキシメチルセルロース等を用いることができる。中でも、結着性が強いことから、ポリイミドやポリアミドイミド、SBR、アルカリで中和されたリチウム塩、ナトリウム塩、カリウム塩を含むポリアクリル酸又はカルボキシメチルセルロースが好ましい。使用する負極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」との観点から、負極活物質100質量部に対して5~25質量部が好ましい。
負極集電体としては、銅やニッケル、ステンレス鋼等の金属材料製のものを挙げることができる。中でも、加工性及びコストの点から銅が特に好ましい。また、負極集電体の表面は、予め粗面化処理しておくのが好ましい。さらに、集電体の形状は任意であり、箔状や平板状、メッシュ状等が挙げられる。また、エキスパンドメタルやパンチングメタルのような穴あきタイプの集電体を使用することもできる。
負極は、正極活物質層の場合と同様に、上述の負極活物質と、結着剤と、必要に応じて各種の助剤等との混合物に溶媒を加えて混練してスラリー化した塗布液を集電体に塗布し、乾燥することにより製造することができる。
[電解液]
電解液は、主に非水系有機の溶媒に電解質を溶解したものである。
電解液は、主に非水系有機の溶媒に電解質を溶解したものである。
溶媒としては、環状カーボネート類や鎖状カーボネート類、鎖状エステル類、ラクトン類、エーテル類、スルホン類、ニトリル類、リン酸エステル類等を用いることができる。
環状カーボネート類としては、プロピレンカーボネートやエチレンカーボネート、フルオロエチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート等を挙げることができる。
鎖状カーボネート類としては、ジメチルカーボネートやジエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート等を挙げることができる。
鎖状エステル類としては、ギ酸メチルや酢酸メチル、プロピオン酸メチル、プロピオン酸エチル、ピバリン酸メチル、ピバリン酸エチル等、ラクトン類としては、γ-ブチロラクトンやδ-バレロラクトン、α-メチル-γ-ブチロラクトン等、エーテル類としては、テトラヒドロフランや2-メチルテトラヒドロフラン、1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン等を挙げることができる。
スルホン類としては、スルホランや3-メチルスルホラン、2,4-ジメチルスルホラン等、ニトリル類としては、アセトニトリルやプロピオニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル等、リン酸エステル類としては、リン酸トリメチルやリン酸トリエチル、リン酸トリブチル、リン酸トリオクチル等を挙げることができる。
上記溶媒は、1種又は2種以上を組み合わせて使用することができる。これらの溶媒としては、環状カーボネート類と鎖状カーボネート類との組み合わせが好ましく、更に、第3溶媒として、フッ素化エーテル、鎖状エステル類またはラクトン類、エーテル類、ニトリル類、スルホン類、リン酸エステル類等を加えてもよい。
一方、電解質の具体例としては、LiPF6、LiBF4、LiClO4等のリチウム塩や、LiN(SO2F)2、LiN(SO2CF3)2、LiN(SO2C2F5)2、CF3SO3Li、C4F9SO3Li、LiAsF6やLiAlCl4、LiSbF6、LiPF4(CF3)2、LiPF3(C2F5)3、LiPF3(CF3)3、(CF2)2(SO2)2NLi、(CF2)3(SO2)2Liを挙げることができる。さらに、Lithium bis(oxalate)borate、Lithium oxaltodifluoroborateも用いることができる。これらの電解質塩は、1種又は2種以上を組み合わせて使用することができる。これらのうち、LiPF6、LiBF4、LiN(SO2F)2、LiN(SO2CF3)2、LiN(SO2C2F5)2が好ましい。
電解質の電解液中の濃度は、0.1~3Mであることが好ましく、0.5~2Mであることがより好ましい。
また、電解液には、その他の成分として、例えば、ビニレンカーボネートやフルオロエチレンカーボネート、マレイン酸無水物、エチレンサルファイト、ボロン酸エステル、1,3-プロパンスルトン、1,5,2,4-ジオキサジチアン-2,2,4,4-テトラオキシド等をその他の成分として含んでいてもよい。
[セパレーター]
セパレーターとしては、ポリプロピレンやポリエチレン等のポリオレフィンやアラミド、ポリイミド等の単層または積層の多孔性フィルムや不織布を用いることができる。また、ガラス繊維等の無機材料、ポリオレフィンフィルムにフッ素化合物や無機微粒子をコーティングしたもの、ポリエチレンフィルムとポリプロピレンフィルムの積層体や、ポリオレフィンフィルムにアラミド層を積層したものを挙げることができる。
セパレーターとしては、ポリプロピレンやポリエチレン等のポリオレフィンやアラミド、ポリイミド等の単層または積層の多孔性フィルムや不織布を用いることができる。また、ガラス繊維等の無機材料、ポリオレフィンフィルムにフッ素化合物や無機微粒子をコーティングしたもの、ポリエチレンフィルムとポリプロピレンフィルムの積層体や、ポリオレフィンフィルムにアラミド層を積層したものを挙げることができる。
セパレーターの厚さは、電池のエネルギー密度とセパレーターの機械的強度との面から5~50μmが好ましく、10~40μmがより好ましい。
[リチウム二次電池の製造方法]
本発明のリチウム二次電池の製造方法は、外装体に、正極活物質を含む正極と、負極活物質を含む負極と、セパレーターと、式(1)
本発明のリチウム二次電池の製造方法は、外装体に、正極活物質を含む正極と、負極活物質を含む負極と、セパレーターと、式(1)
(式(1)中、R1及びR2は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示し、Xは水素原子又はアルキル基を示す。)で表されるホスホン酸エステル、及び式(2)
(式(2)中、R3~R5は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示す。)で表される亜リン酸トリエステルから選ばれる少なくとも1種を0.05wt%から10wt%含有する電解液とを充填し、前記外装体を封止して封止体を形成した後、活性化処理前に、該封止体を室温~80℃に放置して前記正極活物質の表面の少なくとも一部に式(1)で表されるホスホン酸エステル又は式(2)で表される亜リン酸トリエステル由来の被覆を形成することを特徴とする。
電解液は上記溶媒と上記電解質とを含有し、更に、亜リン酸エステルを0.05wt%から10wt%含有させたものを用いる。被覆正極活物質を有さない正極活物質層を正極集電体上に形成し、負極活物質層を負極集電体上に形成し、外装体内に収納し、電解液を充填させ、外装体を封止し、封止体を形成し、活性化処理前に室温~80℃に放置する。これにより正極活物質の表面の少なくとも一部に被覆を有する被覆正極活物質が形成される。活性処理前に行う温度処理は、室温~80℃であればよいが、40~60℃がより好ましい。温度処理時間は温度と関連して選択することができ、また、製造効率から、例えば10~40時間等とすることができ、10~30時間がより好ましい。
[リチウム二次電池の形状]
リチウム二次電池としては、単層または積層のセパレーターを有するコイン電池や円筒型電池、ラミネート式電池等に上述の構成を使用できる。
リチウム二次電池としては、単層または積層のセパレーターを有するコイン電池や円筒型電池、ラミネート式電池等に上述の構成を使用できる。
例えば、積層ラミネート型のリチウムイオン電池の場合、正極、セパレーター、負極を交互に積層し、それぞれの電極を金属端子のタブに接続し、ラミネートフィルム等の外装体中に入れ、電解液を注入してシールした形状を有する。
外装体は、セパレーターを介して積層される正極及び負極と、これを含浸する電解液とを安定して保持可能な強度を有し、これらの物質に対して電気化学的に安定で、気密性、水密性を有するものが好ましい。具体的には、例えば、ステンレス、ニッケルメッキを施した鉄、アルミニウム、チタン若しくはこれらの合金又はメッキ加工をしたもの、金属ラミネート樹脂等を用いることができる。金属ラミネートフィルムは、熱融着性樹脂フィルムに金属薄膜を積層したものであり、電解液に安定でかつ十分な水密性、気密性を有するものであることが好ましい。熱融着性樹脂としては、ポリプロピレンやポリエチレン、ポリプロピレンまたはポリエチレンの酸変成物、ポリフェニレンサルファイド、ポリエチレンテレフタレートなどのポリエステル、ポリアミド、エチレン-酢酸ビニル共重合体、エチレン-メタクリル酸共重合体やエチレン-アクリル酸共重合体を金属イオンで分子間結合させたアイオノマー樹脂等を用いることができる。熱融着性樹脂フィルムの厚さは10~200μmが好ましく、30~100μmであることがより好ましい。
金属薄膜としては、アルミニウム、シリカ、アルミナをコーティングしたポリプロピレン、ポリエチレン等を用いることができる。体積膨張を抑制する観点から、アルミニウムのラミネートフィルムが好ましい。更に、ラミネートフィルムとして、上記ラミネートフィルムの金属薄膜が設けられていない面に、ポリエチレンテレフタレートなどのポリエステルやポリアミド等のフィルムからなる保護層を積層したものを挙げることができる。
本発明のリチウムイオン二次電池の一実施例を図1の概略構成図に示す。図1に示すリチウム二次電池は、正極活物質層1が正極集電体1Aの両面又は片面に設けられた正極10と、負極活物質層2が負極集電体2Aの両面又は片面に設けられた負極20とが多孔質セパレーター3を介して積層され、電解液(図示せず)と共に、アルミニウム蒸着ラミネートフィルム外装体4に充填されている。正極集電体1Aの正極活物質層1が設けられていない部分にアルミニウム板で形成された正極タブ1Bが、負極集電体2Aの負極活物質層2が設けられてない部分にニッケル板で形成された負極タブ2Bが接続され、先端が外装体4外に引き出されている。
以下、本発明のリチウム二次電池用正極活物質、リチウム二次電池用正極、これらの製造方法、これらを用いたリチウム二次電池について、詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]リチウム二次電池用正極活物質の製造
ホスホン酸ジエチル0.09gをジエチルカーボネート(DEC)90gに溶解し、被覆形成用液を調製した。得られた被覆形成用液に、リチウム遷移金属複合酸化物(Li1.26Fe0.11Ni0.11Mn0.52O2)を50g加え、45℃で18時間放置した。溶液中からリチウム酸化物をろ別してDECで洗浄後、洗浄したリチウム酸化物を窒素気流下、120℃で一晩乾燥させ、ホスホン酸ジエチルで被覆した被覆正極活物質であるリチウム遷移金属複合酸化物を得た。
[実施例1]リチウム二次電池用正極活物質の製造
ホスホン酸ジエチル0.09gをジエチルカーボネート(DEC)90gに溶解し、被覆形成用液を調製した。得られた被覆形成用液に、リチウム遷移金属複合酸化物(Li1.26Fe0.11Ni0.11Mn0.52O2)を50g加え、45℃で18時間放置した。溶液中からリチウム酸化物をろ別してDECで洗浄後、洗浄したリチウム酸化物を窒素気流下、120℃で一晩乾燥させ、ホスホン酸ジエチルで被覆した被覆正極活物質であるリチウム遷移金属複合酸化物を得た。
[実施例2]リチウム二次電池用正極の製造
リチウム遷移金属複合酸化物(Li1.26Fe0.11Ni0.11Mn0.52O2)を92質量%、ケッチェンブラックを4質量%、ポリフッ化ビニリデンを4質量%含むスラリーを調合した。そして、調合したスラリーをアルミニウム箔(厚み20μm)からなる正極集電体上に塗布・乾燥し、厚さ175μmの正極活物質層を作製した。正極集電体の正極活物質層を設けていない面に同様の手順で正極活物質層を形成し、両面に正極活物質層有する正極も作製した。
リチウム遷移金属複合酸化物(Li1.26Fe0.11Ni0.11Mn0.52O2)を92質量%、ケッチェンブラックを4質量%、ポリフッ化ビニリデンを4質量%含むスラリーを調合した。そして、調合したスラリーをアルミニウム箔(厚み20μm)からなる正極集電体上に塗布・乾燥し、厚さ175μmの正極活物質層を作製した。正極集電体の正極活物質層を設けていない面に同様の手順で正極活物質層を形成し、両面に正極活物質層有する正極も作製した。
作製した電極をアルミラミネートフィルム中に入れ、そこにホスホン酸ジエチルのDEC溶液(濃度1質量%)を加え、真空含浸処理し、フィルムを封止した後、45℃の恒温槽中に24時間放置した。電極を取り出し、電極をDECで洗浄し、窒素気流下、120℃で1時間乾燥させることで、ホスホン酸ジエチルで被覆した被覆正極活物質を有する正極を得た。
[実施例3]リチウム二次電池用正極の製造
リチウム遷移金属複合酸化物(Li1.26Fe0.11Ni0.11Mn0.52O2)を91.8質量%、ケッチェンブラックを4質量%、ポリフッ化ビニリデンを4質量%、ホスホン酸ジエチル0.2質量%含むスラリーを調合し正極活物質層形成用液を得た。調合したスラリーをアルミニウム箔(厚さ20μm)からなる正極集電体上に塗布・乾燥し、厚さ175μmの正極活物質層を作製した。正極集電体の正極活物質層を設けていない面に同様の手順で正極活物質層を形成し、両面に正極活物質層有する正極も作製した。
リチウム遷移金属複合酸化物(Li1.26Fe0.11Ni0.11Mn0.52O2)を91.8質量%、ケッチェンブラックを4質量%、ポリフッ化ビニリデンを4質量%、ホスホン酸ジエチル0.2質量%含むスラリーを調合し正極活物質層形成用液を得た。調合したスラリーをアルミニウム箔(厚さ20μm)からなる正極集電体上に塗布・乾燥し、厚さ175μmの正極活物質層を作製した。正極集電体の正極活物質層を設けていない面に同様の手順で正極活物質層を形成し、両面に正極活物質層有する正極も作製した。
[実施例4]リチウム二次電池用正極の製造
ホスホン酸ジエチルのDEC溶液(濃度1質量%)に代えて亜リン酸トリエチルのDEC溶液(濃度1.2質量%)を用いた他は、実施例2と同様に正極活物質層を作製し、亜リン酸トリエチルで被覆した被覆正極活物質を有する正極を得た。
ホスホン酸ジエチルのDEC溶液(濃度1質量%)に代えて亜リン酸トリエチルのDEC溶液(濃度1.2質量%)を用いた他は、実施例2と同様に正極活物質層を作製し、亜リン酸トリエチルで被覆した被覆正極活物質を有する正極を得た。
[実施例5]リチウム二次電池用正極の製造
ホスホン酸ジエチルのDEC溶液(濃度1質量%)に代えてホスホン酸ジ(2-エチルヘキシル)のDEC溶液(濃度2.2質量%)を用いた他は、実施例2と同様に正極活物質層を作製し、ホスホン酸ジ(2-エチルヘキシル)で被覆した被覆正極活物質を有する正極を得た。
ホスホン酸ジエチルのDEC溶液(濃度1質量%)に代えてホスホン酸ジ(2-エチルヘキシル)のDEC溶液(濃度2.2質量%)を用いた他は、実施例2と同様に正極活物質層を作製し、ホスホン酸ジ(2-エチルヘキシル)で被覆した被覆正極活物質を有する正極を得た。
[実施例6]リチウム二次電池用正極の製造
ホスホン酸ジエチルのDEC溶液(濃度1質量%)に代えてホスホン酸ジフェニルモノデシルのDEC溶液(濃度2.7質量%)を用いた他は、実施例2と同様に正極活物質層を作製し、ホスホン酸ジフェニルモノデシルで被覆した被覆正極活物質を有する正極を得た。
ホスホン酸ジエチルのDEC溶液(濃度1質量%)に代えてホスホン酸ジフェニルモノデシルのDEC溶液(濃度2.7質量%)を用いた他は、実施例2と同様に正極活物質層を作製し、ホスホン酸ジフェニルモノデシルで被覆した被覆正極活物質を有する正極を得た。
[実施例7]リチウム二次電池用正極の製造
ホスホン酸ジエチルのDEC溶液(濃度1質量%)に代えて亜リン酸トリデシルのDEC溶液(濃度3.4質量%)を用いた他は、実施例2と同様に正極活物質層を作製し、亜リン酸トリデシルで被覆した被覆正極活物質を有する正極を得た。
ホスホン酸ジエチルのDEC溶液(濃度1質量%)に代えて亜リン酸トリデシルのDEC溶液(濃度3.4質量%)を用いた他は、実施例2と同様に正極活物質層を作製し、亜リン酸トリデシルで被覆した被覆正極活物質を有する正極を得た。
[実施例8]リチウム二次電池用正極の製造
ホスホン酸ジエチルのDEC溶液(濃度1質量%)に代えてエチルホスホン酸ジエチルのDEC溶液(濃度1質量%)を用いた他は、実施例2と同様に正極活物質層を作製し、エチルホスホン酸ジエチルで被覆した被覆正極活物質を有する正極を得た。
ホスホン酸ジエチルのDEC溶液(濃度1質量%)に代えてエチルホスホン酸ジエチルのDEC溶液(濃度1質量%)を用いた他は、実施例2と同様に正極活物質層を作製し、エチルホスホン酸ジエチルで被覆した被覆正極活物質を有する正極を得た。
[実施例9]リチウム二次電池用正極の製造
正極活物質Li1.26Fe0.11Ni0.11Mn0.52O2に代えて正極活物質Li1.23Fe0.15Ni0.15Mn0.46O2を用いた他は、実施例2と同様に正極活物質層を作製し、正極を得た。
正極活物質Li1.26Fe0.11Ni0.11Mn0.52O2に代えて正極活物質Li1.23Fe0.15Ni0.15Mn0.46O2を用いた他は、実施例2と同様に正極活物質層を作製し、正極を得た。
[実施例10]リチウム二次電池用正極の製造
正極活物質Li1.26Fe0.11Ni0.11Mn0.52O2に代えて正極活物質Li1.2Ni0.18Mn0.54Co0.08O2を用いた他は、実施例2と同様に正極活物質層を作製し、正極を得た。
正極活物質Li1.26Fe0.11Ni0.11Mn0.52O2に代えて正極活物質Li1.2Ni0.18Mn0.54Co0.08O2を用いた他は、実施例2と同様に正極活物質層を作製し、正極を得た。
[実施例11]リチウム二次電池用正極の製造
正極活物質Li1.26Fe0.11Ni0.11Mn0.52O2に代えて正極活物質LiNi0.8Co0.15Al0.05O2を用いた他は、実施例2と同様に正極活物質層を作製し、正極を得た。
正極活物質Li1.26Fe0.11Ni0.11Mn0.52O2に代えて正極活物質LiNi0.8Co0.15Al0.05O2を用いた他は、実施例2と同様に正極活物質層を作製し、正極を得た。
[実施例12]リチウム二次電池用正極の製造
正極活物質Li1.26Fe0.11Ni0.11Mn0.52O2に代えて正極活物質LiNi0.8Co0.1Mn0.1O2を用いた他は、実施例2と同様に正極活物質層を作製し、正極を得た。
正極活物質Li1.26Fe0.11Ni0.11Mn0.52O2に代えて正極活物質LiNi0.8Co0.1Mn0.1O2を用いた他は、実施例2と同様に正極活物質層を作製し、正極を得た。
[実施例13]リチウム二次電池の製造
実施例1で得たホスホン酸ジエチルで被覆したリチウム酸化物を92重量%、ケッチェンブラックを4重量%、ポリフッ化ビニリデンを4重量%含むスラリーを調合した。そして、調合したスラリーをアルミニウム箔(厚み20μm)からなる正極集電体上に塗布・乾燥し、厚さ175μmの正極活物質層を作製した。正極集電体の正極活物質層を設けていない面に同様の手順で正極活物質層を形成し、両面に正極活物質層有する正極も作製した。
実施例1で得たホスホン酸ジエチルで被覆したリチウム酸化物を92重量%、ケッチェンブラックを4重量%、ポリフッ化ビニリデンを4重量%含むスラリーを調合した。そして、調合したスラリーをアルミニウム箔(厚み20μm)からなる正極集電体上に塗布・乾燥し、厚さ175μmの正極活物質層を作製した。正極集電体の正極活物質層を設けていない面に同様の手順で正極活物質層を形成し、両面に正極活物質層有する正極も作製した。
平均粒径15μmのSiOを85重量%、ポリアミック酸を15重量%含むスラリーを調合した。そして、銅箔(厚さ10μm)からなる負極集電体上に塗布・乾燥し、厚さ46μmの負極活物質層を作製した。そして、作製した負極活物質層を窒素雰囲気下350℃で3時間アニールし、バインダーを硬化させ、負極を得た。
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比30:70で混合した溶媒を調製した(EC:ethylene carbonate、DEC:Diethyl carbonate)。そして、調製した溶媒に1.0MのLiPF6を溶解させて電解液を調製した。
正極集電体および負極集電体のそれぞれに、正極タブおよび負極タブを溶接した後、作製した正極と負極との間に多孔質フィルムのセパレーターを挟み積層体を形成した。積層体を2枚のアルミラミネートフィルム外装体で覆い、外装体の3辺を熱融着により封止した後、作製した電解液を適度な真空度において含浸させた。その後、減圧下において、熱融着していなかった外装体の1辺を熱融着封止し、活性化処理前のリチウム電池を作製した。
作製した活性化処理前のリチウム電池について、正極活物質1gあたり20mA(20mA/g)の電流で4.5Vまで充電した。その後、正極活物質1gあたり20mA(20mA/g)の電流で1.5Vまで放電した。1.5Vまで放電後、同様に、20mA/gで4.5Vまで充電した後に、1.5Vまで放電し、充放電サイクルを2回繰り返す活性化処理を行った。その後、外装体の封口部を破って減圧することによって電池内部のガスを抜き、破った箇所を再封口することにより、リチウム二次電池を作製した。
[リチウム二次電池の評価]
[容量維持率]
得られたリチウム二次電池について、45℃の恒温槽中、40mA/gの定電流で4.5Vまで充電し、さらに5mA/gの電流になるまで4.5Vの定電圧で充電を続けた。その後、5mA/gの電流で1.5Vまで放電し、コンディショニングを行った。コンディショニング後のリチウムイオン電池について、45℃の恒温槽中、40mA/gの定電流で4.5Vまで充電し、さらに5mA/gの電流になるまで4.5Vの定電圧で充電を続け、その後、40mA/gの電流で1.5Vまで放電した。この条件で充放電を合計30回繰り返した。1サイクル目で得られた初期の放電容量と30サイクル目で得られた放電容量との比から、30サイクル後の容量維持率を求めた。結果を表2に示す。
[ガス発生量]
30サイクル後のガス発生量をアルキメデス法により測定し、被覆を有しない同じ正極活物質を用いた比較例のガス発生量を100として、ガス発生量を求めた。結果を表2に示す。
[容量維持率]
得られたリチウム二次電池について、45℃の恒温槽中、40mA/gの定電流で4.5Vまで充電し、さらに5mA/gの電流になるまで4.5Vの定電圧で充電を続けた。その後、5mA/gの電流で1.5Vまで放電し、コンディショニングを行った。コンディショニング後のリチウムイオン電池について、45℃の恒温槽中、40mA/gの定電流で4.5Vまで充電し、さらに5mA/gの電流になるまで4.5Vの定電圧で充電を続け、その後、40mA/gの電流で1.5Vまで放電した。この条件で充放電を合計30回繰り返した。1サイクル目で得られた初期の放電容量と30サイクル目で得られた放電容量との比から、30サイクル後の容量維持率を求めた。結果を表2に示す。
[ガス発生量]
30サイクル後のガス発生量をアルキメデス法により測定し、被覆を有しない同じ正極活物質を用いた比較例のガス発生量を100として、ガス発生量を求めた。結果を表2に示す。
[実施例14]リチウム二次電池の製造
実施例13で作製した正極に代え、実施例2で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例15]リチウム二次電池の製造
実施例13で作製した正極に代え、実施例3で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例16]リチウム二次電池の製造
実施例13で作製した正極に代え、実施例4で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例17]リチウム二次電池の製造
実施例13で作製した正極に代え、実施例5で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例18]リチウム二次電池の製造
実施例13で作製した正極に代え、実施例6で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例19]リチウム二次電池の製造
実施例13で作製した正極に代え、実施例7で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例20]リチウム二次電池の製造
実施例13で作製した正極に代え、実施例8で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例21]リチウム二次電池の製造
実施例13で作製した正極に代え、実施例9で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例22]リチウム二次電池の製造
実施例13で作製した正極に代え、実施例10で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例23]リチウム二次電池の製造
実施例13で作製した正極に代え、実施例11で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例24]
実施例13で作製した正極に代え、実施例12で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
実施例13で作製した正極に代え、実施例2で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例15]リチウム二次電池の製造
実施例13で作製した正極に代え、実施例3で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例16]リチウム二次電池の製造
実施例13で作製した正極に代え、実施例4で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例17]リチウム二次電池の製造
実施例13で作製した正極に代え、実施例5で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例18]リチウム二次電池の製造
実施例13で作製した正極に代え、実施例6で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例19]リチウム二次電池の製造
実施例13で作製した正極に代え、実施例7で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例20]リチウム二次電池の製造
実施例13で作製した正極に代え、実施例8で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例21]リチウム二次電池の製造
実施例13で作製した正極に代え、実施例9で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例22]リチウム二次電池の製造
実施例13で作製した正極に代え、実施例10で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例23]リチウム二次電池の製造
実施例13で作製した正極に代え、実施例11で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例24]
実施例13で作製した正極に代え、実施例12で得られた正極を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[実施例25]
実施例1で得られたホスホン酸ジエチル被覆を形成したリチウム遷移金属酸化物に代えて、ホスホン酸ジエチル被覆を形成しないリチウム遷移金属酸化物(Li1.26Fe0.11Ni0.11Mn0.52O2)を用い、ホスホン酸ジエチルを1質量%添加した電解液を用いた他は、実施例13と同様に外装体を封止し、封止体を作製した。作製した封止体を、45℃の恒温槽中に24時間放置してリチウム二次電池を作製し、実施例13と同様に評価を行った。結果2を表2に示す。
実施例1で得られたホスホン酸ジエチル被覆を形成したリチウム遷移金属酸化物に代えて、ホスホン酸ジエチル被覆を形成しないリチウム遷移金属酸化物(Li1.26Fe0.11Ni0.11Mn0.52O2)を用い、ホスホン酸ジエチルを1質量%添加した電解液を用いた他は、実施例13と同様に外装体を封止し、封止体を作製した。作製した封止体を、45℃の恒温槽中に24時間放置してリチウム二次電池を作製し、実施例13と同様に評価を行った。結果2を表2に示す。
[実施例26]
実施例1で得られたホスホン酸ジエチル被覆を形成したリチウム遷移金属酸化物に代えて、ホスホン酸ジエチル被覆を形成しないリチウム遷移金属酸化物(Li1.26Fe0.11Ni0.11Mn0.52O2)を用い、ホスホン酸ジエチル1%を添加した電解液に代えて亜リン酸トリエチルを1質量%添加した電解液を用いた他は実施例25と同様にリチウム二次電池を作製し、実施例13と同様に評価を行った。結果2を表2に示す。
実施例1で得られたホスホン酸ジエチル被覆を形成したリチウム遷移金属酸化物に代えて、ホスホン酸ジエチル被覆を形成しないリチウム遷移金属酸化物(Li1.26Fe0.11Ni0.11Mn0.52O2)を用い、ホスホン酸ジエチル1%を添加した電解液に代えて亜リン酸トリエチルを1質量%添加した電解液を用いた他は実施例25と同様にリチウム二次電池を作製し、実施例13と同様に評価を行った。結果2を表2に示す。
[実施例27]
実施例1で得られたホスホン酸ジエチル被覆を形成したリチウム遷移金属酸化物に代えて、ホスホン酸ジエチル被覆を形成しないリチウム遷移金属酸化物(Li1.26Fe0.11Ni0.11Mn0.52O2)を用い、ホスホン酸ジエチル1%を添加した電解液に代えてエチルホスホン酸ジエチルを1質量%添加した電解液を用いた他は実施例25と同様にリチウム二次電池を作製し、実施例13と同様に評価を行った。結果2を表2に示す。
実施例1で得られたホスホン酸ジエチル被覆を形成したリチウム遷移金属酸化物に代えて、ホスホン酸ジエチル被覆を形成しないリチウム遷移金属酸化物(Li1.26Fe0.11Ni0.11Mn0.52O2)を用い、ホスホン酸ジエチル1%を添加した電解液に代えてエチルホスホン酸ジエチルを1質量%添加した電解液を用いた他は実施例25と同様にリチウム二次電池を作製し、実施例13と同様に評価を行った。結果2を表2に示す。
[比較例1]
ホスホン酸ジエチルを用いずに調製したリチウム遷移金属複合酸化物を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[比較例2]
正極を、エチルホスホン酸ジエチルを用いなかった他は実施例8と同様にして作製した正極に代えた他は、実施例13と同様にしてリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[比較例3]
正極を、ホスホン酸ジエチルを用いなかった他は実施例9と同様にして作製した正極に代えた他は、実施例13と同様にしてリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[比較例4]
正極を、ホスホン酸ジエチルを用いなかった他は実施例10と同様にして作製した正極に代えた他は、実施例13と同様にしてリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[比較例5]
正極を、ホスホン酸ジエチルを用いなかった他は実施例11と同様にして作製した正極に代えた他は、実施例13と同様にしてリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
ホスホン酸ジエチルを用いずに調製したリチウム遷移金属複合酸化物を用いた他は、実施例13と同様にリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[比較例2]
正極を、エチルホスホン酸ジエチルを用いなかった他は実施例8と同様にして作製した正極に代えた他は、実施例13と同様にしてリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[比較例3]
正極を、ホスホン酸ジエチルを用いなかった他は実施例9と同様にして作製した正極に代えた他は、実施例13と同様にしてリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[比較例4]
正極を、ホスホン酸ジエチルを用いなかった他は実施例10と同様にして作製した正極に代えた他は、実施例13と同様にしてリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
[比較例5]
正極を、ホスホン酸ジエチルを用いなかった他は実施例11と同様にして作製した正極に代えた他は、実施例13と同様にしてリチウム二次電池を作製し、その評価を行った。結果2を表2に示す。
結果から、ガス発生量に関しては、実施例13~20、25~27は、比較例1と比較して28~55%程度に低減されていることが確認できた。実施例21は、比較例2と比較して31%に低減され、実施例22は、比較例3と比較して59%に低減され、実施例23は、比較例4と比較して60%に低減され、実施例24は、比較例5と比較して64%に低減されていることが確認できた。
一方、容量維持率に関しては、実施例13~27は、比較例1~5と比較して10ポイント以上向上していることが確認できた。
一方、容量維持率に関しては、実施例13~27は、比較例1~5と比較して10ポイント以上向上していることが確認できた。
実施例13~27と比較例1~5との比較から、正極活物質をホスホン酸ジエチル及び亜リン酸トリエステルよりなる群から選択される少なくとも1種の化合物で被覆することによって、リチウム二次電池の充放電サイクルにおいてガス発生量を抑制でき、また高い容量維持率が得られることが確認できた。
以上のように、本発明のホスホン酸エステル及び亜リン酸トリエステルよりなる群から選ばれる少なくとも1種で被覆した正極活物質を用いたリチウム二次電池は、充放電サイクルに伴うガス発生を抑制でき、高い容量維持率が得られるという優れた特性を示す。
本発明のリチウム二次電池用正極活物質やリチウム二次電池用正極を用いたリチウム二次電池は、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野にて利用することができる。具体的には、携帯電話やノートパソコン、タブレット型端末、携帯用ゲーム機などのモバイル機器の電源として利用することができる。また、電気自動車やハイブリッドカー、電動バイク、電動アシスト自転車などの移動・輸送用媒体の電源として利用することができる。さらには、家庭用蓄電システム、UPSなどのバックアップ用電源、太陽光発電や風力発電などで発電した電力を貯める蓄電設備などに利用することができる。
1 正極活物質層
1A 正極集電体
1B 正極タブ
10 正極(カソード)
2 負極活物質層
2A 負極集電体
2B 負極タブ
20 負極(アノード)
3 多孔質セパレーター
4 ラミネートフィルム外装体
[付記]
上記実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下に限られない。
[付記1]
正極活物質が、式(1)
1A 正極集電体
1B 正極タブ
10 正極(カソード)
2 負極活物質層
2A 負極集電体
2B 負極タブ
20 負極(アノード)
3 多孔質セパレーター
4 ラミネートフィルム外装体
[付記]
上記実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下に限られない。
[付記1]
正極活物質が、式(1)
(式(1)中、R1及びR2は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示し、Xはアルキル基を示す。)で表されるホスホン酸エステル、及び式(2)
(式(2)中、R3~R5は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示す。)で表される亜リン酸トリエステルから選ばれる少なくとも1種を含む被覆を有する被覆正極活物質を含むことを特徴とするリチウム二次電池用正極活物質。
[付記2]
前記正極活物質がリチウム遷移金属複合酸化物を含有する付記1記載のリチウム二次電池用正極活物質。
前記正極活物質がリチウム遷移金属複合酸化物を含有する付記1記載のリチウム二次電池用正極活物質。
[付記3]
前記正極活物質が、LiMnO2、LixMn2O4(0<x<2)、LiCoO2、LiNiO2、LiCo1-xNixO2(0.01<x<1)、LiNixCoyMnzO2(x+y+z=1)、LiNi0.5Mn1.5O4、LiαNiβCoγAlδO2(1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、LiFePO4、リチウムを化学量論組成よりも過剰に含むリチウム遷移金属複合酸化物、及びこれらの遷移金属の一部を他の金属で置換したものから選ばれる少なくとも1種を含む付記1又は2に記載のリチウム二次電池用正極活物質。
前記正極活物質が、LiMnO2、LixMn2O4(0<x<2)、LiCoO2、LiNiO2、LiCo1-xNixO2(0.01<x<1)、LiNixCoyMnzO2(x+y+z=1)、LiNi0.5Mn1.5O4、LiαNiβCoγAlδO2(1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、LiFePO4、リチウムを化学量論組成よりも過剰に含むリチウム遷移金属複合酸化物、及びこれらの遷移金属の一部を他の金属で置換したものから選ばれる少なくとも1種を含む付記1又は2に記載のリチウム二次電池用正極活物質。
[付記4]
前記リチウムを化学量論組成より過剰に含むリチウム遷移金属複合酸化物が、Li1+aNixMnyO2(0<a≦0.5、0<x<1、0<y<1)、及びLi1+aNixMnyMzO2(0<a≦0.5、0<x<1、0<y<1、0<z<1、MはCo又はFeを示す。)から選ばれる少なくとも1種を含む付記3記載のリチウム二次電池用正極活物質。
前記リチウムを化学量論組成より過剰に含むリチウム遷移金属複合酸化物が、Li1+aNixMnyO2(0<a≦0.5、0<x<1、0<y<1)、及びLi1+aNixMnyMzO2(0<a≦0.5、0<x<1、0<y<1、0<z<1、MはCo又はFeを示す。)から選ばれる少なくとも1種を含む付記3記載のリチウム二次電池用正極活物質。
[付記5]
正極集電体上に、付記1から4の何れかに記載のリチウム二次電池用正極活物質を含む正極活物質層を有することを特徴とするリチウム二次電池用正極。
正極集電体上に、付記1から4の何れかに記載のリチウム二次電池用正極活物質を含む正極活物質層を有することを特徴とするリチウム二次電池用正極。
[付記6]
付記5記載のリチウム二次電池用正極と、負極活物質を含む負極と、これらの電極を含浸する電解液と、これらを収納する外装体とを含むことを特徴とするリチウム二次電池。
付記5記載のリチウム二次電池用正極と、負極活物質を含む負極と、これらの電極を含浸する電解液と、これらを収納する外装体とを含むことを特徴とするリチウム二次電池。
[付記7]
前記負極が、炭素材料、ケイ素、及びケイ素酸化物から選ばれる1種以上を含有する付記6記載のリチウム二次電池。
前記負極が、炭素材料、ケイ素、及びケイ素酸化物から選ばれる1種以上を含有する付記6記載のリチウム二次電池。
[付記8]
前記電解液が、鎖状カーボネート系溶媒及び環状カーボネート系溶媒から選ばれる1種以上を含有する付記6又は7記載のリチウム二次電池。
前記電解液が、鎖状カーボネート系溶媒及び環状カーボネート系溶媒から選ばれる1種以上を含有する付記6又は7記載のリチウム二次電池。
[付記9]
正極活物質を、式(1)
正極活物質を、式(1)
(式(1)中、R1及びR2は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示し、Xはアルキル基を示す。)で表されるホスホン酸エステル、及び式(2)
(式(2)中、R3~R5は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示す。)で表される亜リン酸トリエステルから選ばれる少なくとも1種を含む被覆形成用液に浸漬して、前記正極活物質の少なくとも一部に被覆を形成して被覆正極活物質を形成することを特徴とするリチウム二次電池用正極活物質の製造方法。
[付記10]
付記9記載のリチウム二次電池用正極活物質の製造方法により得られたリチウム二次電池用正極活物質と、正極結着剤とを含む正極活物質層形成用液を調製し、該正極活物質層形成用液を用いて、正極集電体上に正極活物質層を形成することを特徴とするリチウム二次電池用正極の製造方法。
付記9記載のリチウム二次電池用正極活物質の製造方法により得られたリチウム二次電池用正極活物質と、正極結着剤とを含む正極活物質層形成用液を調製し、該正極活物質層形成用液を用いて、正極集電体上に正極活物質層を形成することを特徴とするリチウム二次電池用正極の製造方法。
[付記11]
正極活物質と、正極結着剤と、式(1)
正極活物質と、正極結着剤と、式(1)
(式(1)中、R1及びR2は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示し、Xはアルキル基を示す。)で表されるホスホン酸エステル、及び式(2)
(式(2)中、R3~R5は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示す。)で表される亜リン酸トリエステルから選ばれる少なくとも1種とを含む正極活物質層形成用液を調製し、該正極活物質層形成用液を用いて、正極集電体上に正極活物質層を形成することを特徴とするリチウム二次電池用正極の製造方法。
[付記12]
正極活物質と正極結着剤とを含む正極活物質層を正極集電体上に形成し、前記正極活物質層を、式(1)
正極活物質と正極結着剤とを含む正極活物質層を正極集電体上に形成し、前記正極活物質層を、式(1)
(式(1)中、R1及びR2は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示し、Xはアルキル基を示す。)で表されるホスホン酸エステル、及び式(2)
(式(2)中、R3~R5は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示す。)で表される亜リン酸トリエステルから選ばれる少なくとも1種を含む被覆形成用液に浸漬し、又は該被覆形成用液を塗布して、前記正極活物質の少なくとも一部に被覆を形成し被覆正極活物質を形成することを特徴とするリチウム二次電池用正極の製造方法。
[付記13]
外装体に、正極活物質を含む正極と、負極活物質を含む負極と、セパレーターと、式(1)
外装体に、正極活物質を含む正極と、負極活物質を含む負極と、セパレーターと、式(1)
(式(1)中、R1及びR2は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示し、Xはアルキル基を示す。)で表されるホスホン酸エステル、及び式(2)
(式(2)中、R3~R5は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示す。)で表される亜リン酸トリエステルから選ばれる少なくとも1種を0.05wt%から10wt%含有する電解液とを充填し、前記外装体を封止して封止体を形成した後、活性化処理前に、該封止体を室温~80℃に放置して前記正極活物質の表面の少なくとも一部に式(1)で表されるホスホン酸エステル又は式(2)で表される亜リン酸トリエステル由来の被覆を形成することを特徴とするリチウム二次電池の製造方法。
[付記14]
正極活物質が、式(1)
正極活物質が、式(1)
(式(1)中、R1及びR2は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示し、Xは水素原子又はアルキル基を示す。)で表されるホスホン酸エステル、及び式(2)
(式(2)中、R3~R5は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示す。)で表される亜リン酸トリエステルから選ばれる少なくとも1種を含む被覆を有する被覆正極活物質を含むことを特徴とするリチウム二次電池用正極活物質。
[付記15]
前記正極活物質がリチウム遷移金属複合酸化物を含有する付記14記載のリチウム二次電池用正極活物質。
前記正極活物質がリチウム遷移金属複合酸化物を含有する付記14記載のリチウム二次電池用正極活物質。
[付記16]
前記正極活物質が、LiMnO2、LixMn2O4(0<x<2)、LiCoO2、LiNiO2、LiCo1-xNixO2(0.01<x<1)、LiNixCoyMnzO2(x+y+z=1)、LiNi0.5Mn1.5O4、LiαNiβCoγAlδO2(1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、LiFePO4、リチウムを化学量論組成よりも過剰に含むリチウム遷移金属複合酸化物、及びこれらの遷移金属の一部を他の金属で置換したものから選ばれる少なくとも1種を含む付記14又は15に記載のリチウム二次電池用正極活物質。
前記正極活物質が、LiMnO2、LixMn2O4(0<x<2)、LiCoO2、LiNiO2、LiCo1-xNixO2(0.01<x<1)、LiNixCoyMnzO2(x+y+z=1)、LiNi0.5Mn1.5O4、LiαNiβCoγAlδO2(1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、LiFePO4、リチウムを化学量論組成よりも過剰に含むリチウム遷移金属複合酸化物、及びこれらの遷移金属の一部を他の金属で置換したものから選ばれる少なくとも1種を含む付記14又は15に記載のリチウム二次電池用正極活物質。
[付記17]
前記リチウムを化学量論組成より過剰に含むリチウム遷移金属複合酸化物が、Li1+aNixMnyO2(0<a≦0.5、0<x<1、0<y<1)、及びLi1+aNixMnyMzO2(0<a≦0.5、0<x<1、0<y<1、0<z<1、MはCo又はFeを示す。)から選ばれる少なくとも1種を含む付記16記載のリチウム二次電池用正極活物質。
前記リチウムを化学量論組成より過剰に含むリチウム遷移金属複合酸化物が、Li1+aNixMnyO2(0<a≦0.5、0<x<1、0<y<1)、及びLi1+aNixMnyMzO2(0<a≦0.5、0<x<1、0<y<1、0<z<1、MはCo又はFeを示す。)から選ばれる少なくとも1種を含む付記16記載のリチウム二次電池用正極活物質。
[付記18]
正極集電体上に、付記14から17の何れかに記載のリチウム二次電池用正極活物質を含む正極活物質層を有することを特徴とするリチウム二次電池用正極。
正極集電体上に、付記14から17の何れかに記載のリチウム二次電池用正極活物質を含む正極活物質層を有することを特徴とするリチウム二次電池用正極。
[付記19]
付記18記載のリチウム二次電池用正極と、負極活物質を含む負極と、これらの電極を含浸する電解液と、これらを収納する外装体とを含むことを特徴とするリチウム二次電池。
付記18記載のリチウム二次電池用正極と、負極活物質を含む負極と、これらの電極を含浸する電解液と、これらを収納する外装体とを含むことを特徴とするリチウム二次電池。
[付記20]
前記負極が、炭素材料、ケイ素、及びケイ素酸化物から選ばれる1種以上を含有する付記19記載のリチウム二次電池。
前記負極が、炭素材料、ケイ素、及びケイ素酸化物から選ばれる1種以上を含有する付記19記載のリチウム二次電池。
[付記21]
前記電解液が、鎖状カーボネート系溶媒及び環状カーボネート系溶媒から選ばれる1種以上を含有する付記19又は20記載のリチウム二次電池。
前記電解液が、鎖状カーボネート系溶媒及び環状カーボネート系溶媒から選ばれる1種以上を含有する付記19又は20記載のリチウム二次電池。
[付記22]
正極活物質を、式(1)
正極活物質を、式(1)
(式(1)中、R1及びR2は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示し、Xは水素原子又はアルキル基を示す。)で表されるホスホン酸エステル、及び式(2)
(式(2)中、R3~R5は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示す。)で表される亜リン酸トリエステルから選ばれる少なくとも1種を含む被覆形成用液に浸漬して、前記正極活物質の少なくとも一部に被覆を形成して被覆正極活物質を形成することを特徴とするリチウム二次電池用正極活物質の製造方法。
[付記23]
付記22記載のリチウム二次電池用正極活物質の製造方法により得られたリチウム二次電池用正極活物質と、正極結着剤とを含む正極活物質層形成用液を調製し、該正極活物質層形成用液を用いて、正極集電体上に正極活物質層を形成することを特徴とするリチウム二次電池用正極の製造方法。
[付記23]
付記22記載のリチウム二次電池用正極活物質の製造方法により得られたリチウム二次電池用正極活物質と、正極結着剤とを含む正極活物質層形成用液を調製し、該正極活物質層形成用液を用いて、正極集電体上に正極活物質層を形成することを特徴とするリチウム二次電池用正極の製造方法。
[付記24]
正極活物質と、正極結着剤と、式(1)
正極活物質と、正極結着剤と、式(1)
(式(1)中、R1及びR2は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示し、Xは水素原子又はアルキル基を示す。)で表されるホスホン酸エステル、及び式(2)
(式(2)中、R3~R5は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示す。)で表される亜リン酸トリエステルから選ばれる少なくとも1種とを含む正極活物質層形成用液を調製し、該正極活物質層形成用液を用いて、正極集電体上に正極活物質層を形成することを特徴とするリチウム二次電池用正極の製造方法。
[付記25]
正極活物質と正極結着剤とを含む正極活物質層を正極集電体上に形成し、前記正極活物質層を、式(1)
正極活物質と正極結着剤とを含む正極活物質層を正極集電体上に形成し、前記正極活物質層を、式(1)
(式(1)中、R1及びR2は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示し、Xは水素原子又はアルキル基を示す。)で表されるホスホン酸エステル、及び式(2)
(式(2)中、R3~R5は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示す。)で表される亜リン酸トリエステルから選ばれる少なくとも1種を含む被覆形成用液に浸漬し、又は該被覆形成用液を塗布して、前記正極活物質の少なくとも一部に被覆を形成し被覆正極活物質を形成することを特徴とするリチウム二次電池用正極の製造方法。
[付記26]
外装体に、正極活物質を含む正極と、負極活物質を含む負極と、セパレーターと、式(1)
外装体に、正極活物質を含む正極と、負極活物質を含む負極と、セパレーターと、式(1)
(式(1)中、R1及びR2は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示し、Xは水素原子又はアルキル基を示す。)で表されるホスホン酸エステル、及び式(2)
(式(2)中、R3~R5は、独立して、置換若しくは無置換の炭素数1~18のアルキル基、又は置換若しくは無置換のアリール基を示す。)で表される亜リン酸トリエステルから選ばれる少なくとも1種を0.05wt%から10wt%含有する電解液とを充填し、前記外装体を封止して封止体を形成した後、活性化処理前に、該封止体を室温~80℃に放置して前記正極活物質の表面の少なくとも一部に式(1)で表されるホスホン酸エステル又は式(2)で表される亜リン酸トリエステル由来の被覆を形成することを特徴とするリチウム二次電池の製造方法。
本願は、2016年1月19日出願の特願2016-007743に記載した総ての事項を、その内容として含むものである。
Claims (20)
- 前記正極活物質がリチウム遷移金属複合酸化物を含有する請求項1記載のリチウム二次電池用正極活物質。
- 前記正極活物質が、LiMnO2、LixMn2O4(0<x<2)、LiCoO2、LiNiO2、LiCo1-xNixO2(0.01<x<1)、LiNixCoyMnzO2(x+y+z=1)、LiNi0.5Mn1.5O4、LiαNiβCoγAlδO2(1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、LiFePO4、リチウムを化学量論組成よりも過剰に含むリチウム遷移金属複合酸化物、及びこれらの遷移金属の一部を他の金属で置換したものから選ばれる少なくとも1種を含む請求項1又は2に記載のリチウム二次電池用正極活物質。
- 正極集電体上に、請求項1から3の何れかに記載のリチウム二次電池用正極活物質を含む正極活物質層を有することを特徴とするリチウム二次電池用正極。
- 請求項4記載のリチウム二次電池用正極と、負極活物質を含む負極と、これらの電極を含浸する電解液と、これらを収納する外装体とを含むことを特徴とするリチウム二次電池。
- 請求項6記載のリチウム二次電池用正極活物質の製造方法により得られたリチウム二次電池用正極活物質と、正極結着剤とを含む正極活物質層形成用液を調製し、該正極活物質層形成用液を用いて、正極集電体上に正極活物質層を形成することを特徴とするリチウム二次電池用正極の製造方法。
- 正極活物質と正極結着剤とを含む正極活物質層を正極集電体上に形成し、前記正極活物質層を、式(1)
- 外装体に、正極活物質を含む正極と、負極活物質を含む負極と、セパレーターと、式(1)
- 前記正極活物質がリチウム遷移金属複合酸化物を含有する請求項11記載のリチウム二次電池用正極活物質。
- 前記正極活物質が、LiMnO2、LixMn2O4(0<x<2)、LiCoO2、LiNiO2、LiCo1-xNixO2(0.01<x<1)、LiNixCoyMnzO2(x+y+z=1)、LiNi0.5Mn1.5O4、LiαNiβCoγAlδO2(1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、LiFePO4、リチウムを化学量論組成よりも過剰に含むリチウム遷移金属複合酸化物、及びこれらの遷移金属の一部を他の金属で置換したものから選ばれる少なくとも1種を含む請求項11又は12に記載のリチウム二次電池用正極活物質。
- 正極集電体上に、請求項11から13の何れかに記載のリチウム二次電池用正極活物質を含む正極活物質層を有することを特徴とするリチウム二次電池用正極。
- 請求項14記載のリチウム二次電池用正極と、負極活物質を含む負極と、これらの電極を含浸する電解液と、これらを収納する外装体とを含むことを特徴とするリチウム二次電池。
- 請求項16記載のリチウム二次電池用正極活物質の製造方法により得られたリチウム二次電池用正極活物質と、正極結着剤とを含む正極活物質層形成用液を調製し、該正極活物質層形成用液を用いて、正極集電体上に正極活物質層を形成することを特徴とするリチウム二次電池用正極の製造方法。
- 正極活物質と正極結着剤とを含む正極活物質層を正極集電体上に形成し、前記正極活物質層を、式(1)
- 外装体に、正極活物質を含む正極と、負極活物質を含む負極と、セパレーターと、式(1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/070,984 US20190027741A1 (en) | 2015-06-18 | 2016-12-19 | Positive electrode active material for lithium secondary cell, positive electrode for lithium secondary cell, lithium secondary cell and methods for producing these |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015122893 | 2015-06-18 | ||
JP2016-007743 | 2016-01-19 | ||
JP2016007743A JP6807010B2 (ja) | 2015-06-18 | 2016-01-19 | リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びこれらの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017126276A1 true WO2017126276A1 (ja) | 2017-07-27 |
Family
ID=57545472
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/065452 WO2016203920A1 (ja) | 2015-06-18 | 2016-05-25 | リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びこれらの製造方法 |
PCT/JP2016/087806 WO2017126276A1 (ja) | 2015-06-18 | 2016-12-19 | リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びこれらの製造方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/065452 WO2016203920A1 (ja) | 2015-06-18 | 2016-05-25 | リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びこれらの製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20190027741A1 (ja) |
JP (1) | JP6807010B2 (ja) |
WO (2) | WO2016203920A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021254215A1 (en) * | 2020-06-17 | 2021-12-23 | Guangdong Haozhi Technology Co. Limited | Cathode active material, cathode slurry and cathode for secondary battery |
JP2022141192A (ja) * | 2021-03-15 | 2022-09-29 | プライムプラネットエナジー&ソリューションズ株式会社 | 正極および当該正極を備える非水電解質二次電池 |
WO2023120048A1 (ja) | 2021-12-24 | 2023-06-29 | パナソニックIpマネジメント株式会社 | 二次電池用正極およびその製造方法、ならびに二次電池 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7098558B2 (ja) | 2018-09-19 | 2022-07-11 | 株式会社東芝 | 電極、二次電池、電池パック、車両、及び、定置用電源 |
JP7376348B2 (ja) * | 2019-12-26 | 2023-11-08 | エルジー エナジー ソリューション リミテッド | 正極、リチウムイオン二次電池、正極の製造方法、及びリチウムイオン二次電池の製造方法 |
US20210384506A1 (en) * | 2020-06-05 | 2021-12-09 | The Regents Of The University Of California | Electrode including a layered/rocksalt intergrown structure |
CN111653724B (zh) * | 2020-06-24 | 2023-03-21 | 广西民族师范学院 | 一种表面改性的镍锰酸锂正极材料及其制备方法 |
US11469449B1 (en) * | 2021-09-01 | 2022-10-11 | Enevate Corporation | Phosphorus-containing compounds as additives for silicon-based li ion batteries |
US11502300B1 (en) * | 2021-10-13 | 2022-11-15 | Shenzhen Capchem Technology Co., Ltd. | Secondary battery |
CN116741953B (zh) * | 2022-03-10 | 2024-08-09 | 宁德时代新能源科技股份有限公司 | 正极活性材料、二次电池和用电装置 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001243981A (ja) * | 2000-03-01 | 2001-09-07 | Sanyo Electric Co Ltd | リチウム二次電池 |
JP2004221085A (ja) * | 2003-01-14 | 2004-08-05 | Samsung Sdi Co Ltd | 有機電解液及びこれを採用したリチウム電池 |
JP2006004746A (ja) * | 2004-06-17 | 2006-01-05 | Mitsubishi Chemicals Corp | 二次電池用非水電解液及びそれを用いる非水電解液二次電池 |
JP2009129893A (ja) * | 2007-11-28 | 2009-06-11 | Sony Corp | 負極、電池およびそれらの製造方法 |
JP2013152825A (ja) * | 2012-01-24 | 2013-08-08 | Sony Corp | 電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム |
WO2014012980A1 (en) * | 2012-07-20 | 2014-01-23 | Basf Se | Electrochemical cells |
WO2015072359A1 (ja) * | 2013-11-15 | 2015-05-21 | 住友金属鉱山株式会社 | 表面処理された酸化物粒子の製造方法とその製造方法で得られる酸化物粒子 |
JP2015122264A (ja) * | 2013-12-25 | 2015-07-02 | トヨタ自動車株式会社 | 非水電解液二次電池の製造方法 |
JP2015204238A (ja) * | 2014-04-15 | 2015-11-16 | 株式会社Gsユアサ | 非水電解質二次電池及び蓄電装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6537698B2 (en) * | 2001-03-21 | 2003-03-25 | Wilson Greatbatch Ltd. | Electrochemical cell having an electrode with a phosphonate additive in the electrode active mixture |
JP4236390B2 (ja) * | 2001-04-19 | 2009-03-11 | 三洋電機株式会社 | リチウム二次電池 |
JP4868786B2 (ja) * | 2004-09-24 | 2012-02-01 | 三洋電機株式会社 | リチウム二次電池 |
WO2011030686A1 (ja) * | 2009-09-09 | 2011-03-17 | 日本電気株式会社 | 二次電池 |
WO2012029420A1 (ja) * | 2010-09-02 | 2012-03-08 | 日本電気株式会社 | 二次電池 |
JP6319305B2 (ja) * | 2012-06-01 | 2018-05-09 | ソルベー エスアー | リチウムイオンバッテリ |
-
2016
- 2016-01-19 JP JP2016007743A patent/JP6807010B2/ja active Active
- 2016-05-25 WO PCT/JP2016/065452 patent/WO2016203920A1/ja active Application Filing
- 2016-12-19 WO PCT/JP2016/087806 patent/WO2017126276A1/ja active Application Filing
- 2016-12-19 US US16/070,984 patent/US20190027741A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001243981A (ja) * | 2000-03-01 | 2001-09-07 | Sanyo Electric Co Ltd | リチウム二次電池 |
JP2004221085A (ja) * | 2003-01-14 | 2004-08-05 | Samsung Sdi Co Ltd | 有機電解液及びこれを採用したリチウム電池 |
JP2006004746A (ja) * | 2004-06-17 | 2006-01-05 | Mitsubishi Chemicals Corp | 二次電池用非水電解液及びそれを用いる非水電解液二次電池 |
JP2009129893A (ja) * | 2007-11-28 | 2009-06-11 | Sony Corp | 負極、電池およびそれらの製造方法 |
JP2013152825A (ja) * | 2012-01-24 | 2013-08-08 | Sony Corp | 電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム |
WO2014012980A1 (en) * | 2012-07-20 | 2014-01-23 | Basf Se | Electrochemical cells |
WO2015072359A1 (ja) * | 2013-11-15 | 2015-05-21 | 住友金属鉱山株式会社 | 表面処理された酸化物粒子の製造方法とその製造方法で得られる酸化物粒子 |
JP2015122264A (ja) * | 2013-12-25 | 2015-07-02 | トヨタ自動車株式会社 | 非水電解液二次電池の製造方法 |
JP2015204238A (ja) * | 2014-04-15 | 2015-11-16 | 株式会社Gsユアサ | 非水電解質二次電池及び蓄電装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021254215A1 (en) * | 2020-06-17 | 2021-12-23 | Guangdong Haozhi Technology Co. Limited | Cathode active material, cathode slurry and cathode for secondary battery |
JP2022141192A (ja) * | 2021-03-15 | 2022-09-29 | プライムプラネットエナジー&ソリューションズ株式会社 | 正極および当該正極を備える非水電解質二次電池 |
JP7529597B2 (ja) | 2021-03-15 | 2024-08-06 | プライムプラネットエナジー&ソリューションズ株式会社 | 正極および当該正極を備える非水電解質二次電池 |
WO2023120048A1 (ja) | 2021-12-24 | 2023-06-29 | パナソニックIpマネジメント株式会社 | 二次電池用正極およびその製造方法、ならびに二次電池 |
Also Published As
Publication number | Publication date |
---|---|
WO2016203920A1 (ja) | 2016-12-22 |
JP2017010923A (ja) | 2017-01-12 |
US20190027741A1 (en) | 2019-01-24 |
JP6807010B2 (ja) | 2021-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10833369B2 (en) | Positive electrode active substance for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and methods for producing these | |
WO2017126276A1 (ja) | リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びこれらの製造方法 | |
JP6705384B2 (ja) | リチウム二次電池 | |
WO2017047280A1 (ja) | リチウム二次電池及びその製造方法 | |
JP6933216B2 (ja) | 非水電解液及びリチウムイオン二次電池 | |
WO2017007013A1 (ja) | リチウムイオン二次電池 | |
JP6680293B2 (ja) | ハイドロフルオロエーテル化合物、非水電解液およびリチウムイオン二次電池 | |
US20150188142A1 (en) | Lithium secondary battery and method for producing same | |
JPWO2016098708A1 (ja) | リチウムイオン二次電池 | |
JP7040460B2 (ja) | リチウムイオン二次電池用黒鉛系材料の製造方法、リチウムイオン二次電池用負極の製造方法、及びリチウムイオン二次電池の製造方法 | |
US10923770B2 (en) | Lithium ion secondary battery | |
WO2016152861A1 (ja) | リチウムイオン二次電池 | |
CN111418105B (zh) | 锂离子二次电池 | |
JP6520947B2 (ja) | 非水電解液及びリチウムイオン二次電池 | |
JP6720974B2 (ja) | リチウムイオン二次電池 | |
WO2019235469A1 (ja) | 還元型グラフェン系材料 | |
JP2018092785A (ja) | リチウムイオン二次電池用電解液およびリチウムイオン二次電池 | |
JP7006614B2 (ja) | リチウムイオン二次電池用電極、及びそれを用いたリチウムイオン二次電池 | |
JP7413635B2 (ja) | リン酸ホウ素リチウム化合物、リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池の製造方法、及びリチウム二次電池 | |
WO2018096889A1 (ja) | 非水電解液、及びリチウムイオン二次電池 | |
WO2020145298A1 (ja) | 還元型酸化グラフェン-黒鉛複合材料、その製造方法、及びそれを用いたリチウムイオン二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16886515 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16886515 Country of ref document: EP Kind code of ref document: A1 |