JP2005215275A - 液晶表示装置とその製造方法 - Google Patents

液晶表示装置とその製造方法 Download PDF

Info

Publication number
JP2005215275A
JP2005215275A JP2004021288A JP2004021288A JP2005215275A JP 2005215275 A JP2005215275 A JP 2005215275A JP 2004021288 A JP2004021288 A JP 2004021288A JP 2004021288 A JP2004021288 A JP 2004021288A JP 2005215275 A JP2005215275 A JP 2005215275A
Authority
JP
Japan
Prior art keywords
layer
electrode
signal line
scanning line
electrode terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004021288A
Other languages
English (en)
Inventor
Kiyohiro Kawasaki
清弘 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quanta Display Japan Inc
Quanta Display Inc
Original Assignee
Quanta Display Japan Inc
Quanta Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quanta Display Japan Inc, Quanta Display Inc filed Critical Quanta Display Japan Inc
Priority to JP2004021288A priority Critical patent/JP2005215275A/ja
Priority to US10/963,801 priority patent/US7321404B2/en
Priority to TW094102737A priority patent/TWI306979B/zh
Priority to KR1020050008026A priority patent/KR100710532B1/ko
Priority to CNB2005100067411A priority patent/CN100394289C/zh
Publication of JP2005215275A publication Critical patent/JP2005215275A/ja
Priority to US11/785,939 priority patent/US7894009B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K8/00Pens with writing-points other than nibs or balls
    • B43K8/02Pens with writing-points other than nibs or balls with writing-points comprising fibres, felt, or similar porous or capillary material
    • B43K8/028Movable closure or gate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K23/00Holders or connectors for writing implements; Means for protecting the writing-points
    • B43K23/08Protecting means, e.g. caps
    • B43K23/12Protecting means, e.g. caps for pens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K8/00Pens with writing-points other than nibs or balls
    • B43K8/02Pens with writing-points other than nibs or balls with writing-points comprising fibres, felt, or similar porous or capillary material
    • B43K8/04Arrangements for feeding ink to writing-points
    • B43K8/12Arrangements for feeding ink to writing-points writing-points or writing-point units being separable from reservoir
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78669Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136231Active matrix addressed cells for reducing the number of lithographic steps
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136231Active matrix addressed cells for reducing the number of lithographic steps
    • G02F1/136236Active matrix addressed cells for reducing the number of lithographic steps using a grey or half tone lithographic process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Nonlinear Science (AREA)
  • Ceramic Engineering (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】 従来の製造工程数を削減した製造方法では製造裕度(マージン)が小さくソース・ドレイン配線間の距離が短くなると歩留が低下する。
【解決手段】 公知技術である絵素電極と走査線を同時に形成する合理化技術に、ゲート絶縁層への開口部形成工程と半導体層の島化工程をハーフトーン露光技術の導入により合理化する新規技術と、公知技術であるソース・ドレイン配線の陽極酸化工程にハーフトーン露光技術を導入することで電極端子の保護層形成工程を合理化する新規技術との組合せによりTN型液晶表示装置の4枚マスク・プロセス案を構築する。
【選択図】 図2

Description

本発明はカラー画像表示機能を有する液晶表示装置、とりわけアクティブ型の液晶表示装置に関するものである。
近年の微細加工技術、液晶材料技術および高密度実装技術等の進歩により、5〜50cm対角の液晶表示装置でテレビジョン画像や各種の画像表示機器が商用ベースで大量に提供されている。また、液晶パネルを構成する2枚のガラス基板の一方にRGBの着色層を形成しておくことによりカラー表示も容易に実現している。特にスイッチング素子を絵素毎に内蔵させた、いわゆるアクティブ型の液晶パネルではクロストークも少なく、応答速度も早く高いコントラスト比を有する画像が保証されている。
これらの液晶表示装置(液晶パネル)は走査線としては200〜1200本、信号線としては300〜1600本程度のマトリクス編成が一般的であるが、最近は表示容量の増大に対応すべく大画面化と高精細化とが同時に進行している。
図7は液晶パネルへの実装状態を示し、液晶パネル1を構成する一方の透明性絶縁基板、例えばガラス基板2上に形成された走査線の電極端子5に駆動信号を供給する半導体集積回路チップ3を導電性の接着剤を用いて接続するCOG(Chip−On−Glass)方式や、例えばポリイミド系樹脂薄膜をベースとし、金または半田メッキされた銅箔の端子を有するTCPフィルム4を信号線の電極端子6に導電性媒体を含む適当な接着剤で圧接して固定するTCP(Tape−Carrier−Package)方式などの実装手段によって電気信号が画像表示部に供給される。ここでは便宜上二つの実装方式を同時に図示しているが実際には何れかの方式が適宜選択される。
液晶パネル1のほぼ中央部に位置する画像表示部内の画素と走査線及び信号線の電極端子5,6との間を接続する配線路が7、8で、必ずしも電極端子群5,6と同一の導電材で構成される必要はない。9は全ての液晶セルに共通する透明導電性の対向電極を対向面上に有するもう1枚の透明性絶縁基板である対向ガラス基板又はカラーフィルタである。
図8はスイッチング素子として絶縁ゲート型トランジスタ10を絵素毎に配置したアクティブ型液晶表示装置の等価回路図を示し、11(図7では7)は走査線、12(図7では8)は信号線、13は液晶セルであって、液晶セル13は電気的には容量素子として扱われる。実線で描かれた素子類は液晶パネルを構成する一方のガラス基板2上に形成され、点線で描かれた全ての液晶セル13に共通な対向電極14はもう一方のガラス基板9の対向する主面上に形成されている。絶縁ゲート型トランジスタ10のOFF抵抗あるいは液晶セル13の抵抗が低い場合や表示画像の階調性を重視する場合には、負荷としての液晶セル13の時定数を大きくするための補助の蓄積容量15を液晶セル13に並列に加える等の回路的工夫が加味される。なお16は蓄積容量15の共通母線となる蓄積容量線である。
図9は液晶表示装置の画像表示部の要部断面図を示し、液晶パネル1を構成する2枚のガラス基板2,9は樹脂性のファイバ、ビーズあるいはカラーフィルタ9上に形成された柱状スペーサ等のスペーサ材(図示せず)によって数μm程度の所定の距離を隔てて形成され、その間隙(ギャップ)はガラス基板9の周縁部において有機性樹脂よりなるシール材と封口材(何れも図示せず)とで封止された閉空間になっており、この閉空間に液晶17が充填されている。
カラー表示を実現する場合には、ガラス基板9の閉空間側に着色層18と称する染料または顔料のいずれか一方もしくは両方を含む厚さ1〜2μm程度の有機薄膜が被着されて色表示機能が与えられるので、その場合にはガラス基板9は別名カラーフィルタ(Color Filter 略語はCF)と呼称される。そして液晶材料17の性質によってはガラス基板9の上面またはガラス基板2の下面の何れかもしくは両面上に偏光板19が貼付され、液晶パネル1は電気光学素子として機能する。現在、市販されている大部分の液晶パネルでは液晶材料にTN(ツイスト・ネマチック)系の物を用いており、偏光板19は通常2枚必要である。図示はしないが、透過型液晶パネルでは光源として裏面光源が配置され、下方より白色光が照射される。
液晶17に接して2枚のガラス基板2,9上に形成された例えば厚さ0.1μm程度のポリイミド系樹脂薄膜20は液晶分子を決められた方向に配向させるための配向膜である。21は絶縁ゲート型トランジスタ10のドレインと透明導電性の絵素電極22とを接続するドレイン電極(配線)であり、信号線(ソース線)12と同時に形成されることが多い。信号線12とドレイン電極21との間に位置するのは半導体層23であり詳細は後述する。カラーフィルタ9上で隣り合った着色層18の境界に形成された厚さ0.1μm程度のCr薄膜層24は半導体層23と走査線11及び信号線12に外部光が入射するのを防止するための光遮蔽部材で、いわゆるブラックマトリクス(Black Matrix 略語はBM)として定着化した技術である。
ここでスイッチング素子として絶縁ゲート型トランジスタの構造と製造方法に関して説明する。現在絶縁ゲート型トランジスタには2種類のものが多用されており、そのうちの一つのエッチストップ型と呼称されるものを従来例として紹介する。図10は従来の液晶パネルを構成するアクティブ基板(表示装置用半導体装置)の単位絵素の平面図であり、図10(e)のA−A’、B−B’およびC−C’線上の断面図を図11に示し、その製造工程を以下に簡単に説明する。
先ず図10(a)と図11(a)に示したように耐熱性と耐薬品性と透明性が高い絶縁性基板として厚さ0.5〜1.1mm程度のガラス基板2、例えばコーニング社製の商品名1737の一主面上にSPT(スパッタ)等の真空製膜装置を用いて膜厚0.1〜0.3μm程度の第1の金属層を被着し、微細加工技術によりゲート電極11Aも兼ねる走査線11と蓄積容量線16を選択的に形成する。走査線の材質は耐熱性と耐薬品性と耐弗酸性と導電性とを総合的に勘案して選択するが一般的にはCr,Ta,MoW合金等の耐熱性の高い金属または合金が使用される。
液晶パネルの大画面化や高精細化に対応して走査線の抵抗値を下げるためには走査線の材料としてAL(アルミニウム)を用いるのが合理的であるが、ALは単体では耐熱性が低いので上記した耐熱金属であるCr,Ta,Moまたはそれらのシリサイドと積層化する、あるいはALの表面に陽極酸化で酸化層(Al2O3)を付加することも現在では一般的な技術である。すなわち走査線11は1層以上の金属層で構成される。
次にガラス基板2の全面にPCVD(プラズマ・シーブイディ)装置を用いてゲート絶縁層となる第1のSiNx(シリコン窒化)層30、不純物をほとんど含まず絶縁ゲート型トランジスタのチャネルとなる第1の非晶質シリコン(a−Si)層31、及びチャネルを保護する絶縁層となる第2のSiNx層32と3種類の薄膜層を例えば、0.3−0.05−0.1μm程度の膜厚で順次被着し、図10(b)と図11(b)に示したように微細加工技術によりゲート電極11A上の第2のSiNx層をゲート電極11Aよりも幅細く選択的に残して保護絶縁層(エッチストップ層またはチャネル保護層)32Dとし、第1の非晶質シリコン層31を露出する。
続いて同じくPCVD装置を用いて全面に不純物として例えば燐を含む第2の非晶質シリコン層33を例えば0.05μm程度の膜厚で被着した後、図10(c)と図11(c)に示したようにSPT等の真空製膜装置を用いて膜厚0.1μm程度の耐熱金属層として例えばTi,Cr,Mo等の薄膜層34と、低抵抗配線層として膜厚0.3μm程度のAL薄膜層35と、さらに膜厚0.1μm程度の中間導電層として例えばTi薄膜層36を順次被着し、微細加工技術によりソース・ドレイン配線材であるこれら3種の薄膜層34A,35A及び36Aの積層よりなる絶縁ゲート型トランジスタのドレイン電極21とソース電極も兼ねる信号線12を選択的に形成する。この選択的パターン形成はソース・ドレイン配線の形成に用いられる感光性樹脂パターンをマスクとしてTi薄膜層36、AL薄膜層35、Ti薄膜層34を順次食刻した後、ソース・ドレイン電極12,21間の第2の非晶質シリコン層33を除去して保護絶縁層32Dを露出するとともに、その他の領域では第1の非晶質シリコン層31をも除去してゲート絶縁層30を露出することによってなされる。このようにチャネルの保護層である第2のSiNx層32Dが存在して第2の非晶質シリコン層33の食刻が自動的に終了することからこの製法はエッチストップと呼称される。
絶縁ゲート型トランジスタがオフセット構造とならぬようソース・ドレイン電極12,21は保護絶縁層32Dと一部(数μm)平面的に重なって形成される。この重なりは寄生容量として電気的に作用するので小さいほど良いが、露光機の合わせ精度とフォトマスクの精度とガラス基板の膨張係数及び露光時のガラス基板温度で決定され、実用的な数値は精々2μm程度である。
さらに上記感光性樹脂パターンを除去した後、ガラス基板2の全面に透明性の絶縁層としてゲート絶縁層と同様にPCVD装置を用いて0.3μm程度の膜厚のSiNx層を被着してパシベーション絶縁層37とし、図10(d)と図11(d)に示したようにパシベーション絶縁層37とし、ドレイン電極21上と、画像表示部外の領域で走査線11と信号線12の電極端子が形成される領域にそれぞれ開口部62,63,64を形成し、開口部63内のパシベーション絶縁層37とゲート絶縁層30を除去して開口部63内に走査線の一部を露出するとともに、開口部62,64内のパシベーション絶縁層37を除去してドレイン電極21の一部と信号線の一部を露出する。同様に蓄積容量線16(を平行に束ねた電極パターン)上には開口部65を形成して蓄積容量線16の一部を露出する。
最後にSPT等の真空製膜装置を用いて膜厚0.1〜0.2μm程度の透明導電層として例えばITO(Indium−Tin−Oxide)あるいはIZO(Indium−Zinc−Oxide)を被着し、図10(e)と図11(e)に示したように微細加工技術により開口部62を含んでパシベーション絶縁層37上に絵素電極22を選択的に形成してアクティブ基板2として完成する。開口部63内の露出している走査線11の一部を電極端子5とし、開口部64内の露出している信号線12の一部を電極端子6としても良く、図示したように開口部63,64を含んでパシベーション絶縁層37上にITOよりなる電極端子5A,6Aを選択的に形成しても良いが、通常は電極端子5A,6A間を接続する透明導電性の短絡線40も同時に形成される。その理由は、図示はしないが電極端子5A,6Aと短絡線40との間を細長いストライプ状に形成することにより高抵抗化して静電気対策用の高抵抗とすることが出来るからである。同様に番号は付与しないが開口部65を含んで蓄積容量線16への電極端子が形成される。
信号線12の配線抵抗が問題とならない場合にはALよりなる低抵抗配線層35は必ずしも必要ではなく、その場合にはCr,Ta,MoW等の耐熱金属材料を選択すればソース・ドレイン配線12,21を単層化して簡素化することが可能である。このようにソース・ドレイン配線は耐熱金属層を用いて第2の非晶質シリコン層と電気的な接続を確保することが重要であり、絶縁ゲート型トランジスタの耐熱性については先行例である特開平7−74368号公報に詳細が記載されている。なお、図10(c)において蓄積容量線16とドレイン電極21とがゲート絶縁層30を介して平面的に重なっている領域50(右下がり斜線部)が蓄積容量15を形成しているがここではその詳細な説明は省略する。
以上述べた5枚マスク・プロセスは詳細な経緯は省略するが、半導体層の島化工程の合理化とコンタクト形成工程が削減された結果得られたもので、当初は7〜8枚程度必要であったフォトマスクもドライエッチ技術の導入により、現時点では5枚に減少してプロセスコストの削減に大きく寄与している。液晶表示装置の生産コストを下げるためにはアクティブ基板の作製工程ではプロセスコストを、またパネル組立工程とモジュール実装工程では部材コストを下げることが有効であることは周知の開発目標である。プロセスコストを下げるためにはプロセスを短くする工程削減と、安価なプロセス開発またはプロセスへの置き換えとがあるが、ここでは4枚のフォトマスクでアクティブ基板が得られる4枚マスク・プロセスを工程削減の一例として説明する。4枚マスク・プロセスはハーフトーン露光技術の導入により写真食刻工程を削減するもので、図12は4枚マスク・プロセスに対応したアクティブ基板の単位絵素の平面図で、図12(e)のA−A’、B−B’およびC−C’線上の断面図を図13に示す。既に述べたように絶縁ゲート型トランジスタには2種類のものが多用されているが、ここではチャネルエッチ型の絶縁ゲート型トランジスタを採用している。
先ず5枚マスク・プロセスと同様にガラス基板2の一主面上にSPT等の真空製膜装置を用いて膜厚0.1〜0.3μm程度の第1の金属層を被着し、図12(a)と図13(a)に示したように微細加工技術によりゲート電極11Aも兼ねる走査線11と蓄積容量線16を選択的に形成する。
次にガラス基板2の全面にPCVD装置を用いてゲート絶縁層となるSiNx層30、不純物をほとんど含まず絶縁ゲート型トランジスタのチャネルとなる第1の非晶質シリコン層31、及び不純物を含み絶縁ゲート型トランジスタのソース・ドレインとなる第2の非晶質シリコン層33と3種類の薄膜層を、例えば0.3−0.2−0.05μm程度の膜厚で順次被着する。引き続き、SPT等の真空製膜装置を用いて膜厚0.1μm程度の耐熱金属層として例えばTi薄膜層34と、膜厚0.3μm程度の低抵抗配線層としてAL薄膜層35と、さらに膜厚0.1μm程度の中間導電層として例えばTi薄膜層36を、すなわちソース・ドレイン配線材を順次被着し、微細加工技術により絶縁ゲート型トランジスタのドレイン電極21とソース電極も兼ねる信号線12を選択的に形成するのであるが、この選択的パターン形成に当たりハーフトーン露光技術により図12(b)と図13(b)に示したようにソース・ドレイン間のチャネル形成領域80B(斜線部)の膜厚が例えば1.5μmで、ソース・ドレイン配線形成領域80A(12),80A(21)の膜厚の3μmよりも薄い感光性樹脂パターン80A,80Bを形成する点が合理化された4枚マスク・プロセスの大きな特徴である。
このような感光性樹脂パターン80A,80Bは、液晶表示装置用基板の作製には通常ポジ型の感光性樹脂を用いるので、ソース・ドレイン配線形成領域80Aが黒、すなわちCr薄膜が形成されており、チャネル領域80Bは灰色、たとえば幅0.5〜1μm程度のラインアンドスペースのCrパターンが形成されており、その他の領域は白、すなわちCr薄膜が除去されているようなフォトマスクを用いれば良い。灰色領域は露光機の解像力が不足しているためにラインアンドスペースが解像されることはなく、ランプ光源からのフオトマスク照射光を半分程度透過させることが可能であるので、ポジ型感光性樹脂の残膜特性に応じて図13(b)に示したような断面形状を有する感光性樹脂パターン80A,80Bを得ることができる。
上記感光性樹脂パターン80A,80Bをマスクとして図13(b)に示したようにTi薄膜層36、AL薄膜層35、Ti薄膜層34、第2の非晶質シリコン層33及び第1の非晶質シリコン層31を順次食刻してゲート絶縁層30を露出した後、図12(c)と図13(c)に示したように酸素プラズマ等の灰化手段により感光性樹脂パターン80A,80Bを1.5μm以上膜減りさせると感光性樹脂パターン80Bが消失してチャネル領域が露出するとともに、ソース・ドレイン配線形成領域上にのみ80C(12),80C(21)をそのまま残すことができる。そこで膜減りした感光性樹脂パターン80C(12),80C(21)をマスクとして、再びソース・ドレイン配線間(チャネル形成領域)のTi薄膜層,AL薄膜層,Ti薄膜層,第2の非晶質シリコン層33A及び第1の非晶質シリコン層31Aを順次食刻し、第1の非晶質シリコン層31Aは0.05〜0.1μm程度残して食刻する。ソース・ドレイン配線が金属層をエッチングした後に第1の非晶質シリコン層31Aを0.05〜0.1μm程度残して食刻することによりなされるので、このような製法で得られる絶縁ゲート型トランジスタはチャネルエッチと呼称されている。なお上記酸素プラズマ処理ではパターン寸法の変化を抑制するため異方性を強めることが望ましいがその理由は後述する。
さらに上記感光性樹脂パターン80C(12),80C(21)を除去した後は5枚マスク・プロセスと同じく図12(d)と図13(d)に示したようにガラス基板2の全面に透明性の絶縁層として0.3μm程度の膜厚の第2のSiNx層を被着してパシベーション絶縁層37とし、ドレイン電極21上と画像表示部外の領域で走査線11と信号線12の電極端子が形成される領域にそれぞれ開口部62,63,64を形成し、開口部63内のパシベーション絶縁層37とゲート絶縁層30を除去して開口部63内に走査線の一部を露出するとともに、開口部62,64内のパシベーション絶縁層37を除去してドレイン電極21の一部と信号線の一部を露出する。蓄積容量線16上には開口部65を形成して蓄積容量線16の一部を露出する。
最後にSPT等の真空製膜装置を用いて膜厚0.1〜0.2μm程度の透明導電層として例えばITOあるいはIZOを被着し、図12(e)と図13(e)に示したように微細加工技術によりパシベーション絶縁層37上に開口部62を含んで透明導電性の絵素電極22を選択的に形成してアクティブ基板2として完成する。電極端子に関してはここでは開口部63,64を含んでパシベーション絶縁層37上にITOよりなる透明導電性の電極端子5A,6Aを選択的に形成している。
特開平7−74368号公報 特開平5−268726号公報 特開平2−275925号公報 特開平2−216129号公報 特開昭59−9962号公報
このように5枚マスク・プロセスと4枚マスク・プロセスにおいてはドレイン電極21と走査線11へのコンタクト形成工程が同時になされるため、それらに対応した開口部62,63内の絶縁層の厚さと種類が異なっている。パシベーション絶縁層37はゲート絶縁層30に比べると製膜温度が低く膜質が劣悪で、弗酸系のエッチング液による食刻では食刻速度が夫々数1000Å/分、数100Å/分と1桁も異なり、ドレイン電極21上の開口部62の断面形状は上部に余りにも過食刻が生じて穴径が制御できない理由から弗素系のガスを用いた乾式食刻(ドライエッチ)を採用している。
ドライエッチを採用してもドレイン電極21上の開口部62はパシベーション絶縁層37のみであるので、走査線11上の開口部63と比較して過食刻になるのは避けられず、材質によってはドレイン電極21(中間導電層36A)が食刻ガスによって膜減りすることがある。また、食刻終了後の感光性樹脂パターンの除去に当たり、まずは弗素化された表面のポリマー除去のために酸素プラズマ灰化処理で感光性樹脂パターンの表面を0.1〜0.3μm程度削り、その後に有機剥離液、例えば東京応化製の剥離液106等を用いた薬液処理がなされるのが一般的であるが、中間導電層36Aが膜減りして下地のアルミニウム層35Aが露出した状態になっていると、酸素プラズマ灰化処理でアルミニウム層35Aの表面に絶縁体であるAL2O3が形成されて、絵素電極22との間でオーミック接触が得られなくなる。そこで中間導電層36Aが膜減りしても良いように、その膜厚を例えば0.2μmと厚く設定することでこの問題から逃れようとしている。あるいは開口部62〜65の形成時、アルミニウム層35Aを除去して下地の耐熱金属層であるTi薄膜層34Aを露出してから絵素電極22を形成する回避策も可能であり、この場合には当初から中間導電層36Aは不要となるメリットもある。
しかしながら、前者の対策ではこれら薄膜の膜厚の面内均一性が良好でないとこの取組みも必ずしも有効に作用するわけではなく、また食刻速度の面内均一性が良好でない場合にも全く同様である。後者の対策では中間導電層36Aは不要となるが、アルミニウム層35Aの除去工程が増加し、また開口部62の断面制御が不十分であると絵素電極22が段切れを起こす恐れがあった。
また4枚マスク・プロセスにおいて適用されているチャネル形成工程はソース・ドレイン配線12,21間のソース・ドレイン配線材と不純物を含む半導体層を選択的に除去するので、絶縁ゲート型トランジスタのON特性を大きく左右するチャネルの長さ(現在の量産品で4〜6μm)を決定する工程である。このチャネル長の変動は絶縁ゲート型トランジスタのON電流値を大きく変化させるので、通常は厳しい製造管理を要求されるが、チャネル長、すなわちハーフトーン露光領域のパターン寸法は露光量(光源強度とフォマスクのパターン精度、特にライン&スペース寸法)、感光性樹脂の塗布厚、感光性樹脂の現象処理、および当該のエッチング工程における感光性樹脂の膜減り量等多くのパラメータに左右され、加えてこれら諸量の面内均一性もあいまって必ずしも歩留高く安定して生産できるわけではなく、従来の製造管理よりも一段と厳しい製造管理が必要となり、決して高度に完成したレベルにあるとは言えないのが現状である。特にチャネル長が6μm以下ではレジストパターンの膜厚減少に伴って発生するパターン寸法の変化が大きく影響してその傾向が顕著となる。
本発明はかかる現状に鑑みなされたもので、従来の5枚マスク・プロセスや4枚マスク・プロセスに共通するコンタクト形成時の不具合を回避するだけでなく、製造マージンの大きいハーフトーン露光技術を採用して製造工程の削減を実現するものである。また液晶パネルの低価格化を実現し、需要の増大に対応していくためにも製造工程数の更なる削減を鋭意追求していく必要性があることは明白であり、他の主要な製造工程を簡略化あるいは低コスト化する技術を付与することによりさらに本発明の価値を高めんとするものである。
本発明においてはまず先行技術である特願平5−268726号公報に開示されている絵素電極の形成工程を合理化したものを本発明に適合させることで製造工程の削減を実現している。次にハーフトーン露光技術をパターン精度管理が容易な半導体層の形成工程と走査線へのコンタクト形成工程に適用することで更なる製造工程の削減を実現している。そして絶縁ゲート型トランジスタのソース・ドレイン配線にパシベーション機能を付与するために先行技術である特開平2−275925号公報に開示されている感光性有機絶縁層をソース・ドレイン配線形成のための感光性樹脂として用いている。あるいは特開平2−216129号公報に開示されているアルミニウムよりなるソース・ドレイン配線の表面に絶縁層を形成する陽極酸化技術を融合させてプロセスの合理化と低温化を実現せんとするものである。そして更なる工程削減のためにソース・ドレイン配線の陽極酸化層形成にもハーフトーン露光技術を適用して電極端子の保護層形成工程を合理化している。
請求項1に記載の液晶表示装置は、一主面上に少なくとも絶縁ゲート型トランジスタと、前記絶縁ゲート型トランジスタのゲート電極も兼ねる走査線とソース配線も兼ねる信号線と、ドレイン配線に接続された絵素電極とを有する単位絵素が二次元のマトリクスに配列された第1の透明性絶縁基板と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、
少なくとも第1の透明性絶縁基板の一主面上に透明導電層と第1の金属層との積層よりなる走査線と、透明導電性の絵素電極と画像表示部外の領域に同じく透明導電性の信号線の電極端子が形成され、
ゲート電極上にプラズマ保護層とゲート絶縁層を介して不純物を含まない第1の半導体層が島状に形成され、
前記第1の半導体層上にゲート電極よりも幅細く保護絶縁層が形成され、
前記絵素電極上と信号線の電極端子上と画像表示部外の領域で走査線の一部である走査線の電極端子上のプラズマ保護層とゲート絶縁層に開口部が形成されて各開口部内に絵素電極と、走査線の電極端子と信号線の電極端子が露出し、
前記保護絶縁層の一部上と第1の半導体層上に絶縁ゲート型トランジスタのソース・ドレインとなる不純物を含む一対の第2の半導体層が形成され、
ゲート絶縁層上と第2の半導体層上と信号線の電極端子の一部上に耐熱金属層を含む1層以上の金属層よりなるソース(信号線)配線と、ゲート絶縁層上と第2の半導体層上と前記開口部内の絵素電極の一部上に同じくドレイン配線が形成され、
前記ソース・ドレイン配線上に感光性有機絶縁層が形成されていることを特徴とする。
この構成により透明導電性の絵素電極は走査線と同時に形成されるのでガラス基板上に形成される。また絶縁ゲート型トランジスタがエッチストップ型であるのでチャネル上には保護絶縁層が形成され、ソース・ドレイン配線上には感光性有機絶縁層が形成されてアクティブ基板にパシベーション機能が付与された透明導電性の電極端子を有するTN型の液晶表示装置が得られる。
請求項2に記載の液晶表示装置は、同じく、
少なくとも第1の透明性絶縁基板の一主面上に透明導電層と第1の金属層との積層よりなる走査線と、透明導電性の絵素電極(と画像表示部外の領域に同じく透明導電性の信号線の電極端子)が形成され、
ゲート電極上にプラズマ保護層とゲート絶縁層を介して不純物を含まない第1の半導体層が島状に形成され、
前記第1の半導体層上にゲート電極よりも幅細く保護絶縁層が形成され、
前記絵素電極上と画像表示部外の領域で走査線の一部上(または走査線の電極端子上と信号線の電極端子上)のプラズマ保護層とゲート絶縁層に開口部が形成されて各開口部内に透明導電性の絵素電極と透明導電性の走査線の一部(または走査線の電極端子と信号線の電極端子)が露出し、
前記保護絶縁層の一部上と第1の半導体層上に絶縁ゲート型トランジスタのソース・ドレインとなる不純物を含む一対の第2の半導体層が形成され、
ゲート絶縁層上と第2の半導体層上(と信号線の電極端子の一部上)に耐熱金属層を含む1層以上の金属層よりなるソース(信号線)配線と、ゲート絶縁層上と第1の半導体層上と前記開口部内の絵素電極の一部上に同じくドレイン配線と、走査線の一部を含んで走査線の電極端子(または透明導電性の走査線の電極端子)と、信号線の一部よりなる信号線の電極端子(または透明導電性の信号線の電極端子)が形成され、
前記信号線の電極端子上を除いて信号線上に感光性有機絶縁層が形成されていることを特徴とする。
この構成により透明導電性の絵素電極は走査線と同時に形成されるのでガラス基板上に形成される。また絶縁ゲート型トランジスタがエッチストップ型であるのでチャネル上には保護絶縁層が形成され、信号線上には感光性有機絶縁層が形成されてアクティブ基板に最低限のパシベーション機能が付与されたTN型の液晶表示装置が得られる。電極端子は透明導電性または金属性の何れでも採用可能である。
請求項3に記載の液晶表示装置は、同じく、
少なくとも第1の透明性絶縁基板の一主面上に透明導電層と第1の金属層との積層よりなる走査線と、透明導電性の絵素電極(と画像表示部外の領域に同じく透明導電性の信号線の電極端子)が形成され、
ゲート電極上にプラズマ保護層とゲート絶縁層を介して不純物を含まない第1の半導体層が島状に形成され、
前記第1の半導体層上にゲート電極よりも幅細く保護絶縁層が形成され、
前記絵素電極上と画像表示部外の領域で走査線の一部(または走査線の電極端子上と信号線の電極端子上)のプラズマ保護層とゲート絶縁層に開口部が形成されて各開口部内に透明導電性の絵素電極と透明導電性の走査線の一部(または走査線の電極端子と信号線の電極端子)が露出し、
前記保護絶縁層の一部上と第1の半導体層上に絶縁ゲート型トランジスタのソース・ドレインとなる不純物を含む一対の第2の半導体層が形成され、
ゲート絶縁層上と第2の半導体層上(と信号線の電極端子の一部上)に耐熱金属層を含む1層以上の陽極酸化可能な金属層よりなるソース(信号線)配線と、ゲート絶縁層上と第1の半導体層上と前記開口部内の絵素電極の一部上に同じくドレイン配線と、前記走査線の一部を含んで走査線の電極端子(または透明導電性の走査線の電極端子)と、信号線の一部よりなる信号線の電極端子(または透明導電性の信号線の電極端子)が形成され、
前記電極端子上を除いてソース・ドレイン配線の表面に陽極酸化層が形成されていることを特徴とする。
この構成により透明導電性の絵素電極は走査線と同時に形成されるのでガラス基板上に形成される。また絶縁ゲート型トランジスタがエッチストップ型であるのでチャネル上には保護絶縁層が形成され、少なくとも信号線の表面には絶縁性の陽極酸化層である5酸化タンタル(Ta2O5)または酸化アルミニウム(Al2O3)が形成されてパシベーション機能が付与されたTN型の液晶表示装置が得られる。電極端子は透明導電性または金属性の何れでも採用可能であるが、金属性の方がプロセスへの制約は少ない。
請求項4は請求項1に記載の液晶表示装置の製造方法であって、ハーフトーン露光技術により走査線と絵素電極を1枚のフォトマスクを用いて形成する工程と、保護絶縁層を形成する工程と、ハーフトーン露光技術により走査線の電極端子と信号線の電極端子と絵素電極へのコンタクト形成とゲート電極上の半導体層形成を1枚のフォトマスクを用いて処理する工程と、感光性有機絶縁層を用いてソース・ドレイン配線を形成する工程を有することを特徴とする。
この構成により走査線の形成工程と絵素電極の形成工程を1枚のフォトマスクを用いて処理する写真食刻工程数の削減が実現する。そしてコンタクトと半導体層を1枚のフォトマスクを用いて処理する写真食刻工程数の削減と、ソース・ドレイン配線の形成時に用いた感光性有機絶縁層をそのまま残すことでパシベーション絶縁層の形成を不要とする製造工程の削減もあいまって4枚のフォトマスクで透明導電性の電極端子を有するTN型の液晶表示装置の作製が可能となる。
請求項5は請求項2に記載の液晶表示装置の製造方法であって、ハーフトーン露光技術により走査線と絵素電極を1枚のフォトマスクを用いて形成する工程と、保護絶縁層を形成する工程と、ハーフトーン露光技術により走査線の電極端子と信号線の電極端子と絵素電極へのコンタクト形成とゲート電極上の半導体層形成を1枚のフォトマスクを用いて処理する工程と、ハーフトーン露光技術により感光性有機絶縁層を用いてソース・ドレイン配線を形成するともに信号線上にのみに感光性有機絶縁層を残す工程を有することを特徴とする。
この構成により走査線の形成工程と絵素電極の形成工程を1枚のフォトマスクを用いて処理する写真食刻工程数の削減が実現する。そしてコンタクトと半導体層を1枚のフォトマスクを用いて処理する写真食刻工程数の削減と、ソース・ドレイン配線の形成時にハーフトーン露光技術を用いて信号線上にのみ選択的に感光性有機絶縁層を残すことでパシベーション絶縁層の形成を不要とする製造工程の削減もあいまって4枚のフォトマスクを用いてTN型の液晶表示装置を作製する事ができる。
請求項6は請求項3に記載の液晶表示装置の製造方法であって、ハーフトーン露光技術により走査線と絵素電極を1枚のフォトマスクを用いて形成する工程と、保護絶縁層を形成する工程と、ハーフトーン露光技術により走査線の電極端子と信号線の電極端子と絵素電極へのコンタクト形成とゲート電極上の半導体層形成を1枚のフォトマスクを用いて処理する工程と、ハーフトーン露光技術を用いてソース・ドレイン配線を形成するとともにソース・ドレイン配線のみを陽極酸化する工程を有することを特徴とする。
この構成により走査線の形成工程と絵素電極の形成工程を1枚のフォトマスクを用いて処理する写真食刻工程数の削減が実現する。そしてコンタクトと半導体層を1枚のフォトマスクを用いて処理する写真食刻工程数の削減と、ソース・ドレイン配線の形成時にハーフトーン露光技術を用いてソース・ドレイン配線上に選択的に陽極酸化層を形成することでパシベーション絶縁層の形成を不要とする製造工程の削減もあいまって4枚のフォトマスクを用いてTN型の液晶表示装置を作製する事ができる。
以上述べたように本発明は絶縁ゲート型トランジスタにエッチストップ型を採用して走査線と絵素電極を1枚のフォトマスクで処理する合理化技術を核とし、この構成に基づいてさまざまなアクティブ基板を提案している。本発明に記載の液晶表示装置では絶縁ゲート型トランジスタはチャネル上に保護絶縁層を有しているので、画像表示部外に形成される電極端子を除いてソース・ドレイン配線上にのみ、または信号線上にのみ感光性有機絶縁層を選択的に形成することでパシベーション機能が付与される。したがって格別の加熱工程を伴わず、非晶質シリコン層を半導体層とする絶縁ゲート型トランジスタに過度の耐熱性を必要としない。換言すればパシベーション形成で電気的な性能の劣化を生じない効果が付加されている。
さらに本発明に記載の液晶表示装置の一部においては同じく絶縁ゲート型トランジスタはチャネル上に保護絶縁層を有しているので、陽極酸化可能なソース・ドレイン配線材よりなるソース・ドレイン配線を陽極酸化することでパシベーション機能が付与され、同様に過度の耐熱性を必要としない。また、ソース・ドレイン配線の陽極酸化にあたりハーフトーン露光技術の導入により走査線や信号線の電極端子上を選択的に保護することが可能となり、写真食刻工程数の増加を阻止できる効果が得られる。
加えて半導体層の島化工程とゲート絶縁層への開口部形成工程をハーフトーン露光技術の導入により同一のフォトマスクで処理することを可能ならしめる工程削減もあいまって写真食刻工程数が減少し、4枚のフォトマスクを用いて従来とは異なった製造方法に基づいて液晶表示装置を作製することが可能となり、液晶表示装置のコスト削減への貢献は大きい。しかもこれらの工程のパターン精度はさほど高くないので歩留や品質に大きな影響を与えない事も生産管理を容易なものとしてくれる。
本発明の要件は上記の説明からも明らかなように走査線と絵素電極の形成に当たり、ハーフトーン露光技術により透明導電層と走査線用金属薄膜との積層よりなる擬似絵素電極上に開口部を有し、ゲート電極上の半導体層形成領域の膜厚が他の領域よりも厚い感光性樹脂パターンを形成し、前記感光性樹脂パターンをマスクとして開口部内に絵素電極を露出する工程と、前記感光性樹脂パターンの膜厚を減少せしめて半導体層を露出し、膜厚を現ぜられた感光性樹脂パターンをマスクとしてゲート電極上に半導体層を形成することで半導体層とコンタクトの形成を1枚のフォトマスクで処理することを可能ならしめた点にあり、それ以外の構成に関しては走査線、信号線、絵素電極、ゲート絶縁層等の材質や膜厚等が異なった液晶表示装置あるいはその製造方法の差異も本発明の範疇に属することは自明であり、また絶縁ゲート型トランジスタの半導体層も非晶質シリコンに限定されるものでないことも明らかである。
本発明の実施例を図1〜図6に基づいて説明する。図1に本発明の実施例1に係る表示装置用半導体装置(アクティブ基板)の平面図を示し、図2に図1(e)のA−A’線上とB−B’線上及びC−C’線上の製造工程の断面図を示す。同様に実施例2は図3と図4、実施例3は図5と図6とで夫々アクティブ基板の平面図と製造工程の断面図を示す。なお従来例と同一の部位については同一の符号を付して詳細な説明は省略する。
実施例1では先ずガラス基板2の一主面上にSPT等の真空製膜装置を用いて膜厚0.1〜0.2μm程度の透明導電層91として例えばITOと、膜厚0.1〜0.3μm程度の第1の金属層92として例えばCr,Ta,MoW合金等を被着する。走査線の低抵抗化のためにはITOとアルカリ性の現像液やレジスト剥離液で電池反応を起こさないように耐熱金属層でサンドイッチされたアルミニウムあるいはNdを含むアルミニウム合金の採用も可能である。
次に図1(a)と図2(a)に示したように示したように微細加工技術により第1の金属層92と透明導電層91を順次食刻してガラス基板2を露出し、透明導電層91Aと第1の金属層92Aとの積層よりなりゲート電極11Aも兼ねる走査線11及び走査線の擬似電極端子94と、透明導電層91Bと第1の金属層92Bとの積層よりなる擬似絵素電極93と、透明導電層91Cと第1の金属層92Cとの積層よりなる信号線の擬似電極端子95を選択的に形成する。ゲート絶縁層を介して走査線と信号線との絶縁耐圧を向上させ、歩留を高めるためにはこれらの電極は乾式食刻(ドライエッチ)による断面形状のテーパ制御を行うことが望ましい。
引き続きガラス基板2の全面にプラズマ保護層となる例えばTaOxやSiO2等の透明絶縁層を0.1μm程度の膜厚で被着して71とする。このプラズマ保護層71は後続のPCVD装置によるゲート絶縁層であるSiNxの製膜時に走査線11のエッジ部に露出している透明導電層91Aが還元されてSiNxの膜質が変動し、ゲート絶縁層を介して走査線と信号線との間の絶縁耐圧が低下するのを防止するために必要で、詳細は先行例特開昭59−9962号公報を参照されたい。
プラズマ保護層71の被着後は従来例と同様にPCVD装置を用いてゲート絶縁層となる第1のSiNx層30、不純物をほとんど含まず絶縁ゲート型トランジスタのチャネルとなる第1の非晶質シリコン層31、及びチャネルを保護する絶縁層となる第2のSiNx層32と3種類の薄膜層を、例えば0.2−0.05−0.1μm程度の膜厚で順次被着する。ここではゲート絶縁層がプラズマ保護層71と第1のSiNx層30との積層になるため第1のSiNx層30は従来よりも薄く形成して良い副次的な効果がある。
さらに微細加工技術により図1(b)と図2(b)に示したように示したようにゲート電極11A上の第2のSiNx層をゲート電極11Aよりも幅細く選択的に残して保護絶縁層32Dとして第1の非晶質シリコン層31を露出する。
そしてPCVD装置を用いてガラス基板2の全面に不純物として例えば燐を含む第2の非晶質シリコン層33を例えば0.05μm程度の膜厚で被着した後、擬似絵素電極93上に開口部74と、画像表示部外の領域で走査線の擬似電極端子94上に開口部63Aと、信号線の擬似電極端子95上に開口部64Aを有するとともに半導体層形成領域、すなわちゲート電極11A上の領域82Aの膜厚が例えば2μmと他の領域82Bの膜厚1μmよりも厚い感光性樹脂パターン82A,82Bをハーフトーン露光技術により形成する。そして感光性樹脂パターン82A,82Bをマスクとして図1(c)と図2(c)に示したように示したように上記開口部内の第2の非晶質シリコン層33、第1の非晶質シリコン層31、ゲート絶縁層30及びプラズマ保護層71に加えて第1の金属層92A〜92Cも順次食刻し、夫々走査線11の電極端子5Aと絵素電極22及び信号線の電極端子6Aを露出する。
続いて酸素プラズマ等の灰化手段により上記感光性樹脂パターン82A,82Bを1μm以上膜減りさせると感光性樹脂パターン82Bが消失し、第2の非晶質シリコン層33Bが露出すると共に半導体層形成領域上にのみ膜減りした感光性樹脂パターン82Cをそのまま残すことができる。感光性樹脂パターン82Cは半導体層形成領域に相当し、エッチストップ型の絶縁ゲート型トランジスタではその寸法が変動しても絶縁ゲート型トランジスタの電気的な特性が変動することは無く、プロセス管理が極めて容易である。そして図1(d)と図2(d)に示したように感光性樹脂パターン82Cをマスクとして第2の非晶質シリコン層33Bと第1の非晶質シリコン層31Bを選択的に食刻してゲート電極11A上にゲート電極11Aよりもパターン幅の太い島状の半導体層33A,31Aを形成してゲート絶縁層30Aを露出する。この時に上記開口部63A,64A及び74内に露出している透明導電性の走査線の電極端子5A、信号線の電極端子6A及び絵素電極22は第2と第1の非晶質シリコン層33A,31Aの食刻ガスに晒されるが、弗素系の食刻ガスでこれらの透明導電層の膜厚が減少するとか、抵抗値が変化するとか、透明度が変化すると言った不具合は生じないのは極めて好都合である。
引き続き前記感光性樹脂パターン82Cを除去した後、ソース・ドレイン配線の形成工程ではSPT等の真空製膜装置を用いて膜厚0.1μm程度の耐熱金属層として例えばTi,Ta等の薄膜層34と、膜厚0.3μm程度の低抵抗配線層としてAL薄膜層35を順次被着する。そしてこれら2層の薄膜よりなるソース・ドレイン配線材と第2の非晶質シリコン層33Aと第1の非晶質シリコン層31Aを微細加工技術により膜厚1〜2μm程度の感光性有機絶縁層パターン85(12),85(21)を用いて順次食刻してゲート絶縁層30Aと保護絶縁層32Dを露出し、図1(e)と図2(e)に示したように開口部74内の絵素電極22の一部を含んで34Aと35Aとの積層よりなる絶縁ゲート型トランジスタのドレイン電極21と、信号線の電極端子6Aの一部を含んでソース電極も兼ねる信号線12を選択的に形成する。透明導電性の電極端子5A,6Aはソース・ドレイン配線12,21の食刻が終るとガラス基板2上に露出することが理解されよう。なおソース・ドレイン配線12,21の構成としては抵抗値の制約が緩いのであれば簡素化してTa,Cr,MoW等の単層とすることも可能である。
このようにして得られたアクティブ基板2とカラーフィルタとを貼り合わせて液晶パネル化し、本発明の実施例1が完了する。実施例1では感光性有機絶縁層パターン85は液晶に接しているので、感光性有機絶縁層はノボラック系の樹脂を主成分とする通常の感光性樹脂ではなく、純度が高く主成分にアクリル樹脂やポリイミド樹脂を含む耐熱性の高い感光性有機絶縁層を用いることが大切であり、材質によっては加熱することで流動化してソース・ドレイン配線12,21の側面を覆うように構成することも可能で、この場合には液晶パネルとして信頼性が一段と向上する。蓄積容量15の構成に関しては図1(e)に示したように、ソース・ドレイン配線12,21と同時に絵素電極22の一部を含んで形成された蓄積電極72と前段の走査線11に設けられた突起部とがプラズマ保護層71Aとゲート絶縁層30Aを介して平面的に重なることで構成している例(右下がり斜線部52)を例示しているが、蓄積容量15の構成はこれに限られるものではなく、従来例で紹介したように走査線11と同時に形成される蓄積容量線16とドレイン電極21(絵素電極22)との間にゲート絶縁層30Aを含む絶縁層を介して構成しても良く、またその他の構成も可能であるが詳細な説明は省略する。
静電気対策は図1(e)にも示したようにアクティブ基板2の外周に静電気対策用の透明導電層パターン40を配置し、透明導電層パターン40をソース・ドレイン配線材より透明導電性の電極端子5A,6Aに接続して構成する従来例の静電気対策でも良いが、ゲート絶縁層30への開口部形成工程が付与されているのでその他の静電気対策も容易であるが詳細な説明は省略する。
実施例1ではこのように走査線の電極端子と信号線の電極端子がともに透明導電層であるデバイス構成上の制約が生ずるが、その制約を解除するデバイス・プロセスも可能であり、それを実施例2として説明する。
実施例2では図1(d)と図2(d)に示したように感光性樹脂パターン82Cをマスクとして第2の非晶質シリコン層33Bと第1の非晶質シリコン層31Bを選択的に食刻してゲート電極11A上にゲート電極11Aよりもパターン幅の太い島状の半導体層33A,31Aを形成してゲート絶縁層30Aを露出するまでは実施例1と同一の製造工程で進行する。ただし後述する理由で信号線の電極端子6Aは必ずしも必要ではない。
前記感光性樹脂パターン82Cを除去した後、ソース・ドレイン配線の形成工程ではSPT等の真空製膜装置を用いて膜厚0.1μm程度の耐熱金属層として例えばTi,Ta等の薄膜層34と、膜厚0.3μm程度の低抵抗配線層としてAL薄膜層35を順次被着する。そしてこれら2層の薄膜よりなるソース・ドレイン配線材と第2の非晶質シリコン層33Aと第1の非晶質シリコン層31Aを微細加工技術により感光性有機絶縁層パターン86A,86Bを用いて順次食刻してゲート絶縁層30Aと保護絶縁層32Dを露出し、図3(e)と図4(e)に示したように開口部74内の絵素電極22の一部を含んで34Aと35Aとの積層よりなる絶縁ゲート型トランジスタのドレイン電極21とソース配線も兼ねる信号線12を選択的に形成し、ソース・ドレイン配線12,21の形成と同時に露出している走査線の一部5Aを含んで走査線の電極端子5と、信号線の一部よりなる電極端子6も同時に形成する。すなわち実施例1のように透明導電性の信号線の電極端子6Aは必ずしも必要ではない。この時に信号線12上の86A(12)の膜厚が例えば3μmと、ドレイン電極21上の86B(21)と電極端子5,6上の86B(5),86B(6)と蓄積電極72上の86B(72)の膜厚の1.5μmよりも厚い感光性有機絶縁層パターン86A,86Bをハーフトーン露光技術により形成しておくことが実施例2の重要な特徴である。電極端子5,6に対応した86B(5),86B(6)の最小寸法は数10μmと大きく、フォトマスクの製作もまたその仕上がり寸法管理も極めて容易であるが、信号線12に対応した領域86A(12)の最小寸法は4〜8μmと比較的寸法精度が高いので黒領域としては細いパターンを必要とする。しかしながら従来例で説明したように1回の露光処理と2回の食刻処理で形成するソース・ドレイン配線と比較すると本発明のソース・ドレイン配線は1回の露光処理と1回の食刻処理で形成されるためにパターン幅の変動する要因が少なく、ソース・ドレイン配線の寸法管理も、ソース・ドレイン配線間すなわちチャネル長の寸法管理も従来のハーフトーン露光技術よりはパターン精度の管理が容易である。またチャネルエッチ型の絶縁ゲート型トランジスタと比較するとエッチストップ型の絶縁ゲート型トランジスタのON電流を決定するのはチャネルを保護する保護絶縁層32Dの寸法であってソース・ドレイン配線間の寸法ではないことからもプロセス管理がさらに容易となることを理解されたい。
ソース・ドレイン配線12,21の形成後、酸素プラズマ等の灰化手段により上記感光性有機絶縁層パターン86A,86Bを1.5μm以上膜減りさせると感光性有機絶縁層パターン86Bが消失し、図3(f)と図4(f)に示したようにドレイン電極21と電極端子5,6と蓄積電極72が露出すると共に信号線12上にのみ膜減りした感光性有機絶縁層パターン86C(12)をそのまま残すことができるが、上記酸素プラズマ処理で感光性有機絶縁層パターン86C(12)のパターン幅が細くなると信号線12の上面が露出して信頼性が低下するので異方性を強めてパターン寸法の変化を抑制することが望ましい。具体的にはRIE(Reactive Ion Etching)方式、さらに高密度のプラズマ源を有するICP(Inductive Coupled Plasama)方式やTCP(Transfer Coupled Plasama)方式の酸素プラズマ処理がより望ましい。なおソース・ドレイン配線12,21の構成としては抵抗値の制約が緩いのであれば簡素化してTa,Cr,MoW等の単層とすることも可能である。
このようにして得られたアクティブ基板2とカラーフィルタとを貼り合わせて液晶パネル化し、本発明の実施例2が完了する。実施例2でも感光性有機絶縁層パターン86Cは液晶に接しているので感光性有機絶縁層はノボラック系の樹脂を主成分とする通常の感光性樹脂ではなく、純度が高く主成分にアクリル樹脂やポリイミド樹脂を含む耐熱性の高い感光性有機絶縁層を用いることが大切である。蓄積容量15の構成に関しては実施例1と同一である。なお、図3(f)に示したように透明導電性の走査線の一部5A及び信号線12下に形成された透明導電性のパターン6Aとアクティブ基板2の外周部に配置された短絡線40を接続する透明導電層パターンはその形状を細長い線状とすることで静電気対策における高抵抗配線とすることが可能であるが、その他の導電性部材を用いた静電気対策も勿論可能である。
実施例2では信号線12上のみに感光性有機絶縁層86C(12)を形成してドレイン電極21は蓄積電極72、絵素電極22と同様に導電性を保ったまま露出しているが、これでも十分な信頼性が得られる理由は液晶セルに印可される駆動信号は基本的に交流であり、カラーフィルタ9上の対向電極14と絵素電極22(ドレイン電極21)との間には直流電圧成分が少なくなるように対向電極14の電圧は画像検査時に調整されるので(フリッカ低減調整)、従って信号線12上にのみ直流成分が流れないように絶縁層を形成しておけば良いという基本原理に基づいているからである。
このようにソース・ドレイン配線材と同一の金属性の電極端子5,6を形成するのであれば信号線の電極端子6Aは不要であるが、信号線12を静電気対策線40に接続するために機能する部位は必要である。同様に走査線11の電極端子5Aも不要であるが、金属性の電極端子5を走査線11と接続するために機能する部位(コンタクト)として透明導電層よりなる走査線の一部5Aが必要であることは言うまでも無い。
なお透明導電性の走査線の電極端子5A上に金属性の電極端子5を形成せず、かつ透明導電性の信号線12の電極端子6Aの一部を含んでソース・ドレイン配線を形成するパターン設計の変更により、図3(g)と図4(g)に示したようにソース・ドレイン配線材よりなる電極端子5,6に変えて実施例1と同様に透明導電層よりなる電極端子5A,6Aを得る事も可能であり、画像表示部内のデバイス構成は不変である。
以上述べたように本発明の実施例1と実施例2では有機絶縁層を夫々ソース・ドレイン配線上と信号線上にのみ形成することで製造工程の削減を推進しているが、有機絶縁層の厚みが通常は1μm以上あるのでラビング布を用いた配向膜の配向処理でその段差が非配向状態をもたらす、あるいは液晶セルのギャップ精度の確保に支障が出る恐れもある。そこで実施例3では最小限度の工程数の追加で有機絶縁層に変わるパシベーション技術を具備させるものである。
実施例3では図5(d)と図6(d)に示したようにコンタクト形成工程と半導体層33A,31Aの形成工程までは実施例2とほぼ同一の製造工程を進行する。感光性樹脂パターン82Cを除去した後、ソース・ドレイン配線の形成工程ではSPT等の真空製膜装置を用いて膜厚0.1μm程度の陽極酸化可能な耐熱金属層として例えばTi,Ta等の薄膜層34と、膜厚0.3μm程度の同じく陽極酸化可能な低抵抗配線層としてAL薄膜層35を順次被着する。そしてこれら2層の薄膜よりなるソース・ドレイン配線材と第2の非晶質シリコン層33Aと第1の非晶質シリコン層31Aを微細加工技術により感光性樹脂パターン87A,87Bを用いて順次食刻してゲート絶縁層30Aと保護絶縁層32Dを露出し、図5(e)と図6(e)に示したように開口部74内の絵素電極22の一部を含んで34Aと35Aとの積層よりなる絶縁ゲート型トランジスタのドレイン電極21と、ソース配線も兼ねる信号線12を選択的に形成し、ソース・ドレイン配線12,21の形成と同時に露出している走査線の一部5Aを含んで走査線の電極端子5と、信号線の一部よりなる電極端子6も形成する。この時に電極端子5,6上の87A(5),87A(6)の膜厚(黒領域)が例えば3μmと、ソース・ドレイン配線12,21上と蓄積電極72上の87B(12),87B(21)及び87B(72)の膜厚(中間調領域)の1.5μmよりも厚い感光性樹脂パターン87A,87Bをハーフトーン露光技術により形成しておくことが実施例3の重要な特徴である。
ソース・ドレイン配線12,21の形成後、酸素プラズマ等の灰化手段により上記感光性樹脂パターン87A,87Bを1.5μm以上膜減りさせると感光性樹脂パターン87Bが消失してソース・ドレイン配線12,21と蓄積電極72が露出すると共に電極端子5,6上にのみ膜減りした感光性樹脂パターン87C(5),87C(6)をそのまま残すことができる。上記酸素プラズマ処理で感光性樹脂パターン87Cのパターン幅が細くなっても大きなパターン寸法を有する電極端子5,6の周囲に陽極酸化層が形成されるだけで、電気特性と歩留及び品質に与える影響は殆ど無いのは特筆すべき特徴である。そして膜減りした感光性樹脂パターン87C(5),87C(6)をマスクとして光を照射しながら図5(f)と図6(f)に示したようにソース・ドレイン配線12,21を陽極酸化して酸化層68,69を形成するとともにソース・ドレイン配線12,21の下側面に露出している第2の非晶質シリコン層33Aと第1の非晶質シリコン層31Aを陽極酸化して絶縁層である酸化シリコン層(SiO2)66,67(共に図示せず)を形成する。
ソース・ドレイン配線12,21の上面にはALが、また側面にはAL,Tiの積層が露出しており、陽極酸化によってTiは半導体である酸化チタン(TiO2)68にそしてALは絶縁層であるアルミナ(AL2O3)69に夫々変質する。酸化チタン層68は絶縁層ではないが膜厚が極めて薄く露出面積も小さいのでパシベーション上はまず問題とならないが、耐熱金属薄膜層34AもTaを選択しておくことが望ましい。しかしながらTaはTiと異なり下地の表面酸化層を吸収してオーミック接触を容易にする機能に欠ける特性に注意する必要がある。
陽極酸化で形成されるアルミナ69、酸化チタン68の各酸化層の膜厚は配線のパシベーションとしては0.1〜0.2μm程度で十分であり、エチレングリコール等の化成液を用いて印可電圧は100V超で実現する。ソース・ドレイン配線12,21の陽極酸化に当たって留意すべき事項は、図示はしないが全ての信号線12は電気的に並列または直列に形成されている必要があり、後に続く製造工程の何処かでこの直並列を解除しないとアクティブ基板2の電気検査のみならず、液晶表示装置としての実動作に支障があることは言うまでもないだろう。解除手段としてはレーザ光の照射による蒸散、またはスクライブによる機械的切除が簡易的であるが詳細な説明は省略する。
陽極酸化終了後、膜減りした感光性樹脂パターン87C(5),87C(6)を除去すると図5(g)と図6(g)に示したようにその側面に陽極酸化層を形成された低抵抗薄膜層よりなる電極端子5,6が露出する。走査線の電極端子5の側面は静電気対策用の高抵抗短絡線40を経由して陽極酸化電流が流れるので信号線の電極端子6と比べると側面に形成された絶縁層の厚みは薄くなることを理解されたい。なおソース・ドレイン配線12,21の構成としては抵抗値の制約が緩いのであれば簡素化して陽極酸化可能なTa単層とすることも可能である。このようにして得られたアクティブ基板2とカラーフィルタとを貼り合わせて液晶パネル化し、本発明の実施例3が完了する。蓄積容量15の構成に関しては実施例1、実施例2と同一である。
実施例3ではソース・ドレイン配線12,21と第2の非晶質シリコン層33A及び第1の非晶質シリコン層31Aの陽極酸化時にドレイン電極21と電気的に繋がっている絵素電極22も同時に陽極酸化されるので透明導電層の抵抗値の増大には注意が必要であるが、透明導電層の透明度が低下する恐れは無い。ドレイン電極21と絵素電極22と蓄積電極72を陽極酸化するための電流も絶縁ゲート型トランジスタのチャネルを通って供給されるが、絵素電極22の面積が大きいために大きな化成電流または長時間の化成が必要となり、いくら強い外光を照射してもチャネル部の抵抗が障害となり、ドレイン電極21上と蓄積電極72上に信号線12上と同等の膜質と膜厚の陽極酸化層69(21),69(72)を形成することは化成時間の延長だけでは対応困難である。しかしながらドレイン配線21上と蓄積電極72上に形成される陽極酸化層69(21),69(72)が多少不完全であっても実用上は支障の無い信頼性が得られることが多い。なぜならば先述したように液晶セルに印可される駆動信号は基本的に交流であり、カラーフィルタ9上の対向電極14と絵素電極22(ドレイン電極21)との間には直流電圧成分が少なくなるように対向電極14の電圧は画像検査時に調整されるからで(フリッカ低減調整)、従って信号線12上にのみ直流成分が流れないように絶縁層を形成しておけば良いからである。
実施例1と同様に透明導電性の走査線の電極端子5A上に金属性の電極端子5を形成せず、かつ透明導電性の信号線12の電極端子6Aの一部を含んでソース・ドレイン配線12,21を形成するパターン設計の変更により、図5(h)と図6(h)に示したようにソース・ドレイン配線材よりなる電極端子5,6に変えて透明導電層よりなる電極端子5A,6Aを得る事も可能である。この場合にはソース・ドレイン配線12,21の形成にあたりハーフトーン露光技術は不要となるが、透明導電層よりなる電極端子5A,6Aの抵抗値の増大には注意が必要である。なおこの場合も電極端子の構成が変わっても画像表示部内のデバイス構成は不変である。
本発明の実施例1にかかるアクティブ基板の平面図 本発明の実施例1にかかるアクティブ基板の製造工程断面図 本発明の実施例2にかかるアクティブ基板の平面図 本発明の実施例2にかかるアクティブ基板の製造工程断面図 本発明の実施例3にかかるアクティブ基板の平面図 本発明の実施例3にかかるアクティブ基板の製造工程断面図 液晶パネルの実装状態を示す斜視図 液晶パネルの等価回路図 従来の液晶パネルの断面図 従来例のアクティブ基板の平面図 従来例のアクティブ基板の製造工程断面図 合理化されたアクティブ基板の平面図 合理化されたアクティブ基板の製造工程断面図
符号の説明
1:液晶パネル
2:アクティブ基板(ガラス基板)
3:半導体集積回路チップ
4:TCPフィルム
5:金属性の走査線の一部または電極端子
5A:透明導電性の走査線の一部または電極端子
6:金属性の信号線の一部または電極端子
6A:透明導電性の信号線の一部または電極端子
9:カラーフィルタ(対向するガラス基板)
10:絶縁ゲート型トランジスタ
11:走査線
11A:ゲート配線、ゲート電極
12:信号線(ソース配線、ソース電極)
16:蓄積容量線
17:液晶
19:偏光板
20:配向膜
21:ドレイン電極(ドレイン配線、ドレイン電極)
22:透明導電性の絵素電極
30:ゲート絶縁層
31:不純物を含まない(第1の)非晶質シリコン層
32D:保護絶縁層(エッチストップ層、チャネル保護絶縁層)
33:不純物を含む(第2の)非晶質シリコン層
34:(陽極酸化可能な)耐熱金属層
35:(陽極酸化可能な)低抵抗金属層(AL)
36:中間導電層
37:パシベーション絶縁層
50,52:蓄積容量形成領域
62:(ドレイン電極上の)開口部
63,63A:(走査線の一部上または走査線の電極端子上の)開口部
64,64A:(信号線の一部上または信号線の電極端子上の)開口部
65:(対向電極上の)開口部
68:陽極酸化層(酸化チタン,TiO2)
69:陽極酸化層(アルミナ,Al2O3)
71:プラズマ保護層
72:蓄積電極
74:(絵素電極上の)開口部
82A ,82B,87A,87B:
(ハーフトーン露光で形成された)感光性樹脂パターン
85:感光性有機絶縁層パターン
86A,86B:(ハーフトーン露光で形成された)感光性有機絶縁層パターン
91:透明導電層
92:第1の金属層

Claims (6)

  1. 一主面上に少なくとも絶縁ゲート型トランジスタと、前記絶縁ゲート型トランジスタのゲート電極も兼ねる走査線とソース配線も兼ねる信号線と、ドレイン配線に接続された絵素電極とを有する単位絵素が二次元のマトリクスに配列された第1の透明性絶縁基板と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、
    少なくとも第1の透明性絶縁基板の一主面上に透明導電層と第1の金属層との積層よりなる走査線と、透明導電性の絵素電極と画像表示部外の領域に同じく透明導電性の信号線の電極端子が形成され、
    ゲート電極上にプラズマ保護層とゲート絶縁層を介して不純物を含まない第1の半導体層が島状に形成され、
    前記第1の半導体層上にゲート電極よりも幅細く保護絶縁層が形成され、
    前記絵素電極上と信号線の電極端子上と画像表示部外の領域で走査線の一部である走査線の電極端子上のプラズマ保護層とゲート絶縁層に開口部が形成されて各開口部内に絵素電極と、走査線の電極端子と信号線の電極端子が露出し、
    前記保護絶縁層の一部上と第1の半導体層上に絶縁ゲート型トランジスタのソース・ドレインとなる不純物を含む一対の第2の半導体層が形成され、
    ゲート絶縁層上と第2の半導体層上と信号線の電極端子の一部上に耐熱金属層を含む1層以上の金属層よりなるソース(信号線)配線と、ゲート絶縁層上と第2の半導体層上と前記開口部内の絵素電極の一部上に同じくドレイン配線が形成され、
    前記ソース・ドレイン配線上に感光性有機絶縁層が形成されていることを特徴とする液晶表示装置。
  2. 一主面上に少なくとも絶縁ゲート型トランジスタと、前記絶縁ゲート型トランジスタのゲート電極も兼ねる走査線とソース配線も兼ねる信号線と、ドレイン配線に接続された絵素電極とを有する単位絵素が二次元のマトリクスに配列された第1の透明性絶縁基板と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、
    少なくとも第1の透明性絶縁基板の一主面上に透明導電層と第1の金属層との積層よりなる走査線と、透明導電性の絵素電極(と画像表示部外の領域に同じく透明導電性の信号線の電極端子)が形成され、
    ゲート電極上にプラズマ保護層とゲート絶縁層を介して不純物を含まない第1の半導体層が島状に形成され、
    前記第1の半導体層上にゲート電極よりも幅細く保護絶縁層が形成され、
    前記絵素電極上と画像表示部外の領域で走査線の一部上(または走査線の電極端子上と信号線の電極端子上)のプラズマ保護層とゲート絶縁層に開口部が形成されて各開口部内に透明導電性の絵素電極と透明導電性の走査線の一部(または走査線の電極端子と信号線の電極端子)が露出し、
    前記保護絶縁層の一部上と第1の半導体層上に絶縁ゲート型トランジスタのソース・ドレインとなる不純物を含む一対の第2の半導体層が形成され、
    ゲート絶縁層上と第2の半導体層上(と信号線の電極端子の一部上)に耐熱金属層を含む1層以上の金属層よりなるソース(信号線)配線と、ゲート絶縁層上と第1の半導体層上と前記開口部内の絵素電極の一部上に同じくドレイン配線と、走査線の一部を含んで走査線の電極端子(または透明導電性の走査線の電極端子)と、信号線の一部よりなる信号線の電極端子(または透明導電性の信号線の電極端子)が形成され、
    前記信号線の電極端子上を除いて信号線上に感光性有機絶縁層が形成されていることを特徴とする液晶表示装置。
  3. 一主面上に少なくとも絶縁ゲート型トランジスタと、前記絶縁ゲート型トランジスタのゲート電極も兼ねる走査線とソース配線も兼ねる信号線と、前記絶縁ゲート型トランジスタのドレインに接続された絵素電極と、前記絵素電極とは所定の距離を隔てて形成された対向電極とを有する単位絵素が二次元のマトリクスに配列された第1の透明性絶縁基板と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、
    少なくとも第1の透明性絶縁基板の一主面上に透明導電層と第1の金属層との積層よりなる走査線と、透明導電性の絵素電極(と画像表示部外の領域に同じく透明導電性の信号線の電極端子)が形成され、
    ゲート電極上にプラズマ保護層とゲート絶縁層を介して不純物を含まない第1の半導体層が島状に形成され、
    前記第1の半導体層上にゲート電極よりも幅細く保護絶縁層が形成され、
    前記絵素電極上と画像表示部外の領域で走査線の一部(または走査線の電極端子上と信号線の電極端子上)のプラズマ保護層とゲート絶縁層に開口部が形成されて各開口部内に透明導電性の絵素電極と透明導電性の走査線の一部(または走査線の電極端子と信号線の電極端子)が露出し、
    前記保護絶縁層の一部上と第1の半導体層上に絶縁ゲート型トランジスタのソース・ドレインとなる不純物を含む一対の第2の半導体層が形成され、
    ゲート絶縁層上と第2の半導体層上(と信号線の電極端子の一部上)に耐熱金属層を含む1層以上の陽極酸化可能な金属層よりなるソース(信号線)配線と、ゲート絶縁層上と第1の半導体層上と前記開口部内の絵素電極の一部上に同じくドレイン配線と、前記走査線の一部を含んで走査線の電極端子(または透明導電性の走査線の電極端子)と、信号線の一部よりなる信号線の電極端子(または透明導電性の信号線の電極端子)が形成され、
    前記電極端子上を除いてソース・ドレイン配線の表面に陽極酸化層が形成されていることを特徴とする液晶表示装置。
  4. 一主面上に少なくとも絶縁ゲート型トランジスタと、前記絶縁ゲート型トランジスタのゲート電極も兼ねる走査線とソース配線も兼ねる信号線と、ドレイン配線に接続された絵素電極とを有する単位絵素が二次元のマトリクスに配列された第1の透明性絶縁基板と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、少なくとも
    第1の透明性絶縁基板の一主面上に透明導電層と第1の金属層との積層よりなる走査線と、走査線の一部である走査線の擬似電極端子と、信号線の擬似電極端子と擬似絵素電極を形成する工程と、
    プラズマ保護層とゲート絶縁層と不純物を含まない第1の非晶質シリコン層と保護絶縁層を順次被着する工程と、
    ゲート電極上にゲート電極よりも幅細く前記保護絶縁層を残して第1の非晶質シリコン層を露出する工程と、
    不純物を含む第2の非晶質シリコン層を被着する工程と、
    走査線と信号線の擬似電極端子上と擬似絵素電極上に開口部を有しゲート電極上の半導体層形成領域の膜厚が他の領域よりも厚い感光性樹脂パターンを形成する工程と、
    前記感光性樹脂パターンをマスクとして前記開口部内の第2の非晶質シリコン層と第1の非晶質シリコン層とゲート絶縁層とプラズマ保護層と第1の金属層を除去して透明導電性の走査線と信号線の電極端子と、同じく透明導電性の絵素電極を露出する工程と、
    前記感光性樹脂パターンの膜厚を減少して第2の非晶質シリコン層を露出する工程と、
    前記膜厚を減ぜられた感光性樹脂パターンマスクとしてゲート電極上に第2の非晶質シリコン層と第1の非晶質シリコン層をゲート電極よりも幅広く島状に形成してゲート絶縁層を露出する工程と、
    耐熱金属層を含む1層以上の金属層を被着後、微細加工技術により金属層と第2の非晶質シリコン層と第1の非晶質シリコン層を選択的に除去し、前記保護絶縁層と一部重なり信号線の電極端子の一部を含んでその表面に感光性有機絶縁層を有するソース配線(信号線)と、同じく前記保護絶縁層と一部重なり絵素電極の一部を含んでその表面に感光性有機絶縁層を有するドレイン配線を形成する工程を有する液晶表示装置の製造方法。
  5. 一主面上に少なくとも絶縁ゲート型トランジスタと、前記絶縁ゲート型トランジスタのゲート電極も兼ねる走査線とソース配線も兼ねる信号線と、前記絶縁ゲート型トランジスタのドレインに接続された絵素電極と、前記絵素電極とは所定の距離を隔てて形成された対向電極とを有する単位絵素が二次元のマトリクスに配列された第1の透明性絶縁基板と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、
    少なくとも第1の透明性絶縁基板の一主面上に透明導電層と第1の金属層との積層よりなる走査線と、(走査線の一部である走査線の擬似電極端子と、信号線の擬似電極端子と)、擬似絵素電極を形成する工程と、
    プラズマ保護層とゲート絶縁層と不純物を含まない第1の非晶質シリコン層と保護絶縁層を順次被着する工程と、
    ゲート電極上にゲート電極よりも幅細く前記保護絶縁層を残して第1の非晶質シリコン層を露出する工程と、
    不純物を含む第2の非晶質シリコン層を被着する工程と、
    走査線の一部上(または走査線の擬似電極端子上と信号線の擬似電極端子上)と擬似絵素電極上に開口部を有し、ゲート電極上の半導体層形成領域の膜厚が他の領域よりも厚い感光性樹脂パターンを形成する工程と、
    前記感光性樹脂パターンをマスクとして前記開口部内の第2の非晶質シリコン層と第1の非晶質シリコン層とゲート絶縁層とプラズマ保護層と第1の金属層を除去して透明導電性の走査線の一部(または走査線の電極端子と、透明導電性の信号線の電極端子)と同じく透明導電性の絵素電極を露出する工程と、
    前記感光性樹脂パターンの膜厚を減少して第2の非晶質シリコン層を露出する工程と、
    前記膜厚を減ぜられた感光性樹脂パターンマスクとしてゲート電極上に第2の非晶質シリコン層と第1の非晶質シリコン層をゲート電極よりも幅広く島状に形成してゲート絶縁層を露出する工程と、
    耐熱金属層を含む1層以上の金属層を被着後、前記保護絶縁層と一部重なりソース配線(信号線)と、同じく絵素電極の一部を含んでドレイン配線と、前記走査線の一部を含んで走査線の電極端子と、信号線の一部よりなる信号線の電極端子に対応し、(または前記保護絶縁層と一部重なり透明導電性の信号線の電極端子の一部を含んでソース配線(信号線)と、同じく絵素電極の一部を含んでドレイン配線に対応し、)信号線上の膜厚が他の領域よりも厚い感光性有機絶縁層パターンを形成する工程と、
    前記感光性有機絶縁層パターンをマスクとして金属層と第2の非晶質シリコン層と第1の非晶質シリコン層を選択的に除去して金属性(または透明導電性)の走査線と信号線の電極端子と、ソース・ドレイン配線を形成する工程と、
    前記感光性有機絶縁層パターンの膜厚を減少して金属性(または透明導電性)の走査線と信号線の電極端子とドレイン配線を露出する工程を有する液晶表示装置の製造方法。
  6. 一主面上に少なくとも絶縁ゲート型トランジスタと、前記絶縁ゲート型トランジスタのゲート電極も兼ねる走査線とソース配線も兼ねる信号線と、前記絶縁ゲート型トランジスタのドレインに接続された絵素電極と、前記絵素電極とは所定の距離を隔てて形成された対向電極とを有する単位絵素が二次元のマトリクスに配列された第1の透明性絶縁基板と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、
    少なくとも第1の透明性絶縁基板の一主面上に透明導電層と第1の金属層との積層よりなる走査線と、(走査線の一部である走査線の擬似電極端子と、信号線の擬似電極端子と)擬似絵素電極を形成する工程と、
    プラズマ保護層とゲート絶縁層と不純物を含まない第1の非晶質シリコン層と保護絶縁層を順次被着する工程と、
    ゲート電極上にゲート電極よりも幅細く前記保護絶縁層を残して第1の非晶質シリコン層を露出する工程と、
    不純物を含む第2の非晶質シリコン層を被着する工程と、
    走査線の一部上(または走査線の擬似電極端子上と信号線の擬似電極端子上)と擬似絵素電極上に開口部を有しゲート電極上の半導体層形成領域の膜厚が他の領域よりも厚い第1の感光性樹脂パターンを形成する工程と、
    前記第1の感光性樹脂パターンをマスクとして前記開口部内の第2の非晶質シリコン層と第1の非晶質シリコン層とゲート絶縁層とプラズマ保護層と第1の金属層を除去して透明導電性の走査線の一部(または走査線の電極端子と、透明導電性の信号線の電極端子)と同じく透明導電性の絵素電極を露出する工程と、
    前記第1の感光性樹脂パターンの膜厚を減少して第2の非晶質シリコン層を露出する工程と、
    前記膜厚を減ぜられた感光性樹脂パターンマスクとしてゲート電極上に第2の非晶質シリコン層と第1の非晶質シリコン層をゲート電極よりも幅広く島状に形成してゲート絶縁層を露出する工程と、
    耐熱金属層を含む1層以上の陽極酸化可能な金属層を被着後、前記保護絶縁層と一部重なりソース配線(信号線)と、同じく絵素電極の一部を含んでドレイン配線と、前記走査線の一部を含んで走査線の電極端子と、信号線の一部よりなる信号線の電極端子に対応し、
    走査線と信号線の電極端子上の膜厚が他の領域よりも厚い第2の感光性樹脂パターンを形成する工程と、
    前記第2の感光性樹脂パターンをマスクとして陽極酸化可能な金属層と第2の非晶質シリコン層と第1の非晶質シリコン層を選択的に除去し、金属性の走査線と信号線の電極端子と、ソース・ドレイン配線を形成する工程と、
    前記第2の感光性樹脂パターンの膜厚を減少してソース・ドレイン配線を露出する工程と、
    前記膜厚を減ぜられた第2の感光性樹脂パターンをマスクとして前記金属性の電極端子を保護しながら前記ソース・ドレイン配線を陽極酸化する工程(または微細加工技術により前記保護絶縁層と一部重なり透明導電性の信号線の電極端子の一部を含んでソース配線と、同じく絵素電極の一部を含んでドレイン配線を形成後、前記ソース・ドレイン配線を陽極酸化する工程)を有する液晶表示装置の製造方法。

JP2004021288A 2004-01-29 2004-01-29 液晶表示装置とその製造方法 Pending JP2005215275A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004021288A JP2005215275A (ja) 2004-01-29 2004-01-29 液晶表示装置とその製造方法
US10/963,801 US7321404B2 (en) 2004-01-29 2004-10-14 Liquid crystal display device and a manufacturing method of the same
TW094102737A TWI306979B (en) 2004-01-29 2005-01-28 Liquid crystal display and faricating the same
KR1020050008026A KR100710532B1 (ko) 2004-01-29 2005-01-28 액정표시장치와 그 제조방법
CNB2005100067411A CN100394289C (zh) 2004-01-29 2005-01-31 液晶显示装置及其制造方法
US11/785,939 US7894009B2 (en) 2004-01-29 2007-04-23 Liquid crystal display device and a manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004021288A JP2005215275A (ja) 2004-01-29 2004-01-29 液晶表示装置とその製造方法

Publications (1)

Publication Number Publication Date
JP2005215275A true JP2005215275A (ja) 2005-08-11

Family

ID=34805607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004021288A Pending JP2005215275A (ja) 2004-01-29 2004-01-29 液晶表示装置とその製造方法

Country Status (5)

Country Link
US (2) US7321404B2 (ja)
JP (1) JP2005215275A (ja)
KR (1) KR100710532B1 (ja)
CN (1) CN100394289C (ja)
TW (1) TWI306979B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011254037A (ja) * 2010-06-04 2011-12-15 Optrex Corp 液晶表示装置および液晶表示装置の製造方法
CN102629588A (zh) * 2011-12-13 2012-08-08 京东方科技集团股份有限公司 阵列基板的制造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7499117B2 (en) * 2003-11-14 2009-03-03 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and manufacturing method thereof
JP2005215275A (ja) * 2004-01-29 2005-08-11 Quanta Display Japan Inc 液晶表示装置とその製造方法
TWI319911B (en) * 2005-08-11 2010-01-21 Liquid crystal display device and manufacturing method thereof
JP4702003B2 (ja) * 2005-11-16 2011-06-15 セイコーエプソン株式会社 液晶装置およびプロジェクタ
CN101416320B (zh) * 2006-01-31 2011-08-31 出光兴产株式会社 Tft基板及反射型tft基板以及其制造方法
CN101026931B (zh) * 2006-02-24 2011-10-19 佛山市顺德区顺达电脑厂有限公司 直角式信号线之制作方法及其电路板
US7872720B2 (en) * 2007-03-01 2011-01-18 Seiko Epson Corporation Liquid crystal device and projector
KR101484063B1 (ko) 2008-08-14 2015-01-19 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그의 제조 방법
US8558960B2 (en) * 2010-09-13 2013-10-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
CN107252345B (zh) * 2011-06-15 2020-12-15 史密夫和内修有限公司 可变角度锁定植入物
CN102751300B (zh) * 2012-06-18 2014-10-15 北京京东方光电科技有限公司 一种非晶硅平板x射线传感器的制作方法
JP6070073B2 (ja) * 2012-10-31 2017-02-01 凸版印刷株式会社 薄膜トランジスタアレイ
CN103984169A (zh) * 2013-02-08 2014-08-13 群创光电股份有限公司 液晶显示装置
WO2015045554A1 (ja) * 2013-09-26 2015-04-02 シャープ株式会社 生体情報取得装置および生体情報取得方法
CN106575063B (zh) * 2014-08-07 2019-08-27 夏普株式会社 有源矩阵基板、液晶面板以及有源矩阵基板的制造方法
US10866291B2 (en) * 2014-09-12 2020-12-15 Emory University Devices and systems for MRI-guided procedures
KR102269080B1 (ko) 2015-01-23 2021-06-24 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
KR102601207B1 (ko) 2016-07-29 2023-11-13 삼성디스플레이 주식회사 표시장치

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906383B1 (en) * 1994-07-14 2005-06-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacture thereof
JP3782195B2 (ja) * 1997-03-10 2006-06-07 株式会社東芝 アクティブマトリクス型液晶表示素子及びその製造方法
KR100262953B1 (ko) * 1997-06-11 2000-08-01 구본준 액정 표시 장치 및 그 액정 표시 장치의 제조 방법
KR100320661B1 (ko) * 1998-04-17 2002-01-17 니시무로 타이죠 액정표시장치, 매트릭스 어레이기판 및 그 제조방법
JP2000081638A (ja) * 1998-09-04 2000-03-21 Matsushita Electric Ind Co Ltd 液晶表示装置およびその製造方法
CN1139837C (zh) * 1998-10-01 2004-02-25 三星电子株式会社 液晶显示器用薄膜晶体管阵列基板及其制造方法
TW413844B (en) * 1998-11-26 2000-12-01 Samsung Electronics Co Ltd Manufacturing methods of thin film transistor array panels for liquid crystal displays and photolithography method of thin films
KR20000039794A (ko) * 1998-12-16 2000-07-05 김영환 고개구율 및 고투과율 액정표시장치의 제조방법
JP2000275663A (ja) * 1999-03-26 2000-10-06 Hitachi Ltd 液晶表示装置とその製造方法
US6952020B1 (en) * 1999-07-06 2005-10-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP3420135B2 (ja) 1999-10-26 2003-06-23 日本電気株式会社 アクティブマトリクス基板の製造方法
JP2001311965A (ja) * 2000-04-28 2001-11-09 Nec Corp アクティブマトリクス基板及びその製造方法
JP2001324725A (ja) 2000-05-12 2001-11-22 Hitachi Ltd 液晶表示装置およびその製造方法
JP2005215275A (ja) * 2004-01-29 2005-08-11 Quanta Display Japan Inc 液晶表示装置とその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011254037A (ja) * 2010-06-04 2011-12-15 Optrex Corp 液晶表示装置および液晶表示装置の製造方法
CN102629588A (zh) * 2011-12-13 2012-08-08 京东方科技集团股份有限公司 阵列基板的制造方法

Also Published As

Publication number Publication date
CN1648751A (zh) 2005-08-03
CN100394289C (zh) 2008-06-11
US20080030637A1 (en) 2008-02-07
TW200525264A (en) 2005-08-01
KR100710532B1 (ko) 2007-04-23
TWI306979B (en) 2009-03-01
KR20050077793A (ko) 2005-08-03
US20050168666A1 (en) 2005-08-04
US7321404B2 (en) 2008-01-22
US7894009B2 (en) 2011-02-22

Similar Documents

Publication Publication Date Title
KR100710532B1 (ko) 액정표시장치와 그 제조방법
US7898608B2 (en) Liquid crystal display device and a manufacturing method of the same
US7417693B2 (en) Liquid crystal display device and its manufacturing method
TWI287161B (en) Liquid crystal display device and manufacturing method thereof
US7982837B2 (en) Liquid crystal display device and its manufacturing method
JP2004317685A (ja) 液晶表示装置とその製造方法
TWI281999B (en) LCD device and manufacturing method thereof
JP2005049667A (ja) 液晶表示装置とその製造方法
JP5342731B2 (ja) 液晶表示装置とその製造方法
JP2005019664A (ja) 液晶表示装置とその製造方法
JP2005017669A (ja) 液晶表示装置とその製造方法
JP2005106881A (ja) 液晶表示装置とその製造方法
JP4538219B2 (ja) 液晶表示装置とその製造方法
JP4538218B2 (ja) 液晶表示装置とその製造方法
JP2005215278A (ja) 液晶表示装置とその製造方法
JP2005215276A (ja) 液晶表示装置とその製造方法
JP2005215279A (ja) 液晶表示装置とその製造方法
JP4871507B2 (ja) 液晶表示装置とその製造方法
JP4846227B2 (ja) 液晶表示装置とその製造方法
JP2006267877A (ja) 液晶表示装置とその製造方法
JP2002184991A (ja) 液晶画像表示装置と画像表示装置用半導体装置の製造方法
JP2002184992A (ja) 液晶画像表示装置と画像表示装置用半導体装置の製造方法
JP2002185003A (ja) 液晶画像表示装置と画像表示装置用半導体装置の製造方法
JP2002184990A (ja) 液晶画像表示装置と画像表示装置用半導体装置の製造方法