JP2004361821A - 空間光変調装置及びプロジェクタ - Google Patents
空間光変調装置及びプロジェクタ Download PDFInfo
- Publication number
- JP2004361821A JP2004361821A JP2003162339A JP2003162339A JP2004361821A JP 2004361821 A JP2004361821 A JP 2004361821A JP 2003162339 A JP2003162339 A JP 2003162339A JP 2003162339 A JP2003162339 A JP 2003162339A JP 2004361821 A JP2004361821 A JP 2004361821A
- Authority
- JP
- Japan
- Prior art keywords
- light
- color
- opening
- spatial light
- flat surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Video Image Reproduction Devices For Color Tv Systems (AREA)
- Projection Apparatus (AREA)
- Optical Elements Other Than Lenses (AREA)
- Liquid Crystal (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
【課題】入射光を効率良く偏向させて使用することができる空間光変調装置、及び明るく高コントラストな投写像を得られるプロジェクタを提供すること。
【解決手段】複数のマイクロプリズム素子211を配列したマイクロプリズムアレイ210と、複数の開口部203aとを有し、開口部203aは基準中心位置C2と開口部203aの領域の略中心位置C3とが対応するように配置され、マイクロプリズム素子211は、基準平面202aに対して略平行な平面からなる平坦面S1と、平坦面S1の周辺に設けられ基準平面202aに対して所定角度をなす平面からなる傾斜面S2とを有し、平坦面S1は、基準平面202aに対して略垂直な方向に進行する入射光を開口部203aの方向に透過し、傾斜面S2は、基準平面202aに対して略垂直な方向に進行する入射光を屈折作用により開口部203aの方向に偏向する。
【選択図】 図4
【解決手段】複数のマイクロプリズム素子211を配列したマイクロプリズムアレイ210と、複数の開口部203aとを有し、開口部203aは基準中心位置C2と開口部203aの領域の略中心位置C3とが対応するように配置され、マイクロプリズム素子211は、基準平面202aに対して略平行な平面からなる平坦面S1と、平坦面S1の周辺に設けられ基準平面202aに対して所定角度をなす平面からなる傾斜面S2とを有し、平坦面S1は、基準平面202aに対して略垂直な方向に進行する入射光を開口部203aの方向に透過し、傾斜面S2は、基準平面202aに対して略垂直な方向に進行する入射光を屈折作用により開口部203aの方向に偏向する。
【選択図】 図4
Description
【0001】
【発明の属する技術分野】
本発明は、空間光変調装置及びプロジェクタ、特に液晶型の空間光変調装置に関する。
【0002】
【従来の技術】
空間光変調装置、特に液晶型の空間光変調装置では、画像表示領域内に、データ線、走査線、容量線等の各種配線や、薄膜トランジスタ(以下適宜、TFT(Thin Film Transistor)と称す)、薄膜ダイオード等の各種電子素子が形成されている。このため、各画素において、実際に表示に寄与する光が透過又は反射する領域は、各種配線や電子素子等の存在により限定される。ここで、各画素の開口率は、各画素について、全領域に対する、実際に表示に寄与する光が透過又は反射する領域(即ち、各画素の開口領域)の比率である。そして、各画素の開口率は、例えば70%程度である。そして、空間光変調装置に入射した全光量のうち、有効に変調されるのは、各画素の開口率に応じた光量である。
【0003】
そこで従来は、各画素に対応する複数のマイクロレンズ素子を有するマイクロレンズアレイを対向基板に形成することが行われている。マイクロレンズ素子は、各画素において、開口領域の周辺の上述の配線等が存在している非開口領域に向かって進行する光を、各画素単位で集光する機能を有する。マイクロレンズ素子で集光された光は、空間光変調装置の液晶層を透過するときに、各画素の開口領域内に導かれる。空間光変調装置にマイクロレンズアレイを利用することは、例えば、本出願人により、すでに提案されている(例えば、特願2002−171892)。
【0004】
【発明が解決しようとする課題】
プロジェクタにおいて、空間光変調装置は、変調された光を投写するための投写光学系と共に使用される。投写光学系は、その開口数(Numerical Aperture。以下、「NA」という。)に応じた入射角度の光のみを透過させる。また、マイクロレンズアレイのマイクロレンズ素子は、集光作用によって、所定のNAの光を射出する。開口領域に入射した光は、例えば液晶部で画像信号に応じて変調された後、略入射時と同じ所定のNAの光として射出する。投写光学系には、空間光変調装置からの所定のNAの光が入射する。
【0005】
従来のマイクロレンズアレイには、主に球面形状のマイクロレンズ素子を用いる。マイクロレンズ素子が球面形状である場合、マイクロレンズ素子の集光作用により、入射光を開口領域に入射させることができる。しかし、マイクロレンズ素子の集光作用により、マイクロレンズ素子からの光において、光軸に対して角度をもった光の割合が増加してしまう。このため、球面形状のマイクロレンズ素子を用いると、空間光変調装置からの光の射出側のNAが投写光学系の入射側のNAよりも大きくなることにより、空間光変調装置からの光が投写光学系でけられてしまう場合がある。
【0006】
このように、マイクロレンズアレイを用いる空間光変調装置では、光源部からの光を開口領域に効率的に導いた場合でも、変調光が投写光学系でけられてしまい光量を損失してしまうという問題を生ずることがある。光量損失の問題は、マイクロレンズアレイで集光させる光のNAが大きい場合、及び投写光学系のNAを小さくする場合に投写光学系でけられる光量が多くなるためさらに顕著となる。
【0007】
本発明は、上述の問題点を解決するためになされたものであり、入射光を効率良く偏向させて使用することができる空間光変調装置、及び明るく高コントラストな投写像を得られるプロジェクタを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決し、目的を達成するために、本発明によれば、所定領域を有する基準平面上に、複数のマイクロプリズム素子を略直交する格子状に配列したマイクロプリズムアレイと、前記マイクロプリズム素子の位置に対応して設けられている複数の開口部を有し、前記マイクロプリズムアレイからの光を画像信号に応じて変調する変調部と、を有し、前記マイクロプリズム素子が設けられている領域の略中心位置を基準中心位置とするとき、前記開口部は、前記基準中心位置と、前記開口部の領域の略中心位置とが対応するように配置され、前記マイクロプリズム素子は、前記基準中心位置を通過する前記基準平面の垂線上近傍に設けられ前記基準平面に対して略平行な平面からなる平坦面と、前記平坦面の周辺に設けられ前記基準平面に対して所定角度をなす平面からなる傾斜面と、を有し、前記平坦面は、前記基準平面に対して略垂直な方向に進行する入射光を、前記開口部の方向に透過し、前記傾斜面は、前記基準平面に対して略垂直な方向に進行する入射光を、屈折作用により、前記開口部の方向に偏向することを特徴とする空間光変調装置を提供することができる。
【0009】
空間光変調装置への入射光は、光軸の方向に略平行な方向に進行する光の成分が大きい。このため、光軸の方向に略平行な方向に進行する光をより多く開口部に照射させることにより、光利用効率は向上する。また、上述のように、空間光変調装置からの射出光のNAが投写光学系のNAより大きくなると、投写光学系でけられる光の光量が増加する。このため、空間光変調装置からの射出光のNAが大きくなることを防止できるため、高い光利用効率を得られる。本発明の空間光変調装置のマイクロプリズム素子は、基準平面に対して略平行な平坦面と、平坦面の周辺に傾斜面とを有する。平坦面は、基準中心位置を通過する基準平面の垂線上近傍に設けられ、基準平面に略平行な平面である。平坦面は、基準平面に対して略垂直な方向に進行する光を、集光することなく開口部の方向にそのまま透過することができる。空間光変調装置を光軸に対して略垂直に配置すると、平坦面は、光軸の方向に略平行な方向に進行する光を、開口部に入射させることができる。傾斜面は、平坦面の周辺に設けられ、基準平面に対して所定角度をなす平面である。傾斜面は、光軸の方向に略平行な方向に進行する光を開口部の方向に偏向することができる。このようにして、マイクロプリズム素子は、光軸の方向に略平行な方向に進行する光を効率良く開口部に入射させる。また、平坦面と傾斜面とはいずれも平面であることから、平坦面及び傾斜面は、開口部に入射させる入射光について、屈折作用による焦点を形成しない。このように、入射光をレンズ作用により集光させないため、空間光変調装置の射出光のNAが大きくなることを防止できる。従って、変調光のNAが投写光学系の入射側のNAより大きくなることを防止し、さらに変調光が投写光学系でけられることを低減できる。このように、光源部からの光を開口領域に効率的に導いて、かつ、投写光学系でけられないようにすることができる。これにより、入射光を効率良く偏向させて使用できる空間光変調装置を得られる。空間光変調装置としては、液晶型の空間光変調装置を用いることができる。このとき、液晶の特性として、光を開口部に対してより垂直に近い方向から入射させるほど、投写像のコントラストは高くなる。本発明では、光軸の方向に略平行な方向に進行する光を平坦面から開口部にそのまま入射させることにより、高コントラストな投写像を得られる。さらに、本発明の空間光変調装置のマイクロプリズム素子は、入射光を極端に集光させないため、液晶や配向膜等の劣化、ひいては空間光変調装置の劣化を低減することができる。
【0010】
また、本発明の好ましい態様としては、前記マイクロプリズム素子は、前記平坦面が前記傾斜面に対して前記入射光の入射側に設けられた凸型の形状を有することが望ましい。平坦面が傾斜面に対して入射光の入射側に設けられた凸型の形状とすることにより、基準平面に対して略垂直な方向に進行する光を集光することなく、開口部の方向に透過することができる。このため、投写光学系でけられる光量を低減することができる。また、マイクロプリズム素子は、光軸の方向に略平行な方向に進行する光を効率良く開口部に入射させることができる。これにより、入射光を効率良く偏向させて使用することができる空間光変調装置を得られる。
【0011】
また、本発明の好ましい態様としては、前記マイクロプリズム素子は、前記平坦面が前記傾斜面に対して前記入射光の射出側に設けられた凹型の形状を有することが望ましい。平坦面が傾斜面に対して入射光の射出側に設けられた凹型の形状とすることにより、基準平面に対して略垂直な方向に進行する光を集光することなく、開口部の方向に透過することができる。このため、投写光学系でけられる光量を低減することができる。また、マイクロプリズム素子は、光軸の方向に略平行な方向に進行する光を効率良く開口部に入射させることができる。さらに、開口部により近い位置にマイクロプリズム素子の平坦面を設けることとなるため、光軸の方向に略平行な方向以外の方向に進行する光についても、入射角度に依存する拡散(発散)を低減することができる。このため、マイクロプリズム素子は、入射光を効率良く開口部に入射させることができる。これにより、入射光を効率良く使用できる空間光変調装置を得られる。
【0012】
また、本発明の好ましい態様としては、前記傾斜面が、前記基準平面に対してなす前記所定角度は、0°より大きく、かつ60°以下であることが望ましい。これにより、入射光を効率良く偏向させて使用することができ、かつ、投写像のコントラスト比を少なくとも400:1にできる。
【0013】
また、本発明の好ましい態様としては、前記マイクロミラー素子の前記平坦面の面積は、前記開口部の領域の面積より小さいか、又は略同一であることが望ましい。平坦面の面積を、開口部の領域の面積より小さいか、又は略同一とすることにより、光軸の方向に略平行な方向に進行し平坦面を透過した光をそのまま開口部に入射させることができる。これにより、入射光を効率良く利用できる空間光変調装置を得られる。なお、「開口部の領域の面積より小さいか、又は略同一」とは、開口部の領域の面積より若干大きいものも含む。平坦面の面積が開口部の領域の面積より大きい場合でも平坦面を透過した入射光を効率良く開口部に入射できる構成であれば、入射光を効率良く利用することができる。
【0014】
また、本発明の好ましい態様としては、前記マイクロミラー素子の前記傾斜面は、前記基準平面に略平行な底面と前記基準中心位置を通過する前記基準平面の垂線上に頂点とを有する多角錐形状の側面部分であることが望ましい。多角錐形状は、基準平面に略平行な底面と、基準中心位置を通過する基準平面の垂線上に頂点とを有する。この多角錐形状を、基準平面に対して略平行な平面で切断することにより、マイクロプリズム素子の平坦面を得ることができる。また、傾斜面は、多角錐形状の側面部分によって得ることができる。
【0015】
また、本発明の好ましい態様としては、前記マイクロミラー素子の前記傾斜面は、前記基準平面に略平行な底面と前記基準中心位置を通過する前記基準平面の垂線上に頂点とを有する円錐形状の側面部分であることが望ましい。円錐形状は、基準平面に略平行な底面と基準中心位置を通過する基準平面の垂線上に頂点とを有する。この円錐形状を、基準平面に対して略平行な平面で切断することにより、マイクロプリズム素子の平坦面を得ることができる。また、傾斜面は、円錐形状の側面部分によって得ることができる。
【0016】
また、本発明の好ましい態様としては、前記平坦面の形状と、前記開口部の領域の形状とは、略相似することが望ましい。マイクロプリズム素子の平坦面の形状を、開口部の領域の形状に略相似なものとすることにより、平坦面を透過した光を開口部領域の略全体に照射させることとなる。これにより、平坦面を透過した光を効率良く開口部に入射させることができる。
【0017】
さらに、本発明によれば、第1色光、第2色光、及び第3色光を含む光を供給する光源部と、前記光源部から供給される光を前記第1色光と、前記第2色光と、前記第3色光とに分離する色分離光学系と、前記第1色光を画像信号に応じて変調する第1色光用空間光変調装置と、前記第2色光を画像信号に応じて変調する第2色光用空間光変調装置と、前記第3色光を画像信号に応じて変調する第3色光用空間光変調装置と、前記第1色光用空間光変調装置、前記第2色光用空間光変調装置、及び前記第3色光用空間光変調装置でそれぞれ変調された前記第1色光と、前記第2色光と、前記第3色光とを合成する色合成光学系と、前記色合成光学系にて合成された光を投写する投写光学系と、を有し、前記第1色光用空間光変調装置と、前記第2色光用空間光変調装置と、前記第3色光用空間光変調装置とは、上記の空間光変調装置であることを特徴とするプロジェクタを提供することができる。
【0018】
本発明は上述の空間光変調装置を用いているため、光源部からの光を効率良く利用し、また、投写像を高コントラストにすることができる。さらに、変調光のNAが投写光学系の入射側のNAより大きくなることを防止できるため、変調光が投写光学系でけられることを低減できる。これにより、光を効率良く利用でき、明るく高コントラストな投写像のプロジェクタを得ることができる。
【0019】
【発明の実施の形態】
以下に図面を参照して、本発明の実施形態を詳細に説明する。
(第1実施形態)
まず図1を参照して、本発明の第1実施形態に係るプロジェクタの概略構成を説明する。次に、図2以降を参照して、本実施形態の特徴的な構成を説明する。図1において、光源部である超高圧水銀ランプ101は、第1色光である赤色光(以下、「R光」という。)、第2色光である緑色光(以下、「G光」という。)、及び第3色光である青色光(以下、「B光」という。)を含む光を供給する。インテグレータ104は、超高圧水銀ランプ101からの光の照度分布を均一化する。照度分布を均一化された光は、偏光変換素子105にて特定の振動方向を有する偏光光、例えばs偏光光に変換される。s偏光光に変換された光は、色分離光学系を構成するR光透過ダイクロイックミラー106Rに入射する。以下、R光について説明する。R光透過ダイクロイックミラー106Rは、R光を透過し、G光、B光を反射する。R光透過ダイクロイックミラー106Rを透過したR光は、反射ミラー107に入射する。反射ミラー107は、R光の光路を90度折り曲げる。光路を折り曲げられたR光は、第1色光であるR光を画像信号に応じて変調する第1色光用空間光変調装置110Rに入射する。第1色光用空間光変調装置110Rは、R光を画像信号に応じて変調する透過型の液晶表示装置である。なお、ダイクロイックミラーを透過しても、光の偏光方向は変化しないため、第1色光用空間光変調装置110Rに入射するR光は、s偏光光のままの状態である。
【0020】
第1色光用空間光変調装置110Rは、λ/2位相差板123R、硝子板124R、第1偏光板121R、液晶パネル120R、及び第2偏光板122Rを有する。液晶パネル120Rの詳細な構成については後述する。λ/2位相差板123R及び第1偏光板121Rは、偏光方向を変換させない透光性の硝子板124Rに接する状態で配置される。これにより、第1偏光板121R及びλ/2位相差板123Rが、発熱により歪んでしまうという問題を回避できる。なお、図1において、第2偏光板122Rは独立して設けられているが、液晶パネル120Rの射出面や、クロスダイクロイックプリズム112の入射面に接する状態で配置しても良い。
【0021】
第1色光用空間光変調装置110Rに入射したs偏光光は、λ/2位相差板123Rによりp偏光光に変換される。p偏光光に変換されたR光は、硝子板124R及び第1偏光板121Rをそのまま透過し、液晶パネル120Rに入射する。液晶パネル120Rに入射したp偏光光は、画像信号に応じた変調により、R光がs偏光光に変換される。液晶パネル120Rの変調により、s偏光光に変換されたR光が、第2偏光板122Rから射出される。このようにして、第1色光用空間光変調装置110Rで変調されたR光は、色合成光学系であるクロスダイクロイックプリズム112に入射する。
【0022】
次に、G光について説明する。G光とB光とは、R光透過ダイクロイックミラー106Rで反射されることにより、光路を90度折り曲げられる。光路を折り曲げられたG光とB光とは、B光透過ダイクロイックミラー106Gに入射する。B光透過ダイクロイックミラー106Gは、G光を反射し、B光を透過する。B光透過ダイクロイックミラー106Gで反射されたG光は、第2色光であるG光を画像信号に応じて変調する第2色光用空間光変調装置110Gに入射する。第2色光用空間光変調装置110GはG光を画像信号に応じて変調する透過型の液晶表示装置である。第2色光用空間光変調装置110Gは、液晶パネル120G、第1偏光板121G及び第2偏光板122Gを有する。液晶パネル120Gの詳細に関しては後述する。
【0023】
第2色光用空間光変調装置110Gに入射するG光は、s偏光光に変換されている。第2色光用空間光変調装置110Gに入射したs偏光光は、第1偏光板121Gをそのまま透過し、液晶パネル120Gに入射する。液晶パネル120Gに入射したs偏光光は、画像信号に応じた変調により、G光がp偏光光に変換される。液晶パネル120Gの変調により、p偏光光に変換されたG光が、第2偏光板122Gから射出される。このようにして、第2色光用空間光変調装置110Gで変調されたG光は、色合成光学系であるクロスダイクロイックプリズム112に入射する。
【0024】
次に、B光について説明する。B光透過ダイクロイックミラー106Gを透過したB光は、2枚のリレーレンズ108と、2枚の反射ミラー107とを経由して、第3色光であるB光を画像信号に応じて変調する第3色光用空間光変調装置110Bに入射する。第3色光用空間光変調装置110Bは、B光を画像信号に応じて変調する透過型の液晶表示装置である。
【0025】
なお、B光にリレーレンズ108を経由させるのは、B光の光路の長さがR光及びG光の光路の長さよりも長いためである。リレーレンズ108を用いることにより、B光透過ダイクロイックミラー106Gを透過したB光を、そのまま第3色光用空間光変調装置110Bに導くことができる。第3色光用空間光変調装置110Bは、λ/2位相差板123B、硝子板124B、第1偏光板121B、液晶パネル120B、及び第2偏光板122Bを有する。なお、第3色光用空間光変調装置110Bの構成は、上述した第1色光用空間光変調装置110Rの構成と同様なので、詳細な説明は省略する。
【0026】
第3色光用空間光変調装置110Bに入射するB光は、s偏光光に変換されている。第3色光用空間光変調装置110Bに入射したs偏光光は、λ/2位相差板123Bによりp偏光光に変換される。p偏光光に変換されたB光は、硝子板124B及び第1偏光板121Bをそのまま透過し、液晶パネル120Bに入射する。液晶パネル120Bに入射したp偏光光は、画像信号に応じた変調により、B光がs偏光光に変換される。液晶パネル120Bの変調により、s偏光光に変換されたB光が、第2偏光板122Bから射出される。第3色光用空間光変調装置110Bで変調されたB光は、色合成光学系であるクロスダイクロイックプリズム112に入射する。このように、色分離光学系を構成するR光透過ダイクロイックミラー106RとB光透過ダイクロイックミラー106Gとは、超高圧水銀ランプ101から供給される光を、第1色光であるR光と、第2色光であるG光と、第3色光であるB光とに分離する。
【0027】
色合成光学系であるクロスダイクロイックプリズム112は、2つのダイクロイック膜112a、112bをX字型に直交して配置して構成されている。ダイクロイック膜112aは、B光を反射し、R光とG光とを透過する。ダイクロイック膜112bは、R光を反射し、B光とG光とを透過する。このように、クロスダイクロイックプリズム112は、第1色光用空間光変調装置110R、第2色光用空間光変調装置110G、及び第3色光用空間光変調装置110Bでそれぞれ変調されたR光、G光及びB光を合成する。投写光学系114は、クロスダイクロイックプリズム112で合成された光をスクリーン116に投写する。これにより、スクリーン116上でフルカラー画像を得ることができる。
【0028】
なお、上述のように、第1色光用空間光変調装置110R及び第3色光用空間光変調装置110Bからクロスダイクロイックプリズム112に入射される光は、s偏光光となるように設定される。また、第2色光用空間光変調装置110Gからクロスダイクロイックプリズム112に入射される光は、p偏光光となるように設定される。このようにクロスダイクロイックプリズム112に入射される光の偏光方向を異ならせることで、クロスダイクロイックプリズム112において各色光用空間光変調装置から射出される光を有効に合成できる。ダイクロイック膜112a、112bは、通常、s偏光光の反射特性に優れる。このため、ダイクロイック膜112a、112bで反射されるR光及びB光をs偏光光とし、ダイクロイック膜112a、112bを透過するG光をp偏光光としている。
【0029】
次に、図2を用いて液晶パネルの詳細について説明する。図1で説明したプロジェクタ100では、3つの液晶パネル120R、120G、120Bを備えている。これら3つの液晶パネル120R、120G、120Bは変調する光の波長領域が異なるだけであり、基本的構成は同一である。このため、液晶パネル120Rを代表例にして以後の説明を行う。
【0030】
図2は、液晶パネル120Rの斜視断面を示す。超高圧水銀ランプ101からのR光は、図2の上側から液晶パネル120Rに入射し(入射光Lin)、下側からスクリーン116の方向へ射出する(射出光Lout)。防塵硝子である入射側防塵硝子200の内側には、接着層201を介してカバー硝子202が固着されている。カバー硝子202の射出側には、遮光のためのブラックマトリクス形成層203が設けられている。ブラックマトリクス形成層203には、開口部203aとブラックマトリクス部203bとが設けられている。さらに、対向基板204には対向電極が形成されている。
【0031】
また、射出側防塵硝子208の内側には、接着層207を介してTFT(薄膜トランジスタ)や透明電極206a等を有するTFT基板206が形成されている。そして、対向基板204とTFT基板206とを対向させて、入射側防塵硝子200と射出側防塵硝子208とを貼り合わせる。対向基板204とTFT基板206との間には、画像表示のための液晶層205が封入されている。
【0032】
入射側防塵硝子200には、複数のマイクロプリズム素子211からなるマイクロプリズムアレイ210が形成されている。マイクロプリズムアレイ210の構成及び作用の詳細については後述する。なお、図1で示した構成では、第1偏光板121R、第2偏光板122Rを、液晶パネル120Rに対して別体に設けている。しかし、これに代えて、入射側防塵硝子200と対向基板204との間、射出側防塵硝子208とTFT基板206との間などにも偏光板を設けることもできる。さらに、マイクロプリズムアレイ210は、第1偏光板121Rに形成してもよい。
【0033】
図3は、液晶パネル120Rの断面構成を示す。マイクロプリズム素子211は、カバー硝子202の所定面202a上に、接着層201を介して設けられている。ブラックマトリクス形成層203は、開口部203aとブラックマトリクス部203bとが設けられている。開口部203aは、マイクロプリズム素子211の位置に対応して設けられている。開口部203aは、超高圧水銀ランプ101からのR光を通過させる。開口部203aを透過するR光は、対向基板204と、液晶層205と、TFT基板206とを透過する。そして、R光は、液晶層205において、画像信号に応じて偏光成分が変調される。このように、投写像の画素を形成するのは、開口部203aと、液晶層205と、TFT基板206とを透過して変調を受けた光である。換言すると、開口部203aと、液晶層205と、TFT基板206とは、入射光Linを画像信号に応じて変調する変調部を構成する。
【0034】
図4(a)に、液晶パネル120Rの断面構成の一部と、図4(b)に、液晶表示パネル120Rの入射光Lin側から目視した様子とを示す。マイクロプリズム素子211は、平坦面S1と、傾斜面S2と、平面S3とを有する。平坦面S1は、所定面202aに略平行な平面である。傾斜面S2は、平坦面S1の周辺に設けられ、所定面202aに対して所定の角度θ1をなしている。平面S3は、接着層201に接している。平面S3の領域の略中心位置を基準中心位置C2とすると、平坦面S1は、基準中心位置C2を通過する所定面202aの垂線A上近傍に設けられている。図4(a)、(b)に示すマイクロプリズム素子211は、平坦面S1の領域の略中心位置が所定面202aの垂線A上に位置している。マイクロプリズム素子211は、平面S3を底面とし、所定面202aの垂線A上に頂点C1を有する四角錐を、平坦面S1において切断した形状を有する。傾斜面S2は、平坦面S1で切断された四角錐形状の側面部分である。従って、マイクロプリズム素子211は、図4(b)に示すように、正方形形状の平坦面S1と4つの傾斜面S2とを有している。また、マイクロプリズム素子211は、平坦面S1が、傾斜面S2に対して入射光Linの入射側に設けられた凸型の形状を有する。なお、マイクロプリズム素子211は、入射側防塵硝子200の屈折率より大きい屈折率の材質から形成されている。
【0035】
開口部203aは、マイクロプリズム素子211の基準中心位置C2と、開口部203aの領域の略中心位置C3とが対応するように配置されている。図4(b)に示すように、開口部203aの領域は、辺W2を一辺とする正方形形状を有する。マイクロプリズム素子211の平坦面S1は、辺W1を一辺とする正方形形状を有する。このように、平坦面S1と開口部203aの領域とは、略相似形状をなしている。また、辺W1が辺W2より小さいため、平坦部S1の面積は、開口部203aの領域の面積より小さい。
【0036】
図5を用いて、入射光Linが開口部203aに入射する様子について説明する。図5(a)は、本実施形態の液晶パネル120Rのマイクロプリズム素子211が入射光Linを開口部203aに入射させる様子を示す。また、図5(b)は、従来のマイクロレンズ素子が入射光Linを開口部203aに入射させる様子を示す。液晶パネル120Rへの入射光Linは、光軸の方向に略平行な方向に進行する光の成分が大きい。このため、図5(a)、(b)には、光軸の方向に沿う方向に進行する光について図示している。図5(b)に示すマイクロレンズアレイ510は、各画素に対応する複数のマイクロレンズ素子511を有している。マイクロレンズ素子511は、入射光Linの入射側に、略球面形状の面を有する。各画素において入射光Linは、マイクロレンズ素子511の集光作用により開口部203aに集光される。しかし、マイクロレンズ素子511は、その集光作用によって、光軸に対して角度を有する光の割合を増加させてしまう。光軸に対して角度を有する光が増加すると、液晶パネル120Rからの変調光のNAが、投写光学系114(図1参照)の入射側のNAよりも大きくなる場合がある。変調光のNAが投写光学系114の入射側のNAよりも大きくなると、変調光が投写光学系114でけられてしまい光量を損失してしまうという問題を生じる。大口径のレンズは高価であること、プロジェクタの小型化の要請等から、投写光学系114のNAは小さく抑えられる傾向にある。光量損失の問題は、マイクロレンズアレイ510で集光させる光のNAが大きい場合のみならず、投写光学系114のNAを小さく抑える場合にも、投写光学系114でけられる光量が多くなるためさらに顕著となる。
【0037】
従来、光効率向上のために非球面形状の面を有するマイクロレンズ素子を用いたマイクロレンズアレイも知られている。非球面形状の面とは、例えば、楕円形状の面等である。非球面形状の面を有するマイクロレンズ素子を使用することにより、球面形状の面を有するマイクロレンズ素子を使用する場合に比較して、光利用効率を向上させることができる。しかし、非球面形状の面を有するマイクロレンズ素子は、一般的に製造が容易でなく、高コストであるという問題がある。
【0038】
図5(a)に、本発明の空間光変調装置である液晶パネル120Rのマイクロプリズム素子211が入射光Linを開口部203aに入射させる様子を示す。マイクロプリズム素子211の平坦面S1は、所定面202aに対して略垂直な方向に進行する入射光Linを、開口部203aの方向に透過する。液晶パネル120Rは光軸に対して略垂直に配置されているため、平坦面S1は、光軸の方向に略平行な方向に進行する光を開口部203aに入射させることができる。また、光軸の方向に略平行な方向に進行し傾斜面S2に入射した光は、屈折作用により、開口部203aの方向に偏向される。このため、傾斜面S2は、入射光Linのうち光軸の方向に略平行な方向に進行する光を、開口部203aに入射させることができる。このようにして、マイクロプリズム素子211は、光軸の方向に略平行な方向に進行する光を効率良く偏向させ、開口部203aに入射させることができる。
【0039】
さらに、マイクロプリズム素子211の平坦面S1と傾斜面S2とは、いずれも平面である。平坦面S1は、光軸の方向に略平行な方向に進行する光を、進行する方向を変化させることなくそのまま透過させる。また、平坦面S1と傾斜面S2とは、光軸の方向に略平行な方向に進行する光に限らず開口部203aに入射させる入射光Linについて、屈折作用による焦点を形成しない。このように、マイクロプリズム素子211において入射光Linを極端に集光させないため、液晶パネル120Rの射出光LoutのNAが大きくなることを防止できる。従って、変調光のNAを投写光学系114の入射側のNAと略同じとすること、又は入射側のNAより小さくすることが容易となり、変調光が投写光学系114でけられることを低減できる。このように、入射光Linを開口部203aに効率的に導いて、かつ、投写光学系114でけられないようにすることができる。これにより、入射光Linを効率良く偏向させて使用することができるという効果を奏する。特に、投写光学系114のNAが小さい(Fナンバーが大きい)場合に、変調光を効率良く利用することができる。
【0040】
図6は、開口部203aへの光の入射角度と、投写像のコントラスト比との関係を示す。液晶の特性により、投写像のコントラスト比は、入射角度が小さいほど高くなる。従って、光を開口部203aに対してより垂直に近い方向から入射させるほど、コントラスト比を高くすることができる。液晶パネル120Rは、マイクロプリズム素子211の平坦面S1により、垂直入射に近い入射光Linを角度変化させず利用することができる。このため、光軸の方向に略平行な方向に進行する光を平坦面S1から開口部203aに入射させることにより、高コントラストな投写像を得られるという効果を奏する。
【0041】
図5(a)に戻って、マイクロプリズム素子211は、図5(b)に示す従来のマイクロレンズ素子511と比較すると、入射光LinがTFT基板206(図3参照)等の付近において極端に集光されていないことがわかる。このように、マイクロプリズム素子211は入射光L1について屈折作用による焦点の形成を行わないため、開口部203aにおいて入射光L1を均一に照射することができる。開口部203において入射光L1を均一に照射させることにより局所的なエネルギー集中を低減し、液晶層205や配向膜等の劣化を低減することができる。これにより、液晶パネル120Rの劣化を低減することができる。
【0042】
一般に、ホームシアターでプロジェクタを使用する場合、最低必要なコントラスト比は400:1といわれている。傾斜面S2と所定面202aとがなす角度θ1が大きくなるに従い、投写光学系114からの投写像のコントラストは低下する。このため、傾斜面S2が所定面202aに対してなす角度θ1を0°より大きく、かつ60°以下とすることにより、コントラスト比を400:1以上にすることができる。これにより、入射光Linを効率良く偏向させて使用することができ、かつ、投写像のコントラスト比を少なくとも400:1にできるという効果を奏する。
【0043】
図4に戻って、平坦面S1の面積と開口部203aの領域の面積とについて説明する。上述のように、平坦面S1の面積は、開口部203aの領域の面積より小さい。平坦面S1の面積を開口部203aの領域の面積より小さくすると、光軸の方向に略平行な方向に進行し平坦面S1を透過した入射光Linを、そのまま開口部203aに入射させることができる。これにより、入射光Linを効率良く利用することができるという効果を奏する。なお、平坦面S1の面積を開口部203aの領域の面積より小さくするのみならず、平坦面S1の面積と開口部203aの領域の面積とを略同一としても良い。さらに、平坦面S1の面積を、開口部203aの領域の面積より若干大きいものとしても良い。平坦面S1の面積と開口部203aの領域の面積と略同一、又は平坦面S1の面積S1が開口部203aの領域の面積より若干大きい場合でも、平坦面S1を透過した入射光Linを効率的に開口部203aに入射できる構成であれば、入射光Linを効率良く利用することができる。
【0044】
開口部203aの領域とマイクロプリズム素子211の平坦面S1とは、略相似する正方形形状を有する。平坦面S1の形状を、開口部203aの領域の形状に略相似なものとすることにより、平坦面S1を透過した光は、開口部203aの領域の略全体を照射することとなる。これにより、平坦面S1を透過した光を効率良く開口部203aに入射させることができるという効果を奏する。
【0045】
次に、マイクロプリズムアレイ210の製造方法について説明する。マイクロプリズムアレイ210の代表的な製造方法としては、以下の(1)〜(5)に掲げる方法を挙げることができる。(1)〜(5)に掲げる方法のいずれも、従来の非球面形状のマイクロレンズ素子を有するマイクロレンズアレイに比較して、容易にマイクロプリズムアレイ210を製造することができる。これにより、製造コストを低減することができる。
(1)専用のバイトを製造し、このバイトで透明硝子を切削してマイクロプリズム素子211を形成する製造方法。
(2)切削法又はフォトリソグラフィ法で型を製造し、この型を転写してマイクロプリズム素子211を形成する製造方法。
(3)エッチングの速度が遅くなるような所定のイオンを透明硝子中にドーピング(打ち込む)する。イオンをドーピングされた領域は、他の領域に比較してエッチングの速度が遅くなる。このエッチング速度の差異を利用して、透明硝子をウエットエッチングすることによりマイクロプリズム素子211を形成する製造方法。
(4)透明硝子にレーザを照射し、透明硝子を溶解、気化させるレーザアブレーションによりマイクロプリズム素子211を形成する製造方法。
(5)透明硝子にレーザを照射し、照射領域を改質させる。そして、改質領域と他の領域とのエッチング速度の差異を利用して、透明硝子をエッチングすることによりマイクロプリズム素子211を形成する製造方法。
特に、マイクロプリズム素子211は、エッチング又は切削により容易に形成することができる。これにより、液晶パネル120Rの製造において、マイクロプリズムアレイ210の製造工程に要する時間を短縮することができる。
【0046】
なお、マイクロプリズム素子211は、四角錐を平坦面S1により切断した形状に限られない。図7(a)は、マイクロプリズム素子211とは異なる形状のマイクロプリズム素子611を入射光Linの入射側から見た図とマイクロプリズム素子611の側面図とを示す。マイクロプリズム素子611は、八角錐を平坦面S11により切断した形状を有する。マイクロプリズム素子611の平坦面S11は、図7(a)の入射側から見た図に示すような八角形の形状を有する。8つの傾斜面S12は、平坦面S11の周辺に配置されている。図7(b)に示す開口部603aは、マイクロプリズム素子611と対応するように配置されている。また、開口部603aの形状は、平坦面S11の形状に略相似する八角形を有する。これにより、平坦面S11を透過した光を効率良く開口部603aに入射させることができる。
【0047】
(第2実施形態)
図8は、本発明の第2実施形態に係る空間光変調装置の特徴部分の概略構成を示す。上記第1実施形態の液晶パネル120Rと同一の部分には同一の符号を付し、重複する説明は省略する。空間光変調装置である液晶表示パネル720Rは、複数のマイクロプリズム素子711を配列したマイクロプリズムアレイ710を有する。マイクロプリズム素子711は、平坦面S21と、傾斜面S22と、平面S23とを有する。マイクロプリズム素子711は、平坦面S21が、傾斜面S22に対して入射光Linの入射側に設けられた凸型の形状を有する。平坦面S21は、所定面202aに略平行な平面である。傾斜面S22は、平坦面S21の周辺に設けられ、所定面202aに対して所定の角度θ2をなしている。平面S23は、接着層201に接している。平面S23の領域の略中心位置を基準中心位置C22とすると、平坦面S21は、基準中心位置C22を通過する所定面202aの垂線A上近傍に設けられている。マイクロプリズム素子711は、平面S23を底面とし、所定面202aの垂線A上に頂点C21を有する円錐を、平坦面S21において切断した形状を有する。傾斜面S22は、平坦面S21において切断された円錐形状の側面部分である。従って、マイクロプリズム素子711は、円形状の平坦面S21と円錐曲面である傾斜面S22とを有している。さらに、マイクロプリズム素子711は、平面S23が略正方形形状となるように切り取られた形状をなしている。なお、マイクロプリズム素子711は、上記の液晶パネル120Rのマイクロプリズム素子211と同様、入射側防塵硝子200の屈折率より大きい屈折率の材質から形成されている。
【0048】
開口部203aは、マイクロプリズム素子711の基準中心位置C22と、開口部203aの領域の略中心位置C23とが対応するように配置されている。また、図8(b)に示すように、開口部203aの領域は、辺W22を一辺とする正方形形状を有する。また、マイクロプリズム素子711の平坦面S21は、直径W21の円形状を有する。直径W21と辺W22とは略同一の長さであるから、マイクロプリズム素子211の平坦面S21の面積は、開口部203aの領域の面積より小さい。このため、光軸の方向に略平行な方向に進行し平坦面S21を透過した入射光Linを、そのまま開口部203aに入射させることができる。これにより、入射光Linを効率良く利用することができる。また、上記の空間光変調装置のマイクロプリズム素子211と同様、平坦面S21と傾斜面S22とにより、入射光Linを開口部203aに効率的に導いて、かつ、投写光学系114でけられないようにすることができる。これにより、入射光Linを効率良く使用することができるという効果を奏する。
【0049】
(第3実施形態)
図9は、本発明の第3実施形態に係る空間光変調装置の特徴部分の概略構成を示す。上記第1実施形態のプロジェクタ100と同一の部分には同一の符号を付し、重複する説明は省略する。空間光変調装置である液晶表示パネル820Rは、複数のマイクロプリズム素子811を配列したマイクロプリズムアレイ810を有する。マイクロプリズム素子811は、平坦面S31と、傾斜面S32と、平面S33とを有する。マイクロプリズム素子811は、平坦面S31が傾斜面S32に対して入射光Linの射出側に設けられた凹型の形状を有することを特徴とする。平坦面S31は、所定面202aに略平行な平面である。平面S33の領域の略中心位置を基準中心位置C32とすると、平坦面S31は、基準中心位置C32を通過する所定面202aの垂線A上近傍に設けられている。傾斜面S32は、平坦面S31の周辺に設けられ、所定面202aに対して所定の角度θ3をなしている。平面S33は、接着層201に接している。マイクロプリズム素子811は、上記第1実施形態の液晶パネル120Rのマイクロプリズム素子211の凹凸を逆にしたような形状を有する。傾斜面S32は、所定面202aに略平行な底面S34と所定面202aの垂線A上の頂点C31とからなる四角錐が平坦面S31で切断された形状の、側面部分に相当する。従って、マイクロプリズム素子810は、正方形形状の平坦面S31と4つの傾斜面S32とを有する。なお、マイクロプリズム素子811は、上記のマイクロプリズム素子211とは異なり、入射側防塵硝子200の屈折率より小さい屈折率の材質から形成されている。
【0050】
開口部203aは、マイクロプリズム素子811の基準中心位置C32と、開口部203aの領域の略中心位置C33とが対応するように配置されている。図9(b)に示すように、開口部203aの領域は、辺W32を一辺とする正方形形状を有する。また、マイクロプリズム素子811の平坦面S31は、辺W31を一辺とする正方形形状を有する。辺W31は辺W32より小さいことから、平坦面S31の面積は、開口部203aの領域の面積より小さい。従って、光軸の方向に略平行な方向に進行し平坦面S31を透過した入射光Linを、そのまま開口部203aに入射させることができる。また、光軸の方向に略平行な方向に進行し傾斜面S32に入射した光は、屈折作用により、開口部203aの方向に偏向される。傾斜面S32は、入射光Linのうち光軸の方向に略平行な方向に進行する光を開口部203aに入射させることができる。さらに、マイクロプリズム素子811の平坦面S31と傾斜面S32とは平面からなるため、上記実施形態の液晶パネル120Rのマイクロプリズム素子211と同様、変調光が投写光学系114(図1参照)でけられることを低減できる。このようにして、マイクロプリズム素子811は、入射光Linを開口部203aに効率的に導いて、かつ、投写光学系114でけられないようにすることができる。これにより、入射光Linを効率良く使用することができるという効果を奏する。
【0051】
さらに、マイクロプリズム素子811を凹型の形状とすることにより、平坦面S31を開口部203aにより近接して設けることができる。平坦面S31と開口部203aとをより近接して設けることにより、光軸に沿った方向以外の方向に進行する光についても、入射角度に依存する拡散(発散)を低減することができる。このため、マイクロプリズム素子811は、入射光を効率良く開口部203aに入射させることができる。これにより、入射光を効率良く使用することができるという効果を奏する。
【0052】
(第4実施形態)
図10は、本発明の第4実施形態に係る空間光変調装置の特徴部分の概略構成を示す。上記第1実施形態のプロジェクタ100と同一の部分には同一の符号を付し、重複する説明は省略する。空間光変調装置である液晶表示パネル920Rは、複数のマイクロプリズム素子911を配列したマイクロプリズムアレイ910を有する。マイクロプリズム素子911は、平坦面S41と、傾斜面S42と、平面S43とを有する。マイクロプリズム素子911は、上記第3実施形態のマイクロプリズム素子811と同様、平坦面S41が傾斜面S42に対して入射光Linの射出側に設けられた凹型の形状を有する。平坦面S41は、所定面202aに略平行な平面である。平面S43の領域の略中心位置を基準中心位置C42とすると、平坦面S41は、基準中心位置C42を通過する所定面202aの垂線A上近傍に設けられている。傾斜面S42は、平坦面S41の周辺に設けられ、所定面202aに対して所定の角度θ4をなしている。平面S43は、接着層201に接している。マイクロプリズム素子911は、上記第2実施形態のマイクロプリズム素子711の凹凸を逆にしたような形状を有する。傾斜面S42は、所定面202aに略平行な底面S44と所定面202aの垂線A上の頂点C41とからなる円錐が平坦面S41で切断された形状の、側面部分に相当する。従って、マイクロプリズム素子911は、円形状の平坦面S41と円錐曲面である傾斜面S42とを有している。なお、マイクロプリズム素子911は、上記のマイクロプリズム素子811と同様、入射側防塵硝子200の屈折率より小さい屈折率の材質から形成されている。
【0053】
開口部203aは、マイクロプリズム素子911の基準中心位置C42と、開口部203aの領域の略中心位置C43とが対応するように配置されている。また、図10(b)に示すように、開口部203aの領域は、辺W42を一辺とする正方形形状を有する。また、マイクロプリズム素子911の平坦面S41は、直径W41の円形状を有する。直径W41は辺W42より小さいことから、平坦面S41の面積は、開口部203aの領域の面積より小さい。従って、光軸の方向に略平行な方向に進行し平坦面S41を透過した入射光Linを、そのまま開口部203aに入射させることができる。これにより、入射光Linを効率的に利用することができる。また、上記第1実施形態の液晶パネル120Rのマイクロプリズム素子211と同様、平坦面S41と傾斜面S42とにより、入射光Linを開口部203aに効率的に導いて、かつ、投写光学系114でけられないようにすることができる。これにより、入射光Linを効率的に使用することができるという効果を奏する。また、上記第3実施形態の液晶パネル820Rのマイクロプリズム素子811と同様、平坦面S41と開口部203aとをより近接して設けることにより、入射光Linの入射角度に依存する拡散(発散)を低減することができる。これにより、入射光を効率良く使用することができるという効果を奏する。
【0054】
なお、上記の実施形態はいずれも透過型の液晶パネルについて説明しているが、これに限られない。例えば、反射型の液晶パネルに上記のマイクロプリズムアレイを用いても、透過型の液晶パネルと同様、効率良く入射光を偏向させて使用することができる。また、反射型の液晶パネルに限らず、他の反射型空間光変調素子に上記のマイクロプリズムアレイを使用することもできる。例えば、複数の可動ミラー素子を有するティルトミラーデバイスと上記のマイクロプリズムアレイとを組み合わせて使用することとしても良い。さらに、プロジェクタ以外の光学装置に上記のマイクロプリズムアレイを用いても良い。例えば、CCD、C−MOSセンサ等の映像受光素子と上記のマイクロプリズム素子とを対応して設けることにより、高感度な光学装置を得られる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係るプロジェクタの概略構成を示す図。
【図2】液晶パネルの概略構成を示す図。
【図3】液晶パネルの断面図。
【図4】マイクロプリズム素子の概略構成を示す図。
【図5】マイクロプリズム素子が開口部に光を入射させる様子を示す図。
【図6】開口部への光の入射角度と、コントラスト比との関係を示す図。
【図7】マイクロプリズム素子の他の構成例を示す図。
【図8】第2実施形態のプロジェクタのマイクロプリズム素子を示す図。
【図9】第3実施形態のプロジェクタのマイクロプリズム素子を示す図。
【図10】第4実施形態のプロジェクタのマイクロプリズム素子を示す図。
【符号の説明】
100 プロジェクタ、101 超高圧水銀ランプ、104 インテグレータ、105 偏光変換素子、106R R光透過ダイクロイックミラー、106G B光透過ダイクロイックミラー、107 反射ミラー、108 リレーレンズ、110R 第1色光用空間光変調装置、110G 第2色光用空間光変調装置、110B 第3色光用空間光変調装置、112 クロスダイクロイックプリズム、112a ダイクロイック膜、112b ダイクロイック膜、114 投写光学系、116 スクリーン、120R,120G,120B,720R,820R,920R 液晶パネル、121R,121G,121B,122R,122G,122B 偏光板、123R,123B 位相差板、124R,124B 硝子板、200 入射側防塵硝子、201,207 接着層、202 カバー硝子、202a 所定面、203 ブラックマトリクス形成層、203a,603a 開口部、203b ブラックマトリクス部、204 対向基板、205 液晶層、206 TFT基板、206a 透明電極、208 射出側防塵硝子、210,710,810,910 マイクロプリズムアレイ、211,611,711,811,911 マイクロプリズム素子、510 マイクロレンズアレイ、511 マイクロレンズ素子、A 垂線、C1,C21,C31,C41 頂点、C2,C22,C32,C42 基準中心位置、C3,C23,C33,C43 略中心位置、Lin 入射光、Lout 射出光、S1,S11,S21,S31,S41 平坦面、S2,S12,S22,S32,S42 傾斜面、S3,S23,S33,S43 平面、W1,W2,W22,W31,W32,W42 辺、W21,W41 直径、θ1,θ2,θ3,θ4 角度
【発明の属する技術分野】
本発明は、空間光変調装置及びプロジェクタ、特に液晶型の空間光変調装置に関する。
【0002】
【従来の技術】
空間光変調装置、特に液晶型の空間光変調装置では、画像表示領域内に、データ線、走査線、容量線等の各種配線や、薄膜トランジスタ(以下適宜、TFT(Thin Film Transistor)と称す)、薄膜ダイオード等の各種電子素子が形成されている。このため、各画素において、実際に表示に寄与する光が透過又は反射する領域は、各種配線や電子素子等の存在により限定される。ここで、各画素の開口率は、各画素について、全領域に対する、実際に表示に寄与する光が透過又は反射する領域(即ち、各画素の開口領域)の比率である。そして、各画素の開口率は、例えば70%程度である。そして、空間光変調装置に入射した全光量のうち、有効に変調されるのは、各画素の開口率に応じた光量である。
【0003】
そこで従来は、各画素に対応する複数のマイクロレンズ素子を有するマイクロレンズアレイを対向基板に形成することが行われている。マイクロレンズ素子は、各画素において、開口領域の周辺の上述の配線等が存在している非開口領域に向かって進行する光を、各画素単位で集光する機能を有する。マイクロレンズ素子で集光された光は、空間光変調装置の液晶層を透過するときに、各画素の開口領域内に導かれる。空間光変調装置にマイクロレンズアレイを利用することは、例えば、本出願人により、すでに提案されている(例えば、特願2002−171892)。
【0004】
【発明が解決しようとする課題】
プロジェクタにおいて、空間光変調装置は、変調された光を投写するための投写光学系と共に使用される。投写光学系は、その開口数(Numerical Aperture。以下、「NA」という。)に応じた入射角度の光のみを透過させる。また、マイクロレンズアレイのマイクロレンズ素子は、集光作用によって、所定のNAの光を射出する。開口領域に入射した光は、例えば液晶部で画像信号に応じて変調された後、略入射時と同じ所定のNAの光として射出する。投写光学系には、空間光変調装置からの所定のNAの光が入射する。
【0005】
従来のマイクロレンズアレイには、主に球面形状のマイクロレンズ素子を用いる。マイクロレンズ素子が球面形状である場合、マイクロレンズ素子の集光作用により、入射光を開口領域に入射させることができる。しかし、マイクロレンズ素子の集光作用により、マイクロレンズ素子からの光において、光軸に対して角度をもった光の割合が増加してしまう。このため、球面形状のマイクロレンズ素子を用いると、空間光変調装置からの光の射出側のNAが投写光学系の入射側のNAよりも大きくなることにより、空間光変調装置からの光が投写光学系でけられてしまう場合がある。
【0006】
このように、マイクロレンズアレイを用いる空間光変調装置では、光源部からの光を開口領域に効率的に導いた場合でも、変調光が投写光学系でけられてしまい光量を損失してしまうという問題を生ずることがある。光量損失の問題は、マイクロレンズアレイで集光させる光のNAが大きい場合、及び投写光学系のNAを小さくする場合に投写光学系でけられる光量が多くなるためさらに顕著となる。
【0007】
本発明は、上述の問題点を解決するためになされたものであり、入射光を効率良く偏向させて使用することができる空間光変調装置、及び明るく高コントラストな投写像を得られるプロジェクタを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決し、目的を達成するために、本発明によれば、所定領域を有する基準平面上に、複数のマイクロプリズム素子を略直交する格子状に配列したマイクロプリズムアレイと、前記マイクロプリズム素子の位置に対応して設けられている複数の開口部を有し、前記マイクロプリズムアレイからの光を画像信号に応じて変調する変調部と、を有し、前記マイクロプリズム素子が設けられている領域の略中心位置を基準中心位置とするとき、前記開口部は、前記基準中心位置と、前記開口部の領域の略中心位置とが対応するように配置され、前記マイクロプリズム素子は、前記基準中心位置を通過する前記基準平面の垂線上近傍に設けられ前記基準平面に対して略平行な平面からなる平坦面と、前記平坦面の周辺に設けられ前記基準平面に対して所定角度をなす平面からなる傾斜面と、を有し、前記平坦面は、前記基準平面に対して略垂直な方向に進行する入射光を、前記開口部の方向に透過し、前記傾斜面は、前記基準平面に対して略垂直な方向に進行する入射光を、屈折作用により、前記開口部の方向に偏向することを特徴とする空間光変調装置を提供することができる。
【0009】
空間光変調装置への入射光は、光軸の方向に略平行な方向に進行する光の成分が大きい。このため、光軸の方向に略平行な方向に進行する光をより多く開口部に照射させることにより、光利用効率は向上する。また、上述のように、空間光変調装置からの射出光のNAが投写光学系のNAより大きくなると、投写光学系でけられる光の光量が増加する。このため、空間光変調装置からの射出光のNAが大きくなることを防止できるため、高い光利用効率を得られる。本発明の空間光変調装置のマイクロプリズム素子は、基準平面に対して略平行な平坦面と、平坦面の周辺に傾斜面とを有する。平坦面は、基準中心位置を通過する基準平面の垂線上近傍に設けられ、基準平面に略平行な平面である。平坦面は、基準平面に対して略垂直な方向に進行する光を、集光することなく開口部の方向にそのまま透過することができる。空間光変調装置を光軸に対して略垂直に配置すると、平坦面は、光軸の方向に略平行な方向に進行する光を、開口部に入射させることができる。傾斜面は、平坦面の周辺に設けられ、基準平面に対して所定角度をなす平面である。傾斜面は、光軸の方向に略平行な方向に進行する光を開口部の方向に偏向することができる。このようにして、マイクロプリズム素子は、光軸の方向に略平行な方向に進行する光を効率良く開口部に入射させる。また、平坦面と傾斜面とはいずれも平面であることから、平坦面及び傾斜面は、開口部に入射させる入射光について、屈折作用による焦点を形成しない。このように、入射光をレンズ作用により集光させないため、空間光変調装置の射出光のNAが大きくなることを防止できる。従って、変調光のNAが投写光学系の入射側のNAより大きくなることを防止し、さらに変調光が投写光学系でけられることを低減できる。このように、光源部からの光を開口領域に効率的に導いて、かつ、投写光学系でけられないようにすることができる。これにより、入射光を効率良く偏向させて使用できる空間光変調装置を得られる。空間光変調装置としては、液晶型の空間光変調装置を用いることができる。このとき、液晶の特性として、光を開口部に対してより垂直に近い方向から入射させるほど、投写像のコントラストは高くなる。本発明では、光軸の方向に略平行な方向に進行する光を平坦面から開口部にそのまま入射させることにより、高コントラストな投写像を得られる。さらに、本発明の空間光変調装置のマイクロプリズム素子は、入射光を極端に集光させないため、液晶や配向膜等の劣化、ひいては空間光変調装置の劣化を低減することができる。
【0010】
また、本発明の好ましい態様としては、前記マイクロプリズム素子は、前記平坦面が前記傾斜面に対して前記入射光の入射側に設けられた凸型の形状を有することが望ましい。平坦面が傾斜面に対して入射光の入射側に設けられた凸型の形状とすることにより、基準平面に対して略垂直な方向に進行する光を集光することなく、開口部の方向に透過することができる。このため、投写光学系でけられる光量を低減することができる。また、マイクロプリズム素子は、光軸の方向に略平行な方向に進行する光を効率良く開口部に入射させることができる。これにより、入射光を効率良く偏向させて使用することができる空間光変調装置を得られる。
【0011】
また、本発明の好ましい態様としては、前記マイクロプリズム素子は、前記平坦面が前記傾斜面に対して前記入射光の射出側に設けられた凹型の形状を有することが望ましい。平坦面が傾斜面に対して入射光の射出側に設けられた凹型の形状とすることにより、基準平面に対して略垂直な方向に進行する光を集光することなく、開口部の方向に透過することができる。このため、投写光学系でけられる光量を低減することができる。また、マイクロプリズム素子は、光軸の方向に略平行な方向に進行する光を効率良く開口部に入射させることができる。さらに、開口部により近い位置にマイクロプリズム素子の平坦面を設けることとなるため、光軸の方向に略平行な方向以外の方向に進行する光についても、入射角度に依存する拡散(発散)を低減することができる。このため、マイクロプリズム素子は、入射光を効率良く開口部に入射させることができる。これにより、入射光を効率良く使用できる空間光変調装置を得られる。
【0012】
また、本発明の好ましい態様としては、前記傾斜面が、前記基準平面に対してなす前記所定角度は、0°より大きく、かつ60°以下であることが望ましい。これにより、入射光を効率良く偏向させて使用することができ、かつ、投写像のコントラスト比を少なくとも400:1にできる。
【0013】
また、本発明の好ましい態様としては、前記マイクロミラー素子の前記平坦面の面積は、前記開口部の領域の面積より小さいか、又は略同一であることが望ましい。平坦面の面積を、開口部の領域の面積より小さいか、又は略同一とすることにより、光軸の方向に略平行な方向に進行し平坦面を透過した光をそのまま開口部に入射させることができる。これにより、入射光を効率良く利用できる空間光変調装置を得られる。なお、「開口部の領域の面積より小さいか、又は略同一」とは、開口部の領域の面積より若干大きいものも含む。平坦面の面積が開口部の領域の面積より大きい場合でも平坦面を透過した入射光を効率良く開口部に入射できる構成であれば、入射光を効率良く利用することができる。
【0014】
また、本発明の好ましい態様としては、前記マイクロミラー素子の前記傾斜面は、前記基準平面に略平行な底面と前記基準中心位置を通過する前記基準平面の垂線上に頂点とを有する多角錐形状の側面部分であることが望ましい。多角錐形状は、基準平面に略平行な底面と、基準中心位置を通過する基準平面の垂線上に頂点とを有する。この多角錐形状を、基準平面に対して略平行な平面で切断することにより、マイクロプリズム素子の平坦面を得ることができる。また、傾斜面は、多角錐形状の側面部分によって得ることができる。
【0015】
また、本発明の好ましい態様としては、前記マイクロミラー素子の前記傾斜面は、前記基準平面に略平行な底面と前記基準中心位置を通過する前記基準平面の垂線上に頂点とを有する円錐形状の側面部分であることが望ましい。円錐形状は、基準平面に略平行な底面と基準中心位置を通過する基準平面の垂線上に頂点とを有する。この円錐形状を、基準平面に対して略平行な平面で切断することにより、マイクロプリズム素子の平坦面を得ることができる。また、傾斜面は、円錐形状の側面部分によって得ることができる。
【0016】
また、本発明の好ましい態様としては、前記平坦面の形状と、前記開口部の領域の形状とは、略相似することが望ましい。マイクロプリズム素子の平坦面の形状を、開口部の領域の形状に略相似なものとすることにより、平坦面を透過した光を開口部領域の略全体に照射させることとなる。これにより、平坦面を透過した光を効率良く開口部に入射させることができる。
【0017】
さらに、本発明によれば、第1色光、第2色光、及び第3色光を含む光を供給する光源部と、前記光源部から供給される光を前記第1色光と、前記第2色光と、前記第3色光とに分離する色分離光学系と、前記第1色光を画像信号に応じて変調する第1色光用空間光変調装置と、前記第2色光を画像信号に応じて変調する第2色光用空間光変調装置と、前記第3色光を画像信号に応じて変調する第3色光用空間光変調装置と、前記第1色光用空間光変調装置、前記第2色光用空間光変調装置、及び前記第3色光用空間光変調装置でそれぞれ変調された前記第1色光と、前記第2色光と、前記第3色光とを合成する色合成光学系と、前記色合成光学系にて合成された光を投写する投写光学系と、を有し、前記第1色光用空間光変調装置と、前記第2色光用空間光変調装置と、前記第3色光用空間光変調装置とは、上記の空間光変調装置であることを特徴とするプロジェクタを提供することができる。
【0018】
本発明は上述の空間光変調装置を用いているため、光源部からの光を効率良く利用し、また、投写像を高コントラストにすることができる。さらに、変調光のNAが投写光学系の入射側のNAより大きくなることを防止できるため、変調光が投写光学系でけられることを低減できる。これにより、光を効率良く利用でき、明るく高コントラストな投写像のプロジェクタを得ることができる。
【0019】
【発明の実施の形態】
以下に図面を参照して、本発明の実施形態を詳細に説明する。
(第1実施形態)
まず図1を参照して、本発明の第1実施形態に係るプロジェクタの概略構成を説明する。次に、図2以降を参照して、本実施形態の特徴的な構成を説明する。図1において、光源部である超高圧水銀ランプ101は、第1色光である赤色光(以下、「R光」という。)、第2色光である緑色光(以下、「G光」という。)、及び第3色光である青色光(以下、「B光」という。)を含む光を供給する。インテグレータ104は、超高圧水銀ランプ101からの光の照度分布を均一化する。照度分布を均一化された光は、偏光変換素子105にて特定の振動方向を有する偏光光、例えばs偏光光に変換される。s偏光光に変換された光は、色分離光学系を構成するR光透過ダイクロイックミラー106Rに入射する。以下、R光について説明する。R光透過ダイクロイックミラー106Rは、R光を透過し、G光、B光を反射する。R光透過ダイクロイックミラー106Rを透過したR光は、反射ミラー107に入射する。反射ミラー107は、R光の光路を90度折り曲げる。光路を折り曲げられたR光は、第1色光であるR光を画像信号に応じて変調する第1色光用空間光変調装置110Rに入射する。第1色光用空間光変調装置110Rは、R光を画像信号に応じて変調する透過型の液晶表示装置である。なお、ダイクロイックミラーを透過しても、光の偏光方向は変化しないため、第1色光用空間光変調装置110Rに入射するR光は、s偏光光のままの状態である。
【0020】
第1色光用空間光変調装置110Rは、λ/2位相差板123R、硝子板124R、第1偏光板121R、液晶パネル120R、及び第2偏光板122Rを有する。液晶パネル120Rの詳細な構成については後述する。λ/2位相差板123R及び第1偏光板121Rは、偏光方向を変換させない透光性の硝子板124Rに接する状態で配置される。これにより、第1偏光板121R及びλ/2位相差板123Rが、発熱により歪んでしまうという問題を回避できる。なお、図1において、第2偏光板122Rは独立して設けられているが、液晶パネル120Rの射出面や、クロスダイクロイックプリズム112の入射面に接する状態で配置しても良い。
【0021】
第1色光用空間光変調装置110Rに入射したs偏光光は、λ/2位相差板123Rによりp偏光光に変換される。p偏光光に変換されたR光は、硝子板124R及び第1偏光板121Rをそのまま透過し、液晶パネル120Rに入射する。液晶パネル120Rに入射したp偏光光は、画像信号に応じた変調により、R光がs偏光光に変換される。液晶パネル120Rの変調により、s偏光光に変換されたR光が、第2偏光板122Rから射出される。このようにして、第1色光用空間光変調装置110Rで変調されたR光は、色合成光学系であるクロスダイクロイックプリズム112に入射する。
【0022】
次に、G光について説明する。G光とB光とは、R光透過ダイクロイックミラー106Rで反射されることにより、光路を90度折り曲げられる。光路を折り曲げられたG光とB光とは、B光透過ダイクロイックミラー106Gに入射する。B光透過ダイクロイックミラー106Gは、G光を反射し、B光を透過する。B光透過ダイクロイックミラー106Gで反射されたG光は、第2色光であるG光を画像信号に応じて変調する第2色光用空間光変調装置110Gに入射する。第2色光用空間光変調装置110GはG光を画像信号に応じて変調する透過型の液晶表示装置である。第2色光用空間光変調装置110Gは、液晶パネル120G、第1偏光板121G及び第2偏光板122Gを有する。液晶パネル120Gの詳細に関しては後述する。
【0023】
第2色光用空間光変調装置110Gに入射するG光は、s偏光光に変換されている。第2色光用空間光変調装置110Gに入射したs偏光光は、第1偏光板121Gをそのまま透過し、液晶パネル120Gに入射する。液晶パネル120Gに入射したs偏光光は、画像信号に応じた変調により、G光がp偏光光に変換される。液晶パネル120Gの変調により、p偏光光に変換されたG光が、第2偏光板122Gから射出される。このようにして、第2色光用空間光変調装置110Gで変調されたG光は、色合成光学系であるクロスダイクロイックプリズム112に入射する。
【0024】
次に、B光について説明する。B光透過ダイクロイックミラー106Gを透過したB光は、2枚のリレーレンズ108と、2枚の反射ミラー107とを経由して、第3色光であるB光を画像信号に応じて変調する第3色光用空間光変調装置110Bに入射する。第3色光用空間光変調装置110Bは、B光を画像信号に応じて変調する透過型の液晶表示装置である。
【0025】
なお、B光にリレーレンズ108を経由させるのは、B光の光路の長さがR光及びG光の光路の長さよりも長いためである。リレーレンズ108を用いることにより、B光透過ダイクロイックミラー106Gを透過したB光を、そのまま第3色光用空間光変調装置110Bに導くことができる。第3色光用空間光変調装置110Bは、λ/2位相差板123B、硝子板124B、第1偏光板121B、液晶パネル120B、及び第2偏光板122Bを有する。なお、第3色光用空間光変調装置110Bの構成は、上述した第1色光用空間光変調装置110Rの構成と同様なので、詳細な説明は省略する。
【0026】
第3色光用空間光変調装置110Bに入射するB光は、s偏光光に変換されている。第3色光用空間光変調装置110Bに入射したs偏光光は、λ/2位相差板123Bによりp偏光光に変換される。p偏光光に変換されたB光は、硝子板124B及び第1偏光板121Bをそのまま透過し、液晶パネル120Bに入射する。液晶パネル120Bに入射したp偏光光は、画像信号に応じた変調により、B光がs偏光光に変換される。液晶パネル120Bの変調により、s偏光光に変換されたB光が、第2偏光板122Bから射出される。第3色光用空間光変調装置110Bで変調されたB光は、色合成光学系であるクロスダイクロイックプリズム112に入射する。このように、色分離光学系を構成するR光透過ダイクロイックミラー106RとB光透過ダイクロイックミラー106Gとは、超高圧水銀ランプ101から供給される光を、第1色光であるR光と、第2色光であるG光と、第3色光であるB光とに分離する。
【0027】
色合成光学系であるクロスダイクロイックプリズム112は、2つのダイクロイック膜112a、112bをX字型に直交して配置して構成されている。ダイクロイック膜112aは、B光を反射し、R光とG光とを透過する。ダイクロイック膜112bは、R光を反射し、B光とG光とを透過する。このように、クロスダイクロイックプリズム112は、第1色光用空間光変調装置110R、第2色光用空間光変調装置110G、及び第3色光用空間光変調装置110Bでそれぞれ変調されたR光、G光及びB光を合成する。投写光学系114は、クロスダイクロイックプリズム112で合成された光をスクリーン116に投写する。これにより、スクリーン116上でフルカラー画像を得ることができる。
【0028】
なお、上述のように、第1色光用空間光変調装置110R及び第3色光用空間光変調装置110Bからクロスダイクロイックプリズム112に入射される光は、s偏光光となるように設定される。また、第2色光用空間光変調装置110Gからクロスダイクロイックプリズム112に入射される光は、p偏光光となるように設定される。このようにクロスダイクロイックプリズム112に入射される光の偏光方向を異ならせることで、クロスダイクロイックプリズム112において各色光用空間光変調装置から射出される光を有効に合成できる。ダイクロイック膜112a、112bは、通常、s偏光光の反射特性に優れる。このため、ダイクロイック膜112a、112bで反射されるR光及びB光をs偏光光とし、ダイクロイック膜112a、112bを透過するG光をp偏光光としている。
【0029】
次に、図2を用いて液晶パネルの詳細について説明する。図1で説明したプロジェクタ100では、3つの液晶パネル120R、120G、120Bを備えている。これら3つの液晶パネル120R、120G、120Bは変調する光の波長領域が異なるだけであり、基本的構成は同一である。このため、液晶パネル120Rを代表例にして以後の説明を行う。
【0030】
図2は、液晶パネル120Rの斜視断面を示す。超高圧水銀ランプ101からのR光は、図2の上側から液晶パネル120Rに入射し(入射光Lin)、下側からスクリーン116の方向へ射出する(射出光Lout)。防塵硝子である入射側防塵硝子200の内側には、接着層201を介してカバー硝子202が固着されている。カバー硝子202の射出側には、遮光のためのブラックマトリクス形成層203が設けられている。ブラックマトリクス形成層203には、開口部203aとブラックマトリクス部203bとが設けられている。さらに、対向基板204には対向電極が形成されている。
【0031】
また、射出側防塵硝子208の内側には、接着層207を介してTFT(薄膜トランジスタ)や透明電極206a等を有するTFT基板206が形成されている。そして、対向基板204とTFT基板206とを対向させて、入射側防塵硝子200と射出側防塵硝子208とを貼り合わせる。対向基板204とTFT基板206との間には、画像表示のための液晶層205が封入されている。
【0032】
入射側防塵硝子200には、複数のマイクロプリズム素子211からなるマイクロプリズムアレイ210が形成されている。マイクロプリズムアレイ210の構成及び作用の詳細については後述する。なお、図1で示した構成では、第1偏光板121R、第2偏光板122Rを、液晶パネル120Rに対して別体に設けている。しかし、これに代えて、入射側防塵硝子200と対向基板204との間、射出側防塵硝子208とTFT基板206との間などにも偏光板を設けることもできる。さらに、マイクロプリズムアレイ210は、第1偏光板121Rに形成してもよい。
【0033】
図3は、液晶パネル120Rの断面構成を示す。マイクロプリズム素子211は、カバー硝子202の所定面202a上に、接着層201を介して設けられている。ブラックマトリクス形成層203は、開口部203aとブラックマトリクス部203bとが設けられている。開口部203aは、マイクロプリズム素子211の位置に対応して設けられている。開口部203aは、超高圧水銀ランプ101からのR光を通過させる。開口部203aを透過するR光は、対向基板204と、液晶層205と、TFT基板206とを透過する。そして、R光は、液晶層205において、画像信号に応じて偏光成分が変調される。このように、投写像の画素を形成するのは、開口部203aと、液晶層205と、TFT基板206とを透過して変調を受けた光である。換言すると、開口部203aと、液晶層205と、TFT基板206とは、入射光Linを画像信号に応じて変調する変調部を構成する。
【0034】
図4(a)に、液晶パネル120Rの断面構成の一部と、図4(b)に、液晶表示パネル120Rの入射光Lin側から目視した様子とを示す。マイクロプリズム素子211は、平坦面S1と、傾斜面S2と、平面S3とを有する。平坦面S1は、所定面202aに略平行な平面である。傾斜面S2は、平坦面S1の周辺に設けられ、所定面202aに対して所定の角度θ1をなしている。平面S3は、接着層201に接している。平面S3の領域の略中心位置を基準中心位置C2とすると、平坦面S1は、基準中心位置C2を通過する所定面202aの垂線A上近傍に設けられている。図4(a)、(b)に示すマイクロプリズム素子211は、平坦面S1の領域の略中心位置が所定面202aの垂線A上に位置している。マイクロプリズム素子211は、平面S3を底面とし、所定面202aの垂線A上に頂点C1を有する四角錐を、平坦面S1において切断した形状を有する。傾斜面S2は、平坦面S1で切断された四角錐形状の側面部分である。従って、マイクロプリズム素子211は、図4(b)に示すように、正方形形状の平坦面S1と4つの傾斜面S2とを有している。また、マイクロプリズム素子211は、平坦面S1が、傾斜面S2に対して入射光Linの入射側に設けられた凸型の形状を有する。なお、マイクロプリズム素子211は、入射側防塵硝子200の屈折率より大きい屈折率の材質から形成されている。
【0035】
開口部203aは、マイクロプリズム素子211の基準中心位置C2と、開口部203aの領域の略中心位置C3とが対応するように配置されている。図4(b)に示すように、開口部203aの領域は、辺W2を一辺とする正方形形状を有する。マイクロプリズム素子211の平坦面S1は、辺W1を一辺とする正方形形状を有する。このように、平坦面S1と開口部203aの領域とは、略相似形状をなしている。また、辺W1が辺W2より小さいため、平坦部S1の面積は、開口部203aの領域の面積より小さい。
【0036】
図5を用いて、入射光Linが開口部203aに入射する様子について説明する。図5(a)は、本実施形態の液晶パネル120Rのマイクロプリズム素子211が入射光Linを開口部203aに入射させる様子を示す。また、図5(b)は、従来のマイクロレンズ素子が入射光Linを開口部203aに入射させる様子を示す。液晶パネル120Rへの入射光Linは、光軸の方向に略平行な方向に進行する光の成分が大きい。このため、図5(a)、(b)には、光軸の方向に沿う方向に進行する光について図示している。図5(b)に示すマイクロレンズアレイ510は、各画素に対応する複数のマイクロレンズ素子511を有している。マイクロレンズ素子511は、入射光Linの入射側に、略球面形状の面を有する。各画素において入射光Linは、マイクロレンズ素子511の集光作用により開口部203aに集光される。しかし、マイクロレンズ素子511は、その集光作用によって、光軸に対して角度を有する光の割合を増加させてしまう。光軸に対して角度を有する光が増加すると、液晶パネル120Rからの変調光のNAが、投写光学系114(図1参照)の入射側のNAよりも大きくなる場合がある。変調光のNAが投写光学系114の入射側のNAよりも大きくなると、変調光が投写光学系114でけられてしまい光量を損失してしまうという問題を生じる。大口径のレンズは高価であること、プロジェクタの小型化の要請等から、投写光学系114のNAは小さく抑えられる傾向にある。光量損失の問題は、マイクロレンズアレイ510で集光させる光のNAが大きい場合のみならず、投写光学系114のNAを小さく抑える場合にも、投写光学系114でけられる光量が多くなるためさらに顕著となる。
【0037】
従来、光効率向上のために非球面形状の面を有するマイクロレンズ素子を用いたマイクロレンズアレイも知られている。非球面形状の面とは、例えば、楕円形状の面等である。非球面形状の面を有するマイクロレンズ素子を使用することにより、球面形状の面を有するマイクロレンズ素子を使用する場合に比較して、光利用効率を向上させることができる。しかし、非球面形状の面を有するマイクロレンズ素子は、一般的に製造が容易でなく、高コストであるという問題がある。
【0038】
図5(a)に、本発明の空間光変調装置である液晶パネル120Rのマイクロプリズム素子211が入射光Linを開口部203aに入射させる様子を示す。マイクロプリズム素子211の平坦面S1は、所定面202aに対して略垂直な方向に進行する入射光Linを、開口部203aの方向に透過する。液晶パネル120Rは光軸に対して略垂直に配置されているため、平坦面S1は、光軸の方向に略平行な方向に進行する光を開口部203aに入射させることができる。また、光軸の方向に略平行な方向に進行し傾斜面S2に入射した光は、屈折作用により、開口部203aの方向に偏向される。このため、傾斜面S2は、入射光Linのうち光軸の方向に略平行な方向に進行する光を、開口部203aに入射させることができる。このようにして、マイクロプリズム素子211は、光軸の方向に略平行な方向に進行する光を効率良く偏向させ、開口部203aに入射させることができる。
【0039】
さらに、マイクロプリズム素子211の平坦面S1と傾斜面S2とは、いずれも平面である。平坦面S1は、光軸の方向に略平行な方向に進行する光を、進行する方向を変化させることなくそのまま透過させる。また、平坦面S1と傾斜面S2とは、光軸の方向に略平行な方向に進行する光に限らず開口部203aに入射させる入射光Linについて、屈折作用による焦点を形成しない。このように、マイクロプリズム素子211において入射光Linを極端に集光させないため、液晶パネル120Rの射出光LoutのNAが大きくなることを防止できる。従って、変調光のNAを投写光学系114の入射側のNAと略同じとすること、又は入射側のNAより小さくすることが容易となり、変調光が投写光学系114でけられることを低減できる。このように、入射光Linを開口部203aに効率的に導いて、かつ、投写光学系114でけられないようにすることができる。これにより、入射光Linを効率良く偏向させて使用することができるという効果を奏する。特に、投写光学系114のNAが小さい(Fナンバーが大きい)場合に、変調光を効率良く利用することができる。
【0040】
図6は、開口部203aへの光の入射角度と、投写像のコントラスト比との関係を示す。液晶の特性により、投写像のコントラスト比は、入射角度が小さいほど高くなる。従って、光を開口部203aに対してより垂直に近い方向から入射させるほど、コントラスト比を高くすることができる。液晶パネル120Rは、マイクロプリズム素子211の平坦面S1により、垂直入射に近い入射光Linを角度変化させず利用することができる。このため、光軸の方向に略平行な方向に進行する光を平坦面S1から開口部203aに入射させることにより、高コントラストな投写像を得られるという効果を奏する。
【0041】
図5(a)に戻って、マイクロプリズム素子211は、図5(b)に示す従来のマイクロレンズ素子511と比較すると、入射光LinがTFT基板206(図3参照)等の付近において極端に集光されていないことがわかる。このように、マイクロプリズム素子211は入射光L1について屈折作用による焦点の形成を行わないため、開口部203aにおいて入射光L1を均一に照射することができる。開口部203において入射光L1を均一に照射させることにより局所的なエネルギー集中を低減し、液晶層205や配向膜等の劣化を低減することができる。これにより、液晶パネル120Rの劣化を低減することができる。
【0042】
一般に、ホームシアターでプロジェクタを使用する場合、最低必要なコントラスト比は400:1といわれている。傾斜面S2と所定面202aとがなす角度θ1が大きくなるに従い、投写光学系114からの投写像のコントラストは低下する。このため、傾斜面S2が所定面202aに対してなす角度θ1を0°より大きく、かつ60°以下とすることにより、コントラスト比を400:1以上にすることができる。これにより、入射光Linを効率良く偏向させて使用することができ、かつ、投写像のコントラスト比を少なくとも400:1にできるという効果を奏する。
【0043】
図4に戻って、平坦面S1の面積と開口部203aの領域の面積とについて説明する。上述のように、平坦面S1の面積は、開口部203aの領域の面積より小さい。平坦面S1の面積を開口部203aの領域の面積より小さくすると、光軸の方向に略平行な方向に進行し平坦面S1を透過した入射光Linを、そのまま開口部203aに入射させることができる。これにより、入射光Linを効率良く利用することができるという効果を奏する。なお、平坦面S1の面積を開口部203aの領域の面積より小さくするのみならず、平坦面S1の面積と開口部203aの領域の面積とを略同一としても良い。さらに、平坦面S1の面積を、開口部203aの領域の面積より若干大きいものとしても良い。平坦面S1の面積と開口部203aの領域の面積と略同一、又は平坦面S1の面積S1が開口部203aの領域の面積より若干大きい場合でも、平坦面S1を透過した入射光Linを効率的に開口部203aに入射できる構成であれば、入射光Linを効率良く利用することができる。
【0044】
開口部203aの領域とマイクロプリズム素子211の平坦面S1とは、略相似する正方形形状を有する。平坦面S1の形状を、開口部203aの領域の形状に略相似なものとすることにより、平坦面S1を透過した光は、開口部203aの領域の略全体を照射することとなる。これにより、平坦面S1を透過した光を効率良く開口部203aに入射させることができるという効果を奏する。
【0045】
次に、マイクロプリズムアレイ210の製造方法について説明する。マイクロプリズムアレイ210の代表的な製造方法としては、以下の(1)〜(5)に掲げる方法を挙げることができる。(1)〜(5)に掲げる方法のいずれも、従来の非球面形状のマイクロレンズ素子を有するマイクロレンズアレイに比較して、容易にマイクロプリズムアレイ210を製造することができる。これにより、製造コストを低減することができる。
(1)専用のバイトを製造し、このバイトで透明硝子を切削してマイクロプリズム素子211を形成する製造方法。
(2)切削法又はフォトリソグラフィ法で型を製造し、この型を転写してマイクロプリズム素子211を形成する製造方法。
(3)エッチングの速度が遅くなるような所定のイオンを透明硝子中にドーピング(打ち込む)する。イオンをドーピングされた領域は、他の領域に比較してエッチングの速度が遅くなる。このエッチング速度の差異を利用して、透明硝子をウエットエッチングすることによりマイクロプリズム素子211を形成する製造方法。
(4)透明硝子にレーザを照射し、透明硝子を溶解、気化させるレーザアブレーションによりマイクロプリズム素子211を形成する製造方法。
(5)透明硝子にレーザを照射し、照射領域を改質させる。そして、改質領域と他の領域とのエッチング速度の差異を利用して、透明硝子をエッチングすることによりマイクロプリズム素子211を形成する製造方法。
特に、マイクロプリズム素子211は、エッチング又は切削により容易に形成することができる。これにより、液晶パネル120Rの製造において、マイクロプリズムアレイ210の製造工程に要する時間を短縮することができる。
【0046】
なお、マイクロプリズム素子211は、四角錐を平坦面S1により切断した形状に限られない。図7(a)は、マイクロプリズム素子211とは異なる形状のマイクロプリズム素子611を入射光Linの入射側から見た図とマイクロプリズム素子611の側面図とを示す。マイクロプリズム素子611は、八角錐を平坦面S11により切断した形状を有する。マイクロプリズム素子611の平坦面S11は、図7(a)の入射側から見た図に示すような八角形の形状を有する。8つの傾斜面S12は、平坦面S11の周辺に配置されている。図7(b)に示す開口部603aは、マイクロプリズム素子611と対応するように配置されている。また、開口部603aの形状は、平坦面S11の形状に略相似する八角形を有する。これにより、平坦面S11を透過した光を効率良く開口部603aに入射させることができる。
【0047】
(第2実施形態)
図8は、本発明の第2実施形態に係る空間光変調装置の特徴部分の概略構成を示す。上記第1実施形態の液晶パネル120Rと同一の部分には同一の符号を付し、重複する説明は省略する。空間光変調装置である液晶表示パネル720Rは、複数のマイクロプリズム素子711を配列したマイクロプリズムアレイ710を有する。マイクロプリズム素子711は、平坦面S21と、傾斜面S22と、平面S23とを有する。マイクロプリズム素子711は、平坦面S21が、傾斜面S22に対して入射光Linの入射側に設けられた凸型の形状を有する。平坦面S21は、所定面202aに略平行な平面である。傾斜面S22は、平坦面S21の周辺に設けられ、所定面202aに対して所定の角度θ2をなしている。平面S23は、接着層201に接している。平面S23の領域の略中心位置を基準中心位置C22とすると、平坦面S21は、基準中心位置C22を通過する所定面202aの垂線A上近傍に設けられている。マイクロプリズム素子711は、平面S23を底面とし、所定面202aの垂線A上に頂点C21を有する円錐を、平坦面S21において切断した形状を有する。傾斜面S22は、平坦面S21において切断された円錐形状の側面部分である。従って、マイクロプリズム素子711は、円形状の平坦面S21と円錐曲面である傾斜面S22とを有している。さらに、マイクロプリズム素子711は、平面S23が略正方形形状となるように切り取られた形状をなしている。なお、マイクロプリズム素子711は、上記の液晶パネル120Rのマイクロプリズム素子211と同様、入射側防塵硝子200の屈折率より大きい屈折率の材質から形成されている。
【0048】
開口部203aは、マイクロプリズム素子711の基準中心位置C22と、開口部203aの領域の略中心位置C23とが対応するように配置されている。また、図8(b)に示すように、開口部203aの領域は、辺W22を一辺とする正方形形状を有する。また、マイクロプリズム素子711の平坦面S21は、直径W21の円形状を有する。直径W21と辺W22とは略同一の長さであるから、マイクロプリズム素子211の平坦面S21の面積は、開口部203aの領域の面積より小さい。このため、光軸の方向に略平行な方向に進行し平坦面S21を透過した入射光Linを、そのまま開口部203aに入射させることができる。これにより、入射光Linを効率良く利用することができる。また、上記の空間光変調装置のマイクロプリズム素子211と同様、平坦面S21と傾斜面S22とにより、入射光Linを開口部203aに効率的に導いて、かつ、投写光学系114でけられないようにすることができる。これにより、入射光Linを効率良く使用することができるという効果を奏する。
【0049】
(第3実施形態)
図9は、本発明の第3実施形態に係る空間光変調装置の特徴部分の概略構成を示す。上記第1実施形態のプロジェクタ100と同一の部分には同一の符号を付し、重複する説明は省略する。空間光変調装置である液晶表示パネル820Rは、複数のマイクロプリズム素子811を配列したマイクロプリズムアレイ810を有する。マイクロプリズム素子811は、平坦面S31と、傾斜面S32と、平面S33とを有する。マイクロプリズム素子811は、平坦面S31が傾斜面S32に対して入射光Linの射出側に設けられた凹型の形状を有することを特徴とする。平坦面S31は、所定面202aに略平行な平面である。平面S33の領域の略中心位置を基準中心位置C32とすると、平坦面S31は、基準中心位置C32を通過する所定面202aの垂線A上近傍に設けられている。傾斜面S32は、平坦面S31の周辺に設けられ、所定面202aに対して所定の角度θ3をなしている。平面S33は、接着層201に接している。マイクロプリズム素子811は、上記第1実施形態の液晶パネル120Rのマイクロプリズム素子211の凹凸を逆にしたような形状を有する。傾斜面S32は、所定面202aに略平行な底面S34と所定面202aの垂線A上の頂点C31とからなる四角錐が平坦面S31で切断された形状の、側面部分に相当する。従って、マイクロプリズム素子810は、正方形形状の平坦面S31と4つの傾斜面S32とを有する。なお、マイクロプリズム素子811は、上記のマイクロプリズム素子211とは異なり、入射側防塵硝子200の屈折率より小さい屈折率の材質から形成されている。
【0050】
開口部203aは、マイクロプリズム素子811の基準中心位置C32と、開口部203aの領域の略中心位置C33とが対応するように配置されている。図9(b)に示すように、開口部203aの領域は、辺W32を一辺とする正方形形状を有する。また、マイクロプリズム素子811の平坦面S31は、辺W31を一辺とする正方形形状を有する。辺W31は辺W32より小さいことから、平坦面S31の面積は、開口部203aの領域の面積より小さい。従って、光軸の方向に略平行な方向に進行し平坦面S31を透過した入射光Linを、そのまま開口部203aに入射させることができる。また、光軸の方向に略平行な方向に進行し傾斜面S32に入射した光は、屈折作用により、開口部203aの方向に偏向される。傾斜面S32は、入射光Linのうち光軸の方向に略平行な方向に進行する光を開口部203aに入射させることができる。さらに、マイクロプリズム素子811の平坦面S31と傾斜面S32とは平面からなるため、上記実施形態の液晶パネル120Rのマイクロプリズム素子211と同様、変調光が投写光学系114(図1参照)でけられることを低減できる。このようにして、マイクロプリズム素子811は、入射光Linを開口部203aに効率的に導いて、かつ、投写光学系114でけられないようにすることができる。これにより、入射光Linを効率良く使用することができるという効果を奏する。
【0051】
さらに、マイクロプリズム素子811を凹型の形状とすることにより、平坦面S31を開口部203aにより近接して設けることができる。平坦面S31と開口部203aとをより近接して設けることにより、光軸に沿った方向以外の方向に進行する光についても、入射角度に依存する拡散(発散)を低減することができる。このため、マイクロプリズム素子811は、入射光を効率良く開口部203aに入射させることができる。これにより、入射光を効率良く使用することができるという効果を奏する。
【0052】
(第4実施形態)
図10は、本発明の第4実施形態に係る空間光変調装置の特徴部分の概略構成を示す。上記第1実施形態のプロジェクタ100と同一の部分には同一の符号を付し、重複する説明は省略する。空間光変調装置である液晶表示パネル920Rは、複数のマイクロプリズム素子911を配列したマイクロプリズムアレイ910を有する。マイクロプリズム素子911は、平坦面S41と、傾斜面S42と、平面S43とを有する。マイクロプリズム素子911は、上記第3実施形態のマイクロプリズム素子811と同様、平坦面S41が傾斜面S42に対して入射光Linの射出側に設けられた凹型の形状を有する。平坦面S41は、所定面202aに略平行な平面である。平面S43の領域の略中心位置を基準中心位置C42とすると、平坦面S41は、基準中心位置C42を通過する所定面202aの垂線A上近傍に設けられている。傾斜面S42は、平坦面S41の周辺に設けられ、所定面202aに対して所定の角度θ4をなしている。平面S43は、接着層201に接している。マイクロプリズム素子911は、上記第2実施形態のマイクロプリズム素子711の凹凸を逆にしたような形状を有する。傾斜面S42は、所定面202aに略平行な底面S44と所定面202aの垂線A上の頂点C41とからなる円錐が平坦面S41で切断された形状の、側面部分に相当する。従って、マイクロプリズム素子911は、円形状の平坦面S41と円錐曲面である傾斜面S42とを有している。なお、マイクロプリズム素子911は、上記のマイクロプリズム素子811と同様、入射側防塵硝子200の屈折率より小さい屈折率の材質から形成されている。
【0053】
開口部203aは、マイクロプリズム素子911の基準中心位置C42と、開口部203aの領域の略中心位置C43とが対応するように配置されている。また、図10(b)に示すように、開口部203aの領域は、辺W42を一辺とする正方形形状を有する。また、マイクロプリズム素子911の平坦面S41は、直径W41の円形状を有する。直径W41は辺W42より小さいことから、平坦面S41の面積は、開口部203aの領域の面積より小さい。従って、光軸の方向に略平行な方向に進行し平坦面S41を透過した入射光Linを、そのまま開口部203aに入射させることができる。これにより、入射光Linを効率的に利用することができる。また、上記第1実施形態の液晶パネル120Rのマイクロプリズム素子211と同様、平坦面S41と傾斜面S42とにより、入射光Linを開口部203aに効率的に導いて、かつ、投写光学系114でけられないようにすることができる。これにより、入射光Linを効率的に使用することができるという効果を奏する。また、上記第3実施形態の液晶パネル820Rのマイクロプリズム素子811と同様、平坦面S41と開口部203aとをより近接して設けることにより、入射光Linの入射角度に依存する拡散(発散)を低減することができる。これにより、入射光を効率良く使用することができるという効果を奏する。
【0054】
なお、上記の実施形態はいずれも透過型の液晶パネルについて説明しているが、これに限られない。例えば、反射型の液晶パネルに上記のマイクロプリズムアレイを用いても、透過型の液晶パネルと同様、効率良く入射光を偏向させて使用することができる。また、反射型の液晶パネルに限らず、他の反射型空間光変調素子に上記のマイクロプリズムアレイを使用することもできる。例えば、複数の可動ミラー素子を有するティルトミラーデバイスと上記のマイクロプリズムアレイとを組み合わせて使用することとしても良い。さらに、プロジェクタ以外の光学装置に上記のマイクロプリズムアレイを用いても良い。例えば、CCD、C−MOSセンサ等の映像受光素子と上記のマイクロプリズム素子とを対応して設けることにより、高感度な光学装置を得られる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係るプロジェクタの概略構成を示す図。
【図2】液晶パネルの概略構成を示す図。
【図3】液晶パネルの断面図。
【図4】マイクロプリズム素子の概略構成を示す図。
【図5】マイクロプリズム素子が開口部に光を入射させる様子を示す図。
【図6】開口部への光の入射角度と、コントラスト比との関係を示す図。
【図7】マイクロプリズム素子の他の構成例を示す図。
【図8】第2実施形態のプロジェクタのマイクロプリズム素子を示す図。
【図9】第3実施形態のプロジェクタのマイクロプリズム素子を示す図。
【図10】第4実施形態のプロジェクタのマイクロプリズム素子を示す図。
【符号の説明】
100 プロジェクタ、101 超高圧水銀ランプ、104 インテグレータ、105 偏光変換素子、106R R光透過ダイクロイックミラー、106G B光透過ダイクロイックミラー、107 反射ミラー、108 リレーレンズ、110R 第1色光用空間光変調装置、110G 第2色光用空間光変調装置、110B 第3色光用空間光変調装置、112 クロスダイクロイックプリズム、112a ダイクロイック膜、112b ダイクロイック膜、114 投写光学系、116 スクリーン、120R,120G,120B,720R,820R,920R 液晶パネル、121R,121G,121B,122R,122G,122B 偏光板、123R,123B 位相差板、124R,124B 硝子板、200 入射側防塵硝子、201,207 接着層、202 カバー硝子、202a 所定面、203 ブラックマトリクス形成層、203a,603a 開口部、203b ブラックマトリクス部、204 対向基板、205 液晶層、206 TFT基板、206a 透明電極、208 射出側防塵硝子、210,710,810,910 マイクロプリズムアレイ、211,611,711,811,911 マイクロプリズム素子、510 マイクロレンズアレイ、511 マイクロレンズ素子、A 垂線、C1,C21,C31,C41 頂点、C2,C22,C32,C42 基準中心位置、C3,C23,C33,C43 略中心位置、Lin 入射光、Lout 射出光、S1,S11,S21,S31,S41 平坦面、S2,S12,S22,S32,S42 傾斜面、S3,S23,S33,S43 平面、W1,W2,W22,W31,W32,W42 辺、W21,W41 直径、θ1,θ2,θ3,θ4 角度
Claims (9)
- 所定領域を有する基準平面上に、複数のマイクロプリズム素子を略直交する格子状に配列したマイクロプリズムアレイと、
前記マイクロプリズム素子の位置に対応して設けられている複数の開口部を有し、前記マイクロプリズムアレイからの光を画像信号に応じて変調する変調部と、を有し、
前記マイクロプリズム素子が設けられている領域の略中心位置を基準中心位置とするとき、
前記開口部は、前記基準中心位置と、前記開口部の領域の略中心位置とが対応するように配置され、
前記マイクロプリズム素子は、前記基準中心位置を通過する前記基準平面の垂線上近傍に設けられ前記基準平面に対して略平行な平面からなる平坦面と、前記平坦面の周辺に設けられ前記基準平面に対して所定角度をなす平面からなる傾斜面と、を有し、
前記平坦面は、前記基準平面に対して略垂直な方向に進行する入射光を、前記開口部の方向に透過し、
前記傾斜面は、前記基準平面に対して略垂直な方向に進行する入射光を、屈折作用により、前記開口部の方向に偏向することを特徴とする空間光変調装置。 - 前記マイクロプリズム素子は、前記平坦面が前記傾斜面に対して前記入射光の入射側に設けられた凸型の形状を有することを特徴とする請求項1に記載の空間光変調装置。
- 前記マイクロプリズム素子は、前記平坦面が前記傾斜面に対して前記入射光の射出側に設けられた凹型の形状を有することを特徴とする請求項1に記載の空間光変調装置。
- 前記傾斜面が、前記基準平面に対してなす前記所定角度は、0°より大きく、かつ60°以下であることを特徴とする請求項1〜3のいずれか一項に記載の空間光変調装置。
- 前記マイクロミラー素子の前記平坦面の面積は、前記開口部の領域の面積より小さいか、又は略同一であることを特徴とする請求項1〜4のいずれか一項に記載の空間光変調装置。
- 前記マイクロミラー素子の前記傾斜面は、前記基準平面に略平行な底面と前記基準中心位置を通過する前記基準平面の垂線上に頂点とを有する多角錐形状の側面部分であることを特徴とする請求項1〜5のいずれか一項に記載の空間光変調装置。
- 前記マイクロミラー素子の前記傾斜面は、前記基準平面に略平行な底面と前記基準中心位置を通過する前記基準平面の垂線上に頂点とを有する円錐形状の側面部分であることを特徴とする請求項1〜5のいずれか一項に記載の空間光変調装置。
- 前記平坦面の形状と、前記開口部の領域の形状とは、略相似することを特徴とする請求項1〜7のいずれか一項に記載の空間光変調装置。
- 第1色光、第2色光、及び第3色光を含む光を供給する光源部と、
前記光源部から供給される光を前記第1色光と、前記第2色光と、前記第3色光とに分離する色分離光学系と、
前記第1色光を画像信号に応じて変調する第1色光用空間光変調装置と、
前記第2色光を画像信号に応じて変調する第2色光用空間光変調装置と、
前記第3色光を画像信号に応じて変調する第3色光用空間光変調装置と、
前記第1色光用空間光変調装置、前記第2色光用空間光変調装置、及び前記第3色光用空間光変調装置でそれぞれ変調された前記第1色光と、前記第2色光と、前記第3色光とを合成する色合成光学系と、
前記色合成光学系にて合成された光を投写する投写光学系と、を有し、
前記第1色光用空間光変調装置と、前記第2色光用空間光変調装置と、前記第3色光用空間光変調装置とは、請求項1〜8のいずれか一項に記載の空間光変調装置であることを特徴とするプロジェクタ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003162339A JP2004361821A (ja) | 2003-06-06 | 2003-06-06 | 空間光変調装置及びプロジェクタ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003162339A JP2004361821A (ja) | 2003-06-06 | 2003-06-06 | 空間光変調装置及びプロジェクタ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004361821A true JP2004361821A (ja) | 2004-12-24 |
Family
ID=34054516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003162339A Withdrawn JP2004361821A (ja) | 2003-06-06 | 2003-06-06 | 空間光変調装置及びプロジェクタ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004361821A (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2427676A (en) * | 2005-06-29 | 2007-01-03 | Lg Philips Lcd Co Ltd | Prism Sheet and Backlight Unit Using The Same |
JP2007233378A (ja) * | 2006-02-06 | 2007-09-13 | Seiko Epson Corp | 集光基板、電気光学装置、電気光学装置用基板、プロジェクタ、及び電子機器 |
JP2009080388A (ja) * | 2007-09-27 | 2009-04-16 | Seiko Epson Corp | 電気光学装置の製造方法、電気光学装置、および投射型表示装置 |
JP2015055739A (ja) * | 2013-09-11 | 2015-03-23 | セイコーエプソン株式会社 | マイクロレンズ素子、光変調装置およびプロジェクター |
JP2015203744A (ja) * | 2014-04-14 | 2015-11-16 | セイコーエプソン株式会社 | 電気光学装置および電子機器 |
JP2016017983A (ja) * | 2014-07-04 | 2016-02-01 | セイコーエプソン株式会社 | マイクロレンズアレイ基板、電気光学装置、および電子機器 |
JP2016024414A (ja) * | 2014-07-24 | 2016-02-08 | セイコーエプソン株式会社 | マイクロレンズアレイ基板、電気光学装置、および電子機器 |
JP2016024415A (ja) * | 2014-07-24 | 2016-02-08 | セイコーエプソン株式会社 | マイクロレンズアレイ基板、電気光学装置、および電子機器 |
-
2003
- 2003-06-06 JP JP2003162339A patent/JP2004361821A/ja not_active Withdrawn
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7407317B2 (en) | 2005-06-29 | 2008-08-05 | Lg Display Co., Ltd. | Prism sheet and backlight unit using the same |
GB2427676B (en) * | 2005-06-29 | 2007-09-05 | Lg Philips Lcd Co Ltd | Prism sheet and backlight unit using the same |
GB2427676A (en) * | 2005-06-29 | 2007-01-03 | Lg Philips Lcd Co Ltd | Prism Sheet and Backlight Unit Using The Same |
DE102005061307B4 (de) * | 2005-06-29 | 2008-05-15 | Lg. Philips Lcd Co., Ltd. | Prismenlage und Hinterleuchtungseinheit unter Verwendung derselben |
JP4552947B2 (ja) * | 2006-02-06 | 2010-09-29 | セイコーエプソン株式会社 | 集光基板、電気光学装置、電気光学装置用基板、プロジェクタ、及び電子機器 |
JP2007233378A (ja) * | 2006-02-06 | 2007-09-13 | Seiko Epson Corp | 集光基板、電気光学装置、電気光学装置用基板、プロジェクタ、及び電子機器 |
JP2009080388A (ja) * | 2007-09-27 | 2009-04-16 | Seiko Epson Corp | 電気光学装置の製造方法、電気光学装置、および投射型表示装置 |
JP2015055739A (ja) * | 2013-09-11 | 2015-03-23 | セイコーエプソン株式会社 | マイクロレンズ素子、光変調装置およびプロジェクター |
JP2015203744A (ja) * | 2014-04-14 | 2015-11-16 | セイコーエプソン株式会社 | 電気光学装置および電子機器 |
JP2016017983A (ja) * | 2014-07-04 | 2016-02-01 | セイコーエプソン株式会社 | マイクロレンズアレイ基板、電気光学装置、および電子機器 |
US9857622B2 (en) | 2014-07-04 | 2018-01-02 | Seiko Epson Corporation | Microlens array substrate, electro-optical device, and electronic apparatus |
JP2016024414A (ja) * | 2014-07-24 | 2016-02-08 | セイコーエプソン株式会社 | マイクロレンズアレイ基板、電気光学装置、および電子機器 |
JP2016024415A (ja) * | 2014-07-24 | 2016-02-08 | セイコーエプソン株式会社 | マイクロレンズアレイ基板、電気光学装置、および電子機器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW548430B (en) | Polarization conversion system, illumination system, and projector | |
JP5360683B2 (ja) | プロジェクター | |
JP2001051231A (ja) | 表示光学装置 | |
US6680762B2 (en) | Projection liquid crystal display apparatus wherein overall focal point of the lens is shifted to increase effective aperture ratio | |
WO1997031283A1 (fr) | Dispositif de modulation optique, ecran et dispositif electronique | |
JP2006215427A (ja) | 空間光変調装置及び画像表示装置 | |
JP2000180792A (ja) | 照明光学系および投射型画像表示装置 | |
JP2005037503A (ja) | 空間光変調装置及びプロジェクタ | |
JP4420087B2 (ja) | 照明装置及びプロジェクタ | |
WO2006001183A1 (ja) | 液晶表示装置及び液晶表示層を用いた投射型表示装置 | |
US20020113911A1 (en) | Liquid crystal display element and projection type liquid crystal display device | |
US6961192B2 (en) | Color lighting apparatus and method and image projection apparatus and method using the same | |
JP2000241768A (ja) | 照明光学装置 | |
JP2004361821A (ja) | 空間光変調装置及びプロジェクタ | |
JP2004347692A (ja) | 空間光変調装置及びプロジェクタ | |
JP3103822B2 (ja) | 投射型カラー液晶表示装置 | |
JP2001091894A (ja) | 表示光学装置 | |
JP2000147500A (ja) | 画像プロジェクタ | |
JP2007025652A (ja) | 画像表示装置 | |
JPH11202129A (ja) | 偏光変換素子および投射型液晶表示装置 | |
JP4333355B2 (ja) | 空間光変調装置及びプロジェクタ | |
US6365526B1 (en) | Optical illumination system and projection apparatus | |
JP2006330143A (ja) | マイクロレンズ、空間光変調装置及び画像表示装置 | |
JP2000162592A (ja) | 投射型画像表示装置 | |
JP2000338448A (ja) | 投射型画像表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060905 |