JP2007105047A - Dna触媒分子 - Google Patents
Dna触媒分子 Download PDFInfo
- Publication number
- JP2007105047A JP2007105047A JP2006310077A JP2006310077A JP2007105047A JP 2007105047 A JP2007105047 A JP 2007105047A JP 2006310077 A JP2006310077 A JP 2006310077A JP 2006310077 A JP2006310077 A JP 2006310077A JP 2007105047 A JP2007105047 A JP 2007105047A
- Authority
- JP
- Japan
- Prior art keywords
- dna
- sequence
- substrate
- nucleic acid
- molecule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6811—Selection methods for production or design of target specific oligonucleotides or binding molecules
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/11—Antisense
- C12N2310/111—Antisense spanning the whole gene, or a large part of it
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/12—Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/10—Applications; Uses in screening processes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/10—Applications; Uses in screening processes
- C12N2320/13—Applications; Uses in screening processes in a process of directed evolution, e.g. SELEX, acquiring a new function
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Plant Pathology (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Saccharide Compounds (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
【解決手段】DNA触媒分子(デオキシリボザイム)は1以上の認識ドメイン、可変領域、及びスペーサー領域が隣接した保存コアを特定するヌクレオチド配列を含む天然に存在しないDNA触媒分子であり、基質核酸配列内の一本鎖核酸を含む切断部位を特定するヌクレオチド配列、特にRNAのホスホエステル結合を特異的に切断することができるエンドヌクレアーゼ活性を有する。更に、DNA触媒分子の選択方法、DNA触媒分子を含む組成物、その調製方法並びに使用方法。
【選択図】なし
Description
残念ながら、タンパク質の構造及び化学の領域における熟達の状態は、新規な生物学的触媒を日常的に作製するには不十分である。
最近、新規な触媒を開発する別の方法が用いられた。その方法には、高分子の不均一プールの構築及び該プールから所望の反応を触媒する分子を単離する試験管内選択方法の適用が必要である。高分子のプールから触媒を選択することは、それらの構造及び化学的性質の包括的理解に依存しない。従って、その方法は、“非合理的設計”と称された(Brenner & Lerner, PNAS USA 89: 5381-5383(1992))。
その手法は、溶液中のRNA分子(例えば、Mills ら,PNAS USA 58: 217(1967); Green ら,Nature 347: 406(1990); Chowrira ら,Nature 354:320(1991); Joyce,Gene 82: 83(1989); Beaudry & Joyce,Science 257: 635-641(1992); Robertson & Joyce,Nature 344: 467(1990)参照)及び固体支持体に結合されるリガンドに結合したRNA(Tuerkら,Science 249: 505(1990); Ellington ら,Nature 346: 818(1990))にいろいろな程度の成功で適用された。また、固体支持体に直接結合したペプチド(Lamら,Nature 354: 82(1991));及びウイルスコートタンパク質内で発現したペプチドエピトープ(Scottら,Science 249: 386(1990); Devlinら,Science 249: 249(1990); Cwirlaら,PNAS USA 87:6378(1990))にも適用された。
企図された別の実施態様においては、基質核酸配列は、1以上のヌクレオチド類縁体を含む。1態様においては、基質核酸配列は、大きな分子の一部であるか又はそれに結合される。
種々の実施態様においては、大きな分子は、RNA、修飾RNA、DNA、修飾DNA、ヌクレオチド類縁体又はその複合物からなる群より選ばれる。他の実施例においては、大きな分子は、核酸配列及び非核酸配列の複合物を含む。
種々の好適実施態様においては、本発明のDNA触媒分子は、全部又は一部が一本鎖である。それらのDNA触媒分子は、好ましくは、その触媒活性と一致したさまざまな形をとることができる。即ち、1態様においては、本発明のDNA触媒分子は、1以上のヘアピンループ構造を含む。他の態様においては、DNA触媒分子は、“ハンマーヘッド”リボザイムと同様の形をとることができる。別の実施態様においては、DNA触媒分子は、テトラヒメナ・サーモフィラ(Tetrahymena thermophila)、例えば、グループIイントロン由来のものと同様のコンホメーションをとることができる。
本発明は、また、エンドヌクレアーゼ活性をもつDNA酵素分子(DNA触媒分子、デオキシリボザイム又はDNAzyme)を企図し、該エンドヌクレアーゼ活性には2価のカチオンの存在が必要である。他の種々の好適実施態様においては、2価のカチオンは、Pb2+、Mg2+、Zn2+及びCa2+からなる群より選ばれる。別の態様は、エンドヌクレアーゼ活性には1価のカチオンの存在が必要であることを企図する。そのような他の実施態様においては、1価のカチオンは、好ましくはNa+及びK+からなる群より選ばれる。
本発明は、また、有用な代謝回転速度を有するDNA酵素分子開示する。1実施態様においては、代謝回転速度は、5hr−1未満であり、好ましい実施態様においては、約2hr−1未満であり、更に好ましい実施態様においては、約1hr−1未満であり、なお更に好ましい実施態様においては、約0.6hr−1以下である。
別の実施態様においては、本発明のDNA酵素分子は、kobsが1min−1未満、好ましくは0.1min−1未満、更に好ましくは0.01min−1未満、なお更に好ましくは0.005min−1未満である有用な代謝回転を示す。1態様においては、kobs値は、約0.002min−1以下である。
本発明は、また、切断部位を特定するヌクレオチド配列が少なくとも1ヌクレオチドを含む実施態様を企図する。他の種々の好適実施態様においては、本発明のDNA触媒分子は、2以上のヌクレオチドの切断部位を特定するヌクレオチド配列を認識及び切断することができる。
前述のように、本発明の好ましいDNA触媒分子は保存コアを含むことができる。1好適実施態様においては、保存コアは1以上の保存領域を含む。他の好適態様においては、1以上の保存領域は、CG; CGA; AGCG; AGCCG; CAGCGAT; CTTGTTT;及び CTTATTTからなる群より選ばれたヌクレオチド配列を含む(例えば、図3参照)。
本発明の1実施態様においては、本発明のDNA酵素分子は、更に、保存コア内の保存領域間に1以上の可変又はスペーサーヌクレオチドを含む。他の実施態様においては、本発明のDNA酵素分子は、更に、保存コアと基質結合領域間に1以上の可変又はスペーサーヌクレオチドを含む。
他の開示された実施態様においては、本発明は、エンドヌクレアーゼ活性をもつ、他のDNA分子から分離された精製合成DNA酵素分子を企図し、該エンドヌクレアーゼ活性は基質核酸配列内に一本鎖又は二本鎖核酸を含む切断部位を特定するヌクレオチド配列に特異的である。1態様においては、エンドヌクレアーゼ活性をもつ合成(又は操作)DNA酵素分子が開示され、該エンドヌクレアーゼ活性は実質的に基質核酸配列の一本鎖又は二本鎖領域からなる切断部位を特定するヌクレオチド配列に特異的である。
前述のように、該ポリマーは一本鎖、二本鎖、又は双方の組合わせとすることができる。
本発明は、更に、基質が核酸配列を含むことを企図する。種々の実施態様においては、核酸配列基質は、RNA、修飾RNA、DNA、修飾DNA、1以上のヌクレオチド類縁体、又はそれらの複合物を含む。1実施態様は、基質が一本鎖セグメントを含むことを企図し、他の実施態様は、基質が二本鎖であることを企図する。
1好適実施態様においては、本発明は、認識ドメイン、可変領域、及びスペーサー領域が隣接した保存コアを特定するヌクレオチド配列を含む天然に存在しないDNA酵素分子を開示する。即ち、1好適実施態様においては、ヌクレオチド配列は、該分子の5′末端に相接又は隣接した第1可変領域、3′末端から該第1可変領域までの位置にある第1認識ドメイン、3′末端から該第1認識ドメインまでの位置にある第1スペーサー領域、3′末端から該第1スペーサー領域までの位置にある第1保存領域、3′末端から該第1保存領域までの位置にある第2スペーサー領域、3′末端から該第2スペーサー領域までの位置にある第2保存領域、3′末端から該第2保存領域までの位置にある第2認識ドメイン、及び3′末端から該第2認識ドメインまでの位置にある第2可変領域を特定する。
上記分子の1態様においては、該分子は、2つの基質結合ドメインが隣接した保存コア領域を含み、他の態様においては、保存コア領域は、1以上の保存ドメインを含む。他の好適実施態様においては、保存コア領域は、更に、1以上の可変又はスペーサーヌクレオチドを含む。別の実施態様においては、本発明のDNA酵素分子は、更に、1以上のスペーサー領域を含む。
本発明は、更に、種々の組成物を企図する。例えば、上記のDNA酵素分子を含む組成物が本明細書に開示及び企図される。他の実施態様においては、本発明の組成物は、上記のDNA酵素分子の2集団以上を含み、DNA酵素分子の各集団は基質内の異なる配列を切断することができる。他の態様においては、組成物は、上記のDNA酵素分子の2集団以上を含み、DNA酵素分子の各集団は異なる基質を認識することができる。種々の実施態様においては、組成物は1価又は2価のカチオンを含むことも好ましい。
1態様においては、核酸配列(例えば、RNA)を特定部位で切断するDNA酵素分子を選択する方法は、次の工程を含む。(a)推定DNA酵素分子の1集団--配列は天然に存在するものか或いは合成のもののいずれか--好ましくは、一本鎖DNA分子を得る工程、(b)ヌクレオチド含有基質配列を前述のDNA分子の集団と混合して混合物をつくる工程;(c)該集団内の推定DNA酵素分子が該基質配列の切断を引き起こすのに十分な時間及び所定の反応条件下に該混合物を維持して基質切断産物を作製する工程;(d)該DNA分子の集団を該基質配列と基質切断産物から分離する工程;及び(e)基質核酸配列(例えば、RNA)を特定部位で切断するDNA分子を該集団から単離する工程。
上記方法の1態様においては、基質核酸配列を特定部位で切断するDNA分子は、固定化物質で標識される。1実施例においては、該物質はビオチンを含む。
本発明は、また、下記の工程を含む、基質核酸配列を特定の切断部位で特異的に切断する方法を企図する。(a)基質核酸配列を特定の切断部位で切断することができるDNA酵素分子を供給する工程;及び(b)該DNA酵素分子を該基質核酸配列と接触させて特定部位での該核酸配列の特異的切断を引き起こす工程。1態様においては、DNA酵素分子は、天然に存在する(又は合成)DNA分子である。他の態様においては、DNA酵素分子は一本鎖である。
本発明は、また、下記の工程を含む、ホスホエステル結合の切断方法を企図する。(a)基質核酸配列を特定の切断部位で切断することができるDNA触媒分子とホスホエステル結合含有基質とを混合して反応混合物をつくる工程;及び(b)該DNA酵素分子が該ホスホエステル結合を切断することができる所定の反応条件下に該混合物を維持して基質産物の集団を作製する工程。1実施態様においては、該DNA酵素分子は、部位特異的方法でホスホエステル結合を切断することができる。他の実施態様においては、該方法は、更に、(c)該産物を該DNA触媒分子から分離する工程;及び(d)追加の基質を該DNA酵素分子に加えて新しい反応混合物をつくる工程を含む。
得られた二本鎖DNAは、ストレプトアビジンマトリックスに固定化され、非ビオチニル化DNA鎖は0.2NNaOHで洗浄することにより除去される。カラムを緩衝化溶液で再平衡化した後、カラムは1mMPbOAcを加えた同様の溶液で洗浄される。Pb2+依存性自己切断を行うDNAがカラムから遊離し、溶離液に集められ、PCRで増幅される。
次に、次のラウンドの選択的増幅を開始するためにそのPCR産物が用いられる。
図4Aは、19量体基質(3′-TCACTATrAGGAAGAGATGG -5′、配列番号2)及び38量体DNA酵素(5′-ACACATCTCTGAAGTAGCGCCGCCGTATAGTGACGCTA -3′、配列番号3)間に形成された複合体の図式である。基質は、デオキシリボヌクレオチドが隣接した単一アデノシンリボヌクレオチド(“rA”、矢印に隣接した)を含有する。DNA合成酵素は、図3に示された最も頻繁に生じる変異体の38ヌクレオチド部分である。推定触媒ドメイン内に位置した高度保存ヌクレオチドは“ボックス”で仕切られる。示されるように、一方の保存配列は“AGCG”であり、もう一方は“CG”である(5′−3′方向で読み取る)。
わかるように、上記4グループの各々に3レーンがある。3レーンの各グループにおいて、第1レーンは、金属カチオンの存在しないときの選択集団の活性のないことを示し、第2レーンは、金属カチオンの存在するときの実測活性を示し、第3レーンは、出発プール(G0)の活性のないことを示す。
示される)--はそれだけで標識される。同様に、10〜23として同定されたDNAzymeは右側に示され、RNA基質の切断部位は矢印で示される。また、基質配列も示される。8〜17酵素については、代謝回転速度は約0.6hr−1であり、10〜23酵素については、代謝回転速度は約1hr−1であった。非相補的対合は黒い丸(・)で示され、相補的対合は縦の線(|)で示される。
本明細書に用いられる“デオキシリボザイム”という語は、酵素として機能することができるDNA含有核酸を記載するために用いられる。本開示においては、“デオキシリボザイム”という語は、エンドリボヌクレアーゼ及びエンドデオキシリボヌクレアーゼを含むが、エンドリボヌクレアーゼ活性をもつデオキシリボザイムが特に好ましい。本明細書にデオキシリボザイムと同じ意味で用いられる他の語は、“DNA酵素分子”、“DNAzyme”、又は“DNA触媒分子”であり、合成で作製されても生物又は他の供給源由来であっても全てその酵素的に活性な部分を含むことを理解されなければならない。
“DNA酵素分子”という語は、また、指定されたオリゴヌクレオチド標的又は基質に対して基質結合領域内に相補性を有するDNA分子を含み、かかる分子も、オリゴヌクレオチド基質を特異的に切断するのに活性な酵素活性を有する。
本発明のDNA酵素分子は、また、ヌクレアーゼ又はリボヌクレアーゼ活性を有するものとして記載される。それらの用語は、本明細書においては同じ意味で用いられる。
本明細書に用いられる“酵素核酸”という語は、酵素RNA又はDNA分子、酵素RNA−DNAポリマー、及びその酵素的に活性な部分又は誘導体を包含するが、DNA酵素分子が本発明の酵素的に活性な分子の特に好ましい種類である。
本明細書に用いられる“塩基対”(bp)という語は、一般的には、アデニン(A)とチミン(T)もしくはウラシル(U)又はシトシン(C)とグアニン(G)の組合わせを記載するために用いられるが、塩基A、T、C及びG(及びU)の共通というほどでない類縁体がときおり塩基対合に関与することは理解されなければならない。DNA又はRNAが二本鎖配置をとる場合に通常対になるヌクレオチドも、本明細書で“相補的塩基”と呼ばれる。
“ヌクレオチド”は、一般的には、糖部分(ペントース)、リン酸基、及び含窒素複素環塩基からなるDNA又はRNAのモノマー単位を意味する。塩基は、グリコシド炭素(ペントースの1′炭素)で糖部分に結合され、塩基及び糖のその組合わせが“ヌクレオシド”である。ヌクレオシドがペントースの3′又は5′位に結合したリン酸基を含む場合、ヌクレオチドと呼ばれる。作用上結合したヌクレオチドの配列は、典型的には、本明細書で“塩基配列”又は“ヌクレオチド配列”及び分法上の等価物と呼ばれ、本明細書では特にことわらない限り、左から右への向きが5′末端から3′末端への慣用の向きである式で示される。
“オリゴヌクレオチド又はポリヌクレオチド”は、一般的には、一本鎖又は二本鎖ヌクレオチドのポリマーを意味する。本明細書に用いられる“オリゴヌクレオチド”及びその文法上の等価物は、全範囲の核酸を含む。オリゴヌクレオチドは、典型的には、リボヌクレオチドの線状鎖を含む核酸分子を意味する。正確なサイズは、多くの要因に左右され、当該技術において周知であるように最後の使用条件に左右される。
種々の実施態様においては、本発明のDNA酵素分子は、付加、欠失及び置換を含む1以上の修飾又は突然変異を合わせることができる。別の実施態様においては、かかる突然変異又は修飾は、ランダム又は特定の突然変異又は修飾を生じる方法を用いて作成される。それらの突然変異は、例えば、ループ、スペーサー領域又は認識配列(又はドメイン)の長さを変えるか又はそのヌクレオチド配列を変えることができる。1つの触媒的に活性なDNA酵素分子内の1以上の突然変異を第2の触媒的に活性なDNA酵素分子内の1以上の突然変異と合わせて双方の分子の突然変異を含む新しいDNA酵素分子を作製することができる。
上述の方法は、例えば、配列分析で求めた位置あたりの突然変異率0.66%±0.13%(95%信頼間隔)でリボザイムをコード化する遺伝子に突然変異を誘発させるために用いられ、塩基置換の種類に強い優先は認められなかった。
特定又はランダム突然変異を導入するのに有効な他の方法は、Joyce & Inoue, Nucleic Acids Research 17: 711-722(1989)に開示されている。その後者の方法は、二本鎖DNAの鋳型(コーディング)鎖の切出し、突然変異原性オリゴヌクレオチドの封入による鋳型鎖の再構築、及び引き続き部分的ミスマッチ鋳型の転写が必要である。これにより、選択された位置に既知の又はランダムヌクレオチド配列を有するポリヌクレオチドが含まれることにより分子内のいずれかの位置に特定又はランダム突然変異の導入が可能である。
本発明のDNA酵素分子は、適切なように種々の長さ及び折りたたみパターンを有し、分子の種類及び機能に左右される。例えば、DNA酵素分子は長さが約15〜約400以上のヌクレオチドとすることができるが、約250を超えるヌクレオチドは大き過ぎるか又は扱いにくくすることにより分子の治療上の有用性を制限することを避けるために好ましくない。種々の好適実施態様においては、本発明のDNA酵素分子は長さが少なくとも約20ヌクレオチドであり、有用な分子は長さが100ヌクレオチドを超えてもよいが、好ましい分子は長さが通常約100ヌクレオチドを超えない。
他の用途においては、DNA酵素分子は、“ハンマーヘッド”リボザイムと同様の配置をとることができる。かかるDNA酵素分子は、長さが約75〜100ヌクレオチドを超えないことが好ましく、約20〜50ヌクレオチドの長さが特に好ましい。
また、本発明のDNA酵素分子がデオキシリボザイムの酵素的に活性な部分を含むことができ、1以上の突然変異、例えば、1以上の塩基対形成配列を含むか又はスペーサーが存在しないか又は修飾されたデオキシリボザイムを含むことができることも、かかる欠失、付加又は修飾が酵素として分子の性能に大きな逆影響を及ばさない限り理解されるべきである。
本発明の核酸酵素分子は、また、認識部位又はドメインの変化したものも含まれる。種々の実施態様においては、これらの変化した認識ドメインは、かかる認識ドメインを含む核酸酵素分子についてユニークな配列特異性を与える。認識ドメインに存在する正確な塩基は、切断が行われる塩基配列を決定する。基質核酸の切断は、認識ドメイン内で起こる。その切断により、基質切断配列の2′、3′又は2′,3′−環状リン酸基及びもとの基質でははじめはすぐに3′の基質切断配列であったヌクレオチドの5′ヒドロキシルが残る。切断は、認識部位に存在する塩基を変えることにより選択部位に特定される(内部ガイド配列)。Murphyら,Proc.Natl.Acad.Sci.USA 86: 9218-9222(1989)を参照されたい。
他の種々の実施態様においては、本発明のDNA酵素分子は、核酸基質、好ましくはRNA基質の切断能が増強又は最適化される。当業者が理解するように、酵素触媒反応の速度は、基質と酵素の濃度によって変動し、通常、高基質又は酵素濃度で一様になる。かかる効果を考慮すると、酵素触媒反応の速度論は、反応を定義する次の条件で記載される。
RNA基質を切断する本発明のDNA酵素分子の増強又は最適化は、DNA酵素分子の存在下に種々の量の標識RNA基質との切断反応で求められる。基質の切断能は、一般的には、ミカエリス定数(KM)で除した触媒速度(kcat)で定義される。記号kcatは、基質が飽和値に近づく場合の酵素反応の最大速度を表す。KMは、反応速度が最大の1/2である基質濃度を表す。
例えば、KMとkcatの値は、本発明においては基質濃度[S]がDNA酵素分子濃度[E]より過剰にある実験で求められる。基質濃度範囲にわたる反応の初速度(V0)は、初期直線相、通常、反応の最初の5%以下から推定される。データの点は、次式で示された理論的直線の最小方格法にあてはまる:v=−KM(V0/[S])+Vmax。 即ち、kcat及びKMは、反応の初速度、V0及び基質濃度[S]で求められる。
本発明のデオキシリボザイム及び他のDNA酵素分子及びヌクレアーゼを修飾する種々の好ましい方法は、更に、下記の実施例1〜3に記載される。
上で述べたように、本明細書に用いられる“ヌクレオチド類縁体”という語は、一般的には、A、T、G、C、又はUと構造上異なるが核酸分子内のそのような“正規の”ヌクレオチドを置換するのに十分に類似したプリン又はピリミジンヌクレオチドを意味する。
本明細書に用いられる“ヌクレオチド類縁体”という語は、改変塩基、異種(又は特異)糖、改変リン酸塩骨格又はそれらの改変の組み合わせを包含する。本発明に有用なヌクレオチド類縁体の例は下記の表に示されるものが含まれ、ほとんどが37CFR§1.822の修飾塩基の承認された表に見られる(参考として本明細書に引用する)。
DeMesmaekerら,Angew. Chem. Int. Ed. Engl. 33: 226-229(1994); DeMesmaekerら,Synlett: 733-736(Oct.1993); Nielsenら, Science 254: 1497-1500(1991); 及びIdziakら, Tetrahedron Letters 34: 5417-5420(1993)に記載された類縁体も本明細書に開示された発明によれば有用であり、前記開示も参考として本明細書に引用する。
本発明は、また、所定の活性をもつ核酸分子の作製方法を企図する。1好適実施態様においては、核酸分子はDNA酵素分子である。他の態様においては、所望の活性は触媒活性である。
1実施態様においては、本発明は、特定の又は所定の反応を触媒するように“操作”されるDNA酵素分子の合成法を企図する。DNA酵素分子の調製方法は、本明細書に記載される。例えば、下記実施例1〜3を参照されたい。他の実施態様においては、本発明のDNA酵素分子は、アデノシン三リン酸(ATP)のような小分子又はリガンドを結合するように操作される。(例えば、Sassanfar ら,Nature 364: 550-553(1993)を参照されたい。)
他の実施態様においては、本発明は、DNA酵素分子の集団が突然変異DNA酵素分子(“デオキシリボザイム”又は“DNAzyme”とも言われる)の異種集団を作製する突然変異誘発条件に供されることを企図する。その後、所望の特性を有するDNA酵素分子が該集団から選択及び/又は分離され、引き続いて増幅される。
DNA酵素分子の認識ドメインの長さを変えると、DNA酵素分子の結合特異性に望ましい効果を与えることができる。例えば、認識ドメインの長さが増加すると、DNA酵素分子と基質内のオリゴヌクレオチドの相補的塩基配列間の結合特異性が増大し、ハイブリッド基質内の特定の配列の認識も促進される。更に、認識ドメインの長さが増加すると、基質に結合する親和性も高められる。種々の実施態様においては、DNA酵素分子内のそれらの改変認識ドメインが、DNA酵素分子とその基質間の結合特異性及び親和性の増大を与える。
従って、当業者は、本発明のDNA酵素分子がPCR及び3SRを含む本明細書に開示された種々の方法で認識ドメインのようなヌクレオチド配列で変えられることも理解しなければならない(自己維持配列の複製--下記実施例1参照)。
本発明のDNA酵素分子は、また、部位特定変異誘発のような方法の使用による非ランダム様式で調製又は操作される。例えば、部位特定変異誘発は、実質的にMorinagaら,Biotechnology 2: 636(1984)に記載されるように行われ、デオキシリボザイムに用いるために本明細書に記載されるように変更される。DNA酵素分子を操作する有効な方法は、下記実施例に記載される。
開示された実施態様においては、本発明のDNA酵素分子は、塩基対合相互作用によって基質と相互作用する2つの基質結合(又は認識)ドメイン又は配列が隣接した保存コアを含む。種々の実施態様においては、該保存コアは、1以上の保存ドメイン又は配列を含む。他の態様においては、DNA酵素分子は、更に、塩基対合に関係した領域(又は配列)間に“スペーサー”領域(又は配列)を含む。別の実施態様においては、該保存コアは、1以上の保存されない可変又は“スペーサー”ヌクレオチドによって種々の間隔で“分断”される。
別の実施態様においては、本発明の突然変異核酸酵素分子の異種集団は、ヌクレオチド配列が厳密に同じでない少なくとも2つの核酸分子を有するものである。他の態様においては、かかる異種集団から所定の活性をもつDNA酵素分子又は他の酵素核酸が所定の活性の性能に基づいて選ばれる。種々の実施態様においては、所定の活性は、触媒活性の増大、KMの低下、基質結合能力の増強、基質特異性の変化等を含むが限定されない。
本明細書に用いられる基質特異性は、リボヌクレオチドのみ、デオキシリボヌクレオチドのみ又は双方の複合物を含むもののような個々の基質に対する本明細書に記載される核酸酵素分子の特異性を意味するものである。基質分子は、また、ヌクレオチド類縁体を含むことができる。種々の実施態様においては、本発明の核酸酵素分子は、ハイブリッド又は非ハイブリッド基質の特定領域に優先的に結合することができる。
“基質特異性”として本明細書で確認された用語又はパラメーターも配列特異性が含まれる。即ち、本発明の核酸酵素分子は、特定の核酸配列を有する核酸基質を“認識”及びそれに結合することができる。例えば、本発明の核酸酵素分子の基質認識ドメインが1列に一連の1又は2リボヌクレオチド(例えば、rA)を有する基質分子にのみ結合する場合には、核酸酵素分子はかかる配列を欠く核酸基質分子を認識又は結合しない傾向にする。
たいてい、選択は、サイズ、触媒活性の存在、又は変異核酸を他の核酸、ペプチド、又は溶液中の又は固体マトリックスに結合される他の分子に対してハイブリッド形成することによる分離を含む。
種々の実施態様においては、所定の活性は、所定の活性をもつ突然変異酵素核酸が活性によってある方法で標識されるようなものである。例えば、所定の活性は、DNA酵素分子活性であり、基質上の突然変異酵素核酸の活性が突然変異酵素核酸を共有結合で結合するようにさせる。次に、突然変異酵素核酸は、共有結合によって選択される。
他の実施態様においては、所定の活性をもつ突然変異酵素核酸の選択は、変異酵素核酸の増幅が含まれる(例えば、Joyce,Gene 82: 83-87(1989); Beaudry & Joyce,Science 257: 635-41(1992)参照)。所定の特性又は活性をもつ核酸酵素分子を選択する他の方法は、実施例の項に記載される。
本発明は、また、本発明のDNA酵素分子の1以上の種類又は集団を含む組成物を企図する。例えば、異なる種類又は集団は、異なるヌクレオチドハイブリッド形成を認識及び切断することができる。組成物は、更に、リボ核酸含有基質が含まれる。本発明の組成物は、更に、鉛イオン、マグネシウムイオン、又は本明細書に述べられる他の2価又は1価のカチオンを含むことができる。
好ましくは、DNA酵素分子は、約0.05〜約2μMの濃度で存在する。典型的には、DNA酵素分子は、DNA酵素分子の基質に対する濃度比約1:5〜約1:50で存在する。更に好ましくは、DNA酵素分子は、組成物中に約0.1〜約1μMの濃度で存在する。更に好ましくは、組成物は、DNA酵素分子を約0.1〜約0.5μMの濃度で含む。好ましくは、基質は、組成物中に約0.5〜約1000μMの濃度で存在する。
他の適切な基質としては、ピコルナウイルス、ヘパドナウイルス科(例えば、HBV、HCV)、パピローマウイルス(例えば、HPV)、γヘルペスウイルス科(例えば、EBV)、リンフォクリプトウイルス、白血病ウイルス(例えば、HTLV−1及びII)、フラビウイルス、トガウイルス、ヘルペスウイルス(αヘルペスウイルス及びβヘルペスウイルスを含む)、サイトメガロウイルス(CMV)、インフルエンザウイルス及び免疫不全症及び症候群の原因となるウイルス及びレトロウイルス(例えば、HIV−1及び2)を含むか又は作製されたものを含むウイルス及びレトロウイルス性物質が挙げられるが限定されない。
更に、適切な基質は、サル及びネコ免疫不全症及びウシ白血病ウイルスを限定せずに含む非ヒト霊長類及び他の動物に感染するウイルス及びレトロウイルス性物質が含まれる。
本発明は、また、本発明のDNA酵素分子、ハイブリッドデオキシリボヌクレオチド−リボヌクレオチド分子、及び上記濃度のマグネシウム又は鉛イオンを含む組成物を企図する。前述のように、マグネシウムの代わりに他の1価又は2価のイオン(例えば、Ca2+)も用いられる。
1態様においては、組成物は、DNA酵素分子とその基質間の塩基対合が相接しているDNA酵素分子−基質複合体を含む。他の実施態様においては、DNA酵素分子とその基質間の塩基対合は1以上の非相補対で分断される。他の種々の実施態様においては、本発明の組成物は、更に、1価カチオン、2価カチオン又は双方を含むことができる。
他の態様では、本発明のDNA酵素分子は、2価カチオンの存在又は不在下に効率よく機能することができる。1態様においては、2価カチオンが存在し、Pb2+、Mg2+、Mn2+、Zn2+、又はCa2+を含む。また、本発明のDNA酵素分子は、1価カチオンの存在又は不在下に効率よく機能することができる。Pb2+又はMg2+について本明細書に記載されたものと同様の1価又は2価カチオン濃度が本明細書に開示されるように有効であることが予想される。
1実施態様においては、組成物内に存在する1価カチオンの濃度は0〜1.0Mの範囲である。他の実施態様においては、1価カチオンは約0〜200mMの範囲にある濃度で存在する。別の実施態様においては、1価カチオンは約1〜100mMの範囲にある濃度で存在する。また、1価カチオンの濃度は約2〜50mMの範囲にある。また別の実施態様においては、濃度は約2〜25mMの範囲にある。
本明細書に開示されるようにDNA酵素分子の使用方法は実に多い。前述のように、隣接核酸を連結する結合(例えば、ホスホエステル結合)を切断することができる分子は、種々の用途を包含する多数の使用がある。例えば、本明細書に開示された能力、構造及び/又は機能を有するDNA酵素分子は、医薬品(例えば、創傷清拭、血餅溶解用等)及び家庭用品(例えば、清浄剤、歯科衛生用品、肉軟化剤)に有効である。本明細書に開示される化合物、組成物及び方法の工業用途も企図され十分に本発明の範囲内である。
本発明の方法によって切断される核酸基質は、化学的に合成されるか又は酵素的に作製され、動物細胞、植物細胞、酵母細胞及び細菌細胞を含むファージ、ウイルス、原核細胞又は真核細胞のような種々の供給源からも単離される。化学的に合成された一本鎖及び二本鎖核酸は、Research Genetics(アラバマ州ハンツビル)を含むが限定しない多くの製造元から市販されている。
本発明の方法によって切断可能な一本鎖RNAは、ピコルナウイルス、トガウイルス、オルトミクソウイルス、パラミクソウイルス、ラブドウイルス、コロナウイルス、アレナウイルス又はレトロウイルスのようなRNAウイルスのいずれかによって供給される。前述のように、種々の原核細胞及び真核細胞も適切な核酸基質の優れた供給原とすることができる。
本発明の方法の大多数においては、一本鎖核酸の切断が所定の塩基配列の3′末端で生じる。その所定の塩基配列又は基質切断配列は、典型的には、1〜約10ヌクレオチドを含む。他の好適実施態様においては、本発明のDNA酵素分子は、切断部位の上流或いは上流と下流のヌクレオチドを認識することができる。
種々の実施態様においては、DNA酵素分子は、切断部位の上流の約2〜10ヌクレオチドを認識することができる。他の実施態様においては、DNA酵素分子は、切断部位の上流の約2〜10ヌクレオチド及び下流の約2〜10ヌクレオチドを認識することができる。他の好適実施態様は、長さが約30ヌクレオチドまでのヌクレオチド配列を認識することができるDNA酵素分子を企図し、約20ヌクレオチドまでの長さが更に好ましい。
本明細書に開示される方法は、DNA酵素分子の認識ドメインのヌクレオチド配列を変えることにより任意のヌクレオチド配列で切断することができる。これにより、選択された位置の制限エンドヌクレアーゼの不在下に一本鎖核酸の切断が可能である。
DNA酵素分子を基質(又は“切断産物”)から分離するとDNA酵素分子が他の切断反応を行うことを可能にする。
一般的には、核酸基質は、適切な核酸切断条件下に--好ましくは生理的条件下に--本発明のDNA酵素分子の有効量で処理される。核酸基質がDNAを含む場合には、切断条件は、2価カチオンの存在が約2〜10mMの濃度で含まれる。
従って、1好適実施態様においては、処理は、典型的には、RNA含有基質と酵素を水溶液中で混合して切断混合液をつくる工程及びそのようにしてつくった混合液をRNA切断条件下にDNA酵素分子がRNA基質をRNA内に存在する所定のヌクレオチド配列のいずれかで切断するのに十分な時間維持する工程を含む。種々の実施態様においては、イオン源、即ち、1価又は2価カチオン又はその双方も供給される。
本発明の1実施態様においては、DNA酵素分子が一本鎖核酸を切断するのに要する時間量は予め決められた。時間量は約1分〜約24時間であり、反応成分の濃度及び反応の温度によって変動する。通常、その時間は、DNA酵素分子が存在する所定のヌクレオチド反応のいずれかで一本鎖核酸を切断する約10分〜約2時間である。
核酸切断条件に含まれる最適カチオン濃度は、一定のカチオン濃度で切断した一本鎖核酸の量を定量することにより容易に求められる。当業者は、最適濃度が使用される個々のDNA酵素分子によって変動することを理解するであろう。
本発明は、更に、核酸切断条件がpH約6.0〜約9.0を含むことを企図する。他の好適実施態様においては、pHは生理的条件に匹敵する。即ち、pHは約7.0〜7.8であり、pH約7.5が特に好ましい。
当業者は、DNA酵素分子が活性コンホメーションに保たれるような核酸切断に用いられるpHである限り本発明の方法は広いpH範囲にわたって適用することを理解するであろう。活性コンホメーションでのDNA酵素分子は、一本鎖核酸を所定のヌクレオチド配列で切断する能力によって容易に検出される。
種々の方法においては、本発明は、ポリアミンの存在を含む核酸切断条件を企図する。
本発明を実施するのに有効なポリアミンとしては、スペルミジン、プトレッシン、スペルミン等が挙げられる。1態様においては、ポリアミンは、約0.01〜約10mMの濃度で存在する。他の態様においては、ポリアミンは、約1〜約10mMの濃度で存在する。核酸切断条件は、また、約2〜約5mMの濃度でポリアミンの存在を含むことができる。種々の好適実施態様においては、ポリアミンはスペルミジンである。
本発明は、また、ベクター内に位置した本発明のDNA酵素分子をコード化する核酸セグメントを、好ましくは標的細胞(例えば、植物又は動物細胞)内でそのDNA酵素分子の発現を可能にする方法で含む発現ベクターを特徴とする。
従って、一般的には、本発明のベクターは、好ましくはプラスミド、コスミド、ファージミド、ウイルス又はファージベクターが含まれる。好ましくは、適切なベクターは、一本細胞DNA(ssDNA)--例えば、環状ファージミドssDNAを含む。また、本発明の有効なベクターが環状である必要がないことも理解されなければならない。
1態様においては、追加のDNA酵素分子コード化配列の各々を隣接するヌクレオチド配列が供給されることが好ましく、それらの配列は最初のDNA酵素分子によって認識される。介在配列又は隣接配列の長さは、好ましくは少なくとも1ヌクレオチドを含み、更に好ましくは約2〜20ヌクレオチドであり、長さが約5〜10ヌクレオチドの配列が特に好ましい。
本発明のベクターは、2種以上のDNA酵素分子を含む。1実施態様においては、第1DNA酵素分子は分子内切断活性をもちかつヌクレオチド配列を認識及び切断して他のDNA酵素配列を遊離することができる。即ち、他のDNA酵素分子をベクターから“遊離”するために機能することができる。例えば、ベクターは、第1DNA酵素分子が発現される場合にその第1分子が第2DNA酵素分子、第3DNA酵素分子等をコード化する追加のヌクレオチド配列を隣接するヌクレオチド配列を切断することができるように構築されることが好ましい。前記第1DNA酵素分子(即ち、“遊離している”分子)がオリゴヌクレオチド配列を分子内で切断することができると仮定すると、追加の(例えば、第2、第3等)DNA酵素分子(即ち、“遊離した”分子)は“遊離している”分子と同じ特性をもつ必要がない。例えば、1実施態様においては、“遊離した”(即ち、第2、第3等)DNA酵素分子は特定のRNA配列を切断することができるが、第1(“遊離している”)DNA酵素分子は“遊離した”分子を遊離させることができるヌクレアーゼ活性をもつ。他の実施態様においては、“遊離した”DNA酵素分子は、アミド結合切断活性をもつが、第1(“遊離している”)DNA酵素分子はヌクレアーゼ活性をもつ。
本明細書に述べられるように、第1DNA酵素分子は、自己切断DNA酵素分子(例えば、デオキシリボザイム)とすることができ、第2DNA酵素分子は、所望の種類のDNA酵素分子とすることができる。ベクターがそれらの核酸配列からDNAを発現させる場合、そのDNAは、隣接領域の各々を切断するのに適切な条件で能力があり、第2DNA酵素分子の1コピー以上を遊離する。所望される場合には、数種の異なる第2DNA酵素分子を異なるデオキシリボザイムを生じるように同じ細胞又はキャリヤーに入れることができる。また、1種以上のベクターが1種以上のリボザイム又はデオキシリボザイムを“遊離している”及び“遊離した”核酸酵素分子の組合わせで、かかる組合わせが所望の結果、即ち、所定の核酸配列を切断することができる核酸酵素分子の遊離を得る限り含むことができる。
また、本明細書に記載された実施態様の種々の組合わせが本発明の範囲内に含まれることも理解されなければならない。本発明の他の特徴及び利点は、上記の説明、下記の実施例及び請求の範囲から明らかになるであろう。
下記の実施例は、本発明を具体的に説明するものであり、限定するものではない。
実施例1
DNA酵素分子の試験管内進化:
総説
試験管内選択及び試験管内進化手法は、新しい触媒をその組成又は構造の前知識なしに単離することができる。かかる方法は、新規な触媒特性をもつRNA酵素を得るために用いられた。例えば、鉛カチオンで自己分解的切断を行うリボザイムは、tRNAphe分子のランダム化プールから誘導された(Pan & Uhlenbeck, Biochemistry 31: 3887-3895(1992))。DNAを切断することができ(Beaudry & Joyce, Science 257: 635-641(1992))、金属依存性が変わった(Lehman & Joyce,Nature 361: 182-185(1993))グループIリボザイム変異体が単離された。ランダムRNA配列のプールから開始すると、ポリメラーゼ様配列を触媒する分子が得られた(Bartel & Szostak,Science 261: 1411-1418(1993))。本実施例においては、試験管内進化手順で選択拘束の変化により進化した酵素の特定の触媒特性の精製が記載される。
また、核酸増幅は、自己維持配列複製(3SR)を用いて行われる。(例えば、Guatelliら,PNAS USA 87: 1874(1990)を参照されたい。その文献の開示を参考として本明細書に引用する。)3SR法によれば、標的核酸配列は、レトロウイルス複製に必須な3種類の酵素活性:(1)逆転写酵素、(2)RNaseH、及び(3)DNA依存性RNAポリメラーゼを用いることにより等温条件下に試験管内で指数的に増幅(複製)される。cDNA中間体によるRNA複製のレトロウイルス戦略をまねることにより、その反応はもとの標的のcDNA及びRNAコピーを蓄積する。
DNA酵素分子を進化している場合には、その設計の種々の重要な要素は、それらの実施例に開示されるようにいくらか異なる。例えば、(1)オリゴヌクレオチドプライマーは、標的を指定し、好ましくはある方法--例えば、ビオチニル化--で“マーク”又は標識されるので、得られた応答能のある鋳型鎖は容易に同定され;(2)使用される試験管内選択手順は、最も有利な遊離機構の確認によることが好ましい。
試験管内ダーウィン的進化実現に対する主な障害は、突然変異及び増幅を組込む要求であり、共に遺伝子型に関係し、選択は表現型に関係する。遺伝子型及び表現型が同一分子で具体化される核酸酵素の場合には、仕事は単純化される。
一本鎖DNAが興味深い3次構造をとることができることは周知である。“tDNA”の構造は、例えば、対応するtRNAに極めて似ている。(Paquetteら,Eur. J. Biochem. 189: 259-265(1990)を参照されたい。) 更に、ハンマーリボザイム内の31〜35リボヌクレオチド程度を少なくともいくらか触媒活性を保持しつつ置き換えることが可能である。(Perreaultら, Nature 344: 565-567(1990); Williams ら,Proc. Natl. Acad. Sci. USA 89: 918-921(1992); Yangら, Biochemistry 31: 5005-5009(1992)を参照されたい。)
試験管内選択法は、ランダム配列DNAの大集団に適用されており、高親和性で標的リガンドを結合する特異的DNA“アプタマー”の回収をもたらした(Bock ら,Nature 355: 564-566(1992); Ellington & Szostak,Nature 355: 850-852(1992); Wyatt & Ecker,PNAS USA 91: 1356-1360(1994))。最近、2つのグループがアプタマー、G四分子構造を形成しかつ高親和性でタンパク質トロンビンを結合する15量体DNAのNMR一次構造決定を行った(Wangら,Biochemistry 32: 1899-1904(1993); Macayaら,PNAS USA 90: 3745-3749(1993))。これらの知見は、X線結晶学的分析によって確証された(Padmanabhanら,J.Biol. Chem. 268: 17651-17654(1993))。
下記に詳細に記載されるように、我々は、ランダム配列から出発するDNA触媒及びDNA酵素を迅速に得る一般法を開発することを探究した。最初の標的として、我々は、DNAの能力の範囲内で良好であると感じた反応:2価金属補助因子によって援助されたRNAホスホジエステルの加水分解切断を選んだ。これは、ハンマーヘッド及びヘアピンモチーフを含む種々の天然に存在するRNA酵素によって行われる同様の反応である。(例えば、Foster A.C. & Symons R.H., Cell 49: 211-220(1987); Uhlenbeck,Nature 328: 596-600(1987); Hampel & Tritz,Biochemistry 28: 4929-4933(1989)を参照されたい。
)
本明細書に開示されるように、我々の目標は、始めはDNAの5′端に結合した短いリーダー反応内に存在し、最後は急速な触媒代謝回転で分子内様式で切断される別個の分子内に位置する特定のRNAホスホエステルのPb2+イオン依存性切断を行うことができるDNAの開発が含まれた。これらの目標は、下記のように巧く達成された。
個体を集団から単離し、配列を決定し、触媒活性を分析した。その情報に基づいて、反応を分子間形式に変え、38量体DNA酵素による19量体基質の部位特異的切断を1mMPbOAcの存在下に代謝回転速度1min−1、23℃及びpH7.0で進行する反応で可能になるように単純化した。
約1014一本鎖DNA分子の出発プールに続いて、全てが5′ビオチン部分を含む、単一リボヌクレオチドを含む固定ドメイン、50ランダムデオキシリボヌクレオチドを含む潜在的触媒ドメイン、及び3′末端にある第2固定ドメインを順次作成した(図1)。
プライマー結合部位が隣接した50ランダムヌクレオチドを含む合成DNAから開始する繰込みPCR(ポリメラーゼ連鎖反応)技術によってプールを構築した。繰込みPCRプライマーは、3′末端アデノシンリボヌクレオチドを含む5′ビオチニル化合成オリゴデオキシヌクレオチドとした。リボヌクレオチド末端オリゴヌクレオチドは、PCRの組合わせにおいては鋳型特定伸長を効率よく開始し(L.E.Orgel、個人的論文)、この場合にははめ込み単一リボヌクレオチドを含む拡張産物を生じた。
図1は、標的RNAホスホエステルを切断するDNA単離の選択的増幅スキームを示す図である。50ランダムヌクレオチドの伸長物を含む二本鎖DNAを、3′端のアデノシンリボヌクレオチド(記号“N”又は“rN”で示され、N及びrNは共にアデノシンリボヌクレオチドを表す)で終わる5′ビオチニル化DNAプライマー(例えば、プライマー3--3a又は3b)を用いるPCRで増幅される。このプライマーをTaqポリメラーゼで伸長してはめ込み単一リボヌクレオチドを含むDNA産物を得る。得られた二本鎖DNAをストレプトアビジンマトリックスに固定化し、0.2NaOHで洗浄して非ビオチニル化DNA鎖が除去される。カラムを緩衝化溶液で再び平衡化した後、カラムを1mMPbOAcを加えた同じ溶液で洗浄する。Pb2+依存性自己切断を行うDNAをカラムから遊離し、溶離液に集め、PCRで増幅する。次に、PCR産物を用いて次のラウンドの選択的増幅を開始する。
Pb2+添加時にマトリックスから遊離したDNA分子を溶離液に集め、エタノールで沈殿して濃縮し、繰込みPCR増幅に供した。出発分子プールの構築でのように、最初のPCR増幅はランダム領域を隣接するプライマー(プライマー1及び2)を使用し、次に3′末端リボアデニル化をもつ5′ビオチニル化プライマー(プライマー3b)を使用して標的RNAホスホエステルを再び導入した。
選択的増幅手順全体には3〜4時間が必要である。
我々は、5連続ラウンドの試験管内選択を行い、Pb2+の添加後の反応時間を次第に減らして選択の緊縮性を次第に増した。1〜3ラウンドでの反応時間は1時間とし、4ラウンドでの反応時間は20分とし、5ラウンドでは1分とした。
一本鎖DNAの出発プールを各ラウンドの選択後に得られた分子の集団と共に試験管内選択で使用したものと同じ条件下に自己切断活性を分析した(図2参照)。
図2は、出発DNAプール(G0)及び第1〜第5ラウンドの選択(G1〜G5)後に得られた集団の自己切断活性を示す図である。反応混合液は、50mMMgCl2、0.5MNaCl、0.5MKCl、50mMHEPES(pH7.0、23℃)、及び3nM[5′−32P]標識DNAを含有し、1mMPbOAcの存在或いは不在下に23℃で5分間インキュベートした。記号Preは108ヌクレオチド前駆体DNA(配列番号4);Clvは28ヌクレオチド5′切断産物(配列番号5);Mは長さが5′切断産物に相当するプライマー3a(配列番号6)を表す。
28ヌクレオチド5′切断産物(Clv)は、好ましくは配列
5′-GGGACGAATTCTAATACGACTCACTATN- 3′を有し、“N”は3′端に2′、3′−環状リン酸を付加したアデノシンリボヌクレオチドを表す(配列番号5)。他の実施態様においては、“N”は分子の3′端に2′又は3′リン酸を付加したアデノシンリボヌクレオチドを表す。
G5集団から個体を単離するためにショットガンクローニング技術を用い、次に、20のこれらのサブクローンの完全ヌクレオチド配列を求めた(図3参照)。(例えば、Cadwell & Joyce,PCR Methods and Applications 2: 28-33(1992); Cadwell & Joyce, PCR Methods and Applications 3(Suppl.): S136-S140(1994)も参照されたい。)20配列のうち、5つはユニークであり、2つは2回あり、1つは3回あり、1つは8回あった。個々の変異体は、全て出発DNAプールにおいてランダム化された50ヌクレオチド領域内に共通配列要素を共有する。全て2つの推定鋳型領域を有し、一方は切断部位からすぐ上流にあるヌクレオチドの伸長物に相補性であり、他方は少なくとも4ヌクレオチド下流にあるヌクレオチドの伸長物に相補性である。それらの2つの推定鋳型領域間に1〜11ヌクレオチドの可変ドメインがあり、続いて固定配列 5′-AGCG -3′、次に、3〜8ヌクレオチドの第2可変ドメイン、最後に固定配列 5′-CG -3′又は 5′-CGA-3′がある。2つの推定鋳型領域の外部にあるヌクレオチドは、配列及び長さ共にかなり変化しうる。全ての配列決定したサブクローンにおいては、最初にランダム化した50ヌクレオチドに相当する領域は長さが全体の50ヌクレオチドのままである。
(5′- GGGACGAATTCTAATACGACTCACTATrAGGAAGAGATGGCGAC- 3′
又は5′-GGGACGAATTCTAATACGACTCACTATNGGAAGAGATGGCGAC-3′、
Nはアデノシンリボヌクレオチドを表す)(配列番号13)を上方に示し、標的リボアデニル化は逆三角で確認される。推定塩基対合相互作用に共通して関係する基質ヌクレオチドを縦の棒で示す。最初にランダム化された50ヌクレオチドに対応する配列を基質ドメインに逆平行に並べる。変異体は、全て固定配列5′-CGGTAAGCTTGGCAC-3′(配列番号1)(“プライマー部位”;図示されていない)の3′で終わる。基質ドメインと塩基対をつくるものと推定される最初にランダム化された領域内のヌクレオチドを図の左右側に示す。DNA酵素分子の推定塩基対形成(又は基質結合)領域は、示された各配列において個々にボックスに仕切られる。推定触媒ドメイン内の高度に保存されたヌクレオチドを2つのボックスに仕切られた縦列に示す。
また、9個の異なる変異体の各々が基質ドメインと推定相補性の異なるパターンを示すことがわかったことも興味深いことである。ある場合には、塩基対合は相接していたが、他のものでは1以上の非相補的対で分断された。一般的傾向は、下流にあるものと比べて切断部位から上流にあるヌクレオチドとしっかりした相互作用を形成することになると考えられる。結合実験及び部位特定突然変異誘発分析により、我々は更に洞察しかつこの推測を更に実証することを可能にしなければならない。
優性サブクローンを、更に、種々の反応条件下に分析した。その自己切断活性は、Pb2+に依存性であるが、反応混合液からMg2+を取り除いた場合には影響されなかった。1価のカチオンが同様に要求され、Na+或いはK+で適合される。反応速度は、0〜1.0Mの範囲にわたる1価カチオンの濃度が増大すると共に直線的に増加した(r=0.998)。pH、温度、及び他の2価金属の存在のような反応に影響することがある他の変数は評価中である。
材料及び方法
A.オリゴヌクレオチド及びオリゴヌクレオチド類縁体合成DNA及びDNA類縁体をOperon Technologiesから購入した。19ヌクレオチド基質、
5′-pTCACTATrAGGAAGAGATGG-3′(又は 5′-pTCACTATNGGAAGAGATGG- 3′、
“N”はアデノシンリボヌクレオチドを表す)(配列番号7)を、鋳型5′-CCATCTCTTCCTATAGTGAGTCCGGCTGCA- 3′(配列番号9)
を用いて以前に記載されたように(Breaker,Banerji,& Joyce,Biochemistry 33: 11980-11986(1994))5′-pTCACTATrA- 3′(又は 5′-pTCACTATN-3′、“N”はアデノシンリボヌクレオチドを表す)(配列番号8)の逆転写酵素触媒拡張によって調製した。プライマー3、
(又は5′-GGGACGAATTCTAATACGACTCACTATN- 3′、
“N”はアデノシンリボヌクレオチドを表す)(配列番号6)を[Y−32P]ATP及びT4ポリヌクレオチドキナーゼ(プライマー3a)で5′標識するか或いは[Y−S]ATP及びT4ポリヌクレオチドキナーゼで5′チオリン酸化し、引き続きN−ヨードアセチル−N′−ビオチニルヘキシレンジアミン(プライマー3b)でビオチニル化した。
出発DNAプールを合成オリゴマー
5′- GTGCCAAGCTTACCG-N50-GTCGCCATCTCTTCC-3′(配列番号4)(NはG、A、T及びCの等モル混合物である)を用いてPCRで調製した。500ピコモルのランダム化オリゴマー、1,000ピコモルのプライマー1(5′-GTGCCAAGCTTACCG-3′、配列番号10)、500ピコモルのプライマー2
(5′- CTGCAGAATTCTAATACGACTCACTATAGGAAGAGATGGCGAC-3′、配列番号11)、500ピコモルのプライマー3b、10μCi[α−32P]dATP、及び0.2Uμl−1TaqDNAポリメラーゼを含有する2mlのPCRを50mMKCl、1.5mMMgCl2、10mMトリス−HCl(pH8.3、23℃)、0.01%ゼラチン、及び0.2mMの各dNTPの存在下に92℃で1分間、50℃で1分間、及び72℃で2分間、次に5サイクルの92℃で1分間、50℃で1分間、及び72℃で1分間インキュベートした。得られた混合液をフェノールで2回及びクロロホルム/イソアミルアルコールで1回抽出し、そのDNAをエタノールで沈殿することにより単離した。
出発DNAプールを500μlのバッファーA(1MNaCl及び50mMHEPES(pH7.0、23℃)に再懸濁し、ストレプトアビジンカラム(AffiniTipStrep 20,Genosys,テキサス州ウッドランド)を繰り返し通過させた。カラムを、100μl量のバッファーAで5回、次に、100μl量の0.2NNaOHで5回洗浄し、100μl量のバッファーB(0.5MNaCl、0.5MKCl、50mMMgCl2、及び50mMHEPES(pH7.0、23℃))で5回平衡化した。固定化一本鎖DNAを1mMPbOAcを添加した20μl量のバッファーBで3回1時間かけて溶離した。固定化及び溶離全工程を23℃で行った。溶離液を同量のバッファーC(50mMHEPES(pH7.0、23℃)及び80mMEDTA)に集め、そのDNAをエタノールで沈殿した。
DNA集団及び種々のサブクローン化個体を10ピコモルのプライマー3a、0.5ピコモルの導入DNA、及び0.1Uμl−1TaqDNAポリメラーゼを含有する25μlの反応混合液中非対称的PCRによる5′−32P標識を用いて上記の条件下に10サイクルの92℃で1分間、50℃で1分間、及び72℃で1分間調製した。得られた[5′−32P]標識増幅産物を10%ポリアクリルアミド/8Mゲル中の電気泳動で精製した。
そのDNAをバッファーB中で10分間プレインキュベートした後、自己切断分析を行った。PbOAcを1mMの最終濃度まで添加することにより反応を開始し、同量のバッファーCを添加することにより終結させた。反応産物を10%ポリアクリルアミド/8Mゲル中の電気泳動で分離した。重複代謝回転条件下に速度論的分析を、容器壁への材料の付着を防止するために50μgml−1BSAを含むバッファーB中で行った。基質及び酵素分子を、Pb2+を欠く反応バッファー中で5分間別個にプレインキュベートし、合わせ、PbOAcを1mMの最終濃度まで添加することにより反応を開始した。
分子間で切断するデオキシリボザイムの進化
A.分子間形式への変換
実験した変異体の触媒ドメインと基質ドメイン間の推定塩基対合相互作用の可変パターンに基づき、DNA触媒反応を分子間形式に変換することはかなり端的であると考えられた。そのようにするにあたり、我々は、各々が基質と7〜8塩基対の分断されない伸長物を形成するように触媒の2つの基質結合領域を単純化したいと考えた。更に、我々は、2つの塩基対合領域に限定された最小基質及び介在配列 5′-GGA-3′を得たいと考えた(図4A)。
図4A及び図4Bは、触媒代謝回転で進行する分子間反応におけるRNAホスホエステルのDNA触媒切断を示す図である。図4Aは、19量体基質と38量体DNA酵素間に形成された複合体の図式である。基質は、デオキシリボヌクレオチドが隣接した単一アデノシンリボヌクレオチド(矢印に隣接した“rA”又は“N”)を有する。合成DNA酵素は、図3に示された最もよく出てくる変異体の38ヌクレオチド部分である。推定触媒ドメイン内に位置した高度に保存されたヌクレオチドは、“ボックス”に仕切られている。
示されるように、1つの保存配列は“AGCG”であり、もう1つは“CG”である(5′−3′方向で読み取る)。
初期切断速度は、5nMDNA酵素及び0.125、0.5、1、2、或いは4μM基質を含む反応について求めた。
触媒ドメインを設計するにあたり、我々は、最も反応性のある変異体の組成物を強くあてにし、5′端の2ヌクレオチド及び3′端の11ヌクレオチドだけ端を切り取った。2つの鋳型領域間にある15ヌクレオチドは不変のままにし、単一ヌクレオチドを3′鋳型領域に挿入して基質と塩基対を形成することができるヌクレオチドの連続伸長物をつくった。基質は、配列5′−TCACTATrA・GGAAGAGATGG−3′(又は5′−TCACTATN・GGAAGAGATGG−3′、“N”はアデノシンリボヌクレオチドを表す)(配列番号12)に単純化され、ここで、下線のヌクレオチドはDNA触媒分子との塩基対合に関係する2つの領域に対応する。
5ラウンドの試験管内選択後、標的RNAホスホエステルの効率のよいPb2+依存性切断を触媒する1本鎖DNA分子の集団が得られた。この集団から単離した代表的個体の共通の特徴に基づき、触媒ドメイン及び基質ドメイン双方の単純化した転換が構築され、分子間組合わせにおいて急速な触媒代謝回転の証明をもたらした。即ち、38量体触媒ドメインは、DNA酵素、又は“デオキシリボザイム”と呼ばれるものの一例である。
速い代謝回転で進行しかつミカエリス・メンテン速度論に従う反応において化学的転換を促進することができる情報高分子である事実に基づいてこの分子を酵素と呼ぶことは、酵素を構成するものの概念を満足させるものではない。当然、酵素はポリペプチドでなければならないと主張するものがいる。しかしながら、RNA酵素の概念を容認する場合には、DNA酵素に関する同様の見解を採用することは合理的であると思われる。我々がどのように速やかにこの分子をランダム配列DNAのプールから作成することができたかを考慮すると、合成DNA酵素の多くの他の例が近い将来出現するであろうことが予想される。
別の全DNA配列内に単一リボヌクレオチドを有する基質が、切断にユニークな好ましい位置を与えかつ得られた触媒活性がDNAのみによるものであることを保証することから選ばれた。基質認識は、触媒と基質間の塩基対合相互作用の2つの領域によると考えられる。しかしながら、これらの2つの領域にある不対基質ヌクレオチド、5′−GGA−3′は、基質認識、金属配位、又は触媒作用の他の態様に重要な役割を果たすことができる。
更に、酵素と基質間の推定塩基対相互作用が配列について一般化可能であるかを求める実験は、現在記載している方法を用いて進行中である。本明細書に開示されたPb2+依存性デオキシリボザイムもDNAの構造及び酵素特性を調べるモデル化合物と考えられる。
DNA触媒の速やかな開発について本開示に用いられる方法は、かなり普遍性があり、潜在的触媒ドメインに結合した標的結合の切断の引き金となる他の補助因子を使用することを可能にする。この点で、標的RNAを生理的条件下に特異的に切断するMg2+依存性DNA酵素の開発は、他のカチオンの存在下に機能するDNA酵素の開発であるように興味深い(実施例4参照)。かかる分子は、標的mRNAの特定不活性化の伝統的アンチセンス及びリボザイム方法の代わりとなる。
DNA酵素は、他の高分子触媒に比べていくつかの重要な利点を与える。第1に、たいていの実験が自動DNAシンセサイザーにアセクセスする時代で調製が容易であり、DNAホスホルアミダイトの価格がかなり下がった。第2に、特にRNAに比べて非常に安定な化合物であり、生物物理実験での使用に容易である。第3に、現在RNA切断活性を欠くアンチセンスDNAを利用している治療用途に適応されることが予想される。試験管内選択は、ホスホロチオエート含有DNAのようなヌクレアーゼ耐性のある化合物を含むDNA類縁体を用いて、これらの類縁体がデオキシヌクレオシド5′三リン酸として調製されかつDNA依存性ポリメラーゼにより基質として受容される限り行われる。更に、DNA酵素は、触媒機能の高分子に基づく理解に新しい窓を開く。例えば、同様の化学転換を触媒するタンパク質系、RNA系、及びDNA系酵素の比較分析を行うことは興味深いことである。
他の触媒DNAファミリー
出発DNAプールを、出発DNAプールが40ランダムヌクレオチドを有する分子を含む以外は実質的に上記実施例2.B.に記載されたように調製した。即ち、ここに記載される出発DNAプールを、合成オリゴマー 5′GGG ACG AAT TCT AAT ACG ACT CAC TAT rAGG AAG AGA TGG CGA CAT CTC N40GT GAC GGT AAG CTT GGC AC 3′(配列番号23)(NはG、A、T及びCの等モル混合物であり、DNA分子内の標的rAの次のホスホエステルを切断する能力を選択した)を用いてPCRにより調製した。(図6Aも参照。)
選択的増幅を、Pb2+、Zn2+、Mn2+、又はMg2+の存在下に行い、DNA触媒分子の少なくとも4“ファミリー”を生成した。図5に示されるように、比活性を示すDNA触媒分子は種々のカチオンの存在下に作成した。
図5は、選択した触媒DNAの4ファミリーの特定のエンドリボヌクレアーゼ活性を証明するポリアクリルアミドゲルを示す写真である。Pb2+依存性ファミリーの分子の選択を、対照として同様の方法で繰り返した。各グループの3レーンにおいては、第1レーンは金属カチオンの不在下に選択集団の活性のないことを示し、第2レーンは金属カチオンの存在下の実測活性を示し、第3レーンは出発プール(G0)の活性のないことを示す。
現在、反応性の順序はPb2+>Zn2+>Mn2+>Mg2+であることが認められ、対応する金属酸化物のpKaを反映している。
6ラウンドの試験管内選択的増幅を、使用した2価金属が1mMPb2+ではなくMg2+である以外は上記実施例2に記載される方法に従って行った。(実質的に同様の手順を記載している Breaker & Joyce,Chem. & Biol. 1: 223-229(1994)も参照されたい。この文献を参考として本明細書に引用する。)
第6ラウンド後に個々のクローンを単離し、これらのクローンの24のヌクレオチド配列を求めた。配列は、全て 5′GGG ACG AAT TCT AAT ACG ACT CAC TAT rA GG AAG AGA TGG CGA CA(配列番号23位置1〜44)から開始し、CGG TAA GCT TGG CAC 3′(配列番号23位置93〜107)で終わる。
出発プールにおいて TCTC N40 GTGA(配列番号23位置45〜92)に対応する中央のセグメントは下記のように変動する。
24クローンのうちの5つに存在した上記の2番目の配列(即ち、配列番号25)を次の実験のリード(即ち、最初の)化合物として選んだ。その切断活性を種々の2価金属の1mM濃度及び1MNaCl、pH7.0及び23℃の存在下に測定した。
なし n.d.
Mg2+ 2.3×10−3
Mn2+ 6.8×10−3
Zn2+ 4.2×10−2
Pb2+ 1.1×10−2
かかる化合物は、非修飾DNAに比べて細胞ヌクレアーゼによる分解に比較的耐性がある。
40の部分的ランダム化位置に対応する中央のセグメント(N40、配列番号23、位置49〜88)は下記のように変動する。
これらのクローンの切断活性の形式分析は進行中である。集団は、全体としてPb2+の存在下の活性と匹敵しうるレベルで実測速度〜10−2 min−1のMg2+依存性切断活性を示す。
図6A及び図6Bは、各々本明細書に開示された選択的増幅法で得られた“前駆体”DNA触媒分子及び数種のDNA触媒分子の1つを示す2次元図である。
図6Aは、出発プールからの具体的な分子を示し、配列番号23で示される分子の全配置を示す。示されるように、種々の相補的ヌクレオチドがランダム(N40)領域に隣接する。
図6Bは、本明細書に記載された手順で作成したMg2+依存性DNA触媒分子(又は“DNAzyme”)の1種の図式である。基質核酸におけるリボヌクレオチドの位置を矢印で示す。(図示した分子は、配列番号25として同定した配列、及び配列番号23の“開始”及び“最終”配列を含む。)
大きなRNA配列の切断
前述の拡張として、我々は、上記で証明された別の全DNA基質内にはめ込まれた単一リボヌクレオチドではなくて全RNA基質を切断するDNA酵素を開発した。(R.R.Breaker & G.F.Joyce,Chem. & Biol. 1: 223-229(1994);R. R. Breaker & G.F.Joyce,Chem. & Biol. 2: 655-660 (1995)も参照されたい)。標的配列として、我々は、配列 5′GUAACUAGAGAU 3′(配列番号49)を有するHIV−1RNAのU5LTR領域内の12の高度に保存されたヌクレオチドの伸長物を選択した。
前の実施例に記載された方法に従って、我々は、下記の組成を有する1014DNA分子のプールを作成した。
このように作製されたDNA酵素分子について、はめ込みRNA標的配列内にあるホスホエステルを切断する能力を選択した。10mMMg2+、pH7.5及び37℃の存在下にDNA酵素分子の活性に基づき10ラウンドの試験管内選択的増幅を行った。選択工程で、“好適”切断部位及びかかる各々の好適部位で切断する“最良”触媒が競合した。2つの部位及び触媒の2つのファミリーが最も効率のよい切断能力をもつものとして出てきた(図7参照)。
切断条件は、実質的に図7に示されるとおり、即ち、Mg2+、pH7.5、及び37℃とした。反応を2時間行った後に集めたデータを示す。世代数(ここでは0〜10)に対してプロットした切断(%)を示す。標的配列を基質内の指示した位置で切断することができるDNA触媒分子の数/有効性を縦のバーで示し、 G↓UAACUAGAGAU での切断を縞のバーで示し、GUAACUA↓GAGAU での切断を白い(輪郭の)バーで示す。ここでのように、図7では、矢印(↓)は切断が生じる2つの隣接ヌクレオチド間の位置を示す。
表2及び表3の各々の項目“ヌクレオチド配列”の下に出発プールでランダム化された50ヌクレオチド(即ち、N50)に対応する各同定クローン部分を示す。即ち、示したクローンの全ヌクレオチド配列は、一般的には、“N50”セグメントの前後及びそれを含むヌクレオチド配列を含み、基質配列が結合すると推測され、その自己切断は生じない。例えば、(非自己切断)クローンの全配列は、一般的には、配列番号50の残基No.1〜33、続いてランダム化N50領域を示す残基、続いて配列番号50の残基No.84〜98又は配列番号51の残基No.1〜34、続いてランダム化N50領域を示す残基、続いて配列番号51の残基No.85〜99を含むことができる。しかしながら、各クローンのN50(又はN40)領域--又はその一部--が特定のDNA酵素分子の特異性及び/又は活性を求めるのに特に重要であると思われる。これは、基質及びDNAzymeが別個の分子である反応において特に明らかである(例えば、図8及び図9参照)。
クローン数は、第8又は第10ラウンド後に得られた個体について各々8×又は10×と示す。配列番号も示され、各クローンの“N50”領域に対応する。
更に、上記のように、我々は、本実施例に記載された方法における標的配列としてHIV−1RNAの特定領域を選択した。かかる配列は、標的として使用することができる唯一の配列ではない。当業者が我々の教示に従って他の標的配列の特異性を有するDNA酵素分子を操作及び設計することができることは明らかである。本明細書に開示されるように、かかる標的配列は、配列番号50及び51で示されるようにDNA、RNA、又はその複合物を含む大きな配列に構築又は挿入することができる。
図8は、本発明の2つのDNA触媒分子、クローン8−17及び10−23のヌクレオチド配列、切断部位、及び代謝回転速度を示す図である。反応条件は、示されるとおり、即ち10mMMg2+、pH7.5、及び37℃とした。クローン8−17として同定されたDNAzymeを左側に示し、RNA基質の切断部位を矢印で示す。基質配列(5′-GGAAAAAGUAACUAGAGAUGGAAG -3′)--DNAzymeから分離する(即ち、分子間切断を示す)--はそれだけで標識される。同様に、10−23として同定されたDNAzymeを右側に示し、RNA基質の切断部位を矢印で示す。また、基質配列も示す。8−17酵素については代謝回転速度は約0.6hr−1であり、10−23酵素については代謝回転速度は約1hr−1であった。
5′-CTTCCACCTTCCGAGCCGGACGAAGTTACTTTTT- 3′(配列番号56の残基 No.1〜34)。同図においては、別個の基質分子を切断することができるクローン10〜23DNA触媒分子のヌクレオチド配列は次のとおりであった:
5′-CTTTGGTTAGGCTAGCTACAACGATTTTTCC-3′(配列番号85の残基 No.3〜33)。
5′-CCACCTTCCGAGCCGGACGAAGTTACT- 3′(配列番号56の残基 No.4〜30)。同図においては、別個の基質分子を切断することができるクローン10−23DNA触媒分子のヌクレオチド配列は次のとおりであった:
5′-CTAGTTAGGCTAGCTACAACGATTTTTCC-3′(配列番号85の残基 No.5〜33、5′端の“TTG”が“CTA”に置き換わった)。
RNA切断DNA酵素の触媒速度はなお完全に最適化されなければならない。
上記に開示されたように及び前の実験に報告されたように、我々は、始原型分子を部分的にランダム化しかつ追加ラウンドの選択的増幅を行うことにより触媒速度を改善することができた。しかしながら、pH7.5及び37℃で測定したMg2+のKmは8−17及び10−23DNA酵素について各々約5mM及び2mMであることがわかった。その測定条件は、確かに細胞内条件と一致する。
個々の実施態様と実施例を含む上記の説明は、本発明を具体的に説明するものであり限定するものではない。他の多くの変更及び修正が本発明の真意及び範囲を逸脱することなく行われる。
配列番号:1:
(i) 配列の特徴:
(A) 配列の長さ: 15
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
CGGTAAGCTT GGCAC 15
配列番号:2:
(i) 配列の特徴:
(A) 配列の長さ: 20
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(ix) 配列の特徴:
(A) 特徴を表す記号: 雑多な差異(misc_difference)
(B) 存在位置: 置換(8, "")
(D) 他の情報: 標準名= アデノシンリボヌクレオチド
(xi) 配列:
TCACTATNAG GAAGAGATGG 20
配列番号:3:
(i) 配列の特徴:
(A) 配列の長さ: 38
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
ACACATCTCT GAAGTAGCGC CGCCGTATAG TGACGCTA 38
配列番号:4:
(i) 配列の特徴:
(A) 配列の長さ: 80
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
GTGCCAAGCT TACCGNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN 60
NNNNNGTCGC CATCTCTTCC 80
配列番号:5:
(i) 配列の特徴:
(A) 配列の長さ: 28
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(ix) 配列の特徴:
(A) 特徴を表す記号: 雑多な特徴(misc_feature)
(B) 存在位置: 28
(D) 他の情報: 標準名= 2'3' 環状リン酸塩
(ix) 配列の特徴:
(A) 特徴を表す記号: 雑多な差異(misc_difference)
(B) 存在位置: 置換(28, "")
(D) 他の情報: 標準名= アデノシンリボヌクレオチド
(xi) 配列:
GGGACGAATT CTAATACGAC TCACTATN 28
配列番号:6:
(i) 配列の特徴:
(A) 配列の長さ: 28
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(ix) 配列の特徴:
(A) 特徴を表す記号: 雑多な差異(misc_difference)
(B) 存在位置: 置換(28, "")
(D) 他の情報: 標準名= アデノシンリボヌクレオチド
(xi) 配列:
GGGACGAATT CTAATACGAC TCACTATN 28
配列番号:7:
(i) 配列の特徴:
(A) 配列の長さ: 19
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(ix) 配列の特徴:
(A) 特徴を表す記号: 雑多な差異(misc_difference)
(B) 存在位置: 置換(8, "")
(D) 他の情報: 標準名= アデノシンリボヌクレオチド
(xi) 配列:
TCACTATNGG AAGAGATGG 19
配列番号:8:
(i) 配列の特徴:
(A) 配列の長さ: 8
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(ix) 配列の特徴:
(A) 特徴を表す記号: 雑多な差異(misc_difference)
(B) 存在位置: 置換(8, "")
(D) 他の情報: 標準名= アデノシンヌクレオチド
(xi) 配列:
TCACTATN 8
配列番号:9:
(i) 配列の特徴:
(A) 配列の長さ: 30
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
CCATCTCTTC CTATAGTGAG TCCGGCTGCA 30
配列番号:10:
(i) 配列の特徴:
(A) 配列の長さ: 15
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
GTGCCAAGCT TACCG 15
配列番号:11:
(i) 配列の特徴:
(A) 配列の長さ: 43
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
CTGCAGAATT CTAATACGAC TCACTATAGG AAGAGATGGC GAC 43
配列番号:12:
(i) 配列の特徴:
(A) 配列の長さ: 19
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(ix) 配列の特徴:
(A) 特徴を表す記号: 雑多な差異(misc_difference)
(B) 存在位置: 置換(8, "")
(D) 他の情報: 標準名= アデノシンリボヌクレオチド
(xi) 配列:
TCACTATNGG AAGAGATGG 19
配列番号:13:
(i) 配列の特徴:
(A) 配列の長さ: 43
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(ix) 配列の特徴:
(A) 特徴を表す記号: 雑多な差異(misc_difference)
(B) 存在位置: 置換(28, "")
(D) 他の情報: 標準名= アデノシンリボヌクレオチド
(xi) 配列:
GGGACGAATT CTAATACGAC TCACTATNGG AAGAGATGGC GAC 43
配列番号:14:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
TCACACATCT CTGAAGTAGC GCCGCCGTAT GTGACGCTAG GGGTTCGCCT 50
配列番号:15:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
GGGGGGAACG CCGTAACAAG CTCTGAACTA GCGGTTGCGA TATAGTCGTA 50
配列番号:16:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
CGGGACTCCG TAGCCCATTG CTTTTTGCAG CGTCAACGAA TAGCGTATTA 50
配列番号:17:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
CCACCATGTC TTCTCGAGCC GAACCGATAG TTACGTCATA CCTCCCGTAT 50
配列番号:18:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
GCCAGATTGC TGCTACCAGC GGTACGAAAT AGTGAAGTGT TCGTGACTAT 50
配列番号:19:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
ATAGGCCATG CTTTGGCTAG CGGCACCGTA TAGTGTACCT GCCCTTATCG 50
配列番号:20:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
TCTGCTCTCC TCTATTCTAG CAGTGCAGCG AAATATGTCG AATAGTCGGT 50
配列番号:21:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
TTGCCCAGCA TAGTCGGCAG ACGTGGTGTT AGCGACACGA TAGGCCCGGT 50
配列番号:22:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
TTGCTAGCTC GGCTGAACTT CTGTAGCGCA ACCGAAATAG TGAGGCTTGA 50
配列番号:23:
(i) 配列の特徴:
(A) 配列の長さ: 107
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(ix) 配列の特徴:
(A) 特徴を表す記号: 雑多な差異(misc_difference)
(B) 存在位置: 置換(28, "")
(D) 他の情報: 標準名= アデノシンリボヌクレオチド
標識= rA
(xi) 配列:
GGGACGAATT CTAATACGAC TCACTATNGG AAGAGATGGC GACATCTCNN NNNNNNNNNN 60
NNNNNNNNNN NNNNNNNNNN NNNNNNNNGT GACGGTAAGC TTGGCAC 107
配列番号:24:
(i) 配列の特徴:
(A) 配列の長さ: 49
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
CCGCCCACCT CTTTTACGAG CCTGTACGAA ATAGTGCTCT TGTTAGTAT 49
配列番号:25:
(i) 配列の特徴:
(A) 配列の長さ: 48
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
TCTCTTCAGC GATGCACGCT TGTTTTAATG TTGCACCCAT GTTAGTGA 48
配列番号:26:
(i) 配列の特徴:
(A) 配列の長さ: 46
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
TCTCATCAGC GATTGAACCA CTTGGTGGAC AGACCCATGT TAGTGA 46
配列番号:27:
(i) 配列の特徴:
(A) 配列の長さ: 49
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
CCGCCCACCT CTTTTACGAG CCTGTACGAA ATAGTGTTCT TGTTAGTAT 49
配列番号:28:
(i) 配列の特徴:
(A) 配列の長さ: 49
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
CCGCCCACCT CTTTTACGAG CCTGTACGAA ATAGTGCTCT CGTTAGTAT 49
配列番号:29:
(i) 配列の特徴:
(A) 配列の長さ: 48
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
TCTCAGACTT AGTCCATCAC ACTCTGTGCA TATGCCTGCT TGATGTGA 48
配列番号:30:
(i) 配列の特徴:
(A) 配列の長さ: 42
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
CTCTCATCTG CTAGCACGCT CGAATAGTGT CAGTCGATGT GA 42
配列番号:31:
(i) 配列の特徴:
(A) 配列の長さ: 40
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
TACAGCGATT CACCCTTGTT TAAGGGTTAC ACCCATGTTA 40
配列番号:32:
(i) 配列の特徴:
(A) 配列の長さ: 40
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
ATCAGCGATT AACGCTTGTT TCAATGTTAC ACCCATGTTA 40
配列番号:33:
(i) 配列の特徴:
(A) 配列の長さ: 40
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
TTCAGCGATT AACGCTTATT TTAGCGTTAC ACCCATGTTA 40
配列番号:34:
(i) 配列の特徴:
(A) 配列の長さ: 40
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
ATCAGCGATT CACCCTTGTT TTAAGGTTGC ACCCATGTTA 40
配列番号:35:
(i) 配列の特徴:
(A) 配列の長さ: 40
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
ATCAGCGATT CACCCTTGTT TAAGCGTTAC ACCCATGTTG 40
配列番号:36:
(i) 配列の特徴:
(A) 配列の長さ: 40
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
ATCAGCGATT CACCCTTGTT TTAAGGTTAC ACCCATGTTA 40
配列番号:37:
(i) 配列の特徴:
(A) 配列の長さ: 40
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
ATCAGCGATT AACGCTTATT TTAGCGTTAC ACCCATGTTA 40
配列番号:38:
(i) 配列の特徴:
(A) 配列の長さ: 40
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
ATCAGCGATT AACGCTTGTT TTAGTGTTGC ACCCATGTTA 40
配列番号:39:
(i) 配列の特徴:
(A) 配列の長さ: 40
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
ATCAGCGATT AACGCTTATT TTAGCATTAC ACCCATGTTA 40
配列番号:40:
(i) 配列の特徴:
(A) 配列の長さ: 10
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
GCCATGCTTT 10
配列番号:41:
(i) 配列の特徴:
(A) 配列の長さ: 10
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
CTCTATTTCT 10
配列番号:42:
(i) 配列の特徴:
(A) 配列の長さ: 12
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
TATGTGACGC TA 12
配列番号:43:
(i) 配列の特徴:
(A) 配列の長さ: 10
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
TATAGTCGTA 10
配列番号:44:
(i) 配列の特徴:
(A) 配列の長さ: 11
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
ATAGCGTATT A 11
配列番号:45:
(i) 配列の特徴:
(A) 配列の長さ: 13
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
ATAGTTACGT CAT 13
配列番号:46:
(i) 配列の特徴:
(A) 配列の長さ: 14
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
AATAGTGAAG TGTT 14
配列番号:47:
(i) 配列の特徴:
(A) 配列の長さ: 11
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
ATAGGCCCGG T 11
配列番号:48:
(i) 配列の特徴:
(A) 配列の長さ: 14
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(xi) 配列:
AATAGTGAGG CTTG 14
配列番号:49:
(i) 配列の特徴:
(A) 配列の長さ: 12
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic RNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
GUAACUAGAG AU 12
配列番号:50:
(i) 配列の特徴:
(A) 配列の長さ: 98
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(ix) 配列の特徴:
(A) 特徴を表す記号: 雑多な特徴(misc_feature)
(B) 存在位置: 7..18
(D) 他の情報: 注意=部位7〜18はRNAであり、残りはDNAである。
(xi) 配列:
GGAAAAGUAA CUAGAGAUGG AAGAGATGGC GACNNNNNNN NNNNNNNNNN NNNNNNNNNN 60
NNNNNNNNNN NNNNNNNNNN NNNCGGTAAG CTTGGCAC 98
配列番号:51:
(i) 配列の特徴:
(A) 配列の長さ: 99
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(ix) 配列の特徴:
(A) 特徴を表す記号: 雑多な特徴(misc_feature)
(B) 存在位置: 1..24
(D) 他の情報: 注意=部位1〜24はRNAであり、残りはDNAである。
(xi) 配列:
GGAAAAAGUA ACUAGAGAUG GAAGAGATGG CGACNNNNNN NNNNNNNNNN NNNNNNNNNN 60
NNNNNNNNNN NNNNNNNNNN NNNNCGGTAA GCTTGGCAC 99
配列番号:52:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CCAATAGTGC TACTGTGTAT CTCAATGCTG GAAACACGGG TTATCTCCCG 50
配列番号:53:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CCAAAACAGT GGAGCATTAT ATCTACTCCA CAAAGACCAC TTTTCTCCCG 50
配列番号:54:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
ATCCGTACTA GCATGCAGAC AGTCTGTCTG CTTTTTCATT ACTCACTCCC 50
配列番号:55:
(i) 配列の特徴:
(A) 配列の長さ: 49
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CAATTCATGA TGACCAACTC TGTCAACACG CGAACTTTTA ACACTGGCA 49
配列番号:56:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CTTCCACCTT CCGAGCCGGA CGAAGTTACT TTTTATCACA CTACGTATTG 50
配列番号:57:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
GGCAAGAGAT GGCATATATT CAGGTAACTG TGGAGATACC CTGTCTGCCA 50
配列番号:58:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CTAGACCATT CACGTTTACC AAGCTATGGT AAGAACTAGA ATCACGCGTA 50
配列番号:59:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CGTACACGTG GAAAAGCTAT AAGTCAAGTT CTCATCATGT ACCTGACCGC 50
配列番号:60:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CAGTGATACA TGAGTGCACC GCTACGACTA AGTCTGTAAC TTATTCTACC 50
配列番号:61:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
ACCGAATTAA ACTACCGAAT AGTGTGGTTT CTATGCTTCT TCTTCCCTGA 50
配列番号:62:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CAGGTAGATA TAATGCGTCA CCGTGCTTAC ACTCGTTTTA TTAGTATGTC 50
配列番号:63:
(i) 配列の特徴:
(A) 配列の長さ: 49
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CCCTACAACA CCACTGGGCC CAATTAGATT AACGCTATTT TATAACTCG 49
配列番号:64:
(i) 配列の特徴:
(A) 配列の長さ: 49
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CCAAACGGTT ATAAGACTGA AAACTCAATC AATAGCCCAA TCCTCGCCC 49
配列番号:65:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CACATGTATA CCTAAGAAAT TGGTCCCGTA GACGTCACAG ACTTACGCCA 50
配列番号:66:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CACAACGAAA ACAATCTTCC TTGGCATACT GGGGAGAAAG TCTGTTGTCC 50
配列番号:67:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CACACGAACA TGTCCATTAA ATGGCATTCC GTTTTTCGTT CTACATATGC 50
配列番号:68:
(i) 配列の特徴:
(A) 配列の長さ: 49
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CAGAACGAGG GTCTTGTAAG ACTACACCTC CTCAGTGACA ATAATCCTG 49
配列番号:69:
(i) 配列の特徴:
(A) 配列の長さ: 49
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CACTACAGCC TGATATATAT GAAGAACAGG CAACAAGCTT ATGCACTGG 49
配列番号:70:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
GGGTACATTT ATGATTCTCT TATAAAGAGA ATATCGTACT CTTTTCCCCA 50
配列番号:71:
(i) 配列の特徴:
(A) 配列の長さ: 49
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CCAAAGTACA TTCCAACCCC TTATACGTGA AACTTCCAGT AGTTTCCTA 49
配列番号:72:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CTTGAAGATC CTCATAAGAC GATTAAACAA TCCACTGGAT ATAATCCGGA 50
配列番号:73:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CGAATAGTGT CCATGATTAC ACCAATAACT GCCTGCCTAT CATGTTTATG 50
配列番号:74:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CCAAGAGAGT ATCGGATACA CTTGGAACAT AGCTAACTCG AACTGTACCA 50
配列番号:75:
(i) 配列の特徴:
(A) 配列の長さ: 48
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CCACTGATAA ATAGGTAACT GTCTCATATC TGCCAATCAT ATGCCGTA 48
配列番号:76:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CCCAAATTAT AAACAATTTA ACACAAGCAA AAGGAGGTTC ATTGCTCCGC 50
配列番号:77:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CAATAAACTG GTGCTAAACC TAATACCTTG TATCCAAGTT ATCCTCCCCC 50
配列番号:78:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CCGAATGACA TCCGTAGTGG AACCTTGCTT TTGACACTAA GAAGCTACAC 50
配列番号:79:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CCATAACAAA TACCATAGTA AAGATCTGCA TTATATTATA TCGGTCCACC 50
配列番号:80:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CAGAACAAAG ATCAGTAGCT AAACATATGG TACAAACATA CCATCTCGCA 50
配列番号:81:
(i) 配列の特徴:
(A) 配列の長さ: 49
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CCTTTAGTTA GGCTAGCTAC AACGATTTTT CCCTGCTTGG CAACGACAC 49
配列番号:82:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CTCCCTACGT TACACCAGCG GTACGAATTT TCCACGAGAG GTAATCCGCA 50
配列番号:83:
(i) 配列の特徴:
(A) 配列の長さ: 36
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CGGCACCTCT AGTTAGACAC TCCGGAATTT TTCCCC 36
配列番号:84:
(i) 配列の特徴:
(A) 配列の長さ: 49
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CGGCACCTCT AGTTAGACAC TCCGGAATTT TAGCCTACCA TAGTCCGGT 49
配列番号:85:
(i) 配列の特徴:
(A) 配列の長さ: 47
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CCCTTTGGTT AGGCTAGCTA CAACGATTTT TCCCTGCTTG AATTGTA 47
配列番号:86:
(i) 配列の特徴:
(A) 配列の長さ: 51
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CCCTTTGGTT AGGCTAGCTA CAACGATTTT TCCCTGCTTG ACCTGTTACG A 51
配列番号:87:
(i) 配列の特徴:
(A) 配列の長さ: 48
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CCTTTAGTTA GGCTAGCTAC AACGATTTTT CCCTGCTTGG AACGACAC 48
配列番号:88:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CATGGCTTAA TCATCCTCAA TAGAAGACTA CAAGTCGAAT ATGTCCCCCC 50
配列番号:89:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CAACAGAGCG AGTATCACCC CCTGTCAATA GTCGTATGAA ACATTGGGCC 50
配列番号:90:
(i) 配列の特徴:
(A) 配列の長さ: 49
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
TACCGACAAG GGGAATTAAA AGCTAGCTGG TTATGCAACC CTTTTCGCA 49
配列番号:91:
(i) 配列の特徴:
(A) 配列の長さ: 49
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CTCGAAACAG TGATATTCTG AACAAACGGG TACTACGTGT TCAGCCCCC 49
配列番号:92:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CCAATAACGT AACCCGGTTA GATAAGCACT TAGCTAAGAT GTTTATCCTG 50
配列番号:93:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CAATACAATC GGTACGAATC CAGAAACATA ACGTTGTTTC AGAATGGTCC 50
配列番号:94:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
GCAACAACAA GAACCAAGTT ACATACACGT TCATCTATAC TGAACCCCCA 50
配列番号:95:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CCTTTGAGTT CCTAAATGCC GCACGGTAAG CTTGGCACAC TTTGACTGTA 50
配列番号:96:
(i) 配列の特徴:
(A) 配列の長さ: 49
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CAAAGATCTC ACTTTGGAAA TGCGAAATAT GTATATTCGC CCTGTCTGC 49
配列番号:97:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CCACGTAGAA TTATCTGATT TATAACATAA CGCAGGATAA CTCTCGCCCA 50
配列番号:98:
(i) 配列の特徴:
(A) 配列の長さ: 48
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CACAAGAAAG TGTCGTCTCC AGATATTTGA GTACAAGGAA CTACGCCC 48
配列番号:99:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CATGAAGAAA TAGGACATTC TACAGGCTGG ACCGTTACTA TGCCTGTAGG 50
配列番号:100:
(i) 配列の特徴:
(A) 配列の長さ: 46
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CATAGGATAA TCATGGCGAT GCTTATGACG TGTACATCTA TACCTT 46
配列番号:101:
(i) 配列の特徴:
(A) 配列の長さ: 50
(B) 配列の型: 核酸
(C) 鎖の数: 一本鎖
(D) トポロジー: 直鎖状
(ii) 配列の種類: Genomic DNA
(iii) ハイポセティカル: NO
(iv) アンチセンス: NO
(xi) 配列:
CAGATGATCT TCCTTTAAAG ACTACCCTTT AAAGAAACAT AAGGTACCCC 50
Claims (7)
- 部位特異的エンドヌクレアーゼ活性をもつDNA触媒分子。
- DNA触媒分子の各集団が基質内の異なるヌクレオチド配列を切断することができる請求項1記載のDNA触媒分子の2集団以上を含む組成物。
- DNA触媒分子の各集団が、異なる基質を認識することができる請求項1記載のDNA触媒分子の2集団以上を含む組成物。
- 下記の工程を含む、基質核酸配列を特定部位で切断するDNA触媒分子の選択方法。
a.一本鎖DNA分子の集団を得る工程;
b.ヌクレオチド含有基質分子と前記一本鎖DNA分子の集団とを混合して混合物をつくる工程;
c.前記集団内の一本鎖DNA分子が前記基質配列の切断を引き起こすのに十分な時間及び所定の反応条件下に前記混合物を維持して基質切断産物を作製する工程;
d.前記一本鎖DNA分子の集団を前記基質配列と基質切断産物から分離する工程;及び e.ヌクレオチド含有基質を特定部位で切断する一本鎖DNA分子を前記集団から単離する工程。 - 下記の工程を含むホスホエステル結合の切断方法。
a.基質核酸配列を特定切断部位で切断することができるDNA触媒分子とホスホエステル結合含有基質とを混合して反応混合物をつくる工程;及び
b.前記混合物を、前記DNA触媒分子が前記ホスホエステル結合を切断することができる所定の反応条件下に維持して基質産物の集団を作製する工程。 - 下記の工程を含む、ホスホエステル結合を切断するDNA触媒分子の操作方法。
a.一本鎖DNA分子の集団を得る工程;
b.遺伝的変異を前記集団内に導入して変異集団を作製する工程;
c.前記変異集団から所定の選択基準を満たす個体を選択する工程;
d.前記変異集団の残りから前記選択個体を分離する工程;及び
e.前記選択個体を増幅する工程。 - 1以上の認識ドメイン、可変領域、及びスペーサー領域が隣接した保存コアを特定するヌクレオチド配列を含む天然に存在しないDNA触媒分子。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US34902394A | 1994-12-02 | 1994-12-02 | |
US08/472,194 US5807718A (en) | 1994-12-02 | 1995-06-07 | Enzymatic DNA molecules |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005368510A Division JP2006136333A (ja) | 1994-12-02 | 2005-12-21 | Dna触媒分子 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007105047A true JP2007105047A (ja) | 2007-04-26 |
Family
ID=26996004
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51906796A Expired - Lifetime JP4001624B2 (ja) | 1994-12-02 | 1995-12-01 | Dna酵素分子 |
JP2005368510A Pending JP2006136333A (ja) | 1994-12-02 | 2005-12-21 | Dna触媒分子 |
JP2006310077A Pending JP2007105047A (ja) | 1994-12-02 | 2006-11-16 | Dna触媒分子 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51906796A Expired - Lifetime JP4001624B2 (ja) | 1994-12-02 | 1995-12-01 | Dna酵素分子 |
JP2005368510A Pending JP2006136333A (ja) | 1994-12-02 | 2005-12-21 | Dna触媒分子 |
Country Status (16)
Country | Link |
---|---|
US (2) | US5807718A (ja) |
EP (2) | EP0792375B9 (ja) |
JP (3) | JP4001624B2 (ja) |
CN (1) | CN1254547C (ja) |
AT (1) | ATE319854T1 (ja) |
AU (1) | AU710747B2 (ja) |
BR (1) | BR9510003B1 (ja) |
CA (1) | CA2205382C (ja) |
DE (1) | DE69534855T2 (ja) |
ES (1) | ES2260766T3 (ja) |
FI (1) | FI972333A (ja) |
HU (1) | HU224898B1 (ja) |
NO (1) | NO972483L (ja) |
RO (1) | RO120410B1 (ja) |
RU (1) | RU2220204C2 (ja) |
WO (1) | WO1996017086A1 (ja) |
Families Citing this family (264)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6030776A (en) * | 1990-06-11 | 2000-02-29 | Nexstar Pharmaceuticals, Inc. | Parallel SELEX |
US5723289A (en) * | 1990-06-11 | 1998-03-03 | Nexstar Pharmaceuticals, Inc. | Parallel selex |
US20030125270A1 (en) * | 2000-12-18 | 2003-07-03 | Lawrence Blatt | Enzymatic nucleic acid treatment of diseases or conditions related to hepatitis C virus infection |
US20040127446A1 (en) * | 1992-05-14 | 2004-07-01 | Lawrence Blatt | Oligonucleotide mediated inhibition of hepatitis B virus and hepatitis C virus replication |
US20070160581A1 (en) * | 1994-04-29 | 2007-07-12 | Cytogenix, Inc. | Production of ssDNA in vivo |
US6048698A (en) * | 1994-09-20 | 2000-04-11 | Nexstar Pharmaceuticals, Inc. | Parallel SELEX™ |
GB9519299D0 (en) * | 1995-09-21 | 1995-11-22 | Farrar Gwyneth J | Genetic strategy |
US20040142895A1 (en) * | 1995-10-26 | 2004-07-22 | Sirna Therapeutics, Inc. | Nucleic acid-based modulation of gene expression in the vascular endothelial growth factor pathway |
US20040102389A1 (en) * | 1995-10-26 | 2004-05-27 | Ribozyme Pharmaceuticals, Inc. | Nucleic acid-mediated treatment of diseases or conditions related to levels of vascular endothelial growth factor receptor (VEGF-R) |
US20040220128A1 (en) * | 1995-10-26 | 2004-11-04 | Sirna Therapeutics, Inc. | Nucleic acid based modulation of female reproductive diseases and conditions |
US20030069195A1 (en) * | 1996-03-01 | 2003-04-10 | Farrar Gwenyth Jane | Suppression of polymorphic alleles |
US20040234999A1 (en) * | 1996-04-02 | 2004-11-25 | Farrar Gwenyth Jane | Genetic suppression and replacement |
US8551970B2 (en) | 1996-04-02 | 2013-10-08 | Optigen Patents Limited | Genetic suppression and replacement |
GB9606961D0 (en) * | 1996-04-02 | 1996-06-05 | Farrar Gwyneth J | Genetic strategy III |
GB9608540D0 (en) * | 1996-04-25 | 1996-07-03 | Medical Res Council | Isolation of enzymes |
DE69735684T2 (de) * | 1996-08-26 | 2007-04-05 | Genetico Ltd. | Katalytische Nukleinsäure und deren medizinische Verwendung |
EP0958303A4 (en) * | 1996-12-19 | 2004-03-31 | Univ Yale | BIOREACTIVE ALLOSTERIC POLYNUCLEOTIDES |
US6057156A (en) * | 1997-01-31 | 2000-05-02 | Robozyme Pharmaceuticals, Inc. | Enzymatic nucleic acid treatment of diseases or conditions related to levels of epidermal growth factor receptors |
IL120714A0 (en) * | 1997-04-21 | 1997-08-14 | Intelligene Ltd | Continuous in vitro evolution of oligonucleotides |
AU735522C (en) | 1997-04-29 | 2005-04-07 | Scripps Research Institute, The | Enzymatic dna molecules |
CA2304813A1 (en) * | 1997-09-22 | 1999-04-08 | Fritz Eckstein | Nucleic acid catalysts with endonuclease activity |
IL164182A0 (en) * | 1998-03-05 | 2005-12-18 | Johnson & Johnson Res Pty Ltd | Zymogenic nucleic acid detection methods, and related molecules and kits |
AU763135B2 (en) * | 1998-03-27 | 2003-07-17 | Johnson & Johnson Research Pty. Limited | Catalytic nucleic acid-based diagnostic methods |
AU3751299A (en) | 1998-04-20 | 1999-11-08 | Ribozyme Pharmaceuticals, Inc. | Nucleic acid molecules with novel chemical compositions capable of modulating gene expression |
US6525185B1 (en) | 1998-05-07 | 2003-02-25 | Affymetrix, Inc. | Polymorphisms associated with hypertension |
WO2000009673A1 (en) * | 1998-08-13 | 2000-02-24 | Johnson & Johnson Research Pty. Limited | Dnazymes and methods for treating hpv-related disorders |
CN1323344A (zh) * | 1998-08-13 | 2001-11-21 | 庄臣及庄臣研究股份有限公司 | 治疗再狭窄的DNAzyme和方法 |
JP2003523166A (ja) | 1998-09-29 | 2003-08-05 | ガミダ セル リミテッド | 幹細胞および前駆細胞の増殖と分化を制御する方法 |
AUPP810399A0 (en) * | 1999-01-11 | 1999-02-04 | Unisearch Limited | Catalytic molecules |
US20040235107A1 (en) * | 1999-01-29 | 2004-11-25 | Ramot At Tel Aviv University Ltd. | Biosynthesis of TA antibiotic |
DE19915141C2 (de) * | 1999-03-26 | 2002-11-21 | Artus Ges Fuer Molekularbiolog | Detektion von Nucleinsäure-Amplifikaten |
JP2002541822A (ja) * | 1999-04-14 | 2002-12-10 | エム ユー エス シー ファンデーション フォー リサーチ ディベロップメント | 組織特異的および病原体特異的毒性物質ならびにリボザイム |
IL130606A0 (en) * | 1999-06-23 | 2000-06-01 | Intelligene Ltd | An array of nucleic acid sequence |
AUPQ201499A0 (en) * | 1999-08-04 | 1999-08-26 | Unisearch Limited | Treatment of inflammatory and malignant diseases |
US20030190644A1 (en) | 1999-10-13 | 2003-10-09 | Andreas Braun | Methods for generating databases and databases for identifying polymorphic genetic markers |
AUPQ367699A0 (en) * | 1999-10-26 | 1999-11-18 | Unisearch Limited | Treatment of cancer |
US6613516B1 (en) * | 1999-10-30 | 2003-09-02 | Affymetrix, Inc. | Preparation of nucleic acid samples |
WO2001049709A1 (en) * | 2000-01-03 | 2001-07-12 | Ramot University Authority For Applied Research & Industrial Development Ltd. | Glycogen synthase kinase-3 inhibitors |
WO2001062983A1 (en) * | 2000-02-24 | 2001-08-30 | Phylos, Inc. | Improved methods for generating catalytic proteins |
US20040009510A1 (en) * | 2000-03-06 | 2004-01-15 | Scott Seiwert | Allosteric nucleic acid sensor molecules |
US20020102694A1 (en) * | 2000-03-31 | 2002-08-01 | Ronald Breaker | Nucleozymes with endonuclease activity |
EP1702983A3 (en) | 2000-04-13 | 2007-01-10 | Medical University of South Carolina | Tissue-specific and pathogen-specific toxic agents, ribozymes, DNAzymes and antisense oligonucleotides and methods of use thereof |
US6706474B1 (en) * | 2000-06-27 | 2004-03-16 | Board Of Trustees Of The University Of Illinois | Nucleic acid enzyme biosensors for ions |
US20040037828A1 (en) | 2002-07-09 | 2004-02-26 | Bar-Ilan University | Methods and pharmaceutical compositions for healing wounds |
US20030114410A1 (en) | 2000-08-08 | 2003-06-19 | Technion Research And Development Foundation Ltd. | Pharmaceutical compositions and methods useful for modulating angiogenesis and inhibiting metastasis and tumor fibrosis |
US8568766B2 (en) | 2000-08-24 | 2013-10-29 | Gattadahalli M. Anantharamaiah | Peptides and peptide mimetics to treat pathologies associated with eye disease |
US7312325B2 (en) | 2000-09-26 | 2007-12-25 | Duke University | RNA aptamers and methods for identifying the same |
EP1326892A2 (en) | 2000-10-12 | 2003-07-16 | University of Rochester | Compositions that inhibit proliferation of cancer cells |
CA2442092A1 (en) * | 2001-03-26 | 2002-10-17 | Ribozyme Pharmaceuticals, Inc. | Oligonucleotide mediated inhibition of hepatitis b virus and hepatitis c virus replication |
US20040063922A1 (en) * | 2001-04-17 | 2004-04-01 | Conrad Charles A. | Methods and compositions for catalytic DNA exchange in a sequence specific manner |
US20050080031A1 (en) * | 2001-05-18 | 2005-04-14 | Sirna Therapeutics, Inc. | Nucleic acid treatment of diseases or conditions related to levels of Ras, HER2 and HIV |
US20050267058A1 (en) * | 2001-05-18 | 2005-12-01 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of placental growth factor gene expression using short interfering nucleic acid (sINA) |
US20050288242A1 (en) * | 2001-05-18 | 2005-12-29 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of RAS gene expression using short interfering nucleic acid (siNA) |
US20040006035A1 (en) * | 2001-05-29 | 2004-01-08 | Dennis Macejak | Nucleic acid mediated disruption of HIV fusogenic peptide interactions |
US20040198682A1 (en) * | 2001-11-30 | 2004-10-07 | Mcswiggen James | RNA interference mediated inhibition of placental growth factor gene expression using short interfering nucleic acid (siNA) |
DK2070939T3 (da) * | 2001-05-25 | 2014-06-23 | Univ Duke | Modulatorer af farmakologiske midler |
EP1390472A4 (en) * | 2001-05-29 | 2004-11-17 | Sirna Therapeutics Inc | NUCLEIC ACID TREATMENT OF DISEASES OR SIDES RELATED TO RAS, HER2 AND HIV LEVELS |
US7378432B2 (en) * | 2001-09-14 | 2008-05-27 | Tel Aviv University Future Technology Development L.P. | Glycogen synthase kinase-3 inhibitors |
US7179907B2 (en) | 2001-12-18 | 2007-02-20 | Bruce Eaton | Antibiotic compounds |
IL152904A0 (en) | 2002-01-24 | 2003-06-24 | Gamida Cell Ltd | Utilization of retinoid and vitamin d receptor antagonists for expansion of renewable stem cell populations |
EP1465982A4 (en) | 2002-01-25 | 2006-06-07 | Gamida Cell Ltd | PROCESS FOR EXPANSION OF STEM AND PRESERVATIVE CELLS AND EXPANDED CELL POPULATIONS THEREWITH OBTAINED |
US7781396B2 (en) | 2002-01-31 | 2010-08-24 | Tel Aviv University Future Technology Development L.P. | Peptides directed for diagnosis and treatment of amyloid-associated disease |
US20040052928A1 (en) * | 2002-09-06 | 2004-03-18 | Ehud Gazit | Peptides and methods using same for diagnosing and treating amyloid-associated diseases |
JP2005532263A (ja) | 2002-02-06 | 2005-10-27 | ヴァイコー テクノロジーズ, インコーポレイテッド | 抗梗塞分子 |
US7071311B2 (en) * | 2002-02-13 | 2006-07-04 | Sirna Therapeutics, Inc. | Antibodies having specificity for 2′-C-allyl nucleic acids |
US20050042632A1 (en) * | 2002-02-13 | 2005-02-24 | Sirna Therapeutics, Inc. | Antibodies having specificity for nucleic acids |
US7910710B2 (en) | 2002-02-15 | 2011-03-22 | Mcmaster University | DNA enzymes |
WO2003106476A1 (en) * | 2002-02-20 | 2003-12-24 | Sirna Therapeutics, Inc | Nucleic acid mediated inhibition of enterococcus infection and cytolysin toxin activity |
AU2003222030A1 (en) * | 2002-03-18 | 2003-10-08 | The Government Of The United States Of America, Asrepresented By The Secretary, Department Of Health | Regulation of ins(3456)p4 signalling by a reversible kinase/phosphatase and methods and compositions related thereto |
US6890719B2 (en) * | 2002-05-10 | 2005-05-10 | The Board Of Trustess Of The University Of Illinois | Fluorescence based biosensor |
US7534560B2 (en) * | 2002-05-10 | 2009-05-19 | The Board Of Trustees Of The University Of Illinois | Simple catalytic DNA biosensors for ions based on color changes |
US20030224435A1 (en) * | 2002-05-16 | 2003-12-04 | Scott Seiwert | Detection of abused substances and their metabolites using nucleic acid sensor molecules |
AU2003231912A1 (en) * | 2002-06-12 | 2003-12-31 | Tel Aviv Medical Center Research Development Fund | Methods of detecting and treating prostate cancer |
JP2005537028A (ja) * | 2002-06-26 | 2005-12-08 | ザ ペン ステート リサーチ ファウンデーション | ヒト乳頭腫ウイルス感染症を治療する方法及び材料 |
JP2005533862A (ja) | 2002-07-25 | 2005-11-10 | アーケミックス コーポレイション | 調節されたアプタマー治療剤 |
AU2003257181A1 (en) | 2002-08-05 | 2004-02-23 | University Of Rochester | Protein transducing domain/deaminase chimeric proteins, related compounds, and uses thereof |
WO2004027035A2 (en) * | 2002-09-20 | 2004-04-01 | Yale University | Riboswitches, methods for their use, and compositions for use with riboswitches. |
WO2004041197A2 (en) * | 2002-11-01 | 2004-05-21 | Case Western Reserve University | Methods of inhibiting glial scar formation |
CN1774511B (zh) | 2002-11-27 | 2013-08-21 | 斯昆诺有限公司 | 用于序列变异检测和发现的基于断裂的方法和系统 |
US7491699B2 (en) * | 2002-12-09 | 2009-02-17 | Ramot At Tel Aviv University Ltd. | Peptide nanostructures and methods of generating and using the same |
JP2006514104A (ja) | 2002-12-12 | 2006-04-27 | テル アヴィヴ ユニヴァーシティ フューチャー テクノロジー ディヴェロップメント エル.ピー. | グリコーゲンシンターゼキナーゼ−3阻害剤 |
ATE426575T1 (de) | 2003-01-07 | 2009-04-15 | Univ Ramot | Peptidenanostrukturen die fremdmaterial enthalten,und verfahren zur herstellung derselben |
US20060241130A1 (en) * | 2003-01-31 | 2006-10-26 | Ehud Keinan | Anti-inflammatory compositions and uses thereof |
US7786279B2 (en) | 2003-02-27 | 2010-08-31 | Yeda Research And Development Co. Ltd. | Nucleic acid molecules, polypeptides, antibodies and compositions for treating and detecting influenza virus infection |
CA2517591A1 (en) * | 2003-03-07 | 2004-09-16 | Mcmaster University | Ph dependent signaling dna enzymes |
US7612185B2 (en) * | 2003-03-07 | 2009-11-03 | The Board Of Trustees Of The University Of Illinois | Nucleic acid biosensors |
US20040248101A1 (en) * | 2003-06-03 | 2004-12-09 | Cytogenix, Inc. | Identification of novel antibacteria agents by screening the single-stranded DNA expression library |
US20050020526A1 (en) * | 2003-06-03 | 2005-01-27 | Cytogenix, Inc. | Oligodeoxynucleotide intervention for prevention and treatment of sepsis |
EP1636333A4 (en) * | 2003-06-19 | 2007-10-24 | Evogene Ltd | NUCLEOTIDE SEQUENCES FOR REGULATING GENE EXPRESSION IN VEGETABLE TRICHROMES, AND HYBRID GENES AND METHODS IN WHICH THEY INTERVENE |
US8129514B2 (en) | 2003-06-19 | 2012-03-06 | Evogene Ltd. | Nucleotide sequences for regulating gene expression in plant trichomes and constructs and methods utilizing same |
IL161903A0 (en) * | 2003-07-17 | 2005-11-20 | Gamida Cell Ltd | Ex vivo progenitor and stem cell expansion for usein the treatment of disease of endodermally- deri ved organs |
US20050042212A1 (en) * | 2003-07-24 | 2005-02-24 | Nanda Steven A. | Method of reducing CRF receptor mRNA |
US9394565B2 (en) | 2003-09-05 | 2016-07-19 | Agena Bioscience, Inc. | Allele-specific sequence variation analysis |
WO2005027901A1 (en) * | 2003-09-25 | 2005-03-31 | Tel Aviv University Future Technology Development L.P. | Compositions and methods using same for treating amyloid-associated diseases |
US7625707B2 (en) * | 2003-10-02 | 2009-12-01 | Ramot At Tel Aviv University Ltd. | Antibacterial agents and methods of identifying and utilizing same |
IL158599A0 (en) * | 2003-10-26 | 2004-05-12 | Yeda Res & Dev | Methods of modulating hematopoiesis |
US7485419B2 (en) * | 2004-01-13 | 2009-02-03 | The Board Of Trustees Of The University Of Illinois | Biosensors based on directed assembly of particles |
GB0402249D0 (en) | 2004-02-02 | 2004-03-03 | Idi Technologies Ltd | Brush |
WO2005078848A2 (en) * | 2004-02-11 | 2005-08-25 | University Of Tennessee Research Foundation | Inhibition of tumor growth and invasion by anti-matrix metalloproteinase dnazymes |
US9249456B2 (en) | 2004-03-26 | 2016-02-02 | Agena Bioscience, Inc. | Base specific cleavage of methylation-specific amplification products in combination with mass analysis |
JP4718541B2 (ja) * | 2004-04-22 | 2011-07-06 | リガド・バイオサイエンシーズ・インコーポレーテツド | 改良された凝固因子調節剤 |
WO2006013552A2 (en) | 2004-08-02 | 2006-02-09 | Ramot At Tel Aviv University Ltd. | Articles of peptide nanostructures and method of forming the same |
WO2006018850A2 (en) | 2004-08-19 | 2006-02-23 | Tel Aviv University Future Technology Development L.P. | Compositions for treating amyloid associated diseases |
US7786086B2 (en) * | 2004-09-08 | 2010-08-31 | Ramot At Tel-Aviv University Ltd. | Peptide nanostructures containing end-capping modified peptides and methods of generating and using the same |
WO2006030442A2 (en) | 2004-09-16 | 2006-03-23 | Gamida-Cell Ltd. | Methods of ex vivo progenitor and stem cell expansion by co-culture with mesenchymal cells |
US20060094026A1 (en) * | 2004-11-03 | 2006-05-04 | Yi Lu | Nucleic acid enzyme light-up sensor utilizing invasive DNA |
EP1812582A4 (en) * | 2004-11-04 | 2013-03-20 | Univ New Jersey Med | PRODUCTION OF A SINGLE PROTEIN IN LIVING CELLS FACILITATED BY A MESSENGER RNA INTERFERASE |
WO2006050999A2 (en) * | 2004-11-15 | 2006-05-18 | Obe Therapy Biotechnology S.A.S | Methods of reducing body fat |
US20060166222A1 (en) * | 2005-01-21 | 2006-07-27 | Yi Lu | Nucleic acid enzyme ligation sensor |
JP5562521B2 (ja) | 2005-02-02 | 2014-07-30 | ザ ユーエービー リサーチ ファンデーション | アポトーシス誘導デスレセプターアゴニストに対する抵抗性を低減することに関する薬剤及び方法 |
CN107033243B (zh) | 2005-03-23 | 2020-12-15 | 根马布股份公司 | 用于治疗多发性骨髓瘤的cd38抗体 |
US20070072205A1 (en) * | 2005-06-09 | 2007-03-29 | Yi Lu | Nanomaterial error correction |
US20070225242A1 (en) * | 2005-06-21 | 2007-09-27 | The Board Of Trustees Of The Leland Stanford Junior University | Method and composition for treating and preventing tumor metastasis in vivo |
CA2614531C (en) | 2005-07-07 | 2015-06-16 | Avraham Hochberg | Nucleic acid agents for downregulating h19, and methods of using same |
US20090239933A1 (en) * | 2005-08-01 | 2009-09-24 | Carolina Alfieri | Hepatitis c antivirals |
US7892734B2 (en) * | 2005-08-11 | 2011-02-22 | The Board Of Trustees Of The University Of Illinois | Aptamer based colorimetric sensor systems |
LT2578685T (lt) | 2005-08-23 | 2019-06-10 | The Trustees Of The University Of Pennsylvania | Rnr, apimančios modifikuotus nukleozidus ir jų panaudojimo būdai |
WO2007044607A2 (en) * | 2005-10-06 | 2007-04-19 | Emthrax, Llc | Methods and compositions relating to anthrax spore glycoproteins as vaccines |
BRPI0616466B1 (pt) | 2005-10-07 | 2021-01-26 | Johnson & Johnson Research Pty Limited | composição de enzimas de ácido nucleico multicomponentes (mnazima), métodos para detectar a presença de pelo menos um facilitador de combinação, um alvo e uma variante de sequência de ácidos nucléicos, métodos para fabricar uma pluraridade de mnazima, testar sequências de núcleo catalítico parcial e identificar suas posições, bem como uso de pelo menos um oligonucleotídeo |
EP1973928A2 (en) | 2005-10-11 | 2008-10-01 | Ramot at Tel-Aviv University Ltd. | Self-assembled fmoc-ff hydrogels |
US8093369B2 (en) * | 2005-10-11 | 2012-01-10 | Ben Gurion University Of The Negev Research And Development Authority Ltd. | Compositions for silencing the expression of VDAC1 and uses thereof |
US8080534B2 (en) | 2005-10-14 | 2011-12-20 | Phigenix, Inc | Targeting PAX2 for the treatment of breast cancer |
AU2006304321B2 (en) | 2005-10-14 | 2012-10-04 | Musc Foundation For Research Development | Targeting PAX2 for the induction of DEFB1-mediated tumor immunity and cancer therapy |
US7879212B2 (en) * | 2005-11-03 | 2011-02-01 | Ramot At Tel-Aviv University Ltd. | Peptide nanostructure-coated electrodes |
US8846393B2 (en) | 2005-11-29 | 2014-09-30 | Gamida-Cell Ltd. | Methods of improving stem cell homing and engraftment |
WO2007100412A2 (en) * | 2005-12-21 | 2007-09-07 | Yale University | Methods and compositions related to the modulation of riboswitches |
CN100562342C (zh) * | 2006-01-17 | 2009-11-25 | 奥林格斯技术有限公司 | 防治流感病毒感染的寡核苷酸药物 |
US7799554B2 (en) * | 2006-03-16 | 2010-09-21 | The Board Of Trustees Of The University Of Illinois | Lateral flow devices |
US8097596B2 (en) * | 2006-06-30 | 2012-01-17 | Lakewood-Amedex, Inc. | Compositions and methods for the treatment of muscle wasting |
US20100137440A1 (en) * | 2006-09-11 | 2010-06-03 | Yale University | Lysine riboswitches, structure-based compound design with lysine riboswitches, and methods and compositions for use of and with lysine riboswitches |
CA2981308C (en) | 2006-09-21 | 2020-12-22 | University Of Rochester | Compositions and methods related to protein displacement therapy for myotonic dystrophy |
DK2066817T3 (da) * | 2006-10-06 | 2014-10-13 | Speedx Pty Ltd | Molekylære afbrydere og fremgangsmåder til anvendelse deraf |
WO2008136852A2 (en) | 2006-11-01 | 2008-11-13 | University Of Rochester | Methods and compositions related to the structure and function of apobec3g |
US9279127B2 (en) | 2006-11-01 | 2016-03-08 | The Medical Research Fund At The Tel-Aviv Sourasky Medical Center | Adipocyte-specific constructs and methods for inhibiting platelet-type 12 lipoxygenase expression |
JP2010512327A (ja) | 2006-12-11 | 2010-04-22 | ユニヴァーシティー オブ ユタ リサーチ ファウンデーション | 病的血管形成および脈管透過性の処置用の組成物および方法 |
EP2111449B1 (en) * | 2007-01-16 | 2012-03-07 | Yissum Research Development Company of the Hebrew University of Jerusalem | H19 silencing nucleic acid agents for treating rheumatoid arthritis |
US8415461B2 (en) * | 2007-01-19 | 2013-04-09 | The Board Of Trustees Of The University Of Illinois | Amphiphilic substances and functionalized lipid vesicles including the same |
WO2008093331A1 (en) * | 2007-01-29 | 2008-08-07 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Antibody conjugates for circumventing multi-drug resistance |
AU2008235256B2 (en) * | 2007-04-05 | 2014-05-15 | Speedx Pty Ltd | Nucleic acid enzymes and complexes and methods for their use |
US8058415B2 (en) | 2007-04-24 | 2011-11-15 | The Board Of Trustees Of The University Of Illinois | Aptamer- and nucleic acid enzyme-based systems for simultaneous detection of multiple analytes |
KR20100017905A (ko) * | 2007-05-29 | 2010-02-16 | 예일 유니버시티 | 리보스위치, 리보스위치의 사용 방법 및 리보스위치를 함유하는 조성물 |
CA2687684A1 (en) * | 2007-05-29 | 2008-12-11 | Yale University | Methods and compositions related to riboswitches that control alternative splicing and rna processing |
WO2008153063A1 (ja) * | 2007-06-11 | 2008-12-18 | Dai Nippon Printing Co., Ltd. | 細胞培養膜、細胞培養キット、多孔質体、細胞培養膜の製造方法及び多孔質体の製造方法 |
JP2010533705A (ja) | 2007-07-15 | 2010-10-28 | ヒルマン,イチャク | 抗菌ペプチドまたはその阻害剤を用いた疾病治療 |
IL184627A0 (en) | 2007-07-15 | 2008-12-29 | Technion Res & Dev Foundation | Agents for diagnosing and modulating metastasis and fibrosis as well as inflammation in a mammalian tissue |
US8409800B2 (en) * | 2007-07-16 | 2013-04-02 | The Board Of Trustees Of The University Of Illinois | Nucleic acid based fluorescent sensor for copper detection |
US8568690B2 (en) * | 2007-07-31 | 2013-10-29 | The Board Of Trustees Of The University Of Illinois | MRI contrast agents and high-throughput screening by MRI |
SI2185198T1 (sl) | 2007-08-02 | 2015-04-30 | Gilead Biologics, Inc. | Inhibitorji LOX in LOXL2 ter njihova uporaba |
WO2009045632A2 (en) | 2007-08-10 | 2009-04-09 | The Board Of Trustees Of The University Of Illinois | Nucleic acid based fluorescent sensor for mercury detection |
WO2009026496A1 (en) * | 2007-08-22 | 2009-02-26 | University Of Southern California | Grp78 and tumor angiogenesis |
EP2682400B1 (en) | 2007-08-28 | 2017-09-20 | Uab Research Foundation | Synthetic apolipoprotein E mimicking polypeptides and methods of use |
AU2008296487A1 (en) | 2007-08-28 | 2009-03-12 | The Uab Research Foundation | Synthetic apolipoprotein E mimicking polypeptides and methods of use |
EP2268664B1 (en) * | 2007-12-03 | 2017-05-24 | The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services | Doc1 compositions and methods for treating cancer |
US20090233993A1 (en) * | 2008-03-06 | 2009-09-17 | Burnham Institute For Medical Research | Compositions and methods for inhibiting gsk3 activity and uses thereof |
AU2009223671B2 (en) | 2008-03-11 | 2014-11-27 | Sequenom, Inc. | Nucleic acid-based tests for prenatal gender determination |
EP2853897A1 (en) | 2008-05-08 | 2015-04-01 | University Of Utah Research Foundation | Sensory receptors for chronic fatigue and pain and uses thereof |
US20100105039A1 (en) * | 2008-06-03 | 2010-04-29 | Yi Lu | Label-free colorimetric detection |
US8962247B2 (en) | 2008-09-16 | 2015-02-24 | Sequenom, Inc. | Processes and compositions for methylation-based enrichment of fetal nucleic acid from a maternal sample useful for non invasive prenatal diagnoses |
US8476013B2 (en) | 2008-09-16 | 2013-07-02 | Sequenom, Inc. | Processes and compositions for methylation-based acid enrichment of fetal nucleic acid from a maternal sample useful for non-invasive prenatal diagnoses |
US8062893B2 (en) | 2008-10-10 | 2011-11-22 | The Board Of Trustees Of The University Of Illinois | Fluorescent sensor for mercury |
EP2370080A1 (en) | 2008-12-02 | 2011-10-05 | University of Utah Research Foundation | Pde1 as a target therapeutic in heart disease |
EP2376653A2 (en) | 2008-12-29 | 2011-10-19 | Yissum Research Development Company of The Hebrew University of Jerusalem | Methods of predicting responsiveness to interferon treatment and treating hepatitis c infection |
WO2010080769A2 (en) | 2009-01-06 | 2010-07-15 | Arresto Biosciences, Inc. | Chemotherapeutic methods and compositions |
WO2010113096A1 (en) | 2009-03-30 | 2010-10-07 | Tel Hashomer Medical Research Infrastructure And Services Ltd. | Methods of predicting clinical course and treating multiple sclerosis |
EP2344179A1 (en) | 2009-04-01 | 2011-07-20 | The Medical Research, Infrastructure, And Health Services Fund Of The Tel Aviv Medical Center | A method of regulating proliferation and differentiation of keratinocyes |
EP2435078A1 (en) | 2009-05-28 | 2012-04-04 | Yeda Research and Development Co. Ltd. | Methods of treating inflammation |
WO2011004379A1 (en) | 2009-07-10 | 2011-01-13 | Tel Hashomer Medical Research Infrastructure And Services Ltd. | Compositions and methods for treating cancer |
SG2014004816A (en) | 2009-08-21 | 2014-03-28 | Gilead Biologics Inc | Catalytic domains from lysyl oxidase and loxl2 |
US20120157512A1 (en) | 2009-08-21 | 2012-06-21 | Monsanto Technology Llc | Preventing and Curing Beneficial Insect Diseases Via Plant Transcribed Molecules |
US9610331B2 (en) | 2009-09-08 | 2017-04-04 | Yeda Research And Development Co. Ltd. | Methods for hematopoietic precursor mobilization |
WO2011031974A1 (en) | 2009-09-10 | 2011-03-17 | Southern Research Institute | Acridine analogs in the treatment of gliomas |
WO2011087760A2 (en) | 2009-12-22 | 2011-07-21 | Sequenom, Inc. | Processes and kits for identifying aneuploidy |
CA2789022A1 (en) | 2010-02-04 | 2011-08-11 | Gilead Biologics, Inc. | Antibodies that bind to lysyl oxidase-like 2 (loxl2) and methods of use therefor |
US20110207789A1 (en) | 2010-02-19 | 2011-08-25 | Ye Fang | Methods related to casein kinase ii (ck2) inhibitors and the use of purinosome-disrupting ck2 inhibitors for anti-cancer therapy agents |
WO2011107939A1 (en) | 2010-03-01 | 2011-09-09 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Methods of predicting efficacy of an anti-vegfa treatment for solid tumors |
ES2625658T3 (es) | 2010-03-09 | 2017-07-20 | Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. | Organismo con contenido de carotenoides alterados y procedimiento para producirlo |
EP2561356B1 (en) | 2010-04-18 | 2016-08-03 | Yeda Research and Development Co. Ltd. | MOLECULES AND METHODS OF USING SAME FOR TREATING ErbB/ErbB LIGANDS ASSOCIATED DISEASES |
WO2011158243A2 (en) | 2010-06-16 | 2011-12-22 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Method of diagnosing and treating cancer |
US8815156B2 (en) | 2010-07-19 | 2014-08-26 | Andalyze, Inc. | Sensor housing and reagent chemistry |
EP2600901B1 (en) | 2010-08-06 | 2019-03-27 | ModernaTX, Inc. | A pharmaceutical formulation comprising engineered nucleic acids and medical use thereof |
US20130198900A1 (en) | 2010-09-07 | 2013-08-01 | Ben-Gurion University Of The Negev | "thiamine pyrophosphate (tpp) riboswitch mutants producing vitamin b1 enriched food and feed crops" |
US9051606B2 (en) | 2010-09-10 | 2015-06-09 | Qiagen Gaithersburg, Inc. | Methods and compositions for nucleic acid detection |
CN103210082A (zh) | 2010-09-15 | 2013-07-17 | 雷蒙特亚特特拉维夫大学有限公司 | 扩增胰岛β细胞和使其再分化的方法 |
CN103209987B (zh) | 2010-09-22 | 2017-06-06 | 艾丽奥斯生物制药有限公司 | 取代的核苷酸类似物 |
HRP20220796T1 (hr) | 2010-10-01 | 2022-10-14 | ModernaTX, Inc. | Ribonukleinske kiseline koje sadrže n1-metil-pseudouracil i njihove uporabe |
EP3075396A1 (en) | 2010-10-17 | 2016-10-05 | Yeda Research and Development Co. Ltd. | Methods and compositions for the treatment of insulin-associated medical conditions |
WO2012095843A1 (en) | 2011-01-13 | 2012-07-19 | Yeda Research And Development Co. Ltd. | Organisms with altered steroidal saponin and steroidal alkaloid levels and methods for producing same |
EP2668199B1 (en) | 2011-01-27 | 2017-09-06 | Ramot at Tel Aviv University, Ltd. | Glycogen synthase kinase-3 inhibitors |
EP2668200B1 (en) | 2011-01-27 | 2017-03-15 | Ramot at Tel-Aviv University Ltd. | Glycogen synthase kinase-3 inhibitors |
CA2831613A1 (en) | 2011-03-31 | 2012-10-04 | Moderna Therapeutics, Inc. | Delivery and formulation of engineered nucleic acids |
CA2834218C (en) | 2011-04-29 | 2021-02-16 | Sequenom, Inc. | Quantification of a minority nucleic acid species using inhibitory oligonucleotides |
WO2012172555A1 (en) | 2011-06-14 | 2012-12-20 | Yeda Research And Development Co. Ltd. | Combination therapy to prevent dcis formation and progression to breast cancer |
JP6063613B2 (ja) | 2011-08-09 | 2017-01-18 | イェダ リサーチ アンド デベロップメント カンパニー リミテッド | ベータ細胞の分化およびインスリン産生を促進するためのmiR−7のダウンレギュレーション |
CN103917664B (zh) * | 2011-09-09 | 2018-06-15 | 斯比戴克斯私人有限公司 | 核酸酶底物 |
US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
EP3492109B1 (en) | 2011-10-03 | 2020-03-04 | ModernaTX, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9145559B2 (en) | 2011-10-27 | 2015-09-29 | Yeda Research And Development Co. Ltd. | Methods of treating cancer |
WO2013076730A1 (en) | 2011-11-27 | 2013-05-30 | Yeda Research And Development Co. Ltd. | Methods of regulating angiogenesis and compositions capable of same |
RS63244B1 (sr) | 2011-12-16 | 2022-06-30 | Modernatx Inc | Kompozicije modifikovane mrna |
AU2012358804B2 (en) | 2011-12-22 | 2018-04-19 | Alios Biopharma, Inc. | Substituted phosphorothioate nucleotide analogs |
CA2863795A1 (en) | 2012-02-13 | 2013-08-22 | Gamida-Cell Ltd. | Culturing of mesenchymal stem cells |
US9803175B2 (en) | 2012-02-22 | 2017-10-31 | Exostem Biotec Ltd. | Generation of neural stem cells and motor neurons |
ES2930180T3 (es) | 2012-03-02 | 2022-12-07 | Sequenom Inc | Métodos para enriquecer ácido nucleico canceroso a partir de una muestra biológica |
US9631028B2 (en) | 2012-03-07 | 2017-04-25 | Yeda Research And Development Co. Ltd. | Compositions for inhibition of quiescin sulfhydryl oxidase (QSOX1) and uses of same |
WO2013142124A1 (en) | 2012-03-21 | 2013-09-26 | Vertex Pharmaceuticals Incorporated | Solid forms of a thiophosphoramidate nucleotide prodrug |
US9012427B2 (en) | 2012-03-22 | 2015-04-21 | Alios Biopharma, Inc. | Pharmaceutical combinations comprising a thionucleotide analog |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
WO2013151664A1 (en) | 2012-04-02 | 2013-10-10 | modeRNA Therapeutics | Modified polynucleotides for the production of proteins |
US9303079B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
US9920361B2 (en) | 2012-05-21 | 2018-03-20 | Sequenom, Inc. | Methods and compositions for analyzing nucleic acid |
CA2878979C (en) | 2012-07-13 | 2021-09-14 | Sequenom, Inc. | Processes and compositions for methylation-based enrichment of fetal nucleic acid from a maternal sample useful for non-invasive prenatal diagnoses |
US9175266B2 (en) | 2012-07-23 | 2015-11-03 | Gamida Cell Ltd. | Enhancement of natural killer (NK) cell proliferation and activity |
US9567569B2 (en) | 2012-07-23 | 2017-02-14 | Gamida Cell Ltd. | Methods of culturing and expanding mesenchymal stem cells |
PL2922554T3 (pl) | 2012-11-26 | 2022-06-20 | Modernatx, Inc. | Na zmodyfikowany na końcach |
MX2015004626A (es) | 2012-11-29 | 2015-07-14 | Yeda Res & Dev | Metodos para prevenir metastasis de tumor, tratar y pronosticar cancer e identificar agentes que son inhibidores putativos de metastasis. |
WO2014168711A1 (en) | 2013-03-13 | 2014-10-16 | Sequenom, Inc. | Primers for dna methylation analysis |
US20160032316A1 (en) | 2013-03-14 | 2016-02-04 | The Trustees Of The University Of Pennsylvania | Purification and Purity Assessment of RNA Molecules Synthesized with Modified Nucleosides |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
BR112015026702A2 (pt) | 2013-04-21 | 2018-02-06 | Yeda Res And Developmente Co Ltd | métodos de extermínio de células senescentes |
US10806119B2 (en) | 2013-06-05 | 2020-10-20 | Yeda Research And Development Co. Ltd. | Plant with altered content of steroidal alkaloids |
WO2014195944A1 (en) | 2013-06-05 | 2014-12-11 | Yeda Research And Development Co. Ltd. | Plant with altered content of steroidal glycoalkaloids |
WO2014207743A2 (en) | 2013-06-24 | 2014-12-31 | Ramot At Tel-Aviv University Ltd. | Glycogen synthase kinase-3 inhibitors |
NZ714347A (en) | 2013-06-25 | 2020-01-31 | Walter & Eliza Hall Inst Medical Res | Method of treating intracellular infection |
EP3052106A4 (en) | 2013-09-30 | 2017-07-19 | ModernaTX, Inc. | Polynucleotides encoding immune modulating polypeptides |
SG11201602503TA (en) | 2013-10-03 | 2016-04-28 | Moderna Therapeutics Inc | Polynucleotides encoding low density lipoprotein receptor |
CN111068053A (zh) | 2014-02-03 | 2020-04-28 | 耶路撒冷希伯来大学的益生研究开发有限公司 | 使用酪蛋白激酶i抑制剂以消耗干细胞的用途 |
CN106715695B (zh) | 2014-02-05 | 2020-07-31 | 耶达研究及发展有限公司 | 用于治疗和诊断的微rna和包含所述微rna的组合物 |
EP3736344A1 (en) | 2014-03-13 | 2020-11-11 | Sequenom, Inc. | Methods and processes for non-invasive assessment of genetic variations |
US20170253881A1 (en) | 2014-06-02 | 2017-09-07 | Technion Research & Development Foundation Limited | Compositions and methods of selectively inhibiting irp1 and treating inflammation |
US11920164B2 (en) | 2014-07-30 | 2024-03-05 | Yeda Research And Development Co. Ltd. | Media for culturing naive human pluripotent stem cells |
AU2015298263B2 (en) | 2014-07-31 | 2020-05-14 | Anji Pharmaceuticals, Inc. | ApoE mimetic peptides and higher potency to clear plasma cholesterol |
WO2016030899A1 (en) | 2014-08-28 | 2016-03-03 | Yeda Research And Development Co. Ltd. | Methods of treating amyotrophic lateral scleroses |
US20180042994A1 (en) | 2014-11-17 | 2018-02-15 | Yeda Research And Development Co. Ltd. | Methods of treating diseases related to mitochondrial function |
WO2016079527A1 (en) | 2014-11-19 | 2016-05-26 | Tetralogic Birinapant Uk Ltd | Combination therapy |
WO2016097773A1 (en) | 2014-12-19 | 2016-06-23 | Children's Cancer Institute | Therapeutic iap antagonists for treating proliferative disorders |
US20170369556A1 (en) | 2014-12-23 | 2017-12-28 | Ralph A. Tripp | RECOMBINANT CELLS COMPRISING miRNA MIMICS |
WO2016135732A1 (en) | 2015-02-26 | 2016-09-01 | Yeda Research And Development Co. Ltd. | Method of promoting hair growth |
EP3261582B1 (en) | 2015-02-26 | 2021-01-06 | Remodeless CV Ltd. | Methods and compositions relating to leptin antagonists |
CA2981732C (en) | 2015-04-07 | 2024-03-12 | Boris Khalfin | Compositions for treating and/or preventing cell or tissue necrosis specifically targeting cathepsin c and/or cela1 and/or cela3a and/or structurally related enzymes thereto |
EP3294280A1 (en) | 2015-05-11 | 2018-03-21 | Yeda Research and Development Co., Ltd. | Citrin inhibitors for the treatment of cancer |
WO2016185457A1 (en) | 2015-05-19 | 2016-11-24 | Yeda Research And Development Co. Ltd. | Methods of promoting lymphangiogenesis |
US20180221393A1 (en) | 2015-08-03 | 2018-08-09 | Biokine Therapeutics Ltd. | Cxcr4 binding agents for treatment of diseases |
EP3373939A4 (en) | 2015-11-10 | 2019-06-26 | B.G. Negev Technologies and Applications Ltd., at Ben-Gurion University | MEDIUM AND METHOD FOR REDUCING TUMORIGENITY OF CANCER STEM CELLS |
AU2017204950A1 (en) | 2016-01-06 | 2018-08-16 | Yeda Research And Development Co. Ltd. | Compositions and methods for treating malignant, autoimmune and inflammatory diseases |
US20190216891A1 (en) | 2016-03-06 | 2019-07-18 | Yeda Research And Development Co., Ltd. | Method for modulating myelination |
CN109069661A (zh) | 2016-03-30 | 2018-12-21 | 里捐提司生物材料有限公司 | 利用聚合蛋白共轭物的治疗 |
JP6858850B2 (ja) * | 2016-07-13 | 2021-04-14 | ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company | バチルス・シビ(BACILLUS CIBI)DNase変異体及びその使用 |
US11123435B2 (en) | 2016-08-03 | 2021-09-21 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | TLR9 targeted therapeutics |
IL247368A0 (en) | 2016-08-18 | 2016-11-30 | Yeda Res & Dev | Diagnostic and therapeutic uses of exosomes |
IL250538A0 (en) | 2017-02-09 | 2017-03-30 | Yeda Res & Dev | Metabolizing glycoalkaloid enzymes (games) and their uses |
EP3638215A4 (en) | 2017-06-15 | 2021-03-24 | Modernatx, Inc. | RNA FORMULATIONS |
EP3645711A4 (en) | 2017-06-30 | 2021-04-21 | Codexis, Inc. | T7 RNA POLYMERASE VARIANTS |
RU2020103727A (ru) | 2017-06-30 | 2021-07-30 | Кодексис, Инк. | Варианты рнк-полимеразы т7 |
WO2019021289A1 (en) | 2017-07-27 | 2019-01-31 | The National Institute for Biotechnology in the Negev Ltd. | SMAC / DIABLO INHIBITORS USEFUL IN THE TREATMENT OF CANCER |
AU2018326799A1 (en) | 2017-08-31 | 2020-02-27 | Modernatx, Inc. | Methods of making lipid nanoparticles |
WO2019051355A1 (en) | 2017-09-08 | 2019-03-14 | Ohio State Innovation Foundation | NEW MICROARN INHIBITOR THERAPY FOR SYSTEMIC LUPUS ERYTHEMATOSUS |
IL255664A0 (en) | 2017-11-14 | 2017-12-31 | Shachar Idit | Hematopoietic stem cells with enhanced properties |
US12041907B2 (en) | 2018-09-06 | 2024-07-23 | Yeda Research And Development Co. Ltd. | Cellulose-synthase-like enzymes and uses thereof |
CN113271926A (zh) | 2018-09-20 | 2021-08-17 | 摩登纳特斯有限公司 | 脂质纳米颗粒的制备及其施用方法 |
IL265841A (en) | 2019-04-03 | 2020-10-28 | Yeda Res & Dev | A plant that expresses animal milk proteins |
CA3147575A1 (en) | 2019-07-29 | 2021-02-04 | Yeda Research And Development Co. Ltd. | Methods of treating and diagnosing lung cancer |
IL304047A (en) | 2020-12-28 | 2023-08-01 | 1E Therapeutics Ltd | Silencing target sites in the p21 mRNA sequence |
IL304068A (en) * | 2020-12-28 | 2023-08-01 | 1E Therapeutics Ltd | DNA enzymes against p21 messenger RNA |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6008343A (en) | 1990-06-19 | 1999-12-28 | Gene Shears Pty. Ltd. | Nucleotide based endonucleases |
US5378825A (en) | 1990-07-27 | 1995-01-03 | Isis Pharmaceuticals, Inc. | Backbone modified oligonucleotide analogs |
AU687736B2 (en) | 1992-05-11 | 1998-03-05 | Ribozyme Pharmaceuticals, Inc. | Method and reagent for inhibiting viral replication |
US5891684A (en) | 1992-10-15 | 1999-04-06 | Ribozyme Pharmaceuticals, Inc. | Base-modified enzymatic nucleic acid |
US5861288A (en) * | 1993-10-18 | 1999-01-19 | Ribozyme Pharmaceuticals, Inc. | Catalytic DNA |
US5910408A (en) * | 1995-06-07 | 1999-06-08 | The General Hospital Corporation | Catalytic DNA having ligase activity |
-
1995
- 1995-06-07 US US08/472,194 patent/US5807718A/en not_active Expired - Lifetime
- 1995-12-01 DE DE69534855T patent/DE69534855T2/de not_active Expired - Lifetime
- 1995-12-01 CN CNB951974408A patent/CN1254547C/zh not_active Expired - Lifetime
- 1995-12-01 AU AU45950/96A patent/AU710747B2/en not_active Expired
- 1995-12-01 AT AT95944047T patent/ATE319854T1/de not_active IP Right Cessation
- 1995-12-01 JP JP51906796A patent/JP4001624B2/ja not_active Expired - Lifetime
- 1995-12-01 CA CA002205382A patent/CA2205382C/en not_active Expired - Lifetime
- 1995-12-01 HU HU9800296A patent/HU224898B1/hu not_active IP Right Cessation
- 1995-12-01 RO RO97-00997A patent/RO120410B1/ro unknown
- 1995-12-01 EP EP95944047A patent/EP0792375B9/en not_active Expired - Lifetime
- 1995-12-01 RU RU97111204/13A patent/RU2220204C2/ru active
- 1995-12-01 EP EP06004623A patent/EP1700915A3/en not_active Withdrawn
- 1995-12-01 BR BRPI9510003-2A patent/BR9510003B1/pt not_active IP Right Cessation
- 1995-12-01 US US08/849,567 patent/US6326174B1/en not_active Expired - Lifetime
- 1995-12-01 WO PCT/US1995/015580 patent/WO1996017086A1/en active IP Right Grant
- 1995-12-01 ES ES95944047T patent/ES2260766T3/es not_active Expired - Lifetime
-
1997
- 1997-05-30 NO NO972483A patent/NO972483L/no not_active Application Discontinuation
- 1997-06-02 FI FI972333A patent/FI972333A/fi not_active IP Right Cessation
-
2005
- 2005-12-21 JP JP2005368510A patent/JP2006136333A/ja active Pending
-
2006
- 2006-11-16 JP JP2006310077A patent/JP2007105047A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
CA2205382C (en) | 2009-07-21 |
HUT77576A (hu) | 1998-06-29 |
EP0792375B1 (en) | 2006-03-08 |
EP0792375A4 (en) | 1999-12-15 |
JP4001624B2 (ja) | 2007-10-31 |
NO972483L (no) | 1997-08-04 |
HU224898B1 (en) | 2006-04-28 |
JPH10510165A (ja) | 1998-10-06 |
EP1700915A3 (en) | 2010-03-03 |
EP1700915A2 (en) | 2006-09-13 |
DE69534855T2 (de) | 2006-11-23 |
DE69534855D1 (de) | 2006-05-04 |
FI972333A (fi) | 1997-07-31 |
RU2220204C2 (ru) | 2003-12-27 |
ATE319854T1 (de) | 2006-03-15 |
CN1254547C (zh) | 2006-05-03 |
JP2006136333A (ja) | 2006-06-01 |
AU4595096A (en) | 1996-06-19 |
RO120410B1 (ro) | 2006-01-30 |
BR9510003B1 (pt) | 2009-05-05 |
EP0792375B9 (en) | 2006-12-13 |
EP0792375A1 (en) | 1997-09-03 |
CA2205382A1 (en) | 1996-06-06 |
BR9510003A (pt) | 1997-10-21 |
US6326174B1 (en) | 2001-12-04 |
NO972483D0 (no) | 1997-05-30 |
US5807718A (en) | 1998-09-15 |
ES2260766T3 (es) | 2006-11-01 |
FI972333A0 (fi) | 1997-06-02 |
AU710747B2 (en) | 1999-09-30 |
WO1996017086A1 (en) | 1996-06-06 |
CN1173207A (zh) | 1998-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4001624B2 (ja) | Dna酵素分子 | |
JP5066016B2 (ja) | 酵素dna分子 | |
US7807817B2 (en) | Enzymatic nucleic acid molecules | |
US6110462A (en) | Enzymatic DNA molecules that contain modified nucleotides | |
WO1996017086A9 (en) | Enzymatic dna molecules | |
AU717736B2 (en) | Catalytic nucleic acid and its medical use | |
JPH05503423A (ja) | Dna切断用核酸酵素 | |
KR100564061B1 (ko) | 효소적dna분자 | |
AU743767B2 (en) | Enzymatic DNA molecules | |
Joyce et al. | Enzymatic DNA molecules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081028 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090128 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090901 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20091112 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20091106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20091112 |