JP2009151972A - 燃料電池の発電停止方法、その発電起動方法及び燃料電池システム - Google Patents

燃料電池の発電停止方法、その発電起動方法及び燃料電池システム Download PDF

Info

Publication number
JP2009151972A
JP2009151972A JP2007326843A JP2007326843A JP2009151972A JP 2009151972 A JP2009151972 A JP 2009151972A JP 2007326843 A JP2007326843 A JP 2007326843A JP 2007326843 A JP2007326843 A JP 2007326843A JP 2009151972 A JP2009151972 A JP 2009151972A
Authority
JP
Japan
Prior art keywords
side electrode
fuel cell
power generation
electrolyte membrane
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007326843A
Other languages
English (en)
Inventor
Takao Fukumizu
隆夫 福水
Masahiro Kesato
昌弘 毛里
Takeshi Matsubara
猛 松原
Hiromichi Yoshida
弘道 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007326843A priority Critical patent/JP2009151972A/ja
Publication of JP2009151972A publication Critical patent/JP2009151972A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】発電停止時及び発電起動時に、腐食電流が流れることを良好に抑制することができ、耐久性の向上を図ることを可能にする。
【解決手段】発電停止方法は、燃料電池スタックから負荷を電気的に切断する工程と、アノード側電極の燃料ガス圧及びカソード側電極の酸化剤ガス圧を、大気圧近傍まで減圧させる工程と、前記燃料ガス及び前記酸化剤ガスの供給を停止する工程と、前記燃料電池への印加荷重を低減又は解除する工程とを有し、固体高分子電解質膜とアノード側電極及び/又はカソード側電極との接触抵抗を増加させ、あるいは、互いに離間させることにより、腐食電流の流れを抑制する。
【選択図】図5

Description

本発明は、電解質膜の両側にアノード側電極及びカソード側電極を設けた電解質膜・電極構造体とセパレータとが、シール部材を介装して積層される燃料電池の発電停止方法、その発電起動方法及び燃料電池システムに関する。
例えば、固体高分子型燃料電池は、高分子イオン交換膜からなる電解質膜の両側に、それぞれアノード側電極及びカソード側電極を配設した電解質膜・電極構造体を、セパレータによって挟持した発電セルを備えている。この種の燃料電池は、通常、所定の数の発電セルを積層することにより、燃料電池スタックとして、例えば、車載用に使用されている。
燃料電池スタックでは、アノード側電極に燃料ガス(水素ガス)を供給するとともに、カソード側電極に酸化剤ガス(例えば、空気)を供給することにより、電気化学反応を介して発電が行われている。
そして、燃料電池スタックの発電が停止した状態では、前記燃料電池スタックへの燃料ガス及び酸化剤ガスの供給が停止されるものの、アノード側電極に燃料ガスが残存する一方、カソード側電極に酸化剤ガスが残存している。このため、燃料電池スタックの停止中に、カソード側が高電位に保持されてしまい、電極触媒層が劣化するという問題がある。
そこで、例えば、アノード側電極中に残存する燃料ガスを、空気や窒素等の不活性ガスで強制的にパージする方法が行われている。このため、燃料電池スタックの停止時には、カソード側電極及びアノード側電極には、例えば、空気が存在している。
また、上記のパージ処理を行わない場合にも、燃料電池スタックを長時間にわたって停止させていると、カソード側から電解質膜を透過した空気がアノード側に移動し、カソード側電極及びアノード側電極に空気が存在する状態になってしまう。
この状態で、燃料電池スタックを起動させると、アノード側電極に燃料ガスの供給を開始する際、水素と空気とが混在するため、カソード側電極が高電位となり易い。これにより、前記カソード側電極の電極触媒層の性能劣化による発電性能の低下が惹起されるという問題がある(特許文献1)。
このため、例えば、特許文献2に開示されている燃料電池システムでは、燃料電池の積層方向に圧力を印加して変化させる荷重可変手段と、酸化剤極セパレータ及び燃料極セパレータに酸化剤を供給してドライガスパージを行うガスパージ手段とを備えている。
この燃料電池システムでは、荷重可変手段が圧力を印加することによって、触媒層及びガス拡散層から水を排出し、ガスパージ手段がドライガスパージを実施することによってセパレータから水を除去するので、燃料電池内を乾燥状態にすることができ、これによって燃料電池の停止時における劣化を防ぐことができる、としている。
特表2006−507647号公報 特開2006−107908号公報
しかしながら、上記の特許文献2では、燃料電池システムの停止時に、単位セルの積層方向に通常より大きな荷重を印加するため、ガス拡散層等のスタック部材が損傷を受けるおそれがある。
しかも、積層方向により大きな荷重が印加されるため、電解質膜と燃料極触媒層及び酸化剤極触媒層との密着性が増加し、腐食電流が流れ易くなるという問題がある。
本発明はこの種の問題を解決するものであり、発電停止時や発電起動時に、腐食電流が流れることを良好に抑制することができ、耐久性の向上を図ることが可能な燃料電池の発電停止方法、その発電起動方法及び燃料電池システムを提供することを目的とする。
本発明は、電解質膜の両側にアノード側電極及びカソード側電極を設けた電解質膜・電極構造体とセパレータとが、シール部材を介装して積層されるとともに、前記アノード側電極と前記カソード側電極との間に負荷を電気的に接続し、且つ積層方向に荷重を印加した状態で、前記アノード側電極に燃料ガスを供給する一方、前記カソード側電極に酸化剤ガスを供給して発電する燃料電池の発電停止方法に関するものである。
この発電停止方法は、燃料電池から負荷を電気的に切断する工程と、アノード側電極の燃料ガス圧及びカソード側電極の酸化剤ガス圧を、大気圧近傍まで減圧させる工程と、燃料ガス及び酸化剤ガスの供給を停止する工程と、前記燃料電池への印加荷重を低減又は解除する工程とを有している。
また、この発電停止方法は、燃料電池への印加荷重を低減又は解除することにより、シール部材の反発力を介して、少なくともアノード側電極又はカソード側電極を、セパレータと一体に電解質膜から離間させることが好ましい。
さらに、本発明は、電解質膜の両側にアノード側電極及びカソード側電極を設けた電解質膜・電極構造体とセパレータとが、シール部材を介装して積層される燃料電池の発電起動方法に関するものである。
この発電起動方法は、燃料電池に対して積層方向への印加荷重を低減又は解除した状態で、アノード側電極への燃料ガスの供給を開始する一方、カソード側電極への酸化剤ガスの供給を開始する工程と、前記燃料電池に対して前記印加荷重を増加させる工程と、前記印加荷重が設定荷重に至った際、前記アノード側電極の燃料ガス圧及び前記カソード側電極の酸化剤ガス圧を、発電に必要な設定圧まで昇圧させるとともに、前記アノード側電極と前記カソード側電極との間に負荷を電気的に接続して発電を開始する工程とを有している。
さらにまた、本発明は、電解質膜の両側にアノード側電極及びカソード側電極を設けた電解質膜・電極構造体とセパレータとが、シール部材を介装して積層される発電セルを備え、複数の前記発電セルが積層されるとともに、前記発電セルの積層方向両端には、ターミナルプレート、絶縁プレート及びエンドプレートが配設される燃料電池と、前記燃料電池に積層方向に荷重を印加する一方、印加荷重を低減又は解除可能な荷重機構とを備える燃料電池システムに関するものである。
この燃料電池システムは、少なくともアノード側電極又はカソード側電極が、セパレータに一体に固着されるとともに、電解質膜から離間自在に構成されることが好ましい。
本発明によれば、燃料電池の発電停止時に、この燃料電池への印加荷重が低減又は解除されるため、電解質膜とアノード側電極及び/又はカソード側電極との接触抵抗が増加する。従って、発電停止時に、簡単な工程で、腐食電流が流れることを良好に抑制することができ、耐久性の向上を図ることが可能になる。
また、本発明によれば、燃料電池の発電起動時に、燃料電池に対して積層方向への印加荷重を低減又は解除した状態で、アノード側電極に燃料ガスが供給されている。すなわち、電解質膜とアノード側電極及び/又はカソード側電極との接触抵抗が増加した状態で、前記アノード側電極に燃料ガスが供給されている。これにより、発電起動時に、簡単な工程で、腐食電流が流れることを良好に抑制することができ、耐久性の向上を図ることが可能になる。
さらに、本発明によれば、少なくともアノード側電極又はカソード側電極が、セパレータに一体に固着されるとともに、電解質膜から離間自在に構成されている。このため、燃料電池の発電停止時や発電起動時に、前記燃料電池への印加荷重を低減又は解除すると、シール部材の反発力を介して、アノード側電極又はカソード側電極がセパレータと一体に電解質膜から離間することができる。これにより、腐食電流が流れることを可及的に阻止することが可能になる。
図1は、本発明の第1の実施形態に係る発電停止方法及び発電起動方法が実施される燃料電池システム10の概略構成図である。
燃料電池システム10は、燃料電池スタック12と、前記燃料電池スタック12に酸化剤ガスを供給する酸化剤ガス供給装置14と、前記燃料電池スタック12に燃料ガスを供給する燃料ガス供給装置16と、前記燃料電池スタック12に冷却媒体を供給する冷却媒体供給装置(図示せず)と、前記燃料電池スタック12に積層方向に荷重を印加する一方、印加荷重を低減又は解除可能な荷重機構18と、コントローラ20とを備える。
燃料電池スタック12は、複数の発電セル(単セル)22が矢印A方向に積層された積層体24を備える。積層体24の積層方向(矢印A方向)一端には、ターミナルプレート26a、絶縁プレート28a及びエンドプレート30aが外方に向かって、順次、配設される。
積層体24の積層方向他端には、ターミナルプレート26b、絶縁プレート28b及びエンドプレート30bが外方に向かって、順次、配設されるとともに、必要に応じて、前記絶縁プレート28bと前記エンドプレート30bとの間に、皿ばね31が介装される。ターミナルプレート26a、26bには、スイッチ32を介して負荷33が電気的に接続及び切断自在に連結される。
燃料電池スタック12は、例えば、四角形状に構成されるエンドプレート30a、30bを端板として含む箱状ケーシング34により一体的に保持される。なお、燃料電池スタック12は、ケーシング34に代えて、矢印A方向に延在する複数のタイロッド(図示せず)により一体的に締め付け保持するように構成してもよい。
図2及び図3に示すように、各発電セル22は、電解質膜・電極構造体40と、前記電解質膜・電極構造体40を挟持する第1及び第2金属セパレータ42、44とを備える。第1及び第2金属セパレータ42、44は、金属製薄板を波形状にプレス加工することにより、断面凹凸形状を有している。
発電セル22の長辺方向(図3中、矢印C方向)の上端縁部には、矢印A方向に互いに連通して、酸化剤ガス、例えば、酸素含有ガスを供給するための酸化剤ガス供給連通孔46a、及び燃料ガス、例えば、水素含有ガスを供給するための燃料ガス供給連通孔48aが設けられる。
発電セル22の長辺方向の下端縁部には、矢印A方向に互いに連通して、燃料ガスを排出するための燃料ガス排出連通孔48b、及び酸化剤ガスを排出するための酸化剤ガス排出連通孔46bが設けられる。
発電セル22の短辺方向(矢印B方向)の一端縁部には、矢印A方向に互いに連通して、冷却媒体を供給するための冷却媒体供給連通孔50aが設けられるとともに、短辺方向の他端縁部には、前記冷却媒体を排出するための冷却媒体排出連通孔50bが設けられる。
電解質膜・電極構造体40は、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜52と、前記固体高分子電解質膜52を挟持するアノード側電極54及びカソード側電極56とを備える。アノード側電極54は、カソード側電極56よりも小さな表面積を有している。
図2に示すように、アノード側電極54及びカソード側電極56は、カーボンペーパ等からなるガス拡散層54a及び56aと、白金等の貴金属を含む触媒粒子が前記ガス拡散層54a及び56aの表面に一様に塗布して形成される電極触媒層54b及び56bとを有する。電極触媒層54bは、固体高分子電解質膜52の一方の面とは個別に構成されるとともに、電極触媒層56bは、前記固体高分子電解質膜52の他方の面に一体に構成される。
アノード側電極54は、ガス拡散層54aが第1金属セパレータ42に、例えば、レーザ溶接による接合部位57を介して接合される。すなわち、アノード側電極54は、第1金属セパレータ42に一体に固着されるとともに、固体高分子電解質膜52から離間自在に構成される。なお、ガス拡散層54aは、レーザ溶接が可能な金属材料で構成されることが好ましい。
図3及び図4に示すように、第1金属セパレータ42の電解質膜・電極構造体40に向かう面42aには、燃料ガス供給連通孔48aと燃料ガス排出連通孔48bとを連通して矢印C方向(重力方向)に延在する燃料ガス流路58が形成される。第1金属セパレータ42には、燃料ガス供給連通孔48a及び燃料ガス排出連通孔48bの近傍に、それぞれ複数の供給孔部60a及び排出孔部60bが形成される。供給孔部60aは、面42b側で燃料ガス供給連通孔48aに連通する一方、排出孔部60bは、同様に前記面42b側で燃料ガス排出連通孔48bに連通する。
第2金属セパレータ44の電解質膜・電極構造体40に向かう面44aには、酸化剤ガス供給連通孔46aと酸化剤ガス排出連通孔46bとを連通して矢印C方向(重力方向)に延在する酸化剤ガス流路62が形成される。第2金属セパレータ44の面44bと、第1金属セパレータ42の面42bとの間には、冷却媒体供給連通孔50aと冷却媒体排出連通孔50bとに連通する冷却媒体流路63が形成される(図2及び図3参照)。この冷却媒体流路63は、燃料ガス流路58の裏面形状と酸化剤ガス流路62の裏面形状とが重なり合うことによって、矢印B方向に延在して形成される。
第1金属セパレータ42の面42a、42bには、この第1金属セパレータ42の外周端縁部を周回して第1シール部材64が一体成形される。第2金属セパレータ44の面44a、44bには、この第2金属セパレータ44の外周端縁部を周回して第2シール部材66が一体成形される。
第1及び第2シール部材64、66には、例えば、EPDM、NBR、フッ素ゴム、シリコーンゴム、フロロシリコーンゴム、ブチルゴム、天然ゴム、スチレンゴム、クロロプレーン又はアクリルゴム等のシール材、クッション材、あるいはパッキン材が用いられる。
図4に示すように、第1シール部材64は、面42a側に設けられて燃料ガス流路58を囲繞する内側シール部64aを有する。この内側シール部64aの外周には、酸化剤ガス供給連通孔46a、酸化剤ガス排出連通孔46b、燃料ガス供給連通孔48a、燃料ガス排出連通孔48b、冷却媒体供給連通孔50a及び冷却媒体排出連通孔50bを囲繞して外側シール部64bが設けられる。
図3に示すように、第1シール部材64は、面42b側に設けられ、内側シール部64aに対応するとともに、冷却媒体流路63を冷却媒体供給連通孔50a及び冷却媒体排出連通孔50bに連通する内側シール部64cと、外側シール部64bに対応する外側シール部64dとを有する。
第2シール部材66は、第2金属セパレータ44の両方の面44a、44bに形成される平坦シールで構成される。
図1に示すように、酸化剤ガス供給装置14は、大気からの空気(酸化剤ガス)を圧縮して供給するエアコンプレッサ70を備え、前記エアコンプレッサ70が空気供給流路72に配設される。空気供給流路72は、燃料電池スタック12の酸化剤ガス供給連通孔46aに連通する。
酸化剤ガス供給装置14は、酸化剤ガス排出連通孔46bに連通する空気排出流路74を備える。この空気排出流路74には、エアコンプレッサ70から空気供給流路72を通って燃料電池スタック12に供給される空気の圧力を調整するための背圧弁76が設けられる。
燃料ガス供給装置16は、高圧水素(水素含有ガス)を貯留する水素タンク78を備え、この水素タンク78は、水素供給流路80を介して燃料電池スタック12の燃料ガス供給連通孔48aに連通する。この水素供給流路80には、エゼクタ82が設けられる。
エゼクタ82は、水素タンク78から供給される水素ガスを、水素供給流路80を通って燃料電池スタック12に供給するとともに、前記燃料電池スタック12で使用されなかった未使用の水素ガスを含む排ガスを、燃料ガス排出連通孔48bに連通する水素循環流路84から吸引して前記燃料電池スタック12に再度供給する。水素循環流路84には、排ガスを大気放出するための三方弁(水素排出手段)86が配置される。
荷重機構18は、駆動源として、例えば、サーボモータ90を備える。サーボモータ90は、ボールねじ手段(ねじ軸及びナットによる送り機構)92を介してプレスプレート94に連結される。プレスプレート94は、エンドプレート30bに当接自在である。サーボモータ90は、サーボアンプ96を介してコントローラ20により制御される。サーボアンプ96は、燃料電池スタック12から電力が供給される一方、サーボモータ90に電力の供給を行う。
荷重機構18は、プレスプレート94により積層体24に印加される積層方向の荷重(圧力)を検出する圧力センサ(圧力検出手段)98と、前記プレスプレート94の位置を検出する位置センサ(位置検出手段)100とを備える。圧力センサ98の検出信号及び位置センサ100の検出信号は、コントローラ20に送られる。
次に、燃料電池スタック12を組み立てる作業について説明する。
先ず、電解質膜・電極構造体40を製造する際には、白金触媒と純水とを混合し、仮攪拌を行った後、溶媒を添加して本攪拌を施すことによって触媒ペーストが作製される。そして、カーボンペーパを主体とするガス拡散層54a、56aに、触媒ペーストを塗布してアノード側電極54及びカソード側電極56が得られる。
さらに、カソード側電極56に固体高分子電解質膜52が転写される一方、アノード側電極54は、第1金属セパレータ42にレーザ等を用いて接合固定され、接合部位57が形成される(図2参照)。すなわち、アノード側電極54は、第1金属セパレータ42に一体化されるとともに、固体高分子電解質膜52に対して、近接及び離間可能に構成される。
第1金属セパレータ42と第2金属セパレータ44との間に、固体高分子電解質膜52を挟んでアノード側電極54及びカソード側電極56を有する電解質膜・電極構造体40が配置されて、発電セル22が構成される。発電セル22は、所定数だけ積層されることにより、積層体24が得られる。この積層体24の積層方向両端に、ターミナルプレート26a、26b、絶縁プレート28a、28b及びエンドプレート30a、30bが配設されるとともに、ケーシング34に収容されて燃料電池スタック12が構成される。
次いで、燃料電池システム10の発電停止方法及び発電起動方法について、図5に示すフローチャートに沿って以下に説明する。
燃料電池システム10の起動時には、先ず、背圧弁76が閉塞されるとともに、三方弁86を介して水素循環流路84が水素供給流路80に連通する(ステップS1)。さらに、ステップS2に進んで、反応ガスである酸化剤ガス及び燃料ガスが、燃料電池スタック12に供給される。
具体的には、図1に示すように、酸化剤ガス供給装置14では、エアコンプレッサ70が駆動される。このエアコンプレッサ70から供給される圧縮空気は、空気供給流路72を介して燃料電池スタック12の酸化剤ガス供給連通孔46aに供給される。また、燃料ガス供給装置16では、水素タンク78から供給される水素ガス(燃料ガス)は、水素供給流路80を通って燃料電池スタック12の燃料ガス供給連通孔48aに供給される。さらに、冷却媒体供給連通孔50aには、純水やエチレングリコール等の冷却媒体が供給される。
このため、積層体24では、矢印A方向に重ね合わされた複数の発電セル22に対し、酸化剤ガス、燃料ガス及び冷却媒体が、それぞれ矢印A方向に供給される。
この場合、第1の実施形態に係る発電起動方法では、燃料電池スタック12を構成する積層体24に積層方向に印加荷重が付与されていない状態で、水素ガスが燃料ガス供給連通孔48aに供給されている。その際、電解質膜・電極構造体40を構成するアノード側電極54は、固体高分子電解質膜52とは個別に構成されており、第1金属セパレータ42に対しレーザ溶接による接合部位57を介して一体化されている。
従って、積層体24では、積層方向に印加荷重が付与されていないため、アノード側電極54は、固体高分子電解質膜52から離間している。これにより、後述するように、燃料電池スタック12の燃料ガス供給連通孔48aから燃料ガス流路58に水素ガスが供給される際、前記燃料ガス流路58に空気が存在していても、腐食電流が流れることを良好に阻止することができる。このため、簡単な工程で、耐久性の向上を図ることが可能になるという効果が得られる。
一方、荷重機構18では、サーボアンプ96からサーボモータ90に電力が供給され、このサーボモータ90が駆動される。従って、サーボモータ90にボールねじ手段92を介して連結されるプレスプレート94は、エンドプレート30bをエンドプレート30a側に押圧する。
コントローラ20は、圧力センサ98によりプレスプレート94を介して積層体24に印加される荷重(圧力)を検出する。そして、検出される荷重が所定の荷重(設定荷重)、例えば、500〜1500kPaになるまで、サーボモータ90が駆動される(ステップS3)。
次に、ステップS4に進んで、エアコンプレッサ70を介して燃料電池スタック12に供給される酸化剤ガスの圧力が、所定の値、例えば、50〜200kPaGまで上昇されるとともに、水素タンク78から前記燃料電池スタック12に供給される水素ガスの圧力が、所定の値、例えば、50〜200kPaGまで上昇される。
この状態で、スイッチ32が閉塞されて燃料電池スタック12に負荷33が電気的に接続されることにより、前記燃料電池スタック12による発電が行われる(ステップS5)。具体的には、図3に示すように、酸化剤ガスは、酸化剤ガス供給連通孔46aから第2金属セパレータ44の酸化剤ガス流路62に導入され、電解質膜・電極構造体40のカソード側電極56に供給される。
また、燃料ガスは、図3及び図4に示すように、第1金属セパレータ42の面42b側で燃料ガス供給連通孔48aから複数の供給孔部60aを通って面42a側に供給される。この燃料ガスは、図4に示すように、燃料ガス流路58に沿って移動し、電解質膜・電極構造体40のアノード側電極54に供給される。
従って、各電解質膜・電極構造体40では、カソード側電極56に供給される酸化剤ガスと、アノード側電極54に供給される燃料ガスとが、電極触媒層内で電気化学反応により消費され、発電が開始される。
次いで、カソード側電極56に供給されて消費された酸化剤ガスは、図3に示すように、酸化剤ガス排出連通孔46bに排出される。同様に、アノード側電極54に供給されて消費された燃料ガスは、図4に示すように、燃料ガス流路58の下部に連通する複数の排出孔部60bを通って面42b側に移動し、燃料ガス排出連通孔48bに排出される。
また、冷却媒体は、冷却媒体供給連通孔50aから第1及び第2金属セパレータ42、44間の冷却媒体流路63に導入された後、矢印B方向(水平方向)に沿って流動する。この冷却媒体は、電解質膜・電極構造体40を冷却した後、冷却媒体排出連通孔50bから排出される。
次に、燃料電池システム10の発電停止要求がなされると(ステップS6中、YES)、ステップS7に進んで、スイッチ32が開放されて燃料電池スタック12から負荷33が電気的に切断される。
さらに、エアコンプレッサ70を介して燃料電池スタック12に供給される酸化剤ガスの圧力が、大気圧まで減圧される一方、水素タンク78から前記燃料電池スタック12に供給される水素ガスの圧力が、大気圧まで減圧される(ステップS8)。このため、燃料電池スタック12の内部では、酸化剤ガス残圧及び水素ガス残圧が除去されて、カソード側電極56とアノード側電極54との間の差圧を取り除くことができる。
そして、ステップS9に進んで、酸化剤ガス及び水素ガスの供給が停止された後、荷重機構18による印加荷重の解除が行われる(ステップS10)。荷重機構18では、サーボモータ90が、前記とは逆方向に駆動され、ボールねじ手段92を介してプレスプレート94がエンドプレート30bから離間する方向に移動する。
プレスプレート94が所定の位置まで退避したことが、位置センサ100を介して検出されると、サーボアンプ96に停止指令が送られ、前記サーボモータ90への電力の供給が停止される。従って、プレスプレート94は、所定の位置まで退避されて、各発電セル22への印加荷重が解除される。さらに、背圧弁76及び三方弁86は、大気開放側に操作されることにより、酸化剤ガス及び水素ガスのパージが行われる(ステップS11)。
この場合、第1の実施形態に係る発電停止方法では、積層体24への積層方向の印加荷重が解除されると、図6に示すように、第1シール部材64を構成する内側シール部64a及び外側シール部64bの反発力を介して、第1金属セパレータ42は、第2金属セパレータ44から離間する方向に移動する。
従って、アノード側電極54は、第1金属セパレータ42と一体に移動し、固体高分子電解質膜52から離間する。これにより、燃料電池スタック12の発電が停止した状態で、腐食電流が流れることを良好に阻止することができる。このため、簡単な工程で、耐久性の向上を図ることが可能になるという効果が得られる。
なお、第1の実施形態では、ステップS10において、各発電セル22への印加荷重を解除しているが、この印加荷重を低減してもよい。その際、電解質膜・電極構造体40に印加される積層方向の荷重が低減されるため、アノード側電極54と固体高分子電解質膜52との接触抵抗が増大する。
従って、燃料電池スタック12の発電停止中に、腐食電流が流れることを良好に抑制することができ、耐久性の向上を図ることが可能になる。同様に、発電起動時には、アノード側電極54と固体高分子電解質膜52との接触抵抗が増大しているため、燃料ガス流路58に水素ガスを供給する際に、腐食電流が流れることを良好に抑制することができる。これにより、耐久性の向上を図ることが可能になる。
さらにまた、第1の実施形態では、アノード側電極54を第1金属セパレータ42に接合して一体化しているが、このアノード側電極54と共に、又は、前記アノード側電極54に代えて、カソード側電極56を第2金属セパレータ44に接合して一体化することも可能である。また、アノード側電極54とカソード側電極56とを入れ替えて構成してもよい。
これにより、燃料電池スタック12の発電停止時に、印加荷重の低減又は解除が行われると、固体高分子電解質膜52からアノード側電極54及び/又はカソード側電極56が離間し、あるいは、接触抵抗が増大する。このため、腐食電流が流れることを可及的に阻止することができる。
一方、燃料電池スタック12の発電起動時には、印加荷重の低減又は解除が行われている状態で、燃料ガス流路58への水素ガスの供給が開始される。従って、固体高分子電解質膜52からアノード側電極54及び/又はカソード側電極56が離間し、あるいは、接触抵抗が増大した状態で、水素ガスの供給が行われ、腐食電流が流れることを可及的に阻止することが可能になる。
ここで、燃料電池スタック12の発電停止時に、印加荷重の低減又は解除を行わない場合(比較例)と、第1の実施形態を行った場合とにおいて、サイクル数とセル電圧との関係を検出したところ、図7に示す結果が得られた。なお、起動、発電及び停止を1サイクルという。
従って、比較例では、印加荷重の低減又は解除が行われないため、発電停止中及び発電起動時に、腐食電流が発生して触媒層の劣化が惹起され、起動、発電及び停止のサイクルを繰り返すことにより、発電性能の低下が惹起されている。
これに対して、第1の実施形態では、腐食電流の流れを阻止することができ、サイクル数が増加してもセル電圧が一定に維持されており、所望の性能を確実に維持することが可能になる。
図8は、本発明の第2の実施形態に係る燃料電池システムを構成する発電セル110の分解斜視図である。なお、第1の実施形態に係る発電セル22と同一の構成要素には同一の参照符号を付して、その詳細な説明は省略する。
発電セル110は、電解質膜・電極構造体112を備え、この電解質膜・電極構造体112は、固体高分子電解質膜52の両面にアノード側電極54とカソード側電極56とが一体に設けられる。
このように構成される発電セル110は、発電セル22に代えて燃料電池スタック12に組み込むことにより、上記の発電停止方法及び発電起動方法を行うことができる。その際、発電停止運転に伴って、印加荷重の解除(又は、低減)が行われると(ステップS10)、発電セル110を構成する電解質膜・電極構造体112への印加荷重の解除又は低減が行われる。
従って、電解質膜・電極構造体112では、固体高分子電解質膜52とアノード側電極54及びカソード側電極56との接触抵抗が増加する。これにより、簡単な工程で、腐食電流が流れることを良好に抑制するとともに、耐久性の向上を図ることができる等、第1の実施形態と同様の効果が得られる。
なお、大面積発電セルが用いられる場合、固体高分子電解質膜と電極との分離に必要な反発力を得るために、シール部材を通常よりも増やすことが望ましい。例えば、図9に示す大面積発電セル120は、複数の固体高分子電解質膜52aを有しており、各固体高分子電解質膜52aの外周縁部を周回してシール部分122が配置される。
本発明の第1の実施形態に係る発電停止方法及び発電起動方法が実施される燃料電池システムの概略構成図である。 前記燃料電池システムを構成する燃料電池スタックの一部断面説明図である。 前記燃料電池スタックを構成する発電セルの分解斜視図である。 前記発電セルを構成する第1金属セパレータの正面図である。 前記発電停止方法及び前記発電起動方法を説明するフローチャートである。 印加荷重が解除された状態の前記発電セルの説明図である。 比較例及び実施形態におけるサイクル数とセル電圧との関係説明図である。 本発明の第2の実施形態に係る燃料電池システムを構成する発電セルの分解斜視図である。 大面積発電セルの説明図である。
符号の説明
10…燃料電池システム 12…燃料電池スタック
14…酸化剤ガス供給装置 16…燃料ガス供給装置
18…荷重機構 20…コントローラ
22、110…発電セル 24…積層体
40、112…電解質膜・電極構造体 42、44…金属セパレータ
52、52a…固体高分子電解質膜 54…アノード側電極
54a、56a…ガス拡散層 54b、56b…電極触媒層
56…カソード側電極 57…接合部位
58…燃料ガス流路 62…酸化剤ガス流路
63…冷却媒体流路 64、66…シール部材
70…エアコンプレッサ 76…背圧弁
78…水素タンク 82…エゼクタ
86…三方弁 90…サーボモータ
92…ボールねじ手段 94…プレスプレート
96…サーボアンプ 98…圧力センサ
100…位置センサ 120…大面積発電セル
122…シール部分

Claims (4)

  1. 電解質膜の両側にアノード側電極及びカソード側電極を設けた電解質膜・電極構造体とセパレータとが、シール部材を介装して積層されるとともに、前記アノード側電極と前記カソード側電極との間に負荷を電気的に接続し、且つ積層方向に荷重を印加した状態で、前記アノード側電極に燃料ガスを供給する一方、前記カソード側電極に酸化剤ガスを供給して発電する燃料電池の発電停止方法であって、
    前記燃料電池から前記負荷を電気的に切断する工程と、
    前記アノード側電極の燃料ガス圧及び前記カソード側電極の酸化剤ガス圧を、大気圧近傍まで減圧させる工程と、
    前記燃料ガス及び前記酸化剤ガスの供給を停止する工程と、
    前記燃料電池への印加荷重を低減又は解除する工程と、
    を有することを特徴とする燃料電池の発電停止方法。
  2. 請求項1記載の発電停止方法において、前記燃料電池への前記印加荷重を低減又は解除することにより、前記シール部材の反発力を介して、少なくとも前記アノード側電極又は前記カソード側電極を、前記セパレータと一体に前記電解質膜から離間させることを特徴とする燃料電池の発電停止方法。
  3. 電解質膜の両側にアノード側電極及びカソード側電極を設けた電解質膜・電極構造体とセパレータとが、シール部材を介装して積層される燃料電池の発電起動方法であって、
    前記燃料電池に対して積層方向への印加荷重を低減又は解除した状態で、前記アノード側電極への燃料ガスの供給を開始する一方、前記カソード側電極への酸化剤ガスの供給を開始する工程と、
    前記燃料電池に対して前記印加荷重を増加させる工程と、
    前記印加荷重が設定荷重に至った際、前記アノード側電極の燃料ガス圧及び前記カソード側電極の酸化剤ガス圧を、発電に必要な設定圧まで昇圧させるとともに、前記アノード側電極と前記カソード側電極との間に負荷を電気的に接続して発電を開始する工程と、
    を有することを特徴とする燃料電池の発電起動方法。
  4. 電解質膜の両側にアノード側電極及びカソード側電極を設けた電解質膜・電極構造体とセパレータとが、シール部材を介装して積層される発電セルを備え、複数の前記発電セルが積層されるとともに、前記発電セルの積層方向両端には、ターミナルプレート、絶縁プレート及びエンドプレートが配設される燃料電池と、
    前記燃料電池に積層方向に荷重を印加する一方、印加荷重を低減又は解除可能な荷重機構と、
    を備える燃料電池システムであって、
    少なくとも前記アノード側電極又は前記カソード側電極は、前記セパレータに一体に固着されるとともに、前記電解質膜から離間自在に構成されることを特徴とする燃料電池システム。
JP2007326843A 2007-12-19 2007-12-19 燃料電池の発電停止方法、その発電起動方法及び燃料電池システム Withdrawn JP2009151972A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007326843A JP2009151972A (ja) 2007-12-19 2007-12-19 燃料電池の発電停止方法、その発電起動方法及び燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007326843A JP2009151972A (ja) 2007-12-19 2007-12-19 燃料電池の発電停止方法、その発電起動方法及び燃料電池システム

Publications (1)

Publication Number Publication Date
JP2009151972A true JP2009151972A (ja) 2009-07-09

Family

ID=40920888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007326843A Withdrawn JP2009151972A (ja) 2007-12-19 2007-12-19 燃料電池の発電停止方法、その発電起動方法及び燃料電池システム

Country Status (1)

Country Link
JP (1) JP2009151972A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070618A1 (ja) * 2009-12-10 2011-06-16 株式会社 東芝 燃料電池システムおよびその運転停止方法
CN116805705A (zh) * 2022-03-24 2023-09-26 本田技研工业株式会社 电化学式升压电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070618A1 (ja) * 2009-12-10 2011-06-16 株式会社 東芝 燃料電池システムおよびその運転停止方法
CN116805705A (zh) * 2022-03-24 2023-09-26 本田技研工业株式会社 电化学式升压电池
CN116805705B (zh) * 2022-03-24 2024-03-26 本田技研工业株式会社 电化学式升压电池

Similar Documents

Publication Publication Date Title
US20050186464A1 (en) Fuel cell
JP5321014B2 (ja) 燃料電池用金属セパレータの溶接装置、および燃料電池用金属セパレータの溶接方法
JP2005209605A (ja) 電解質膜・電極構造体及び燃料電池
US7220511B2 (en) Fuel cell
US8137829B2 (en) Method of preserving polymer electrolyte fuel cell stack and preservation assembly of polymer electrolyte fuel cell stack
JP2013145653A (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2005100755A (ja) 燃料電池スタック
JP2008034274A (ja) 燃料電池用セパレータ及び燃料電池用セパレータ構成用プレート及び燃料電池用セパレータの製造方法
JP2009151972A (ja) 燃料電池の発電停止方法、その発電起動方法及び燃料電池システム
JP2010061981A (ja) 燃料電池システムの始動方法
JP4124666B2 (ja) 燃料電池スタックの組立方法
JP2008004448A (ja) 燃料電池スタック
JP5756388B2 (ja) 燃料電池
KR101304700B1 (ko) 막 전극 접합체의 적층 안정성 개선을 위한 핫프레싱 장치
JP2008243404A (ja) 燃料電池用発電検査システム
JP5351003B2 (ja) 燃料電池スタック及びその始動方法
JP5251139B2 (ja) 燃料電池の膜・電極接合体の製造方法
JP3641622B2 (ja) 燃料電池及びその処理方法
JP2016072238A (ja) 燃料電池
JP4262586B2 (ja) 燃料電池の分解方法
JP2008186736A (ja) 燃料電池スタック
JP4460902B2 (ja) 燃料電池スタック及びその製造方法
JP5988104B2 (ja) 燃料電池
JP5252812B2 (ja) 高分子電解質型燃料電池スタックの保存方法
JP3704512B2 (ja) 燃料電池スタックの組み立て方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110301