JP2005525000A - 複数膜厚を有する半導体相互接続及びその形成方法 - Google Patents

複数膜厚を有する半導体相互接続及びその形成方法 Download PDF

Info

Publication number
JP2005525000A
JP2005525000A JP2004508382A JP2004508382A JP2005525000A JP 2005525000 A JP2005525000 A JP 2005525000A JP 2004508382 A JP2004508382 A JP 2004508382A JP 2004508382 A JP2004508382 A JP 2004508382A JP 2005525000 A JP2005525000 A JP 2005525000A
Authority
JP
Japan
Prior art keywords
dielectric layer
forming
layer
continuous opening
interconnect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004508382A
Other languages
English (en)
Other versions
JP4932153B2 (ja
JP2005525000A5 (ja
Inventor
シー. ユー、キャスリーン
ジェイ. ストロゼウスキー、カーク
ファーカス、ジェイノス
サンチェス、ヘクター
ティ. リー、ヨン−ジ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP USA Inc
Original Assignee
NXP USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NXP USA Inc filed Critical NXP USA Inc
Publication of JP2005525000A publication Critical patent/JP2005525000A/ja
Publication of JP2005525000A5 publication Critical patent/JP2005525000A5/ja
Application granted granted Critical
Publication of JP4932153B2 publication Critical patent/JP4932153B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5283Cross-sectional geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76816Aspects relating to the layout of the pattern or to the size of vias or trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

導電配線(95)は膜厚が変わることにより、RC遅延及び雑音結合に関連する問題を解決するのに寄与する。相互接続の膜厚を変えることにより、導電体幅の変更を必要に応じて回避して導電体間の特定の最小ピッチを維持するとともに、導電配線の所定の所望RCパラメータ及び雑音特性を維持する。導電体深さを変える操作は、誘電体層(26,66)をエッチングして異なる膜厚とすることにより行われる。次の工程で導電体(34,82)を誘電体層を覆うように設け、異なる膜厚の誘電体層に充填することにより、膜厚の異なる導電配線が形成される。特定の金属層で利用可能な異なる導電相互接続の膜厚は、信号導電配線または電源導電配線以外の、素子のコンタクト、ビア、または電極のような半導体構造にも使用することができる。所望の設計基準を満たすために相互接続の膜厚をどのように変えるかについての判断に必要な膜厚分析法は自動化することができ、CADツールとして提供することができる。

Description

本発明は概して半導体に関し、特に半導体装置内の相互接続(インターコネクト)構造の製造に関する。
半導体は特定の設計ルールに従って設計され、これらの設計ルールは、集積回路を所望のプロセスに従って上首尾に製造するために満たす必要のあるルールである。このような設計ルールは、速度対電力、抵抗対容量、エレクトロマイグレーション対面積、及びその他を含む性能トレードオフを含む。これらのトレードオフはプロセスの制約からもたらされる結果である。例えば、所与の導電体に対しては、一つの膜厚のみを有する特定の金属層を使用する。
種々の補償法を使用してこれらのトレードオフを均衡させる。標準技術においては、まず薄膜金属を回路の形成に使用して容量の影響を最小限に抑える。導電体の断面積が大きくなると、隣接金属との導電体の容量結合が大きくなる。また、導電体に隣接する誘電体材料を使用することにより固有キャパシタが生成される。先端相互接続プロセスは、薄膜誘電体層を有することに特徴がある。薄膜誘電体によって導電体の容量は小さくなるが抵抗が大きくなる。他の相互接続プロセスは、低K(低誘電率)材料のような種々の誘電体材料を使用して導電体の間の容量結合を小さくしている。低K誘電体の不都合な点は、機械的安定性に欠け、欠陥が多く、相互接続技術への適合性に劣り、高価であることである。
従って、広い幅及び垂直方向に厚い寸法を有する金属を使用して抵抗の影響を最小化する。しかしながら、導電体の断面積を大きくすると抵抗が小さくなるが、回路規模が大きくなり、通常、容量が大きくなる。
このような特性となってしまうのは、階層方式を多層構造の半導体内で使用することによるものであり、この場合、多層構造の半導体では、各層は、特に異なる導電体寸法を有するように設計され、これらの寸法は、特定の容量/抵抗トレードオフが得られるように調整される。多くの場合、これらの種々の層を接続して容量と抵抗とのバランスを最適化させるために複雑なルーティング(配線)方式が必要となる。これらの複雑なルーティング方式を実施することにより、集積回路が大きくなり、また、多くの処理工程が必要となる結果、プロセスコストが高くなる。既存の公知のプロセスを使用する現設計は、容量/抵抗トレードオフに固有のトレードオフをバランスさせることにより、性能及びサイズに関して制約を受けてしまう。
既知の補償方法は、設計に複数の金属層を使用することである。例えば、9〜12の複数層が用いられているが、将来のプロセスはより多くの層を使用することができるようになるであろう。複数層によって設計者は種々の容量/抵抗特性を使用できるようになるので、設計者は所定の機能に関して特定の金属層を、所望の電気特性に基づいて選択することができる。より多くの金属層を使用することによって生じる幾つかの不都合な点は、このような層に関連して付加的な処理コストが生じるとともに、サイズが大きくなることである。2つ以上の導電体を接続するためにビア層が必要となり、このようなビア層は種々の理由により欠陥となり易い。従って、ビア層の必要性及び使用を最小限にすることが望ましい。
本発明は、例によって図示されるが、添付の図面によって制限されるものではない。図面では、同様の参照符号は同様の構成要素を指す。
この技術分野の当業者であれば、図に示す構成要素が簡潔性及び明瞭性のための例示であり、必ずしも寸法通りには描かれていないことが分かるであろう。例えば、本発明の実施形態の理解を深めるのに役立つように、図面におけるこれらの構成要素の幾つかの寸法は他の構成要素に比較して誇張して描かれている。
図1に示すのは、半導体基板12を有する半導体装置構造10の断面である。本明細書においては、これらの図を説明目的のために示すのであり、必ずしも寸法通りには描かれていないことを良く理解されたい。半導体基板12の上面にはトランジスタ制御電極(すなわち、CMOSプロセスのゲート)16,18が形成される。制御電極16,18への電気コンタクトが後で形成されるであろう。制御電極16,18はサイドウォールスペーサ(番号を付さず)、及びトランジスタ素子に接続される他の要素(図示せず)を有する。トランジスタゲートへの相互接続を本明細書に示すが、本明細書が示唆する相互接続構造を利用して任意の半導体構造との電気コンタクトを形成することができることを良く理解されたい。半導体基板12を覆い、かつ制御電極16,18を取り囲むのはパターニングされた誘電体14である。この誘電体パターン内には、ゲート電極16を覆う導電体20及びゲート電極18を覆う導電体22が形成される。導電体20によってゲート電極16との電気的コンタクトが可能になり、導電体22によってゲート電極18との電気的コンタクトが可能になる。
図2に示すのは半導体装置構造10の断面であり、この半導体構造はパターニングされた誘電体14及び導電体20,22を覆うエッチング停止層24を有する。エッチング停止層24も誘電体層である。エッチング停止層24を覆うのは誘電体層26である。種々の誘電体を誘電体層26に使用することができ、これらの誘電体には、二酸化シリコン、TEOS、フッ素処理した二酸化シリコン、及び多くの市販の低K材料が含まれるが、これらには限定されない。誘電体層26は上部を有し、この上部は上部より下にある下部とは異なるエッチング特性を有する。誘電体層26として選択される誘電体によるが、エッチング停止層24は、非常に小さいエッチング速度を有する材料であればどのような材料でもよい。パターニングされたフォトレジスト28は、従来のパターン形成技術に従って誘電体層26の一部を覆うように設けられる。一形態においては、パターニングされたフォトレジスト28は高分子材料である。
図3に示すのはエッチングが行なわれた後の半導体装置構造10の断面である。誘電体層26は部分的に薄く加工されている。誘電体層26の露出した第1部分すなわち露出した上部は、開口の所望位置に渡って第1エッチャントによってエッチングされる。一形態において、誘電体層24の露出した第2部分すなわち露出した下部は第1エッチャントとは異なる第2エッチャントによってエッチングされる。エッチングプロセスを用いて、パターニングされたフォトレジスト28が無い誘電体層26部分を除去する。フォトレジスト28のエッジによって、誘電体層26の上面の一部の上には傾斜面すなわち傾斜エッジが形成される。この傾斜は角度θで示され、約50度以下である。結果として得られる誘電体層26の上面は、薄膜部分及び厚膜部分の双方の上で平坦性を維持する。結果として得られる誘電体層26は、開口の所定位置を覆う第1領域と、第2領域とを有し、第1領域は第2領域よりも薄い。
図4に示すのは、図3において生成される形状を平坦化する高分子材料30を上層に有する半導体装置構造10の断面である。高分子材料30の目的は、後続の処理のために平坦な上面を実現することである。高分子材料30は平坦化層として機能するとともに除去可能な層である。一形態では、高分子材料30にはノボラック(Novolak)ベースの材料を用いる。高分子材料30は比較的厚く、それ自体が平坦になる(自己平坦化)材
料である。ここで、高分子材料30以外の他の材料を使用して、自己平坦化層とすることができることに留意されたい。
図5に示すのはパターニングされた材料32を有する半導体装置構造10の断面であり、この材料32は標準のフォト技術を使用してパターニングされる。一形態では、高分子材料30は初期膜厚を有し、この高分子材料は、パターニングされた材料32を形成する前に部分的にエッチングされて厚さを薄くされる。一形態では、材料32にはシリコン含有フォトレジストを用いる。フォトレジストはパターンに従ってパターニングされ、このパターンが高分子材料30に転写される。パターニングされた材料32の開口は、導電体20及び導電体22の上方に形成される。
図6に示すのは、高分子材料30と、さらに誘電体層26の一部とを除去するエッチングを行った後の半導体装置構造10の断面である。従って、高分子材料30はパターニングされた除去可能な層として機能する。パターニングされた材料32により、第1の高さを有する開口27及び第1の高さよりも高い第2の高さを有する開口29のような開口の位置が誘電体層26において決定される。開口27は上面及び下面を有する。開口29は上面及び下面を有する。開口27の下面は開口29の下面と同一平面に在る。パターニングされた材料32はシリコンを含むので、高分子材料30とパターニングされた材料32との間におけるエッチング選択性は非常に高い。誘電体層26をパターニングするためにさらなるエッチングが行なわれ、最初はエッチング停止層24の上面で停止する。3回目のエッチングでエッチング停止層24を除去して導電体20,22を露出させる。次に、高分子材料30及びパターニングされた材料32は、従来の剥離技術(ウェットエッチングまたはドライエッチング技術のいずれか)によって除去される。ここで、誘電体層14及びパターニングされた誘電体層26が異なる材料から形成されるとすると、エッチング停止層24は不要となることが分かるであろう。
図7に示すのは、露光表面全体に成膜され、かつ開口27及び開口29を充填する導電層34を有する半導体装置構造10の断面である。開口27内の導電層部分34は第1の電流搬送ラインを形成し、開口29内の導電層部分34は第2の電流搬送ラインを形成する。第1の電流搬送ライン及び第2の電流搬送ラインは約50度以下の角度で隣接し、電流を半導体基板12の上面に平行に流す。導電層34にはいずれの導電材料も用いることができるが、一形態では、導電層34として銅を使用する。ここで、導電層34の成膜は下地の形状に従うように行なわれ、この時点では半導体装置構造10の上面が平坦でなくなることに注目されたい。しかしながら、導電層34が平坦になるように導電層34を成膜することができることを理解されたい。
図8に示すのは半導体装置構造10の断面であり、前にパターニングされた誘電体層26の領域を除く半導体装置構造10の全領域から導電層34が除去された状態を示している。特に、限定されないが、誘電体層26の上面を含む平面の上方の導電層34の除去は、電気化学的研磨、化学機械的研磨(CMP)またはエッチングにより行なわれる。比較的直線的な傾斜面は導電体20及び22を覆う導電層34部分の間の誘電体層26の上面に位置する。この傾斜は、導電層34の不所望の部分を確実に除去する操作が容易になるように作用する。傾斜が在ることにより、真っ直ぐな90度の角度のサイドウォールが在る場合とは反対に、導電体20,22を覆う導電層34のこれらの部分の間に位置する導電層34が残渣として残ることを防止することができる。このような残渣材料が残ると、不所望の形で半導体装置構造10の他の導電領域と電気的に接続されてしまう可能性がある。
図9に示すのは、半導体装置構造10の導電体20を覆う導電層の別の相互接続構造の断面である。図9に示す断面は、図1〜8に示す断面の平面に直交する平面における断面
である。図示の都合上、同じ番号が同じ要素に対して使用される。特に、導電層34は横方向に延びて複数の高さの導電層を含む。従って導電層34は、前に形成されている誘電体層26(図示せず)の連続開口を充填する。導電層34が充填されている連続開口は導電体20を覆う第1部分及び第1の高さを有する。連続開口はまた、第1部分に横方向で隣接する第2部分、及び第1の高さよりも高い第2の高さを有する。導電層34内の傾斜は、誘電体26が傾斜する結果として生じる。この結果、同じ層の(すなわち層内の)単一相互接続が「薄膜」領域と「厚膜」領域との間で遷移する相互接続構造が得られる。ここで、エッチング停止層24に接する導電層34の表面は平坦であることに注目されたい。さらに、導電層34及び導電体20が形成する相互接続は、両側が平坦であるのではなく片側のみが平坦である。図示の形態では、導電体20は電流を縦方向すなわち基板12に直交する方向に流し、導電層34は電流を水平方向または基板12に平行な方向に流す。
図10に示すのは半導体装置50の断面であり、本明細書が示唆する相互接続構造の別の形態を示している。基板52の上には制御電極54及び制御電極68が形成される。制御電極54,68は、サイドウォールスペーサ(番号を付さず)を含むトランジスタ構造(図示せず)の一部である。第1誘電体層58は、制御電極54,68を含むトランジスタ構造の一部を取り囲み、かつ覆う。上層に位置して覆う形のエッチング停止層60はパターニングされ、第2誘電体層62はエッチング停止層60を覆って形成され、同様にパターニングされる。導電体56は制御電極54の上に成膜され、導電体66は制御電極68の上に成膜される。一形態では、導電体56及び導電体66は同じ導電材料を使用して形成されるが、この場合、異なる導電材料を使用することができることは理解できるであろう。任意選択のエッチング停止層70は、第2誘電体層62、導電体56及び導電体66を覆って形成される。エッチング停止層70が本明細書の記載とは異なり、用いられない場合、エッチング停止層70に依存しなくて済む幾つかの代替のエッチング技術が必要となることが分かるであろう。第3誘電体層72がエッチング停止層70を覆って形成される。第3誘電体層72を覆うのはマスク層またはマスクエッチング停止層78である。従って、制御電極54,68の各々との接続を行なうための電気的相互接続の起点部分が導電体66,56により提供される。
図11に示すのは半導体装置50の断面であり、この断面には、エッチング停止層78と第3誘電体層72との選択エッチングによって開口73及び開口75が形成される様子が示される。開口73は上面及び下面を有し、開口75は上面及び下面を有する。開口73の上面は開口75の上面と同じ平面に位置する。エッチングはエッチング停止層70によって停止する。ここで、第3誘電体層72及び第2誘電体層62の材料に何を選択するかによってエッチング停止層70を設けるか、設けないかの選択が行われることに留意されたい。第3誘電体層72及び第2誘電体層62が異なる材料を使用して設けられる場合、エッチング停止層72は必要ではなくなる。
図12に示すのは半導体装置50の断面であり、この断面には、パターニングされたフォトレジスト層74が所定パターンに従ってエッチング停止層78の該当する部分を覆って形成される様子が示される。第1金属パターンは、第1マスクに従ってパターニングされたフォトレジスト層74によって形成される。開口73及び開口75の形状及びサイズはパターニングされたフォトレジスト層74によって変更される。
図13に示すのは半導体装置50の断面であり、この断面には、トレンチエッチングまたは金属エッチングが所定パターンに従って行われる様子が示される。このエッチングによりエッチング停止層70の露出部分及びエッチング停止層78の露出部分が除去される。エッチング停止層78は、開口73及び開口75が押し下げられる位置を決定するエッジを有する。従ってエッチング停止層70は、開口73及び開口75のような開口に自己
整合機能を持たせることができる。エッチングが完了すると、パターニングされたフォトレジスト層74が除去される。開口73及び開口75の形状及びサイズは再度、パターニングされたフォトレジスト層74によって変更される。
図14に示すのは半導体装置50の断面であり、この半導体装置は、開口73内のコンタクト66の上に位置するトレンチを覆って選択的に形成されるフォトレジスト80を有する。フォトレジスト80は両側のトレンチから横方向に所定距離だけ延びる。フォトレジスト80は第2マスクとして作用し、フォトレジストを使用して金属トレンチが更にエッチングされることを防止する。また、コンタクト56の上の開口75は、コンタクト56の上のトレンチ内の第3誘電体層72の一部が除去されるまで更にエッチングされる。この結果、コンタクト56を覆う第3誘電体層72内の開口の深さは「B」の深さとなり、同時に、コンタクト66を覆う第3誘電体層72内の開口の深さは「A」の深さとなる。これらの値「A」及び「B」は正確に実現することができ、この場合、BはAよりも或る所望の値だけ大きい。ここで、寸法「B」を得るためのエッチングに関連して、フォトレジスト層80によって覆われないエッチング停止層78の該当する部分は、第3誘電体層72の該当する部分を良好に保護するために使用される。
図15に示すのは半導体装置50の断面である。フォトレジスト80が半導体装置50から除去され、エッチング停止層78が除去される。一形態では、エッチングは時間指定のエッチングである。導電体82は導電体66,56の上の各トレンチ内に成膜される。異なる深さまたは厚さを有する結果として得られる相互接続構造を完成させるために、エッチング停止層78の上面の平面の上方に成膜する導電体82を幾つかの除去方法の内の一つの除去方法によって除去する。限定されないが、特に電気化学的研磨、化学機械的研磨(CMP)またはエッチングによる除去を行なうことができる。異なる厚さの相互接続を得るためには、トレンチ深さを図10〜15の実施形態において変更する。これとは異なり、異なる厚さの相互接続は図1〜8においては、層間誘電体の深さを変えることにより得られる。
図16に示すのは半導体装置50の別の実施形態の断面である。特に、半導体装置50の導電体66の上の導電層の別の相互接続構造の断面が示される。図16に示す断面は、図10〜15に示す断面の平面に直交する平面に在る断面である。図示の都合上、同じ番号を同じ素子に使用する。特に、導電体82は誘電体層72の連続開口を充填する。導電体82は横方向に延びて複数の高さの導電層を形成する。複数の高さは、図11〜15に関連して記載したパターニングを変えることによって実現することができる。図16に示すように、導電体82が充填される連続開口は、異なる深さの第1部分、第2部分及び第3部分を有する。連続開口の第3部分は、導電体66の直上に在る。連続開口の第1部分は、第3部分の直ぐ隣に在り、第2部分は第1部分の一方の側に横方向に隣接する。第1部分は第2部分よりも浅く、第2部分は第3部分よりも浅い。第1部分は図示の深さAを有し、第2部分は図示の深さBを有し、第3部分は図示の深さCを有する。導電体66の直ぐ上の導電層82の第3部分はビア構造を形成する。導電体82の上面は平坦であり、相互接続構造は平坦な表面を一つだけ有する。その結果、相互接続構造は、同じ層の(すなわち層内の)単一相互接続が「薄膜」領域と「厚膜」領域との間で遷移する構成となる。ここで、製造という観点からすると、導電体82の構造は、深さCの第3部分をパターニングし、次に深さAの第1部分及び深さBの第2部分をパターニングする、または深さBの第2部分をまずパターニングし、次に深さCの第3部分及び深さAの第1部分をパターニングする、或いは他のいずれかの形成順序により形成することができることを理解されたい。
図17に示すのは半導体の相互接続を形成する方法90である。一形態では、方法90は、回路の物理的レイアウトを実施するために設計自動化ツールとしてソフトウェアで実
行される。ツールは、或る基準を使用することにより、導電体または相互接続に沿った所定ポイントにおいて、導電体または相互接続が集積回路内で有するべきある厚さを計算するように動作する。ステップ91では、ユーザは相互接続の基準を定義する。種々の基準及び基準の組合せ、または基準ランクを使用する。例えば、従来の回路設計は、2つのインバータをドライバとして相互接続の延びる方向に沿った所定ポイントで使用する。インバータの面積またはサイズだけでなく、導電体サイズの幅も基準に含めることができる。このような基準に関連するのは、相互接続の特定のアプリケーションに関する伝導速度及び信号エッジ遷移である。幾つかの設計では、相互接続部として選択する材料を基準パラメータとして使用する。また、相互接続に接続される負荷のサイズ及び性質(抵抗性、リアクタンス性など)が関連する基準である。設計ルール、雑音レベル、及び最大導電体遅延が、ステップ91における関連基準となり得る他のパラメータである。ステップ92では、相互接続の長さ、幅、及び厚さが抵抗、容量及び回路性能に及ぼす影響について分析を行なう。例えば、特定の一連の基準では、相互接続に沿った所定ポイントの抵抗及び容量を計算する。別の例として、最大相互接続長が、所定の速度目標に関する分析において決定される。ステップ93では、相互接続の膜厚を変えてステップ91で設定された相互接続に関する定義基準を満たすようにする。所定の許容しきい値が得られるまで、所定の相互接続の膜厚を反復計算に関連して使用することができる。方法90は設計ツールの中で自動化することができ、これにより回路設計の所定グループの導電体または相互接続のみの最適膜厚を求めることができる、または方法90は設計に使用する全ての相互接続に関して自動化することができる。雑音の多い、または放射性の導電体に対してどの距離まで近接させることができるか、のような更に別の基準を分析の要素に組み入れることができる。このように、相互接続の膜厚の効率的な自動計算を迅速に行なうことができる。
図18に示すのは、異なる膜厚の種々の部分を有する相互接続95の斜視図である。全部でn個のセクションがあるが、それぞれ寸法W1,D1,L1;W2,D2,L2;及びW3,D3,L3を有する3つのセクションを示している。図から分かるように、深さD3に対応する厚さはD2よりも小さく、このD2はD1よりも小さい。幅W1,W2及びW3は全て同じである、または互いに異なる。各セクションは、計算RC特性をそれに関連付けることができ、このRC特性はR値及びC値の変化に従って変化する。セクションの厚さが厚くなると、そのセクションの抵抗は小さくなって、容量が大きくなる。セクションの厚さが薄くなると、そのセクションの抵抗は大きくなって、容量が小さくなる。
図19に示すのは、相互接続部97に非常に近接して位置する相互接続部96の斜視図である。図示の形態では、相互接続部96もまた、寸法D1,W1;D2,W2及びD3,W3により定義される3つの明確なセクションを有する。例示のために、相互接続部97は既知の信号放出源であり、2つの相互接続が非常に近接することから相互接続部96に有害な影響を及ぼすと仮定する。従って、相互接続部96は内側の設計が、D1及びD3のような他のセクションよりも薄い膜厚D2の所定のセクションを有するように行われる。膜厚を薄くすることにより、放出源の直ぐそばに隣接するセクションの容量結合が小さくなり、相互接続部96の性能が大きく改善される。膜厚D2はD1及びD3よりも小さいので、相互接続部96は切欠き状になる。ここで、D2からD1、及びD2からD3への遷移部分にも傾斜を付けて切欠きがさほど目立たないようにすることができることを良く理解されたい。
以上、相互接続が最小のピッチ(2つの隣接導電体の間の必要な最小間隔に最小幅導電体の幅を加算した値に等しい距離として定義される)を有するように維持しながら抵抗及び電流密度を低減することによって、面積を節約し、かつエレクトロマイグレーション耐性を改善するように、単一金属層内に複数の膜厚を有する金属配線を有する半導体の複数膜厚相互接続構造及び方法を提供してきたことを理解されたい。配線が最小のピッチになるように配線を維持する操作は(利点をもたらすが)、複数膜厚の相互接続構造を実施す
る場合には必要では無いことを理解されたい。相互接続に沿った抵抗/容量特性は、同じピッチを維持しながら最適回路性能を達成するように設計することができる。相互接続幅も相互接続深さと一緒に変えることができるが、所望の抵抗/容量特性を得るために相互接続幅を変える必要は無いことを理解されたい。同一層内で2つの金属膜厚を使用することにより、抵抗及び容量を同じ金属層で相互に独立して最適化することができるので、相互接続性能を更に最適化することができる。導電体相互接続の膜厚は、最適性能が実現されるように特定の用途に従って選択的に調整することができる。雑音を回避するルーティング(配線)方法は、相互接続の膜厚を変えることにより顧客の要求に合わせたものとすることができる。エレクトロマイグレーションの問題は低い位置の金属層を使用して対処することができ、この際、導電体の幅を単に調整するのではなく、導電体の膜厚を大きくする。導電体の膜厚を制御して最適な抵抗/容量特性が得られるように調整することにより、影響が所定ピッチの多くの配線に及ばないようにする。
本明細書が示唆する方法及び構造を或る特定の工程及び材料に関して開示してきたが、種々の代替物を使用することができることは容易に理解できるであろう。本明細書において例示した多くの形態の相互接続構造のいずれをも、一度に充填される単一金属層(single in−laid)、または2つの異なる時点で充填される2つの相異なる金属層(dual in−laid)を用いる形で使用することができる。例えば、どのタイプの半導体プロセスも本明細書が示唆する複数膜厚を用いる方法及び構造を利用することができる。電気コンタクトはデュアル膜厚構造を使用してどのタイプの半導体構成要素に対しても行なうことができる。主として2つの膜厚を有する実施形態を例示として説明したが、どのような数の膜厚も使用することができることを理解されたい。効果、他の利点、及び問題解決法が特定の実施形態に関連する形で上に記載されてきた。しかしながら、効果、利点、問題解決法、及びこのような効果、利点、または問題解決法をもたらし、またはさらに顕著にさせるすべての要素(群)が、いずれかの請求項または全ての請求項の必須の、必要な、または基本的な特徴、或いは要素であると考えられるべきではない。この明細書で使用されるように、「comprises(含む」、「comprising」という用語、または他のすべてのこれらの変形は包括的な意味を指すものであり、例えば一連の要素を備えるプロセス、方法、製品、または装置がこれらの要素のみを含む、ということではなく、明らかには挙げられていない、またはそのようなプロセス、方法、製品、または装置に固有の他の要素を含むことができる。
複数の膜厚を有する相互接続層を備えた半導体の第1の形態の断面図。 複数の膜厚を有する相互接続層を備えた半導体の第1の形態の断面図。 複数の膜厚を有する相互接続層を備えた半導体の第1の形態の断面図。 複数の膜厚を有する相互接続層を備えた半導体の第1の形態の断面図。 複数の膜厚を有する相互接続層を備えた半導体の第1の形態の断面図。 複数の膜厚を有する相互接続層を備えた半導体の第1の形態の断面図。 複数の膜厚を有する相互接続層を備えた半導体の第1の形態の断面図。 複数の膜厚を有する相互接続層を備えた半導体の第1の形態の断面図。 図1〜8に示す方法により形成され、異なる厚さの領域を有する別の相互接続パターンを、図1〜8の図に対して直交するように示した断面図。 複数の膜厚を有する相互接続を備える半導体の第2の形態の断面図。 複数の膜厚を有する相互接続を備える半導体の第2の形態の断面図。 複数の膜厚を有する相互接続を備える半導体の第2の形態の断面図。 複数の膜厚を有する相互接続を備える半導体の第2の形態の断面図。 複数の膜厚を有する相互接続を備える半導体の第2の形態の断面図。 複数の膜厚を有する相互接続を備える半導体の第2の形態の断面図。 図10〜15に示す方法により形成され、異なる膜厚の領域を有する別の相互接続パターンの断面図。 複数の膜厚を有する相互接続を形成するコンピュータ援用自動化設計(CAD)ツールによる方法をフローチャート。 複数の膜厚を有する相互接続の斜視図。 複数の膜厚を有する別の相互接続の斜視図。

Claims (10)

  1. 上面を有する半導体基板と、
    前記半導体基板の上面を覆う第1誘電体層と、
    前記第1誘電体層内に在って、第1の高さを有する第1部分及び前記第1の高さよりも高い第2の高さを有する第2部分を備える連続開口と、
    前記第1部分及び前記第2部分を充填して、第1の電流搬送ラインを前記第1部分に形成し、第2の電流搬送ラインを前記第2部分に形成する導電体材料とを備え、前記第1の電流搬送ライン及び前記第2の電流搬送ラインは隣接して、電流を前記半導体基板の前記上面に平行に搬送する、半導体装置構造。
  2. 前記第1の電流搬送ライン及び前記第2の電流搬送ラインは、傾斜エッジで隣接する請求項1記載の半導体装置構造。
  3. 前記第1の電流搬送ライン及び前記第2の電流搬送ラインは、約50度以下の角度で隣接する請求項1記載の半導体装置構造。
  4. 前記第1部分は上面及び下面を有し、
    前記第2部分は上面及び下面を有し、
    前記第1部分の前記上面は前記第2部分の前記上面と同一平面に在る、請求項1記載の半導体装置構造。
  5. 前記第1部分は上面及び下面を有し、
    前記第2部分は上面及び下面を有し、
    前記第1部分の前記下面は、前記第2部分の前記下面と同一平面に在る、請求項1記載の半導体装置構造。
  6. 複数の厚さを有する相互接続を形成する方法であって、
    基板を有する半導体構造を設ける工程と、
    第1誘電体層を前記基板を覆うように形成する工程と、
    連続開口を前記第1誘電体層に形成する工程であって、前記連続開口は第1部分、第2部分、及び第3部分を有し、前記第1部分は前記第2部分よりも浅く、かつ前記第2部分は前記第3部分よりも浅い工程と、
    導電体層を前記連続開口に形成する工程と、
    前記第1誘電体層上方の前記導電体層を除去して第1の電流搬送ラインを前記第1部分に残し、第2の電流搬送ラインを前記第1の電流搬送ラインに隣接して前記第2部分に残し、ビアを前記第3部分に残す工程とを備える、方法。
  7. 前記第1誘電体層は上部を有し、この上部は、前記上部の直下に在る下部とは異なるエッチング特性を有し、前記連続開口を形成する工程は、
    所望位置の前記連続開口を覆う前記上部を第1のエッチャントによりエッチングする工程と、
    前記所望位置の前記連続開口の前記下部を前記第1のエッチャントとは異なる第2のエッチャントによりエッチングする工程とを備える、請求項6記載の方法。
  8. 前記第1誘電体層をパターニングして前記第1誘電体層に第1領域及び第2領域を設ける工程であって、前記第1領域は前記第2領域よりも薄い工程と、
    平坦で除去可能な層を前記第1誘電体層を覆うように形成する工程とをさらに備え、
    前記連続開口を形成する工程は、
    前記連続開口を形成する前に、前記除去可能な層をパターニングしてパターニングされ
    た除去可能な層を形成する工程と、
    前記パターニングされた除去可能な層をマスクとして使用して前記連続開口を形成する工程とをさらに備える、請求項6記載の方法。
  9. 前記除去可能な層は初期膜厚を有し、前記除去可能な層をパターニングする工程は、
    前記初期膜厚を減少膜厚にまで減少させる工程と、
    フォトレジストを前記減少膜厚を有する前記除去可能な層を覆うように形成し、前記フォトレジストをパターンに従ってパターニングする工程と、
    前記パターンを前記除去可能な層に転写する工程とを備える、請求項8記載の方法。
  10. 前記連続開口を形成する工程が、
    第2誘電体層を前記第1誘電体層の上に形成する工程と、
    前記第2誘電体層をパターニングする工程と、
    前記第1誘電体層をエッチングして前記連続開口の前記第1部分及び前記連続開口の前記第2部分の一部を形成する工程と、
    マスクを前記連続開口の前記第1部分を覆うように形成する工程と、
    前記第1誘電体層をエッチングして前記連続開口の前記第2部分の形成を完了させる工程とを備える、請求項6記載の方法。
JP2004508382A 2002-05-09 2003-04-15 複数膜厚を有する半導体相互接続の形成方法 Expired - Fee Related JP4932153B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/141,714 US6815820B2 (en) 2002-05-09 2002-05-09 Method for forming a semiconductor interconnect with multiple thickness
US10/141,714 2002-05-09
PCT/US2003/012089 WO2003100825A2 (en) 2002-05-09 2003-04-15 Multiple thickness semiconductor interconnect and method therefor

Publications (3)

Publication Number Publication Date
JP2005525000A true JP2005525000A (ja) 2005-08-18
JP2005525000A5 JP2005525000A5 (ja) 2006-05-11
JP4932153B2 JP4932153B2 (ja) 2012-05-16

Family

ID=29399731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004508382A Expired - Fee Related JP4932153B2 (ja) 2002-05-09 2003-04-15 複数膜厚を有する半導体相互接続の形成方法

Country Status (7)

Country Link
US (2) US6815820B2 (ja)
JP (1) JP4932153B2 (ja)
KR (1) KR101045473B1 (ja)
CN (1) CN100397613C (ja)
AU (1) AU2003247343A1 (ja)
TW (1) TWI293493B (ja)
WO (1) WO2003100825A2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100558493B1 (ko) * 2003-12-03 2006-03-07 삼성전자주식회사 반도체 기억소자의 배선 형성방법
US7784010B1 (en) * 2004-06-01 2010-08-24 Pulsic Limited Automatic routing system with variable width interconnect
DE102006025405B4 (de) * 2006-05-31 2018-03-29 Globalfoundries Inc. Verfahren zur Herstellung einer Metallisierungsschicht eines Halbleiterbauelements mit unterschiedlich dicken Metallleitungen
CN100452063C (zh) * 2006-06-07 2009-01-14 清华大学 硅集成电路衬底多频率点下综合耦合参数的快速提取方法
US7566651B2 (en) * 2007-03-28 2009-07-28 International Business Machines Corporation Low contact resistance metal contact
US8026170B2 (en) * 2007-09-26 2011-09-27 Sandisk Technologies Inc. Method of forming a single-layer metal conductors with multiple thicknesses
US8304863B2 (en) * 2010-02-09 2012-11-06 International Business Machines Corporation Electromigration immune through-substrate vias
US20120299187A1 (en) * 2011-05-27 2012-11-29 Broadcom Corporation Aluminum Bond Pad With Trench Thinning for Fine Pitch Ultra-Thick Aluminum Products
US8906801B2 (en) * 2012-03-12 2014-12-09 GlobalFoundries, Inc. Processes for forming integrated circuits and integrated circuits formed thereby
US8813012B2 (en) 2012-07-16 2014-08-19 Synopsys, Inc. Self-aligned via interconnect using relaxed patterning exposure
KR102385454B1 (ko) * 2015-09-24 2022-04-08 엘지디스플레이 주식회사 휘도가 개선된 표시장치
CN107481918B (zh) * 2016-06-08 2020-04-07 中芯国际集成电路制造(上海)有限公司 芯片的制备方法及刻蚀方法
US10651201B2 (en) 2017-04-05 2020-05-12 Samsung Electronics Co., Ltd. Integrated circuit including interconnection and method of fabricating the same, the interconnection including a pattern shaped and/or a via disposed for mitigating electromigration
US11705414B2 (en) * 2017-10-05 2023-07-18 Texas Instruments Incorporated Structure and method for semiconductor packaging
KR102442096B1 (ko) * 2017-11-22 2022-09-07 삼성전자주식회사 반도체 장치
EP3671821A1 (en) * 2018-12-19 2020-06-24 IMEC vzw Interconnection system of an integrated circuit
US20210043500A1 (en) * 2019-08-07 2021-02-11 Intel Corporation Multi-height interconnect trenches for resistance and capacitance optimization
US11195792B2 (en) 2020-01-10 2021-12-07 International Business Machines Corporation Top via stack

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685071A (ja) * 1992-08-31 1994-03-25 Fujitsu Ltd 半導体装置の製造方法
JPH09321046A (ja) * 1996-06-03 1997-12-12 Nec Corp 半導体装置およびその製造方法
JPH10200075A (ja) * 1996-11-14 1998-07-31 Hitachi Ltd 半導体集積回路装置およびその製造方法
JP2000077407A (ja) * 1998-08-28 2000-03-14 Toshiba Corp 半導体装置及びその製造方法
WO2000021128A1 (en) * 1998-10-01 2000-04-13 Applied Materials, Inc. Techniques for triple and quadruple damascene fabrication

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258328A (en) 1992-03-16 1993-11-02 Kabushiki Kaisha Toshiba Method of forming multilayered wiring structure of semiconductor device
US5286675A (en) * 1993-04-14 1994-02-15 Industrial Technology Research Institute Blanket tungsten etchback process using disposable spin-on-glass
US5539255A (en) 1995-09-07 1996-07-23 International Business Machines Corporation Semiconductor structure having self-aligned interconnection metallization formed from a single layer of metal
JP2923912B2 (ja) * 1996-12-25 1999-07-26 日本電気株式会社 半導体装置
US6107189A (en) * 1997-03-05 2000-08-22 Micron Technology, Inc. Method of making a local interconnect using spacer-masked contact etch
US6577011B1 (en) * 1997-07-10 2003-06-10 International Business Machines Corporation Chip interconnect wiring structure with low dielectric constant insulator and methods for fabricating the same
US6097092A (en) * 1998-04-22 2000-08-01 International Business Machines Corporation Freestanding multilayer IC wiring structure
US6258727B1 (en) * 1998-07-31 2001-07-10 International Business Machines Corporation Method of forming metal lands at the M0 level with a non selective chemistry
KR20000027538A (ko) * 1998-10-28 2000-05-15 김영환 반도체 소자의 금속 배선 형성 방법
FR2786609B1 (fr) 1998-11-26 2003-10-17 St Microelectronics Sa Circuit integre a capacite interlignes reduite et procede de fabrication associe
US6261873B1 (en) * 1999-04-29 2001-07-17 International Business Machines Corporation Pedestal fuse
JP2001068474A (ja) * 1999-08-24 2001-03-16 Nec Ic Microcomput Syst Ltd 半導体装置の製造方法
US6361402B1 (en) 1999-10-26 2002-03-26 International Business Machines Corporation Method for planarizing photoresist
US6451697B1 (en) 2000-04-06 2002-09-17 Applied Materials, Inc. Method for abrasive-free metal CMP in passivation domain
US20020072217A1 (en) * 2000-12-13 2002-06-13 Macronix International Co., Ltd. Method for improving contact reliability in semiconductor devices
US6638871B2 (en) * 2002-01-10 2003-10-28 United Microlectronics Corp. Method for forming openings in low dielectric constant material layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685071A (ja) * 1992-08-31 1994-03-25 Fujitsu Ltd 半導体装置の製造方法
JPH09321046A (ja) * 1996-06-03 1997-12-12 Nec Corp 半導体装置およびその製造方法
JPH10200075A (ja) * 1996-11-14 1998-07-31 Hitachi Ltd 半導体集積回路装置およびその製造方法
JP2000077407A (ja) * 1998-08-28 2000-03-14 Toshiba Corp 半導体装置及びその製造方法
WO2000021128A1 (en) * 1998-10-01 2000-04-13 Applied Materials, Inc. Techniques for triple and quadruple damascene fabrication

Also Published As

Publication number Publication date
CN1653607A (zh) 2005-08-10
US6815820B2 (en) 2004-11-09
KR101045473B1 (ko) 2011-06-30
JP4932153B2 (ja) 2012-05-16
US20030209779A1 (en) 2003-11-13
TWI293493B (en) 2008-02-11
WO2003100825A2 (en) 2003-12-04
WO2003100825A3 (en) 2004-04-15
AU2003247343A1 (en) 2003-12-12
CN100397613C (zh) 2008-06-25
KR20050007531A (ko) 2005-01-19
TW200406870A (en) 2004-05-01
US7176574B2 (en) 2007-02-13
AU2003247343A8 (en) 2003-12-12
US20050035459A1 (en) 2005-02-17

Similar Documents

Publication Publication Date Title
JP4932153B2 (ja) 複数膜厚を有する半導体相互接続の形成方法
JP6087943B2 (ja) 自己整合コンタクト及びローカル相互接続を形成する方法
US9087844B2 (en) Semiconductor device and fabricating method thereof
JP2012514319A (ja) 特別に先細りされた遷移ビアを備えた半導体デバイスのメタライゼーションシステム
TWI708353B (zh) 形成互連及形成半導體結構的方法
CN110880476A (zh) 互连结构及其制作方法、半导体器件
TWI570841B (zh) 記憶體元件之接觸窗結構及其製造方法
KR0169713B1 (ko) 집적회로에서 적층 배열된 배선 레벨에 포함된 소자간 결선들 사이에 콘택을 자기정렬방식으로 제조하는 방법
US8013423B2 (en) Method for fabricating a metal interconnection using a dual damascene process and resulting semiconductor device
KR100853098B1 (ko) 반도체 소자의 금속 배선 및 이의 제조 방법
US9741614B1 (en) Method of preventing trench distortion
KR20230098237A (ko) 자기-정렬된 상단 비아
US6776622B2 (en) Conductive contact structure and process for producing the same
US7790605B2 (en) Formation of interconnects through lift-off processing
JP2007184347A (ja) 半導体装置およびその製造方法
US20230215801A1 (en) Interconnection structure and manufacturing method thereof
KR100755126B1 (ko) 반도체소자의 구리배선 형성 방법
KR100863419B1 (ko) 반도체 소자의 금속 배선 형성 방법
CN114722765A (zh) 半导体线路的布局方法及制备方法
KR100866122B1 (ko) 듀얼 다마신 공정을 이용한 금속배선 형성방법
CN114220791A (zh) 互连结构及其制作方法、存储器
KR20060079808A (ko) 이중 상감 공정 및 이 공정을 사용하여 형성된 층간절연막구조
JPH10261637A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100426

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees