JP2006215427A - 空間光変調装置及び画像表示装置 - Google Patents

空間光変調装置及び画像表示装置 Download PDF

Info

Publication number
JP2006215427A
JP2006215427A JP2005030118A JP2005030118A JP2006215427A JP 2006215427 A JP2006215427 A JP 2006215427A JP 2005030118 A JP2005030118 A JP 2005030118A JP 2005030118 A JP2005030118 A JP 2005030118A JP 2006215427 A JP2006215427 A JP 2006215427A
Authority
JP
Japan
Prior art keywords
light
incident
prism element
unit
reference surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005030118A
Other languages
English (en)
Other versions
JP4093240B2 (ja
Inventor
Shunji Uejima
俊司 上島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005030118A priority Critical patent/JP4093240B2/ja
Priority to US11/253,556 priority patent/US7184188B2/en
Priority to CNB200510115615XA priority patent/CN100401177C/zh
Publication of JP2006215427A publication Critical patent/JP2006215427A/ja
Application granted granted Critical
Publication of JP4093240B2 publication Critical patent/JP4093240B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/12Function characteristic spatial light modulator

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】高いコントラストで、かつ入射光を効率的に使用することができる空間光変調装置等を提供すること。
【解決手段】入射光を画像信号に応じて変調する変調部と、変調部の近傍に設けられ、入射光を変調部の方向へ反射する光路偏向部と、を有し、変調部は、行列状に配列されている複数の画素部である開口部203bと、複数の開口部203b同士の間に設けられている遮光部であるブラックマトリックス部203aとを備え、光路偏向部は、入射光を開口部203bの方向へ反射する反射部である斜面211aを備えるプリズム素子211であって、プリズム素子211は、基準面200上であってブラックマトリックス部203aに対応する位置に設けられ、かつ、基準面200bに略垂直な方向への長さHが、基準面200bに略平行な方向への長さW1の15以上かつ250以下である。
【選択図】 図3

Description

本発明は、空間光変調装置及び画像表示装置、特に、液晶型の空間光変調装置に関する。
空間光変調装置、特に液晶型の空間光変調装置では、画像表示領域内に、データ線、走査線、容量線等の各種配線や、薄膜トランジスタ(以下適宜、TFT(Thin Film Transistor)と称す)、薄膜ダイオード等の各種電子素子が形成されている。このため、各画素において、実際に表示に寄与する光が透過又は反射する領域は、各種配線や電子素子等の存在により限定される。ここで、各画素の開口率は、各画素について、全領域に対する、実際に表示に寄与する光が透過又は反射する領域(即ち、各画素の開口領域)の比率である。そして、各画素の開口率は、例えば70%程度である。例えば、空間光変調装置に入射する光源部からの光は、略平行光である。そして、空間光変調装置に入射した全光量のうち、有効に変調されるのは、各画素の開口率に応じた光量である。
そこで従来は、各画素に対応する複数のマイクロレンズを有するマイクロレンズアレイを対向基板に形成することが行われている。マイクロレンズは、各画素において、開口領域の周辺の上述の配線等が存在している非開口領域に向かって進行する光を、各画素単位で集光する機能を有する。マイクロレンズで集光された光は、空間光変調装置の液晶層を透過するときに、各画素の開口領域内に導かれる。空間光変調装置にマイクロレンズアレイを利用することは、例えば、特許文献1に提案されている。
特開2004−70282号公報
マイクロレンズへ入射する光の多くは、マイクロレンズの集光作用により、光線と光軸とのなす光線角度が大きい状態で出射する。空間光変調装置の液晶層は小さい光線角度の光を入射するほど高いコントラストで表示することが可能である。このことから、光線角度が大きい光が多くなると、画像のコントラストが低下してしまう。また、投写光学系は、その開口数(Numerical Aperture。以下、「NA」という。)に応じた入射角度の光のみを透過させる。上述のように、従来のマイクロレンズアレイを用いる空間光変調装置では、マイクロレンズにより開口領域に所定のNAで光が集光される。開口領域に入射した光は、例えば液晶部で画像信号に応じて変調された後、略入射時と同じ所定のNAの光として射出する。
空間光変調装置からの光は、マイクロレンズの集光作用により屈折した光線と光軸とのなす光線角度が大きくなる。投写光学系のNAよりも大きい光線角度の光は、投写光学系でけられてしまう。投写光学系のNAよりも大きい光線角度の光が多いと、投写光学系でけられる光が多くなることから、光の利用効率が低下してしまう。このように、マイクロレンズアレイを用いる空間光変調装置では、光源部からの光を開口領域に効率的に導いた場合でも、光線角度が大きい光が増加することで、コントラストの低下や光利用効率の低下などが引き起こされてしまうため問題である。本発明は、上述の問題点を解決するためになされたものであり、高いコントラストで、かつ入射光を効率的に使用することができる空間光変調装置、及び、高いコントラストで明るい画像を表示可能な画像表示装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明によれば、入射光を画像信号に応じて変調する変調部と、変調部の近傍に設けられ、入射光を変調部の方向へ反射する光路偏向部と、を有し、変調部は、行列状に配列されている複数の画素部と、画素部同士の間に設けられている遮光部とを備え、光路偏向部は、入射光を画素部の方向へ反射する反射部を備えるプリズム素子であって、プリズム素子は、基準面上であって遮光部に対応する位置に設けられ、かつ、基準面に略垂直な方向への長さが、基準面に略平行な方向への長さの15倍以上かつ250倍以下であることを特徴とする空間光変調装置を提供することができる。
本発明の空間光変調装置の変調部に対しては、例えば、光を供給する光源部から様々な入射角度の光が入射する。変調部へ直接入射した光は、そのままの進行方向へ進行し、変調部で変調される。これに対して、変調部の周辺に設けられた非変調領域の方向へ入射した光は、変調部の周辺に設けられているプリズム素子に入射する。プリズム素子に入射した光は、変調部の方向へ反射される。プリズム素子を設けることにより、変調部とは異なる方向へ進行した光を変調部へ入射させることができる。
従来技術の構成では、変調部へ入射する光は、全てマイクロレンズを透過する。このため、変調部へ入射する光は、光軸上の光を除いて全てマイクロレンズによる屈折作用を受ける。この結果、従来技術の構成では、空間光変調装置を射出する光は、全てマイクロレンズによる集光光のNAに応じた光線角度を有してしまう。投写光学系のNAよりも大きい光線角度の光は、投写光学系でけられてしまう。これに対して、本発明の構成では、プリズム素子を経由せずに変調部に入射する光は、そのまま変調部に入射する。このため、例えば、変調部に略平行な光が入射する場合、変調された光も略平行な状態で射出する。プリズム素子が屈折による集光機能を有していないことから、プリズム素子を経由した光と光軸がなす光線角度は大きくなることが殆どない。
さらに、基準面に略垂直な方向への長さが、基準面に略平行な方向への長さの15倍以上かつ250倍以下であるプリズム素子を用いると、反射部で光を反射することにより、光線角度の増大を低減しながら入射光を偏向することが可能となる。このことから、プリズム素子で光路偏向を受けた光についても、光線角度の増大を低減することができる。空間光変調装置は、大きい光線角度の光の発生を低減することで、コントラストの低下を低減できる。また、例えば、投写光学系でけられる光を少なくすることができ、入射光の効率的な利用が可能となる。これにより、高いコントラストで、かつ入射光を効率的に使用することが可能な空間光変調装置を得られる。
また、本発明の好ましい態様によれば、プリズム素子は、基準面に略垂直な方向への長さが、基準面に略平行な方向への長さの20倍以上かつ200倍以下であることが望ましい。基準面に略垂直な方向への長さが、基準面に略平行な方向への長さの20倍以上かつ200倍以下であるプリズム素子を用いると、反射部で光を反射することにより、光線角度の増大を低減しながら入射光を偏向することが可能となる。これにより、プリズム素子で光路偏向を受けた光について、さらに光線角度の増大を低減することができる。
また、本発明の好ましい態様によれば、反射部は、第1の領域と、第1の領域よりも画素部からの距離が短い位置に設けられた第2の領域とを有し、第1の領域及び第2の領域は、基準面の法線と第2の領域とがなす角度が、基準面の法線と第1の領域とがなす角度より大きくなるように設けられることが望ましい。第1の領域の傾きと第2の領域の傾きとが同じであるとすると、第2の領域で反射した光は、第1の領域で反射した光よりも開口部の中心部から離れた位置に入射する。隣接する画素部に設けられた電極の影響により、液晶の配向状態は、開口部の中心部に比較して、開口部の周辺部において不安定である場合が多い。このことから、開口部の周辺部へ入射する光によって、高いコントラストを得ることが難しくなる。本態様では、基準面の法線と第2の領域とがなす角度を、基準面の法線と第1の領域とがなす角度よりも大きくすることにより、第2の領域で反射した光を、第1の領域で反射した光と同様に開口部の中心部に近い位置へ入射させることができる。これにより、さらにコントラストを高くすることができる。
また、本発明の好ましい態様としては、反射部は、基準面の法線となす角度が3度以下である有効反射領域を含むことが望ましい。有効反射領域を形成することで、反射部で反射する光を、光線角度の増大を低減しながら偏向することが可能となる。また、有効反射領域を形成することにより、入射光を、例えば、Fナンバーが2.5である投写光学系で十分取り込むことが可能な光線角度の光に変換することができる。これにより、コントラストを高くし、かつ入射光を効率的に使用することができる。
また、本発明の好ましい態様としては、反射部は、有効反射領域が、反射部の全領域のうちの70パーセント以上を占めることが望ましい。反射部の全領域のうちの70パーセント以上を有効反射領域とすることで、高いコントラストと、入射光の効率的な使用とを実現することができる。
また、本発明の好ましい態様としては、遮光部は、基準面に略平行な第1の方向に長手方向を有する第1の遮光部と、基準面に略平行かつ第1の方向に略直交する第2の方向に長手方向を有する第2の遮光部と、を有し、第1の遮光部及び第2の遮光部は、互いに交差部で交差するように配置され、かつ、交差部以外の部分よりも交差部のほうが、長手方向に対して略直交する方向における幅が大きくなるように形成されることが望ましい。交差部以外の部分より交差部において幅が大きくなるように第1の遮光部と第2の遮光部とを形成することにより、従来交差部以外の部分の下側に配置している電子部品を、交差部の下に配置することができる。交差部以外の部分から交差部へ電子部品を移すと、第1の遮光部及び第2の遮光部は、従来と比較して、交差部以外の部分の幅を小さくすることができる。このことから、電子部品の収納スペースを確保しつつ、大きい開口部を形成することが可能となる。従来の空間光変調装置と比較して大きい開口部を設けることが可能であれば、従来と比較して多くの光を開口部に入射させることが可能になる。また、大きい開口部を設けることにより、光軸に沿って直進する光を多く開口部に入射させることが可能となる。さらに、開口部のうち、液晶の配向状態が安定している中心部に近い位置に多くの光を入射させることも可能となる。これにより、コントラストを高くし、かつ入射光を効率的に使用することができる。
さらに、本発明によれば、光を供給する光源部と、光源部からの光を画像信号に応じて変調する空間光変調装置と、空間光変調装置で変調された光を投写する投写光学系と、を有し、空間光変調装置は、入射光を画像信号に応じて変調する変調部と、変調部の近傍に設けられ、入射光を変調部の方向へ反射する光路偏向部と、を有し、変調部は、行列状に配列されている複数の画素部と、画素部同士の間に設けられている遮光部とを備え、光路偏向部は、入射光を画素部の方向へ反射する反射部を備えるプリズム素子であって、プリズム素子は、基準面上であって遮光部に対応する位置に設けられ、かつ、基準面に略垂直な方向への長さが、基準面に略平行な方向への長さの15倍以上かつ250倍以下であることを特徴とする画像表示装置を提供することができる。本発明の画像表示装置は、上記の空間光変調装置を有する。上記の空間光変調装置を用いることにより、高いコントラストで、かつ入射光を効率的に使用することができる。これにより、高いコントラストで明るい画像を表示可能な画像表示装置を得られる。
また、本発明の好ましい態様としては、投写光学系のFナンバーをF、とすると、空間光変調装置は、基準面の法線と所定の角度をなす入射光を、式(1)を満たす角度θoに変換して射出することが望ましい。
0≦θo≦arctan{1/(2F)} (1)
FナンバーがFである投写光学系は、式(1)を満たす角度θoの光を取り込むことができる。例えば、入射光のうち最も存在確率が高い所定角度の光を、式(1)を満たす角度θoに変換することにより、空間光変調装置で変調した光を効率良く投写することができる。これにより、入射光を効率良く投写し、明るい画像を表示することができる。
以下に図面を参照して、本発明の実施例を詳細に説明する。
図1は、本発明の実施例1に係る画像表示装置であるプロジェクタ100の概略構成を示す。光源部101は、第1色光である赤色光(以下、「R光」という。)、第2色光である緑色光(以下、「G光」という。)、及び第3色光である青色光(以下、「B光」という。)を含む光を供給する超高圧水銀ランプである。インテグレータ104は、光源部101からの光の照度分布を均一化する。照度分布を均一化された光は、偏光変換素子105にて特定の振動方向を有する偏光光、例えばs偏光光に変換される。s偏光光に変換された光は、色分離光学系を構成するR光透過ダイクロイックミラー106Rに入射する。
R光透過ダイクロイックミラー106Rは、R光を透過し、G光、B光を反射する。R光透過ダイクロイックミラー106Rを透過したR光は、反射ミラー107に入射する。反射ミラー107は、R光の光路を90度折り曲げる。光路を折り曲げられたR光は、第1色光であるR光を画像信号に応じて変調する第1色光用空間光変調装置110Rに入射する。第1色光用空間光変調装置110Rは、R光を画像信号に応じて変調する透過型の液晶表示装置である。なお、ダイクロイックミラーを透過しても、光の偏光方向は変化しないため、第1色光用空間光変調装置110Rに入射するR光は、s偏光光のままの状態である。
第1色光用空間光変調装置110Rは、λ/2位相差板123R、硝子板124R、第1偏光板121R、液晶パネル120R、及び第2偏光板122Rを有する。液晶パネル120Rの詳細な構成については後述する。λ/2位相差板123R及び第1偏光板121Rは、偏光方向を変換させない透光性の硝子板124Rに接する状態で配置される。これにより、第1偏光板121R及びλ/2位相差板123Rが、発熱により歪んでしまうという問題を回避できる。なお、図1において、第2偏光板122Rは独立して設けられているが、液晶パネル120Rの射出面や、クロスダイクロイックプリズム112の入射面に接する状態で配置しても良い。
第1色光用空間光変調装置110Rに入射したs偏光光は、λ/2位相差板123Rによりp偏光光に変換される。p偏光光に変換されたR光は、硝子板124R及び第1偏光板121Rをそのまま透過し、液晶パネル120Rに入射する。液晶パネル120Rに入射したp偏光光は、画像信号に応じた変調により、R光がs偏光光に変換される。液晶パネル120Rの変調により、s偏光光に変換されたR光が、第2偏光板122Rから射出される。このようにして、第1色光用空間光変調装置110Rで変調されたR光は、色合成光学系であるクロスダイクロイックプリズム112に入射する。
R光透過ダイクロイックミラー106Rで反射されたG光及びB光は、光路を90度折り曲げられる。光路を折り曲げられたG光とB光とは、B光透過ダイクロイックミラー106Gに入射する。B光透過ダイクロイックミラー106Gは、G光を反射し、B光を透過する。B光透過ダイクロイックミラー106Gで反射されたG光は、第2色光であるG光を画像信号に応じて変調する第2色光用空間光変調装置110Gに入射する。第2色光用空間光変調装置110GはG光を画像信号に応じて変調する透過型の液晶表示装置である。第2色光用空間光変調装置110Gは、液晶パネル120G、第1偏光板121G及び第2偏光板122Gを有する。液晶パネル120Gの詳細に関しては後述する。
第2色光用空間光変調装置110Gに入射するG光は、s偏光光に変換されている。第2色光用空間光変調装置110Gに入射したs偏光光は、第1偏光板121Gをそのまま透過し、液晶パネル120Gに入射する。液晶パネル120Gに入射したs偏光光は、画像信号に応じた変調により、G光がp偏光光に変換される。液晶パネル120Gの変調により、p偏光光に変換されたG光が、第2偏光板122Gから射出される。このようにして、第2色光用空間光変調装置110Gで変調されたG光は、色合成光学系であるクロスダイクロイックプリズム112に入射する。
B光透過ダイクロイックミラー106Gを透過したB光は、2枚のリレーレンズ108と、2枚の反射ミラー107とを経由して、第3色光であるB光を画像信号に応じて変調する第3色光用空間光変調装置110Bに入射する。第3色光用空間光変調装置110Bは、B光を画像信号に応じて変調する透過型の液晶表示装置である。なお、B光にリレーレンズ108を経由させるのは、B光の光路の長さがR光及びG光の光路の長さよりも長いためである。リレーレンズ108を用いることにより、B光透過ダイクロイックミラー106Gを透過したB光を、そのまま第3色光用空間光変調装置110Bに導くことができる。第3色光用空間光変調装置110Bは、λ/2位相差板123B、硝子板124B、第1偏光板121B、液晶パネル120B、及び第2偏光板122Bを有する。第3色光用空間光変調装置110Bの構成は、上述した第1色光用空間光変調装置110Rの構成と同様なので、詳細な説明は省略する。
第3色光用空間光変調装置110Bに入射するB光は、s偏光光に変換されている。第3色光用空間光変調装置110Bに入射したs偏光光は、λ/2位相差板123Bによりp偏光光に変換される。p偏光光に変換されたB光は、硝子板124B及び第1偏光板121Bをそのまま透過し、液晶パネル120Bに入射する。液晶パネル120Bに入射したp偏光光は、画像信号に応じた変調により、B光がs偏光光に変換される。液晶パネル120Bの変調により、s偏光光に変換されたB光が、第2偏光板122Bから射出される。第3色光用空間光変調装置110Bで変調されたB光は、色合成光学系であるクロスダイクロイックプリズム112に入射する。このように、色分離光学系を構成するR光透過ダイクロイックミラー106RとB光透過ダイクロイックミラー106Gとは、光源部101から供給される光を、第1色光であるR光と、第2色光であるG光と、第3色光であるB光とに分離する。
色合成光学系であるクロスダイクロイックプリズム112は、2つのダイクロイック膜112a、112bをX字型に直交して配置して構成されている。ダイクロイック膜112aは、B光を反射し、G光を透過する。ダイクロイック膜112bは、R光を反射し、G光を透過する。このように、クロスダイクロイックプリズム112は、第1色光用空間光変調装置110R、第2色光用空間光変調装置110G、及び第3色光用空間光変調装置110Bでそれぞれ変調されたR光、G光及びB光を合成する。投写光学系114は、クロスダイクロイックプリズム112で合成された光をスクリーン116に投写する。これにより、スクリーン116上でフルカラー画像を得ることができる。
なお、上述のように、第1色光用空間光変調装置110R及び第3色光用空間光変調装置110Bからクロスダイクロイックプリズム112に入射される光は、s偏光光となるように設定される。また、第2色光用空間光変調装置110Gからクロスダイクロイックプリズム112に入射される光は、p偏光光となるように設定される。このようにクロスダイクロイックプリズム112に入射される光の偏光方向を異ならせることで、クロスダイクロイックプリズム112において各色光用空間光変調装置から射出される光を有効に合成できる。ダイクロイック膜112a、112bは、通常、s偏光光の反射特性に優れる。このため、ダイクロイック膜112a、112bで反射されるR光及びB光をs偏光光とし、ダイクロイック膜112a、112bを透過するG光をp偏光光としている。
図2は、液晶パネル120Rの要部斜視構成を示す。図1で説明したプロジェクタ100は、3つの液晶パネル120R、120G、120Bを備えている。これら3つの液晶パネル120R、120G、120Bは変調する光の波長領域が異なるだけであり、基本的構成は同一である。このため、液晶パネル120Rを代表例にして以後の説明を行う。
光源部101からのR光は、図2の上側から液晶パネル120Rに入射し、下側からスクリーン116の方向へ射出する。防塵硝子である入射側防塵硝子200の内側には、接着層201を介してカバー硝子202が固着されている。カバー硝子202の射出側には、ブラックマトリックス部203a及び対向電極204が形成されている。
また、射出側防塵硝子208の内側には、接着層207を介して液晶を配向させるための配向膜206cやTFT(薄膜トランジスタ)や透明電極206aを有するTFT基板206が形成されている。そして、入射側防塵硝子200及び射出側防塵硝子208は、対向電極204とTFT基板206とを対向させるようにして貼り合わされている。対向電極204とTFT基板206との間には、画像表示のための液晶層205が封入されている。また、液晶層205の入射側には、遮光部であるブラックマトリックス部203aを有する。
入射側防塵硝子200には、複数のプリズム素子211からなるプリズム群210が形成されている。プリズム素子211の構成及び作用の詳細については後述する。液晶パネル120Rは、プリズム素子211を配置する基準面200bと、光源部101からの光の光軸とが略直交するように配置されている。なお、図1で示した構成では、第1偏光板121R、第2偏光板122Rを、液晶パネル120Rに対して別体に設けている。しかし、これに代えて、入射側防塵硝子200と対向電極204との間、射出側防塵硝子208とTFT基板206との間などにも偏光板を設けることができる。さらに、プリズム群210は、第1偏光板121Rに形成してもよい。
図3は、液晶パネル120Rの要部断面構成を示す。ブラックマトリックス部203aに囲まれている矩形状の領域は、開口部203bを形成する。開口部203bは、光源部101からのR光を通過させる。開口部203bを透過するR光は、図3に示すように対向電極204と、液晶層205と、TFT基板206とを透過する。R光は、液晶層205における画像信号に応じた変調により、偏光状態が変換される。このように、投写された画像における画素を形成するのは、開口部203bと、液晶層205と、TFT基板206とを透過して変調を受けた光である。開口部203bと、液晶層205と、TFT基板206とは、入射光を画像信号に応じて変調する変調部を構成する。また、開口部203bは、画素部を構成する。変調部は、複数の画素部と、画素部同士の間に設けられている遮光部とを備えている。
図4は、図3の上側から見たブラックマトリックス部203a及び開口部203bの要部平面構成を示す。図4に示す平面構成は、図3に示す基準面200bに略平行である。複数の開口部203bは、基準面200bに略平行な第1の方向と、基準面200bに略平行かつ第1の方向に略直交する第2の方向との2方向において、行列状に配列されている。第1の方向とは、図4において紙面に略平行な上下方向である。第2の方向とは、図4において紙面に略平行な左右方向である。ブラックマトリックス部203aは、第1の方向に長手方向を有する第1の遮光部である、第1のブラックマトリックス部401と、第2の方向に長手方向を有する第2の遮光部である、第2のブラックマトリックス部402と、により構成されている。
第1のブラックマトリックス部401及び第2のブラックマトリックス部402は、互いに交差部403で交差するように配置されている。また、第1のブラックマトリックス部401及び第2のブラックマトリックス部402は、いずれも、交差部403における幅d1が、交差部403以外の部分における幅d2より大きくなるように形成されている。幅d1、d2は、長手方向に対して略直交する方向における、第1のブラックマトリックス部401及び第2のブラックマトリックス部402の幅である。
ここで、幅が略一定の第1、第2のブラックマトリックス部を格子状に配置する従来の構成と比較して、本実施例の構成の利点を説明する。第1、第2のブラックマトリックス部401、402の下側には、トランジスタやコンデンサ等の電子部品が配置される。交差部403以外の部分より交差部403において幅が大きくなるように第1、第2のブラックマトリックス部401、402を形成することにより、従来交差部403以外の部分の下側に配置している電子部品を、交差部403の下に配置することができる。
交差部403以外の部分から交差部403へ電子部品を移すと、第1、及び第2のブラックマトリックス部401、402は、従来と比較して、交差部403以外の部分の幅d2を小さくすることができる。このことから、従来の空間光変調装置と比較して幅d4が大きい開口部203bを設けることができる。大きい開口部203bを用いることにより、従来と比較して多くの光を変調することが可能になる。また、大きい開口部203bを設けることにより、光軸に沿って直進する光を多く開口部203bに入射させることが可能となる。さらに、開口部203bのうち、液晶の配向状態が安定している中心部に近い位置に多くの光を入射させることも可能となる。これにより、コントラストを高くし、かつ入射光を効率的に使用することができる。
図4に示す交差部403は、幅d1を対角線とする正方形形状を有する。開口部203bは、正方形形状から四隅を取り除いたような多角形形状を有する。例えば、開口部203bが15マイクロメートルピッチで形成されているとすると、交差部403は、一辺が9マイクロメートルの四角形形状とすることができる。この場合、第1、第2のブラックマトリックス部401、402は、交差部403以外の部分の幅d2が3マイクロメートルとなるように形成することができる。なお、ブラックマトリックス部及び開口部の構成は、図4に示すものに限らない。例えば、図5に示すように、図4に示す構成から各構成の角を丸くしたような形状のブラックマトリックス部503aと開口部503bとを設けることとしても良い。
図3に戻って、光路偏向部であるプリズム素子211は、入射光を開口部203bの方向へ反射させる。プリズム素子211の斜面211aは、入射光を画素部である開口部203bの方向へ反射する反射部である。斜面211aは、所定の傾きで設けられている。斜面211aの傾きについての詳細は、後述する。プリズム素子211は、変調部の近傍であって、ブラックマトリックス部203aの位置に対応して設けられている。これにより、ブラックマトリックス部203aへ入射する光量を低減できる。
プリズム素子211は、図3に示す断面構成において、斜面211aを一辺とする略二等辺三角形形状をなしている。斜面211aの方向又は角度を適宜設定することにより、入射光の光路を偏向させる方向又は偏向量を容易に制御することができる。三角形形状の頂点C1は、ブラックマトリックス部203aの中心位置C2に略対応している。さらに、三角形形状の底辺の長さW1(2次元的には底面積)と、少なくともブラックマトリックス部203aの長さW2(2次元的には面積)とは略同じ長さ(大きさ)である。これにより、入射光の変調に寄与しないブラックマトリックス部203a近傍の領域を有効に使用することができる。
さらに好ましくは、三角形形状の底辺の長さW1(面積)は、ブラックマトリックス部203aの長さW2(面積)よりも大きいことが望ましい。これにより、液晶パネル120Rに斜め方向から入射する光線が、ブラックマトリックス部203aに入射することを防止するためのマージン領域を確保できる。また、プリズム素子211は、基準面200bに略垂直な方向である光軸方向への長さHが、基準面200bに略平行な方向への長さW1の15倍以上かつ250倍以下となるように形成されている。以下、プリズム素子211について、長さHが長さW1の15倍以上かつ250倍以下であることを、アスペクト比が15以上かつ250以下である、と表現する。プリズム素子211のアスペクト比を15以上かつ250以下とすることによる作用及び効果については、後述する。
図6は、液晶パネル120Rへ入射する光L1、L2の振る舞いを説明するものである。光は、屈折率差のある界面で反射又は屈折する。説明を簡潔にするために、図4では、屈折率差が微小な界面において光が直進するものとして光路を示している。光L1は、プリズム素子211を経由しないで、開口部203bへ直接入射する光である。空気中を進行してきた光L1は、例えば石英硝子からなる入射側防塵硝子200の入射面200aに入射する。
入射側防塵硝子200に入射した光L1は、入射側防塵硝子200、接着層201、カバー硝子202を順次透過する。上述したように、変調部は、開口部203b、対向電極204、液晶層205、TFT基板206により構成される。画像信号に応じて変調された光L1は、接着層207を透過して射出側防塵硝子208から射出する。光L1を効率良く投写するために、光L1の射出角度θo2は、投写光学系114のNAで定まる最大角度θmよりも小さいことが望ましい。
光L1とは異なる位置から入射側防塵硝子200に入射した光L2は、斜面211aに入射する。プリズム素子211は、入射側防塵硝子200よりも屈折率が小さい部材で構成されている。反射における光量損失を低減するために、プリズム素子211は、入射する光L2が画素部に対応する開口部203bの方向へ全反射するような屈折率を有することが望ましい。図7を用いて説明すると、斜面211aで光L2が全反射するためには、式(2)を満足する必要がある。
sinθ1>n2/n1 (2)
但し、θ1は、斜面211の法線N2に対する光L2の入射角度、n1は、入射側防塵硝子200の屈折率、n2は、プリズム素子211の屈折率である。また、n1及びn2の間には、n1>n2の関係が成立するものとする。
図6に戻って、斜面211aで反射された光L2は、接着層201と、カバー硝子202とを透過した後、開口部203bへ入射する。開口部203bへ入射した光L2は、上述の光L1と同様に進行して射出側防塵硝子208から射出する。
図8は、光源部101からの照明光の光線角度分布の例を示すものである。図8に示すグラフの縦軸は光の強度、横軸は光線角度を表している。光源部101からの照明光は、光線角度が6度以下である光が例えば97.6パーセント含まれている。この場合、液晶パネル120Rにおいて光線角度が6度以下の光を変調可能であることとすると、液晶パネル120Rは、光源部101からの照明光のうちの少なくとも97.6パーセントの光を利用できることになる。
図6に戻って、投写光学系114で取り込むことが可能な光の光線角度の最大値θmは、式(3)により表すことができる。
θm=arctan{1/(2F)} (3)
ここで、Fは、投写光学系114のFナンバーである。例えば、投写光学系114のFナンバーFが1.8であるとすると、式(3)により求められる光線角度の最大値θmは15.5度である。
入射面200aへの光L2の入射角度θiが、4度であるとする。図8の光線角度分布に示すように、光L2は、液晶パネル120Rに入射する光源部101からの光のうち最も多く含まれる光である。また、反射部である斜面211aは、基準面200bの法線となす角度αが、例えば3度となるように形成されている。光L2は、角度αが3度である斜面211aで反射することにより、例えば、光線角度が10度となるように進行方向を変える。
その後、光L2がそのままの光線角度で進行したとすると、出射側防塵ガラス208内における光線角度θkは10度となる。更に、液晶パネル120Rから射出する光は、進行方向の射出側防塵硝子208から空気中に出射される際に界面で屈折する。液晶パネル120Rから射出する光の光線角度θo1は、式(4)により求めることができる。
θo1={asin(sinθk*n3)} (4)
ここで、θo1は、液晶パネル120Rから射出する光の光線角度であって、投写レンズ114への入射角度である。また、θkは、出射側防塵硝子208内における光線角度、n3は、射出側防塵硝子208の屈折率である。例えば、射出側防塵硝子208として屈折率が1.46の石英硝子を用いる場合、出射側防塵硝子208内の角度θkが10度である光L2は、光線角度θo1が14.6度で投写レンズ114に入射する。
式(3)により求められる光線角度の最大値θmが15.5度である場合、光線角度θo1が14.6度である光L2は、投写光学系114に取り込むことができる。従って、液晶パネル120Rは、斜面211aの角度αを3度とすることにより、入射角度θiが4度である光を、投写光学系114から投写可能な光線角度の光に偏向して出射することができる。
プリズム素子211は、基準面200bの法線と所定の角度、例えば6度をなす入射光を、式(1)を満たす角度θoをなすように偏向することが望ましい。
0≦θo≦arctan{1/(2F)} (1)
光線角度が6度である入射光を、式(1)を満たす角度θoをなすように偏向することにより、例えば、光源部101からの照明光のうちの少なくとも97.6パーセントの光を投写することが可能となる。以上のようにして斜面211aの角度αを決定することにより、空間光変調装置110R、110G、110Bで変調した光を効率良く投写することができる。これにより、入射光を効率良く投写し、明るい画像を表示することができる。なお、プリズム素子211は、基準面200bの法線と6度をなす入射光を、式(1)を満たす角度θoをなすように偏向する構成に限られない。図8の光線角度分布に示すように、光源部101は、光線角度が4度をなす光を最も多く含む照明光を供給する。従って、プリズム素子211は、少なくとも、照明光に最も多く含まれる光線角度、例えば4度の光を、式(1)を満たす角度θoをなすように偏向する構成であれば良い。
斜面211aは、基準面200bの法線となす角度αが3度である構成に限られない。斜面211aは、基準面200bの法線となす角度αを3度以下とすることができる。例えば、角度αを2度とすると、プリズム素子211は、例えば、光線角度6度の光を、光線角度10度に偏向することができる。角度αを3度以下とすることにより、入射光を、投写光学系114で十分に取り込むことが可能な光線角度の光に変換することができる。反射部である斜面211aは、入射光を、投写光学系114で十分に取り込むことが可能な光線角度の光に変換する有効反射領域を有する。
図9は、液晶層205に入射する光の光線角度と、コントラストとの関係を示すものである。図9において、実線の円に沿って記載された0、90、180、270の各数値は、光軸に垂直な面内における入射光の向きを示すものである。また、破線の円を指して記載された10、20の各数値は、入射光と光軸とがなす光線角度を示すものである。図中のハッチングは、コントラストの分布を表している。コントラストは、変調後の光の最大輝度と最小輝度との比率により表している。高いコントラストで画像を表示するためには、入射光の光線角度が小さいこと、例えば10度以下であることが望ましい。
プリズム素子211は、基準面200bの法線となす角度αが3度以下である斜面211aを設けることにより、光線角度の増大を低減しながら入射光を偏向することが可能となる。このため、プリズム素子211を設けることにより、投写光学系114で十分に取り込むことが可能な光線角度の光に変換するのみならず、高いコントラストの画像を表示することも可能となる。
上述のように、プリズム素子211は、アスペクト比が15以上かつ250以下となるように構成されている。例えば、三角形形状の底辺の長さW1が0.8マイクロメートル、光軸方向への長さHが12マイクロメートル(図3参照)の、アスペクト比15のプリズム素子211は、基準面200bの法線となす角度αが1.9度の斜面211aを有する。また、三角形形状の底辺の長さW1が0.8マイクロメートル、光軸方向への長さHが200マイクロメートルの、アスペクト比250のプリズム素子211は、基準面200bの法線となす角度αがおよそ0.11度の斜面211aを有する。このように、アスペクト比が15以上かつ250以下のプリズム素子211を用いると、光線角度が小さくなるように入射光を偏向することが可能となる。これにより、高いコントラストで、かつ入射光を効率的に使用することができるという効果を奏する。また、プロジェクタ100により、高いコントラストで明るい画像を表示することができる。
さらに好ましくは、プリズム素子211は、アスペクト比が20以上かつ200以下となるように構成されることが望ましい。これにより、さらに、高いコントラストで、かつ入射光を効率的に使用することができる。例えば、三角形形状の底辺の長さW1が2マイクロメートル、光軸方向への長さHが40マイクロメートルの、アスペクト比20のプリズム素子211は、基準面200bの法線となす角度αがおよそ1.43度の斜面211aを有する。アスペクト比20のプリズム素子211は、例えば、光線角度が5度である入射光を、11.5度の光線角度に偏向することができる。
また、三角形形状の底辺の長さW1が2マイクロメートル、光軸方向への長さHが400マイクロメートルの、アスペクト比200のプリズム素子211は、基準面200bの法線となす角度αがおよそ0.14度の斜面211aを有する。アスペクト比200のプリズム素子211は、例えば、光線角度が5度である入射光を、7.7度の光線角度に偏向することができる。例えばFナンバーFが2である投写光学系114を用いる場合、角度θoが11.5度、7.7度のいずれの場合も式(1)を充足する。このため、FナンバーFが2である投写光学系114は、呑み込み角度が14度となり、アスペクト比が20以上かつ200以下であるプリズム素子211からの光を取り込むことができる。また、入射光を、光線角度が小さくなるように偏向することで、コントラストを高くすることもできる。なお、プリズム素子211により偏向された後の光線角度は説明にて示したものに限られず、液晶パネル120Rの各構成に応じて変化するものとする。
図10は、斜面211aの角度αと、光源部101からの光の光利用効率との関係を示すものである。光源部101からの光の光利用効率とは、光源部101からの光に対して、投写光学系114に取り込むことが可能な光の割合をいう。斜面211aの角度αが3度以下であるプリズム素子211を用いることにより、光利用効率を90パーセント以上とすることが可能となる。
図11は、光利用効率98パーセントを確保するための、投写光学系114のFナンバーFと、プリズム素子211の光軸方向への長さHとの関係を示すものである。図11に示すグラフの縦軸は長さH(マイクロメートル)、横軸はFナンバーFを表している。また、図11のグラフは、基準面200bに略平行な方向へのプリズム素子211の長さW1ごとに、FナンバーFと長さHとの関係を示している。図11に示す条件でプリズム素子211を形成することにより、98パーセントの光利用効率を確保することが可能となる。
なお、プリズム素子211のアスペクト比を15より小さい値とすると、光線角度が大きい光が増えることから、投写光学系114で取り込むことができない光が増加するものと考えられる。また、光線角度が大きい光が増えることから、コントラストが低下してしまうと考えられる。このため、プリズム素子211は、アスペクト比を15以上とするように形成することが望ましい。また、プリズム素子211のアスペクト比を250以上の値、例えば300とすると、斜面211aの角度αを0.0095度にできる。このように、プリズム素子211のアスペクト比を大きい値とするほど、さらに高い効果を得られるとも考えられる。
基準面200bに略平行な方向への長さW1が2マイクロメートルのプリズム素子211についてアスペクト比を300とする場合、プリズム素子211の光軸方向への長さHは600マイクロメートル程度とする必要が生じる。このように長さHが大きいプリズム素子211を形成することとなると、入射側防塵硝子200の強度が不十分となり、入射側防塵硝子200のひび割れや破断から歩留まりの低下を引き起こしてしまう。従って、プリズム素子211のアスペクト比を15以上かつ250以下とすることにより、高いコントラストや高い光利用効率を得られ、かつ十分な強度を得ることができる。
プリズム素子は、断面構成において三角形形状をなす構成に限られない。例えば、図12に示すように、断面構成において、矩形形状の上に三角形形状が設けられたような構成のプリズム素子1211を用いることとしても良い。プリズム素子1211は、光軸方向の長さHのうち、光が入射する側の長さDの部分が三角形形状をなしている。プリズム素子1211の斜面1211aは、基準面200bの法線となす角度が3度以下である有効反射領域である。
断面構成において矩形形状をなす部分と斜面1211aとが反射部であるとすると、反射部は、有効反射領域である斜面1211aが、反射部の全領域のうちの70パーセント以上を占めることが望ましい。反射部の全領域のうちの70パーセント以上を有効反射領域とすることで、高いコントラストと、高い光利用効率とを得られる。なお、図13に示す上記のプリズム素子211は、反射部の全領域の100パーセントが有効反射領域で構成されている。
図14は、本実施例の変形例のプリズム素子1411及びその周辺部分の要部断面構成を示す。本変形例のプリズム素子1411は、上記の液晶パネル120Rに適用することができる。プリズム素子1411は、互いに異なる傾きの第1の斜面1401と、第2の斜面1402とを有する。第1の斜面1401は、プリズム素子1411の光軸方向の長さHのうち、光が入射する側の長さDの部分に形成されている第1の領域である。
第2の斜面1402は、プリズム素子1411の光軸方向の長さHのうち、光を出射する側の部分に形成されている。第2の斜面1402は、第1の斜面1401より、画素部からの距離が短い位置に設けられた第2の領域である。また、第1の斜面1401及び第2の斜面1402は、基準面200bの法線と第2の斜面1402とがなす角度が、基準面200bの法線と第1の斜面1401とがなす角度より大きくなるように設けられている。第1の斜面1401は、基準面200bの法線となす角度が3度以下である有効反射領域である。
図15は、開口部203bにおける光の入射位置と、コントラストとの関係の例を示すものである。図15に示すグラフの縦軸はコントラスト、横軸は光が入射する位置を、開口部203bの中心部からの距離で表している。図15に示す関係は、開口部203bが16マイクロメートル四方の正方形形状である場合についての例である。液晶パネル120Rは、開口部203bの中心部に近い位置に光を入射するほど、高いコントラストを得られることがわかる。
開口部203bの周辺部では、隣接する電極、トランジスタ、配線等の影響により液晶の配向状態が不安定になる。液晶の配向状態が不安定になることにより、開口部203bの周辺部に光を入射する場合に、コントラストが低下することがある。これに対して、開口部203bの中心部では液晶の配向状態は安定している。このため、高いコントラストを得るためには、できるだけ開口部203bの中心部に近い位置に光を入射させることが望ましい。例えば、800以上の高いコントラストを得るためには、開口部203bの中心部から6マイクロメートル以内の領域に光を入射させることが望ましい。
第1の斜面1401の傾きと第2の斜面1402の傾きとが同じであるとすると、第2の斜面1402で反射した光は、第1の斜面1401で反射した光よりも開口部203bの中心部から離れた位置に入射する。第2の斜面1402で反射した光が開口部203bの周辺部へ入射する場合、第2の斜面1402で反射した光により高いコントラストを得ることが難しくなる。
図16は、プリズム素子1411を用いる場合の光の振る舞いを説明するものである。本変形例では、基準面200bの法線と第2の斜面1402とがなす角度が、基準面200bの法線と第1の斜面1401とがなす角度より大きい。このことから、第2の斜面1402で反射した光L4を、第1の斜面1401で反射した光L3と同様に開口部203bの中心部に近い位置へ入射させることができる。第1の斜面1401で反射した光のみならず、第2の斜面1402で反射した光も開口部203bの中心部に近い位置に入射させることにより、さらにコントラストを高くすることができる。また、第1の斜面1401及び第2の斜面1402の全領域に対して、有効反射領域である第1の斜面1401が70パーセント以上を占める構成とすることで、高いコントラストと、高い光利用効率とを得られる。
図17、図18は、本変形例のプリズム素子1411を変形したプリズム素子1711、1811の要部断面構成を示す。図17に示すプリズム素子1711は、上記のプリズム素子1411と同様に、第1の領域である第1の斜面1701と、第2の領域である第2の斜面1702とを有する。また、プリズム素子1711の先端部1703は、丸い形状を有する。第1の斜面1701は、基準面200bの法線となす角度が3度以下である有効反射領域である。
図18に示すプリズム素子1811は、反射部である曲面1801を有する。プリズム素子1811の光軸方向の長さHのうち、光が入射する側の長さDの部分の曲面1801は、基準面200bの法線となす角度が3度以下である有効反射領域である。曲面1801のうち長さDの部分は、第1の領域として機能する。また、曲面1802のうち長さDの部分以外の部分は、基準面200bの法線となす角度が3度より大きい領域である。曲面1801のうち長さDの部分以外の部分は、第2の領域として機能する。これらのプリズム素子1711、1811を用いる場合も、コントラストを高くすることができる。
図14に示すプリズム素子1411や、図17に示すプリズム素子1711は、例えば、後述のドライエッチング法により形成することができる。図18に示すプリズム素子1811は、例えば、レーザアブレーション法を用いることにより形成することができる。レーザアブレーション法によると、プリズム素子1811を形成するための材料で構成されたターゲット上にレーザビームを集光し、レーザビームからエネルギーを得た材料粒子を基板上に輸送することにより、プリズム素子1811を形成する。なお、プリズム素子の形状は図示するものに限られず、他の形状であっても良い。例えば、図17のプリズム素子1711は丸い形状の先端部1703を設ける構成に限らず、先端部に、基準面200bに略平行な平坦面を形成することとしても良い。
図19は、本発明の実施例2に係る空間光変調装置の製造方法を説明するものである。ここでは、空間光変調装置のうちの特徴的部分であるプリズム素子を形成する手順について主に説明する。プリズム素子は、レーザアブレーションによる方法や、ドライエッチングプロセスを用いた方法で形成することができる。レーザアブレーションを用いる方法では、予め設定したデータに基づいて透明基板にCO2レーザを照射することにより、プリズム素子を形成することができる。図19に示す手順は、厚膜レジストを用いるドライエッチングプロセスにより、上記のプリズム素子211を形成するものである。
まず、工程aに示す基板1901に、樹脂レジスト層1902を形成する。基板1901は、硝子基板や透明樹脂基板を用いることができる。樹脂レジスト層1902はマスク層であって、例えば50マイクロメートルから200マイクロメートルの厚さで塗布する。樹脂レジスト層1902には、例えば、SU−8、KMPR(いずれもマイクロケム社の登録商標)を用いることができる。次に、工程bに示すように、プリズム素子211を形成する箇所の樹脂レジスト層1902を取り除くように、パターニングを行う。パターニング後、60分間、100度によるベークを行う。
次に、パターニングされた樹脂レジスト層1902をハードマスクとして、ドライエッチングを行う。ドライエッチングには、高密度プラズマを形成可能なICPドライエッチング装置を用いることができる。ドライエッチングにより、工程cに示すように、基板1901に略三角形形状の断面をなす溝1903が形成される。エッチングエリアに高密度プラズマを均一に形成できるエッチングガスとして、例えば、C48、CHF3等のフッ化物系ガスを用いることができる。
基板1901の材料と樹脂レジスト層1902の材料とのエッチング選択比を例えば4対1とすることにより、樹脂レジスト層1902の厚みに対して略4倍の深さを有する溝1903を、基板1901に形成することができる。エッチング環境によるレジストの炭化を防止するために、チラーにより基板1901を冷却するほか、エッチングサイクル間に冷却時間を設けることとしても良い。SU−8を用いるドライエッチングプロセスは、例えば、Takayuki Fukasawaらの、「Deep Dry Etching of Quartz Plate Over 100μm in Depth Employing Ultra-Thick Photoresist(SU-8)」(Japanese Journal of Applied Physics. Vol.42 (2003) pp.3702-3706、The Japan Society of Applied Physics)に掲載されている。
このようにして形成された溝1903の壁面が、プリズム素子211の斜面211aである。接着層201(図3参照)により、工程cで形成された溝1903に空気や他の透明物質を封止することにより、プリズム素子211が形成される。プリズム素子211に空気を封入する場合は、プリズム素子211内部を減圧することが望ましい。プリズム素子211の内部を減圧することで、温度上昇によるプリズム素子211内部の空気の熱膨張を低減し、プリズム素子211の近傍の部品の剥離等を防ぐことができる。以上のようにして形成された入射側防塵硝子200を用いて、空間光変調装置110R、110G、110Bを形成することができる。
図20−1、図20−2は、金属ハードマスクを用いるドライエッチングプロセスにより、上記のプリズム素子211を形成する手順を説明するものである。まず図20−1に示す工程aにおいて、基板1901に金属層2002を形成する。金属層2002の材料としては、例えばクロムやニッケルを用いることができる。金属層2002は、金属材料をCDV、スパッタ、鍍金等により形成することができる。次に、工程bにおいて、金属層2002の上にレジスト層2003を形成する。レジスト層2003には、工程cのフォトリソ工程により、パターニングが施される。レジスト層2003のパターニングは、プリズム素子211を形成する位置に溝を形成するようにして行う。
次に、工程dにおいて、エッチングにより金属層2002をパターニングする。金属層2002のエッチングには、例えば、塩化第二鉄(FeCl3)を用いたウェットエッチング、ドライエッチング、イオンミリング法のいずれを用いても良い。次に、図20−2の工程eにおいて、ICPドライエッチング装置を用いてドライエッチングを施す。エッチングガスには、C48、CHF3等のフッ化物系ガスを用いることができる。
ここで、エッチング選択比は、基板1901の材料におけるエッチングレートが高くなるような条件とすることで大きくすることが可能である。エッチング選択比を大きくすることで、工程fに示すように、基板1901に深い溝1903を形成することができる。例えば、バイアス電力800ワット、バイアス電圧500ボルト、C48ガス流量10sccm、CHF3ガス流量30sccmの条件でエッチングを施すことにより、石英材料からなる基板1901に深い溝1903を形成することができる。
このようにして形成された溝1903の壁面が、プリズム素子211の斜面211aである。斜面211aの傾斜角度は、エッチング中にエッチング選択比を変化させることにより、適宜調節することが可能である。エッチング選択比は、例えば、ガスの圧力、バイアス電圧、バイアス電力等の少なくともいずれかを調節することにより、変化させることができる。基板1901のうち金属層2002に近い位置よりも遠い位置でエッチング選択比を小さくするようにエッチング条件を変化させることにより、例えば、互いに異なる傾きの斜面を持つ上記のプリズム素子1411(図14参照)やプリズム素子1711(図17参照)を形成することもできる。最後に、工程gにおいて金属層2002を取り除くことにより、斜面211aが施された入射側防塵硝子200を形成することができる。エッチング工程にて発生する残渣は、工程間にO2によるクリーニング作業を行うことや、O2、Arガスの添加を行うことにより除去することができる。
図21−1、図21−2は、ドライエッチングプロセスにより上記のプリズム素子211を形成する他の手順を説明するものである。図21−1の工程aにおいて、基板1901にレジスト層2102を形成する。レジスト層2102は、例えばスピンコート法やスプレー塗布により形成することができる。レジスト層2102は、工程bのフォトリソ工程により、パターニングが施される。次に工程cにおいて、基板1901及びレジスト層2102の上に、金属層2103を形成する。
金属層2103の材料としては、例えばクロムやニッケルを用いることができる。金属層2103は、金属材料によりCDV、スパッタ、鍍金等を施すことにより形成することができる。次に、工程dにおいて、リフトオフ法により、金属層2103をパターニングする。そして、工程eから工程gにおいて上記の手順と同様のドライエッチングを施すことにより、斜面211aが施された入射側防塵硝子200を形成することができる。
以上のように、本発明に係る空間光変調装置は、プロジェクタに用いる液晶型空間光変調装置に適している。
本発明の実施例1に係るプロジェクタの概略構成図。 液晶パネルの斜視構成図。 液晶パネルの要部断面構成図。 ブラックマトリックス部及び開口部の要部平面構成図。 ブラックマトリックス部の形状を説明する図。 液晶パネルに入射する光の振る舞いを説明する図。 プリズム素子での光の全反射について説明する図。 照明光の光線角度分布の例を説明する図。 入射光の光線角度とコントラストとの関係を説明する図。 斜面の角度と光利用効率との関係を説明する図。 投写レンズのFナンバーとプリズム素子の長さとの関係を説明する図。 プリズム素子の形状を説明する図。 プリズム素子の形状を説明する図。 実施例1の変形例のプリズム素子を説明する図。 開口部における光の入射位置とコントラストとの関係を説明する図。 図14に示すプリズム素子を用いる場合の光の振る舞いを説明する図。 プリズム素子の変形例を説明する図。 プリズム素子の変形例を説明する図。 本発明の実施例2に係る空間光変調装置の製造方法を説明する図。 ドライエッチングによりプリズム素子を形成する手順を説明する図。 ドライエッチングによりプリズム素子を形成する手順を説明する図。 ドライエッチングによりプリズム素子を形成する手順を説明する図。 ドライエッチングによりプリズム素子を形成する手順を説明する図。
符号の説明
100 プロジェクタ、101 光源部、104 インテグレータ、105 偏光変換素子、106R R光透過ダイクロイックミラー、106G B光透過ダイクロイックミラー、107 反射ミラー、108 リレーレンズ、110R 第1色光用空間光変調装置、110G 第2色光用空間光変調装置、110B 第3色光用空間光変調装置、112 クロスダイクロイックプリズム、112a ダイクロイック膜、112b ダイクロイック膜、114 投写光学系、116 スクリーン、120R、120G、120B 液晶パネル、121R、121G、121B 第1偏光板、122R、122G、122B 第2偏光板、123R、123B λ/2位相差板、124R、124B 硝子板、200b 基準面、200 入射側防塵硝子、200a 入射面、201 接着層、202 カバー硝子、203a ブラックマトリックス部、203b 開口部、204 対向電極、205 液晶層、206a 画素電極、206 TFT基板、206a 透明電極、206c 配向膜、207 接着層、208 射出側防塵硝子、210 プリズム群、211 プリズム素子、211a 斜面、C1 頂点、C2 中心位置、N2 法線、401 第1のブラックマトリックス部、402 第2のブラックマトリックス部、403 交差部、503a ブラックマトリックス部、503b 開口部、1211 プリズム素子、1211a 斜面、1401 第1の斜面、1402 第2の斜面、1411 プリズム素子、1701 第1の斜面、1702 第2の斜面、1703 先端部、1711 プリズム素子、1801 曲面、1811 プリズム素子、1901 基板、1902 樹脂レジスト層、1903 溝、2002 金属層、2003 レジスト層、2102 レジスト層、2103 金属層

Claims (8)

  1. 入射光を画像信号に応じて変調する変調部と、
    前記変調部の近傍に設けられ、前記入射光を前記変調部の方向へ反射する光路偏向部と、を有し、
    前記変調部は、行列状に配列されている複数の画素部と、前記画素部同士の間に設けられている遮光部とを備え、
    前記光路偏向部は、前記入射光を前記画素部の方向へ反射する反射部を備えるプリズム素子であって、
    前記プリズム素子は、基準面上であって前記遮光部に対応する位置に設けられ、かつ、前記基準面に略垂直な方向への長さが、前記基準面に略平行な方向への長さの15倍以上かつ250倍以下であることを特徴とする空間光変調装置。
  2. 前記プリズム素子は、前記基準面に略垂直な方向への長さが、前記基準面に略平行な方向への長さの20倍以上かつ200倍以下であることを特徴とする請求項1に記載の空間光変調装置。
  3. 前記反射部は、第1の領域と、前記第1の領域よりも前記画素部からの距離が短い位置に設けられた第2の領域とを有し、
    前記第1の領域及び前記第2の領域は、前記基準面の法線と前記第2の領域とがなす角度が、前記基準面の法線と前記第1の領域とがなす角度より大きくなるように設けられることを特徴とする請求項1又は2に記載の空間光変調装置。
  4. 前記反射部は、前記基準面の法線となす角度が3度以下である有効反射領域を含むことを特徴とする請求項1〜3のいずれか一項に記載の空間光変調装置。
  5. 前記反射部は、前記有効反射領域が、前記反射部の全領域のうちの70パーセント以上を占めることを特徴とする請求項4に記載の空間光変調装置。
  6. 前記遮光部は、前記基準面に略平行な第1の方向に長手方向を有する第1の遮光部と、前記基準面に略平行かつ前記第1の方向に略直交する第2の方向に長手方向を有する第2の遮光部と、を有し、
    前記第1の遮光部及び前記第2の遮光部は、互いに交差部で交差するように配置され、かつ、前記交差部以外の部分よりも前記交差部のほうが、前記長手方向に対して略直交する方向における幅が大きくなるように形成されることを特徴とする請求項1〜5のいずれか一項に記載の空間光変調装置。
  7. 光を供給する光源部と、
    前記光源部からの光を画像信号に応じて変調する空間光変調装置と、
    前記空間光変調装置で変調された光を投写する投写光学系と、を有し、
    前記空間光変調装置は、入射光を画像信号に応じて変調する変調部と、前記変調部の近傍に設けられ、前記入射光を前記変調部の方向へ反射する光路偏向部と、を有し、
    前記変調部は、行列状に配列されている複数の画素部と、前記画素部同士の間に設けられている遮光部とを備え、
    前記光路偏向部は、前記入射光を前記画素部の方向へ反射する反射部を備えるプリズム素子であって、
    前記プリズム素子は、基準面上であって前記遮光部に対応する位置に設けられ、かつ、前記基準面に略垂直な方向への長さが、前記基準面に略平行な方向への長さの15倍以上かつ250倍以下であることを特徴とする画像表示装置。
  8. 前記投写光学系のFナンバーをF、とすると、前記プリズム素子は、前記基準面の法線と所定の角度をなす前記入射光を、以下の条件式を満たす角度θoをなすように偏向することを特徴とする請求項7に記載の画像表示装置。
    0≦θo≦arctan{1/(2F)}
JP2005030118A 2005-02-07 2005-02-07 空間光変調装置及び画像表示装置 Expired - Fee Related JP4093240B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005030118A JP4093240B2 (ja) 2005-02-07 2005-02-07 空間光変調装置及び画像表示装置
US11/253,556 US7184188B2 (en) 2005-02-07 2005-10-20 Spatial light modulator and image display device
CNB200510115615XA CN100401177C (zh) 2005-02-07 2005-11-07 空间光调制装置及图像显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005030118A JP4093240B2 (ja) 2005-02-07 2005-02-07 空間光変調装置及び画像表示装置

Publications (2)

Publication Number Publication Date
JP2006215427A true JP2006215427A (ja) 2006-08-17
JP4093240B2 JP4093240B2 (ja) 2008-06-04

Family

ID=36779623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005030118A Expired - Fee Related JP4093240B2 (ja) 2005-02-07 2005-02-07 空間光変調装置及び画像表示装置

Country Status (3)

Country Link
US (1) US7184188B2 (ja)
JP (1) JP4093240B2 (ja)
CN (1) CN100401177C (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122648A (ja) * 2006-11-13 2008-05-29 Seiko Epson Corp 電気光学装置、電気光学装置の製造方法、及び電子機器
KR100848287B1 (ko) 2006-08-18 2008-07-25 엘지전자 주식회사 외광 차단 시트 및 그를 이용한 플라즈마 디스플레이 장치
JP2010524027A (ja) * 2007-04-06 2010-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 反射型表示パネル及び斯かる表示パネルを製造する方法
CN102890360A (zh) * 2011-07-22 2013-01-23 精工爱普生株式会社 电光装置及投影型显示装置
JP2013120388A (ja) * 2011-12-08 2013-06-17 Univ Stuttgart 電気光学位相変調器
JP2014119628A (ja) * 2012-12-18 2014-06-30 Seiko Epson Corp 電気光学装置用基板の製造方法、電気光学装置、および電子機器
WO2014136418A1 (ja) * 2013-03-05 2014-09-12 セイコーエプソン株式会社 電気光学装置用基板、電気光学装置、電子機器、及び電気光学装置用基板の製造方法
US8964147B2 (en) 2011-07-21 2015-02-24 Seiko Epson Corporation Electro-optic device, method of producing electro-optic device, and projection type display apparatus
US9383633B2 (en) 2013-10-30 2016-07-05 Seiko Epson Corporation Electro-optical device and electronic apparatus

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5352956B2 (ja) * 2006-02-14 2013-11-27 セイコーエプソン株式会社 液晶装置、液晶装置の製造方法、プロジェクタ及び電子機器
US20070250445A1 (en) * 2006-04-19 2007-10-25 Napster Llc Real time, on the fly, distribution of pre-selected electronic content
JP4258528B2 (ja) * 2006-05-08 2009-04-30 セイコーエプソン株式会社 電気光学装置、電気光学装置の製造方法及びプロジェクタ
US7830592B1 (en) * 2007-11-30 2010-11-09 Sipix Imaging, Inc. Display devices having micro-reflectors
US8237892B1 (en) * 2007-11-30 2012-08-07 Sipix Imaging, Inc. Display device with a brightness enhancement structure
US8437069B2 (en) * 2008-03-11 2013-05-07 Sipix Imaging, Inc. Luminance enhancement structure for reflective display devices
CN105137643A (zh) * 2008-03-11 2015-12-09 希毕克斯影像有限公司 用于反射型显示器的辉度增强结构
US8441414B2 (en) * 2008-12-05 2013-05-14 Sipix Imaging, Inc. Luminance enhancement structure with Moiré reducing design
US20100177396A1 (en) * 2009-01-13 2010-07-15 Craig Lin Asymmetrical luminance enhancement structure for reflective display devices
US9025234B2 (en) * 2009-01-22 2015-05-05 E Ink California, Llc Luminance enhancement structure with varying pitches
US8120836B2 (en) * 2009-03-09 2012-02-21 Sipix Imaging, Inc. Luminance enhancement structure for reflective display devices
US8714780B2 (en) * 2009-04-22 2014-05-06 Sipix Imaging, Inc. Display devices with grooved luminance enhancement film
US8797633B1 (en) 2009-07-23 2014-08-05 Sipix Imaging, Inc. Display device assembly and manufacture thereof
US8456589B1 (en) 2009-07-27 2013-06-04 Sipix Imaging, Inc. Display device assembly
US20120257292A1 (en) * 2011-04-08 2012-10-11 Himax Technologies Limited Wafer Level Lens Module and Method for Manufacturing the Wafer Level Lens Module
CN102778780B (zh) * 2012-07-25 2015-06-10 京东方科技集团股份有限公司 显示面板及显示装置
JP6098309B2 (ja) * 2013-04-09 2017-03-22 セイコーエプソン株式会社 電気光学装置、電子機器、及び電気光学装置の製造方法
CN108445673A (zh) * 2018-03-02 2018-08-24 张家港康得新光电材料有限公司 一种光学膜结构及背光组件
US12001039B2 (en) 2018-07-30 2024-06-04 Sony Interactive Entertainment Inc. Display apparatus and imaging apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170911A (ja) * 1989-11-30 1991-07-24 Pioneer Electron Corp 液晶表示装置
US6700554B2 (en) * 1999-12-04 2004-03-02 Lg. Philips Lcd Co., Ltd. Transmissive display device using micro light modulator
JP3938099B2 (ja) 2002-06-12 2007-06-27 セイコーエプソン株式会社 マイクロレンズの製造方法、マイクロレンズ、マイクロレンズアレイ板、電気光学装置及び電子機器
EP1533651A4 (en) * 2003-03-28 2007-03-07 Seiko Epson Corp SPACE LIGHT MODULATOR, PROJECTOR USING SAME, METHOD FOR MANUFACTURING FINE STRUCTURE ELEMENT USED IN THE MODULATOR, AND FINE STRUCTURE ELEMENT MADE THEREBY
JP2004347692A (ja) 2003-05-20 2004-12-09 Seiko Epson Corp 空間光変調装置及びプロジェクタ
JP2005037503A (ja) * 2003-07-16 2005-02-10 Seiko Epson Corp 空間光変調装置及びプロジェクタ

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100848287B1 (ko) 2006-08-18 2008-07-25 엘지전자 주식회사 외광 차단 시트 및 그를 이용한 플라즈마 디스플레이 장치
JP2008122648A (ja) * 2006-11-13 2008-05-29 Seiko Epson Corp 電気光学装置、電気光学装置の製造方法、及び電子機器
JP2010524027A (ja) * 2007-04-06 2010-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 反射型表示パネル及び斯かる表示パネルを製造する方法
US8964147B2 (en) 2011-07-21 2015-02-24 Seiko Epson Corporation Electro-optic device, method of producing electro-optic device, and projection type display apparatus
CN102890360A (zh) * 2011-07-22 2013-01-23 精工爱普生株式会社 电光装置及投影型显示装置
JP2013120388A (ja) * 2011-12-08 2013-06-17 Univ Stuttgart 電気光学位相変調器
JP2014119628A (ja) * 2012-12-18 2014-06-30 Seiko Epson Corp 電気光学装置用基板の製造方法、電気光学装置、および電子機器
WO2014136418A1 (ja) * 2013-03-05 2014-09-12 セイコーエプソン株式会社 電気光学装置用基板、電気光学装置、電子機器、及び電気光学装置用基板の製造方法
JP2014170164A (ja) * 2013-03-05 2014-09-18 Seiko Epson Corp 電気光学装置用基板、電気光学装置、電子機器、及び電気光学装置用基板の製造方法
US9383633B2 (en) 2013-10-30 2016-07-05 Seiko Epson Corporation Electro-optical device and electronic apparatus

Also Published As

Publication number Publication date
US20060176540A1 (en) 2006-08-10
JP4093240B2 (ja) 2008-06-04
CN1818769A (zh) 2006-08-16
CN100401177C (zh) 2008-07-09
US7184188B2 (en) 2007-02-27

Similar Documents

Publication Publication Date Title
JP4093240B2 (ja) 空間光変調装置及び画像表示装置
US7321349B2 (en) Display element, display device, and microlens array
JP3199313B2 (ja) 反射型液晶表示装置及びそれを用いた投射型液晶表示装置
JP4202221B2 (ja) 光屈折素子アレイ基板、画像表示素子および画像表示装置
US6680762B2 (en) Projection liquid crystal display apparatus wherein overall focal point of the lens is shifted to increase effective aperture ratio
US20070183016A1 (en) Converging substrate, electro-optic device, substrate for electro-optic device, projector, and electronic apparatus
US6831707B2 (en) Liquid crystal display element and projection type liquid crystal display device
JP2004347693A (ja) マイクロレンズアレイ、空間光変調装置、プロジェクタ及びマイクロレンズアレイの製造方法
US7031065B2 (en) Spatial light modulator and projector
JP4552947B2 (ja) 集光基板、電気光学装置、電気光学装置用基板、プロジェクタ、及び電子機器
JP2004347692A (ja) 空間光変調装置及びプロジェクタ
JP2007101834A (ja) マイクロレンズの製造方法、マスク、マイクロレンズ、空間光変調装置及びプロジェクタ
JP5569013B2 (ja) 液晶表示素子及び液晶表示素子を備える投射型液晶表示装置
JP2000206613A (ja) 投射型表示装置
JP4333355B2 (ja) 空間光変調装置及びプロジェクタ
JP2004361821A (ja) 空間光変調装置及びプロジェクタ
JP2008003376A (ja) 集光基板、電気光学装置及びプロジェクタ
JP2006330143A (ja) マイクロレンズ、空間光変調装置及び画像表示装置
JP2007199547A (ja) 電気光学装置、電子機器及びプロジェクタ
JP3452020B2 (ja) プロジェクタ
JP4806169B2 (ja) 反射型液晶空間光変調素子及び画像表示装置
JP4696503B2 (ja) 画像表示装置
JP4016940B2 (ja) 空間光変調装置及びプロジェクタ
JP2009047825A (ja) 電気光学装置、電気光学装置の製造方法、および投射型表示装置
JP2008304855A (ja) 液晶表示装置及び映像表示装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4093240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees