JP2009038498A - 画像処理装置及び画像処理方法 - Google Patents

画像処理装置及び画像処理方法 Download PDF

Info

Publication number
JP2009038498A
JP2009038498A JP2007199491A JP2007199491A JP2009038498A JP 2009038498 A JP2009038498 A JP 2009038498A JP 2007199491 A JP2007199491 A JP 2007199491A JP 2007199491 A JP2007199491 A JP 2007199491A JP 2009038498 A JP2009038498 A JP 2009038498A
Authority
JP
Japan
Prior art keywords
color enhancement
image
color
magnitude
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007199491A
Other languages
English (en)
Other versions
JP5116393B2 (ja
JP2009038498A5 (ja
Inventor
Kiyoshi Umeda
清 梅田
Ryosuke Iguchi
良介 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007199491A priority Critical patent/JP5116393B2/ja
Priority to US12/181,903 priority patent/US8290259B2/en
Priority to CN2008101444748A priority patent/CN101360179B/zh
Publication of JP2009038498A publication Critical patent/JP2009038498A/ja
Publication of JP2009038498A5 publication Critical patent/JP2009038498A5/ja
Application granted granted Critical
Publication of JP5116393B2 publication Critical patent/JP5116393B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6027Correction or control of colour gradation or colour contrast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/62Retouching, i.e. modification of isolated colours only or in isolated picture areas only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/62Retouching, i.e. modification of isolated colours only or in isolated picture areas only
    • H04N1/628Memory colours, e.g. skin or sky

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Abstract

【課題】画像内の特定色のみを強調するか又は画像全体を強調するかを適応的に切り替える画像処理装置を提供する。
【解決手段】本発明の画像処理装置は、特定色を強調するための複数の色強調テーブルを保持する保持手段と、画像に対して保持手段によって保持された複数の色強調テーブルを適用した際の色強調効果の大きさをそれぞれ算出する算出手段と、色強調効果の大きさに応じて一つ以上の色強調テーブルを選択する選択手段と、選択手段によって選択された色強調テーブルを画像に適用することにより、画像内の特定色を補正する補正手段とを備える。
【選択図】図2

Description

本発明は、入力画像から特定の色を抽出し、抽出された色を補正する画像処理装置及び画像処理方法に関する。
デジタルカメラ等で撮影された画像内から所望の色領域を抽出し、その色領域を補正する技術が存在する。例えば、特許文献1には、画像内から強調すべき色を自動で特定し強調処理を行う際に、画像を複数の領域に分割し、領域毎に異なる色を強調する処理を行う技術が開示されている。また、特許文献2には、カラーネガフィルムをスキャンして得られた画像データに対して硬調化処理を行い、硬調化処理が行われた画像データに対して、特定の色相(例えば空色のシアンなど)を所望の色相に変換する処理を行う技術が開示されている。
特開2004−201224号公報 特開平11−275363号公報
デジタルカメラ等で撮影された画像が、人物が写った風景写真であって、その画像が光源のなんらかの影響で色かぶりを起こしていた場合、画像内の人物の顔色は良好な色になっていない。そこで、この画像に対して公知のホワイトバランス補正を行うことによりカラーバランスを整えると、人物の顔色は良好な色に変化する。ところが、更に、人物の背景(空や山等)の色を鮮やかにするために画像全体の彩度を強調する処理を行うと、せっかく良好な色になった顔色も変化してしまう。したがって、良好になった人物の顔色を維持しつつ、人物の背景のみを鮮やかにすることが望まれる。このような場合、上述したような、画像から人物の顔色以外の特定の色を抽出し、その色のみを強調する技術が有効となる。これに対して、人物が写っていない風景写真であれば、画像全体の彩度を強調することで良好な画像に仕上げることができるため、背景の特定色のみを強調する必要性はない。
また、従来技術においては、画像内から任意の色相を抽出して強調処理を行う際には、通常、二つのパラメータが必要になる、1つは、所望の色相範囲を定義するパラメータであり、もう1つは、その色相をどのように修正するかという修正パラメータである。特許文献2に開示された技術では、予め抽出する空色(シアン色)の色相範囲を定義するパラメータと、それをどのように強調するかというパラメータ(強調関数F)を用い、それらのパラメータの組み合わせで特定色の強調処理を実現している。しかし、1つの処理を行うために必要なパラメータが2つ存在すると、両者を設計し、メモリに保持する必要がある。また、パラメータが2つ存在すると、一方のパラメータだけを変更したい場合であっても、2つのパラメータの整合性が崩れないように他方のパラメータも変更する必要があるため、パラメータの変更が非常に煩わしいという課題がある。
そこで、本発明の目的は、画像内に色を変えたくないオブジェクト(例えば、人物)が存在するか否かを判定し、その判定結果に応じて、特定色のみを強調するか又は画像全体を強調するかを適応的に切り替える画像処理装置を提供することにある。また、本発明の目的は、1つのパラメータを用いて、変化させたい色相範囲とその適用強度を算出する画像処理装置を提供することにある。
本発明の画像処理装置は、画像内に予め定められたオブジェクトが存在するか否かを判定する判定手段と、判定手段によって画像内に予め定められたオブジェクトが存在すると判定された場合は、当該予め定められたオブジェクトの色以外の特定色を補正し、判定手段によって画像内に予め定めたオブジェクトが存在しないと判定された場合は、当該画像全体の彩度を補正する補正手段とを備えることを特徴とする。
本発明の画像処理装置は、特定色を強調するための複数の色強調テーブルを保持する保持手段と、画像に対して保持手段によって保持された複数の色強調テーブルを適用した際の色強調効果の大きさをそれぞれ算出する算出手段と、色強調効果の大きさに応じて一つ以上の色強調テーブルを選択する選択手段と、選択手段によって選択された色強調テーブルを画像に適用することにより、画像内の特定色を補正する補正手段とを備えることを特徴とする。
本発明の画像処理装置は、特定色を強調するための複数の色強調テーブルを保持する保持手段と、画像内に予め定められたオブジェクトが存在するか否かを判定する判定手段と、画像に対して保持手段によって保持された複数の色強調テーブルを適用した際の色強調効果の大きさをそれぞれ算出する算出手段と、色強調効果の大きさに応じて一つ以上の色強調テーブルを選択する選択手段と、選択手段によって選択された色強調テーブルを画像に適用する強度を算出する手段と、判定手段によって画像内に予め定められたオブジェクトが存在すると判定された場合、当該予め定められたオブジェクトの色以外の特定色に対して、選択手段によって選択された色強調テーブルを強度で適用することにより特定色を補正し、判定手段によって画像内に予め定められたオブジェクトが存在しないと判定された場合は、画像全体の彩度を補正する補正手段とを備えることを特徴とする。
本発明の画像処理方法は、画像内に予め定められたオブジェクトが存在するか否かを判定するステップと、判定するステップによって画像内に予め定められたオブジェクトが存在すると判定された場合は、当該予め定められたオブジェクトの色以外の特定色を補正し、判定するステップによって画像内に予め定めたオブジェクトが存在しないと判定された場合は、当該画像全体の彩度を補正するステップとを含むことを特徴とする。
本発明の画像処理方法は、特定色を強調するための複数の色強調テーブルを保持するステップと、画像に対して保持ステップによって保持された複数の色強調テーブルを適用した際の色強調効果の大きさをそれぞれ算出するステップと、色強調効果の大きさに応じて一つ以上の色強調テーブルを選択するステップと、選択するステップによって選択された色強調テーブルを画像に適用することにより、画像内の特定色を補正するステップとを含むことを特徴とする。
本発明の画像処理方法は、特定色を強調するための複数の色強調テーブルを保持するステップと、画像内に予め定められたオブジェクトが存在するか否かを判定するステップと、画像に対して保持するステップによって保持された複数の色強調テーブルを適用した際の色強調効果の大きさをそれぞれ算出するステップと、色強調効果の大きさに応じて一つ以上の色強調テーブルを選択するステップと、色強調テーブルを選択するステップによって選択された色強調テーブルを画像に適用する強度を算出するステップと、判定するステップによって画像内に予め定められたオブジェクトが存在すると判定された場合、当該予め定められたオブジェクトの色以外の特定色に対して、色強調テーブルを選択するステップによって選択された色強調テーブルを強度で適用することにより特定色を補正し、判定するステップによって画像内に予め定められたオブジェクトが存在しないと判定された場合は、画像全体の彩度を補正するステップとを含むことを特徴とする。
本発明のコンピュータ読み取り可能な記録媒体は、コンピュータに、上記のいずれかの方法を実行させるためのプログラムを記録することを特徴とする。
本発明のプログラムは、コンピュータに、上記のいずれかの方法を実行させることを特徴とする。
本発明によれば、入力画像に対する色強調処理を適応的に切り替えることができる。
以下、本発明の実施形態を、図面を用いて説明する。
(第1の実施形態)
図1は、本発明を適用可能な画像処理装置の構成例を示すブロック図である。
画像処理装置100は、CPU101、ROM102、RAM103、プリンタエンジン104、タッチパネル等のユーザインタフェース105、表示装置106、メモリーカードリーダー107、入出力インタフェース108を備える。これらの要素は、システムバス109を介して接続される。画像処理装置100は、入出力インタフェース108を介して、パーソナルコンピュータ(PC)110と接続可能である。なお、本装置を、プリンタ、デジタルカメラ、複写機、ファクシミリ、テレビ等に組み込むことも可能である。
CPU101は、ROM102に格納されたプログラム(以下で説明する画像処理のプログラムを含む)をワークメモリであるRAM103にロードして当該プログラムを実行する。そして、当該プログラムに従いシステムバス109を介して上記の各構成を制御することで、当該プログラムの機能を実現する。
図2は、第1の実施形態における画像処理装置の機能を示すブロック図で、CPU101によって実行される処理である。
JPEGデコード部200は、デジタルカメラ等で撮影された静止画の静止画情報(Exif−JPEG情報等)を入力し、静止画情報に対して周知のJPEGデコード処理を行うことにより画像データ(例えばRGBデータ(24bit階調))を生成する。
縮小画像生成部201は、JPEGデコード部200から受け取った画像データから縮小画像データを生成する。縮小画像データを生成する目的は、後述する顔検出処理やホワイトバランスパラメータの算出等の画像解析に要する演算量を削減するためである。縮小画像データは、できるだけ小さく、かつ画像のディテールを十分に保っている必要がある。したがって、縮小画像データの解像度は、640×480画素程度であるのが望ましい。なお、第1の実施形態においては、縮小画像生成部201は、RGBデータ(24bit階調)で構成された縮小画像データを生成するものとする。
顔検出部202は、縮小画像生成部201から受け取った縮小画像データに対して、予め定めたオブジェクトである人物の顔領域を検出する処理を行い、検出した顔領域の座標位置等を示す顔検出結果を求める。人物の顔検出処理は、周知の手法を用いればよい。
ホワイトバランスパラメータ算出部203は、縮小画像生成部201から受け取った縮小画像データのホワイトバランス(WB)の状態を推定し、適切なホワイトバランスに補正するためのパラメータを求める。このパラメータをホワイトバランス補正パラメータと呼ぶ。ホワイトバランスの補正方法は、公知の手法のいずれであってもよいが、第1の実施形態においては、画像の明るい領域と暗い領域を使用した補正方法を用いる。画像の明るい領域をハイライト(HL)領域と呼び、画像の暗い領域をシャドー(SD)領域と呼ぶ。
図3、図4は、ホワイトバランスの補正方法を説明するための図である。
入力画像が適正なホワイトバランスとなっている場合、図3の300に示すように、入力画像を輝度・色差空間(YCbCr空間)に射影した際、ハイライト(HL)領域とシャドー(SD)領域はグレー軸(Y軸)の近辺に分布することが知られている。一方で、入力画像が色かぶりを起こしている場合等ホワイトバランスが崩れている場合には、輝度・色差空間における画像の分布は、図4の400に示すようになる。図4の400に示す分布となっている入力画像に対してホワイトバランス補正を行うために、輝度・色差空間において、ハイライト(HL)領域とシャドー(SD)領域をグレー軸(Y軸)上に配置させるための回転行列を生成する。そして、以下の式によって輝度・色差空間の色変換を行う。
Figure 2009038498
上式における3×3の回転行列は、ホワイトバランス補正パラメータである。
図5は、ホワイトバランス補正パラメータ算出部203によるホワイトバランス補正パラメータの算出処理の流れを示すフローチャートである。
S501において、ホワイトバランス補正パラメータ算出部203は、縮小画像データのヒストグラムを算出する。ヒストグラムは、RGBデータで構成された縮小画像データの画素値をYCbCr値に変換し、累積輝度ヒストグラムと、各輝度における平均Cb,Cr値を算出する。
S502において、ホワイトバランス補正パラメータ算出部203は、ハイライトポイント(HLポイント)とシャドーポイント(SDポイント)を算出する。例えば、ホワイトバランス補正パラメータ算出部203は、累積輝度ヒストグラムを参照し、累積度数が縮小画像データ全体の99.0%と1.0%の位置をそれぞれハイライトポイントとシャドーポイントとする。ハイライトポイントを、(YHL,CbHL,CrHL)と表記し、シャドーポイントを、(YSD,CbSD,CrSD)と表記する。
S503において、ホワイトバランス補正パラメータ算出部203は、ハイライトポイントとシャドーポイントをグレー軸(Y軸)に配置させるための3×3の回転行列を生成する。なお、3×3の回転行列は、公知の手法を用いて生成すればよい。
引き続き、図2を参照して、画像処理装置100の機能を説明する。
階調補正カーブ算出部204は、縮小画像生成部201から受け取った縮小画像データと、顔検出部202から受け取った顔検出結果に基づいて、階調補正カーブを算出する。入力画像に対して階調補正を行う手法は様々考えられる。例えば、入力画像が風景画像であれば、コントラストを上げる補正が考えられる。また、入力画像が夜景画像であれば、暗部は維持したまま、明るい領域を際立たせる補正が考えられる。第1の実施形態では、検出した人物の顔領域が暗い時、顔領域の明るさを適正にするための階調補正を行う。
図6は、階調補正カーブ算出部204による階調補正処理の流れを示すフローチャートである。
S601において、階調補正カーブ算出部204は、顔検出部202によって検出された顔領域の平均輝度値(InSkinTone)を算出する。顔領域が複数ある場合には、階調補正カーブ算出部204は、各顔領域の平均輝度値を算出してから、それらの平均を求めてもよいし、サイズが大きい顔領域の平均輝度値のみを求めてもよい。
S602において、階調補正カーブ算出部204は、S601で求めた顔領域の平均輝度値(InSkinTone)が所定値より低いか否かを判定する。すなわち、階調補正カーブ算出部204は、顔領域が暗いか否かを判定する。判定した結果、顔領域の平均輝度値が所定値より低い場合は、階調補正カーブ算出部204は、顔領域が逆光状態になっているとみなして、平均輝度値(InSkinTone)を目標輝度値(OutSkinTone)に補正するための階調補正カーブを生成する。
図7は、階調補正カーブ算出部204による階調補正カーブの生成を説明するための図である。
図7の700は、階調補正カーブを示す。階調補正カーブは、(0,0)、(InSkinTone,OutSkinTone)、(255,255)の座標値を通る線であればよい。すなわち、階調補正カーブは、単純なガンマカーブであっても、直線で構成されるカーブであってもよい。一方、顔領域が存在しない場合や顔領域の平均輝度が所定値より高い場合には、InとOutが同値となる1次元ルックアップテーブルを生成し、メモリに格納する。
引き続き、図2を参照して、画像処理装置100の機能を説明する。
補正用3次元ルックアップテーブル生成部205は、ホワイトバランス補正パラメータ算出部203からホワイトバランス補正パラメータ(3×3の回転行列)を受け取り、階調補正カーブ算出部204から階調補正カーブを受け取る。補正用3次元ルックアップテーブル生成部205は、ホワイトバランス補正パラメータと階調補正カーブを用いて、画像補正用のRGB3次元ルックアップテーブル(3DLUT)を生成する。
図8は、補正用3次元ルックアップテーブル生成部205による補正用3次元ルックアップテーブルの生成処理の流れを示すフローチャートである。
S800において、補正用3次元ルックアップテーブル生成部205は、RGB空間における補正用3次元ルックアップテーブルの各グリッド値(R,G,B)を取得する。
S801において、補正用3次元ルックアップテーブル生成部205は、グリッド値(R,G,B)を輝度・色差信号であるYCbCr値に変換する。
S802において、補正用3次元ルックアップテーブル生成部205は、YCbCr値に対して、ホワイトバランス補正パラメータ(3×3の回転行列)を適用し、(Y’,Cb’,Cr’)を算出する。
S803において、補正用3次元ルックアップテーブル生成部205は、(Y’,Cb’,Cr’)のうちの輝度成分(Y’)に対して階調補正カーブを適用して、Y’’値を算出する。
S804において、補正用3次元ルックアップテーブル生成部205は、(Y’’,Cb’,Cr’)を(R’,G’,B’)に変換し、それをグリッドに格納する。
補正用3次元ルックアップテーブル生成部205は、上述の処理をRGBの補正用3次元ルックアップテーブルの全てのグリッドに対して行う。
S805において、補正用3次元ルックアップテーブル生成部205は、上述の処理をRGBの補正用3次元ルックアップテーブルの全てのグリッドに対して行った場合には、補正用3次元ルックアップテーブルの生成を終了する。
引き続いて、図2を参照して、画像処理装置100の機能を説明する。
中間画像生成部206は、補正用3次元ルックアップテーブル生成部205から受け取った補正用3次元ルックアップテーブルを公知の補間処理(四面体補間等)を用いて縮小画像に適用することで中間画像を生成する。次いで、中間画像生成部206は、生成した中間画像データをメモリに格納する。
顔領域判定部207は、顔検出部202から受け取った顔検出結果に基づき、縮小画像内に人物の顔領域(予め定めたオブジェクト)が存在するか否かの判定を行う。顔領域が存在する場合には、中間画像生成部206から受け取った中間画像データを特定色強調部209に送り、顔領域が存在しない場合には、中間画像データを全体彩度補正係数算出部208に送る。
特定色強調部209は、予め定めたオブジェクトの色(本例では、顔色)に対してはそのままの色を維持しつつ、予め定めたオブジェクト以外のオブジェクト内の特定の色に対してはその色を強調する処理を行う。第1の実施形態では、特定色強調部209は、予め保持している複数種の特定色強調テーブルを参照しながら、どの特定色強調テーブルをどの程度の強度で施すかを決定する。なお、第1の実施形態においては、特定色強調テーブルは、RGBの補正用3次元ルックアップテーブル形式で保持することを想定しており、特定色のグリッドだけが特定方向に補正されたRGB値を格納している。
図10は、特定色強調テーブルの1つである青強調テーブルの特性を説明するための図である。図11は、特定色強調テーブルの1つである緑強調テーブルの特性を説明するための図である。
これらの図は、特定色強調テーブルの特性を分かりやすく説明するために、RGB空間で保持している特定色強調テーブルの効果を色差CbCr平面で表現している。
図10において、円1000は、色差CbCr平面における青領域を示す。同円中の矢印は、その領域内の色が青色強調テーブルによってどの方向に補正されるかを示す。基本的には原点から遠ざかる方向、すなわち彩度が向上する方向に補正されるが、色相も変化する。また、同円以外の領域では、その色は、全く変化しない。
図11において、円1100は、CbCr平面における緑領域を示す。同円中の矢印は、その領域内の色が緑色強調テーブルによってどの方向に補正されるかを示す。基本的には原点から遠ざかる方向、すなわち彩度が向上する方向に補正されるが、色相も変化する。また、同円以外の領域では、その色は、全く変化しない。
特定色強調部209は、このような特定色強調テーブルを複数保持し、以下に説明するように、それらの中から入力画像に応じて、最適な特定色強調テーブルを選択する。
図9は、特定色強調部209において、最適な特定色強調テーブルを選択し、選択された特定色強調テーブルの処理強度を決定する処理の流れを示すフローチャートである。
S900において、特定色強調部209は、中間画像生成部206から受け取った中間画像データの画素値(R,G,B)を取得する。
S901において、特定色強調部209は、複数の特定色強調テーブル(青強調テーブル、緑強調テーブル、赤強調テーブル等)の中から、例えば青強調テーブルを選択する。次いで、特定色強調部209は、公知の補間方法(四面体補間など)を用いて、画素値(R,G,B)に対して青強調テーブルを適用する。画素値(R,G,B)に対して青強調テーブルを適用することにより、青色が強調された画素値(R’,G’,B’)が得られる。
S902において、特定色強調部209は、画素値(R,G,B)と画素値(R’,G’,B’)から色強調テーブルの適用前後の変動量デルタDを算出する。
Figure 2009038498
S902において、特定色強調部209は、上記の変動量を積算する。また、特定強調部209は、変動量が所定値以上となる画素数をカウントする。さらに、特定色強調部209は、変動量が所定値以上となる画素の色強調前の彩度を積算する。なお、画素の彩度は、(R,G,B)値をHIS系に変換して求めてもよいし、(R,G,B)値を(Y,Cb,Cr)値に変換して、以下のように(Cb,Cr)ベクトルの長さを彩度として積算してもよい。
Figure 2009038498
このように変動量が少ない画素を対象外とすることで、特定色強調テーブルを適用した場合の色強調効果の大きさを精度良く推定することができる。
特定色強調部209は、S900〜S902の処理を中間画像データ内の全ての画素に対して行う。
S902において、特定色強調部209は、S900〜S902の処理を中間画像データ内の全ての画素に対して行ったかどうかを判定し、全ての画素に対して行った場合には、S904の処理に進む。
S904において、特定色強調部209は、積算した変動量と彩度を中間画像データの画素数で除算することにより、平均変動量と、色強調前の平均彩度を算出する。
特定色強調部209は、S900〜S904の処理を、全ての特定色強調テーブルを用いて行う。それにより、特定色強調部209は、特定色強調テーブル毎に、平均変動量、所定値以上変動する画素数、所定値以上変動する画素の色強調前の平均彩度の3つのパラメータを取得する。
S905において、特定色強調部209は、S900〜S904の処理を、全ての特定色強調テーブルを用いて行ったかどうかを判定し、全ての特定色強調テーブルを用いて行った場合には、S906の処理に進む。
S906において、特定色強調部209は、上記の3つのパラメータのうちの少なくとも1つを参照して入力画像に対してどの特定色強調テーブルを用いると色強調の効果が大きくなるかを判定する。特定色強調部209は、例えば平均変動量を用いて効果の大きさを判定する。平均変動量が大きいということは、色強調の効果が大きいと考えることができるため、特定色強調部209は、平均変動量が最も大きくなる特定色強調テーブルを選択する。
S907において、特定色強調部209は、選択した特定色強調テーブルをどの程度の強度で画像に適用するかを決定する。特定色強調テーブルを適用する強度は、例えば、上記の3つのパラメータのうちの少なくとも1つを用いて決定される。
まず、平均変動量に関する重み値W0を、以下のように決定する。
if(平均変動量>TH0) W0=1.0
else W0=平均変動量÷TH0
ここで、TH0は、平均変動量を正規化するための閾値である。
すなわち、平均変動量が閾値より大きい場合には、重み値を1とし、平均変動量が閾値以下の場合には、平均変動量を閾値で除算した値を重み値とする。
次に、所定値以上変動する画素数を、中間画像データ全体の画素数で除算した値をW1とする。
さらに、色強調前の平均彩度に関する重み値W2を、以下のように決定する。
if(色強調前の平均彩度<TH2) W2=1.0
else W2=TH2÷色強調前の平均彩度
ここで、TH2は、色強調前の平均彩度を正規化するための閾値である。
すなわち、色強調前の平均彩度が閾値以下の場合には、重み値を1とし、色強調前の平均彩度が閾値より大きい場合には、閾値を色強調前の平均彩度で除算した値を重み値とする。これにより、色強調前の平均彩度が低い場合、特定色強調テーブルを強くかけることができ、色強調前の平均彩度が高い場合、特定色強調テーブルを弱くかけることで、過度の色強調を防ぐことができる。
上記の値W0、W1、W2を用いて、色強調テーブルを適用する強度Wを以下のように算出する。
W=W0×W1×W2
以上が、特定色強調部209における、特定色強調テーブルの選択と、選択された特定色強調テーブルを適用する強度Wを算出する処理の説明である。
引き続き、図2を参照して、画像処理装置100の機能を説明する。
補正用3次元ルックアップテーブル修正部211は、特定色強調部209で求めた強度で、補正用3次元ルックアップテーブル生成部205で生成された補正用3次元ルックアップテーブルと特定色強調部209で生成された特定色強調テーブルとを合成する。
図12は、補正用3次元ルックアップテーブル修正部211による、補正用3次元ルックアップテーブルと特定色強調テーブルの合成処理の流れを示すフローチャートである。
なお、第1の実施形態においては、説明の簡略化のため、補正用3次元ルックアップテーブルのグリッド数と、特定色強調テーブルのグリッド数とが一致しているものとする。
S1200において、補正用3次元ルックアップテーブル修正部211は、補正用3次元ルックアップテーブルの任意のグリッドに格納されている補正後の値(R,G,B)を取得する。
S1201において、補正用3次元ルックアップテーブル修正部211は、(R,G,B)に対して公知の補間処理(四面体補間など)を行い、色強調後の(R’,G’,B’)を算出する。
S1202において、補正用3次元ルックアップテーブル修正部211は、(R,G,B)と(R’,G’,B’)と強度Wを用いて最終的な(R’’,G’’,B’’)を算出する。
R’’=(R−R’)×W+R
G’’=(G−G’)×W+G
B’’=(B−B’)×W+B
S1203において、補正用3次元ルックアップテーブル修正部211は、算出した(R’’,G’’,B’’)を補正用3次元ルックアップテーブルのグリッドに格納する。
補正用3次元ルックアップテーブル修正部211は、S1200〜S1203の処理を、補正用3次元ルックアップテーブルの全てのグリッドに対して行う。これによって、補正用3次元ルックアップテーブルと特定色強調テーブルの合成処理が完了する。
一方で、顔領域判定部207による判定で、顔領域が存在しないと判定した場合には、顔領域判定部207は、中間画像データを全体彩度補正係数算出部208に送る。
全体彩度補正係数算出部208は、中間画像データの平均彩度から、縮小画像全体の彩度を補正するための彩度補正係数(SG)を算出する。
図13は、平均彩度と彩度補正係数の関係の一例を説明するための図である。
図13に表されたグラフにおいて、横軸は、中間画像データの平均彩度、縦軸は、彩度補正係数(SG)を示す。本グラフからわかるように、平均彩度が低い場合には彩度補正係数(SG)は高めに設定され、平均彩度が上昇するにつれて彩度補正係数(SG)は減衰し、閾値Th_Sを超えると、彩度補正係数(SG)=1.0となり彩度強調は行われない。彩度補正係数(SG)をこのように設定することにより、元々彩度が高い画像に対して、過剰な彩度強調を行わないようにする。
補正用3次元ルックアップテーブル修正部211は、全体彩度補正係数算出部208から受け取った彩度補正係数(SG)を用いて、補正用3次元ルックアップテーブルを修正する。
図14は、補正用3次元ルックアップテーブル修正部211による、補正用3次元ルックアップテーブルの修正処理の流れを示すフローチャートである。
S1400において、補正用3次元ルックアップテーブル修正部211は、補正用3次元ルックアップテーブルの任意のグリッドに格納されている補正後の(R,G,B)を取得する。
S1401において、補正用3次元ルックアップテーブル修正部211は、(R,G,B)を(Y,Cb,Cr)に変換する。
S1402において、補正用3次元ルックアップテーブル修正部211は、(Cb,Cr)値に対して彩度補正係数(SG)を乗じ、(Cb’,Cr’)を算出する。
Cb’=Cb×SG
Cr’=Cr×SG
S1403において、補正用3次元ルックアップテーブル修正部211は、彩度補正後の(Y,Cb’,Cr’)を(R’,G’,B’)に変換し、グリッド位置に格納する。
補正用3次元ルックアップテーブル修正部211は、S1400〜S1403までの処理を補正用3次元ルックアップテーブルの全グリッドに対して行う。
S1404において、補正用3次元ルックアップテーブル修正部211は、S1400〜S1403までの処理を補正用3次元ルックアップテーブルの全グリッドに対して行ったかどうかを判定し、全グリッドに対して行った場合には、修正を終了する。
引き続き、図2を参照して、画像処理装置100の機能を説明する。
補正処理部212は、まず、公知の補間処理を使って、元解像度の入力画像データ、あるいは、印刷解像度、表示解像度に縮小・拡大されたリサイズ画像を生成する。次いで、補正処理部212は、補正用3次元ルックアップテーブル修正部211から受け取った補正用3次元ルックアップテーブルを入力画像に適用し、その結果、所望の補正が施された画像データを生成する。補正処理部212は、生成した画像データを記憶装置に保存し、表示装置に表示し、又は、プリンタエンジンに送る。
以上説明したように、第1の実施形態の画像処理装置は、入力画像内に色を変化させたくないオブジェクトが存在するか否かを判定する。その結果、色を変化させたくないオブジェクトが存在するならば、画像処理装置は、ホワイトバランス補正や階調補正をした後、特定の色のみを強調する。一方、入力画像内に色を変化させたくないオブジェクトが存在しないならば、画像処理装置は、画像全体の彩度を強調する。第1の実施形態によれば、上述の処理を行うことで、入力画像に対して適応的に色強調処理を切り替えることができる。
また、第1の実施形態では、予め保持している特定色強調テーブルのみを用いて平均変動量、すなわち、色強調効果の大きさを算出する。その後、その色強調効果の大きさを参照して、複数の特定色強調テーブルの中から最適な特定色テーブルを選択し、さらに、その選択された特定色テーブルを適用する強度も決定する。この構成であれば、特定色強調テーブルを追加・修正した場合にも、特定色強調部209のアルゴリズムを変更する必要がない。尚、色強調効果の大きさを参照して、複数の特定色強調テーブルの中から色強調効果が大きい上位N個の色強調テーブルを選択してもよい。
また、第1の実施形態によれば、画像の補正を行った後の中間画像データを解析して特定色強調テーブルの選択や、特定色強調テーブルの適用の強度の算出を行うため、より正確な色強調処理を行うことができる。
また、第1の実施形態では、最初に補正用3次元ルックアップテーブルを生成し、特定色強調用のテーブルを選択し、補正用3次元ルックアップテーブルを修正するように構成している。このことにより、最後に一度だけ元解像度の画像に対して補正処理を実行すればよく、効率的な処理で出力画像を生成することができる。
(第2の実施形態)
第1の実施形態では、画像処理装置は、まず、VGAサイズの縮小画像データを生成し、ホワイトバランス補正パラメータと階調補正カーブを算出する。次いで、画像処理装置は、縮小画像データに対して基本補正(ホワイトバランス補正および階調補正)を行うことにより中間画像データを生成し、その中間画像データを用いて、適用する特定色強調テーブルを選択する。このような第1の実施形態においては、以下に示す改善点がある。
第1の実施形態の場合、縮小画像データあるいは中間画像データを処理の終盤までメモリに保存しておく必要がある。RGB各画素を3バイトで表現するならば、VGAサイズの縮小画像データであっても必要なメモリ量の合計は640×480×3=900KBにも及ぶ。この必要なメモリ量の大きさは、数百MB程度の大容量のメモリを装備したパーソナルコンピュータ等の場合には殆ど影響はないが、小容量のメモリしか装備していないプリンタやデジタルカメラ等の場合には影響が大きい。また、第1の実施形態の場合、ホワイトバランスパラメータや階調補正カーブを算出した後に、補正用3次元ルックアップテーブルを生成し、補正用3次元ルックアップテーブルを縮小画像データの各画素に適用することで中間画像データを生成する。中間画像データを生成する際に必要な演算量については、四面体補間などの補間演算に約30万回(640×480=307200)の演算を要し、特定色強調テーブルの選択時に画素毎に変動量を算出するための補間演算に30万×テーブル数の演算を要する。この演算量の大きさは、数GHzのクロックで動作するCPUを搭載したパーソナルコンピュータの場合には殆ど影響がないが、数百MHz程度のクロックで動作するCPUを搭載したプリンタやデジタルカメラ等の場合には影響が大きい。
そこで、第2の実施形態では、中間画像データを保持しつづけるためのメモリを確保する必要をなくし、さらに、中間画像データを生成する際に必要な演算量を削減する画像処理装置を提供する。
第2の実施形態では、入力画像に対してRGB空間におけるグリッドヒストグラム(GH)を算出し、グリッドヒストグラム(GH)と補正用3次元ルックアップテーブルを用いて特定色強調テーブルを選択する。
図15は、第2の実施形態における画像処理装置の機能を示すブロック図である。
図15に示す構成は、縮小画像データに対してグリッドヒストグラム(GH)を算出するグリッドヒストグラム算出部1503を有する点と、中間画像生成部206を有しない点で、図2に示す構成とは異なる。
まず、グリッドヒストグラム(GH)について説明する。
図16は、多次元のグリッドヒストグラム(GH)を示す図である。
図16では、例として24bitのRGBの3次元空間において16間隔でグリッドを生成した場合を示している。この場合、3次元空間におけるグリッド(格子点)数は、173=4913となる。
図17は、グリッドヒストグラム算出部1503による、縮小画像データに対してグリッドヒストグラム(GH)を算出する処理の流れを示すフローチャートである。
S1700において、グリッドヒストグラム算出部1503は、縮小画像生成部1501から受け取ったRGB縮小画像データの各画素に対して、グリッドヒストグラムのグリッド位置を算出する。算出は、各画素の(R,G,B)値を用いて、以下のように行う。
Figure 2009038498
Figure 2009038498
Figure 2009038498
ここで、GR、GG、GBは、グリッドヒストグラム(GH)のグリッド位置を示す。上記の式によれば、例えば、(R,G,B)=(16,16,16)であれば、グリッド位置は(1,1,1)と計算される。
S1701において、グリッドヒストグラム算出部1503は、3次元配列グリッドヒストグラムを用いて、以下の式のように、グリッド位置の度数を積算する。
GH[GR][GG][GB]=GH[GR][GG][GB]+1
S1702において、グリッドヒストグラム算出部1503は、S1700とS1701の処理を縮小画像データの全ての画素に対して行ったかどうかを判定する。
グリッドヒストグラム算出部1503は、S1700とS1701の処理を、縮小画像データの全ての画素に対して行うことで、グリッドヒストグラムを算出する。
なお、第2の実施形態では、縮小画像データをYCbCrデータからRGBデータに変換し、RGB3次元空間においてグリッドヒストグラムを算出するが、本発明はこれに限定されるものではない。例えば、YCbCr空間で3次元グリッドを構成し、同様にグリッドヒストグラムを算出してもよく、3次元以上の空間、例えばCMYK4次元色空間において、同様にグリッドヒストグラムを算出してもよい。
ただし、第2の実施形態によるRGB3次元空間におけるグリッドヒストグラムの算出は、YCbCr空間におけるグリッドヒストグラムの算出よりも優れている。なぜなら、一般的な画像データにおいては、例えば(Y,Cb,Cr)=(255、128,128)のような輝度と彩度が共に高い画素は存在しない。このため、YCbCr空間では度数が0となるグリッド位置が多数存在し、YCbCr空間を有効利用できないからである。これに対して、RGB3次元空間であれば、画像データは(R,G,B)=(255,255,255)から(R,G,B)=(0,0,0)の全域に渡って存在するため、すべてのグリッド位置を有効利用できる。その結果、RGB3次元空間においては、YCbCr空間に比べて、詳細な画像情報の解析を行うことができる。したがって、第2の実施形態においては、RGB3次元グリッドヒストグラムを用いる。
以下、第2の実施形態における処理を図15と図18を用いて説明する。なお、説明は第1の実施例と異なる箇所のみ行う。
特定色強調部1509は、グリッドヒストグラム算出部1503からグリッドヒストグラムを受け取り、補正用3次元ルックアップテーブル生成部1506から補正用3次元ルックアップテーブルを受け取る。特定色強調部1509は、顔領域判定部1507が画像内に人物の顔領域が存在すると判定した場合、グリッドヒストグラムと補正用3次元ルックアップテーブルとを用いて特定色強調テーブルを選択する。尚、実施形態2は、実施形態1とは異なり、中間画像生成部を有していないため、中間画像データを用いないで特定色強調テーブルを選択する。
図18は、特定色強調部1509による特定色強調処理の流れを示すフローチャートである。
S1800において、特定色強調部1509は、グリッドヒストグラムの各グリッド値である(R,G,B)と、該グリッドの度数を取得する。
S1801において、特定色強調部1509は、(R,G,B)に対して補正用3次元ルックアップテーブルを適用し、(R’,G’,B’)を取得する。
S1802において、特定色強調部1509は、公知の補間方法(四面体補間など)を用いて、上記(R’,G’,B’)値に対して、例えば青強調テーブルを適用し、青色が強調された(R’’,G’’,B’’)を取得する。
S1806において、特定色強調部1509は、1.変動量の積算値、2.所定以上変動するグリッドの度数の積算値、3.所定以上変動するグリッドの色強調前彩度の積算値の3つのパラメータを算出する。
まず、特定色強調部1509は、青強調テーブルによるグリッドの色強調テーブルの適用前後の変動量デルタDを以下の式により算出する。
Figure 2009038498
変動量の積算値は、(上記デルタD×グリッドの度数)を積算することにより求められる。また、特定色強調部1509は、変動量デルタDが所定値以上となる画素数をカウントする。また、特定色強調部1509は、変動量が所定値以上となる画素の元の画素値の彩度も積算する。なお、画素の彩度は、基本補正後のグリッド値(R’,G’,B’)値をHIS系に変換して求めてもよいし、(R’,G’,B’)値を(Y,Cb,Cr)値に変換して、以下のように(Cb,Cr)ベクトルの長さを彩度として積算してもよい。
Figure 2009038498
S1807において、特定色強調部1509は、S1800〜S1806の処理を中間画像データ内の全ての画素に対して行ったかどうかを判定し、全ての画素に対して行った場合には、S1808の処理に進む。
S1808において、特定色強調部1509は、積算した変動量と彩度を縮小画像データの画素数で除算することにより平均変動量と平均彩度を算出する。
特定色強調部1509は、S1800〜S1808までの処理を、全ての特定色強調テーブルを用いて行う。それにより、特定色強調部1509は、特定色強調テーブル毎に、平均変動量、所定値以上変動する画素数、所定値以上変動する画素の色強調前の平均彩度の3つのパラメータを取得する。
以降の処理は、第1の実施形態と同様であるため、説明は省略する。
以上説明したように、第2の実施形態によれば、中間画像データを生成せず、RGB空間におけるグリッドヒストグラム(GH)と、補正用3次元ルックアップテーブルを用いて、補正後の画像状態をシミュレートする。そして、その結果を用いて、特定色強調テーブルの選択や適用強度の計算を行う。したがって、第2の実施形態では、中間画像データを保持しつづけるためのメモリが必要ない。また、第1の実施形態では中間画像データを生成する際には約60万回の補間演算が必要であった。しかし、第2の実施形態では、4913グリッドのグリッドヒストグラム(GH)に対して2回の補間演算で済む。すなわち、第2の実施形態では、約1万回の補間演算を行うことで第1の実施形態と同精度で特定色強調テーブルを選択することができる。
(その他の実施形態)
上述した実施形態では、RGBの補正用3次元ルックアップテーブルを用いたが、輝度・色差信号(YCbCr、YC1C2、L*a*b*など)の補正用3次元ルックアップテーブルやCMYKなど3次元以上のルックアップテーブルを用いてもよい。
また、上述した実施形態では、色を変えたくないオブジェクトの例として人物の顔を挙げたが、動物や花といったその他の特定オブジェクトであってもよい。
また、上述した実施形態では、複数の特定色強調テーブルの中から色強調効果の大きさ、すなわち、平均変動量が最も高いテーブルを1つだけ選択した。しかし、変動量が大きい複数個のテーブルを選択し、それらを補正用3次元ルックアップテーブル修正部が順次適用するように構成してもよい。
また、上述した実施形態では、面積が大きいほど強度が強くなるが、それだと逆に効果が目立ちすぎる場合もあるため、例えば、次式のように、面積が大きくなるにつれて特定色強調テーブルの適用強度が小さくなるように構成してもよい。
W=W0×(1.0−W1)×W2
また、色強調効果の大きさを制限するために、適用強度パラメータW0,W1,W2、さらには、最終的な適用強度Wに上限値を設定してもよい。
また、本発明は、複数の機器(例えばホストコンピュータ、インタフェース機器、リーダ、プリンタ等)から構成されるシステムに適用しても、一つの機器からなる装置(例えば、複写機、ファクシミリ装置等)に適用しても良い。
本発明の目的は、前述した実施例の機能を実現するソフトウェアのプログラムコードを記録した記録媒体を、システムあるいは装置に装着し、そのシステム等のコンピュータが記録媒体に格納されたプログラムコードを読み取り実行することによっても達成される。この場合、記録媒体から読み出されたプログラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコードを記憶した記録媒体は本発明を構成する。記録媒体は、コンピュータ読み取り可能な記録媒体である。また、プログラムコードの指示に基づき、コンピュータ上で稼働しているオペレーティングシステム(OS)などが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現されてもよい。また、記録媒体から読み出されたプログラムコードが、コンピュータの機能拡張カードや機能拡張ユニットに書込まれた後、機能拡張カード等がプログラムコードの指示に基づき処理の一部または全部を行うことで、前述の実施形態を実現してもよい。
本発明を上記記録媒体に適用する場合、その記録媒体には、先に説明したフローチャートに対応するプログラムコードが格納される。
本発明を適用可能な画像処理装置の構成例を示すブロック図である。 第1の実施形態における画像処理装置の機能を示すブロック図である。 ホワイトバランス補正方法を説明するための図である。 ホワイトバランス補正方法を説明するための図である。 ホワイトバランス補正パラメータの算出処理の流れを示すフローチャートである。 階調補正処理の流れを示すフローチャートである。 階調補正カーブの生成を説明するための図である。 補正用3次元ルックアップテーブルの生成処理の流れを示すフローチャートである。 最適な特定色強調テーブルを選択し、選択された特定色強調テーブルの処理強度を決定する処理の流れを示すフローチャートである。(図9)第1の実施形態における特定色強調処理の流れを示すフローチャートである。 青強調テーブルの特性を説明するための図である。 緑強調テーブルの特性を説明するための図である。 補正用3次元ルックアップテーブルと特定色強調テーブルの合成処理の流れを示すフローチャートである。 平均彩度と彩度補正係数の関係の一例を説明するための図である。 補正用3次元ルックアップテーブルの修正処理の流れを示すフローチャートである。 第2の実施形態における画像処理装置の機能を示すブロック図である。 多次元のグリッドヒストグラム(GH)を示す図である。 縮小画像データに対してグリッドヒストグラム(GH)を算出する処理の流れを示すフローチャートである。 第2の実施形態における特定色強調処理の流れを示すフローチャートである。
符号の説明
100 画像処理装置
101 CPU
102 ROM
103 RAM
104 プリンタエンジン
105 ユーザインタフェース
106 表示装置
107 メモリーカードリーダー
108 入出力インタフェース
109 システムバス
110 パーソナルコンピュータ(PC)

Claims (18)

  1. 画像内に予め定められたオブジェクトが存在するか否かを判定する判定手段と、
    前記判定手段によって画像内に前記予め定められたオブジェクトが存在すると判定された場合は、当該予め定められたオブジェクトの色以外の特定色を補正し、前記判定手段によって画像内に前記予め定めたオブジェクトが存在しないと判定された場合は、当該画像全体の彩度を補正する補正手段と、
    を備えることを特徴とする画像処理装置。
  2. 特定色を強調するための複数の色強調テーブルを保持する保持手段と、
    画像に対して前記保持手段によって保持された複数の色強調テーブルを適用した際の色強調効果の大きさをそれぞれ算出する算出手段と、
    前記色強調効果の大きさに応じて一つ以上の色強調テーブルを選択する選択手段と、
    前記選択手段によって選択された色強調テーブルを前記画像に適用することにより、前記画像内の特定色を補正する補正手段と、
    を備えることを特徴とする画像処理装置。
  3. 特定色を強調するための複数の色強調テーブルを保持する保持手段と、
    画像内に予め定められたオブジェクトが存在するか否かを判定する判定手段と、
    前記画像に対して前記保持手段によって保持された複数の色強調テーブルを適用した際の色強調効果の大きさをそれぞれ算出する算出手段と、
    前記色強調効果の大きさに応じて一つ以上の色強調テーブルを選択する選択手段と、
    前記選択手段によって選択された色強調テーブルを前記画像に適用する強度を算出する手段と、
    前記判定手段によって前記画像内に予め定められたオブジェクトが存在すると判定された場合、当該予め定められたオブジェクトの色以外の特定色に対して、前記選択手段によって選択された色強調テーブルを前記強度で適用することにより前記特定色を補正し、前記判定手段によって前記画像内に予め定められたオブジェクトが存在しないと判定された場合は、前記画像全体の彩度を補正する補正手段と、
    を備えることを特徴とする画像処理装置。
  4. 前記色強調効果の大きさを算出する手段は、
    前記画像に対して前記複数の色強調テーブルを適用し、当該色強調テーブルの適用前後の変動量から色強調効果の大きさを算出することを特徴とする請求項2又は3記載の画像処理装置。
  5. 前記選択手段は、前記色強調効果の大きさが他と比べて大きい色強調テーブルを選択することを特徴とする請求項2又は3記載の画像処理装置。
  6. 前記画像のグリッドヒストグラムを算出する手段と、
    前記グリッドヒストグラムの各グリッドを補正する手段と、
    を更に備え、
    前記色強調効果の大きさを算出する手段は、
    前記補正されたグリッドに対して前記複数の色強調テーブルを適用し、当該色強調テーブルの適用前後の変動量と当該グリッドの度数から色強調効果の大きさを算出することを特徴とする請求項2又は3記載の画像処理装置。
  7. 前記選択手段は、
    前記算出された色強調効果の大きさを参照して、色強調効果が大きい上位N個の色強調テーブルを選択することを特徴とする請求項2〜4のいずれか1項に記載の画像処理装置。
  8. 前記強度を算出する手段は、
    前記色強調効果の大きさ並びに前記色強調テーブルの適用前後における画素の平均変動量、所定値以上変動する画素数又は色強調前の画像の彩度のうち少なくとも1つを参照して、色強調テーブルを適用する強度を算出することを特徴とする請求項3〜6のいずれか1項に記載の画像処理装置。
  9. 画像内に予め定められたオブジェクトが存在するか否かを判定するステップと、
    前記判定するステップによって画像内に前記予め定められたオブジェクトが存在すると判定された場合は、当該予め定められたオブジェクトの色以外の特定色を補正し、前記判定するステップによって画像内に前記予め定めたオブジェクトが存在しないと判定された場合は、当該画像全体の彩度を補正するステップと、
    を含むことを特徴とする画像処理方法。
  10. 特定色を強調するための複数の色強調テーブルを保持するステップと、
    画像に対して前記保持ステップによって保持された複数の色強調テーブルを適用した際の色強調効果の大きさをそれぞれ算出するステップと、
    前記色強調効果の大きさに応じて一つ以上の色強調テーブルを選択するステップと、
    前記選択するステップによって選択された色強調テーブルを前記画像に適用することにより、前記画像内の特定色を補正するステップと、
    を含むことを特徴とする画像処理方法。
  11. 特定色を強調するための複数の色強調テーブルを保持するステップと、
    画像内に予め定められたオブジェクトが存在するか否かを判定するステップと、
    前記画像に対して前記保持するステップによって保持された複数の色強調テーブルを適用した際の色強調効果の大きさをそれぞれ算出するステップと、
    前記色強調効果の大きさに応じて一つ以上の色強調テーブルを選択するステップと、
    前記色強調テーブルを選択するステップによって選択された色強調テーブルを前記画像に適用する強度を算出するステップと、
    前記判定するステップによって前記画像内に予め定められたオブジェクトが存在すると判定された場合、当該予め定められたオブジェクトの色以外の特定色に対して、前記色強調テーブルを選択するステップによって選択された色強調テーブルを前記強度で適用することにより前記特定色を補正し、前記判定するステップによって前記画像内に予め定められたオブジェクトが存在しないと判定された場合は、前記画像全体の彩度を補正するステップと、
    を含むことを特徴とする画像処理方法。
  12. 前記色強調効果の大きさを算出するステップは、
    前記画像に対して前記複数の色強調テーブルを適用し、当該色強調テーブルの適用前後の変動量から色強調効果の大きさを算出することを含むことを特徴とする請求項10又は11記載の画像処理方法。
  13. 前記色強調テーブルを選択するステップは、前記色強調効果の大きさが他と比べて大きい色強調テーブルを選択することを含むことを特徴とする請求項10又は11記載の画像処理方法。
  14. 前記画像のグリッドヒストグラムを算出するステップと、
    前記グリッドヒストグラムの各グリッドを補正するステップと、
    を更に含み、
    前記色強調効果の大きさを算出するステップは、
    前記補正されたグリッドに対して前記複数の色強調テーブルを適用し、当該色強調テーブルの適用前後の変動量と当該グリッドの度数から色強調効果の大きさを算出することを含むことを特徴とする請求項10又は11記載の画像処理方法。
  15. 前記色強調テーブルを選択するステップは、
    前記算出された色強調効果の大きさを参照して、色強調効果が大きい上位N個の色強調テーブルを選択することを含むことを特徴とする請求項10〜12のいずれか1項に記載の画像処理方法。
  16. 前記強度を算出するステップは、
    前記色強調効果の大きさ並びに前記色強調テーブルの適用前後における画素の平均変動量、所定値以上変動する画素数又は色強調前の画像の彩度のうち少なくとも1つを参照して、色強調テーブルを適用する強度を算出することを含むことを特徴とする請求項11〜14のいずれか1項に記載の画像処理方法。
  17. コンピュータに、請求項9〜16いずれか1項に記載の方法を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
  18. コンピュータに、請求項9〜16のいずれか1項に記載の方法を実行させるためのプログラム。
JP2007199491A 2007-07-31 2007-07-31 画像処理装置及び画像処理方法 Expired - Fee Related JP5116393B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007199491A JP5116393B2 (ja) 2007-07-31 2007-07-31 画像処理装置及び画像処理方法
US12/181,903 US8290259B2 (en) 2007-07-31 2008-07-29 Device adaptively switching color emphasis processing for image
CN2008101444748A CN101360179B (zh) 2007-07-31 2008-07-31 图像处理装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007199491A JP5116393B2 (ja) 2007-07-31 2007-07-31 画像処理装置及び画像処理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011254079A Division JP5116873B2 (ja) 2011-11-21 2011-11-21 画像処理装置及び画像処理方法

Publications (3)

Publication Number Publication Date
JP2009038498A true JP2009038498A (ja) 2009-02-19
JP2009038498A5 JP2009038498A5 (ja) 2011-03-03
JP5116393B2 JP5116393B2 (ja) 2013-01-09

Family

ID=40332507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007199491A Expired - Fee Related JP5116393B2 (ja) 2007-07-31 2007-07-31 画像処理装置及び画像処理方法

Country Status (3)

Country Link
US (1) US8290259B2 (ja)
JP (1) JP5116393B2 (ja)
CN (1) CN101360179B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469239A (zh) * 2010-11-17 2012-05-23 北大方正集团有限公司 颜色校正方法和装置
DE102013209876A1 (de) 2012-05-30 2014-01-02 Canon K. K. Bildverarbeitungsgerät, Bildverarbeitungsverfahren und Programm
WO2016203930A1 (ja) * 2015-06-18 2016-12-22 Necソリューションイノベータ株式会社 画像処理装置、画像処理方法、及びコンピュータ読み取り可能な記録媒体

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5251629B2 (ja) * 2008-05-20 2013-07-31 株式会社リコー 画像処理装置、撮像装置、画像処理方法、及び、コンピュータプログラム
JP5424712B2 (ja) * 2009-05-21 2014-02-26 キヤノン株式会社 画像処理装置及びその制御方法とプログラム
JP5300595B2 (ja) * 2009-05-28 2013-09-25 キヤノン株式会社 画像処理装置及び方法、及びコンピュータプログラム
JP5719123B2 (ja) 2010-05-24 2015-05-13 キヤノン株式会社 画像処理装置、画像処理方法、およびプログラム
JP5744430B2 (ja) 2010-07-16 2015-07-08 キヤノン株式会社 画像処理装置、画像処理方法、プログラム
JP5744431B2 (ja) 2010-07-16 2015-07-08 キヤノン株式会社 画像処理装置、画像処理方法、プログラム
JP5744429B2 (ja) 2010-07-16 2015-07-08 キヤノン株式会社 画像処理装置、画像処理方法、およびプログラム
JP5436389B2 (ja) 2010-10-05 2014-03-05 キヤノン株式会社 画像処理装置および画像処理方法
JP5541721B2 (ja) 2010-10-05 2014-07-09 キヤノン株式会社 画像処理装置および画像処理方法
JP5465145B2 (ja) 2010-10-05 2014-04-09 キヤノン株式会社 画像処理装置、画像処理方法、および画像記録装置
JP5436388B2 (ja) 2010-10-05 2014-03-05 キヤノン株式会社 画像処理装置、画像処理方法および画像記録装置
US10003720B2 (en) * 2014-12-05 2018-06-19 Mitsubishi Electric Corporation Image processing apparatus and method, and program and recording medium
JP6623765B2 (ja) * 2016-01-07 2019-12-25 コニカミノルタ株式会社 制御装置及び多次元補正方法並びに多次元補正プログラム
US10354370B2 (en) * 2016-03-24 2019-07-16 Panasonic Intellectual Property Management Co., Ltd. Image processor, image processing method, and program
JP6821418B2 (ja) 2016-12-16 2021-01-27 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム
EP3588363A4 (en) * 2017-03-09 2020-05-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. DEPTH-BASED CONTROL METHOD, DEPTH-BASED CONTROL DEVICE AND ELECTRONIC DEVICE
CN108053383A (zh) * 2017-12-28 2018-05-18 努比亚技术有限公司 一种降噪方法、设备和计算机可读存储介质
KR102534125B1 (ko) * 2018-09-13 2023-05-19 삼성디스플레이 주식회사 영상 데이터 보정 장치, 및 이를 포함하는 표시 장치
CN112911366B (zh) * 2019-12-03 2023-10-27 海信视像科技股份有限公司 饱和度调整方法、装置及显示设备
JP2022015952A (ja) * 2020-07-10 2022-01-21 京セラドキュメントソリューションズ株式会社 画像形成制御装置、画像形成制御方法及び画像形成制御プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006293898A (ja) * 2005-04-14 2006-10-26 Konica Minolta Photo Imaging Inc 画像処理方法、画像処理装置及び画像処理プログラム
JP2007067815A (ja) * 2005-08-31 2007-03-15 Olympus Imaging Corp 画像処理装置及び画像処理方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3609873B2 (ja) * 1995-07-18 2005-01-12 京セラミタ株式会社 色補正装置
JP3584389B2 (ja) 1998-03-25 2004-11-04 富士写真フイルム株式会社 画像処理方法および画像処理装置
JP3649606B2 (ja) * 1998-11-26 2005-05-18 セイコーエプソン株式会社 画像処理方法及びその画像処理装置
JP3800873B2 (ja) * 1999-07-29 2006-07-26 コニカミノルタビジネステクノロジーズ株式会社 画像処理装置及び方法
JP2002044469A (ja) 2000-07-21 2002-02-08 Noritsu Koki Co Ltd 画像処理方法および画像処理プログラムを記録した記録媒体
JP4590751B2 (ja) * 2001-02-19 2010-12-01 パナソニック株式会社 映像ノイズ除去装置
US6868179B2 (en) * 2001-07-06 2005-03-15 Jasc Software, Inc. Automatic saturation adjustment
JP4217398B2 (ja) 2001-09-12 2009-01-28 キヤノン株式会社 画像データ処理方法、画像データ処理装置、記憶媒体、及びプログラム
JP4065482B2 (ja) 2001-09-18 2008-03-26 キヤノン株式会社 画像データ処理方法、装置、記憶媒体、及びプログラム
JP4227322B2 (ja) 2001-10-01 2009-02-18 キヤノン株式会社 画像処理方法、画像処理装置、記憶媒体及びプログラム
JP4155023B2 (ja) 2002-12-20 2008-09-24 カシオ計算機株式会社 電子カメラ、画像処理方法及びプログラム
JP3804067B2 (ja) 2003-03-28 2006-08-02 ソニー株式会社 撮像装置及び撮像方法
US7844076B2 (en) * 2003-06-26 2010-11-30 Fotonation Vision Limited Digital image processing using face detection and skin tone information
US7616233B2 (en) * 2003-06-26 2009-11-10 Fotonation Vision Limited Perfecting of digital image capture parameters within acquisition devices using face detection
JP2005151282A (ja) * 2003-11-18 2005-06-09 Fuji Xerox Co Ltd 画像処理装置、画像処理方法、およびプログラム
JP4189328B2 (ja) * 2004-01-16 2008-12-03 セイコーエプソン株式会社 画像処理装置、画像表示装置、画像処理方法および画像処理プログラム
JP4058420B2 (ja) * 2004-02-19 2008-03-12 キヤノン株式会社 映像信号補正方法及び映像信号補正装置
US7663788B2 (en) * 2004-06-29 2010-02-16 Fujifilm Corporation Image correcting apparatus and method, and image correction program
JP4324044B2 (ja) * 2004-07-15 2009-09-02 キヤノン株式会社 画像処理装置およびその方法
JPWO2006059573A1 (ja) * 2004-12-02 2008-06-05 松下電器産業株式会社 色彩調整装置及び方法
JP4595569B2 (ja) 2005-02-03 2010-12-08 株式会社ニコン 撮像装置
JP4648071B2 (ja) * 2005-04-28 2011-03-09 株式会社日立製作所 映像表示装置及び映像信号の色飽和度制御方法
JP4408858B2 (ja) 2005-12-28 2010-02-03 キヤノン株式会社 画像処理装置およびその方法
US7869649B2 (en) * 2006-05-08 2011-01-11 Panasonic Corporation Image processing device, image processing method, program, storage medium and integrated circuit
US7679786B2 (en) * 2006-09-06 2010-03-16 Eastman Kodak Company Color correction method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006293898A (ja) * 2005-04-14 2006-10-26 Konica Minolta Photo Imaging Inc 画像処理方法、画像処理装置及び画像処理プログラム
JP2007067815A (ja) * 2005-08-31 2007-03-15 Olympus Imaging Corp 画像処理装置及び画像処理方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469239A (zh) * 2010-11-17 2012-05-23 北大方正集团有限公司 颜色校正方法和装置
DE102013209876A1 (de) 2012-05-30 2014-01-02 Canon K. K. Bildverarbeitungsgerät, Bildverarbeitungsverfahren und Programm
US8995024B2 (en) 2012-05-30 2015-03-31 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and program
DE102013209876B4 (de) * 2012-05-30 2015-09-24 Canon K. K. Bildverarbeitungsgerät, Bildverarbeitungsverfahren und Programm
WO2016203930A1 (ja) * 2015-06-18 2016-12-22 Necソリューションイノベータ株式会社 画像処理装置、画像処理方法、及びコンピュータ読み取り可能な記録媒体
US10475210B2 (en) 2015-06-18 2019-11-12 Nec Solution Innovators, Ltd. Image processing device, image processing method, and computer-readable recording medium

Also Published As

Publication number Publication date
US8290259B2 (en) 2012-10-16
US20090034838A1 (en) 2009-02-05
JP5116393B2 (ja) 2013-01-09
CN101360179B (zh) 2013-01-16
CN101360179A (zh) 2009-02-04

Similar Documents

Publication Publication Date Title
JP5116393B2 (ja) 画像処理装置及び画像処理方法
JP5032911B2 (ja) 画像処理装置及び画像処理方法
JP4375781B2 (ja) 画像処理装置および画像処理方法並びにプログラムおよび記録媒体
US9036205B2 (en) Image processing apparatus and method for correcting luminance and saturation of a pixel in an image or of a target lattice point in a lookup table
JP5795548B2 (ja) 拡張rgb空間へのトーンマッピングを用いた高ダイナミックレンジ画像の処理方法
EP2257038A2 (en) Image processing apparatus, image processing method, and computer program
KR20170107487A (ko) 메타데이터 기반 영상 처리 방법 및 장치
JP2007208956A (ja) 画像処理装置、画像形成装置、画像処理装置の制御方法、画像処理プログラム、コンピュータ読み取り可能な記録媒体
JP4428742B2 (ja) 画像処理装置及びその方法
US7889280B2 (en) Image processing apparatus and method thereof
CN1655626B (zh) 裁剪像素值的方法和系统
KR102311367B1 (ko) 화상 처리 장치, 화상 처리 방법, 및 프로그램
JP5253047B2 (ja) 色処理装置およびその方法
JPWO2009093294A1 (ja) 画像信号処理装置及び画像信号処理プログラム
JP5116873B2 (ja) 画像処理装置及び画像処理方法
JP4018245B2 (ja) 画像処理方法、装置および記録媒体
JP2003234916A (ja) 画像処理装置、画像処理方法、印刷装置、画像処理プログラムおよび画像処理プログラムを記録した媒体
US7817303B2 (en) Image processing and image forming with modification of a particular class of colors
JP2000032287A (ja) 画像処理装置及び画像処理方法
JP6707262B2 (ja) 画像形成装置およびプログラム
JPH10340332A (ja) 画像処理装置、画像処理方法、画像処理制御プログラムを記録した媒体
JP2008147714A (ja) 画像処理装置およびその方法
JP5675856B2 (ja) 画像処理装置及び方法、及びプログラムを記録した記憶媒体
JP2000105820A (ja) モノト―ン変換装置、モノト―ン変換方法およびモノト―ン変換プログラムを記録した媒体
JP2008312177A (ja) 映像階調変換装置、映像階調変換方法、映像階調変換プログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100630

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121016

R151 Written notification of patent or utility model registration

Ref document number: 5116393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees