JP2007157855A - 不揮発性半導体記憶装置及びその製造方法 - Google Patents

不揮発性半導体記憶装置及びその製造方法 Download PDF

Info

Publication number
JP2007157855A
JP2007157855A JP2005348372A JP2005348372A JP2007157855A JP 2007157855 A JP2007157855 A JP 2007157855A JP 2005348372 A JP2005348372 A JP 2005348372A JP 2005348372 A JP2005348372 A JP 2005348372A JP 2007157855 A JP2007157855 A JP 2007157855A
Authority
JP
Japan
Prior art keywords
bit line
gate electrode
line contact
insulating film
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005348372A
Other languages
English (en)
Other versions
JP4764151B2 (ja
Inventor
Takeshi Kamigaichi
岳司 上垣内
Yasuhiko Matsunaga
泰彦 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005348372A priority Critical patent/JP4764151B2/ja
Priority to US11/563,069 priority patent/US8134198B2/en
Publication of JP2007157855A publication Critical patent/JP2007157855A/ja
Application granted granted Critical
Publication of JP4764151B2 publication Critical patent/JP4764151B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

【課題】ビット線コンタクトCBの非接触不良を回避する。
【解決手段】列方向に延伸する複数の活性領域…AAj-1,AAj,AAj-1,…と、行方向に延伸する複数のワード線WL0,WL1,…と、ワード線と活性領域の交差部に配置され,フローティングゲート電極40,フローティングゲート電極40上に配置されるゲート間絶縁膜25,及びゲート間絶縁膜上に配置されるコントロールゲート電極70を備えるメモリセルトランジスタと、ワード線に平行に配置され,行方向に延伸する選択ゲート線SGDと、活性領域上に配置されるビット線コンタクトCBと、ビット線コンタクトを介して活性領域と接続され, 列方向に延伸する複数のビット線…BLj-1,BLj,BLj-1,…とを備え、ビット線コンタクトCBは、ビット線コンタクトの電極材を行方向にライン状に形成した後、複数のビット線毎に電極材を切断して形成する不揮発性半導体記憶装置及びその製造方法。
【選択図】図1

Description

本発明は、不揮発性半導体メモリの構造に関し、特にNAND型フラッシュメモリにおいて、ビット線とNAND列の拡散層を接続するコンタクトの形成方法に特徴を有する不揮発性半導体記憶装置及びその製造方法に関する。
不揮発性半導体記憶装置としては、例えば、データの書き込み・消去を電気的に行うプログラム可能なリード・オンリ・メモリ(EEPROM)が知られている。このEEPROMでは、特にNAND型の場合では、互いに交差する行方向のワード線と列方向のビット線との交点にそれぞれメモリセルが配置されて、メモリセルアレイが構成されている。メモリセルには、通常、例えば、フローティングゲートとコントロールゲートとを積層してなる積層ゲート構造のMOSトランジスタが用いられる。
NAND型フラッシュメモリは、メモリセルトランジスタが、複数個直列に接続されて、NANDストリングを形成し、そのNANDストリングの両側に選択トランジスタが配置された構造を有する。また、メモリセルの素子活性領域に対して素子分離領域(STI)が並行して配置されメモリセルアレイを構成している。
NAND型フラッシュメモリのビット線とNAND列の拡散層を接続するビット線コンタクトの形成において、選択ゲート線やワード線を形成した後、層間絶縁膜を堆積し、ビット線コンタクトCBとなる電極材を埋め込むためにコンタクトホールを形成する。通常、コンタクトホールの形成においては、微細化が進むにつれて、コンタクトホールを形成すること自身が難しくなるだけでなく、行方向に隣接するビット線コンタクトCBのためのコンタクトホール間の層間絶縁膜厚が薄くなり、洗浄処理等によっては、ビット線の接触不良を引き起こす大きな原因となる。
ビット線コンタクトCBと選択ゲート線間の列方向の距離についても同様の問題点が発生する。即ち、微細化が進むにつれて、コンタクトホールを形成すること自身が難しくなるだけでなく、選択ゲート線とビット線コンタクトCBのためのコンタクトホール間の層間絶縁膜厚が薄くなり、洗浄処理等によっては、ビット線の接触不良を引き起こす大きな原因となる。
ビット線コンタクトCBの電極材を埋め込み、平坦化プロセスを経た後、電極材はビット線コンタクトCBのためのコンタクトホールに埋め込まれる。微細化が進むにつれ、電極材の埋め込みは困難となり、ビット線コンタクトCBのためのコンタクトホール底部の活性領域で、ビット線コンタクトCBとNAND列の非接触に基く、オープン不良を引き起こす大きな原因となる。
共通ソース線が2種類以上の導電体材料の積層構造によって形成される不揮発性半導体記憶装置において、ソース線の高さが高くなるのを抑制してビット線コンタクトのアスペクト比の増大を防止でき、更に、ゲート電極のパターニング工程における露光裕度などのリソグラフィーマージンの低下を抑制することができる不揮発性半導体記憶装置及びその製造方法については、既に開示されている(例えば、特許文献1参照。)。
特開2004−14783号公報
本発明は、不揮発性半導体記憶装置及びその製造方法において、ビット線同士の接触不良やビット線コンタクトCBと素子活性領域領域への非接触不良を回避する。
本発明の一態様によれば、(イ)半導体基板に形成された活性領域と、(ロ)ワード線と、(ハ)ワード線と活性領域の交差部に配置され,半導体基板上に形成されたトンネル絶縁膜を介して設けられたフローティングゲート電極,フローティングゲート電極上に配置されるゲート間絶縁膜,及びゲート間絶縁膜上に配置されるコントロールゲート電極を備えるメモリセルトランジスタと、(ニ)ワード線に平行に配置され,行方向に延伸する選択ゲート線と、(ホ)活性領域上に配置されるビット線コンタクトと、(へ)ビット線コンタクトを介して活性領域と接続され, 列方向に延伸する複数のビット線とを備え、(ト)ビット線コンタクトは、ビット線コンタクトの電極材を行方向にライン状に形成した後、複数のビット線毎に切断して形成する揮発性半導体記憶装置が提供される。
本発明の他の態様によれば、(イ)半導体基板上のゲート絶縁膜を、ビット線コンタクトが形成される領域のみ剥離後、コンタクト拡散層を形成する工程と、(ロ)半導体基板上にフローティングゲート電極を堆積する工程と、(ハ)フローティングゲート電極上にゲート間絶縁膜を堆積する工程と、(ニ)ゲート間絶縁膜の一部を剥離した後、剥離により露出したフローティングゲート電極およびゲート間絶縁膜上にコントロールゲート電極を形成する工程と、(ホ)コントロールゲート電極上にコントロールゲート電極上マスク材を形成する工程と、(へ)ワード線,選択ゲート線,ビット線コンタクトとなるコントロールゲート電極の電極材を行方向にライン状に加工する工程と、(ト)ライン状に加工された電極材を複数のビット線毎に切断してビット線コンタクトを形成する工程とを備える不揮発性半導体記憶装置の製造方法が提供される。
本発明の不揮発性半導体記憶装置及びその製造方法によれば、ビット線同士の接触不良や、ビット線コンタクトと素子活性領域への非接触に基く、不良を回避することができる。
次に、図面を参照して、本発明の第1乃至第5の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。
また、以下に示す第1乃至第5の実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。
本発明の実施の形態に係る不揮発性半導体記憶装置及びその製造方法においては、ビット線コンタクトCBとなる電極材をライン状に形成した後、各ビット線毎にライン状に形成された電極材を切断することで各NAND列にて分断されたビット線コンタクトCBを形成する。これにより、ビット線同士の接触不良やビット線コンタクトCBと素子活性領域への非接触不良を回避し、今後さらに微細化・高集積化が進む不揮発性半導体記憶装置の製造歩留りを向上する上で、より有効な手段を提供する。
[第1の実施の形態]
(NAND型)
(平面パターン構成)
本発明の第1の実施の形態に係る不揮発性半導体記憶装置において、NAND型フラッシュメモリのメモリセルアレイとビット線コンタクト領域の模式的平面パターン構成例は、図1に示すように、列方向に延伸する複数の活性領域…AAj-1,AAj,AAj+1,…と、行方向に延伸する複数のワード線WL0,WL1,…と、ワード線WL0,WL1,…に平行に配置される一対の選択ゲート線SGD−SGDと、活性領域…AAj-1,AAj,AAj+1,…上に配置されるビット線コンタクトCBと、ビット線コンタクトCBを介して活性領域…AAj-1,AAj,AAj+1,…と接続され, 列方向に延伸する複数のビット線…BLj-1,BLj,BLj+1,…とを備える。
(回路構成)
図1に対応する本発明の第1の実施の形態に係る不揮発性半導体記憶装置のメモリセルアレイ130における模式的回路構成例は、図2に示すように表される。
NANDセルユニット132は、図2に詳細に示されているように、メモリセルトランジスタM0〜M15と、選択ゲートトランジスタSG1、SG2から構成される。選択ゲートトランジスタSG1のドレインは、ビット線コンタクトCBを介して、ビット線・・・BLj-1,BLj, BLj+1・・・に接続され、選択ゲートトランジスタSG2のソースは、ソース線コンタクトCSを介して、共通のソース線SLに接続される。
本発明の第1の実施の形態に係る半導体記憶装置の例では、後述するように、NAND型フラッシュEEPROMの構造を基本構造としており、pウェル若しくは半導体基板10上に形成されたゲート絶縁膜20をトンネル絶縁膜とし、更にゲート絶縁膜20上に配置されたフローティングゲート電極40、ゲート間絶縁膜25、コントロールゲート電極70からなるスタックゲート構造のメモリセルトランジスタを備えている。各メモリセルトランジスタのn+ソース/ドレイン拡散層32を介して複数個のメモリセルトランジスタM0〜M15がビット線・・・BLj-1,BLj, BLj+1・・・が延伸する方向に直列に接続され、両端部に選択ゲートトランジスタSG1,SG2が配置され、更にこれらの選択ゲートトランジスタSG1,SG2を介して、ビット線コンタクトCB及びソース線コンタクトCSに接続されている。結果として、1つのNANDセルユニット132が構成され、これらのNANDセルユニット132は、ビット線・・・BLj-1,BLj, BLj+1・・・に直交するワード線WL0,WL1,WL2,WL3,・・・,WL14,WL15が延伸する方向に複数並列に配置されている。
又、図2に示すように、選択ゲートトランジスタSG1のゲート電極は選択ゲート線SGDに共通に接続され、選択ゲートトランジスタSG2のゲート電極は選択ゲート線SGSに共通に接続される。選択ゲート線SGD及び選択ゲート線SGSは、ワード線WL0,WL1,WL2,WL3,・・・,WL14,WL15と平行に配置され、行方向に延伸する。
図1において、一対の選択ゲート線SGD―SGDが示されている理由は、図2に示すNANDセルユニット132が、ビット線コンタクトCBを中心に、列方向で折り返した構成を備えるためである。
(製造方法)
本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程について、図1乃至図18を参照して説明する。
(a)図3は、本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のI−I線に沿う模式的断面構造図を示す。
まず、図3に示すように、p型の半導体基板10上において、熱酸化等によりゲート絶縁膜20を形成し、ビット線コンタクトCBが形成される領域のみゲート絶縁膜20を剥離後、イオン注入技術等を用いて、ビット線コンタクトCBが形成される領域のみにn+コンタクト拡散層34を形成する。
p型の半導体基板10には、動作に必要な不純物をイオン注入技術等を用いてドーピングし、pウェル領域、nウェル領域等を形成するが、図3においては、これらのpウェル領域、nウェル領域等は説明を簡単にするために省略し、単にp型の半導体基板10として表示している。ゲート絶縁膜20は、メモリセルトランジスタのトンネル絶縁膜となると同時に選択トランジスタのゲート絶縁膜ともなる。剥離領域の行方向及び列方向の寸法は、選択ゲート線SGD−SGDに接触せず、かつビット線コンタクトCBが電気的に十分接続可能な大きさであればよい。
(b)図4は、本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のII−II線に沿う模式的断面構造図を示す。図5は、本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のI−I線に沿う模式的断面構造図を示す。
次に、図4及び図5に示すように、メモリセルトランジスタのフローティングゲート電極となり、ビット線コンタクトCBともなる電極材(以下、フローティングゲート電極40)と、その後の素子分離領域30の形成工程におけるエッチングプロセスや平坦化プロセスのマスク材となる絶縁膜(以下、フローティングゲート電極上マスク材42)を、半導体基板10の表面上全面に堆積する。フローティングゲート電極上マスク材42は、素子分離領域30の絶縁膜とのエッチング選択比が高い膜であることが望ましい。
(c)更に、図4及び図5に示すように、リソグラフィ工程、及びエッチング工程を経て、素子分離領域30に溝を形成し、素子分離領域30となる絶縁膜を堆積後、平坦化プロセスを実行する。結果として、図4には、上記リソグラフィ工程、及びエッチング工程を経て、素子分離領域30に溝を形成し、素子分離領域30となる絶縁膜を堆積後、平坦化プロセスを経た後の、図1のII−II線に沿う模式的断面構造図が示されており、図5には、同工程後の、図1のI−I線に沿う模式的断面構造図が示されている。
(d)図6は、本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のII−II線に沿う模式的断面構造図を示す。図7は、本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のIII−III線に沿う模式的断面構造図を示す。図8は、本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のI−I線に沿う模式的断面構造図を示す。
次に、図6、及び図7に示すように、フローティングゲート電極上マスク材42を剥離し、素子分離領域30の高さがフローティングゲート電極40の表面よりも低くなるように、素子分離領域30をエッチングして、フローティングゲート電極40を露出させる。
ここで、素子分離領域30をエッチングしてフローティングゲート電極40の露出面積を適正化する必要がある。この理由は、コントロールゲート電極70と半導体基板10間の容量、及びフローティングゲート電極40と半導体基板10間の容量をメモリセルトランジスタの書き込み消去に必要な容量比にするためである。尚、ゲート間絶縁膜25の誘電率によっては、素子分離領域30のエッチングは不要となる。
(e)更に、図7、及び図8に示すように、メモリセルトランジスタのフローティングゲート電極40と、書込み消去を制御するコントロールゲート電極70とを絶縁するためのゲート間絶縁膜25を堆積する。
(f)更に、図8に示すように、コントロールゲート電極70の堆積形成前に、選択ゲート線SGDとビット線コンタクトCBのゲート間絶縁膜25の一部を剥離して、フローティングゲート電極40とコントロールゲート電極70が電気的に接続可能な形状を形成する。この剥離部は、隣接する選択ゲート線SGDとビット線コンタクトCBに跨って形成されていても良いし、個別に形成されていても良い。
(g)更に、図6、図7、及び図8に示すように、半導体基板表面全面に、例えば、ポリシリコン等からなるコントロールゲート電極70を形成後、例えば、窒化膜等からなるコントロールゲート電極上マスク材72を形成する。
この結果、コントロールゲート電極70は、図6及び図8に示すように、ビット線コンタクトCB形成部分において、フローティングゲート電極40と電気的に接続し、又、図7に示すように、メモリセルトランジスタ形成部分において、ゲート間絶縁膜25を介して、フローティングゲート電極40と電気的に絶縁される。
結果として、図6には、後工程に必要となるコントロールゲート電極上マスク材72を堆積した後の、図1のII−II線に沿う模式的断面構造図が示されており、図7には、同工程後の、図1のIII−III線に沿う模式的断面構造図が示されている。図8には、同程後の、図1のI−I線に沿う模式的断面構造図が示されている。
(h)図9は、本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のII−II線に沿う模式的断面構造図を示す。図10は、本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のI−I線に沿う模式的断面構造図を示す。
次に、図9、及び図10に示すように、リソグラフィ工程、及びエッチング工程を経て、ワード線WL0,WL1,…、選択ゲート線SGD−SGD、ビット線コンタクトCBとなる電極材の加工を行う。
(i)更に、図10に示すように、イオン注入技術等を用いて、メモリセルトランジスタのn+ソース/ドレイン拡散層32を形成するために必要な不純物イオンを半導体基板10にイオン注入し、熱処理後、n+ソース/ドレイン拡散層32を形成する。
尚、動作の必要に応じて、n+ソース/ドレイン拡散層32は、図10に示すように、フローティングゲート電極40やコントロールゲート電極70とエッチング選択比が高い絶縁膜、若しくはエッチング選択比が高い絶縁膜の積層からなるゲート側壁絶縁膜75を用いて、ゲート側壁材を堆積後、或いは堆積されたゲート側壁絶縁膜75のエッチング加工後に、イオン注入技術を用いて、形成しても良い。
結果として、図9には、ワード線WL0,WL1,…、選択ゲート線SGD−SGD、ビット線コンタクトCBとなる電極材の加工後、n+ソース/ドレイン拡散層32を形成した後の、図1のII−II線に沿う模式的断面構造図が示されており、図10には、同工程後の、図1のI−I線に沿う模式的断面構造図が示されている。
(j)図11は、本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のII−II線に沿う模式的断面構造図を示す。図12は、本発明の第1の実施の形態の変形例に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のII−II線に沿う模式的断面構造図を示す。更に、図13は、本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、ビット線コンタクト領域の模式的平面パターン構成図を示す。図14は、ビット線コンタクト領域の別の模式的平面パターン構成図を示す。図15は、ビット線コンタクト領域の更に別に模式的平面パターン構成図を示す。
次に、図11に示すように、リソグラフィ工程、及びエッチング工程を経て、ビット線コンタクトCBを形成する。尚、上記工程(i)において説明したゲート側壁絶縁膜75の形成、及びn+ソース/ドレイン拡散層32の形成は、ビット線コンタクトCBを形成した後に行っても良い。図12には、ビット線コンタクトCBを形成した後に、ゲート側壁絶縁膜75、及びn+ソース/ドレイン拡散層32を形成した、図1のII−II線に沿う模式的素子断面構造図が示されている。
図13乃至図15には、ビット線コンタクトCB加工後の模式的平面パターン構成図が示されている。
ここで、ビット線コンタクトCBの形成について説明する。ビット線コンタクトCBの電極材となるコントロールゲート電極70を、図9に示すように、ライン状に形成した後、各ビット線・・・BLj-1,BLj, BLj+1・・・毎に、ライン状に形成されたコントロールゲート電極70を、図1、図13乃至図15に示すように、リソグラフィ工程、及びエッチング工程を経て、切断することによって、ビット線コンタクトCBを形成する。このようにして、ビット線・・・BLj-1,BLj, BLj+1・・・とNAND列の活性領域…AAj-1,AAj,AAj+1,…のn+コンタクト拡散層34を接続するビット線コンタクトCBが形成される。
図1、図13乃至図15において、点線で囲まれた形状DLは、リソグラフィ工程、及びエッチング工程によって、ビット線コンタクトCBの電極材となるコントロールゲート電極70が除去される領域を表している。
図1の例では、ビット線コンタクトCBは、矩形状に形成された例が示されている。
図13において、a,bの寸法が付記された実線で囲まれた鼓型形状、即ち、ワスプウエスト(wasp-wested)形状は、リソグラフィ工程、及びエッチング工程によって、コントロールゲート電極70が残されて形成されたビット線コンタクトCBを表している。このようにして形成されたビット線コンタクトCBの列方向から見た側壁部は、エッチングにより除去されたリセス構造を備えている。ここで、鼓型・ワスプウエスト形状の平面形状を有するビット線コンタクトCBにおいて、寸法aは、ワード線が延伸する行方向の最短寸法を表しており、寸法bは、ワード線が延伸する行方向の最長寸法を表している。寸法bは、活性領域AAの幅に実質上等しい。図13の例では、鼓型・ワスプウエスト形状の平面形状を有するビット線コンタクトCBにおいて、寸法a,bの大小関係は、0<a<bが成り立つ。
図14の例は、点線で囲まれた楕円型の形状DLのサイズが大きくなり、ビット線コンタクトCBの電極材となるコントロールゲート電極70がエッチング除去される領域が圧倒的に大きく、a=0となる例を示している。図14の例では、鼓型・ワスプウエスト形状の平面形状を有するビット線コンタクトCBにおいて、寸法a,bの大小関係は、0=a<bが成り立つ。
図15の例は、点線で囲まれた楕円型の形状DLのサイズが更に大きくなり、ビット線コンタクトCBの電極材となるコントロールゲート電極70がエッチング除去される領域が圧倒的に大きく、a<0となる例を示している。図15の例では、ビット線コンタクトCBは、実質的に2つの三角形状で表される例を表している。
リソグラフィ工程、及びエッチング工程によって、コントロールゲート電極70が残されて形成されたビット線コンタクトCBは、下地の活性領域…AAj-1,AAj,AAj+1,…と一部分において電気的に接続されていれば良い。従って、図15の例では、実質的に2つの三角形状で表される例を示したが、更に2つの三角形状のうち、一方がエッチングで除去されてしまっても、他方が残されていれば良い。
微細化が進むにつれて、コンタクトホール系の加工を行う場合、リソグラフィ工程、及びエッチング工程の条件に依存して、コンタクトホールの開口部の形状は、円形、若しくは楕円形になる傾向がある。従来、ビット線コンタクトCBの加工を行う場合、コンタクトホール系の開口部を作成し、コンタクト材料を埋め込む手法が一般的なため、例えば、図13に示すビット線コンタクトCBにおいてaとbの大小関係は、a>bとなる傾向がある。その結果、ビット線コンタクトCBの寸法aが広がるため、隣接するビット線コンタクトCB同士の間隔は狭くなる。
本発明の第1の実施の形態の特徴として、コンタクト材料を初めにライン状に形成した後、コンタクト間を切断するため、、a<bとなる特徴がある。場合によっては、a=0であっても、b=0でなければ、上層のビット線・・・BLj-1,BLj, BLj+1・・・の電極配線と十分電気的に接続可能な面積が確保出来ていれば良い。
(k)図16は、本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のII−II線に沿う模式的断面構造図を示す。図17は、本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のI−I線に沿う模式的断面構造図を示す。
次に、図16及び図17に示すように、ワード線WL0,WL1,…間同士、選択ゲート線SGDとワード線WL0間や選択ゲート線SGDとビット線コンタクトCB間を層間絶縁膜90で埋め込み、平坦化プロセスを実施する。層間絶縁膜90の例としては、TEOS(テトラジオキシジシラン)膜が実施されるが、窒化膜等のエッチングの選択比有する絶縁膜を含む積層構造からなる絶縁膜であっても良い。
ワード線WL0,WL1,…間の層間絶縁膜90、選択ゲート線SGDとワード線WL0間の層間絶縁膜90、選択ゲート線SGDとビット線コンタクトCB間の層間絶縁膜90やビット線コンタクトCB間の層間絶縁膜90は、完全に埋める必要は無い。ワード線WL0,WL1,…間、選択ゲート線SGDとワード線WL0間、選択ゲート線SGDとビット線コンタクトCB間、ビット線コンタクトCB間が電気的に絶縁できれば良い。図16及び図17には、層間絶縁膜90中に、空孔若しくは空隙からなる、ボイド95が存在する構造が示されている。
(l)更に、図16及び図17に示すように、ワード線WL0,WL1,…の低抵抗化やビット線コンタクトCBの低抵抗化を図るため、コントロールゲート電極上マスク材72を剥離し、コントロールゲート電極70表面のシリサイド化を行った後、コントロールゲート電極70上に金属シリサイド膜55を形成する。
金属シリサイド膜を形成する材料としては、例えば、コバルト(Co)、ニッケル(Ni)、チタニウム(Ti)、タンタル(Ta)、白金(Pt)、モリブデン(Mo)、タングステン(W)、パラジウム(Pd)等のシリサイド材料を適用することができる。
このように、ビット線コンタクトCBが積層であることによりコンタクトホールのアスペクト比の低減が可能であることに加え、コントロールゲート電極のシリサイド工程において、ビット線コンタクトCBのシリサイド化も可能であり、工程数を増加することなくビット線コンタクトCBの上層、下層の接触抵抗の低減が可能となる。
以上、本発明の第1の実施の形態に係る不揮発性半導体記憶装置におけるビット線とNAND列の拡散層を接続するコンタクトの形成方法について、主要な特徴とその構造を、製造方法と共に説明した。この後の工程は、一般的な配線工程とコンタクト工程を経て、ビット線や周辺回路配線を形成することになるため、説明は省略する。
本発明の第1の実施の形態に係る不揮発性半導体記憶装置及びその製造方法においては、ビット線コンタクトCBとなる電極材をライン状に形成した後、各ビット線毎にライン状に形成された電極材を切断することで各NAND列にて分断されたビット線コンタクトCBを形成するが、ビット線コンタクトCBの電極形成材料は、メモリセルトランジスタや選択ゲートトランジスタに使用するフローティングゲート電極40及びコントロールゲート電極70と同一材料であり、しかも同時プロセスで形成している。
結果として、完成されたデバイス構造では、半導体基板10の表面から測ったビット線コンタクトCBの半導体基板10表面に平行な電極面の高さと、メモリセルトランジスタや選択ゲートトランジスタに使用するフローティングゲート電極40及びコントロールゲート電極70からなるスタック構造によるゲート電極の、半導体基板10の表面から測った、半導体基板10表面に平行なゲート電極面の高さは略同一である。
本発明の第1の実施の形態に係る不揮発性半導体記憶装置及びその製造方法によれば、NAND型フラッシュメモリにおいて、ビット線同士の接触不良やビット線コンタクトCBと素子活性領域への非接触不良を回避し、製造歩留りを向上することができる。
[第2の実施の形態]
本発明の第2の実施の形態に係る不揮発性半導体記憶装置における平面パターン構成及び回路構成は第1の実施の形態と同様であるため、説明を省略する。本発明の第2の実施の形態に係る不揮発性半導体記憶装置の製造工程は、図3乃至図10示す、上記工程(a)〜(I)までは共通であるため、説明を省略する。
(m)図18は、本発明の第2の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のI−I線に沿う模式的断面構造図を示す。
図10の工程後、図18に示すように、半導体基板10表面全面に層間絶縁膜80を堆積し、リソグラフィ工程、及びエッチング工程を経て、ビット線コンタクト(CB)プラグ60となる電極材をライン状に形成する。ビット線コンタクト(CB)プラグ60の材料としては、例えば、ドープされたポリシリコン等であり、、或いはポリシリコンとバリアメタルとの積層膜であっても良い。
(n)次に、リソグラフィ工程、及びエッチング工程を経て、ビット線コンタクトCBを形成する。ビット線コンタクトCB加工後の模式的平面パターン構成図は、図1或いは、図13乃至図15と同様である。
ビット線コンタクトCBは、図1の例に示すように、矩形状に形成されていても良い。或いは、図13に示すように、a,bの寸法が付記された実線で囲まれた鼓型形状、即ち、ワスプウエスト(wasp-wested)形状に形成されていても良い。或いは、図14に示すように、ビット線コンタクトCBの電極材がエッチング除去される領域が圧倒的に大きく、a=0となるように形成されていても良い。或いは、図15に示すように、ビット線コンタクトCBは、実質的に2つの三角形状に形成されていても良い。
リソグラフィ工程、及びエッチング工程によって、ビット線コンタクトCBは、下地の活性領域…AAj-1,AAj,AAj+1,…と一部分において電気的に接続されていれば良く、上層のビット線・・・BLj-1,BLj, BLj+1・・・の電極配線と十分電気的に接続可能な面積が確保出来ていれば良い。
次に、第1の実施の形態と同様に、ワード線WL0,WL1,…間同士、選択ゲート線SGDとワード線WL0間や選択ゲート線SGDとビット線コンタクトCB間を層間絶縁膜90で埋め込み、平坦化プロセスを実施する。層間絶縁膜90の例としては、TEOS(テトラジオキシジシラン)膜が実施されるが、窒化膜等のエッチングの選択比有する絶縁膜を含む積層構造からなる絶縁膜であっても良い。
ワード線WL0,WL1,…間の層間絶縁膜90、選択ゲート線SGDとワード線WL0間の層間絶縁膜90、選択ゲート線SGDとビット線コンタクトCB間の層間絶縁膜90やビット線コンタクトCB間の層間絶縁膜90は、完全に埋める必要は無い点も第1の実施の形態と同様である。ワード線WL0,WL1,…間、選択ゲート線SGDとワード線WL0間、選択ゲート線SGDとビット線コンタクトCB間、ビット線コンタクトCB間が電気的に絶縁できれば良い。
更に、第1の実施の形態と同様に、ワード線WL0,WL1,…の低抵抗化やビット線コンタクトCBの低抵抗化を図るため、コントロールゲート電極70上に金属シリサイド膜55を形成しても良い。
この後の工程は、一般的な配線工程とコンタクト工程を経て、ビット線や周辺回路配線を形成することになるため、説明は省略する。
本発明の第2の実施の形態に係る不揮発性半導体記憶装置及びその製造方法においては、ビット線コンタクトCBとなる電極材をライン状に形成した後、各ビット線毎にライン状に形成された電極材を切断することで各NAND列にて分断されたビット線コンタクトCBを形成する点は、第1の実施の形態と同様である。本発明の第2の実施の形態に係る不揮発性半導体記憶装置においては、ビット線コンタクトCBは、メモリセルトランジスタや選択ゲートトランジスタに使用するフローティングゲート電極40及びコントロールゲート電極70とは、別工程で形成する点に特徴を有する。
結果として、完成されたデバイス構造では、半導体基板10の表面から測ったビット線コンタクトCBの半導体基板10表面に平行な電極面の高さは、メモリセルトランジスタや選択ゲートトランジスタに使用するフローティングゲート電極40及びコントロールゲート電極70からなるスタック構造によるゲート電極の、半導体基板10の表面から測った、半導体基板10表面に平行なゲート電極面の高さよりも高いという構造的な特徴を有する。
本発明の第2の実施の形態に係る不揮発性半導体記憶装置及びその製造方法によれば、NAND型フラッシュメモリにおいて、ビット線同士の接触不良やビット線コンタクトCBと素子活性領域への非接触不良を回避し、製造歩留りを向上することができる。
この第2の実施形態において、層間絶縁膜80を形成後、この層間絶縁膜80をコントロールゲート上マスク材(例えば、シリサイド)をマスクとしてCG上部までCMP等を用いてエッチバックし、ビット線コンタクトCBを形成するようにしてもよい。
[第3の実施の形態]
(AND型)
本発明の第3の実施の形態に係る不揮発性半導体記憶装置のメモリセルアレイ130における模式的回路構成は、図19に示すように、AND型メモリセルアレイの回路構成を備える。
ANDセルユニット134は、図19に詳細に示されているように、並列に接続されたメモリセルトランジスタM0〜M15と、選択ゲートトランジスタSG1、SG2から構成される。選択ゲートトランジスタSG1のドレインは、ビット線コンタクトCBを介して、ビット線・・・BLj-1,BLj, BLj+1・・・に接続され、選択ゲートトランジスタSG2のソースは、ソース線コンタクトCSを介して、共通のソース線SLに接続される。
図19において、点線で囲まれた134がANDセルユニットを示す。ANDセルユニット134内において、メモリセルトランジスタM0〜M15の各ドレイン領域を共通接続し、又各ソース領域を共通接続している。即ち、図19に示されるようにAND型フラッシュメモリのANDセルユニット134では、メモリセルトランジスタM0〜M15が並列に接続され、その一方側に1つのビット線側選択トランジスタSG1、他方側に1つのソース線側選択トランジスタSG2が接続されている。各メモリセルトランジスタM0〜M15のゲートには、ワード線WL0〜WL15がそれぞれ1対1で接続されている。ビット線側選択トランジスタSG1のゲートには、選択ゲート線SGDが接続されている。ソース線側選択トランジスタSG2のゲートには、選択ゲート線SGSが接続されている。
本発明の第3の実施の形態に係る不揮発性半導体記憶装置及びその製造方法においては、ビット線コンタクトCBとなる電極材をライン状に形成した後、各ビット線毎にライン状に形成された電極材を切断することで各AND列にて分断されたビット線コンタクトCBを形成する。
第1の実施の形態と同様に、ビット線コンタクトCBの電極形成材料は、メモリセルトランジスタや選択ゲートトランジスタに使用するフローティングゲート電極40及びコントロールゲート電極70と同一材料で、しかも同時プロセスで形成しても良い。
この場合には、完成されたデバイス構造では、半導体基板10の表面から測ったビット線コンタクトCBの半導体基板10表面に平行な電極面の高さと、メモリセルトランジスタや選択ゲートトランジスタに使用するフローティングゲート電極40及びコントロールゲート電極70からなるスタック構造によるゲート電極の、半導体基板10の表面から測った、半導体基板10表面に平行な電極面の高さは略同一である。
或いは又、第2の実施の形態と同様に、ビット線コンタクトCBは、メモリセルトランジスタや選択ゲートトランジスタに使用するフローティングゲート電極40及びコントロールゲート電極70とは、別工程で形成しても良い。
この場合には、完成されたデバイス構造では、半導体基板10の表面から測ったビット線コンタクトCBの半導体基板10表面に平行な電極面の高さは、メモリセルトランジスタや選択ゲートトランジスタに使用するフローティングゲート電極40及びコントロールゲート電極70からなるスタック構造によるゲート電極の、半導体基板10の表面から測った、半導体基板10表面に平行なゲート電極面の高さよりも高いという構造的な特徴を有する。
本発明の第3の実施の形態に係る不揮発性半導体記憶装置及びその製造方法によれば、AND型フラッシュメモリにおいて、ビット線同士の接触不良やビット線コンタクトCBと素子活性領域への非接触不良を回避し、製造歩留りを向上することができる。
[第4の実施の形態]
(NOR構成)
本発明の第4の実施の形態に係る不揮発性半導体記憶装置のメモリセルアレイ130における模式的回路構成は、図21に示すように、NOR型メモリセルアレイの回路構成を備える。
図21において、点線で囲まれた136がNORセルユニットを示す。NORセルユニット136内において、隣接する2つのメモリセルトランジスタの共通ソース領域はソース線コンタクトCSを介してソース線SLに接続され、共通ドレイン領域はビット線コンタクトCBを介してビット線・・・BLj-2,BLj-1,BLj,BLj+1,BLj+2・・・に接続されている。更に、ビット線・・・BLj-2,BLj-1,BLj,BLj+1,BLj+2…に直交するワード線・・・WLi-1,WLi,WLi+1…方向にNORセルユニット136が配列されており、各ワード線・・・WLi-1,WLi,WLi+1…がNORセルユニット136間で、メモリセルトランジスタのゲートを共通に接続している。NOR型回路構成による不揮発性半導体記憶装置では、NAND型構成に比べ高速読み出しができるという特徴を有する。
本発明の第4の実施の形態に係る不揮発性半導体記憶装置及びその製造方法においては、ビット線コンタクトCBとなる電極材をライン状に形成した後、各ビット線毎にライン状に形成された電極材を切断することで各NORセルユニット列にて分断されたビット線コンタクトCBを形成する。
第1の実施の形態と同様に、ビット線コンタクトCBの電極形成材料は、メモリセルトランジスタに使用するフローティングゲート電極40及びコントロールゲート電極70と同一材料で、しかも同時プロセスで形成しても良い。
この場合には、完成されたデバイス構造では、半導体基板10の表面から測ったビット線コンタクトCBの半導体基板10表面に平行な電極面の高さと、メモリセルトランジスタや選択ゲートトランジスタに使用するフローティングゲート電極40及びコントロールゲート電極70からなるスタック構造によるゲート電極の、半導体基板10の表面から測った、半導体基板10表面に平行な電極面の高さは略同一である。
或いは又、第2の実施の形態と同様に、ビット線コンタクトCBは、メモリセルトランジスタに使用するフローティングゲート電極40及びコントロールゲート電極70とは、別工程で形成しても良い。
この場合には、完成されたデバイス構造では、半導体基板10の表面から測ったビット線コンタクトCBの半導体基板10表面に平行な電極面の高さは、メモリセルトランジスタに使用するフローティングゲート電極40及びコントロールゲート電極70からなるスタック構造によるゲート電極の、半導体基板10の表面から測った、半導体基板10表面に平行なゲート電極面の高さよりも高いという構造的な特徴を有する。
本発明の第4の実施の形態に係る不揮発性半導体記憶装置及びその製造方法によれば、NOR型フラッシュメモリにおいて、ビット線同士の接触不良やビット線コンタクトCBと素子活性領域への非接触不良を回避し、製造歩留りを向上することができる。
[第5の実施の形態]
(2トランジスタ/セル型)
本発明の第5の実施の形態に係る不揮発性半導体記憶装置のメモリセルアレイ130における模式的回路構成は、図21に示すように、2トランジスタ/セル型メモリセルアレイの回路構成を備える。
本発明の第5の実施の形態に係る半導体記憶装置の例では、2トランジスタ/セル方式の構造を基本構造としており、pウェル若しくは半導体基板10上に形成されたゲート絶縁膜20をトンネル絶縁膜とし、更にゲート絶縁膜20上に配置されたフローティングゲート電極40、ゲート間絶縁膜25、コントロールゲート電極70からなるスタックゲート構造のメモリセルを備えている。メモリセルトランジスタMTのn+ソース・ドレイン拡散層32の内、ドレイン領域はビット線コンタクトCBに接続され、メモリセルトランジスタMTのn+ソース・ドレイン拡散層32の内、ソース領域は選択トランジスタSTのドレイン領域に接続されている。又、選択トランジスタSTのソース領域は、ソース線コンタクトCSに接続されている。このような2トランジスタ/セル方式のメモリセルがワード線方向に並列に配置されて、図21に示すように、メモリセルブロック33が構成される。1つのメモリセルブロック33内ではワード線WLi-2がメモリセルのコントロールゲート電極に共通に接続され、ページ単位31を構成している。尚、複数のブロック内のページをまとめてページ単位とすることもあることは勿論である。更に、選択トランジスタSTのゲート電極に対しては選択ゲート線SGSが共通に接続されている。一方、ビット線BL0,BL1,BL2,…,BLn−1が延伸する方向においては、2トランジスタ/セル方式のメモリセルがソース線SLに対して折り返された回路構造が、直列に配置されている。
本発明の第5の実施の形態に係る半導体記憶装置によれば、NAND型の有する高集積化とNOR型の有する高速化との中間的な動作性能を発揮することができる。
本発明の第5の実施の形態に係る不揮発性半導体記憶装置及びその製造方法においては、ビット線コンタクトCBとなる電極材をライン状に形成した後、各ビット線毎にライン状に形成された電極材を切断することで各2トランジスタ/セル列にて分断されたビット線コンタクトCBを形成する。
第1の実施の形態と同様に、ビット線コンタクトCBの電極形成材料は、メモリセルトランジスタに使用するフローティングゲート電極40及びコントロールゲート電極70と同一材料で、しかも同時プロセスで形成しても良い。
或いは又、第2の実施の形態と同様に、ビット線コンタクトCBは、メモリセルトランジスタに使用するフローティングゲート電極40及びコントロールゲート電極70とは、別工程で形成しても良い。
本発明の第5の実施の形態に係る不揮発性半導体記憶装置及びその製造方法によれば、2トランジスタ/セル型フラッシュメモリにおいて、ビット線同士の接触不良やビット線コンタクトCBと素子活性領域への非接触不良を回避し、製造歩留りを向上することができる。
[第6の実施の形態]
(3トランジスタ/セル型)
本発明の第6の実施の形態に係る不揮発性半導体記憶装置のメモリセルアレイ130における模式的回路構成は、図21に示すように、3トランジスタ/セル型メモリセルアレイの回路構成を備える。
本発明の第6の実施の形態に係る半導体記憶装置の例では、3トランジスタ/セル方式の構造を基本構造としており、pウェル若しくは半導体基板10上に形成されたゲート絶縁膜20をトンネル絶縁膜とし、更にゲート絶縁膜20上に配置されたフローティングゲート電極40、ゲート間絶縁膜25、コントロールゲート電極70からなるスタックゲート構造のメモリセルトランジスタMTを備え、メモリセルトランジスタMTの両側には、選択トランジスタST1,ST2が配置されている。メモリセルトランジスタMTのドレイン領域はビット線側選択トランジスタST1を介してビット線コンタクトCBに接続され、メモリセルトランジスタMTのソース領域はソース線側選択トランジスタST2を介してソース線コンタクトCSに接続されている。このような3トランジスタ/セル方式のメモリセルがワード線方向に並列に配置されて、図21に示すように、メモリセルブロック33が構成される。1つのメモリセルブロック33内ではワード線WLi-2がメモリセルトランジスタMTのコントロールゲート電極に共通に接続され、ページ単位31を構成している。尚、複数のブロック内のページをまとめてページ単位とすることもあることは勿論である。更に、ソース線側選択トランジスタST2のゲート電極に対しては選択ゲート線SGSが共通に接続され、ビット線側選択トランジスタST1のゲート電極に対しては選択ゲート線SGDが共通に接続されている。一方、ビット線BL0,BL1,BL2,…,BLn−1が延伸する方向においては、3トランジスタ/セル方式のメモリセルがソース線SLに対して折り返された回路構造が、直列に配置されている。
本発明の第6の実施の形態に係る半導体記憶装置によれば、NAND型の有する高集積化とNOR型の有する高速化との中間的な動作性能を発揮することができる。
本発明の第6の実施の形態に係る不揮発性半導体記憶装置及びその製造方法においては、ビット線コンタクトCBとなる電極材をライン状に形成した後、各ビット線毎にライン状に形成された電極材を切断することで各3トランジスタ/セル列にて分断されたビット線コンタクトCBを形成する。
第1の実施の形態と同様に、ビット線コンタクトCBの電極形成材料は、メモリセルトランジスタに使用するフローティングゲート電極40及びコントロールゲート電極70と同一材料で、しかも同時プロセスで形成しても良い。
或いは又、第2の実施の形態と同様に、ビット線コンタクトCBは、メモリセルトランジスタに使用するフローティングゲート電極40及びコントロールゲート電極70とは、別工程で形成しても良い。
本発明の第6の実施の形態に係る不揮発性半導体記憶装置及びその製造方法によれば、3トランジスタ/セル型フラッシュメモリにおいて、ビット線同士の接触不良やビット線コンタクトCBと素子活性領域への非接触不良を回避し、製造歩留りを向上することができる。
[応用例]
本発明の第1乃至第6の実施の形態に係る不揮発性半導体記憶装置の応用例を図23に示す。図23は、フラッシュメモリ装置及びシステムの主要構成要素の概略的なブロック図である。図23に示すように、フラッシュメモリシステム142はホストプラットホーム144、及びユニバーサル・シリアル・バス(USB)フラッシュ装置146より構成される。
ホストプラットホーム144は、USBケーブル148を介して、USBフラッシュ装置146へ接続されている。ホストプラットホーム144は、USBホストコネクタ150を介してUSBケーブル148に接続し、USBフラッシュ装置146はUSBフラッシュ装置コネクタ152を介してUSBケーブル148に接続する。ホストプラットホーム144は、USBバス上のパケット伝送を制御するUSBホスト制御器154を有する。
USBフラッシュ装置146は、USBフラッシュ装置146の他の要素を制御し、かつUSBフラッシュ装置146のUSBバスへのインタフェースを制御するUSBフラッシュ装置制御器156と、USBフラッシュ装置コネクタ152と、本発明の第1乃至第6の実施の形態に係る不揮発性半導体記憶装置で構成された少なくとも一つのフラッシュメモリモジュール158を含む。
USBフラッシュ装置146がホストプラットホーム144に接続されると、標準USB列挙処理が始まる。この処理において、ホストプラットホーム144は、USBフラッシュ装置146を認知してUSBフラッシュ装置146との通信モードを選択し、エンドポイントという、転送データを格納するFIFOバッファを介して、USBフラッシュ装置146との間でデータの送受信を行う。ホストプラットホーム144は、他のエンドポイントを介してUSBフラッシュ装置146の脱着等の物理的、電気的状態の変化を認識し、受け取るべきパケットがあれば、それを受け取る。
ホストプラットホーム144は、USBホスト制御器154へ要求パケットを送ることによって、USBフラッシュ装置146からのサービスを求める。USBホスト制御器154は、USBケーブル148上にパケットを送信する。USBフラッシュ装置146がこの要求パケットを受け入れたエンドポイントを有する装置であれば、これらの要求はUSBフラッシュ装置制御器156によって受け取られる。
次に、USBフラッシュ装置制御器156は、フラッシュメモリモジュール158から、或いはフラッシュメモリモジュール158へ、データの読み出し、書き込み、或いは消去等の種々の操作を行う。それとともに、USBアドレスの取得等の基本的なUSB機能をサポートする。USBフラッシュ装置制御器156は、フラッシュメモリモジュール158の出力を制御する制御ライン160を介して、また、例えば、チップイネーブル信号CE等の種々の他の信号や読み取り書き込み信号を介して、フラッシュメモリモジュール158を制御する。また、フラッシュメモリモジュール158は、アドレスデータバス162によってもUSBフラッシュ装置制御器156に接続されている。アドレスデータバス162は、フラッシュメモリモジュール158に対する読み出し、書き込みあるいは消去のコマンドと、フラッシュメモリモジュール158のアドレス及びデータを転送する。
ホストプラットホーム144が要求した種々の操作に対する結果及び状態に関してホストプラットホーム144へ知らせるために、USBフラッシュ装置146は、状態エンドポイント(エンドポイント0)を用いて状態パケットを送信する。この処理において、ホストプラットホーム144は、状態パケットがないかをチェックし(ポーリング)、USBフラッシュ装置146は、新しい状態メッセージのパケットが存在しない場合に空パケットを、あるいは状態パケットそのものを返す。
以上、USBフラッシュ装置146の様々な機能を実現可能である。上記USBケーブル148を省略し、コネクタ間を直接接続することも可能である。
[その他の実施の形態]
上記のように、本発明は第1乃至第6の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
第1乃至第6の実施の形態に係る不揮発性半導体記憶装置のメモリセルトランジスタの基本素子構造としては、スタックゲート型構造について開示されたが、この構造に限るものではなく、側壁コントロールゲート型構造、MONOS構造等であっても良いことは勿論である。また、製造工程においてもさまざまな変形例、変更例が可能であることも勿論である。
更に又、第1乃至第6の実施の形態に係る不揮発性半導体記憶装置のメモリセルトランジスタは、2値論理のメモリに限定されるものではない。例えば、3値以上の多値論理のメモリについても適用可能である。例えば、4値記憶の不揮発性半導体記憶装置であれば、
2値記憶の不揮発性半導体記憶装置に比べ、2倍のメモリ容量を達成することができる。更に又、m値(m>3)以上の多値記憶の不揮発性半導体記憶装置についても適用可能である。
このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
本発明の第1及び第2の実施の形態に係る不揮発性半導体記憶装置において、NAND型フラッシュメモリのメモリセルアレイとビット線コンタクト領域の模式的平面パターン構成図。 本発明の第1及び第2のの実施の形態に係る不揮発性半導体記憶装置のメモリセルアレイ領域における模式的回路構成図であって、NAND型メモリセルアレイの回路構成例。 本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のI−I線に沿う模式的断面構造図。 本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のII−II線に沿う模式的断面構造図。 本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のI−I線に沿う模式的断面構造図。 本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のII−II線に沿う模式的断面構造図。 本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のIII−III線に沿う模式的断面構造図。 本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のI−I線に沿う模式的断面構造図。 本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のII−II線に沿う模式的断面構造図。 本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のI−I線に沿う模式的断面構造図。 本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のII−II線に沿う模式的断面構造図。 本発明の第1の実施の形態の変形例に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のII−II線に沿う模式的断面構造図。 本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、ビット線コンタクトの模式的平面パターン構成図。 本発明の第1の実施の形態の係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、ビット線コンタクトの模式的平面パターン構成図。 本発明の第1の実施の形態の係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、ビット線コンタクトの模式的平面パターン構成図。 本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のII−II線に沿う模式的断面構造図。 本発明の第1の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のI−I線に沿う模式的断面構造図。 本発明の第2の実施の形態に係る不揮発性半導体記憶装置の製造工程の一工程を示す図であって、図1のI−I線に沿う模式的断面構造図。 本発明の第3の実施の形態に係る不揮発性半導体記憶装置のメモリセルアレイ領域における模式的回路構成図であって、AND型メモリセルアレイの回路構成例。 本発明の第4の実施の形態に係る不揮発性半導体記憶装置のメモリセルアレイ領域における模式的回路構成図であって、NOR型メモリセルアレイの回路構成例。 本発明の第5の実施の形態に係る不揮発性半導体記憶装置のメモリセルアレイ領域における模式的回路構成図であって、2トランジスタ/セル型メモリセルアレイの回路構成例。 本発明の第6の実施の形態に係る不揮発性半導体記憶装置のメモリセルアレイ領域における模式的回路構成図であって、3トランジスタ/セル型メモリセルアレイの回路構成例。 本発明の第1乃至第6の実施の形態に係る不揮発性半導体記憶装置の応用例であって、フラッシュメモリ装置及びシステムの主要構成要素の概略的なブロック図。
符号の説明
10…半導体基板
20…ゲート絶縁膜
25…ゲート間絶縁膜
30…素子分離領域(STI)
31…ページ単位
32…n+ソース/ドレイン拡散層
33…メモリセルブロック
34…n+コンタクト拡散層
40…フローティングゲート電極
42…フローティングゲート電極上マスク材
55…金属シリサイド膜
60…ビット線コンタクト(CB)プラグ
70…コントロールゲート電極
72…コントロールゲート電極上マスク材
75…ゲート側壁絶縁膜
80,90…層間絶縁膜
95…ボイド
130…メモリセルアレイ
132…NANDセルユニット
134…ANDセルユニット
136…NORセルユニット
AAj-1,AAj,AAj-1,…活性領域
WL0,WL1,…ワード線
SGD…選択ゲート線
CB…ビット線コンタクト
BLj-1,BLj,BLj-1,…ビット線

Claims (5)

  1. 半導体基板に形成された活性領域と、
    ワード線と、
    前記ワード線と前記活性領域の交差部に配置され,前記半導体基板上に形成されたトンネル絶縁膜を介して設けられたフローティングゲート電極,前記フローティングゲート電極上に配置されるゲート間絶縁膜,及び前記ゲート間絶縁膜上に配置されるコントロールゲート電極を備えるメモリセルトランジスタと、
    前記ワード線に平行に配置され,行方向に延伸する選択ゲート線と、
    前記活性領域上に配置されるビット線コンタクトと、
    前記ビット線コンタクトを介して前記活性領域と接続され, 列方向に延伸する複数のビット線
    とを備え、前記ビット線コンタクトは、前記ビット線コンタクトの電極材を前記行方向にライン状に形成した後、前記複数のビット線毎に前記電極材を切断して形成することを特徴とする不揮発性半導体記憶装置。
  2. 前記ビット線コンタクトは、前記コントロールゲート電極と同一の製造工程で形成された同一の電極材を備えることを特徴とする請求項1記載の不揮発性半導体記憶装置。
  3. 前記ビット線コンタクトは、前記コントロールゲート電極とは別の製造工程で形成され、前記活性領域の表面から測った前記ビット線コンタクトの電極表面の高さは、前記コントロールゲート電極の電極表面の高さよりも高いことを特徴とする請求項1記載の不揮発性半導体記憶装置。
  4. 前記ビット線コンタクトの平面形状は、行方向の最短寸法をa、最長寸法をbとするワスプウエスト形状を備え、0<a<b若しくは0=a<bであることを特徴とする請求項1記載の不揮発性半導体記憶装置。
  5. 半導体基板上のゲート絶縁膜を、ビット線コンタクトが形成される領域のみ剥離後、コンタクト拡散層を形成する工程と、
    前記半導体基板上にフローティングゲート電極を堆積する工程と、
    前記フローティングゲート電極上にゲート間絶縁膜を堆積する工程と、
    前記ゲート間絶縁膜の一部を剥離した後、前記剥離により露出したフローティングゲート電極およびゲート間絶縁膜上にコントロールゲート電極を形成する工程と、
    前記コントロールゲート電極上にコントロールゲート電極上マスク材を形成する工程と、
    ワード線,選択ゲート線,ビット線コンタクトとなる前記コントロールゲート電極の電極材を行方向にライン状に加工する工程と、
    前記ライン状に加工された電極材を前記複数のビット線毎に切断してビット線コンタクトを形成する工程
    とを備えることを特徴とする不揮発性半導体記憶装置の製造方法。
JP2005348372A 2005-12-01 2005-12-01 不揮発性半導体記憶装置及びその製造方法 Expired - Fee Related JP4764151B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005348372A JP4764151B2 (ja) 2005-12-01 2005-12-01 不揮発性半導体記憶装置及びその製造方法
US11/563,069 US8134198B2 (en) 2005-12-01 2006-11-24 Nonvolatile semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005348372A JP4764151B2 (ja) 2005-12-01 2005-12-01 不揮発性半導体記憶装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2007157855A true JP2007157855A (ja) 2007-06-21
JP4764151B2 JP4764151B2 (ja) 2011-08-31

Family

ID=38138426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005348372A Expired - Fee Related JP4764151B2 (ja) 2005-12-01 2005-12-01 不揮発性半導体記憶装置及びその製造方法

Country Status (2)

Country Link
US (1) US8134198B2 (ja)
JP (1) JP4764151B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033030A (ja) * 2007-07-30 2009-02-12 Spansion Llc 半導体装置およびその製造方法
JP2009182262A (ja) * 2008-01-31 2009-08-13 Toshiba Corp フラッシュメモリ及びその製造方法
JP2009194305A (ja) * 2008-02-18 2009-08-27 Toshiba Corp 半導体記憶装置及びその製造方法
JP2010225786A (ja) * 2009-03-23 2010-10-07 Toshiba Corp 半導体記憶装置及びその半導体記憶装置の製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4745039B2 (ja) * 2005-12-02 2011-08-10 株式会社東芝 不揮発性半導体記憶装置およびその製造方法
KR100780774B1 (ko) * 2006-11-07 2007-11-30 주식회사 하이닉스반도체 낸드형 플래쉬 메모리소자 및 그 제조방법
US7948021B2 (en) 2007-04-27 2011-05-24 Kabushiki Kaisha Toshiba Semiconductor memory device and method of fabricating the same
JP2009010011A (ja) * 2007-06-26 2009-01-15 Toshiba Corp 半導体装置およびその製造方法
US8320191B2 (en) 2007-08-30 2012-11-27 Infineon Technologies Ag Memory cell arrangement, method for controlling a memory cell, memory array and electronic device
JP2009302116A (ja) * 2008-06-10 2009-12-24 Toshiba Corp 半導体装置およびその製造方法
JP2010080498A (ja) * 2008-09-24 2010-04-08 Toshiba Corp 不揮発性半導体記憶装置およびその製造方法
JP2012089747A (ja) * 2010-10-21 2012-05-10 Toshiba Corp 不揮発性半導体記憶装置
CN107768373B (zh) * 2016-08-15 2022-05-10 华邦电子股份有限公司 存储元件及其制造方法
US10381480B2 (en) 2017-09-27 2019-08-13 International Business Machines Corporation Reliable gate contacts over active areas

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183385A (ja) * 1993-12-22 1995-07-21 Toshiba Corp 半導体集積回路
JPH08293546A (ja) * 1995-04-25 1996-11-05 Hitachi Ltd 多層配線の製造方法
JPH10242269A (ja) * 1997-02-27 1998-09-11 Toshiba Corp 半導体装置の製造方法
JP2001250206A (ja) * 2000-03-03 2001-09-14 Fujitsu Ltd 磁気ランダムアクセスメモリ装置
JP2002163809A (ja) * 2000-11-22 2002-06-07 Sony Corp 磁気抵抗効果素子の製造方法と磁気抵抗効果型磁気ヘッドの製造方法
JP2005285818A (ja) * 2004-03-26 2005-10-13 Toshiba Corp 半導体装置およびその製造方法
JP2005286155A (ja) * 2004-03-30 2005-10-13 Toshiba Corp 半導体記憶装置及び半導体記憶装置の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955071A (ja) * 1982-09-24 1984-03-29 Hitachi Micro Comput Eng Ltd 不揮発性半導体装置
JPH04212472A (ja) * 1990-07-13 1992-08-04 Toshiba Corp 不揮発性半導体記憶装置の製造方法
US6127224A (en) * 1997-12-31 2000-10-03 Stmicroelectronics, S.R.L. Process for forming a non-volatile memory cell with silicided contacts
JP4102112B2 (ja) 2002-06-06 2008-06-18 株式会社東芝 半導体装置及びその製造方法
US6900098B1 (en) * 2002-10-15 2005-05-31 Halo Lsi, Inc. Twin insulator charge storage device operation and its fabrication method
JP2005056989A (ja) 2003-08-01 2005-03-03 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183385A (ja) * 1993-12-22 1995-07-21 Toshiba Corp 半導体集積回路
JPH08293546A (ja) * 1995-04-25 1996-11-05 Hitachi Ltd 多層配線の製造方法
JPH10242269A (ja) * 1997-02-27 1998-09-11 Toshiba Corp 半導体装置の製造方法
JP2001250206A (ja) * 2000-03-03 2001-09-14 Fujitsu Ltd 磁気ランダムアクセスメモリ装置
JP2002163809A (ja) * 2000-11-22 2002-06-07 Sony Corp 磁気抵抗効果素子の製造方法と磁気抵抗効果型磁気ヘッドの製造方法
JP2005285818A (ja) * 2004-03-26 2005-10-13 Toshiba Corp 半導体装置およびその製造方法
JP2005286155A (ja) * 2004-03-30 2005-10-13 Toshiba Corp 半導体記憶装置及び半導体記憶装置の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033030A (ja) * 2007-07-30 2009-02-12 Spansion Llc 半導体装置およびその製造方法
JP2009182262A (ja) * 2008-01-31 2009-08-13 Toshiba Corp フラッシュメモリ及びその製造方法
JP2009194305A (ja) * 2008-02-18 2009-08-27 Toshiba Corp 半導体記憶装置及びその製造方法
JP4703669B2 (ja) * 2008-02-18 2011-06-15 株式会社東芝 半導体記憶装置及びその製造方法
US8253199B2 (en) 2008-02-18 2012-08-28 Kabushiki Kaisha Toshiba Semiconductor memory device having cavity portions
US8629528B2 (en) 2008-02-18 2014-01-14 Kabushiki Kaisha Toshiba Semiconductor memory device and method for manufacturing the same
JP2010225786A (ja) * 2009-03-23 2010-10-07 Toshiba Corp 半導体記憶装置及びその半導体記憶装置の製造方法

Also Published As

Publication number Publication date
US20070132007A1 (en) 2007-06-14
US8134198B2 (en) 2012-03-13
JP4764151B2 (ja) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4764151B2 (ja) 不揮発性半導体記憶装置及びその製造方法
US10566343B2 (en) Semiconductor memory device including 3-dimensional structure and method for manufacturing the same
US10147739B2 (en) Vertical non-volatile memory device, method of fabricating the same device, and electric-electronic system having the same device
TWI707458B (zh) 半導體記憶體裝置
US7560320B2 (en) Nonvolatile semiconductor memory and a fabrication method for the same
JP2007311566A (ja) 不揮発性半導体記憶装置及び不揮発性半導体記憶装置の製造方法
JP2005038884A (ja) 不揮発性半導体記憶装置及びその製造方法
JP2005109236A (ja) 不揮発性半導体記憶装置及びその製造方法
KR20160115018A (ko) 집적회로 장치 및 이의 제조 방법
JP4331070B2 (ja) 半導体記憶装置
US11201170B2 (en) Three-dimensional semiconductor memory device and manufacturing method of the three-dimensional semiconductor memory device
JP2007049111A (ja) 不揮発性半導体記憶装置
JP2007157854A (ja) 不揮発性半導体記憶装置及びその製造方法
US10930587B2 (en) Semiconductor memory device
KR100816588B1 (ko) 비휘발성 반도체 메모리
CN110718241A (zh) 半导体存储器装置
US20100327453A1 (en) Semiconductor Device and Method of Manufacturing the Same
JP4405456B2 (ja) 不揮発性半導体記憶装置
US7393747B2 (en) Nonvolatile semiconductor memory and a fabrication method thereof
US20220399401A1 (en) Vertical memory device
KR20230016648A (ko) 집적 어셈블리 및 집적 어셈블리 형성 방법
JP4564511B2 (ja) 半導体装置及びその製造方法
TW202109883A (zh) 半導體裝置及半導體裝置之製造方法
JP2008205493A (ja) 不揮発性半導体記憶装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees