JP2007142685A - 三角波発生回路、それを用いたインバータ、発光装置、液晶テレビ - Google Patents

三角波発生回路、それを用いたインバータ、発光装置、液晶テレビ Download PDF

Info

Publication number
JP2007142685A
JP2007142685A JP2005332203A JP2005332203A JP2007142685A JP 2007142685 A JP2007142685 A JP 2007142685A JP 2005332203 A JP2005332203 A JP 2005332203A JP 2005332203 A JP2005332203 A JP 2005332203A JP 2007142685 A JP2007142685 A JP 2007142685A
Authority
JP
Japan
Prior art keywords
signal
triangular wave
voltage
charge
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005332203A
Other languages
English (en)
Other versions
JP4685602B2 (ja
Inventor
Kenichi Fukumoto
憲一 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2005332203A priority Critical patent/JP4685602B2/ja
Priority to CN2006800023191A priority patent/CN101103528B/zh
Priority to PCT/JP2006/322772 priority patent/WO2007058217A1/ja
Priority to KR1020077023805A priority patent/KR20080067960A/ko
Priority to US12/159,140 priority patent/US7948282B2/en
Priority to TW095142467A priority patent/TW200729725A/zh
Publication of JP2007142685A publication Critical patent/JP2007142685A/ja
Application granted granted Critical
Publication of JP4685602B2 publication Critical patent/JP4685602B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K4/00Generating pulses having essentially a finite slope or stepped portions
    • H03K4/06Generating pulses having essentially a finite slope or stepped portions having triangular shape
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/2806Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without electrodes in the vessel, e.g. surface discharge lamps, electrodeless discharge lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2821Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage
    • H05B41/2822Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage using specially adapted components in the load circuit, e.g. feed-back transformers, piezoelectric transformers; using specially adapted load circuit configurations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

【課題】外部回路と同期した三角波信号を生成する。
【解決手段】第1コンパレータ32は、キャパシタC2に現れる出力電圧Voutを、最大しきい値電圧Vmaxと比較する。第2コンパレータ34は、出力電圧Voutを、最小しきい値電圧Vminと比較する。エッジ検出回路50は、出力電圧Voutの略1/2倍の周波数を有する同期信号SYNCのエッジを検出し、エッジ検出信号SEを出力する。充放電制御部40は、第1比較信号Vcmp1、第2比較信号Vcmp2を参照し、出力電圧Voutが最大しきい値電圧Vmaxより高くなると、充放電回路38を放電状態に設定し、出力電圧Voutが最小しきい値電圧Vminより低くなると、充放電回路38を充電状態に設定する。また、充放電制御部40は、エッジ検出信号SEが所定レベルとなると、充放電回路38の充放電状態を切り換える。
【選択図】図1

Description

本発明は、三角波発生回路に関し、特に外部回路と同期可能な三角波発生回路に関する。
直流電圧を交流電圧に変換するインバータ、直流電圧を直流電圧に変換するDC/DCコンバータなどの電源装置や、モータを駆動するモータドライバ回路などにおいて、パルス幅変調方式が広く用いられる。パルス幅変調を行うためには、誤差増幅器によって、制御対象となる電圧と目標値となる電圧との誤差を増幅し、その結果得られる誤差電圧を、コンパレータを用いて一定の周波数を有する三角波状の周期電圧と比較することによりパルス幅変調を行っている。
こうした用途に用いられる三角波状の周期電圧の発生には、特許文献1や特許文献2に記載されるアナログの三角波発生回路が広く用いられている。三角波発生回路は、キャパシタを充放電し、2つのしきい値電圧と比較することにより、充電と放電を交互に行うことによって、所望の三角波信号を生成する。
特開2004−72657号公報 特開2001−345682号公報
ここで、2つの異なる半導体集積回路(以下、ICともいう)において、互いに同期した三角波信号を生成したい場合がある。たとえば、液晶テレビのバックライトとして使用される蛍光ランプの両端に2つのインバータを設け、逆相の駆動電圧を印加する場合を考える。
2つのインバータにおいて、DC/AC変換を行う際に使用する三角波信号の位相がずれている場合、蛍光ランプの両端に印加される電圧が逆相とならず、発光状態に不都合が生ずる。外部信号と同期した三角波信号を生成したい場合はこの他にもある。
本発明はこうした課題に鑑みてなされたものであり、その目的は、外部回路と同期した三角波信号を生成可能な三角波生成回路の提供にある。
上記課題を解決するために、本発明のある態様の三角波発生回路は、一端の電位が固定されたキャパシタと、キャパシタを充電または放電する充放電回路と、キャパシタの他端に現れる出力電圧を、所定の最大しきい値電圧と比較し、比較結果に応じた第1比較信号を出力する第1コンパレータと、出力電圧を、最大しきい値電圧より低い、所定の最小しきい値電圧と比較し、比較結果に応じた第2比較信号を出力する第2コンパレータと、外部から入力され、本三角波発生回路により生成される三角波信号の略1/2倍の周波数を有する同期信号のエッジを検出し、エッジごとに所定レベルとなるエッジ検出信号を出力するエッジ検出回路と、第1、第2コンパレータから出力される第1、第2比較信号を参照し、出力電圧が最大しきい値電圧より高くなると、充放電回路を放電状態に設定し、出力電圧が最小しきい値電圧より低くなると、充放電回路を充電状態に設定する充放電制御部と、を備える。充放電制御部は、エッジ検出回路から出力されるエッジ検出信号が、所定レベルとなると、充放電回路の充放電状態を切り換える。
この態様によると、第1、第2コンパレータによって最大しきい値電圧と最小しきい値電圧との間で充放電を繰り返すとともに、同期信号のエッジを検出すると、充放電回路の充放電状態が強制的に切り換えられるため、同期信号のエッジに、出力電圧のボトムエッジあるいはピークエッジをそろえることができ、位相同期をとることができる。
充放電制御部は、第1コンパレータから出力される第1比較信号と、エッジ検出信号の論理和を出力する論理合成部と、論理合成部の出力信号と、第2比較信号とによってセット、リセットされるフリップフロップと、を含んでもよい。
この場合、第1比較信号とエッジ検出信号のうち、いずれか早くレベルが変化した信号によって、放電状態に切り替えられることになり、出力電圧のピークエッジを同期信号のエッジにそろえることができる。
また、充放電制御部は、第2コンパレータから出力される第2比較信号と、エッジ検出信号の論理和を出力する論理合成部と、論理合成部の出力信号と、第1比較信号とによってセット、リセットされるフリップフロップと、を含んでもよい。
この場合、第2比較信号とエッジ検出信号のうち、いずれか早くレベルが変化した信号によって、充電状態に切り替えられることになり、出力電圧のボトムエッジを同期信号のエッジにそろえることができる。
充放電回路は、キャパシタに電流を流し込む第1電流源と、キャパシタから電流を引き抜く第2電流源と、を含み、フリップフロップの出力信号により、第1、第2電流源のオンオフを制御してもよい。
フリップフロップの出力信号を1/2分周する分周器をさらに備え、本三角波発生回路の外部に、分周器の出力信号を同期信号として出力してもよい。この場合、三角波発生信号自身によって、同期信号を生成することができる。
本発明の別の態様は、インバータである。このインバータは、トランスと、一端が、入力電圧の印加される入力端子に接続され、他端が、トランスの1次側コイルの第1端子に接続された第1ハイサイドトランジスタと、一端が、電位の固定された電位固定端子に接続され、他端が、1次側コイルの第1端子に接続された第1ローサイドトランジスタと、一端が、入力端子に接続され、他端が、1次側コイルの第2端子に接続された第2ハイサイドトランジスタと、一端が、電位固定端子に接続され、他端が、1次側コイルの第2端子に接続された第2ローサイドトランジスタと、トランスの2次側コイルの電流を電圧に変換し、検出電圧として出力する電流電圧変換部と、三角波信号を生成する三角波生成回路と、検出電圧と、所定の基準電圧との誤差に応じた誤差電圧を出力する誤差増幅器と、誤差増幅器から出力される誤差電圧および三角波発生回路により生成される三角波信号にもとづき、第1、第2ハイサイドトランジスタおよび第1、第2ローサイドトランジスタのオンオフを制御する論理制御部と、を備える。
この態様によると、外部から入力される同期信号と同期して、インバータから出力される交流信号の位相を調節することができる。
論理制御部は、三角波信号がボトムエッジから誤差電圧に達するまでの第1期間に、第1ハイサイドトランジスタおよび第2ローサイドトランジスタをオンし、次に三角波信号がピークエッジに達するまでの第2期間に、第1ハイサイドトランジスタをオンし、次に三角波信号がボトムエッジに達するまでの第3期間に、第2ハイサイドトランジスタをオンし、次に三角波信号が再度誤差電圧に達するまでの第4期間に、第1ローサイドトランジスタおよび第2ハイサイドトランジスタをオンし、次に三角波信号が再度ピークエッジに達するまでの第5期間に、第2ハイサイドトランジスタをオンし、次に三角波信号が再度ボトムエッジに達するまでの第6期間に、第1ハイサイドトランジスタをオンしてもよい。論理制御部は、ピークエッジとボトムエッジを反転して、第1、第2ハイサイドトランジスタおよび第1、第2ローサイドトランジスタのオンオフを制御してもよい。
本発明のさらに別の態様は、発光装置である。この発光装置は、蛍光ランプと、蛍光ランプの両端に設けられ、蛍光ランプに対し、互いに逆相の駆動電圧を供給する2つのインバータと、を備える。
この態様によると、2つのインバータ間で同期信号を送受信することにより、内部の三角波発生回路の同期をとることができ、逆相の駆動電圧を好適に生成することができ、蛍光ランプを均一に発光させることができる。
本発明のさらに別の態様は、液晶テレビである。この液晶テレビは、液晶パネルと、液晶パネルの背面に配置される複数の発光装置と、を備える。
この態様によると、バックライトとして使用される発光装置の輝度ムラを抑えることができる。
なお、以上の構成要素の任意の組合せや、本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
本発明に係る三角波発生回路によれば、外部回路と同期した三角波信号を生成することができる。
図1は、本実施の形態に係る三角波発生回路30の構成を示す回路図である。図2は、図1の三角波発生回路30が使用されるシステム400の構成を示すブロック図である。はじめに、図2を参照して、本実施の形態に係る三角波発生回路30の動作の概要を説明する。
システムは、第1回路410と第2回路420とを含む。第1回路410および第2回路420は同機能を備える回路であってもよいし、異なる機能を備える回路であってもよい。第1回路410と、第2回路420は、いずれも本実施の形態に係る図1の三角波発生回路30を含む。第1回路410の三角波発生回路30aと、第2回路420の三角波発生回路30bは、一方をマスター回路、他方をスレーブ回路として動作する。本実施の形態において、第1回路410の三角波発生回路30aをマスター側、第2回路420の三角波発生回路30bをスレーブ側として説明する。
マスター側の三角波発生回路30aは、所定の周波数fを有する三角波信号Voscを生成する。また、三角波発生回路30aは、スレーブ側の三角波発生回路30bに対し、周波数がf/2の同期信号SYNCを出力する。三角波発生回路30bは、同期信号SYNCにもとづき、三角波発生回路30aと同一の周波数fを有し、かつ、位相が同期した三角波信号Voscを生成する。
図1に戻り、三角波発生回路30a、30bの構成について説明する。以下の説明では、マスター側の三角波発生回路30aと、スレーブ側の三角波発生回路30bとを特に区別せずに、単に三角波発生回路30と総称して説明する。
本実施の形態に係る三角波発生回路30は、キャパシタC2、充放電回路38、第1コンパレータ32、第2コンパレータ34、エッジ検出回路50、充放電制御部40を含む。上述のように、三角波発生回路30は、外部から入力される同期信号SYNCINと同期して三角波信号Voscを生成する。同期信号SYNCINの周波数は、上述のように、三角波信号Voscの周波数の略2倍である。
キャパシタC2は、一端が接地され、電位が固定される。充放電回路38は、キャパシタC2に電流を流し込む第1電流源38aと、キャパシタC2から電流を引き抜く第2電流源38bと、を含む。充放電回路38は、第1電流源38a、第2電流源38bのオンオフを制御することにより、キャパシタC2を充電または放電する。充放電回路38の充放電状態の切り替えは、制御信号CNTにもとづいて行われる。本実施の形態において、充放電回路38は、制御信号CNTがハイレベルのとき充電状態に、ローレベルのとき放電状態に設定されるものとする。
キャパシタC2に現れる電圧は、三角波発生回路30の出力電圧Voutであり、三角波信号Voscとして出力される。
第1コンパレータ32は、キャパシタC2の他端に現れる出力電圧Voutを、所定の最大しきい値電圧Vmaxと比較し、比較結果に応じた第1比較信号Vcmp1を出力する。本実施の形態において、第1比較信号Vcmp1は、Vout>Vminのときハイレベル、Vout<Vminのときローレベルとなる。第2コンパレータ34は、出力電圧Voutを、最大しきい値電圧Vmaxより低い、所定の最小しきい値電圧Vminと比較し、比較結果に応じた第2比較信号Vcmp2を出力する。第2比較信号Vcmp2は、Vout<Vminのときハイレベル、Vout>Vminのときローレベルとなる。第1比較信号Vcmp1、第2比較信号Vcmp2は、充放電制御部40へと出力される。
エッジ検出回路50には、三角波信号Voscの周波数の略1/2倍の周波数を有する同期信号SYNCINが入力される。エッジ検出回路50は、同期信号SYNCINのエッジを検出し、エッジごとにハイレベルとなるエッジ検出信号SEを出力する。
図3は、エッジ検出回路50の構成例を示す回路図である。エッジ検出回路50は、ヒステリシスコンパレータ52、インバータ54、56、58、60、微分器62、64を含む。
同期信号SYNCINは、ヒステリシスコンパレータ52の反転入力端子に入力される。ヒステリシスコンパレータ52の非反転入力端子には、しきい値電圧が入力される。ヒステリシスコンパレータ52によって同期信号SYNCINのノイズ成分が除去され、論理値が反転して出力される。ヒステリシスコンパレータ52の出力信号S1は、インバータ54に入力される。インバータ54は、ヒステリシスコンパレータ52の出力信号S1を反転する。インバータ54の出力信号S2は、インバータ56およびインバータ60にそれぞれ出力される。
インバータ56、58は、インバータ54の出力信号S2を2度反転し、微分器62へと出力する。微分器62は、キャパシタC3および抵抗R2を含み、インバータ58の出力信号S3を微分した電圧を、ポジエッジ検出信号SEpとして出力する。また、インバータ60は、インバータ54の出力信号S2を1度反転し、微分器64へと出力する。微分器64は、インバータ60の出力信号S4を微分した電圧を、ネガエッジ検出信号SEnとして出力する。以上のように構成されるエッジ検出回路50からは、同期信号SYNCINのポジエッジおよびネガエッジでそれぞれハイレベルとなる2つのエッジ検出信号SEが出力される。
図1に戻る。エッジ検出回路50から出力されるエッジ検出信号SEは、第1コンパレータ32から出力される第1比較信号Vcmp1、第2コンパレータ34から出力される第2比較信号Vcmp2とともに、充放電制御部40に入力される。
充放電制御部40は、第1比較信号Vcmp1、第2比較信号Vcmp2、およびエッジ検出信号SEを参照して制御信号CNTを生成し、充放電回路38の充放電状態を切り換える。充放電制御部40は、論理合成部42、RSフリップフロップ44を含む。論理合成部42は、第1比較信号Vcmp1とエッジ検出信号SEの論理和をリセット信号Srとして出力する。
RSフリップフロップ44のリセット端子には、論理合成部42から出力されるリセット信号Srが入力される。また、RSフリップフロップ44のセット端子には、第2コンパレータ34から出力される第2比較信号Vcmp2が入力される。このRSフリップフロップ44は、第2比較信号Vcmp2とリセット信号Vrによってセット、リセットされる。RSフリップフロップ44の出力信号は、制御信号CNTとして充放電回路38へと出力される。
図4は、充放電制御部40の構成例を示す回路図である。充放電制御部40は、抵抗R4、トランジスタM1、トランジスタM2、トランジスタM3、インバータ48を含む。抵抗R4の一端は電源ラインに接続される。トランジスタM1、M2、M3は、抵抗R4の他端と接地間に並列に設けられる。トランジスタM1、M2、M3のゲートには、ポジエッジ検出信号SEp、ネガエッジ検出信号SEn、第1比較信号Vcmp1が入力される。抵抗R4とトランジスタM1〜M3の接続点の電位は、インバータ48に入力される。インバータ48の出力は、リセット信号Vrとして出力される。
トランジスタM1、M2、M3の少なくともひとつがオンすると、すなわち、エッジ検出信号SEp、SEn、第1比較信号Vcmp1の少なくとも1つがハイレベルとなると、抵抗R4に電流が流れて電圧降下が発生し、インバータ48の入力信号S5はローレベルとなり、リセット信号Vrはハイレベルとなる。逆に、トランジスタM1、M2、M3がすべてローレベルのとき、インバータ48の入力信号S5はハイレベルにプルアップされるため、リセット信号Vrはローレベルとなる。このように、以上のように構成された論理合成部42は、ORゲートとして機能し、エッジ検出信号SEと第1比較信号Vcmp1の論理和を、リセット信号Vrとして出力する。
充放電制御部40は、出力電圧Voutが最大しきい値電圧Vmaxより高くなると、すなわち、第1比較信号Vcmp1がハイレベルとなると、制御信号CNTをハイレベルとし、充放電回路38を放電状態に設定する。また、充放電制御部40は、出力電圧Voutが最小しきい値電圧Vminより低くなると、すなわち、第2比較信号Vcmp2がハイレベルとなると、制御信号CNTをローレベルとし、充放電回路38を充電状態に設定する。
さらに、充放電制御部40は、エッジ検出信号SEがハイレベルとなると、充放電回路38の充放電状態を切り換える。本実施の形態においては、充放電回路38は、エッジ検出信号SEがハイレベルとなると、制御信号CNTをローレベルとして充放電回路38を放電状態に設定する。
図5は、充放電回路38の構成例を示す回路図である。充放電回路38は、定電流源70、バイポーラトランジスタQ1〜Q5、MOSトランジスタM4を含む。定電流源70は、基準電流Irefを生成する。バイポーラトランジスタQ1は、定電流源70により生成される基準電流Irefの経路上に設けられる。バイポーラトランジスタQ2、Q3は、バイポーラトランジスタQ1とベースおよびエミッタが共通接続されており、カレントミラー回路を構成している。バイポーラトランジスタQ2、Q3の電流経路上には、バイポーラトランジスタQ4、Q5が設けられる。バイポーラトランジスタQ4、Q5はベースおよびエミッタが共通に接続され、カレントミラー回路を構成している。たとえば、バイポーラトランジスタQ1〜Q4のトランジスタサイズを同一に設定し、バイポーラトランジスタQ5のトランジスタサイズをn倍に設定する。
MOSトランジスタM4は、バイポーラトランジスタQ4のベースと接地間に設けられ、ゲートには制御信号CNTが入力される。
制御信号CNTがハイレベルとなると、MOSトランジスタM4はオンし、バイポーラトランジスタQ4、Q5がオフする。その結果、キャパシタC2には、バイポーラトランジスタQ3に流れる基準電流Irefが流れ込むことになり、充電状態に設定される。
一方、制御信号CNTがローレベルのとき、MOSトランジスタM4はオフとなり、バイポーラトランジスタQ3には、基準電流Irefが流れ、バイポーラトランジスタQ5には、基準電流Irefのn倍の電流が流れる。その結果、キャパシタC2から、(n−1)×Irefの電流が引き抜かれ、放電状態に設定される。
図1に戻る。充放電制御部40から出力される制御信号CNTは、充放電回路38に入力されるとともに、分周器46に入力される。分周器46は、制御信号CNTを1/2分周し、三角波発生回路30の外部に、同期信号SYNCOUTとして出力する。
以上のように構成された三角波発生回路30の動作について、図6および図7を参照して説明する。図6は、マスター側の三角波発生回路30aの動作状態を示すタイムチャートである。図7は、スレーブ側の三角波発生回路30bの動作状態を示すタイムチャートである。
まず、図6を参照してマスター側の三角波発生回路30aの動作について説明する。マスター側の三角波発生回路30aには、同期信号SYNCINは入力されておらず、ローレベルにプルダウンされ、もしくはハイレベルにプルアップされる。
ある時刻t0において、制御信号CNTはハイレベルとなっており、充放電回路38は充電状態に設定される。充電状態となると、キャパシタC1が充電され、出力電圧Voutは時間とともに上昇していく。時刻t1に、出力電圧Voutが最大しきい値電圧Vmaxに達すると、第1比較信号Vcmp1がハイレベルとなり、RSフリップフロップ44がリセットされ、制御信号CNTがローレベルとなる。
時刻t1に制御信号CNTがローレベルとなると、充放電回路38が放電状態に設定される。放電状態となると、キャパシタC1が放電され、出力電圧Voutが時間とともに下降していく。時刻t2に出力電圧Voutが最小しきい値電圧Vminまで低下すると、第2比較信号Vcmp2がハイレベルとなり、RSフリップフロップ44がセットされ、制御信号CNTがハイレベルとなる。マスター側の三角波発生回路30aは、時刻t0〜t2に示す動作を一周期として三角波信号を生成し、制御信号CNTを1/2分周した同期信号SYNCOUTを、スレーブ側の三角波発生回路30bへと出力する。
次に、図7をもとに、スレーブ側の三角波発生回路30bの動作について説明する。図7は、上から順にそれぞれ、マスター側の三角波発生回路30aの出力電圧Vouta、マスター側の三角波発生回路30aから出力され、スレーブ側の三角波発生回路30bに入力される同期信号SYNCIN、エッジ検出信号SE、スレーブ側の三角波発生回路30bの出力電圧Voutb、三角波発生回路30bの第1比較信号Vcmp1、第2比較信号Vcmp2、制御信号CNTを示す。
エッジ検出回路50は、同期信号SYNCINのエッジを検出し、エッジごとのハイレベルとなるエッジ検出信号SEを出力する。
時刻t0に制御信号CNTがハイレベルとなっており、三角波発生回路30bの充放電回路38は充電状態となり、出力電圧Voutbは時間とともに上昇していく。その後、出力電圧Voutbが、最大しきい値電圧Vmaxに達する前の時刻t1に、エッジ検出信号SEがハイレベルとなる。エッジ検出信号SEがハイレベルとなると、第1比較信号Vcmp1ではなく、エッジ検出信号SEによってRSフリップフロップ44がリセットされ、制御信号CNTはローレベルとなり、充放電回路38が放電状態に設定される。
続く時刻t2に、出力電圧Voutbが最小しきい値電圧Vminより低くなると、第2比較信号Vcmp2がハイレベルとなり、RSフリップフロップ44がセットされ、制御信号CNTがハイレベルとなる。その結果、充放電回路38が充電状態に切り換えられ、出力電圧Voutbは再度上昇し始める。
三角波発生回路30bの出力電圧Voutbは、同期制御を行わない場合、三角波発生回路30aの出力電圧Voutaと無関係に生成されるため、破線で示すように、位相がずれた信号となる。一方、本実施の形態に係る三角波発生回路30では、充放電回路38は、第2比較信号Vcmp2によって充電状態に設定される。また、充放電回路38は、第1比較信号Vcmpおよびエッジ検出信号SEのうち、早くハイレベルとなったいずれかの信号により放電状態に設定される。
その結果、出力電圧Voutbのピークエッジは、同期信号SYNCINのエッジと同時に発生するように調節され、2つの三角波発生回路30a、30bの周波数および位相が同期される。
次に、以上のように構成された三角波発生回路30の応用例について説明する。図8は、実施の形態に係る発光装置200の構成を示す回路図である。図9は、図8の発光装置200が搭載される液晶テレビ300の構成を示すブロック図である。液晶テレビ300は、アンテナ310と接続される。アンテナ310は、放送波を受信して受信部304に受信信号を出力する。受信部304は、受信信号を検波、増幅して、信号処理部306へと出力する。信号処理部306は、変調されたデータを復調して得られる画像データを液晶ドライバ308に出力する。液晶ドライバ308は、画像データを走査線ごとに液晶パネル302へと出力し、映像、画像を表示する。液晶パネル302の背面には、バックライトとして複数の発光装置200が配置されている。本実施の形態に係る発光装置200は、このような液晶パネル302のバックライトとして好適に用いることができる。以下、図8に戻り、発光装置200の構成および動作について詳細に説明する。
本実施の形態に係る発光装置200は、EEFL210、第1インバータ100a、第2インバータ100bを含む。EEFL210は、液晶パネル302の背面に配置される。第1インバータ100a、第2インバータ100bは、DC/ACコンバータであり、直流電源から出力される入力電圧Vinを交流電圧に変換して昇圧し、EEFL210の第1端子212、第2端子214に、それぞれ、第1駆動電圧Vdrv1、第2駆動電圧Vdrv2を供給する。第1駆動電圧Vdrv1、第2駆動電圧Vdrv2は、互いに逆相となる交流電圧である。
図8において、EEFL210は1つ示されているが、複数を並列に配置してもよい。以下、本実施の形態に係る第1インバータ100a、第2インバータ100bの構成について説明する。第1インバータ100a、第2インバータ100bは同様の構成となっているため、以下では、両者を区別せずに、インバータ100と総称して説明を行う。また、第1インバータ100aの制御回路20および第2インバータ100bの制御回路は、それぞれ図2のシステム400における第1回路410および第2回路420に対応する。
インバータ100は、Hブリッジ回路10、トランス12、電流電圧変換部14、制御回路20、キャパシタC10を含む。
Hブリッジ回路10は、第1ハイサイドトランジスタMH1、第1ローサイドトランジスタML1、第2ハイサイドトランジスタMH2、第2ローサイドトランジスタML2の4つのパワートランジスタを含む。
第1ハイサイドトランジスタMH1は、一端が、入力電圧の印加される入力端子102に接続され、他端が、トランス12の1次側コイル12aの第1端子に接続される。第1ローサイドトランジスタML1は、一端が、電位の固定された接地端子に接続され、他端が1次側コイル12aの第1端子に接続される。第2ハイサイドトランジスタMH2は、一端が、入力端子102に接続され、他端が、直流阻止用のキャパシタC10を介して1次側コイルの第2端子に接続される。第2ローサイドトランジスタML2は、一端が、接地端子に接続され、他端が、直流阻止用のキャパシタC10を介して1次側コイル12aの第2端子に接続される。
電流電圧変換部14は、トランス12の2次側コイル12bと接地間に設けられる。電流電圧変換部14は、2次側コイル12bに流れる電流、すなわちEEFL210に流れる電流を電圧に変換し、検出電圧Vdet’として出力する。電流電圧変換部14は、整流回路16、フィルタ18を含む。
整流回路16は、第1ダイオードD1、第2ダイオードD2、抵抗R1を含む。第1ダイオードD1はアノードが接地され、カソードが2次側コイル12bの一端に接続されている。第2ダイオードD2のアノードは、第1ダイオードD1のカソードと接続される。抵抗R1は、第2ダイオードD2のカソードと接地間に設けられる。2次側コイル12bに流れる交流の電流は、第1ダイオードD1、第2ダイオードD2によって半波整流され、抵抗R1に流れる。抵抗R1には、2次側コイル12bに流れる電流に比例した電圧降下が発生する。整流回路16は、抵抗R1で発生した電圧降下を、検出電圧Vdetとして出力する。
フィルタ18は、抵抗R2、キャパシタC1を含むローパスフィルタである。フィルタ18は、検出電圧Vdetの高周波成分を除去した検出電圧Vdet’を、制御回路20に帰還する。
制御回路20は、帰還された検出電圧Vdet’にもとづき、Hブリッジ回路10の第1ハイサイドトランジスタMH1、第1ローサイドトランジスタML1、第2ハイサイドトランジスタMH2、第2ローサイドトランジスタML2のオンオフを制御する。Hブリッジ回路10の制御によって、トランス12の1次側コイル12aに、スイッチング電圧が供給される。その結果、トランス12でエネルギ変換が行われ、2次側コイル12bに接続されたEEFL210には、第1駆動電圧Vdrv1が供給される。
以下、制御回路20の構成について説明する。図10は、本実施の形態に係る制御回路20の構成を示す回路図である。制御回路20は、誤差増幅器22、PWMコンパレータ24、三角波発生回路30、論理制御部80を含み、1つの半導体基板上に一体集積化された機能ICである。
誤差増幅器22の非反転入力端子には、電流電圧変換部14から帰還された検出電圧Vdet’が入力され、反転入力端子には、所定の基準電圧Vrefが入力される。基準電圧Vrefは、EEFL210の発光輝度に応じて決定される。誤差増幅器22は、検出電圧Vdet’と、基準電圧Vrefとの誤差に応じた誤差電圧Verrを出力する。
三角波発生回路30は、図1の三角波発生回路30であって、所定の周波数の三角波状の三角波信号Voscを生成する。
PWMコンパレータ24は、誤差増幅器22から出力される誤差電圧Verrと、三角波発生回路30から出力される三角波信号Voscと、を比較し、Verr<Voscのときハイレベル、Verr>Voscのときローレベルとなるパルス幅変調信号(以下、PWM信号という)Vpwmを生成する。このPWM信号Vpwmは、三角波信号Vosc、周期信号Vqとともに、論理制御部80に入力される。
論理制御部80は、PWM信号Vpwm、三角波信号Vosc、周期信号Vqにもとづき、Hブリッジ回路10の第1ハイサイドトランジスタMH1、第1ローサイドトランジスタML1、第2ハイサイドトランジスタMH2、第2ローサイドトランジスタML2のオンオフを制御する。以下、論理制御部80について説明する。
論理制御部80は、三角波発生回路30から出力される三角波信号Voscの2周期を1サイクルとしてHブリッジ回路10を制御する。より具体的には、三角波信号Voscの2周期を、第1から第6の6つの期間に分割し、スイッチング制御を行う。図11(a)〜(h)は、インバータ100の動作状態を示すタイムチャートである。図11(a)は、誤差電圧Verrおよび三角波信号Voscを、同図(b)は、PWM信号Vpwmを、同図(c)は、周期信号Vqを、同図(d)〜(g)はそれぞれ、第1ハイサイドトランジスタMH1、第2ハイサイドトランジスタMH2、第1ローサイドトランジスタML1、第2ローサイドトランジスタML2の状態を、同図(h)は、トランス12の1次側コイル12aの第1端子の電位Vswを示す。同図(d)〜(g)において、ハイレベルがトランジスタがオンの状態を、ローレベルがトランジスタがオフの状態を示す。また、同図において、縦軸および横軸は説明を簡潔にするために適宜拡大、縮小されている。
はじめに、第1期間φ1から第6期間φ6の分割について説明する。論理合成部42は、三角波信号Voscがそのボトムエッジから誤差電圧Verrに達するまでの期間を第1期間φ1とする。次に三角波信号Voscがピークエッジに達するまでの期間を第2期間φ2とする。次に三角波信号Voscがボトムエッジに達するまでの期間を第3期間φ3とする。次に三角波信号Voscが再度誤差電圧Verrに達するまでの期間を第4期間φ4とする。次に三角波信号Voscが再度ピークエッジに達するまでの期間を第5期間φ5とする。次に三角波信号Voscが再度ボトムエッジに達するまでの期間を第6期間φ6とする。この分割は、PWM信号Vpwmおよび周期信号Vqにもとづいて、一般的な論理回路を用いて構成することができる。
次に、第1期間φ1から第6期間φ6におけるHブリッジ回路10のトランジスタのオンオフ状態について説明する。
論理制御部80は、第1期間φ1において、第1ハイサイドトランジスタMH1および第2ローサイドトランジスタML2をオンし、その他のトランジスタをオフする。続く第2期間φ2において、第1ハイサイドトランジスタMH1をオンし、その他のトランジスタをオフする。続く第3期間φ3において、第2ハイサイドトランジスタMH2をオンし、その他のトランジスタをオフする。続く第4期間φ4において、第1ローサイドトランジスタML1および第2ハイサイドトランジスタMH2をオンし、その他のトランジスタをオフする。続く第5期間φ5において、第2ハイサイドトランジスタMH2をオンし、その他のトランジスタをオフする。続く第6期間φ6において、第1ハイサイドトランジスタMH1をオンし、その他のトランジスタをオフする。その後、第1期間φ1へと戻る。
以上のように構成された本実施の形態に係るインバータ100の動作を説明する。図12(a)から(f)は、本実施の形態に係るインバータ100のHブリッジ回路10の電流の流れを示す回路図である。図12(a)から(f)は、それぞれ、第1期間φ1〜第6期間φ6の各トランジスタのオンオフ状態およびコイル電流Iswの状態を示している。
図12(a)に示すように、第1期間φ1では、第1ハイサイドトランジスタMH1、第2ローサイドトランジスタML2がオンとなる。その結果、コイル電流Iswは、第1ハイサイドトランジスタMH1、1次側コイル12a、第2ローサイドトランジスタML2の経路に流れる。このときのスイッチング電圧Vswは、入力電圧Vinにほぼ等しい電圧となる。第1期間φ1に、コイル電流Iswは徐々に大きくなっていく。
続く第2期間φ2では、図12(b)に示すように、第2ローサイドトランジスタML2がオフされ、第1ハイサイドトランジスタMH1のみがオンとなる。その結果、1次側コイル12aに蓄えられたエネルギによって、第2ハイサイドトランジスタMH2のボディダイオードに回生電流が流れる。この間、スイッチング電圧Vswは、入力電圧にほぼ等しい電圧を維持する。
次に、第3期間φ3では、図12(c)に示すように、第2ハイサイドトランジスタMH2がオンに切り換えられ、第1ハイサイドトランジスタMH1がオフされる。このとき、第2期間φ2において第1ハイサイドトランジスタMH1から供給されていたコイル電流Iswは、第1ローサイドトランジスタML1のボディダイオードを介して接地から供給されることになる。第3期間φ3のスイッチング電圧Vswは、接地電位(0V)よりも第1ローサイドトランジスタML1のボディダイオードの順方向電圧Vfだけ低い負の値となる。また、第1期間φ1に1次側コイル12aに蓄えられたエネルギは、第3期間φ3において、すべて2次側コイル12bに転送され、コイル電流Iswは0となる。
続く第4期間φ4では、図12(d)に示すように、第2ハイサイドトランジスタMH2がオンを維持した状態で、第1ローサイドトランジスタML1がオンに切り換えられる。このとき、スイッチング電圧Vswは、接地電位付近に固定される。また、コイル電流Iswは、第2ハイサイドトランジスタMH2、1次側コイル12a、第1ローサイドトランジスタML1の経路で、1次側コイル12aの右から左に向かって流れる。第4期間φ4に、コイル電流Iswは徐々に大きくなっていく。
続く第5期間φ5では、図12(e)に示すように、第2ハイサイドトランジスタMH2のオンを維持したまま、第1ローサイドトランジスタML1をオフに切り換える。その結果、第4期間φ4において第1ローサイドトランジスタML1に流れていたコイル電流Iswは、第1ハイサイドトランジスタMH1のボディダイオードを流れることになる。このときのスイッチング電圧Vswは、入力電圧Vinよりもボディダイオードの順方向電圧Vfだけ高い電圧となる。
続く第6期間φ6では、図12(f)に示すように、第1ハイサイドトランジスタMH1がオンに切り替えられ、第2ハイサイドトランジスタMH2がオフされる。このとき、第5期間φ5において第2ハイサイドトランジスタMH2から供給されていたコイル電流Iswは、第2ローサイドトランジスタML2のボディダイオードを介して接地から供給されることになる。第6期間φ6のスイッチング電圧Vswは、入力電圧Vinとほぼ等しくなる。第4期間φ4に1次側コイル12aに蓄えられたエネルギは、第6期間φ6においてすべて2次側コイル12bに転送され、コイル電流Iswは0となる。
本実施の形態に係るインバータ100によれば、Hブリッジ回路10を構成するトランジスタを、トランス12の2次側コイル12bに流れる電流をモニタし、三角波信号Voscと比較することにより駆動する。したがって、三角波信号Voscの形状を調節することにより、各トランジスタのオンオフのタイミングを柔軟に調節することができる。
たとえば、本実施の形態では、第1期間φ1、第4期間φ4の長さは、三角波信号Voscのボトムエッジからピークエッジに遷移するときの傾きに依存する。この傾きは、図1の三角波発生回路30において、充電電流を調節することにより変化させることができる。
また、本実施の形態では、三角波信号Voscのピークエッジからボトムエッジまでの遷移期間は、第3期間φ3、第6期間φ6に設定される。第3期間φ3、第6期間φ6の長さは、図1の三角波発生回路30において、放電電流を調節することにより変化させることができる。
ここで、1次側コイル12aに蓄えられるエネルギは、第1期間φ1、第4期間φ4の長さに依存する。また、第1期間φ1、第4期間φ4において蓄えられたエネルギは、第3期間φ3、第6期間φ6において、2次側コイル12bに転送される。したがって、トランス12の特性や、駆動対象となるEEFL210の特性に応じて、三角波信号Voscの形状や周期を調節することにより、高効率に駆動することができる。
実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
図1の三角波発生回路30では、論理合成部42は、第1比較信号Vcmp1とエッジ検出信号SEを論理和を生成し、その論理和によってRSフリップフロップ44をセットし、第2比較信号Vcmp2によってRSフリップフロップ44をリセットしたがこれには限定されない。たとえば、第2比較信号Vcmp2とエッジ検出信号SEを論理合成して、その出力によりRSフリップフロップ44をセットし、第1比較信号Vcmp1によってRSフリップフロップ44をリセットしてもよい。この場合、出力電圧Voutのボトムエッジを、エッジ検出信号SEと同期させることができる。
また、図2のシステム400において、三角波発生回路30の一方のマスター側に、他方をスレーブ側に設定したが、これにも限定されない。たとえば、第1回路410、第2回路420の両方の三角波発生回路30a、30bに対して、外部から同期信号を与え、両方をスレーブとして動作させてもよい。
論理制御部80によるHブリッジ回路10の制御としては、以下の変形例が考えられる。
本変形例において、論理制御部80は、第5期間φ25おいて、三角波信号Voscが誤差電圧Verrに達してから、所定の第1オフ時間Toff1が経過するまでの期間、第1ハイサイドトランジスタMH1をオフしておき、第1オフ時間Toff1の経過後に、第1ハイサイドトランジスタMH1をオンする。
さらに、論理制御部80は、第2期間φ2においても、三角波信号Voscが誤差電圧Verrに達してから、所定の第2オフ時間Toff2が経過するまでの期間、第2ハイサイドトランジスタMH2をオフしておき、第2オフ時間Toff2の経過後に、第2ハイサイドトランジスタMH2をオンする。第1オフ時間Toff1、第2オフ時間Toff2は、三角波信号Voscの周期に応じて、50nsから200ns程度で設定してもよい。
図13(a)〜(e)は、変形例に係るインバータ100の動作状態を示すタイムチャートである。図13(a)は、第1ハイサイドトランジスタMH1の、同図(b)は、第2ハイサイドトランジスタMH2の、同図(c)は、第1ローサイドトランジスタML1の、同図(d)は、第2ローサイドトランジスタML2のオンオフ状態を示し、同図(e)は、スイッチング電圧Vswを示す。
第5期間φ5に第2ハイサイドトランジスタMH2をオフし続けると、コイル電流Iswが第2ハイサイドトランジスタMH2のボディダイオード(寄生ダイオード)に流れるため、順方向電圧Vf分の電圧降下が発生し、電力損失が大きくなる。そこで、本変形例では、第5期間φ5において、所定の第1オフ時間Toff1が経過した後に、第1ハイサイドトランジスタMH1をオンする。その結果、図13(e)に示されるように、スイッチング電圧Vswは、第1オフ時間Toff1経過後に、入力電圧Vinに下がる。このとき、第1ハイサイドトランジスタMH1のボディダイオードに流れていたコイル電流Iswは、第1ハイサイドトランジスタMH1に流れるため、電力損失を低減することができる。また、第1オフ時間Toff1を適切に設定することにより、第1ハイサイドトランジスタMH1と第1ローサイドトランジスタML1が同時にオンして貫通電流が流れるのを防止することができる。
同様に、第2期間φ2においても、第2ハイサイドトランジスタMH2をオフし続けると、そのボディダイオードに電流が流れるため電力損失が大きくなる。そこで、所定の第2オフ時間Toff2が経過した後に、第2ハイサイドトランジスタMH2をオンすることにより、第2ハイサイドトランジスタMH2に電流を流すことで電力損失を低減することができる。
第1オフ時間Toff1および第2オフ時間Toff2は、トランス12の特性に応じて決定すればよく、30nsから150ns程度の範囲で設定するのが好ましい。より好適には、50nsから100nsの範囲で設定した場合に、電力損失を低減することができる。
本実施の形態において、制御回路20は、すべて一体集積化されていてもよく、あるいは、その一部がディスクリート部品やチップ部品で構成されていてもよい。また、制御回路20は、Hブリッジ回路10を含んで集積化されてもよい。どの部分をどの程度集積化するかは、インバータ100の仕様、コストや占有面積などによって決めればよい。
本実施の形態において、ロジック回路のハイレベル、ローレベルの論理値の設定は一例であって、インバータなどによって適宜反転させることにより自由に変更することが可能である。たとえば、論理制御部80は、ピークエッジとボトムエッジを反転して、第1期間φ1から第6期間φ6の制御を行ってもよい。
実施の形態において、Hブリッジ回路10を構成するトランジスタのうち、ハイサイド側のトランジスタをNチャンネルMOSFETで構成する場合について説明したが、PチャンネルMOSFETを用いてもよい。
実施の形態では、発光装置200において、EEFL210の両端にインバータ100を接続して、逆相の駆動電圧で駆動する場合について説明したが、これには限定されない。また、駆動対象の蛍光管は、EEFLに限定されるものではなく、CCFLなど他の蛍光管であってもよい。また、本実施の形態に係るインバータ100により駆動される負荷は、蛍光管に限定されるものではなく、その他、交流の高電圧を必要とする様々なデバイスの駆動に適用することができる。
実施の形態では、三角波発生回路30の応用例として、インバータ100について説明したが、これには限定されない。本実施の形態に係る三角波発生回路30は、実施の形態で説明したインバータ100の他、スイッチングレギュレータなどの電源装置や、モータドライバなどにおいて、同期制御を行いたい場合にも好適に使用することができる。
実施の形態に係る三角波発生回路の構成を示す回路図である。 図1の三角波発生回路が使用されるシステムの構成を示すブロック図である。 エッジ検出回路の構成例を示す回路図である。 充放電制御部の構成例を示す回路図である。 充放電回路の構成例を示す回路図である。 マスター側の三角波発生回路の動作状態を示すタイムチャートである。 スレーブ側の三角波発生回路の動作状態を示すタイムチャートである。 実施の形態に係る発光装置の構成を示す回路図である。 図8の発光装置が搭載される液晶テレビの構成を示すブロック図である。 実施の形態に係る制御回路の構成を示す回路図である。 図11(a)〜(h)は、図8のインバータの動作状態を示すタイムチャートである。 図12(a)〜(f)は、図8のインバータのHブリッジ回路の電流の流れを示す回路図である。 変形例に係るインバータの動作状態を示すタイムチャートである。
符号の説明
12 トランス、 12a 1次側コイル、 12b 2次側コイル、 14 電流電圧変換部、 22 誤差増幅器、 30 三角波発生回路、 32 第1コンパレータ、 34 第2コンパレータ、 38 充放電回路、 40 充放電制御部、 42 論理合成部、 46 分周器、 C2 キャパシタ、 100 インバータ、 200 発光装置、 212 第1端子、 214 第2端子、 300 液晶テレビ、 302 液晶パネル、 MH1 第1ハイサイドトランジスタ、 MH2 第2ハイサイドトランジスタ、 ML1 第1ローサイドトランジスタ、 ML2 第2ローサイドトランジスタ。

Claims (8)

  1. 一端の電位が固定されたキャパシタと、
    前記キャパシタを充電または放電する充放電回路と、
    前記キャパシタの他端に現れる出力電圧を、所定の最大しきい値電圧と比較し、比較結果に応じた第1比較信号を出力する第1コンパレータと、
    前記出力電圧を、前記最大しきい値電圧より低い、所定の最小しきい値電圧と比較し、比較結果に応じた第2比較信号を出力する第2コンパレータと、
    外部から入力され、本三角波発生回路により生成される三角波信号の略1/2倍の周波数を有する同期信号のエッジを検出し、エッジごとに所定レベルとなるエッジ検出信号を出力するエッジ検出回路と、
    前記第1、第2コンパレータから出力される第1、第2比較信号を参照し、前記出力電圧が前記最大しきい値電圧より高くなると、前記充放電回路を放電状態に設定し、前記出力電圧が前記最小しきい値電圧より低くなると、前記充放電回路を充電状態に設定する充放電制御部と、
    を備え、
    前記充放電制御部は、前記エッジ検出回路から出力されるエッジ検出信号が、前記所定レベルとなると、前記充放電回路の充放電状態を切り換えることを特徴とする三角波発生回路。
  2. 前記充放電制御部は、
    前記第1コンパレータから出力される前記第1比較信号と、前記エッジ検出信号の論理和を出力する論理合成部と、
    前記論理合成部の出力信号と、前記第2比較信号とによってセット、リセットされるフリップフロップと、
    を含むことを特徴とする請求項1に記載の三角波発生回路。
  3. 前記充放電制御部は、
    前記第2コンパレータから出力される前記第2比較信号と、前記エッジ検出信号の論理和を出力する論理合成部と、
    前記論理合成部の出力信号と、前記第1比較信号とによってセット、リセットされるフリップフロップと、
    を含むことを特徴とする請求項1に記載の三角波発生回路。
  4. 前記充放電回路は、
    前記キャパシタに電流を流し込む第1電流源と、
    前記キャパシタから電流を引き抜く第2電流源と、
    を含み、前記フリップフロップの出力信号により、前記第1、第2電流源のオンオフを制御することを特徴とする請求項2または3に記載の三角波発生回路。
  5. 前記フリップフロップの出力信号を1/2分周する分周器をさらに備え、前記分周器の出力信号を本三角波発生回路の外部に前記同期信号として出力することを特徴とする請求項2から4のいずれかに記載の三角波発生回路。
  6. トランスと、
    一端が、入力電圧の印加される入力端子に接続され、他端が、前記トランスの1次側コイルの第1端子に接続された第1ハイサイドトランジスタと、
    一端が、電位の固定された電位固定端子に接続され、他端が、前記1次側コイルの第1端子に接続された第1ローサイドトランジスタと、
    一端が、前記入力端子に接続され、他端が、前記1次側コイルの第2端子に接続された第2ハイサイドトランジスタと、
    一端が、前記電位固定端子に接続され、他端が、前記1次側コイルの第2端子に接続された第2ローサイドトランジスタと、
    前記トランスの2次側コイルの電流を電圧に変換し、検出電圧として出力する電流電圧変換部と、
    三角波信号を生成する請求項1から5のいずれかに記載の三角波生成回路と、
    前記検出電圧と、所定の基準電圧との誤差に応じた誤差電圧を出力する誤差増幅器と、
    前記誤差増幅器から出力される前記誤差電圧および前記三角波生成回路により生成される前記三角波信号にもとづき、前記第1、第2ハイサイドトランジスタおよび前記第1、第2ローサイドトランジスタのオンオフを制御する論理制御部と、を備えることを特徴とするインバータ。
  7. 蛍光ランプと、
    前記蛍光ランプの両端に設けられ、前記蛍光ランプに対し、互いに逆相の駆動電圧を供給する請求項6に記載の2つのインバータと、
    を備えることを特徴とする発光装置。
  8. 液晶パネルと、
    前記液晶パネルの背面に配置される複数の請求項7に記載の発光装置と、
    を備えることを特徴とする液晶テレビ。
JP2005332203A 2005-11-16 2005-11-16 三角波発生回路、それを用いたインバータ、発光装置、液晶テレビ Active JP4685602B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005332203A JP4685602B2 (ja) 2005-11-16 2005-11-16 三角波発生回路、それを用いたインバータ、発光装置、液晶テレビ
CN2006800023191A CN101103528B (zh) 2005-11-16 2006-11-15 三角波发生电路及使用了它的逆变器、发光装置、液晶电视
PCT/JP2006/322772 WO2007058217A1 (ja) 2005-11-16 2006-11-15 三角波発生回路、それを用いたインバータ、発光装置、液晶テレビ
KR1020077023805A KR20080067960A (ko) 2005-11-16 2006-11-15 삼각파 발생 회로, 그것을 이용한 인버터, 발광 장치, 액정텔레비전
US12/159,140 US7948282B2 (en) 2005-11-16 2006-11-15 Triangular-wave generating circuit, and inverter, light emitting device and liquid crystal television using the circuit
TW095142467A TW200729725A (en) 2005-11-16 2006-11-16 Triangular-wave generating circuit, and inverter, light emitting device and liquid crystal television using the circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005332203A JP4685602B2 (ja) 2005-11-16 2005-11-16 三角波発生回路、それを用いたインバータ、発光装置、液晶テレビ

Publications (2)

Publication Number Publication Date
JP2007142685A true JP2007142685A (ja) 2007-06-07
JP4685602B2 JP4685602B2 (ja) 2011-05-18

Family

ID=38048602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005332203A Active JP4685602B2 (ja) 2005-11-16 2005-11-16 三角波発生回路、それを用いたインバータ、発光装置、液晶テレビ

Country Status (6)

Country Link
US (1) US7948282B2 (ja)
JP (1) JP4685602B2 (ja)
KR (1) KR20080067960A (ja)
CN (1) CN101103528B (ja)
TW (1) TW200729725A (ja)
WO (1) WO2007058217A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094567A (ja) * 2007-10-03 2009-04-30 Yamaha Corp 三角波同期生成システム及びそれに用いる三角波同期生成回路
JP2010252314A (ja) * 2009-03-25 2010-11-04 Rohm Co Ltd 発振回路、周期信号の生成方法およびスイッチング電源
JP2011259167A (ja) * 2010-06-08 2011-12-22 On Semiconductor Trading Ltd 三角波発生回路
JP2017511639A (ja) * 2014-04-16 2017-04-20 マイクロチップ テクノロジー インコーポレイテッドMicrochip Technology Incorporated ランプ生成モジュール

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4823825B2 (ja) * 2006-09-06 2011-11-24 ローム株式会社 三角波発生回路、発生方法、それらを用いたインバータ、発光装置、液晶テレビ
CN101355349B (zh) * 2007-07-23 2010-09-29 晶豪科技股份有限公司 三角波产生电路及其方法
EP2045791B1 (en) * 2007-10-01 2014-01-15 Siemens Aktiengesellschaft An electronic device
JP2009231106A (ja) * 2008-03-24 2009-10-08 Sanken Electric Co Ltd 放電管点灯装置の同期運転システム及び放電管点灯装置並びに半導体集積回路
CN101610024B (zh) * 2008-06-20 2012-05-23 尼克森微电子股份有限公司 具频率抖动的频率发生器及脉宽调制控制器
CN102209411B (zh) * 2010-03-31 2014-07-16 美芯晟科技(北京)有限公司 适用于led驱动器的高精度电流控制方法及系统
US8648640B1 (en) * 2012-10-22 2014-02-11 Realtek Semiconductor Corp. Method and apparatus for clock transmission
WO2015016891A1 (en) * 2013-07-31 2015-02-05 Schneider Electric Solar Inverters Usa, Inc. Isolated uni-polar transistor gate drive
JP6248649B2 (ja) * 2014-01-23 2017-12-20 株式会社デンソー 絶縁通信装置
WO2016204122A1 (ja) * 2015-06-16 2016-12-22 富士電機株式会社 半導体装置
CN106911323B (zh) * 2015-12-23 2020-05-19 辰芯科技有限公司 三角波生成系统
CN108123715B (zh) * 2017-12-19 2021-02-23 四川和芯微电子股份有限公司 倍频电路
CN111294701B (zh) 2018-12-29 2021-11-02 展讯通信(深圳)有限公司 信号发生电路及音频处理装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100737A (en) * 1979-01-26 1980-07-31 Kawai Musical Instr Mfg Co Ltd Polyphase oscillator
JPS62169514A (ja) * 1986-01-21 1987-07-25 Mitsubishi Electric Corp エツジトリガ−発生回路
JPH03155366A (ja) * 1989-11-08 1991-07-03 Nemitsuku Ramuda Kk 同期型スイッチング電源
JPH08293767A (ja) * 1995-04-19 1996-11-05 Toyota Autom Loom Works Ltd 三角波発振回路
JP2000138567A (ja) * 1998-10-29 2000-05-16 Nec Ic Microcomput Syst Ltd 垂直のこぎり波発振回路
JP2003274668A (ja) * 2002-03-08 2003-09-26 Samsung Electro Mech Co Ltd Lcdバックライト用インバータのシングルステージコンバータ
JP2004242403A (ja) * 2003-02-04 2004-08-26 Rohm Co Ltd 三角波信号の位相同期方法、及びそのシステム
JP2004247828A (ja) * 2003-02-12 2004-09-02 Renesas Technology Corp 発振回路

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275220A (ja) * 1987-05-06 1988-11-11 Nec Ic Microcomput Syst Ltd 逓倍回路
JPH03256405A (ja) * 1990-03-06 1991-11-15 Toshiba Corp 鋸波電圧発生回路
US5394020A (en) * 1992-12-30 1995-02-28 Zenith Electronics Corporation Vertical ramp automatic amplitude control
JPH1188125A (ja) * 1997-09-03 1999-03-30 Sony Corp ディジタル制御発振回路およびpll回路
JP3607094B2 (ja) * 1998-09-10 2005-01-05 シャープ株式会社 同期発振回路
JP2001345682A (ja) 2000-06-02 2001-12-14 Koyo Seiko Co Ltd 三角波発生回路、pwm制御装置及び電動パワーステアリング装置
JP2003008404A (ja) * 2001-06-26 2003-01-10 Fujitsu Ltd 発振回路
CN2586288Y (zh) * 2002-08-02 2003-11-12 中国科学院等离子体物理研究所 高压电子波形发生器
JP3912224B2 (ja) 2002-08-09 2007-05-09 富士電機デバイステクノロジー株式会社 三角波発振回路
TW591974B (en) * 2002-11-14 2004-06-11 Richtek Technology Corp Two-phase H-bridge driving circuit and method
JP4094408B2 (ja) * 2002-11-15 2008-06-04 ローム株式会社 直流−交流変換装置、制御回路、制御装置、及びそのコントローラic
JP2007074190A (ja) * 2005-09-06 2007-03-22 Rohm Co Ltd 三角波発生回路ならびにそれを用いたパルス幅変調器およびスイッチングレギュレータ
US7557622B2 (en) * 2005-10-17 2009-07-07 Harman International Industries, Incorporated Precision triangle waveform generator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100737A (en) * 1979-01-26 1980-07-31 Kawai Musical Instr Mfg Co Ltd Polyphase oscillator
JPS62169514A (ja) * 1986-01-21 1987-07-25 Mitsubishi Electric Corp エツジトリガ−発生回路
JPH03155366A (ja) * 1989-11-08 1991-07-03 Nemitsuku Ramuda Kk 同期型スイッチング電源
JPH08293767A (ja) * 1995-04-19 1996-11-05 Toyota Autom Loom Works Ltd 三角波発振回路
JP2000138567A (ja) * 1998-10-29 2000-05-16 Nec Ic Microcomput Syst Ltd 垂直のこぎり波発振回路
JP2003274668A (ja) * 2002-03-08 2003-09-26 Samsung Electro Mech Co Ltd Lcdバックライト用インバータのシングルステージコンバータ
JP2004242403A (ja) * 2003-02-04 2004-08-26 Rohm Co Ltd 三角波信号の位相同期方法、及びそのシステム
JP2004247828A (ja) * 2003-02-12 2004-09-02 Renesas Technology Corp 発振回路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094567A (ja) * 2007-10-03 2009-04-30 Yamaha Corp 三角波同期生成システム及びそれに用いる三角波同期生成回路
JP2010252314A (ja) * 2009-03-25 2010-11-04 Rohm Co Ltd 発振回路、周期信号の生成方法およびスイッチング電源
JP2011259167A (ja) * 2010-06-08 2011-12-22 On Semiconductor Trading Ltd 三角波発生回路
JP2017511639A (ja) * 2014-04-16 2017-04-20 マイクロチップ テクノロジー インコーポレイテッドMicrochip Technology Incorporated ランプ生成モジュール

Also Published As

Publication number Publication date
US20100277090A1 (en) 2010-11-04
JP4685602B2 (ja) 2011-05-18
TW200729725A (en) 2007-08-01
CN101103528B (zh) 2012-05-16
WO2007058217A1 (ja) 2007-05-24
CN101103528A (zh) 2008-01-09
KR20080067960A (ko) 2008-07-22
US7948282B2 (en) 2011-05-24

Similar Documents

Publication Publication Date Title
JP4685602B2 (ja) 三角波発生回路、それを用いたインバータ、発光装置、液晶テレビ
JP4823825B2 (ja) 三角波発生回路、発生方法、それらを用いたインバータ、発光装置、液晶テレビ
US7952296B2 (en) Feedback circuit for DC/AC inverter
JP5848898B2 (ja) 負荷駆動回路ならびにそれを用いた発光装置およびディスプレイ装置
US7768806B2 (en) Mixed-code DC/AC inverter
USRE42182E1 (en) Back-light control circuit of multi-lamps liquid crystal display
JP4979521B2 (ja) インバータおよびその制御回路、制御方法、ならびにそれらを用いた発光装置
JP2004208396A (ja) 直流−交流変換装置、及びそのコントローラic
JP2004166446A (ja) 直流−交流変換装置、及びそのコントローラic
JP2010283616A (ja) 照明光通信装置
JP5340719B2 (ja) 発光素子の制御回路、それを用いた発光装置、ならびに液晶ディスプレイ装置
US7737642B2 (en) DC/AC inverter
JP2019220732A (ja) クロック生成回路、スイッチング電源装置及び半導体装置
WO2004070948A1 (ja) 三角波信号の位相同期方法、及びそのシステム
JP4823650B2 (ja) インバータおよびその駆動方法、ならびにそれを用いた発光装置および液晶テレビ
JP2003257692A (ja) 放電灯点灯回路
US7859197B2 (en) Inverter using PWM method
JP2004222489A (ja) 直流−交流変換装置の並行運転システム、及びそのコントローラic
JP2007143262A (ja) インバータならびにそれを用いた発光装置および液晶テレビ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4685602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250