JP2007042441A - 燃料電池および運転方法 - Google Patents

燃料電池および運転方法 Download PDF

Info

Publication number
JP2007042441A
JP2007042441A JP2005225467A JP2005225467A JP2007042441A JP 2007042441 A JP2007042441 A JP 2007042441A JP 2005225467 A JP2005225467 A JP 2005225467A JP 2005225467 A JP2005225467 A JP 2005225467A JP 2007042441 A JP2007042441 A JP 2007042441A
Authority
JP
Japan
Prior art keywords
fuel cell
load
power generation
temperature
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005225467A
Other languages
English (en)
Inventor
Hisafumi Kotani
尚史 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2005225467A priority Critical patent/JP2007042441A/ja
Publication of JP2007042441A publication Critical patent/JP2007042441A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract


【課題】 発電セルの破損を防止しつつ、短時間で昇温、降温を行うことのできる燃料電池、および、その好適な運転方法を提供する。
【解決手段】 発電セル5とセパレータ8を交互に積層すると共に、この積層体を積層方向より加重することにより各構成要素を相互に密着させて構成した平板積層型燃料電池1の運転方法であって、運転開始の際の昇温時や運転停止の際の降温時における前記積層体への荷重を適正出力が生じ得る発電時の荷重に比べて軽減する。
【選択図】 図1

Description

本発明は、燃料電池、および、急速起動および急速停止を可能とした燃料電池の運転方法に関するものである。
近年、燃料の有する化学エネルギーを直接電気エネルギーに変換する燃料電池は高効率でクリーンな発電装置として注目されている。この燃料電池は、酸化物イオン導電体から成る固体電解質層を両側から空気極層(カソード)と燃料極層(アノード)で挟み込んだ積層構造を有する。
発電時、反応用ガスとして空気極層側に酸化剤ガス(酸素) が、また燃料極層側に燃料ガス (H2、CO、CH4等) が供給される。空気極層と燃料極層は、反応用ガスが固体電解質層との界面に到達することができるよう、何れも多孔質の層とされている。
発電セル内において、空気極層側に供給された酸素は、空気極層内の気孔を通って固体電解質層との界面近傍に到達し、この部分で空気極層から電子を受け取って酸化物イオン(O2-)にイオン化される。この酸化物イオンは、燃料極層に向かって固体電解質層内を拡散移動する。燃料極層との界面近傍に到達した酸化物イオンは、この部分で、燃料ガスと反応して反応生成物(H2O、CO2等)を生じ、燃料極層に電子を放出する。尚、電極反応で生じた電子は、別ルートの外部負荷にて起電力として取り出すことができる。
平板積層型の燃料電池は、これら発電セルとセパレータを交互に多数積層してスタック化すると共に、その両端より積層方向に荷重を掛けてスタックの各構成要素を相互に圧接・密着させることにより構成されている。平板積層型の燃料電池では、各構成要素相互の密着性が出力特性に大いに関係するため、積層体には適正出力を確保し得る適正荷重が設定されている。このような平板積層型の燃料電池は、例えば、特許文献1に開示されている。
他方、係る平板積層型の燃料電池を始めとして、従来公知の燃料電池では、運転(発電)を開始する際、発電セルを作動温度(例えば、固体酸化物形燃料電池では、600〜800℃前後)に予熱・昇温する必要がある。これは、発電セルでの発電反応を活性化するためであり、通常、このために燃料電池スタックの外周部にヒータやバーナ等の加熱手段が設けられている。
ところが、スタック外部からの加熱では、燃料電池スタックの外周部分は比較的短時間で昇温されるが、スタック内部に熱が到達するまでに時間を要するため、急激な昇温動作は燃料電池スタック内に大きな温度分布を生じさせることになり、その結果、熱歪みに対して脆弱な発電セルが破損してしまうという問題があった。
従来では、燃料電池スタック内にこのような温度分布を生じさせないよう、スタック内部への熱伝達速度に合わせて徐々に加熱・昇温していたため、起動から発電開始までに極めて長い時間(例えば、8〜10H程度)を要しており、よって、近年、燃料電池の急速起動が克服すべき大きな課題となっている。
特に、上述の平板積層型の燃料電池では、積層体の積層方向に荷重を掛けて各構成要素を密着させているので、構成要素相互の滑り摩擦力により発電セルの熱歪みに対する機械的な拘束力は極めて大きいものとなっており、この大きな機械的拘束力が発電セルを破損し易すくする大きな要因となっていた。
尚、この発電セルの破損については、発電停止時の降温過程においても昇温時と同様に問題となっている。
特開2004−55195号公報
本発明は、上記した問題に鑑み成されたもので、発電セルの破損を防止しつつ、短時間で昇温、降温を行うことのできる燃料電池、および、その好適な運転方法を提供することを目的としている。
すなわち、請求項1に記載の本発明は、発電セルとセパレータを交互に積層すると共に、この積層体を積層方向より加重することにより各構成要素を相互に密着させて構成した平板積層型燃料電池の運転方法であって、運転開始の際の昇温時および/または運転停止の際の降温時における前記積層体への荷重は、適正出力が生じ得る発電時の荷重に比べて軽減することを特徴としている。
また、請求項2に記載の本発明は、請求項1に記載の燃料電池の運転方法において、昇温時は前記荷重を徐々に増加し、降温時は前記荷重を徐々に減少することを特徴としている。
また、請求項3に記載の本発明は、請求項1または請求項2の何れかに記載の燃料電池の運転方法において、前記荷重の設定は出力電圧を監視しながら行うことを特徴としている。
また、請求項4に記載の本発明は、請求項1から請求項3までの何れかに記載の燃料電池の運転方法において、昇温時および降温時の最低荷重状態においては、前記各構成要素相互に少なくともパージ可能な密着性が得られていることを特徴としている。
また、請求項5に記載の燃料電池は、発電セルとセパレータを交互に積層すると共に、この積層体を積層方向より加重することにより各構成要素を相互に密着させて構成した平板積層型の燃料電池であって、請求項1から請求項4までの何れかに記載の運転制御を行うための前記積層体の荷重可変手段を備えることを特徴としている。
さらに、請求項6に記載の本発明は、請求項5に記載の燃料電池において、前記荷重可変手段が出力電圧の検知手段を含むことを特徴としている。
本発明によれば、昇温時、降温時における積層体の荷重を発電時の適正荷重に比べて軽減するようにしたので、発電セルの熱歪みに対する機械的拘束力が軽減され、発電セルが破損し難くなるため、発電セルの昇温、降温を短時間で行うことができるようになり、燃料電池の急速起動が可能となる。
また、昇温時、降温時の荷重の増減を徐々に行うことにより、熱歪みによる発電セルへの機械的負担をより一層緩和することができ、よって、発電セルの破損防止と、急速起動の実現に寄与できる。
以下、図面に基づいて本発明の実施形態を説明する。
図1は本発明が適用された縦置き型の平板積層型の固体酸化物形燃料電池(燃料電池スタック)を示し、図2は当燃料電池スタックのA−A斜視、図3は横置き型の燃料電池スタックを示している。
図1において、単セル10は、固体電解質層2の両面に燃料極層3と空気極層4を配した円状の発電セル5と、燃料極層3の外側に配した燃料極集電体6と、空気極層4の外側に配した空気極集電体7と、各集電体6、7の外側に配したセパレータ8とで構成されている。
これら構成要素の内、固体電解質層2はイットリアを添加した安定化ジルコニア(YSZ)等で構成され、燃料極層3はNi等の金属、あるいはNi−YSZ等のサーメットで構成され、空気極層4はLaMnO3、LaCoO3等で構成され、燃料極集電体6はNi等のスポンジ状の多孔質焼結金属板で構成され、空気極集電体7はAg等のスポンジ状の多孔質焼結金属板で構成されている。
セパレータ8は、図2に示すように、厚さ数mmの四角形ステンレス板で構成され、その中央部に配した発電セル5間を電気的に接続すると共に、発電セル5に対して反応用ガスを供給する機能を有し、内部に燃料ガスが流通する燃料ガス通路11と、酸化剤ガスが流通する酸化剤ガス通路12とを備えている。
セパレータ8の一対角線上の角部に板厚方向に貫通する一対のガス孔13、14が設けてあり、一方のガス孔13は上記燃料ガス通路11に連通し、他方のガス孔14は上記酸化剤ガス通路12に連通している。各ガス孔13、14から、これらのガス通路11、12を通してガス吐出口11a、12aより各発電セル5の各電極面に燃料ガスおよび酸化剤ガスが吐出・供給されることによって発電セル5の各電極において既述した発電反応が生じる。
尚、上下に積層されるセパレータ8のガス孔同士は、それぞれリング状の絶縁性ガスケット15、16にて連結される。
また、本実施形態のセパレータ8は、図2に示すように、左右端部のガス孔13、14部分と中央の発電セル5が位置する部分とを繋ぐ連絡部分8a、8aを細長帯状として後述する荷重に対する可撓性を持たせた構造としており、これにより、構成要素の積層・組立で生じるセパレータ周縁部分と中央部分の高さバラツキ等を吸収して全面が均等に加重されるようにして積層体を構成する各発電要素の密着性とガスケット部分のガスシール性を向上している。
上記構成の単セル10を、間に上記ガスケット15、16を介在して順次積層していくことにより、図1に示す平板積層型の燃料電池スタック1が構成される。
この燃料電池スタック1の上下両端にステンレス製の角板で成る締付板20aと締付板20bが配設されている。
上締付板20aの中央には、上記した円状の発電セル5がすっぽり収まる孔部23を有しており、この締付板20aをスタックの上端部に配置すると、中央部の孔部23よりセパレータ8の中央部分、即ち、発電セル5が位置する部分が露出するようになっている。他方、下締付板20bは孔無し平板で構成され、スタックの底部を下方より支持している。
燃料電池スタック1は、図1に示すように、スタック上下両端に上述の締付板20a、20bを配してその周縁角部がボルト・ナット21にて締め付けされ、その強力な締め付け荷重により、主にスタック各層の角部において、セパレータ8のガス孔13、14と各ガスケット15、16を機械的に密着・接合させている。
この締め付け荷重により、各々のガスケット15、16がそれぞれセパレータ8の各ガス孔13、14を介して積層方向に連結されることにより、スタック内部を積層方向に延びる燃料ガス導入用の管状マニホールドと酸化剤ガス導入用の管状マニホールドの2系統が形成される。
また、上締付板20aの中央部(孔部23の部分)に円形の錘22が配設されており、この錘22による荷重により、主としてセパレータ8の中央部分、すなわち、発電セル5の搭載部分が積層方向に押圧されることにより、単セル10を構成する複数の発電要素が相互に密着させられて一体的に固定されるようになっている。
加えて、セパレータ8間に介在されている燃料極集電体6と空気極集電体7はスポンジ状の多孔質焼結金属とされているから、錘22による荷重でこれらスポンジ状部材が弾性変形し、上下セパレータ8の間にある程度の弾力を持って圧接・挟持された状態となる。
このため、錘22による発電部分の荷重は、上記したボルト・ナット21によるスタック縁部の強力な締め付け荷重に比べて極端に少なくしても発電要素間に良好な電気的接触性が得られることになり、当構成により、荷重による各発電要素へのダメージを極力軽減している。
尚、燃料電池スタック1に掛ける積層方向の荷重は構成要素の高温クリープ等を考慮して各発電要素の電気的接触性とガスケットのシール性を確保可能な必要最小限に設定することが好ましく、本実施形態では、発電時のスタック縁部の荷重は数百kgf程度に設定し、且つ、スタック中央部分(発電要素部分)の荷重は数kgf程度(適正荷重:1.5〜2.5kgf)に設定している。
但し、これらの荷重値は、セル積層数46枚で構成した出力1KW仕様の燃料電池スタック1の場合であって、それぞれ燃料電池の仕様によって適宜変わるものである。
ところで、図1に示すように、この錘22の中心部分に加圧ロッド24の一端が固定されている。この加圧ロッド24は、コの字に屈曲されてその他端部が燃料電池スタックを載置・固定する架台30に上下可動自在に支持されて荷重可変手段を構成しており、この荷重可変手段により、上記錘22による積層体への加重を可変できるようになっている。
本構成では、この加圧ロッド24の上動作で錘22による積層体への荷重は軽減され、加圧ロッド24の下動作で荷重は増加される。尚、加圧ロッド24の上下動作は、外部からの手動操作、或いは電気的駆動手段(例えば、モータ)にて可能と成されている。
以下、上記構成の燃料電池スタック1の運転方法(昇温/降温)を図4を参照して説明する。
運転開始の際は、先ず、燃料電池スタック1の周辺に配設された電気ヒータやバーナ等の加熱手段(図示せず)により燃料電池スタック1の予熱が開始される。
この時、錘22による燃料電池スタック1への荷重W0は、上記荷重可変手段、すなわち加圧ロッド24による錘22の下動作で数百gf程度に設定(軽減)されている。このように、予熱開始時において、燃料電池スタック1に僅かな荷重W0を掛けておくのは、少なくともパージのための不活性ガスをスタック内に均一に流通させ得る各構成要素相互の密着性を確保しておくためである。
上述したパージとは、昇温時に燃料電池の内部に残留する酸素によって燃料極層が酸化されるのを防止するために、燃料電池に不活性ガス(例えば、窒素)を供給して内部を還元雰囲気に維持しておく処理のことを言う。この処理は、運転停止の際の降温時にも行われる。
予熱が進みスタック温度が常温T0から発電可能な温度T1(600〜800℃前後)に上昇すると、加圧ロッド24による錘22の下動作で燃料電池スタック1への荷重W1は、上記した適正出力が得られる適正荷重1.5〜2.5kgfに設定(増加)される。そして、予熱完了後の発電時には、発電要素間にこの適正荷重W1による良好な電気的接触性が確保されており、よって、安定した出力が得られることになる。
このように、昇温過程において積層体への荷重を発電時の適正荷重W1に比べて1/10程度に軽減するようにしたので、スタックの各構成要素相互の密着性(摩擦力)は小さくなり、これによって、発電セル5の熱歪みに対する機械的拘束力が軽減されるため、発電セル5が破損し難くなっており、よって、急激な加熱により発電セル5の昇温時間を短縮することができ、燃料電池の急速起動が可能となる。
因みに、本実施形態の運転方法によれば、従来の昇温時間約8〜10Hに対して本発明では約2Hと大幅に短縮することができる。
また、上述した昇温過程では、錘22による荷重の増加を昇温完了と同時に最低荷重W0から一挙に適正荷重W1に引き上げる荷重設定操作を行ったが、図4の破線で示すように、荷重の増加を温度上昇と伴に徐々に行うようにしても良い。例えば、出力電圧と荷重とは因果関係にあることから、図示しないが、燃料電池スタック1に出力電圧の検知手段(電圧計)を付設し、その検知電圧に基づいて荷重の増加を行うようにすることも可能である。
このように、錘22による燃料電池スタック1への荷重を徐々に増加させることにより、その過程において熱歪みによる発電セル5への機械的負担をより一層緩和することができ、よって、発電セル5の破損防止とそれに伴う急速起動の実現に寄与できるものである。
上述した昇温時の運転制御方法は、発電停止時の降温過程においても勿論適用可能であり、これにより、降温時における発電セル5の破損も防止されると共に、降温時間の短縮も可能となる。
以上、本実施形態では、図1に示す縦置き型の燃料電池スタック1について説明したが、本発明は図3に示す横置き型の燃料電池1についても勿論適用可能である。この場合、加圧ロッド24はL形として下方の一端を架台30に左右可動自在に支持させる構造としている。本構造では、加圧ロッド24の右動作で錘22による積層体への荷重が軽減され、加圧ロッド24の左動作で荷重は増加される。
従って、本実施形態の運転制御方法を本構成の燃料電池スタック1に適用した場合も、昇温/降温時における発電セル5の破損防止と伴に、燃料電池の急速起動/停止のが可能となることは勿論である。
本発明に係る縦置き型の燃料電池スタックの側面図。 図1のA−A矢視図。 本発明に係る横置き型の燃料電池スタックの側面図。 本発明の運転方法による積層体への荷重の変化を示す説明図。
符号の説明
1 燃料電池(燃料電池スタック)
5 発電セル
8 セパレータ
24 荷重可変手段(加圧ロッド)

Claims (6)

  1. 発電セルとセパレータを交互に積層すると共に、この積層体を積層方向より加重することにより各構成要素を相互に密着させて構成した平板積層型燃料電池の運転方法であって、
    運転開始の際の昇温時および/または運転停止の際の降温時における前記積層体への荷重は、適正出力が生じ得る発電時の荷重に比べて軽減することを特徴とする燃料電池の運転方法。
  2. 昇温時は前記荷重を徐々に増加し、降温時は前記荷重を徐々に減少することを特徴とする請求項1に記載の燃料電池の運転方法。
  3. 前記荷重の設定は出力電圧を監視しながら行うことを特徴とする請求項1または請求項2の何れかに記載の燃料電池の運転方法。
  4. 昇温時および降温時の最低荷重状態においては、前記各構成要素相互に少なくともパージ可能な密着性が得られていることを特徴とする請求項1から請求項3までの何れかに記載の燃料電池の運転方法。
  5. 発電セルとセパレータを交互に積層すると共に、この積層体を積層方向より加重することにより各構成要素を相互に密着させて構成した平板積層型の燃料電池であって、
    請求項1から請求項4までの何れかに記載の運転制御を行うための前記積層体の荷重可変手段を備えることを特徴する燃料電池。
  6. 前記荷重可変手段が出力電圧の検知手段を含むことを特徴とする請求項5に記載の燃料電池。
JP2005225467A 2005-08-03 2005-08-03 燃料電池および運転方法 Pending JP2007042441A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225467A JP2007042441A (ja) 2005-08-03 2005-08-03 燃料電池および運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225467A JP2007042441A (ja) 2005-08-03 2005-08-03 燃料電池および運転方法

Publications (1)

Publication Number Publication Date
JP2007042441A true JP2007042441A (ja) 2007-02-15

Family

ID=37800235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225467A Pending JP2007042441A (ja) 2005-08-03 2005-08-03 燃料電池および運転方法

Country Status (1)

Country Link
JP (1) JP2007042441A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115492A (ja) * 2005-10-19 2007-05-10 Toyota Motor Corp 燃料電池システム及びその制御方法
JP2012038646A (ja) * 2010-08-10 2012-02-23 Nippon Telegr & Teleph Corp <Ntt> 平板型固体酸化物形燃料電池モジュールの動作方法
JP2019117708A (ja) * 2017-12-27 2019-07-18 マグネクス株式会社 平板型燃料電池スタック
JP2019117707A (ja) * 2017-12-27 2019-07-18 マグネクス株式会社 平板型燃料電池スタック

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138075A (ja) * 1983-01-26 1984-08-08 Hitachi Ltd 積層型燃料電池の収納装置
JPH0158834B2 (ja) * 1983-08-09 1989-12-13 Kogyo Gijutsuin
JPH03109266U (ja) * 1990-02-26 1991-11-11
JPH0473869A (ja) * 1990-07-13 1992-03-09 Mitsubishi Electric Corp 自動締付装置
JPH0684540A (ja) * 1992-09-02 1994-03-25 Fuji Electric Co Ltd 固体電解質型燃料電池の運転方法
JPH07302607A (ja) * 1994-05-09 1995-11-14 Toyota Motor Corp 燃料電池発電装置
JPH0973914A (ja) * 1995-09-06 1997-03-18 Honda Motor Co Ltd 燃料電池の締付方法および装置
JP2002117889A (ja) * 2000-10-06 2002-04-19 Osaka Gas Co Ltd 燃料電池の運転方法及び燃料電池
JP2004031311A (ja) * 2002-04-30 2004-01-29 Honda Motor Co Ltd 燃料電池スタックの組立方法
WO2005013390A2 (de) * 2003-07-25 2005-02-10 Webasto Ag Verfahren und vorrichtung zur herstellung eines brennstoffzellenstapels
JP2005071627A (ja) * 2003-08-22 2005-03-17 Nissan Motor Co Ltd 燃料電池スタックとその締付方法
JP2006179294A (ja) * 2004-12-22 2006-07-06 Toyota Motor Corp 燃料電池スタック
JP2006523933A (ja) * 2003-04-14 2006-10-19 ゼネラル・モーターズ・コーポレーション 圧力降下可変式燃料電池スタック
JP2007005229A (ja) * 2005-06-27 2007-01-11 Toyota Motor Corp 燃料電池システム及びその制御方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138075A (ja) * 1983-01-26 1984-08-08 Hitachi Ltd 積層型燃料電池の収納装置
JPH0158834B2 (ja) * 1983-08-09 1989-12-13 Kogyo Gijutsuin
JPH03109266U (ja) * 1990-02-26 1991-11-11
JPH0473869A (ja) * 1990-07-13 1992-03-09 Mitsubishi Electric Corp 自動締付装置
JPH0684540A (ja) * 1992-09-02 1994-03-25 Fuji Electric Co Ltd 固体電解質型燃料電池の運転方法
JPH07302607A (ja) * 1994-05-09 1995-11-14 Toyota Motor Corp 燃料電池発電装置
JPH0973914A (ja) * 1995-09-06 1997-03-18 Honda Motor Co Ltd 燃料電池の締付方法および装置
JP2002117889A (ja) * 2000-10-06 2002-04-19 Osaka Gas Co Ltd 燃料電池の運転方法及び燃料電池
JP2004031311A (ja) * 2002-04-30 2004-01-29 Honda Motor Co Ltd 燃料電池スタックの組立方法
JP2006523933A (ja) * 2003-04-14 2006-10-19 ゼネラル・モーターズ・コーポレーション 圧力降下可変式燃料電池スタック
WO2005013390A2 (de) * 2003-07-25 2005-02-10 Webasto Ag Verfahren und vorrichtung zur herstellung eines brennstoffzellenstapels
JP2005071627A (ja) * 2003-08-22 2005-03-17 Nissan Motor Co Ltd 燃料電池スタックとその締付方法
JP2006179294A (ja) * 2004-12-22 2006-07-06 Toyota Motor Corp 燃料電池スタック
JP2007005229A (ja) * 2005-06-27 2007-01-11 Toyota Motor Corp 燃料電池システム及びその制御方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115492A (ja) * 2005-10-19 2007-05-10 Toyota Motor Corp 燃料電池システム及びその制御方法
JP2012038646A (ja) * 2010-08-10 2012-02-23 Nippon Telegr & Teleph Corp <Ntt> 平板型固体酸化物形燃料電池モジュールの動作方法
JP2019117708A (ja) * 2017-12-27 2019-07-18 マグネクス株式会社 平板型燃料電池スタック
JP2019117707A (ja) * 2017-12-27 2019-07-18 マグネクス株式会社 平板型燃料電池スタック

Similar Documents

Publication Publication Date Title
JP6517835B2 (ja) 燃料電池スタック構成
JP5023429B2 (ja) 平板積層型燃料電池
US10256495B2 (en) Fuel cell and fuel cell stack
WO2006077762A1 (ja) 平板積層型燃料電池および燃料電池スタック
JP5472898B2 (ja) 燃料電池用集電装置及びその制御方法
JP5060956B2 (ja) 金属製支持構造を有する固体酸化物燃料電池
WO2013114811A1 (ja) 燃料電池
JP4892897B2 (ja) 燃料電池
JP2008218278A (ja) 平板積層型の燃料電池
JP6521064B2 (ja) 固体酸化物型燃料電池
JP2007042441A (ja) 燃料電池および運転方法
JP2009099480A (ja) 燃料電池
JP5076681B2 (ja) 燃料電池の組立装置および組立方法,この組立方法によって組み立てた燃料電池
JP5092360B2 (ja) 燃料電池発電装置
JP2014123498A (ja) 燃料電池スタック及びその製造方法
JP5846936B2 (ja) 燃料電池
JP5125376B2 (ja) 燃料電池
JP6777669B2 (ja) 電気化学反応セルスタックの運転方法および電気化学反応システム
JP6926193B2 (ja) 平板型電気化学セルスタック
JP6675218B2 (ja) セパレータ付電気化学反応単セルの製造方法
JP5200318B2 (ja) 燃料電池スタック
EP2715844A1 (en) Electrical anode reduction of solid oxide fuel cell
JP4470498B2 (ja) 固体酸化物形燃料電池
JP2009151972A (ja) 燃料電池の発電停止方法、その発電起動方法及び燃料電池システム
JP4262586B2 (ja) 燃料電池の分解方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108