TWI281999B - LCD device and manufacturing method thereof - Google Patents

LCD device and manufacturing method thereof Download PDF

Info

Publication number
TWI281999B
TWI281999B TW93109959A TW93109959A TWI281999B TW I281999 B TWI281999 B TW I281999B TW 93109959 A TW93109959 A TW 93109959A TW 93109959 A TW93109959 A TW 93109959A TW I281999 B TWI281999 B TW I281999B
Authority
TW
Taiwan
Prior art keywords
layer
electrode
gate
wiring
source
Prior art date
Application number
TW93109959A
Other languages
Chinese (zh)
Other versions
TW200428086A (en
Inventor
Kiyohiro Kawasaki
Original Assignee
Quanta Display Inc
Quanta Display Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quanta Display Inc, Quanta Display Japan Inc filed Critical Quanta Display Inc
Publication of TW200428086A publication Critical patent/TW200428086A/en
Application granted granted Critical
Publication of TWI281999B publication Critical patent/TWI281999B/en

Links

Abstract

Conventional manufacturing method for cutting the quantity in production engineering has the technical issue in small production tolerance and low production quantity. The resolution combines the introduction of half-tone exposure technique, islandization of semiconductor layers and formation of the opening of gate insulation layer as a rational new technique, and introduces the half-tone exposure technique to the source pertinent to know technique, drain wiring and anode oxidation to form rational new technique for passivation of electrode terminal, and the known technique also pertinent to rational technique in formation of image electrode and scan line, so as to built up the 4 mask fabrication solution and 3 mask fabrication solution of the TN LCD device and IPS LCD device.

Description

1281999 (1) 玖、發明說明 【發明所屬之技術領域】 本發明是關於具有彩色影像顯示機能之液晶顯示裝置 特別是關於主動型之液晶顯示裝置。 【先前技術】 依據近年來微細加工技術、液晶材料技術及高密度實 裝技術等之進步,於商業用途大量提供對角尺寸5〜5 Ocm 之液晶顯示裝置來作爲電視影像或各種影像的顯示機器。 再者,也容易藉由在構成液晶面板之2片玻璃基板之一方 上形成RGB著色層來進行彩色顯示。尤其,於每畫素中 內藏開關元件之主動型液晶面板保證提供比較少串音( cross-talk ),應答速度較快之高對比度的畫像。 雖然該些液晶顯示裝置(液晶面板)一般是由200〜 1 200條之掃描線,及3 00〜1 600條之訊號線之矩陣編制 ,但是最近也同時進行著應對應於顯示容量之增大的大畫 面和高精細化。 第1 3圖是表示液晶面板之實際安裝狀態,使用導電 性之黏著劑連接將驅動訊號供給至被形成在構成液晶面板 1之一方透明性絕緣基板上,例如玻璃基板2上之掃描線 之電極端子群5之半導體積體電路晶片3的COG ( Chip -On-G1 ass )方式,或以例如聚醯亞胺樹脂薄膜當作基底, 以含有導電性媒體之適當黏著劑,將具有被鍍金或鍍上焊 劑之銅范端子(無圖示)之 TCP(Tape_Carrier-Package 1281999 (2) )薄膜4,壓合並固定於訊號線之電極端子群6之TCP方 式等之實際安裝手段,將電氣訊號供給至畫像顯示部上。 在此,爲了方便將兩個安裝方式同時圖示,但是於實際上 可適當選擇二者中之一方式。 7、8是連接位於液晶面板1之約略中央部之畫像顯 示部內之畫素和掃描線及訊號線之電極端子5、6之間的 配線路,並不一定需要以與電極端子群5、6相同之導電 材料所構成。9是在對向面上具有共通於所有液晶胞( Liquid Crystal cell)之透明導電性對向電極之另一片透 明性絕緣基板的對向玻璃基板或彩色濾光片。 第1 4圖是表示在每畫素上配置絕緣閘極型電晶體當 作開關元件的主動型液晶顯示裝置之等效電路圖’ 1 1 (第 13圖中爲7)是掃描線,12(第13圖中爲8)是訊號線 ,1 3爲液晶胞,液晶胞1 3於電性上是當作電容元件。實 線所描畫之元件類是被形成在構成液晶面板之一方玻璃基 板2上,虛線所描畫之所有共通於液晶胞1 3之對向電極 14是被形成在另一方玻璃基板9之相向主表面上。絕緣 閘極型電晶體10之OFF電阻或液晶胞13之電阻爲低之 時或重視顯示畫像之灰階性時’則必須尋求一些如將用以 增大作爲負荷之液晶胞1 3之時定數的存儲電容1 5並列施 加於液晶胞1 3上等的電路性改善手段。並且’ 1 6是存儲 電容1 5之共通母線。 第15圖是表示液晶顯示裝置之畫像顯示部之重要部 位剖面圖,構成液晶面板1之兩片玻璃基板2、9係藉由 -5- (3) 1281999 樹脂性纖維、珠或者被形成在彩色濾光片9上之柱狀間 物等的間隔材料(無圖示)而隔開數# m特定距離之間 ’再以有機性樹脂所構成之密封材料及/或封口材料( 者皆無圖示)在玻璃基板9之周圍部上封口,使二玻璃 板2 ’ 9之間形成一封閉空間,且該封閉空間中容置有 晶材料1 7。 於彩色顯示時,因在玻璃基板之封閉空間側上被著 稱爲著色層18之染料或顏料中之任一者或含有雙方之 度1〜之有機薄膜,而被賦予顏色顯示機能,故 此時’玻璃基板9又稱彩色濾光片(Color Filter略稱 )。然後,依據液晶材料1 7之性質在液晶面板1之二 表面中之任一面或雙面上貼上偏光板1 9,液晶面板1 爲光電元件而發揮機能。現在,市面上的大部分液晶面 之液晶材料是使用TN ( Twist Nematic)系列的液晶材 ’偏光板19通常需要2片。雖然無圖示,但是透過型 晶面板配置有背面光源當作光源,由下方照射白色光。 連接於液晶1 7,被形成在2片玻璃基板2、9上之 如厚度爲0.1/zm左右之聚醯亞胺樹脂薄膜20,是用以 液晶分子配向於所決定之方向上的配向膜。2 1是連接 緣閘極型電晶體1 0之汲極和透明導電性之畫素電極22 汲極電極(配線),多與訊號線(源極線)同時被形成 位於訊號線1 2和汲極電極2 1之間爲半導體2 3,詳細 後述。在彩色濾光片9上被形成在相鄰著色層18之邊 上的厚度左右之Cr薄膜層24爲用以防止外部 隔 隙 兩 基 液 附 厚 於 CF 側 作 板 料 液 例 使 絕 的 〇 於 界 光 -6- 1281999 (4) 射入至半導體層23和掃描線1 1及訊號線1 2的光遮蔽構 件,當作所謂黑色矩陣(Black Matrix,略稱BM )而定 著化的技術。 在此,關於當作開關元件之絕緣閘極型電晶體之構造 和製造方法予以說明。常見的絕緣型閘極型電晶體有2種 ,此處介紹其中一種被稱爲通道蝕刻型者。藉由乾蝕刻技 術之導入,以前需要8道左右之光罩,於現今減少至5道 ,大有助於製造成本之刪減。 第1 6圖是表示對應於5道光罩製程之主動基板(顯 示裝置用半導體裝置)之單位畫素之平面圖,第17圖是 表示第16圖(e)之A-A’、B-B’及C-C’線上之剖面圖, 以下簡單說明該製造過程。於第1 6圖(c )中雖然在存儲 電容1 6和汲極電極2 1中介著閘極絕緣層而重疊之區域 5 〇 (左上往右下之斜線部)形成有存儲電容1 5,但是在 此省略該說明。 首先,如第1 6圖(a )和第1 7圖(a )所示般,作爲 耐熱性和耐藥品性和透明性高之絕緣性基板之厚度0.5〜 l.】mm之玻璃基板2,例如使用SPT (濺鍍)在康寧( C〇 niiig)公司生產之商品名1737之一主表面上被覆膜厚 〇·1〜0.3//m之第1金屬層,並藉由微細加工技術,選擇 性形成也兼作閘極電極1 1 A之掃描線1 1和存儲電容線1 6 。掃描線之材質雖然是綜合性考慮耐藥品性和耐氟酸性和 導電性而選擇出’但是一般而言,使用鉻Cr、鉅Ta、鎢 鉬(MoW )合金等耐熱性高的金屬或合金。 -7- (5) 1281999 爲了對應於液晶面板之大畫面化或高精細化而降低掃 描線之電阻値,雖然使用A1 (鋁)當作掃描線材料,但 是A1的單體耐熱性低,故於現今,與屬於耐熱性金屬之 Ci*、Ta、Mo或是其矽化物予以層積化,或是在A1表面施 以陽極氧化賦予氧化層(ai2o3 )成爲一般性技術。即是 ,掃描線1 1由1層以上之金屬層所構成。 接著,使用電漿化學氧相沈積(PC VD )裝置在玻璃 基板2之全表面上,例如分別爲0.3-0.2-0· 05 /i m膜厚, 依序沈積氮化矽(SiNx )層30做爲閘極絕緣層、幾乎不 含雜質之絕緣閘極型電晶體之通道的第1非晶質矽層3 1 ,及含有雜質之絕緣閘極型電晶體之源極•汲極的第2非 晶質矽層3 3等3種薄膜層。然後,如第1 6圖(b )和第 17圖(b)所示,在閘極電極11A上島狀(31A、32A) 般地殘留由比閘極1 1電極A之寬度還寬的第1和第2非 晶質矽層所構成之半導體層,露出閘極絕緣層3 0。 接著,使用SPT等之真空成膜裝置,依序沈積例如 Ti (鈦)薄膜層34爲膜厚0.1/im左右之耐熱金屬層,A1 薄膜層35爲膜厚0.3 // m左右之低電阻配線層,例如Ti 薄膜層36爲膜厚0.1//m左右之中間導電層,如第16圖 (c )及第]7圖(c )所示般,藉由微細加工技術選擇性 形成由該些薄膜層34A、35A、36A之疊層所構成之絕緣 閘極型電晶體之汲極電極2 1和兼作源極電極之訊號線1 2 。該選擇性的圖案形成是將使用於汲極配線的形成之感光 性樹脂圖案當作遮罩,依序蝕刻Ti薄膜層36、A1薄膜層 -8- (6) 1281999 3 5、T i薄膜層3 4、第2非晶質矽層3 3 A及第1非晶 層3 1 A,第1非晶質砂層3 1 A因鈾刻成剩下〇 . 〇 5〜0 . // m左右,故被稱通道蝕刻。 爲了使絕緣閘極型電晶體不成爲補償構造,源極 極電極12、21是形成一部分(數#πι)與閘極電極 平面性重疊。因該重疊是當作寄生電容發揮電氣性作 所以越小爲越佳,但是由曝光機之配合精度和光罩之 和玻璃基板之膨脹係數及曝光時之玻璃基板溫度所決 實用之數値最大爲2//m左右。 於訊號線1 2之配線電阻不成爲問題之時,不一 要由A1所構成之低電阻配線層3 5,於此時,若選擇 Ti、Ta、Mo等之耐熱金屬材料,則可將源極·汲極 1 2、2 1予以單層化,簡化製程。並且,針對絕緣型 體之耐熱性於日本特開平7-743 68號公報中有詳細記i 並且,除去上述感光性樹脂圖案後,使用PC VD 在玻璃基板2之全表面上,與當作透明性絕緣層之閘 緣層相同地被覆0.3 // m左右之膜厚的SiNx層當作保 passivation)絕緣層37,如第16圖(d)和第17圖 所示般,依據微細加工技術選擇性除去保護絕緣層 並在汲極電極2 1上形成開口部62,在畫像顯示部外 域之被形成掃描線1 1之電極端子5之位置上形成開 63,在形成有訊號線1 2之電極端子6之位置上形成 部64而露出汲極電極2 1和掃描線1 1和訊號線1 2之 分。在存儲電容線1 6 (平行捆束的電極圖案)上形 質矽 •汲 1 1 A 用, 精度 定, 定需 Cr、 配線 電晶 裝置 極絕 護( (d) 37, 之區 口部 開口 一部 成開 -9 - (7) 1281999 口部6 5而露出存儲電容線1 6之一部分。 最後使用SPT等之真空製膜裝置被覆膜厚〇·1〜〇·2 in左右 ΪΤΟ ( Indium-Tin-Oxide,銦錫氧化物)或是 IZO ( Indium-Zinc-〇xide,銦鋅氧化物)當作透明導電層 ,如第16圖(e)和第17圖(e)所示般,藉由微細加工 技術在保護絕緣層3 7上包含開口部62地選擇性形成畫素 電極22,而完成主動基板2。即使將開口部63內之露出 的掃描線1 1之一部分當作電極端子5,並將開口部64內 之露出的訊號線1 2之一部分當作電極端子6亦可,如圖 示般,在保護絕緣層37上包含開口部63、64地選擇性形 成由ITO所構成之電極端子5A、6A亦可,但是一般也同 時形成連接電極端子5A、6A間之透明導電性之短路線40 。其理由是雖未圖示但使電極端子5A、6A和短路線40 之間形成爲細長條狀導致高電阻化而可以作爲靜電對策用 之高電阻。同樣的,形成包含開口部65之通往存儲電容 線1 6的電極端子。 發明所欲解決之課題 如此於5道光罩工程中,因同時實施汲極電極2 1和 掃描線1 1之接觸形成工程,故對應該些之開口部6 2、6 3 內之絕緣層之厚度和種類則不同。保護絕緣層3 7比起閘 極絕緣層30’製膜溫度低,膜質較差,對於藉由氣酸系 列之蝕刻液進行的濕式蝕刻,因蝕刻速度各爲數1 〇〇〇A/ 分、數100A/分,相差1個數量級,汲極電極21上之開 (8) 1281999 口部62的剖面形狀是由於在上部產生過度 制孔徑的緣故,而改採使用氟系列之氣體的 即使採用乾式蝕刻,汲極電極2 1上之| 爲保護絕緣層3 7,故比起掃描線1 1上之開 避免過度蝕刻,有隨著材質不同而有發生中 之膜厚被蝕刻氣體削減的情形。再者,對於 感光性樹脂圖案的除去,首先爲了除去被氟 合物,以氧氣電漿灰化,將感光性樹脂圖 0.1〜0.3 // m左右,之後,以使用有機剝離 應化所製作之剝離液1 06等的藥液處理爲一 是當削減中間導電層3 6 A而露出基底之鋁f 時,以氧氣電漿灰化處理在鋁層35A之表 絕緣體之Al2〇3而在與畫素電極22之間便 觸。在此,爲使削減中間導電層3 6 A之膜 如將膜厚設定成0.2 // m,可解決該問題。 口部62〜65之時,除去鋁層35A而露出基 層的薄膜層34A之後再形成畫素電極22的 採用,此時,有從一開始就不需要中間導胃 點。 但是,於前者之對策中,該些薄膜之膜 性若不佳時,該配合則不一定發揮有效作用 速度之面內均勻性若不良好也完全相同。於 ,雖然不需要中間導電層36A,但是增加除 工程,再者當開口部6 2之剖面控制不充分 蝕刻而無法控 乾式蝕刻。 萄口部62因僅 丨口部6 3無法 間導電層3 6 A 蝕刻完成後之 化之表面的聚 案之表面削減 液,例如東京 般性作法,但 i 3 5 A的狀態 面上形成屬於 得不到歐姆接 厚亦無妨,例 或是於形成開 底之耐熱金屬 迴避對策亦可 I層 36A的優 厚的面內均勻 ,再者,蝕刻 後者之對策中 去鋁層3 5 A之 時,則有發生 -11 - (9) 1281999 畫素電極2 2斷線的可能性。 除此之外’通道蝕刻型之絕緣閘極型電晶體中’通道 區域之不含雜質的第1非晶質砂層31若不被覆成較厚( 通道蝕刻型中通常爲0.2 # m以上)時’則大大影響玻璃 基板之面內均勻性’往往成爲電晶體特性不一致尤其是 OFF電流不一致。該情形大大影響PVCD裝置之運轉率和 粒子發生狀況’從生產成本之觀點來看也是非常重要之事 項。 接著,介紹改善上述5道光罩製程之一例的4道光罩 製程。4道光罩製程是依據導入半色調曝光技術,減少微 影蝕刻工程,第1 8圖是對應於4道光罩製程之主動基板 之單位畫素的平面圖,第19圖是表示第18圖(e)之八-A ’、B - B ’及C - C ’線上之剖面圖。 首先,與5道光罩製程相同在玻璃基板2之一主表面 上,使用SPT等之真空製膜裝置,被覆膜厚0.1〜0.3//m 左右之第1金屬層,並如第18圖(a)和第19圖(a)所 示般,藉由微細加工技術選擇性形成也兼作閘極電極1 1 A 之掃描線1 1和存儲電容線1 6。 接著,使用PCVD裝置在玻璃基板2之全面上例如分 別以〇·3〜0.2〜0.0 5 # m左右之膜厚,依序沈積氮化矽( SiNx)層30做爲閘極絕緣層、幾乎不含雜質之絕緣閘極 型電晶體之通道的第1非晶質矽層3 1,及含有雜質之絕 緣閘極型電晶體之源極•汲極的第2非晶質矽層3 3等3 種薄膜層。接著,使用SPT等之真空製膜裝置依序被覆 -12 - (10) 1281999 膜厚左右之作爲耐熱金屬層的例如Ti薄膜層34 ’膜厚0.3 " m左右之作爲低電阻配線層的AI薄膜層36 ’亦即是源極•汲極配線材料,雖然藉由微細加工技術選 擇性形成由該些薄膜層3 4 A、3 5 A、3 6 A之疊層所構成之 絕緣閘極型電晶體之汲極電極2 1和兼作源極電極之訊號 線1 2 ’但是對於該選擇性圖案形成,藉由半色調曝光技 術如第1 8圖(b )和第1 9圖(b )所示般,有例如形成膜 厚1.5 // m之源極•汲極間之通道形成區域80C (斜線部 ),形成比源極•汲極配線形成區域80A、80B之膜厚 3 // m還薄之感光性樹脂圖案8 0 A〜8 0 C之點爲重大特徵。 如此之感光性樹脂圖案80A〜80C因於製作液晶顯示 裝置用基板是使用通常正型之感光性樹脂,故源極·汲極 配線形成區域80A、80B爲黑色,即是形成Cr薄膜,通 道區域80C爲灰色,例如形成寬度0.5〜1 // m左右加空 行寬度(line and space)的Cr圖案,其他區域爲白色, 即是若使用被除去Cr薄膜的光罩即可。灰色區域因曝光 機之解像力不足,故無法解析出行與空行,並因可使來自 燈光源之光罩照射光之一半左右予以透過,故因應正型感 光性樹脂之殘膜特性,可以取得具有如第1 9圖(b )所示 般之剖面形狀的感光性樹脂圖案80 A〜80C。 將上述感光性樹脂圖案80A〜80C當作遮罩如第19 圖(b )所示般,依序蝕刻Ti薄膜層36、A1薄膜層35、 Ti薄膜層3 4、第2非晶質矽層3 3及第1非晶質矽層3 1 而露出閘極絕緣層3 0後’如第1 8圖(c )和第1 9圖(c -13- (11) 1281999 )所示般,依據氧氣電漿等之灰化手段使感光性樹 80A〜80C之膜厚,例如從3//m減少1.5/zm以上而 81 A、81B之時,感光性樹脂圖案80C則消失而露出 區域。在此,以削減膜後之感光性樹脂圖案8 1 A、8 1 作遮罩,再次藉由蝕刻源極·汲極配線間(通道形成 )之Ti薄膜層36A、A1薄膜層35A、Ti薄膜層34A 2非晶質矽層33A及第1非晶質矽層31 A,第1非晶 層31A是蝕刻殘留0.05〜0.1/im左右。並且,在上 氣電漿處理中,因抑制圖案尺寸之變化,故以增強向 爲佳,其理由於後敘述。 並且,除去上述感光性樹脂圖案8 1 A、8 1 B之後 5道光罩製程相同,如第18圖(d)和第19圖(d) 般,在玻璃基板2之全面上被覆0.3//m左右膜厚之 層當作透明性絕緣層,並以此當作保護絕緣層3 7, 極電極2 1上和形成有掃描線1 1和訊號線1 2之電極 5、6之區域上各形成有開口部6 2、6 3、6 4。 最後,使用SPT等之真空製膜裝置,被覆例如 或IZO形成膜厚0.1〜〇.2//m左右之透明導電層, 1 8圖(e )和第1 9圖(e )所示般,藉由微細加工技 具有開口部62之保護絕緣層3 7上選擇性地形成透明 之畫素電極22’而完成主動基板2。關於電極端子, 包含在保護絕緣層 37上選擇性形成開口部 63、64 ITO所構成之電極端子5A、6A。 脂案 成爲 通道 B當 區域 、第 質矽 述氧 異性 j I5i 所示 SiNx 在汲 端子 ITO 如第 術在 導電 在此 的由 (12) !281999 【發明內容】 〔發明所欲解決之課題〕 如此,藉由使用半色調曝光技術,可以減化5道光罩 製程爲4道光罩,且得到與5道光罩製程幾乎相同之產物 。但是於4道光罩製程中,所適用之通道形成工程因選擇 性除去源極•汲極配線1 2、2 1間之源極·汲極配線材料 和半導體層,是決定可以左右絕緣閘極型電晶體之ON特 性的通道長度(現在之量產品爲4〜6 # m )的工程。該通 道長度之長度變動因使絕緣閘極型電晶體之ON電流値大 幅變化,故通常要求嚴格的製造管理。 如之前所述,通道長亦即半色調曝光區域之圖案尺寸 是受曝光量(光源強度和光罩精度,尤其行和空行尺寸) 、感光性樹脂之塗布厚度、感光性樹脂之顯影處理及該蝕 刻工程中之感光性樹脂之膜削減量等之多項參數所左右, 除此之外,也加上該些諸量之面內均勻性也相同,不一定 可以達成生產量高之安定生產,需要比以往更嚴格之製造 管理,以現狀而言,不可以說是已達到高完成度之水準。 尤其,通道長度爲6/zm以下時,該傾向越爲顯著。 本發明是鑒於現狀而所創造出者,不僅避免共通於以 往5道光罩製程或4道光罩製程之形成接觸時的不佳狀況 ,採用誤差容許度大之半色調曝光技術而實現刪減製造工 程者。再者’爲了實現液晶面板之低價格化,並對應於需 求之增大’明顯可知追求刪減更多製造工程數是必要的, 因有助於簡化主要製造工程或低成本化之技術,故更提高 -15- (13) 1281999 本發明之價値。 〔解決課題之手段〕 於本發明中,首先以將半色調曝光技術適用於容易進 行圖案精度管理之半導體層之島化工程和閘極絕緣層的接 觸形成工程,實現製造工程之刪減。接著,爲了將通道保 護層賦予在絕緣閘極型電晶體上,融合了揭示於先前技術 之日本特開平4-3 0243 8號之藉由陽極氧化將含有雜質之 半導體層變換成氧化矽層之技術,和供有效地以氧化物保 護僅源極·汲極配線之揭示於先前技術之日本特開平2-2 16129號公報中,在由鋁所構成之源極·汲極配線之表 面上形成絕緣層之陽極氧化技術,實現製程之合理化和低 溫化。並且,使先前技術之日本特願平5 -2 6 8 72 6號公報 中所揭示之畫素電極之形成工程合理化技術適合於本發明 而予以採用。再者爲了刪減工程,也於源極•汲極配線之 陽極氧化層之形成適用半色調曝光技術而使電極端子之保 護層形成工程予以合理化。 專利申請範圍第1項所記載之絕緣閘極電晶體是一種 底部閘極型之絕緣閘極型電晶體,其特徵爲:在絕緣基板 上形成有由1層以上之第1金屬層所構成之閘極電極,在 閘極電極上中介著1層以上之閘極絕緣層而島狀地形成有 不含雜質之第1半導體層,在上述第1半導體層上形成有 一部分與閘極電極重疊而將成爲絕緣閘極型電晶體之源極 •汲極之1對含有雜質的第2半導體層,在上述第2半導 -16- (14) 1281999 體層上和閘極絕緣層上形成有含有耐熱金屬層且由1層以 上之可陽極氧化的金屬層所構成之源極·汲極配線,並且 除源極配線之電氣性連接區域之外,在源極•汲極配線上 和通道上形成有陽極氧化層,陽極氧化層因發揮保護層機 能’故無須賦予SiNx等之保護絕緣層,有關液晶顯示裝 置於專利申請範圍第3項、第4項、第6項以及第2、第 3、第5、第6之實施形態中有明確記載。 專利申請範圍第2項所記載之液晶顯示裝置,是屬於 將液晶充塡於在一主表面上至少具有:絕緣閘極型電晶體 '兼作上述絕緣閘極型電晶體之閘極電極的掃描線和也兼 作源極配線的訊號線、和被連接於汲極配線上之畫素電極 等的單位畫素被配列成二次元之矩陣的第1透明性絕緣基 板,和與上述第1透明性絕緣基板對向的第2透明性絕緣 性基板或者彩色濾光板之間所構成之液晶顯示裝置,其特 徵爲: 至少在第1透明性絕緣基板之一主表面上形成有由透明導 電層和金屬層之疊層所構成之掃描線和透明導電性之畫素 電極; 在閘極電極上中介著電漿保護層和閘極絕緣層而島狀地形 成有不含雜質之第1半導體層; 在上述第1半導體層上形成有一部分與閘極電極重疊而將 成爲絕緣閘極型電晶體之源極·汲極之1對含有雜質的第 2半導體層; 在上述畫素電極上之電漿保護層和閘極絕緣層上形成有開 -17- (15) 1281999 口部; 在上述第2半導體層上和閘極絕緣層上形成有含有耐熱 屬層且由1層以上之可陽極氧化的金屬層所構成之源極 線(訊號線),和在上述第2半導體層上和閘極絕緣層 和上述開口部內之畫素電極之一部上同樣地形成有汲極 線; 在上述畫素電極上具有開口部之保護絕緣層是被形成在 1透明性絕緣基板上。 依據該構成,則使用1道光罩處理掃描線和畫素電 之微影蝕刻工程數被刪減,除此之外,也加上使用1道 罩處理半導體層之島化工程和閘極絕緣層之開口部形成 程的攝影蝕刻工程數被刪減,可使用4道光罩製造TN 之液晶顯示裝置。再者,因掃描線和訊號線之電極端子 之保護絕緣層之膜厚爲相同,故不發生與形成接觸有關 不良狀況。 專利申請範圍第3項之液晶顯示裝置,是屬於將液 充塡於在一主表面上至少具有:絕緣閘極型電晶體、兼 上述絕緣閘極型電晶體之閘極電極的掃描線和也兼作源 配線的訊號線、和被連接於汲極配線上之畫素電極等的 位畫素被配列成二次元之矩陣的第1透明性絕緣基板, 與上述第1透明性絕緣基板對向的第2透明性絕緣性基 或者彩色濾光板之間而所構成之液晶顯示裝置,其特徵 至少在第1透明性絕緣基板之一主表面上形成有由1層 金 配 上 配 第 極 光 工 型 上 之 晶 作 極 單 和 板 爲 以 -18- (16) 1281999 上之金屬層所構成之掃描線; 在閘極電極上中介器1層以上之閘極絕緣層島狀地形成有 不含雜質之第1半導體層; 在上述第1半導體層層上形成有一部分與閘極電極重疊而 將成爲絕緣閘極型電晶體之源極·汲極之1對含有雜質的 第2半導體層; 在上述第2半導體層上和閘極絕緣層上形成有含有耐熱金 屬層且由1層以上之可陽極氧化的金屬層所構成之源極( 訊號線)·汲極配線; 在上述汲極配線上和閘極絕緣層上,於透明導電性之畫素 電極和畫像顯示部之外的區域,於訊號線上形成有透明導 電性之電極端子; 除與上述汲極配線上之畫素電極重疊之區域和訊號線之電 極端子區域之外,在源極•汲極配線之表面上形成有陽極 氧化層; 在上述源極·汲極配線間之第1半導體層上形成有氧化矽 層。 依據該構成使用1道光罩處理掃描線和畫素電極之微 影蝕刻工程數被刪減,除此之外,也加上使用1道光罩處 理畫素電極之形成和保護形成的微影蝕刻工程數被刪減’ 可使用4道光罩製造TN型之液晶顯示裝置。在源極•汲 極間之通道上形成含有雜質之氧化矽層而保護通道’同時 在訊號線和汲極配線之表面上’形成屬於絕緣性之陽極氧 化層之五氧化鉅(Ta205 )或是氧化鋁(AI2〇3)而賦予保 -19- (17) 1281999 護機能。因此無需將保護絕緣層被覆於玻璃基板之全面上 ,絕緣閘極型電晶體之耐熱性則不會產生問題。除此之外 ’保護通道之絕緣層因是以陽極氧化含有雜質之非晶質矽 層而變換成氧化矽層所取得,故不需要將成爲通道層之不 含雜質的非晶質層製作成厚膜,實現TN型之液晶顯示裝 置。 專利申請範圍第4項所記載之液晶顯示裝置,其特徵 爲: 相同地至少在第1透明性絕緣基板之一主表面上形成有由 透明導電層和金屬層之疊層所構成之掃描線和透明導電性 之畫素電極; 在閘極電極上中介著電漿保護層和閘極絕緣層而島狀地形 成有不含雜質之第_1半導體層; 在上述第1半導體層上形成有一部分與閘極電極重疊而將 成爲絕緣閘極型電晶體之源極·汲極之1對含有雜質的第 2半導體層; 在上述畫素電極上之電漿保護層和閘極絕緣層上形成有開 口部; 在上述第2半導體層上和閘極絕緣層上形成有含有耐熱金 屬層且由1層以上之可陽極氧化的金屬層所構成之源極配 線(訊號線),和在上述第2半導體層上和閘極絕緣層上 和上述開口部內之畫素電極之一部上同樣地形成有汲極配 線; 除上述訊號線之電極端子區域之外,在源極•汲極配線之 -20- (18) 1281999 表面形成有陽極氧化層; 在上述源極·汲極配線間之第1半導體層上形成 層。 依據該構成,使用1道光罩處理掃描線和畫 光蝕刻工程數被刪減,和使用1道光罩處理半導 化工程和閘極絕緣層之開口部形成工程的光蝕刻 刪減,和使用1道光罩處理畫素電極之形成和保 之光蝕刻工程數被刪減,可以3道光罩製造TN 顯示裝置。 專利申請範圍第5項所記載之液晶畫像顯示 屬於將液晶充塡於在一主表面上至少具有:絕緣 晶體、兼作上述絕緣閘極型電晶體之閘極電極的 也兼作源極配線的訊號線、和被連接於汲極配線 電極的單位畫素被配列成二次元之矩陣的第1透 基板等,和與上述第1透明性絕緣基板對向的第 絕緣性基板或者彩色濾光板之間而所構成之液晶 ,其特徵爲: 至少在第1透明性絕緣基板之一主表面上形成有 上之金屬層所構成之掃描線; 在閘極電極上中介著1層以上之閘極絕緣層島狀 不含雜質之第1半導體層; 在上述第1半導體層層上形成有一部分與閘極電 將成爲絕緣閘極型電晶體之源極·汲極之1對含 第2半導體層; 有氧化矽 素電極之 體層之島 工程數被 護膜形成 型之液晶 裝置是是 閘極型電 掃描線和 上之畫素 明性絕緣 2透明性 顯示裝置 由1層以 地形成有 極重疊而 有雜質的 -21 - (19) 1281999 在上述第2半導體層上和閘極絕緣層上形成有含 屬層且由1層以上之可陽極氧化的金屬層所構成 線(訊號線)·汲極配線(畫素電極),和在閘 上形成有含有上述開口部內之掃描線之一部分, 之電極端子和訊號線之一部分所構成之訊號線的 除上述掃描線和訊號線之電極端子上之外,在第 絕緣基板之全面上形成有保護絕緣層。 依據該構成,使用1道光罩處理半導體層之 和閘極絕緣層之開口部形成工程的光鈾刻工程數 可使用4道光罩取得IPS型之液晶顯示裝置。再 描線和訊號線之電極端子上之保護絕緣層之膜厚 故不發生與形成接觸有關之不良狀況。 專利申請範圍第6項之液晶畫像顯示裝置, 相同地至少在第1透明性絕緣基板之一主表面上 1層以上之金屬層所構成之掃描線; 在閘極電極上中介著1層以上之閘極絕緣層島狀 不含雜質之第1半導體層; 在上述第1半導體層層上形成有一部分與閘極電 將成爲絕緣閘極型電晶體之源極·汲極之1對含 第2半導體層,除去在畫像顯示部以外之區域被 描線上之開口部內的閘極絕緣層; 在上述第2半導體層上和閘極絕緣層上形成有含 有耐熱金 之源極配 極絕緣層 由掃描線 電極端子 1透明性 島化工程 被刪減, 者,因掃 爲相同, 其特徵爲 形成有由 地形成有 極重疊而 有雜質的 形成在掃 有耐熱金 -22- (20) 1281999 屬層且由1層以上之可陽極氧化的金屬層所構成之源極配 線(訊號線)·汲極配線(畫素電極),和在閘極絕緣層 上形成有含有上述開口部內之掃描線之一部分,由掃描線 之電極端子和訊號線之一部分所構成之訊號線的電極端子 除上述訊號線之電極端子區域外,在源極·汲極配線之表 面上形成有陽極氧化層; 在上述源極•汲極配線間之第1半導體層上形成有氧 化矽層。 依據該構成,使用1道光罩處理源極·汲極配線之形 成和保護層形成的光蝕刻工程數被刪減,在源極·汲極間 之通道上形成含有雜質之氧化矽層而保護通道,同時於訊 號線和汲極配線之表面上形成有屬於絕緣性之陽極氧化層 的五氧化鉅(Ta205 )或是氧化鋁(A12 03 )而賦予保護層 機能。因此,不需要在玻璃基板全表面上被覆保護絕緣層 ,絕緣閘極型電晶體之耐熱性不會成爲問題。除此之外, 因保護通道之絕緣層是以陽極氧化含有雜質之非晶質矽層 而變換成氧化矽層所取得,故不需要將成爲通道層之不含 雜質的非晶質層製作成厚膜,實現IP S型之液晶顯示裝置 〇 專利申請範圍第7項是申請專利範圍第2項所記載之 液晶顯示裝置之製造方法,是屬於將液晶充塡於在一主表 面上至少具有:絕緣閘極型電晶體、兼作上述絕緣閘極型 電晶體之閘極電極的掃描線和也兼作源極配線的訊號線、 -23- (21) 1281999 和被連接於汲極配線上之畫素電極等的單位畫素被配列成 二次元之矩陣的第1透明性絕緣基板,和與上述第1透明 性絕緣基板對向的第2透明性絕緣性基板或者彩色濾光板 之間而所構成之液晶顯不裝置之製造方法,其特徵爲:旦 有 至少在第1透明性絕緣基板之一主表面上,形成由透明導 電層和第1金屬層所構成之掃描線和擬似畫素電極的工程 依序被覆電獎保護層、閘極絕緣層、不含雜質之第1非晶 質矽層和含有雜質之第2非晶質矽層的工程; 在掃描線之電極端子形成區域和擬似畫素電極上,形成具 有開口部且閘極電極上之膜厚比其他區域之膜厚還厚的感 光性樹脂圖案的工程; 除去上述開口部內之第2非晶質矽層、第1非晶質矽層、 閘極絕緣層、電漿保護層和第1金屬層,而露出透明導電 性之掃描線一部分和畫素電極的工程; 減少上述感光性樹脂圖案之膜厚而露出第2非晶質矽層的 工程; 在閘極電極上島狀地形成比閘極電極寬度還寬的第2非晶 質矽層和第1非晶質矽層的工程; 被覆1層以上之第2金屬層後,在閘極絕緣層上和第2非 晶質矽層上,以與閘極電極部分重疊地形成有包含源極( 訊號線)·汲極配線和上述開口部且由掃描線之電極端子 和訊號線之一部分所構成之訊號線之電極端子的工程; -24- (22) 1281999 除去上述源極·汲極配線間之第2非晶質矽層的工程; 在上述第1透明性絕緣基板之全面上形成保護絕緣層的工 程;及 在上述電極端子上和畫素電極上之保護絕緣層上形成開口 部而選擇性地除去保護絕緣層的工程。 依據該構成,實現使用1道光罩處理畫素電極和掃描 線的光鈾刻工程數之刪減,和使用1道光罩處理半導體層 之島化工程和閘極絕緣層的開口部形成工程的光蝕刻工程 數之刪減,可以4道光罩製作TN型之液晶顯示裝置。然 後,因掃描線和訊號線之電極端子上之保護絕緣層之膜厚 因爲相同,故不發生與形成接觸有關之不良狀況。 專利申請範圍第8項是專利申請範圍第3項所記載之 液晶顯示裝置之製造方法,其特徵爲:具有 至少在第1透明性絕緣基板之一主表面上,形成由1層以 上之金屬層所構成之掃描線的工程; 依序被覆1層以上之閘極絕緣層和不含雜質之第1非晶質 矽層和含有雜質之第2非晶質矽層的工程; 在掃描線之電極端子形成區域上,形成具有開口部且閘極 電極上之膜厚比其他區域之膜厚還厚的感光性樹脂圖案的 工程; 除去上述開口部內之第2非晶質矽層、第1非晶質矽層、 閘極絕緣層的工程; 減少上述感光性樹脂圖案之膜厚而露出第2非晶質矽層的 工程; -25- (23) 1281999 在閘極電極上島狀地形成比閘極電極寬度還寬的第2非晶 質矽層和第1非晶質矽層的工程; 在閘極絕緣層上和第2非晶質矽層上,使一部分與閘極電 極重疊地形成由1層以上之可陽極氧化之金屬層所構成之 源極(訊號線)·汲極配線的工程; 在閘極絕緣層上和上述汲極配線之一部分上,於透明導電 性之畫素電極和畫像顯示部之外的區域,形成透明導電性 之電極端子於訊號線上的工程;及 將被使用於上述畫素電極和電極端子之選擇性圖案的感光 性樹脂圖案當作遮罩,保護畫素電極和訊號線之電極端子 ,同時陽極氧化源極•汲極配線和源極·汲極配線間之非 晶質矽層的工程。 依據該構成,實現使用1道光罩處理半導體層之島化 工程和閘極絕緣層之開口部形成工程的光蝕刻工程數的刪 減。再者,對於源極·汲極配線之形成,和通道和源極· 汲極配線之陽極氧化,可以使用1道光罩處理保護訊號線 之電極端子,因可以阻止光蝕刻工程數之增加,故可以4 道光罩製作TN型液晶顯示裝置。 專利申請範圍第9項是專利申請範圍第4項所記載之 液晶顯示裝置之製造方法,其特徵爲:具有 至少在第1透明性絕緣基板之一主表面上,形成由透明導 電層和第1金屬層所構成之掃描線和擬似畫素電極的工程 依序被覆電漿保護層、閘極絕緣層、不含雜質之第1非晶 -26- (24) 1281999 質矽層和含有雜質之第2非晶質矽層的工程; 在掃描線之電極端子形成區域和擬似畫素電極上,形成具 有開口部且閘極電極上之膜厚比其他區域之膜厚還厚的感 光性樹脂圖案的工程; 除去上述開口部內之第2非晶質矽層、第1非晶質矽層、 閘極絕緣層、電漿保護層和金屬層,而露出透明導電性之 掃描線一部分和畫素電極的工程; 減少上述感光性樹脂圖案之膜厚而露出第2非晶質矽層的 工程; 在閘極電極上島狀地形成比閘極電極寬度還寬的第2非晶 質矽層和第1非晶質矽層的工程; 被覆1層以上之可陽極氧化之金屬層後,形成一部分與閘 極電極重疊,且對應於掃描線和訊號線之電極端子上的膜 厚比其他區域還厚的源極(訊號線)•汲極配線和含有上 述透明導電性之掃描線的一部分而由掃描線之電極端子和 訊號線之一部分所構成之訊號線之電極端子的感光性樹脂 圖案的工程; 將上述感光性樹脂圖案當作遮罩,選擇性除去可陽極氧化 之金屬層而形成源極·汲極配線和掃描線之電極端子和訊 號線之電極端子的工程; 減少上述感光性樹脂圖案的膜厚而露出源極·汲極配線的 工程;及 保護上述電極端子,同時陽極氧化源極·汲極配線和源極 •汲極配線間之非晶質矽層的工程。 -27- (25) 1281999 依據該構成,實現使用1道光罩處理掃描線和畫素電 極的工程,和使用1道光罩處理半導體之島化工程和閘極 絕緣層之開口部形成工程的光蝕刻工程數被刪減,除此之 外,對於源極•汲極配線之形成’和通道和源極·汲極配 線之陽極氧化,可以使用1道光罩處理保護訊號線之電極 端子,因可以阻止光蝕刻工程數之增加,故可以3道光罩 製作TN型液晶顯示裝置。 專利申請範圍第1 〇項是專利申請範圍第5項所記載 之液晶顯示裝置之製造方法,其特徵爲:具有 至少在第1透明性絕緣基板之一主表面上,形成由1層以 上之金屬層所構成之掃描線和對向電極的工程; 依序被覆1層以上之閘極絕緣層和不含雜質之第1非晶質 矽層和含有雜質之第2非晶質矽層的工程; 在掃描線之電極端子形成區域上,形成具有開口部且閘極 電極上之膜厚比其他區域之膜厚還厚的感光性樹脂圖案的 工程; 除去上述開口部內之第2非晶質矽層、第1非晶質矽層、 閘極絕緣層的工程; 減少上述感光性樹脂圖案之膜厚而露出第2非晶質矽層的 工程; 在閘極電極上島狀地形成比閘極電極寬度還寬的第2非晶 質矽層和第1非晶質矽層的工程; 在閘極絕緣層上,使一部分可與閘極電極重疊地形成含有 第2非晶質矽層而由1層以上之第2金屬層所構成之源極 -28- (26) 1281999 (訊號線)·汲極配線(畫素電極)和含有上述開口 由掃描線之電極端子和訊號線之一部分所構成之訊號 電極端子的工程; 除去上述源極·汲極配線間之第2非晶質矽層的工程 除上述掃描線和訊號線之電極端子之外,在第1透明 緣基板之全面上形成保護絕緣層的工程。 依據該構成,可以使用1道光罩處理半導體層之 工程和閘極絕緣層之開口部形成工程,實現刪減光蝕 程數,可以4道光罩製作IPS型之液晶顯示裝置。再 比起以往之被合理化之4道光罩製程變更點較少,容 入量產工廠。 專利申請範圍第1 1項是專利申請範圍第6項所 之液晶顯示裝置之製造方法,其特徵爲:具有 至少在第1透明性絕緣基板之一主表面上,形成由1 上之金屬層所構成之掃描線和對向電極的工程; 依序被覆1層以上之閘極絕緣層和不含雜質之第1非 矽層和含有雜質之第2非晶質矽層的工程; 在閘極電極上島狀地形成比閘極電極寬度還寬之第2 質矽層和第1非晶質矽層而露出閘極絕緣層的工程; 在掃描線之電極端子形成區域上,形成具有開口部而 上述開口部內之閘極絕緣層的工程; 被覆1層以上之可陽極氧化之金屬層後,形成一部分 極電極重疊,且對應於掃描線和訊號線之電極端子上 厚比其他區域還厚的源極(訊號線)•汲極配線(畫 部而 線之 •,及 性絕 島化 刻工 者, 易導 記載 層以 晶質 非晶 除去 與閘 的膜 素電 -29- (27) 1281999 極)和含有上述開口部而由掃描線之電極端子和訊號線之 一部分所構成之訊號線之電極端子的感光性樹脂圖案的工 程; 將上述感光性樹脂圖案當作遮罩,選擇性除去可陽極氧化 之金屬層而形成源極•汲極配線和掃描線之電極端子和訊 號線之電極端子的工程; 減少上述感光性樹脂圖案的膜厚而露出源極•汲極配線的 工程;及 一面保護上述電極端子,一面陽極氧化源極•汲極配線和 源極·汲極配線間之非晶質矽層的工程。 依據該構成,在源極•汲極間之通道上形成含有雜質 之氧化矽層而保護通道,同時於訊號線和汲極配線之表面 上形成有絕緣性之陽極氧化層而賦予保護機能。因此,不 需要在玻璃基板全表面上被覆保護絕緣層,絕緣閘極型電 晶體之耐熱性不會成爲問題。再者,可以使用1道光罩處 理形成源極•汲極配線之工程,和保護訊號線之電極端子 同時陽極氧化源極•汲極配線之工程,實現刪減光蝕刻工 程數,可以4道光罩製作IPS型之液晶顯示裝置。 專利申請範圍第1 2項也是專利申請範圍第6項所記 載之液晶顯示裝置之製造方法,具有: 至少在第1透明性絕緣基板之一主表面上,形成由1層以 上之金屬層所構成之掃描線和對向電極的工程; 依序被覆1層以上之閘極絕緣層和不含雜質之第1非晶質 矽層和含有雜質之第2非晶質矽層的工程; -30- 1281999 (28) 在掃描線之電極端子形成區域上,形成具有開口部且閘極 電極上之膜厚比其他區域之膜厚還厚的感光性樹脂圖案的 工程; 除去上述開口部內之第2非晶質矽層、第1非晶質矽層、 閘極絕緣層的工程; 減少上述感光性樹脂圖案之膜厚而露出第2非晶質矽層的 工程; 在閘極電極上島狀地形成比閘極電極寬度還寬的第2非晶 質矽層和第1非晶質矽層的工程; 被覆1層以上之可陽極氧化之金屬層後,形成一部分與閘 極電極重疊,且對應於掃描線和訊號線之電極端子上的膜 厚比其他區域還厚的源極(訊號線)•汲極配線(畫素電 極)和含有上述開口部而由掃描線之電極端子和訊號線之 一部分所構成之訊號線之電極端子的感光性樹脂圖案的工 程; 將上述感光性樹脂圖案當作遮罩,選擇性除去可陽極氧化 之金屬層而形成源極·汲極配線和掃描線之電極端子和訊 號線之電極端子的工程; 減少上述感光性樹脂圖案的膜厚而露出源極·汲極配線的 工程;及 一面保護上述電極端子,同時陽極氧化源極·汲極配線和 源極·汲極配線間之非晶質矽層的工程。 依據該構成,使用1道光罩處理半導體層之島化工程 和閘極絕緣層之開口部形成工程的光蝕刻工程數被刪減, -31 - (29) 1281999 加上可以使用1道光罩處理形成源極•汲極配線之 和保護訊號線之電極端子同時陽極氧化源極•汲極 工程的光蝕刻工程數也被刪減,可以3道光罩製作 之液晶顯示裝置。 【實施方式】 根據第1圖〜第1 2圖說明本發明之實施形態 圖是表示本發明之第1實施形態所涉及之顯示裝置 體裝置(主動基板)之平面圖,第2圖是表示第 )之A - A ’線上和B - B ’線上及C - C ’線上之製造工程 圖。同樣地第2實施形態是以第3圖和第4圖,第 形態是以第5圖和第6圖,第4實施形態是以第7 8圖,第5實施形態是以第9圖和第1 0圖,第6 態是以第1 1圖和第1 2圖分別表示主動基板之平面 造工程圖。並且,針對與先前例相同部位,賦予相 而省略詳細說明。 (第1實施形態) 於第1實施形態中,首先,使用S P T等真空 置在玻璃基板2之一主表面上被覆例如ITO作爲月| 〜0.2//m之透明導電層91,和例如Cr、Ta、MoW 來作爲膜厚0.1〜之第1金屬層92,如第: )和第2圖(a )所示般,藉由微細加工技術選擇 由透明導電層91A和弟]金屬層92A之疊層所構 工程, 配線之 IPS型 。第1 用半導 1圖(f 之剖面 3實施 圖和第 實施形 圖和製 同符號 製膜裝 [厚 〇. 1 合金等 1圖(a 性形成 成之兼 -32- (30) 1281999 作閘極電極1 1 A的掃描線1 1 ;由透明導電層9 1 B和第1 金屬層92B之疊層所構成之擬似畫素電極93 ;和由透明 導電層91C和第1金屬層92C之疊層所構成之擬似短路 線94。中介著閘極絕緣層使訊號線之絕緣耐壓提升,爲 了提升生產量該些電極雖然是以乾式蝕刻進行剖面形狀的 傾斜控制爲佳,但是ITO之乾蝕刻技術中已開發之蝕刻氣 體使用碘化氫或溴化氫者,因氣體排氣系統之反應生成物 堆積量大,至今尙未被實用化,故該表面採用例如Ar( 氬,a r g ο η )之濺鍍蝕刻即可。 接著,在玻璃基板2之全表面上,以0.1// m左右之 膜厚被覆將成爲電漿保護層之例如TaOx或Si02等之透明 絕緣層71。該電漿保護層71是於藉由後續之PCVD裝置 之閘極絕緣層的SiNx形成時,爲了還原露出於掃描線1 1 或擬似畫素電極93之邊端部的透明導電層91A、91B而 防止SiNx之膜質變動而所需要,詳細參照先前例日本特 開昭59-9962號公報。 電漿保護層7 1之被覆後是與第1實施形態相同,使 用PCVD裝置,以例如0.2-0.1-0.05//m左右之膜厚依序 被覆將成爲閘極絕緣層之第1 SiNx層30、將成爲幾乎不 含雜質之絕緣閘極型電晶體之通道的第1非晶質矽層3 1 ,及將成爲含有雜質之絕緣閘極型電晶體之源極•汲極的 第2非晶質矽層3 3的3種類薄膜層。在此,因閘極絕緣 層是由電漿保護層和第1 SiNx層之疊層所構成,故第I 之SiNx層以形成爲比先前例薄者較佳。 •33- (31) 1281999 之後’除了被形成在畫像顯示部外之區域的擬似短路 線94上’在掃描線之電極端子形成區域上具有開口部 63 A ’和在擬似畫素電極93上具有開口部74,同時絕緣 閘極型電晶體之形成區域,即是閘極電極1 1 A上之區域 84A之膜厚是藉由半色調曝光技術形成例如2 # m和比其 他區域84B之膜厚1 # m還厚之感光性樹脂圖案84A、 84B。然後,如第1圖(b)和第2圖(b)所示般,包含 將感光性樹脂圖案84A、84B當作遮罩而露出的第2非晶 質矽層3 3和第1非晶質矽層3 1和閘極絕緣層3 0和電漿 保護層7 1,依序蝕刻第1金屬層92,並露出掃描線1 1之 一部分當作掃描線之電極端子形成區域5 A,同樣地露出 擬似短路線94之透明導電層當作短路線91 C ( 40 ),露 出擬似畫素電極93之透明導電層91B當作畫素電極22。 掃描線1 1之電極端子最大達到驅動用LSI之電極間距之 一半左右,因通常具有20/zm以上之大小,故極容易製 作用以形成開口部63A (白區域)之光罩,還有容易管理 該完成尺寸之精度。 接著,當藉由氧氣電漿等之灰化手段將上述感光性樹 脂圖案84A、84B刪減]# m以上之膜厚時,則如第1圖 (c )和第2圖(c )所示般,感光性樹脂圖案84B消失, 露出第2非晶質矽層3 3,同時可以僅在閘極電極1 1 A上 選擇性形成感光性樹脂圖案84C。感光性樹脂圖案84C, 亦即島狀半導體層之圖案寬幅因是將遮罩配合精度加上源 極•汲極配線間之尺寸,故當將源極·汲極配線間設爲4 -34- (32) 1281999 〜6//m,配合精度設爲±3"m時,則成爲1〇〜i2//m, 以尺寸精度而言並不嚴格。但是,自光阻圖案84A變換 至8 4 C時,若光阻圖案向同性地刪減1 a m之膜厚,尺寸 則不僅減少2 // m,後續之源極·汲極配線形成時之遮罩 配合精度也縮小1 V m而成爲± 2 // m,對於製程上後者之 影響比前者之影響還嚴重。因此,於上述氧氣電漿處理中 ,對於抑制圖案尺寸之變化,以增強向異性爲佳。具體而 言,RIE( Reactive Ion Etching)方式、還有具有高密度 電漿源之 ICP( Inductive Coupled Plasama)方式或 TCP (Transfer Coupled Plasama)方式之氧氣電漿處理爲最佳 。然後,如第1圖(d )和第2圖(d )所示般,將感光性 樹脂圖案84C當作遮罩選擇性將第2非晶質矽層33B和 第1非晶質矽層3 1 B殘留成比閘極1 1電極之寬度還寬而 作爲島狀31A、33A,露出閘極絕緣層30A。島狀半導體 層31 A、33A,亦即感光性樹脂圖案84C (黑色區域)之 大小爲最小也有1 0 // m大小,不僅容易製作將白色區域 和黑色區域以外之區域當作半色調曝光區域的光罩,即使 島狀半導體層31A、33A之尺寸精度變動,因幾乎無絕緣 閘極型電晶體之電氣特性變動,故可理解其應容易執行製 程管理。 此時,雖然露出於玻璃基板2上之由透明導電層所構 成之電極端子形成區域5A、短線路91(:及畫素電極22是 被曝露於蝕刻氣體,但是屬於非晶質矽層33B、3 1B之蝕 刻氣體之氟系列氣體,不會產生例如使該些透明導電層之 -35- 1281999 (33) 膜厚減少,或使電阻値變化,或使透明度變化等不良狀況 ,較爲適合。 除去上述感光性樹脂圖案84C後,使用SPT等真空 製膜裝置依序被覆例如Ti、Ta等之耐熱金屬薄膜層34作 爲膜厚O.lym左右之耐熱金屬層,然後被覆A1薄膜層 3 5作爲膜厚0.3 // m左右之低電阻配線層。然後,如第1 圖(e )和第2圖(e )所示般,雖然藉由微細加工技術使 用感光性樹脂圖案依序蝕刻該些薄膜層,選擇性形成包含 畫素電極22之一部分而由2層疊層34A、35A所構成之 絕緣閘極型電晶體之汲極電極2 1和兼作源極配線之訊號 線1 2,但是在此與先前例相同,依序蝕刻第2非晶質矽 層3 3 A及第1非晶質矽層3 1 A,並且第1非晶質矽層3 1 A 是殘留0.0 5〜0.1 // m左右而予以蝕刻。並且,形成源極 •汲極配線1 2、2 1時,也同時在畫像顯示部外之區域形 成包含開口部6 3 A之掃描線1 1之一部分的掃描線之電極 端子5,和由訊號線1 2之一部分所構成之電極端子6。並 且,在此,作爲源極·汲極配線1 2、2 1之構成若電阻値 之限制並不嚴格時,則可簡化爲Ta、Cr、Mo等之單層。 源極·汲極配線1 2、2 1形成後,與以往之5道光罩 製程相同,在玻璃基板2之全面上被覆0.3 // m左右之膜 厚的第2 SiNx層當作透明性絕緣層並設爲保護絕緣層3 7 ,如第1圖(f)和第2圖(f)所示般,在畫素電極22 和掃描線1 1和訊號線1 2之電極端子5、6上選擇性地各 形成開口部3 8、6 3、6 4,露出畫素電極2 2和電極端子5 -36- (34) 1281999 、6之大部分。 貼合如此取得之主動基板2和彩色滅先片而予以液曰曰 面板化,完成本發明之第1實施形態。關於存儲電容1 5 之構成,雖然例示有構成中介著電漿保護層71和閘極絕 緣層3 Ο A平面性疊層包含有畫素電極2 2而與汲極配線2 1 同時被形成之存儲電極73和前段之掃描線1 1之例(左上 往右下之斜線部5 2 ),但是存儲電容1 5之構成並不以此 爲限,亦可爲在與掃描線同時被形成之存儲電容線和畫素 電極之間介存有包含閘極絕緣層之絕緣層的構成。再者, 雖然其他之構成亦可,但是省略詳細之說明。 (第2實施形態) 第2實施形態是與先行例相同地首先使用SPT等真 空裝置被覆膜厚0.1〜左右之第1金屬層,如第3 圖(a )和第4圖(a )所示般,藉由微細加工技術選擇性 形成也兼作閘極電極1 1 A之掃描線1 1和共通電容線1 6。 當考慮A1單體缺少耐熱性時,爲了使掃描線低電阻化, 作爲掃描線之構成可選擇A1 ( Zr、Ta )合金等之單層構 成或者 Al/Ta、Ta/Al/Ta、Al/Ti、Ti/Al/Ti、Al/Al ( Ta、 Zr )合金等之疊層構成,但是於本發明中,掃描線材料幾 乎無限制。其中,A1 ( Ta、Z〇是代表添加數%以下之Ta 或Zr等之耐熱性高的A1合金。 接著,使用PC VD裝置在玻璃基板2之全表面上例如 以0 · 3 - 0 . 1 - 〇 . 〇 5 # m左右之膜厚依序被覆將成爲閘極絕緣 -37- (35) 1281999 層之第1 SiNx層30、將成爲幾乎不含雜質之絕緣閘極型 電晶體之通道的第1非晶質矽層3 1,及將成爲含有雜質 之絕緣閘極型電晶體之源極•汲極的第2非晶質矽層3 3 的3種類薄膜層。如此將第〗非晶質矽層3 1與以往相較 ,可以被覆得比較薄,該點也是本發明之一特長,其理由 於後敘述。然後,如第3圖(b )和第4圖(b )所示般, 在掃描線1 1之電極端子形成區域上,具有開口部63 A ( 和在共通電容線1 6之電極端子形成區域上具有開口部 65A ),同時依據半色調曝光技術形成絕緣閘極型電晶體 之形成區域,亦即閘極電極1 1 A上之區域8 2 A之膜厚例 如爲2//m,和比其他區域82B之膜厚l//m還厚之感光 性樹脂圖案82A、82B,將感光性樹脂圖案82A、82B當 作遮罩而選擇性除去開口部6 3 A (和開口部6 5 A )內之第 2非晶質矽層3 3和第1非晶質矽層3 1和閘極絕緣層3 0 而露出掃描線1 1 (與共通電容線1 6 )之一部分72。 接著,當藉由氧氣電漿等之灰化手段將上述感光性樹 脂圖案82 A、82B刪減1 # m以上之膜厚時,則如第3圖 (c )和第4圖(c )所示般,感光性樹脂圖案8 2 B消失, 露出第2非晶質矽層3 3,同時可以僅在閘極電極1 1 A上 選擇性形成感光性樹脂圖案82C。在此,如第1圖(d ) 和第2圖(d )所示般,將感光性樹脂圖案82C當作遮罩 選擇性將第2非晶質矽層3 3和第1非晶質矽層3 1殘留成 比閘極〗1電極A之寬度還寬而當作島狀3 1 A、3 3 A,露 出閘極絕緣層3 0。此時,雖然需要注意露出於開口部 -38- (36) 1281999 63A內之掃描線11之一部分72因被曝露於齡I刻氣體或是 蝕刻藥劑,故隨著掃描線1 1之材質而產生掃描線π之膜 刪減,但是即使有A1合金露出之情形,若汲極配線材之 最下層選擇Ti則容易迴避氧化之影響。除此之外如先前 例所述般,亦可採用先將掃描線1 1當作例如Al/Ti/Al之 疊層,即使上層之Ti消失,亦可除去A1而使下層之Ti 予以露出的製法。 除去上述感光樹脂82C之後,使用SPT等真空製膜 裝置,依序被覆Ti、Ta等之耐熱金屬薄膜層34作爲膜厚 0.1/im左右之可陽極氧化的耐熱金屬層,A1薄膜層35作 爲膜厚0.3 // m左右之同樣可陽極氧化之低電阻配線層, 還有Ta等耐熱金屬薄膜層36作爲膜厚Ο.Ι/zm左右之同 樣可陽極氧化之中間導電層。然後,藉由微細加工技術使 用感光性樹脂圖案依序鈾刻由該些3種類之薄膜所構成之 源極·汲極配線材,如第3圖(e )和第4圖(e )所示般 ’選擇性形成由3 4 A、3 5 A、3 6 A之疊層所構成之絕緣閘 極型電晶體之汲極電極(配線)2 1和也兼作源極電極( 配線)的訊號線1 2。對於源極•汲極配線丨2、2 1之選擇 性圖案形成,如以往般,不需要蝕刻含有雜質之第2非晶 質矽層33A和不含雜質之第丨非晶質矽層31A。並且,一 般於形成源極·汲極配線1 2、2 1時也同時形成包含開口 部6 3 A內之掃描線n 一部分7 2的掃描線之電極端子5 和由訊號線之一部分所構成之電極端子6。作爲源極•汲 極配線之構成若電阻値之限制不嚴格時,則可予以簡化設 -39- (37) 1281999 爲可陽極氧化之Ta單層,再者,添加有Nd之A1合金因 化學性電位下降,顯像液或光阻剝離液等之鹼溶液中之與 ITO的化學腐鈾反應被抑制,故於此時不需要中間導電層 3 6 A,可將源極·汲極配線1 2、2 1之疊層構造設爲2層 構造(3 4 A、3 5 A ),源極•汲極配線1 2、2 1之構成多少 可以被簡化。 於形成源極•汲極配線12、21形成後,使用SPT等 真空製膜裝置在玻璃基板2之全表面上,例如被覆ITO當 作膜厚0.1〜〇.2//m左右之透明導電層,如第3圖(f) 和第4圖(f)所示般,藉由使用感光性樹脂圖案8 3之微 細加工技術,在閘極絕緣層3 0上選擇性形成包含汲極電 極21之中間導電層36A之一部分的畫素電極22。此時, 也在掃描線之電極端子5上和訊號線之電極端子6上形成 透明導電層而設爲透明導電性之電極端子5A、6A。在此 ,與先行例相同設置透明導電性之短路線4 0 ’藉由使電 極端子5 A、6 A和短路線4 0之間形成細長條狀’則容易 高電阻化成爲對抗靜電用之高電阻。 接著,將上述之感光性樹脂圖案83當作遮罩,照射 光的同時也陽極氧化源極•汲極配線1 2、2 1,而在該表 面上形成氧化層,同時陽極氧化露出於源極•汲極配線 12、21間之含有雜質的第2非晶質矽層33A,和不含雜 質之第1非晶質矽層3 1A之一部分,如第3圖(g )和第 4圖(g )所示般,形成屬於絕緣層之含有雜質之氧化矽 層(Si02) 66,和不含雜質之氧化矽層(無圖示)。 -40- (38) 1281999 在源極·汲極配線1 2、2 1之上面露出有Ta ’再者在 側面上露出有Ta、Al、Ti之疊層,藉由陽極氧化Ti變質 成屬於半導體之氧化鈦(Ti〇2 ) 68 ’ A1是變質成屬於絕 緣層之鋁(Al2〇3 ) 69,然後Ta變質成屬於絕緣層之五氧 化鉅(Ta20 5 ) 70。氧化鈦層68雖然不是絕緣層,但是膜 厚極薄,並且露出面積也小,故對於保護上是不會造成問 題,耐熱金屬薄膜層34A也以選擇Ta爲最佳。但是,Ta 與Ti不同,必須注意其吸收基底之表面氧化層而欠缺容 易成爲歐姆接觸之機能的特性。 通道間之含有雜質的第2晶質矽層33A當在厚度方 向完全不絕緣層化時,造成增大絕緣閛極型電晶體之漏電 流。在此,照射光的同時實施陽極氧化,對於陽極氧化工 程爲非常重要之要點,於先行例中也有揭示。具體而言, 若照射1萬米燭光左右之相當強的光,絕緣閘極型電晶體 之漏電流若超過// A時,則自源極•汲極配線1 2、2 1間 之通道部和汲極電極21之面積計算,爲10 m A/cm2左右 之陽極氧化可得供獲取良好膜質之電流密度。 再者,利用陽極氧化含有雜質之第2非晶質矽層3 3 A ,而電壓設定成比足夠變質成屬於絕緣層之氧化砂層66 之化成電壓ιοον還高出ιον左右,至接觸於含有設定反 應電壓於高電壓所形成之雜質的氧化矽層6 6之不含雜質 的第1非晶質矽層31 A之一部分(100A左右)爲止,使 變質成不含雜質之氧化矽層(無圖示),藉此通道之電性 純度提高,可以使源極•汲極配線1 2、2 1間之電性完全 -41 - (39) 1281999 分離。即是,絕緣閘極型電晶體之OFF電流充分減少, 可取得高ΟΝ/OFF比。 由陽極氧化所形成之五氧化鉅70、鋁69、氧化鈦68 之各氧化層之膜厚是以〇. 1〜〇 . 2 m左右當作配線之保護 層即已足夠,使用乙二醇等之處理液,施加電壓同樣超過 100V。對於源極·汲極配線12、21之陽極氧化應留意之 事項,雖然無圖示但是所有訊號線1 2必須電性並聯或串 聯,之後當然必須在製造工程之某一處解除並串聯,否則 不僅對主動基板2之電氣檢查,就連對於液晶顯示裝置之 實際動作也會造成障礙。作爲解除手段,可藉由照射雷射 光之蒸散,或藉由刮片之機械性切除等簡易手段,在此省 略詳細說明。 以感光性樹脂圖案83覆蓋畫素電極22,是因爲不僅 不需要陽極氧化畫素電極22,也不需要確保所需量以上 之經由絕緣閘極性電晶體而流動於汲極電極2 1之反應電 流即可。 最後,除去上述感光性樹脂圖案8 3如第3圖(h )和 第4圖(h)所示般,完成主動基板2(顯示裝置用半導 體裝置)。貼合如此所得之主動基板2和彩色濾光片而予 以液晶面板化,完成本發明之第1實施形態。關於存儲電 容1 5之構成,雖然如第3圖(h )例示有構成中介著閘極 絕緣層3 0平面性重疊存儲電容線1 6和畫素電極22的構 成例(左上往右下之斜線部5 1 ),但是存儲電容1 5之構 成並不限於此,在畫素電極22和上段之掃描線1 1之間介 -42 - (40) 1281999 存有包含閘極絕緣層3 0之絕緣層的構成亦可。再者 他之構成亦可,但是省略詳細之說明。 第2實施形態中雖然是對於如半導體層之島化工 和用以形成掃描線之接觸的除去電極端子形成區域上 極絕緣層之工程的圖案精度低之層’適用半色調曝光 而執行光鈾刻工程之刪減’以4道光罩製作主動基板 是如第1實施形態中所採用般’因藉由附予以相同光 理畫素電極和掃描線之形成的技術,則更可促進工程 而以3道光罩製作主動基板,故以第3實施形態說明 (第3實施形態) 第3實施形態是如第5圖(d )和第6圖(d )所 ,至半導體之島化工程和接觸工程爲止是以與第1實 態相同之製程所進行。然後利用半色調曝光技術所形 除去被削減膜厚之上述感光性樹脂圖案84C後,使用 等真空製膜裝置,依序被覆例如Ti、Ta等耐熱金屬 層34作爲膜厚左右之可陽極氧化的耐熱金屬 A1薄膜層35作爲膜厚0.3//m左右之同樣可陽極氧 低電阻配線層。然後如第5圖(e )和第6圖(e )所 ’藉由微細加工技術使用感光性樹脂圖案8 5 A〜8 5 D 蝕刻由該些薄膜所構成之源極·汲極配線材料,並選 形成包含開口部74內之畫素電極22之一部分的由 和35A之疊層所構成之絕緣閘極型電晶體之汲極電毛 ,和同樣也兼作源極電極之訊號線1 2。雖然於源極 ,其 程, 之閘 技術 ,但 罩處 刪減 示般 施形 成, SPT 薄膜 層, 化之 示般 依序 擇性 34A I 2 1 •汲 -43- (41) 1281999 極配線1 2、2 1形成時,也同時形成包含由透明導電 構成之電極端子形成區域5 A之掃描線之電極端子5 由訊號線之一部分所構成之電極端子6,但是此時幸昔 色調曝光技術事先形成對應於電極端子5、6之區域 、8 5 B之膜厚(黑區域)爲3 // m,和比對應於汲極 1 2、2 1之區域 8 5 C、8 5 D (中間調區域)之膜厚1 . 還厚之感光性樹脂圖案8 5 A〜8 5 D,爲本發明之重要 。雖然對應於電極端子5、6之區域85 A、85B之最 寸有數十#πι大,對於光罩製作也極容易管理完成尺 但是因對應於源極·汲極配線1 2、2 1之區域8 5 C、 之最小尺寸爲4〜8//m尺寸精度要求比較高,故以 調區域而言是需要細小之縫細圖案。但是’於本發明 源極•汲極配線12、2 1因以1次曝光處理和1次蝕 理所形成,故比起以往之半色調曝光技術’以1次曝 理和2次蝕刻處理所形成之場合相比’無論源極•汲 線1 2、2 1之尺寸管理’還是源極·汲極配線1 2、2 1 亦即通道長之尺寸管理皆比以往之半色調曝光技術容 理圖案精度。 源極•汲極配線1 2、2 1形成後,當藉由氧氣電 之灰化手段,將上述感光性樹脂圖案8 5 A〜8 5 D削減 // m以上之膜厚時,感光性樹脂圖案8 5 c、8 5 D則消 露出源極•汲極配線1 2、2 1,同時可以僅在電極端子 6上,選擇性形成感光性樹脂圖案8 5 E、8 5 F。從電極 5、6之大小也可容易理解’在此藉由氧氣電漿處理 層所 |,和 由半 85 A 配線 5 μ m 特徵 小尺 寸, 85D 半色 中, 刻處 光處 極配 間, 易管 漿等 ;1.5 失而 ‘ 5、 端子 而幾 -44- (42) 1281999 乎不影響圖案尺寸之情形也是本發明之特徵。在此,如第 5圖(f)和第6圖(f)所示般,將感光性樹脂圖案8 5 E 、8 5 F當作遮罩與第2實施形態相同地,照射光,同時陽 極氧化源極•汲極配線1 2、2 1而形成氧化層6 8、6 9,同 時陽極氧化露出於源極•汲極配線1 2、2 1間之第2非晶 質矽層3 3 A和鄰接的第1非晶質矽層3 1 A之一部分,而 形成屬於絕緣層之含有雜質的氧化矽層66和不含有雜質 之氧化矽層(無圖示)。 於陽極氧化完成後,除去感光性樹脂圖案8 5 E、8 5 F ,如第5圖(g )和第6圖(g )所示般,於該側面具有陽 極氧化層,露出由低電阻金屬層所構成之電極端子5、6 。但是,爲了對抗靜電,電極端子形成區域5A是被連接 於例如短路線9 1 C,並且如圖示般,電極端子6若非包含 短路線9 1 C而被形成的話,則在電極端子5之側面上不形 成陽極氧化層。而且,以源極·汲極配線1 2、2 1之構成 而言,電阻値之限制不嚴格的話,則可予以簡化可設爲可 陽極氧化之Ta之單層。貼合如此所得之主動基板2和彩 色濾光片而予以液晶面板化,完成本發明之第2實施形態 。關於存儲電容1 5之構成,雖然如第5圖(g )例示有構 成中介著電漿保護層71A和閘極絕緣層3 0A之疊層而平 面性重疊包含有畫素電極22之一部分同時與源極·汲極 配線1 2、2 1形成之存儲電極7 3和被形成於前段掃描線 1 1之突起區域的構成例(左上往右下之斜線部5 2 )’但 是存儲電容〗5之構成並不限於此,與第2實施形態相同 -45- 1281999 (43) 在畫素電極22和與掃描線11同時形成之共通電容線16 之間介存有包含閘極絕緣層3 Ο A之絕緣層的構成亦可。 此外’其他之構成亦可,但是省略詳細之說明。 第3實施形態中,因如此在源極·汲極1 2、2 1和第 2非晶質矽層3 3 A之陽極氧化時,電性連接汲極電極2 1 之畫素電極22也露出,故畫素電極22同時也被陽極氧化 ’該點則與第1實施形態大有差異。因此,也有隨著構成 畫素電極22之透明導電層之膜質不同,藉由陽極氧化而 增加電阻値之情形亦會發生,於此時,雖然必須適當變更 透明導電層之製膜條件,事先準備氧不足之膜質,但是在 陽極氧化不會發生降低透明導電層之透明度的情形。再者 ,用以陽極氧化汲極電極21和畫素電極22之電流雖然也 通過絕緣閘極型電晶體之通道而被供給,但是因爲畫素電 極22之面積爲大,故需要較大之氧化電流或長時間之氧 化,即使照射多強之外光也不會對通道部之電阻造成障礙 ,對於在汲極電極2 1上和存儲電極73上形成與訊號線 12上同等之膜質與膜厚的陽極氧化層,僅以延長氧化時 間是不夠的。但是,即使被形成於汲極電極2 1上之陽極 氧化層多少有些不完全’在實用上多可獲得無礙之可信賴 性。因爲被施加於液晶胞之驅動訊號基本上爲交流,爲了 使在對向電極1 4和畫素電極2 2 (汲極電極2 1 )之間,可 減少直流電壓成分,對向電極〗4之電壓於畫像檢查時因 被調整(降低閃爍之調整),因此,使僅在訊號線上無直 流成分流動而形成絶緣層即可。 -46 - 1281999 (44) 以上所說明之液晶顯示裝置雖然是使用TN型之液晶 胞,但是對於以和畫素電極相隔規定距離而形成之一對對 向電極和畫素電極來控制橫方向電場之IPS(In-Plain-Swticing )方式的液晶顯示裝置,本發明所提案之工程刪 減也有效,將於以後之實施形態說明之。 (第4實施形態) 第4實施形態是首先使用SPT等真空製膜裝置在玻 璃基板2之一主表面上,被覆膜厚〇.1〜0.3/zm左右之第 1金屬層,如第7圖(〇和第8圖(a)所示般,藉由微 細加工技術選擇性形成也兼作閘極電極1 1 A之掃描線1 1 和共通電容線1 6。 接著,使用PCVD裝置在玻璃基板2之全表面上例如 以0.3-0.2-0.05/zm左右之膜厚依序被覆將成爲閘極絕緣 層之第1 SiNx層30、將成爲幾乎不含雜質之絕緣閘極型 電晶體之通道的第1非晶質矽層31,及將成爲含有雜質 之絕緣閘極型電晶體之源極•汲極的第2非晶質矽層3 3 的3種類薄膜層。 然後,在掃描線1 1之電極端子形成區域上,藉由半 色調曝光技術,形成具有開口部63A同時絕緣閘極型電 晶體之形成區域,亦即閘極電極1 1 A上之區域82A之膜 厚爲例如2 // m,和比其他區域82B之膜厚1 // m還厚之 感光性樹脂圖案82A、82B,如第7圖(b )和第8圖(b )所示般,將感光性樹脂圖案82 A、82B當作遮罩而選擇 •47- (45) 1281999 性除去開口部6 3 A內之第2非晶質矽層3 3和第1非晶質 矽層3 1和閘極絕緣層3 0而露出掃描線1 1之一部分7 2。 接著,當藉由氧氣電漿等之灰化手段將上述感光性樹 脂圖案8 2 A、8 2 B刪減1 /i m以上之膜厚時,則如第7圖 (c )和第8圖(c )所示般,感光性樹脂圖案82B消失, 露出第2非晶質矽層3 3,同時可以僅在閘極電極Η A上 選擇性形成感光性樹脂圖案82C。在此,如第7圖(d ) 和第8圖(d )所示般,將感光性樹脂圖案8 2 C當作遮罩 選擇性將第2非晶質矽層3 3和第1非晶質矽層3 1殘留成 比閘極11電極A之寬度還寬而作爲島狀31A、33A,露 出閘極絕緣層3 0。 除去上述感光樹脂82C之後,使用SPT等真空製膜 裝置,依序被覆例如Ti、Ta等耐熱金屬薄膜層34作爲膜 厚0.1/zm左右的耐熱金屬層,A1薄膜層35作爲膜厚0.3 // m左右之低電阻配線層。然後,雖然如第7圖(e )和 第8圖(e )所示般,藉由微細加工技術使用感光性樹脂 圖案依序蝕刻由該些薄膜所構成之源極•汲極配線材,選 擇性形成由34A、35A之疊層所構成之成爲畫素電極的絕 緣閘極型電晶體之汲極電極(配線)2 1和也兼作源極電 極(配線)的訊號線1 2,但是,在此與先行例相同,依 序蝕刻第2非晶質矽層3 3 A及第1非晶質矽層3 1A,第1 非晶質矽層31 A是蝕刻成剩下〇.〇5〜0.1 /i m程度。並且 ,一般於形成源極·汲極配線1 2、2 1時也同時形成包含 開口部6 3 A內之掃描線11 一部分的掃描線之電極端子5 -48 - (46) 1281999 和由訊號線1 2之一部分所構成之電極端子6。並 此源極•汲極配線1 2、2 1之構成若電阻値之限制 格的話,則可予以簡化設爲可陽極氧化之Ta、Cr、 之單層。 源極·汲極配線1 2、2 1之形成後,與以往之 罩製程相同,在玻璃基板2之全表面上被覆0.3//] 膜厚的第2 SiNx層當作保護絕緣層,如第7圖(f 8圖(f)所示般,在掃描線Π和訊號線1 2之電極 、6上選擇性地形成開口部63、64而露出電極端Ϊ 之大部分,完成主動基板2。 貼合如此取得之主動基板2和彩色濾光片而予 面板化,完成本發明之第4實施形態。IPS型之液 裝置由以上說明明顯可知,在主動基板2上不需要 電性之畫素電極22,因此,也不需要源極·汲極 之中間導電層。關於存儲電容1 5之構成,雖然於f (f )例示有對向電極(存儲電容線)1 6和畫素電 極電極)21介存有閘極絕緣層30而構成之例(左 下之斜線部52 ),但是存儲電容1 5之構成並不限 ,即使爲在畫素電極2 1和前段之掃描線1 1之間介 有閘極絕緣層3 0之絕緣層亦可。並且,於第7圖| ,雖然以高電阻性構件,例如OFF狀態之絕緣閘 晶體或細長導電性線路,連接掃描線之電極端子5 線之電極端子6之間的靜電氣對策並無圖示,但是 置開口部63A並露出掃描線1 1之一部分72的工 且,在 並不嚴 Mo等 五道光 m左右 )和第 端子5 :5、6 以液晶 晶顯不 透明導 配線上 I 7圖 極(汲 上往右 定於此 存有含 〔f)中 極型電 和訊號 因有設 程,故 -49- (47) 1281999 容易對抗靜電。 第4實施形態中因對主動基板2之保護層,採用以先 行例相同使用PCVD裝置而製作出之矽氮化層(SiNx ), 故於現有之量產工場中,有製程變更點較少,容易導入之 優點,在此也與第3實施形態相同可更進一步刪減藉由源 極•汲極之陽極氧化的保護技術的工程和低成本化,以第 5和第6實施形態說明之。 (第5實施形態) 第5實施形態也是使用SPT等真空製膜裝置先在玻 璃基板2之一主表面上,被覆膜厚0.1〜〇.3//m左右之第 1金屬層,如第9圖(a)和第10圖(a)所示般,藉由 微細加工技術選擇性形成也兼作閘極電極1 1 A之掃描線 1 1和對向電極1 6。 接著,使用PCVD裝置在玻璃基板2之全面上,例如 以0.3-0· 1-0.05 // m左右之膜厚,依序被覆將成爲閘極絕 緣層之第1 SiNx層30、將成爲幾乎不含雜質之絕緣閘極 型電晶體之通道的第1非晶質矽層3 1,及將成爲含有雜 質之絕緣閘極型電晶體之源極·汲極的第2非晶質矽層 3 3的3種類薄膜層。 接著,如第9圖(b )和第10圖(b )所示般,藉由 微細加工技術選擇性除去第2非晶質矽層3 3和第1非晶 質砂層31 ’並在閘極電極11A上形成比閘極11電極A之 寬度還寬的島狀半導體層3 ] A、3 3 A而露出閘極絕緣層3 0 -50- (48) 1281999 接著,如第9圖(c )和第1 〇圖(c )所示般,藉 微細加工技術在掃描線1 1之電極端子形成區域上形成 口部6 3 A,選擇性除去開口部6 3 a內之閘極絕緣層3 0 露出掃描線1 1之一部分7 2。 並且’使用SPT等真空製膜裝置,依序被覆Ti、 等耐熱金屬薄膜層34作爲膜厚右之可陽極氧 的耐熱金屬層,A1薄膜層35作爲膜厚0.3/^m左右之 樣可陽極氧化之低電阻配線層。然後,如第9圖(d ) 第1 0圖(d )所示般,藉由微細加工技術使用感光性樹 圖案85A〜85D依序蝕刻由該些薄膜所構成之源極·汲 配線材料,選擇性形成由3 4 A和3 5 A之疊層所構成之 成爲畫素電極的絕緣閘極型電晶體之汲極電極2 1,和 兼作源極電極1 1 A的訊號線1 2。與形成源極·汲極配 12、21之時,雖然也同時形成包含開口部63A內之掃 線1 1之一部分7 2,由掃描線之電極端子5和訊號線之 部分所構成之電極端子6,但是此時,與第3實施形態 同,依據半色調曝光技術,形成電極端子5、6之區 8 5 A、8 5 B之膜厚(黑區域)爲例如3 // m,和比對應於 極配線1 2、2 1之區域8 5 C、8 5 D (中間調區域)之膜 1.5/im還厚之感光性樹脂圖案85A〜85D。 源極·汲極配線1 2、2 1形成後’當藉由氧氣電漿 之灰化手段,將上述感光性樹脂圖案85 A〜85D削減 // m以上之膜厚時,感光性樹脂圖案85C ' 85D則消失 由 開 而 Ta 化 同 和 脂 極 將 也 線 描 相 域 汲 厚 等 ί .5 而 •51 - (49) 1281999 露出源極•汲極配線 1 2、2 1,同時可以僅在電極端子 5 上和電極端子6上,選擇性形成感光性樹脂圖案8 5 E、 85F。在此,如第9圖(e)和第10圖(e)所示般,將感 光性樹脂圖案8 5 E、8 5 F當作遮罩,一面照射光,一面陽 極氧化源極•汲極配線1 2、2 1而在該表面形成陽極氧化 層6 8、6 9,同時陽極氧化露出於源極•汲極配線1 2、2 1 間之第2非晶質矽層3 3 A和第1非晶質矽層3 1 A之一部 分,而形成屬於絕緣層之含有雜質的氧化矽層66和不含 有雜質之氧化矽層(無圖示)。 於陽極氧化完成後,當除去感光性樹脂圖案85E、 8 5 F時,則如第9圖(f)和第1 0圖(f)所示般,露出由 低電阻薄膜層所構成之電極端子5和電極端子6。但是, 雖然於訊號線1 2之電極端子6之側面上與訊號線1 2相同 形成有陽極氧化層6 9、6 8,但是,留意在掃描線之電極 端子5之側面上並不形成陽極氧化層。這是爲了使掃描線 之電極端子5獨立而予以陽極氧化之故,如第2實施形態 般,爲了對抗靜電,當以電阻性構件連接掃描線之電極端 子5和訊號線之電極端子6而予以陽極氧化時,在掃描線 之電極端子5之側面上也僅形成些許陽極氧化層。以電阻 性構件而言,因於IP S型液晶顯示裝置不需要透明導電層 ,故需要掃描線材料、訊號線材料及半導體層中之任一者 ,但因存在有用以連接於掃描線1 1之開口部6 3 A,故對 於選擇哪一者並無限制,省略詳細說明。 貼合如此取得之主動基板2和彩色濾光片而予以液晶 -52- (50) 1281999 面板化,完成本發明之第4實施形態。關於存儲電容15 之構成,於第9圖(f)中例示有對向電極(存儲電容線 )1 6和畫素電極(汲極電極)2 1介存有閘極絕緣層3 0而 構成之例。 除了第4實施形態中所採用之半導體層的島化工程和 閘極絕緣層之形成開口部的合理化’亦可同時採用第5實 施形態中之源極·汲極配線之形成保護絕緣層之合理化的 實施形態,將此當作第6實施形態予以說明。 (第6實施形態) 第6實施形態是如第1 1圖(d )和第1 2圖(d )所示 般,針對半導體層之島化工程和形成接觸工程爲止之工程 ,以幾乎與第4實施形態相同之製程進行。接著,對於源 極·汲極配線之形成工程,則使用SPT等真空製膜裝置 ,依序被覆例如Ti、Ta等耐熱金屬薄膜層34作爲膜厚 0.1/zm左右之可陽極氧化的耐熱金屬層,A1薄膜層35作 爲膜厚左右之同樣可陽極氧化之低電阻配線層。 然後如第1 1圖(e )和第1 2圖(e )所示般,藉由微細加 工技術使用感光性樹脂圖案85A〜85D依序蝕刻由該些薄 膜所構成之源極·汲極配線材料,而選擇性形成由3 4 A 和3 5 A之疊層所構成,將成爲畫素電極之絕緣閘極型電 晶體之汲極電極2 1,和同樣也兼作源極電極之訊號線1 2 ,於源極•汲極配線1 2、2 1之形成時,同時也形成包含 開口部6 3 A內之掃描線Π之一部分,由掃描線之電極端 -53- (51) 1281999 子5和訊號線之一部分所構成之電極端子6。此時與 實施形態相同,藉由半色調曝光技術形成電極端子 上之區域8 5 A、8 5 B之膜厚例如爲3 // m,和比對應 極配線1 2、2 1之區域8 5 C、8 5 D之膜厚1 · 5 y m還厚 光性樹脂圖案8 5 A〜8 5 D。 源極•汲極配線1 2、2 1形成後,藉由氧氣電漿 灰化手段,將上述感光性樹脂圖案8 5 A〜8 5 D削減1 ·: 以上之膜厚時,感光性樹脂圖案8 5 C、8 5 D則消失而 源極•汲極配線1 2、2 1,同時可以僅在電極端子5 電極端子6上上,選擇性形成感光性樹脂圖案85E、 。在此,如第11圖(〇和第12圖(f)所示般,將 性樹脂圖案8 5 E、8 5 F當作遮罩,照射光的同時陽極 源極·汲極配線12、21而形成氧化層68、69,同時 氧化露出於源極•汲極配線1 2、2 1間之第2非晶質 3 3 A和第1非晶質矽層3 1 A之一部分,而形成屬於絕 之含有雜質的氧化矽層66和不含有雜質之氧化矽層 圖示)。 於陽極氧化完成後,除去感光性樹脂圖案8 5 E、 時,則如第1 1圖(g )和第12圖(g )所示般,露出 電阻薄膜層所構成之電極端子5和電極端子6。貼合 取得之主動基板2和彩色濾光片而予以液晶面板化’ 本發明之第5實施形態。關於存儲電容1 5之構成’ 1 1圖(g )例示有對向電極(存儲電容線)]6和畫素 (汲極電極)2 1之間介存有閘極絕緣層3 0之構成例< 第5 5、6 於汲 之感 等之 5 β m 露出 上和 85F 感光 氧化 陽極 石夕層 緣層 (Μ 85F 由低 如此 完成 於第 電極 -54 - (52) 1281999 於第5實施形態和第6實施形態中所使用之光罩雖然 各爲4道、3道,但是所獲得之液晶顯示裝置幾乎無差異 。該差異也只不過是露出於被形成在掃描線之電極端子形 成區域上之開口部內之掃描線的一部分膜被刪減或表面變 質而已。亦即,第6實施形態可以更進一層削減工程。 〔發明效果〕 如上所述,本發明所記載之液晶顯示之一部分,因同 時陽極氧化由可陽極氧化之源極·汲極配線材料所構成之 源極•汲極配線,和絕緣閘極型電晶體之通道表面,而形 成保護層(鈍化層),故不用額外加熱工程,把非晶質矽 作爲半導體層之絕緣閘極型電晶體不需要過度之耐熱性。 換言之,以形成保護效果則附加有不產生電氣性能惡化的 效果。再者,對於源極·汲極配線之陽極氧化,藉由導入 半色調曝光技術,則可選擇性保護掃描線或訊號線之電極 端子,取得可以阻止增加光蝕刻工程數的效果。 而且,因爲以陽極氧化含有雜質之非晶質矽層,使將 成爲絕緣閘極型電晶體之源極·汲極之1對含有雜質之非 晶質矽層之絕緣分離予以變質的電化學手法,故不會如以 往般,會因通道半導體層之蝕刻時的損傷而導致絕緣閘極 型電晶體之電性特性惡化的可能性,再者,因可以將成爲 通道之不含雜質之非晶質矽層減至最適當的膜厚而予以製 膜,故有關PCVD裝置之運轉率和粒子發生狀況也有顯著 改善。 •55- (53) 1281999 除此之外’藉由導入半色調曝光技術以相同之光 處理半導體層之島化工程和閘極絕緣層之開口部形成 ’可以刪減工程’藉由導入擬似畫素電極使用相同之 同時形成畫素電極和掃描線等之合理化,藉由刪減工 合理化則可以將光鈾刻工程數刪減成比以往之5道更 使用4道或3道光罩來製作液晶顯示裝置,即使從液 示裝置之成本觀點來看也爲重要之特徵。而且,該些 之圖案精度並不是那樣高,故也不會對生產量或品質 大影響,容易執行生產管理。 並且,於第5和第6實施形態之IP S型之液晶顯 置中,產生於對向電極和畫素電極之間的電場,因被 於閘極絕緣層和陽極氧化層,故不介存有以往般之劣 保護絕緣層,也有不容易產生顯示畫像之燒焦殘影現 優點。該是汲極配線(畫素電極)之陽極氧化層因不 作絕緣層而是作爲高電阻層而發揮機能,故不產生存 荷之故。 而且,本發明之要件由上述之說明明顯可知’於 蝕刻型之絕緣閘極型電晶體中,使用可陽極氧化之源 汲極配線材料,與含有雜質之非晶質矽層同時也對源 汲極配線表面陽極氧化,任一者皆使絕緣層化之點, 除此之外的構成,畫素電極、閘極絕緣層等之材質或 等爲不同之液晶顯示裝置或是該製造方法之差異也屬 發明之範疇,即使爲反射型液晶顯示裝置’本發明之 性也不會改變,再者,絕緣閘極型電晶體之半導體層 罩可 工程 光罩 程及 低, 晶顯 工程 有極 示裝 施加 質的 象的 是當 儲電 通道 極· 極· 關於 膜厚 於本 應用 也不 -56- (54) 1281999 限定於非晶質砂。 【圖式簡單說明】 第1圖是本發明之第1實施形態所涉及之顯示裝置用 半導體裝置之平面圖。 第2圖是本發明之第1實施形態所涉及之顯示裝置用 半導體裝置之製造工程剖面圖。 第3圖是本發明之第2實施形態所涉及之顯示裝置用 半導體裝置之平面圖。 第4圖是本發明之第2實施形態所涉及之顯示裝置用 半導體裝置之製造工程剖面圖。 第5圖是本發明之第3實施形態所涉及之顯示裝置用 半導體裝置之平面圖。 第6圖是本發明之第3實施形態所涉及之顯示裝置用 半導體裝置之製造工程剖面圖。 第7圖是本發明之第4實施形態所涉及之顯示裝置用 半導體裝置之平面圖。 第8圖是本發明之第4實施形態所涉及之顯示裝置用 半導體裝置之製造工程剖面圖。 第9圖是本發明之第5實施形態所涉及之顯示裝置用 半導體裝置之平面圖。 第1 〇圖是本發明之第5實施形態所涉及之顯示裝置 用半導體裝置之製造工程剖面圖。 第Π圖是本發明之第6實施形態所涉及之顯示裝置 -57- (55) 1281999 用半導體裝置之平面圖。 第1 2圖是本發明之第6實施形態所涉及之顯示裝置 用半導體裝置之製造工程剖面圖。 第1 3圖是表示液晶面板之安裝狀態。 第1 4圖是液晶面板之等效電路圖。 第1 5圖是以往液晶面板之剖面圖。 第16圖是先行例之主動基板之平面圖。 第1 7圖是先行例之主動基板之製造工程剖面圖。 第18圖是被合理化之主動基板之平面圖。 第19圖是被合理化之主動基板之製造工程剖面圖。 〔符號說明〕 1 :液晶面板 2 :主動基板(玻璃基板) 3 _•半導體積體電路晶片 4 : TCP薄膜 5、6 :電極端子 9 :彩色濾光片(相向之玻璃基板) 1 〇 :絕緣閘極型電晶體 1 1 :掃描線(閘極配線、閘極電極) 1 2 :訊號線(源極配線、源極電極) 16 :共通電容線(IPS型中爲對向電極) 1 7 :液晶 I 9 :偏光板 -58- (56) 1281999 20 :配向膜 21 :汲極電極(汲極配線,IPS型中爲畫素電極 22 :(透明導電性之)畫素電極 3 〇 =閘極絕緣層 3 1 :不含雜質之(第1 )非晶質矽層 3 3 :含有雜質之(第2 )非晶質矽層 34:(可陽極氧化之)耐熱金屬層 35 :(可陽極氧化之)低電阻金屬層(A1 ) 3 6 :(可陽極氧化之)中間導電層 3 7 :保護絕緣層1281999 (1) Field of the Invention The present invention relates to a liquid crystal display device having a color image display function, and more particularly to an active type liquid crystal display device. [Prior Art] Based on recent advances in microfabrication technology, liquid crystal material technology, and high-density mounting technology, a large number of liquid crystal display devices with diagonal sizes of 5 to 5 cm are provided for commercial use as television image or various image display devices. . Further, it is also easy to perform color display by forming an RGB colored layer on one of the two glass substrates constituting the liquid crystal panel. In particular, the active liquid crystal panel in which the switching elements are incorporated in each pixel ensures a low-contrast image with relatively low cross-talk and fast response speed. Although the liquid crystal display devices (liquid crystal panels) are generally prepared by a matrix of 200 to 1 200 scanning lines and 300 to 1 600 signal lines, they have recently been performed correspondingly to an increase in display capacity. The big picture and high definition. Fig. 1 is a view showing the actual mounting state of the liquid crystal panel, and the driving signal is supplied to the electrode formed on the transparent insulating substrate constituting one of the liquid crystal panels 1, for example, the scanning line on the glass substrate 2, using a conductive adhesive connection. The COG (Chip-On-G1 ass) method of the semiconductor integrated circuit chip 3 of the terminal group 5, or a polyimide resin film, for example, as a substrate, and a suitable adhesive containing a conductive medium, will have gold plating or A TCP (Tape_Carrier-Package 1281999 (2)) film 4 on which a copper terminal (not shown) of a solder is plated, an actual mounting means such as a TCP method of pressing and fixing the electrode terminal group 6 of the signal line, and an electric signal is supplied. To the image display section. Here, in order to facilitate the simultaneous display of the two mounting methods, one of the two may be appropriately selected in practice. 7 and 8 are connecting lines between the pixels in the image display portion located at the approximate central portion of the liquid crystal panel 1 and the electrode terminals 5 and 6 of the scanning lines and the signal lines, and are not necessarily required to be combined with the electrode terminal groups 5 and 6. Consisting of the same conductive material. 9 is an opposite glass substrate or a color filter having another transparent insulating substrate having a transparent conductive counter electrode common to all liquid crystal cells on the opposite surface. Fig. 14 is an equivalent circuit diagram of an active type liquid crystal display device in which an insulating gate type transistor is disposed as a switching element per pixel, and Fig. 1 1 (7 in Fig. 13) is a scanning line, 12 (first) In the figure, 8) is a signal line, 13 is a liquid crystal cell, and the liquid crystal cell 13 is electrically used as a capacitive element. The elements drawn by the solid line are formed on the glass substrate 2 constituting one of the liquid crystal panels, and all the counter electrodes 14 common to the liquid crystal cells 13 drawn by the broken lines are formed on the opposite main surfaces of the other glass substrate 9. on. When the OFF resistance of the insulating gate type transistor 10 or the resistance of the liquid crystal cell 13 is low or when the gray scale of the image is emphasized, it is necessary to seek some time for increasing the liquid crystal cell as a load. The number of storage capacitors 15 is applied in parallel to the circuit improving means such as the liquid crystal cell 13 or the like. And '16' is a common bus of the storage capacitor 15. Fig. 15 is a cross-sectional view showing an important part of an image display unit of a liquid crystal display device. The two glass substrates 2 and 9 constituting the liquid crystal panel 1 are formed of color by -5 - (3) 1281999 resin fibers, beads or a spacer material (not shown) such as a columnar spacer on the filter 9, and a sealing material and/or a sealing material composed of an organic resin between the specific distances of #m, and no sealing material (all of which are not shown) The sealing portion is formed on the peripheral portion of the glass substrate 9 to form a closed space between the two glass plates 2'9, and the crystal material 17 is accommodated in the closed space. In the case of color display, it is given a color display function by any one of dyes or pigments called the colored layer 18 on the side of the closed space of the glass substrate or an organic film containing both degrees 1 to 1 The glass substrate 9 is also called a color filter (abbreviated as Color Filter). Then, a polarizing plate 1 is attached to either or both of the surfaces of the liquid crystal panel 1 in accordance with the properties of the liquid crystal material 17. The liquid crystal panel 1 functions as a photovoltaic element. Nowadays, the liquid crystal material of most liquid crystal surfaces on the market is a liquid crystal material using a TN (Twist Nematic) series. The polarizing plate 19 usually requires two sheets. Although not shown, the back surface light source is disposed as a light source through the crystal panel, and white light is irradiated from below. Connected to the liquid crystal 17 is formed on the two glass substrates 2, 9 as the thickness is 0. The polyimine resin film 20 of about 1/zm is an alignment film for aligning liquid crystal molecules in a determined direction. 2 1 is a pixel electrode connected to the edge of the gate type transistor 10 and a transparent conductive pixel 22 electrode (wiring), which is formed at the same time as the signal line (source line) at the signal line 1 2 and 汲Between the electrode electrodes 2 1 is a semiconductor 23, which will be described in detail later. The Cr film layer 24 having a thickness formed on the side of the adjacent colored layer 18 on the color filter 9 is used to prevent the external gap from being attached to the CF side as a sheet liquid.于界光-6- 1281999 (4) A light-shielding member that is incident on the semiconductor layer 23 and the scanning line 1 1 and the signal line 1 2 is defined as a so-called black matrix (abbreviated as BM). . Here, a configuration and a manufacturing method of an insulating gate type transistor which is a switching element will be described. There are two types of common insulated gate type transistors, and one of them is referred to as a channel etching type. With the introduction of dry etching technology, it used to require about 8 masks, which is now reduced to 5 channels, which greatly contributes to the reduction of manufacturing costs. Fig. 16 is a plan view showing a unit pixel of an active substrate (a semiconductor device for a display device) corresponding to a five-mask process, and Fig. 17 is a view showing A-A' and B-B' of Fig. 16(e). And the cross-section on the C-C' line, the following is a brief description of the manufacturing process. In Fig. 16(c), a storage capacitor 15 is formed in a region 5 〇 (upper diagonal line from the upper left to the lower right) in which the storage capacitor 16 and the drain electrode 2 1 are interposed by the gate insulating layer, but This explanation is omitted here. First, as shown in Fig. 16 (a) and Fig. 17 (a), the thickness of the insulating substrate which is high in heat resistance and chemical resistance and transparency is 0. 5~ l. 】mm glass substrate 2, for example, using SPT (sputtering) on the main surface of one of the trade names 1737 produced by C. Niiig Co., Ltd., the film thickness is 〇·1~0. The first metal layer of 3/m is selectively formed to serve as the scan line 1 1 of the gate electrode 1 1 A and the storage capacitor line 16 by microfabrication techniques. The material of the scanning line is selected in consideration of chemical resistance, fluorine acid resistance, and electrical conductivity. However, generally, a metal or alloy having high heat resistance such as chromium Cr, giant Ta, or tungsten molybdenum (MoW) alloy is used. -7- (5) 1281999 In order to reduce the resistance of the scanning line in response to the large screen or high definition of the liquid crystal panel, although A1 (aluminum) is used as the scanning line material, the heat resistance of the A1 monomer is low, so Nowadays, it is a general technique to laminate Ci*, Ta, Mo or a telluride which is a heat resistant metal or to apply an anodization to an oxide layer (ai2o3) on the surface of A1. That is, the scanning line 11 is composed of one or more metal layers. Next, a plasma chemical oxygen phase deposition (PC VD) device is used on the entire surface of the glass substrate 2, for example, 0. 3-0. 2-0· 05 /im film thickness, sequentially depositing a tantalum nitride (SiNx) layer 30 as a gate insulating layer, a first amorphous germanium layer 3 of a channel of an insulating gate type transistor containing almost no impurities 1 and 3 kinds of thin film layers such as the source of the insulating gate type transistor containing impurities and the second amorphous germanium layer 3 3 of the drain. Then, as shown in FIGS. 16(b) and 17(b), the first sum which is wider than the width of the electrode A1 of the gate 1 1 remains in the island shape (31A, 32A) on the gate electrode 11A. The semiconductor layer formed of the second amorphous germanium layer exposes the gate insulating layer 30. Next, using a vacuum film forming apparatus such as SPT, a Ti (titanium) thin film layer 34 is sequentially deposited to have a film thickness of 0. A heat resistant metal layer of about 1 / im, A1 film layer 35 is a film thickness of 0. A low-resistance wiring layer of about 3 // m, for example, a Ti film layer 36 is a film thickness of 0. An intermediate conductive layer of about 1/m is selectively laminated by the thin film layers 34A, 35A, and 36A by microfabrication techniques as shown in Figs. 16(c) and 7(c). The gate electrode 2 1 of the insulated gate type transistor and the signal line 1 2 which also serves as the source electrode. The selective pattern formation is to form the photosensitive resin pattern used for the drain wiring as a mask, and sequentially etch the Ti thin film layer 36, the A1 thin film layer-8-(6) 1281999 3 5, the T i thin film layer. 3 4. The second amorphous germanium layer 3 3 A and the first amorphous layer 3 1 A, and the first amorphous sand layer 3 1 A is engraved by uranium.  〇 5~0 .  //m or so, so it is called channel etching. In order to prevent the insulating gate type transistor from becoming a compensation structure, the source electrode electrodes 12, 21 are partially formed (number #πι) and planarly overlap with the gate electrode. Since the overlap is performed as a parasitic capacitance, the smaller the better, the better the accuracy of the exposure machine and the expansion coefficient of the glass substrate and the temperature of the glass substrate during exposure. 2//m or so. When the wiring resistance of the signal line 1 2 is not a problem, the low-resistance wiring layer 35 composed of A1 is not required. At this time, if a heat-resistant metal material such as Ti, Ta, or Mo is selected, the source can be used. Pole and bungee 1 2, 2 1 are single-layered to simplify the process. In addition, the heat resistance of the insulating body is described in detail in JP-A-H07-74368, and after removing the photosensitive resin pattern, PC VD is used on the entire surface of the glass substrate 2 to be transparent. The gate layer of the insulating layer is identically covered. The SiNx layer of film thickness of about 3 // m is used as a passivation insulating layer 37. As shown in Fig. 16 (d) and Fig. 17, the protective insulating layer is selectively removed and applied to the drain electrode according to microfabrication techniques. An opening 62 is formed in the upper surface of the image display portion, and an opening 63 is formed at a position where the electrode terminal 5 of the scanning line 1 is formed, and a portion 64 is formed at a position where the electrode terminal 6 of the signal line 1 is formed to be exposed. The drain electrode 2 1 and the scan line 1 1 and the signal line 1 2 are divided. On the storage capacitor line 16 (electrode pattern of the parallel bundle), the shape is 矽•汲1 1 A, the accuracy is determined, and the Cr and the wiring crystal device are absolutely protected ((d) 37, the opening of the mouth part is The part is opened -9 - (7) 1281999 Port 6 5 and one part of the storage capacitor line 1 6 is exposed. Finally, the vacuum film forming apparatus such as SPT is used to cover the film thickness 〇1~〇·2 in or so ΪΤΟ (Indium- Tin-Oxide, Indium-Zinc-〇xide, as a transparent conductive layer, as shown in Figures 16(e) and 17(e), The pixel electrode 22 is selectively formed by the microfabrication technique including the opening portion 62 on the protective insulating layer 37, and the active substrate 2 is completed. Even if a portion of the exposed scanning line 11 in the opening portion 63 is regarded as the electrode terminal 5 A portion of the exposed signal line 1 2 in the opening portion 64 may be used as the electrode terminal 6. Alternatively, as shown in the figure, the protective insulating layer 37 may be formed of ITO by including openings 63 and 64. The electrode terminals 5A, 6A may also be, but generally also form a transparent conductive connection between the electrode terminals 5A, 6A. The short-circuit line 40. The reason for this is that the electrode terminals 5A and 6A and the short-circuit line 40 are formed in a long strip shape to increase the resistance, and the high-resistance can be used as a countermeasure against static electricity. The electrode terminal of the portion 65 leads to the storage capacitor line 16. The problem to be solved by the invention is that in the five-mask project, since the contact formation between the gate electrode 21 and the scanning line 11 is simultaneously performed, it is necessary to The thickness and type of the insulating layer in the openings 6 2, 6 3 are different. The protective insulating layer 37 has a lower film forming temperature than the gate insulating layer 30', and the film quality is poor, and is performed by an etching solution of a gas acid series. The wet etching is performed because the etching speed is several 〇〇〇A/min, the number is 100 A/min, and the difference is one order of magnitude. The opening on the drain electrode 21 (8) 1281999 The cross-sectional shape of the mouth portion 62 is due to the upper portion. In the case of excessive pore size, even if dry etching is used, the gas on the drain electrode 2 1 is the protective insulating layer 3 7, so that over-etching is avoided as compared with the opening on the scan line 1 1 . There are times when the material is different The film thickness is reduced by the etching gas. Further, in order to remove the photosensitive resin pattern, first, in order to remove the fluorine-containing compound, oxygen plasma is ashed, and the photosensitive resin is patterned. 1~0. 3 / m or so, after that, the liquid medicine such as the stripping liquid 106 produced by using the organic peeling treatment is treated as the oxygen electrode ash when the intermediate conductive layer 3 6 A is cut to expose the aluminum f of the base. The Al2〇3 in the surface insulator of the aluminum layer 35A is treated to be in contact with the pixel electrode 22. Here, in order to reduce the film of the intermediate conductive layer 3 6 A, the film thickness is set to 0. 2 // m to solve the problem. At the time of the mouth portions 62 to 65, the aluminum layer 35A is removed to expose the film layer 34A of the base layer, and then the pixel electrode 22 is formed. In this case, the intermediate gas guide point is not required from the beginning. However, in the former countermeasures, if the film properties of the films are not good, the blending does not necessarily play an effective role. The in-plane uniformity of the speed is not the same. Therefore, although the intermediate conductive layer 36A is not required, the addition process is increased, and the cross-section control of the opening portion 6 2 is not sufficiently etched to control the dry etching. The mouth portion 62 is a surface-reducing liquid for agglomerating the surface of the surface after the etching of the conductive layer 3 6 A is not performed, for example, the Tokyo-like method, but the state surface of the i 3 5 A is formed. It is not necessary to obtain an ohmic thickness. For example, the heat-resistant metal avoiding countermeasure for forming the opening may be uniform in the in-plane of the I layer 36A, and further, when the aluminum layer is removed from the aluminum layer 3 5 A in the countermeasure of etching the latter, Then there is a possibility that -11 - (9) 1281999 pixel electrode 2 2 is broken. In addition, the first amorphous sand layer 31 containing no impurities in the channel region of the channel-etched insulating gate type transistor is not thickened (the channel etching type is usually 0. When 2 # m or more, the influence on the in-plane uniformity of the glass substrate is greatly affected, and the characteristics of the transistor are inconsistent, especially the OFF current is inconsistent. This situation greatly affects the operating rate of the PVCD device and the particle generation state, which is also a very important issue from the viewpoint of production cost. Next, a four-mask process for improving one of the above five mask processes will be described. The four-mask process is based on the introduction of halftone exposure technology to reduce the lithography process. Figure 18 is a plan view of the unit pixel corresponding to the active substrate of the four mask processes, and Figure 19 is the 18th figure (e). Sections of the eight-A', B-B' and C-C' lines. First, on the main surface of one of the glass substrates 2, using a vacuum film forming apparatus such as SPT, the film thickness is 0. 1~0. a first metal layer of about 3/m, and as shown in Figs. 18(a) and 19(a), a scanning line 1 which also serves as a gate electrode 1 1 A is selectively formed by a microfabrication technique. 1 and storage capacitor line 16. Then, using the PCVD apparatus, the entire surface of the glass substrate 2 is, for example, 〇·3~0. 2~0. 0 5 m around the film thickness, sequentially depositing a tantalum nitride (SiNx) layer 30 as a gate insulating layer, a first amorphous germanium layer 3 1 of an insulating gate transistor having almost no impurity And three kinds of thin film layers such as the source of the insulating gate type transistor containing impurities and the second amorphous germanium layer 3 3 of the drain. Next, a vacuum film forming apparatus such as SPT is used to sequentially coat a film thickness of, for example, a Ti film layer 34' as a heat resistant metal layer of about -12 - (10) 1281999 film thickness. 3 " AI film layer 36' which is a low-resistance wiring layer, that is, a source/drain wiring material, although selectively formed by the microfabrication technology, the film layers 3 4 A, 3 5 A, The drain electrode 2 1 of the insulating gate type transistor formed by the stack of 3 6 A and the signal line 1 2 ' which also serves as the source electrode are formed by the halftone exposure technique such as the first 8 As shown in Fig. (b) and Fig. 19 (b), for example, a film thickness is formed. The channel formation region 80C (hatched portion) between the sources of the source and the drains of the source/drainage lines is formed to have a film thickness of 3 // m which is thinner than the source/drain wiring formation regions 80A and 80B. The point of A~8 0 C is a major feature. In the photosensitive resin patterns 80A to 80C, the substrate for liquid crystal display device is made of a photosensitive resin of a normal positive type, so that the source/drain wiring formation regions 80A and 80B are black, that is, a Cr film is formed, and the channel region is formed. 80C is gray, for example, forming a width of 0. 5~1 // m is added to the line and space of the Cr pattern, and the other areas are white, that is, if the mask of the Cr film is removed. Since the resolution of the exposure machine is insufficient in the gray area, it is impossible to analyze the line and the blank line, and since the light from the light source of the light source can be transmitted by about one-half of the light, the residual film characteristics of the positive photosensitive resin can be obtained. The photosensitive resin patterns 80 A to 80C having a cross-sectional shape as shown in Fig. 19 (b). The photosensitive resin patterns 80A to 80C are used as masks, and the Ti thin film layer 36, the A1 thin film layer 35, the Ti thin film layer 34, and the second amorphous germanium layer are sequentially etched as shown in Fig. 19(b). 3 3 and the first amorphous germanium layer 3 1 and after the gate insulating layer 30 is exposed, as shown in FIGS. 18(c) and 19(c-13-(11)1281999), The ashing means of oxygen plasma or the like reduces the film thickness of the photosensitive trees 80A to 80C, for example, from 3/m. When 5/zm or more and 81 A and 81B, the photosensitive resin pattern 80C disappears and the exposed area is obtained. Here, the photosensitive resin patterns 8 1 A and 8 1 after the film reduction are used as a mask, and the Ti film layer 36A, the A1 film layer 35A, and the Ti film are again etched by the source/drain wiring (channel formation). Layer 34A 2 amorphous germanium layer 33A and first amorphous germanium layer 31 A, the first amorphous layer 31A is etching residual 0. 05~0. 1/im or so. Further, in the upper gas plasma treatment, since the change in the pattern size is suppressed, it is preferable to enhance the orientation, and the reason will be described later. Further, after the photosensitive resin patterns 8 1 A and 8 1 B are removed, the mask process is the same, and as shown in FIGS. 18(d) and 19(d), the glass substrate 2 is entirely covered with 0. A layer having a thickness of about 3/m is used as a transparent insulating layer, and is used as a protective insulating layer 37, and the electrode 2 and the electrode 5 and 6 on which the scanning line 1 1 and the signal line 1 2 are formed are formed on the electrode 2 1 . Openings 6 2, 6 3, and 6 4 are formed in the regions. Finally, a vacuum film forming apparatus such as SPT is used to cover, for example, or IZO to form a film thickness of 0. 1 ~ 〇. A transparent conductive layer of about 2/m, as shown in FIGS. 8(e) and 19(e), the transparent insulating layer is selectively formed on the protective insulating layer 37 having the opening 62 by microfabrication. The active substrate 2 is completed by the pixel electrode 22'. The electrode terminals include electrode terminals 5A and 6A formed of ITOs selectively formed on the protective insulating layer 37. The lipid case becomes the channel B. When the region is the same as the region, the SiNx is shown in the 氧 terminal ITO, and the ITO terminal is electrically conductive (12)! 281999 [invention] [the problem to be solved by the invention] By using the halftone exposure technology, it is possible to reduce the five mask processes to four masks, and obtain almost the same product as the five mask processes. However, in the four-mask process, the channel forming process is applied to selectively remove the source/drain wiring material and the semiconductor layer between the source and drain wirings 1, 2 and 2, and it is determined that the gate type can be left and right. The channel length of the ON characteristic of the transistor (currently the product is 4~6 #m) works. The length variation of the length of the channel causes a large change in the ON current of the insulated gate type transistor, so strict manufacturing management is usually required. As described above, the pattern length of the channel length, that is, the halftone exposure area is the exposure amount (light source intensity and mask precision, especially line and blank line size), the coating thickness of the photosensitive resin, the development processing of the photosensitive resin, and the In addition to the plurality of parameters such as the amount of film reduction of the photosensitive resin in the etching process, the in-plane uniformity of these amounts is also the same, and it is not always possible to achieve stable production with high throughput. More stringent manufacturing management than ever before, in the current situation, can not be said to have reached the level of high completion. In particular, when the channel length is 6/zm or less, the tendency is more remarkable. The present invention has been created in view of the current situation, and not only avoids the inconvenience in the formation contact of the past five mask processes or the four mask processes, but also realizes the deletion manufacturing process by using the halftone exposure technology with large error tolerance. By. Furthermore, in order to realize the low price of the liquid crystal panel and corresponding to the increase in demand, it is obvious that it is necessary to pursue the deletion of more manufacturing engineering numbers, which contributes to simplifying the main manufacturing engineering or the low-cost technology. Further increase -15- (13) 1281999 The price of the present invention. [Means for Solving the Problem] In the present invention, the halftone exposure technique is first applied to the islanding process of the semiconductor layer and the contact formation process of the gate insulating layer, which are easy to perform pattern precision management, and the manufacturing process is reduced. Next, in order to impart a channel protective layer to the insulating gate type transistor, the semiconductor layer containing impurities is converted into a hafnium oxide layer by anodization, which is disclosed in Japanese Patent Laid-Open No. Hei 4-3 0243 8 of the prior art. The technique, and the source-drain wiring which is effective to protect the source, is disclosed in Japanese Laid-Open Patent Publication No. Hei 2-2 16129, which is formed on the surface of the source/drain wiring composed of aluminum. The anodizing technology of the insulating layer realizes the rationalization and low temperature of the process. Further, a technique for rationalizing the formation of a pixel electrode disclosed in Japanese Laid-Open Patent Publication No. Hei. In addition, in order to eliminate the engineering, the formation of the anodized layer of the source/drain wiring is also applied to the halftone exposure technique to rationalize the formation of the protective layer of the electrode terminal. The insulated gate transistor according to the first aspect of the invention is a bottom gate type insulated gate type transistor, characterized in that a first metal layer of one or more layers is formed on the insulating substrate. In the gate electrode, one or more gate insulating layers are interposed in the gate electrode, and a first semiconductor layer containing no impurities is formed in an island shape, and a part of the first semiconductor layer is formed to overlap with the gate electrode. The first semiconductor layer containing impurities, which is a source/drain of the insulating gate type transistor, is formed on the second semiconductive-16-(14) 1281999 bulk layer and the gate insulating layer. a source/drain wiring composed of a metal layer and an anodized metal layer of one or more layers, and formed on the source/drain wiring and the channel in addition to the electrical connection region of the source wiring The anodized layer and the anodized layer do not need to be provided with a protective insulating layer such as SiNx because of the function of the protective layer. The liquid crystal display device is in the third, fourth, sixth, and second, third, and third 5. In the sixth embodiment Clearly documented. The liquid crystal display device according to the second aspect of the patent application is characterized in that the liquid crystal is charged on a main surface having at least an insulating gate type transistor and a gate electrode of the insulating gate type transistor. And a first transparent insulating substrate in which a unit line which is also used as a source wiring and a pixel element connected to a pixel electrode connected to the drain wiring is arranged in a matrix of two elements, and is insulated from the first transparent A liquid crystal display device comprising a second transparent insulating substrate or a color filter that faces between the substrates, wherein at least one of the main surfaces of the first transparent insulating substrate is formed of a transparent conductive layer and a metal layer a scan line formed by lamination and a transparent conductive pixel electrode; a plasma protective layer and a gate insulating layer are interposed on the gate electrode, and a first semiconductor layer containing no impurities is formed in an island shape; a first semiconductor layer is formed on the first semiconductor layer to form a second semiconductor layer containing impurities, which is a source/drain of the insulating gate-type transistor, and a plasma on the pixel electrode. An opening layer of -17-(15) 1281999 is formed on the protective layer and the gate insulating layer; and a heat-resistant layer is formed on the second semiconductor layer and the gate insulating layer and is anodized by one or more layers a source line (signal line) formed of a metal layer, and a drain line formed on the second semiconductor layer and the gate insulating layer and one of the pixel electrodes in the opening; A protective insulating layer having an opening on the electrode is formed on the transparent insulating substrate. According to this configuration, the lithography process number of the scanning line and the pixel electricity is reduced by using one mask, and the islanding process and the gate insulating layer for processing the semiconductor layer using one mask are also added. The number of photographic etching processes for forming the opening portion is reduced, and a TN liquid crystal display device can be manufactured using four masks. Further, since the thicknesses of the protective insulating layers of the electrode terminals of the scanning lines and the signal lines are the same, there is no problem associated with the formation of contact. The liquid crystal display device of the third aspect of the patent application is a scanning line which is filled with a gate electrode having at least an insulating gate type transistor and a gate electrode of the above-described insulating gate type transistor on a main surface. a first transparent insulating substrate in which a bit line of a source line and a pixel element connected to a pixel electrode connected to the drain line are arranged in a matrix of two elements, and the first transparent insulating substrate is opposed to the first transparent insulating substrate. A liquid crystal display device comprising a second transparent insulating substrate or a color filter is characterized in that at least one of the first transparent insulating substrates is formed on the first surface of the first transparent insulating substrate. The crystal monopole and the plate are scanning lines formed of a metal layer on -18-(16) 1281999; the gate insulating layer of the first layer or more of the spacer on the gate electrode is formed in an island shape without impurities a first semiconductor layer; a first semiconductor layer having a source and a drain which is a source gate and a drain of the insulating gate-type transistor is formed on the first semiconductor layer; 2 semiconductor A source (signal line) and a drain line including a heat-resistant metal layer and an anodized metal layer of one or more layers are formed on the upper and gate insulating layers; and the gate insulating layer is formed on the above-mentioned drain wiring Further, a transparent conductive electrode terminal is formed on the signal line in a region other than the transparent conductive pixel electrode and the image display portion; and a region overlapping the pixel electrode on the drain wiring and an electrode of the signal line An anodized layer is formed on the surface of the source/drain wiring in addition to the terminal region, and a tantalum oxide layer is formed on the first semiconductor layer between the source and drain wirings. According to this configuration, the number of lithography etchings of the scanning line and the pixel electrode is reduced by using one mask, and in addition, the lithography etching process is performed by using a mask to process the formation and protection of the pixel electrode. The number is cut off' A TN type liquid crystal display device can be manufactured using four masks. Forming a ruthenium oxide layer containing impurities on the channel between the source and the drain to protect the channel' while forming a oxidized giant (Ta205) which is an insulating anodized layer on the surface of the signal line and the drain wiring or Alumina (AI2〇3) gives protection to -19-(17) 1281999. Therefore, it is not necessary to cover the entire surface of the glass substrate with the protective insulating layer, and the heat resistance of the insulating gate type transistor does not cause a problem. In addition, since the insulating layer of the protective channel is obtained by anodizing an amorphous germanium layer containing impurities and converting it into a hafnium oxide layer, it is not necessary to form an amorphous layer which is a channel layer and which does not contain impurities. Thick film to realize TN type liquid crystal display device. The liquid crystal display device of the fourth aspect of the invention is characterized in that: scan lines composed of a laminate of a transparent conductive layer and a metal layer are formed on at least one main surface of the first transparent insulating substrate. a transparent conductive pixel electrode; a plasma protective layer and a gate insulating layer are interposed on the gate electrode; and a third semiconductor layer containing no impurities is formed in an island shape; and a part of the first semiconductor layer is formed on the first semiconductor layer The second semiconductor layer containing impurities is formed as a source/drain of the insulating gate-type transistor, and is formed on the plasma protective layer and the gate insulating layer on the pixel electrode. An opening portion; a source wiring (signal line) including one or more layers of an anodizable metal layer including a heat resistant metal layer on the second semiconductor layer and the gate insulating layer, and the second A drain wiring is formed on the semiconductor layer and on the gate insulating layer and on one of the pixel electrodes in the opening; in addition to the electrode terminal region of the signal line, the source/drain wiring is -20 - (1 8) 1281999 An anodized layer is formed on the surface; a layer is formed on the first semiconductor layer between the source and drain wirings. According to this configuration, the scanning line and the photo-etching engineering number are cut using one mask, and the photo-etching reduction of the opening forming process of the semiconductor wiring and the gate insulating layer is performed using one mask, and the use 1 The formation of the photoreceptor electrode and the photo-etching engineering number of the photomask are cut, and the TN display device can be manufactured by three masks. The liquid crystal image display described in item 5 of the patent application scope is a signal line which also serves as a source wiring for charging a liquid crystal on a main surface having at least an insulating crystal and a gate electrode which also serves as the insulating gate type transistor. And a first transparent substrate in which a unit pixel connected to the drain wiring electrode is arranged in a matrix of two elements, and a first insulating substrate or a color filter that faces the first transparent insulating substrate. The liquid crystal is characterized in that: at least one of the main transparent surfaces of the first transparent insulating substrate is formed with a scanning line formed of a metal layer thereon; and one or more gate insulating islands are interposed on the gate electrode. a first semiconductor layer containing no impurities; and a first semiconductor layer having a source and a drain which is a gate electrode of the insulating gate type transistor is formed on the first semiconductor layer; The number of islands of the bulk layer of the halogen electrode is a liquid crystal device of a film forming type, which is a gate type electric scanning line and a pixel-shaped insulating layer 2, and the transparent display device is formed by one layer and the ground is extremely overlapped. -21 - (19) 1281999 having impurities formed on the second semiconductor layer and the gate insulating layer, and having a eutectic layer composed of one or more layers of anodizable metal layers (signal lines) and drain electrodes a wiring (pixel electrode), and an electrode terminal including a portion of the scan line in the opening portion, the electrode terminal and the signal line formed on the gate, except for the electrode terminal of the scan line and the signal line A protective insulating layer is formed on the entire insulating substrate. According to this configuration, the number of uranium engraving processes for forming the opening portion of the semiconductor layer and the gate insulating layer by using one mask can be obtained by using four masks to obtain an IPS type liquid crystal display device. The film thickness of the protective insulating layer on the electrode terminals of the line and the signal line is not traced, so that the contact with the contact is not caused. The liquid crystal image display device of the sixth aspect of the invention is the scan line composed of at least one metal layer on one main surface of the first transparent insulating substrate, and one or more layers are interposed on the gate electrode. a first semiconductor layer containing no impurities in a gate insulating layer island; a first pair of source and drain electrodes which are formed as a gate electrode of the insulating gate type transistor in the first semiconductor layer; The semiconductor layer removes a gate insulating layer in an opening formed on a region other than the image display portion; and a source-polar insulating layer containing heat-resistant gold is formed on the second semiconductor layer and the gate insulating layer The wire electrode terminal 1 is transparently islanded, and the sweep is the same. It is characterized by the formation of a layer formed by the ground and having impurities formed in the layer of the heat-resistant gold-22-(20) 1281999 layer. And a source wiring (signal line) and a drain wiring (pixel electrode) composed of one or more layers of anodizable metal layers, and one of scanning lines including the opening portion formed on the gate insulating layer unit An electrode terminal of the signal line formed by the electrode terminal of the scan line and one of the signal lines is formed with an anodized layer on the surface of the source/drain wiring except for the electrode terminal region of the signal line; A ruthenium oxide layer is formed on the first semiconductor layer of the drain wiring. According to this configuration, the number of photolithography processes in which the source/drain wiring is formed and the protective layer is formed by using one mask is cut, and a ruthenium oxide layer containing impurities is formed on the channel between the source and the drain to protect the channel. At the same time, a oxidized giant (Ta205) or an aluminum oxide (A12 03 ) which is an insulating anodized layer is formed on the surface of the signal line and the drain wiring to impart a protective layer function. Therefore, it is not necessary to coat the entire surface of the glass substrate with the protective insulating layer, and the heat resistance of the insulated gate type transistor does not become a problem. In addition, since the insulating layer of the protective channel is obtained by anodizing an amorphous germanium layer containing impurities and converting it into a hafnium oxide layer, it is not necessary to form an amorphous layer which is a channel layer and which does not contain impurities. A thick film, which realizes an IP S type liquid crystal display device. The seventh aspect of the patent application is a method for manufacturing a liquid crystal display device according to claim 2, which is characterized in that the liquid crystal is filled on a main surface and has at least: An insulated gate type transistor, a scanning line which also serves as a gate electrode of the above-described insulated gate type transistor, and a signal line which also serves as a source wiring, -23-(21) 1281999, and a pixel connected to the drain wiring A unit transparent element such as an electrode is arranged between a first transparent insulating substrate of a matrix of two elements and a second transparent insulating substrate or a color filter that faces the first transparent insulating substrate. A manufacturing method of a liquid crystal display device, characterized in that a scanning line and a pseudo-pixel element composed of a transparent conductive layer and a first metal layer are formed on at least one main surface of the first transparent insulating substrate The project is sequentially covered with a circuit of the electric prize protection layer, the gate insulating layer, the first amorphous germanium layer containing no impurities, and the second amorphous germanium layer containing impurities; the electrode terminal forming region and the pseudo-picture in the scanning line On the element electrode, a photosensitive resin pattern having an opening portion and a film thickness on the gate electrode thicker than that of the other regions is formed, and the second amorphous germanium layer and the first amorphous material in the opening portion are removed. a layer of a gate layer, a gate insulating layer, a plasma protective layer, and a first metal layer to expose a portion of a transparent conductive scan line and a pixel electrode; reducing the film thickness of the photosensitive resin pattern to expose the second amorphous material The layered layer is formed by forming a second amorphous tantalum layer and a first amorphous tantalum layer wider than the width of the gate electrode on the gate electrode; after coating the second metal layer of one or more layers, On the gate insulating layer and the second amorphous germanium layer, electrode terminals including the source (signal line) and the drain wiring and the opening portion and the scanning electrode are formed on the gate electrode portion and the gate electrode portion. The electrode of the signal line formed by one part of the line -24- (22) 1281999 The process of removing the second amorphous germanium layer between the source and drain wirings; and forming a protective insulating layer on the entire first transparent insulating substrate; A process of selectively removing the protective insulating layer by forming an opening on the electrode terminal and the protective insulating layer on the pixel electrode. According to this configuration, the number of uranium engraving projects for processing the pixel electrode and the scanning line using one mask is reduced, and the light of the opening of the island portion of the semiconductor layer and the gate insulating layer is processed by using one mask. The number of etching projects is reduced, and a TN type liquid crystal display device can be fabricated by four masks. Then, since the film thickness of the protective insulating layer on the electrode terminals of the scanning line and the signal line is the same, there is no problem associated with the formation of contact. The method of manufacturing a liquid crystal display device according to claim 3, characterized in that the metal layer of one or more layers is formed on at least one main surface of the first transparent insulating substrate. The construction of the scanning line; the step of sequentially coating one or more gate insulating layers and the first amorphous germanium layer containing no impurities and the second amorphous germanium layer containing impurities; the electrode at the scanning line In the terminal formation region, a photosensitive resin pattern having an opening portion and a film thickness on the gate electrode is thicker than that of the other regions is formed. The second amorphous germanium layer and the first amorphous layer in the opening portion are removed. Engineering of the enamel layer and the gate insulating layer; the process of reducing the film thickness of the photosensitive resin pattern to expose the second amorphous ruthenium layer; -25- (23) 1281999 forming a gate electrode on the gate electrode in an island shape The second amorphous ruthenium layer and the first amorphous ruthenium layer having a wide electrode width are formed on the gate insulating layer and the second amorphous ruthenium layer by partially overlapping the gate electrode. An anodized metal layer above the layer Source (signal line) and drain wiring work; transparent conductive is formed on the gate insulating layer and a portion of the above-described drain wiring in a region other than the transparent conductive pixel electrode and the image display portion The electrode terminal is on the signal line; and the photosensitive resin pattern to be used in the selective pattern of the pixel electrode and the electrode terminal is used as a mask to protect the electrode terminals of the pixel electrode and the signal line, and the anodizing source • Engineering of amorphous germanium layers in the drain wiring and source/drain wiring. According to this configuration, the number of photolithographic processes for forming the semiconductor layer and the opening of the gate insulating layer using the one mask can be reduced. Furthermore, for the formation of the source/drain wiring and the anodization of the channel and source/drain wiring, the electrode terminal of the protection signal line can be processed by using one mask, since the number of photo-etching engineering can be prevented from increasing, A TN type liquid crystal display device can be fabricated by four masks. The method of manufacturing a liquid crystal display device according to claim 4, which is characterized in that the transparent conductive layer and the first layer are formed on at least one main surface of the first transparent insulating substrate. The scanning line composed of the metal layer and the pseudo-pixel-like electrode are sequentially coated with the plasma protective layer, the gate insulating layer, and the first amorphous -26-(24) 1281999 layer and the impurity-containing layer containing no impurities. 2The operation of the amorphous germanium layer; on the electrode terminal forming region of the scanning line and the pseudo-pixel electrode, a photosensitive resin pattern having an opening portion and a film thickness on the gate electrode thicker than that of the other regions is formed. The second amorphous germanium layer, the first amorphous germanium layer, the gate insulating layer, the plasma protective layer, and the metal layer in the opening are removed to expose a portion of the transparent conductive scan line and the pixel electrode Engineering for reducing the film thickness of the photosensitive resin pattern to expose the second amorphous germanium layer; forming a second amorphous germanium layer wider than the gate electrode width and the first non-island on the gate electrode Crystalline layer engineering After coating one or more layers of the anodizable metal layer, a part of the source (signal line) which is overlapped with the gate electrode and has a thicker film thickness than the other areas corresponding to the scan line and the signal line is formed. a process of a photosensitive resin pattern of a terminal wiring and an electrode terminal of a signal line including a portion of the scanning electrode and a signal line; and the photosensitive resin pattern is used as a mask a cover for selectively removing an anodizable metal layer to form a source/drain wiring and an electrode terminal of a scan line and an electrode terminal of a signal line; reducing a film thickness of the photosensitive resin pattern to expose a source/drain The wiring works; and the protection of the above-mentioned electrode terminals, and the anodization of the source and the drain wiring and the source/drain wiring between the amorphous germanium layers. -27- (25) 1281999 According to this configuration, the process of processing the scanning line and the pixel electrode using one mask, and the photo-etching of the opening formation process of the islanding process and the gate insulating layer using a single mask are realized. The number of projects is reduced. In addition, for the formation of source/drain wiring and the anodization of the channel and source/drain wiring, a photomask can be used to process the electrode terminals of the protection signal line. Since the number of photo-etching processes is increased, a TN-type liquid crystal display device can be fabricated by three photomasks. The method of manufacturing a liquid crystal display device according to the fifth aspect of the invention, characterized in that the metal substrate of one or more layers is formed on at least one main surface of the first transparent insulating substrate. Engineering of a scanning line and a counter electrode formed by a layer; a step of sequentially coating one or more gate insulating layers and a first amorphous germanium layer containing no impurities and a second amorphous germanium layer containing impurities; In the electrode terminal forming region of the scanning line, a photosensitive resin pattern having an opening portion and a film thickness on the gate electrode thicker than that of the other regions is formed; and the second amorphous germanium layer in the opening portion is removed The first amorphous germanium layer and the gate insulating layer; the process of reducing the film thickness of the photosensitive resin pattern to expose the second amorphous germanium layer; and forming the gate electrode width on the gate electrode in an island shape The second amorphous ruthenium layer and the first amorphous ruthenium layer are widened. On the gate insulating layer, a portion of the gate insulating layer is formed so as to overlap the gate electrode to form a second amorphous ruthenium layer. The source of the second metal layer above -28- (26) 1281999 (signal line) · drain wiring (pixel electrode) and a signal electrode terminal including the electrode terminal and the signal line of the scanning line; the source 汲In the second amorphous enamel layer of the pole wiring, in addition to the electrode terminals of the scanning line and the signal line, a protective insulating layer is formed on the entire first transparent edge substrate. According to this configuration, it is possible to process the semiconductor layer and the opening portion forming process of the gate insulating layer by using one mask, and to realize the reduction of the number of photo-etching processes, and to manufacture an IPS-type liquid crystal display device by using four masks. In addition, it has fewer change points in the four masks that have been rationalized in the past, and is included in the mass production plant. The method of manufacturing a liquid crystal display device according to claim 6 is characterized in that the metal layer on the main surface of at least one of the first transparent insulating substrates is formed on the main surface of the first transparent insulating substrate. The scanning line and the counter electrode are formed; the gate insulating layer of one or more layers and the first non-antimony layer containing no impurities and the second amorphous germanium layer containing impurities are sequentially coated; at the gate electrode a second enamel layer and a first amorphous ruthenium layer which are wider than the width of the gate electrode are formed in an island shape to expose the gate insulating layer; and an opening portion is formed in the electrode terminal forming region of the scanning line. The operation of the gate insulating layer in the opening portion; after coating one or more layers of the anodizable metal layer, a part of the electrode electrodes are overlapped, and the electrode terminals corresponding to the scanning lines and the signal lines are thicker than other regions. (signal line) • Bungee wiring (the part of the painting department and the line, and the singularity of the engraver, the easy-to-describe layer is replaced by a crystalline amorphous thyristine -29-(27) 1281999 pole) and Containing the above opening Engineering of a photosensitive resin pattern of an electrode terminal of a signal line composed of an electrode terminal of a scanning line and a signal line; using the photosensitive resin pattern as a mask to selectively remove an anodizable metal layer to form a source Electrode terminal of the electrode and the electrode terminal of the scanning line and the electrode terminal of the signal line; the film thickness of the photosensitive resin pattern is reduced to expose the source/drain wiring; and the electrode terminal is protected while anodizing Project of source/deuterium wiring and amorphous germanium layer in source/drain wiring. According to this configuration, a ruthenium oxide layer containing impurities is formed on the channel between the source and the drain to protect the channel, and an insulating anodized layer is formed on the surface of the signal line and the drain wiring to provide a protection function. Therefore, it is not necessary to coat the entire surface of the glass substrate with the protective insulating layer, and the heat resistance of the insulating gate type transistor does not become a problem. Furthermore, it is possible to use a mask to process the source/drain wiring, and to protect the electrode terminals of the signal line while anodizing the source and the drain wiring, thereby realizing the number of photolithography projects, and four masks can be used. An IPS type liquid crystal display device is produced. The method of manufacturing a liquid crystal display device according to claim 6, wherein the method further comprises forming a metal layer of one or more layers on at least one main surface of the first transparent insulating substrate. The scanning line and the counter electrode are processed; the gate insulating layer of one or more layers and the first amorphous germanium layer containing no impurities and the second amorphous germanium layer containing impurities are sequentially coated; -30- 1281999 (28) A process of forming a photosensitive resin pattern having an opening and having a film thickness on the gate electrode larger than that of other regions in the electrode terminal forming region of the scanning line; removing the second non-inside of the opening Engineering of a crystalline germanium layer, a first amorphous germanium layer, and a gate insulating layer; a process of reducing the film thickness of the photosensitive resin pattern to expose the second amorphous germanium layer; and forming an island shape on the gate electrode Engineering of the second amorphous germanium layer and the first amorphous germanium layer having a wide gate electrode width; after coating one or more layers of the anodizable metal layer, a part of the gate electrode overlaps and corresponds to the scan Electrode end of line and signal line a source (signal line) thicker than other regions, a drain electrode (pixel electrode), and a signal line including a signal line formed by one of the electrode terminal and the signal line of the scan line Engineering of a photosensitive resin pattern of a terminal; using the photosensitive resin pattern as a mask, selectively removing an anodizable metal layer to form an electrode terminal of a source/drain wiring and a scan line, and an electrode terminal of a signal line Engineering for reducing the film thickness of the photosensitive resin pattern to expose the source/drain wiring; and protecting the electrode terminal while anodizing the amorphous between the source and drain wirings and the source/drain wiring The construction of the 矽 layer. According to this configuration, the number of photolithographic processes for forming the semiconductor layer and the opening of the gate insulating layer using a single mask is cut, -31 - (29) 1281999 plus a mask can be used to form The source and the drain wiring and the electrode terminal of the protection signal line are simultaneously anodized and sourced. The number of photolithography projects of the bungee engineering is also reduced, and the liquid crystal display device can be made by three masks. [Embodiment] FIG. 1 is a plan view showing a display device body device (active substrate) according to a first embodiment of the present invention, and FIG. 2 is a view showing a first embodiment of the present invention. Manufacturing drawings of the A-A' line and B-B' line and C-C' line. Similarly, the second embodiment is a third diagram and a fourth diagram. The first embodiment is a fifth diagram and a sixth diagram, the fourth embodiment is a seventh diagram, and the fifth embodiment is a ninth diagram and a fifth embodiment. In Fig. 10, the sixth state is a plan view showing the plane of the active substrate in Fig. 1 and Fig. 2, respectively. Further, the same portions as those of the prior art are given, and detailed descriptions are omitted. (First Embodiment) In the first embodiment, first, a vacuum such as S P T is applied to one main surface of the glass substrate 2 to cover, for example, ITO as a month | 2 / / m of the transparent conductive layer 91, and for example, Cr, Ta, MoW as a film thickness of 0. 1 to the first metal layer 92, as shown in the first: and the second figure (a), the microstructure of the transparent conductive layer 91A and the metal layer 92A is selected by a microfabrication technique, and the wiring is IPS type. The first half of the semi-conductor 1 map (f section 3 implementation map and the first embodiment of the figure and the same symbol film packaging [thickness.  1 alloy, etc. 1 (a is formed into a double-32-(30) 1281999 as a scan line 1 1 of the gate electrode 1 1 A; a laminate of a transparent conductive layer 9 1 B and a first metal layer 92B The pseudo-pixel electrode 93; and the pseudo-short line 94 formed by laminating the transparent conductive layer 91C and the first metal layer 92C. The gate insulating layer is interposed to increase the insulation withstand voltage of the signal line, in order to increase the throughput. Although some electrodes are preferably controlled by tilting of the cross-sectional shape by dry etching, those using the hydrogen iodide or hydrogen bromide in the etching gas developed in the dry etching technique of ITO have a large amount of reaction product formation due to the gas exhaust system. Therefore, the surface has not been put into practical use, so the surface may be etched by sputtering such as Ar (argon, arg ο η ). Next, on the entire surface of the glass substrate 2, 0. A film thickness of about 1//m is applied to form a transparent insulating layer 71 such as TaOx or SiO 2 as a plasma protective layer. The plasma protective layer 71 is formed by the SiNx of the gate insulating layer of the subsequent PCVD device, in order to reduce the transparent conductive layers 91A, 91B exposed at the edge of the scanning line 1 1 or the pseudo pixel electrode 93. In order to prevent the film quality of SiNx from being changed, the above-mentioned Japanese Patent Publication No. 59-9962 is referred to in detail. The plasma protective layer 71 is coated in the same manner as in the first embodiment, and a PCVD apparatus is used, for example, 0. 2-0. 1-0. The film thickness of about 05//m is sequentially coated to form the first SiNx layer 30 of the gate insulating layer, and the first amorphous germanium layer 3 1 which is a channel of the insulating gate type transistor which contains almost no impurities. And three types of thin film layers of the second amorphous germanium layer 3 3 which are source and drain electrodes of the insulating gate type transistor including impurities. Here, since the gate insulating layer is composed of a laminate of the plasma protective layer and the first SiNx layer, the first SiNx layer is preferably formed to be thinner than the prior art. • 33-(31) 1281999 Then, 'on the pseudo-short line 94 of the region formed outside the image display portion, 'there is an opening portion 63 A ' on the electrode terminal forming region of the scanning line and has a pseudo-pixel electrode 93 The opening portion 74, at the same time, the formation region of the insulating gate type transistor, that is, the film thickness of the region 84A on the gate electrode 1 1 A is formed by a halftone exposure technique, for example, 2 # m and a film thickness other than the other regions 84B. 1 # m is also thick photosensitive resin patterns 84A, 84B. Then, as shown in FIGS. 1(b) and 2(b), the second amorphous germanium layer 3 3 and the first amorphous portion which are exposed by masking the photosensitive resin patterns 84A and 84B are included. The buffer layer 31 and the gate insulating layer 30 and the plasma protective layer 7 1 sequentially etch the first metal layer 92, and expose a portion of the scanning line 11 as the electrode terminal forming region 5 A of the scanning line. The transparent conductive layer exposing the short-circuit line 94 is used as the short-circuit line 91 C ( 40 ), and the transparent conductive layer 91B exposing the pseudo-pixel electrode 93 is used as the pixel electrode 22. The electrode terminal of the scanning line 1 1 is at most about one-half of the electrode pitch of the driving LSI, and since it is usually 20/zm or more, it is easy to fabricate the photomask for forming the opening 63A (white area), and it is easy. Manage the accuracy of this completed size. Next, when the photosensitive resin patterns 84A and 84B are cut by a ashing means such as oxygen plasma or the like to a film thickness of #m or more, as shown in FIGS. 1(c) and 2(c). In general, the photosensitive resin pattern 84B disappears, and the second amorphous germanium layer 3 3 is exposed, and the photosensitive resin pattern 84C can be selectively formed only on the gate electrode 1 1 A. The photosensitive resin pattern 84C, that is, the pattern width of the island-shaped semiconductor layer is such that the mask matching precision is added to the size of the source/drain wiring, so the source/drain wiring is set to 4 - 34 - (32) 1281999 to 6//m, when the matching accuracy is ±3"m, it is 1〇~i2//m, which is not strict in terms of dimensional accuracy. However, when the photoresist pattern 84A is changed to 8 4 C, if the photoresist pattern is isotropically reduced by a film thickness of 1 am, the size is not reduced by 2 // m, and the subsequent source/drain wiring is formed. The hood fit accuracy is also reduced by 1 V m to ± 2 // m, which is more serious for the latter in the process than the former. Therefore, in the above oxygen plasma treatment, it is preferable to suppress the change in the pattern size to enhance the anisotropy. Specifically, the RIE (Reactive Ion Etching) method, and the ICP (Inductive Coupled Plasama) method or the TCP (Transfer Coupled Plasama) method with high-density plasma source are optimal. Then, as shown in FIGS. 1(d) and 2(d), the second amorphous germanium layer 33B and the first amorphous germanium layer 3 are selectively selected by using the photosensitive resin pattern 84C as a mask. 1 B remains wider than the width of the gate electrode 1 1 and serves as the island shape 31A, 33A to expose the gate insulating layer 30A. The island-shaped semiconductor layers 31 A and 33A, that is, the photosensitive resin pattern 84C (black region) have a size of at least 10 // m, which is not only easy to produce a region other than the white region and the black region as a halftone exposure region. In the reticle, even if the dimensional accuracy of the island-shaped semiconductor layers 31A and 33A fluctuates, since the electrical characteristics of the insulating gateless transistor are hardly changed, it is understood that the process management should be easily performed. At this time, the electrode terminal forming region 5A and the short wiring 91 which are formed of the transparent conductive layer exposed on the glass substrate 2 (the pixel electrode 22 is exposed to the etching gas, but belongs to the amorphous germanium layer 33B, The fluorine-based gas of the etching gas of 1B is not suitable for, for example, reducing the film thickness of the transparent conductive layer -35-1281999 (33), or changing the resistance 値, or changing the transparency. After the photosensitive resin pattern 84C is removed, a heat-resistant metal thin film layer 34 such as Ti or Ta is sequentially applied as a film thickness by using a vacuum film forming apparatus such as SPT. a tempered metal layer around lym, and then coated with A1 film layer 3 5 as a film thickness of 0. 3 / m low resistance wiring layer. Then, as shown in FIGS. 1(e) and 2(e), although the thin film layers are sequentially etched by the microfabrication technique using the photosensitive resin pattern, one portion including the pixel electrode 22 is selectively formed. The drain electrode 2 1 of the insulating gate type transistor composed of the two laminated layers 34A and 35A and the signal line 1 2 which also serves as the source wiring, but in this case, the second amorphous germanium is sequentially etched as in the previous example. Layer 3 3 A and the first amorphous germanium layer 3 1 A, and the first amorphous germanium layer 3 1 A is residual 0. 0 5~0. Etching around 1 // m. Further, when the source/drain wirings 1 2 and 2 1 are formed, the electrode terminals 5 of the scanning lines including a portion of the scanning lines 11 of the openings 63 A are formed in the region outside the image display portion, and the signal is formed by the signal. An electrode terminal 6 formed by a portion of the line 12. Further, here, as the configuration of the source/drain wirings 1, 2, and 2, if the limitation of the resistance 并不 is not critical, it can be simplified to a single layer of Ta, Cr, Mo or the like. After the source/drain wirings 1, 2 and 2 are formed, they are coated on the entire surface of the glass substrate 2 in the same manner as the conventional five mask processes. The second SiNx layer having a film thickness of about 3 // m is used as a transparent insulating layer and is provided as a protective insulating layer 3 7 as shown in Fig. 1 (f) and Fig. 2 (f), at the pixel electrode 22 and the electrode terminals 5, 6 of the scanning line 1 1 and the signal line 1 2 are selectively formed with openings 3 8 , 6 3 , 6 4 respectively to expose the pixel electrode 2 2 and the electrode terminals 5 - 36 - (34) Most of 1281999 and 6. The active substrate 2 and the color killer obtained in this manner are bonded to each other to form a liquid helium panel, and the first embodiment of the present invention is completed. The configuration of the storage capacitor 1 5 is exemplified by the storage of the plasma protective layer 71 and the gate insulating layer 3 Ο A planar stack including the pixel electrode 2 2 and being formed simultaneously with the drain wiring 2 1 The electrode 73 and the scanning line 1 1 of the front stage (the upper left to the lower right oblique portion 5 2 ), but the storage capacitor 15 is not limited thereto, and may be a storage capacitor formed at the same time as the scanning line. A structure in which an insulating layer including a gate insulating layer is interposed between the line and the pixel electrode. Further, although other configurations are also possible, detailed descriptions are omitted. (Second Embodiment) In the second embodiment, the thickness of the film is first coated with a vacuum device such as SPT as in the prior art. The first metal layer of 1 to about is selectively formed by the microfabrication technique as the scanning line 1 1 of the gate electrode 1 1 A and common to each other as shown in FIGS. 3( a ) and 4 ( a ). Capacitor line 16. When the heat resistance of the A1 monomer is considered, in order to reduce the resistance of the scanning line, a single layer structure of Al (Ta, Ta) alloy or the like may be selected as the structure of the scanning line or Al/Ta, Ta/Al/Ta, Al/ A laminate of Ti, Ti/Al/Ti, Al/Al (Ta, Zr) alloy or the like is formed, but in the present invention, the scanning line material is almost unlimited. Here, A1 (Ta, Z〇 represents an A1 alloy having a high heat resistance such as Ta or Zr added in a few % or less. Next, for example, 0·3 - 0 is used on the entire surface of the glass substrate 2 using a PC VD apparatus.  1 - 〇 .  The film thickness of 〇5 #m is sequentially coated to become the first non-gate insulating-37-(35) 1281999 layer of the first SiNx layer 30, which will become the channel of the insulating gate type transistor which contains almost no impurity. The crystalline germanium layer 3 1 and the three types of thin film layers of the second amorphous germanium layer 3 3 which will be the source and drain of the insulated gate-type transistor containing impurities. Thus, the first amorphous layer 3 1 can be coated relatively thin compared with the prior art, and this point is also one of the features of the present invention, and the reason will be described later. Then, as shown in FIGS. 3(b) and 4(b), the electrode terminal forming region of the scanning line 11 has an opening portion 63 A (and an electrode terminal forming region at the common capacitance line 16). The upper portion has an opening portion 65A), and the formation region of the insulating gate type transistor is formed according to the halftone exposure technique, that is, the film thickness of the region 8 2 A on the gate electrode 1 1 A is, for example, 2//m, and the ratio The photosensitive resin patterns 82A and 82B having a film thickness l//m thick in the other region 82B are selectively removed by the photosensitive resin patterns 82A and 82B as a mask (and the opening portion 65 A). The second amorphous germanium layer 3 3 and the first amorphous germanium layer 3 1 and the gate insulating layer 30 are exposed to expose a portion 72 of the scanning line 11 (and the common capacitance line 16). Next, when the photosensitive resin patterns 82 A and 82B are cut by a film thickness of 1 # m or more by an ashing means such as oxygen plasma, as shown in FIGS. 3(c) and 4(c) As a general rule, the photosensitive resin pattern 8 2 B disappears, and the second amorphous germanium layer 3 3 is exposed, and the photosensitive resin pattern 82C can be selectively formed only on the gate electrode 1 1 A. Here, as shown in FIGS. 1(d) and 2(d), the second amorphous germanium layer 3 3 and the first amorphous germanium are selectively used as the mask with the photosensitive resin pattern 82C as a mask. The layer 3 1 remains wider than the width of the gate electrode 1 and serves as an island shape 3 1 A, 3 3 A to expose the gate insulating layer 30. At this time, it is necessary to pay attention to the fact that one portion 72 of the scanning line 11 exposed in the opening portion -38-(36) 1281999 63A is generated by the material of the scanning line 1 1 because it is exposed to the gas of the age I or the etching agent. The film of the scanning line π is deleted, but even if the A1 alloy is exposed, it is easy to avoid the influence of oxidation if Ti is selected as the lowermost layer of the drain wiring material. In addition, as described in the previous examples, it is also possible to use the scan line 1 1 as a laminate of, for example, Al/Ti/Al, and even if the Ti of the upper layer disappears, A1 can be removed to expose the underlying Ti. System of law. After the photosensitive resin 82C is removed, a heat-resistant metal thin film layer 34 such as Ti or Ta is sequentially coated as a film thickness by using a vacuum film forming apparatus such as SPT. An anodized heat-resistant metal layer of about 1/im, A1 film layer 35 as a film thickness of 0. 3 / m or so of the same anodizable low-resistance wiring layer, and Ta and other heat-resistant metal film layer 36 as a film thickness Ο. An intermediate conductive layer that can be anodized as well as Ι/zm. Then, the source/drain wiring material composed of the three types of thin films is sequentially engraved by a microfabrication technique using a photosensitive resin pattern, as shown in FIGS. 3(e) and 4(e). Selectively forming a drain electrode (wiring) 2 1 of an insulating gate type transistor composed of a stack of 3 4 A, 3 5 A, and 3 6 A, and a signal line also serving as a source electrode (wiring) 1 2. In the selective pattern formation of the source/drain wirings 2 and 2, as in the prior art, it is not necessary to etch the second amorphous germanium layer 33A containing impurities and the second amorphous germanium layer 31A containing no impurities. Further, generally, when the source/drain wirings 1 2 and 2 1 are formed, the electrode terminal 5 including the scanning line of the scanning line n of the portion 7 2 in the opening portion 63A and the electrode terminal 5 are formed at the same time. Electrode terminal 6. As a source/drain wiring, if the resistance is not critical, it can be simplified. -39- (37) 1281999 is an anodizable Ta single layer. Furthermore, N1 alloy with Nd is chemically added. The potential potential is lowered, and the chemical uranium reaction with ITO in the alkali solution such as the developing solution or the photoresist stripping solution is suppressed, so that the intermediate conductive layer 3 6 A is not required at this time, and the source/drain wiring 1 can be used. The laminated structure of 2 and 2 is a two-layer structure (3 4 A, 3 5 A ), and the composition of the source/drain wirings 1 2 and 2 1 can be simplified. After the source/drain wirings 12 and 21 are formed, a vacuum film forming apparatus such as SPT is used on the entire surface of the glass substrate 2, for example, ITO is coated as a film thickness of 0. 1 ~ 〇. A transparent conductive layer of about 2/m is formed on the gate insulating layer 30 by using a microfabrication technique of the photosensitive resin pattern 83 as shown in Figs. 3(f) and 4(f). The pixel electrode 22 including a portion of the intermediate conductive layer 36A of the gate electrode 21 is selectively formed. At this time, a transparent conductive layer is formed on the electrode terminal 5 of the scanning line and the electrode terminal 6 of the signal line to form transparent electrode terminals 5A and 6A. Here, in the same manner as in the prior art, the short-circuit line 40' which is provided with transparent conductivity is formed into a slender strip shape between the electrode terminals 5A, 6A and the short-circuit line 40, so that it is easy to increase the resistance and become high against static electricity. resistance. Next, the photosensitive resin pattern 83 is used as a mask, and the source/drain wirings 1 2 and 2 1 are anodized while the light is being irradiated, and an oxide layer is formed on the surface while the anodization is exposed to the source. A portion of the second amorphous germanium layer 33A containing impurities between the drain wirings 12 and 21 and a portion of the first amorphous germanium layer 3 1A containing no impurities, as shown in FIG. 3(g) and FIG. 4( As shown in g), a cerium oxide layer (SiO 2 ) 66 containing impurities and a cerium oxide layer (not shown) containing no impurities are formed. -40- (38) 1281999 Ta is exposed on the top of the source/drain wirings 1, 2 and 2, and a stack of Ta, Al, and Ti is exposed on the side surface, and is anodized by semiconductors. Titanium oxide (Ti〇2) 68 'A1 is an aluminum (Al2〇3) 69 which is metamorphosed into an insulating layer, and then Ta is metamorphosed into a pentoxide (Ta20 5 ) 70 which belongs to the insulating layer. Although the titanium oxide layer 68 is not an insulating layer, the film thickness is extremely thin and the exposed area is small, so that there is no problem in terms of protection, and the heat-resistant metal thin film layer 34A is also preferably selected Ta. However, unlike Ta, it is necessary to pay attention to the surface oxide layer of the absorbing substrate and the lack of capacity to function as an ohmic contact. The second crystalline germanium layer 33A containing impurities between the channels causes an increase in leakage current of the insulating drain type transistor when it is completely uninsulated in the thickness direction. Here, the implementation of anodization while irradiating light is a very important point for the anodizing process, and is also disclosed in the prior art. Specifically, if a relatively strong light of about 10,000 m of light is irradiated, and if the leakage current of the insulated gate type transistor exceeds /A, the channel portion between the source and drain electrodes 1 and 2 1 The area of the anode electrode 21 is calculated to be an anodization of about 10 m A/cm 2 to obtain a current density for obtaining a good film quality. Further, the second amorphous ruthenium layer 3 3 A containing impurities is anodized, and the voltage is set to be higher than the formation voltage ιοον of the oxidized sand layer 66 which is sufficiently deformed to belong to the insulating layer, to the contact containing setting. The reaction voltage is a part of the first amorphous ruthenium layer 31 A (about 100 A) containing no impurities in the yttrium oxide layer 6 6 of the impurity formed by the high voltage, and is transformed into a ruthenium oxide layer containing no impurities (no picture) In this way, the electrical purity of the channel is increased, and the electrical connection between the source and drain electrodes 1 2 and 2 1 can be completely separated from -41 - (39) 1281999. That is, the OFF current of the insulated gate type transistor is sufficiently reduced, and a high ΟΝ/OFF ratio can be obtained. The film thickness of each oxide layer of pentoxide 70, aluminum 69, and titanium oxide 68 formed by anodization is 〇.  1~〇.  It is sufficient to use a protective layer of about 2 m as a wiring, and a treatment liquid such as ethylene glycol is used, and the applied voltage is also more than 100V. For the anodization of the source and drain wirings 12, 21, note that although not shown, all signal lines 12 must be electrically connected in parallel or in series. After that, of course, they must be removed and connected in series at the manufacturing engineering. Otherwise, otherwise Not only the electrical inspection of the active substrate 2, but also the actual operation of the liquid crystal display device can cause obstacles. As a means for releasing, it can be explained in detail by simple means such as illuminating the laser beam by illuminating or mechanically cutting the blade. The pixel electrode 22 is covered with the photosensitive resin pattern 83 because not only the anodized pixel electrode 22 is not required, but also the reaction current of the required amount or more flowing through the insulating gate polarity transistor to the gate electrode 2 1 is not required. Just fine. Finally, the active substrate 2 (semiconductor device for display device) is completed as shown in Figs. 3(h) and 4(h) except the photosensitive resin pattern 8 3 described above. The active substrate 2 and the color filter thus obtained are bonded to each other to form a liquid crystal panel, and the first embodiment of the present invention is completed. The configuration of the storage capacitor 15 is exemplified as a configuration example in which the storage capacitor line 16 and the pixel electrode 22 are planarly overlapped by the gate insulating layer 30 as shown in Fig. 3(h) (the upper left to the lower right oblique line) The portion 5 1 ), but the configuration of the storage capacitor 15 is not limited thereto, and the insulating layer including the gate insulating layer 30 is present between the pixel electrode 22 and the scanning line 1 1 of the upper stage through -42 - (40) 1281999 The composition of the layers is also possible. Furthermore, his composition is also possible, but the detailed description is omitted. In the second embodiment, the uranium engraving is performed for the halftone exposure of the layer of the island layer chemical layer such as the semiconductor layer and the layer for removing the electrode layer forming region on the electrode line forming region for the contact of the scanning line. In the case of the subtraction of the project, the active substrate is formed by using four masks as in the first embodiment, and by the technique of forming the same photoreceptor electrode and the scanning line, the engineering can be further promoted. The third embodiment is described in the third embodiment (the third embodiment). The third embodiment is as shown in FIGS. 5(d) and 6(d), until the semiconductor islanding project and the contact engineering. It is carried out in the same process as the first one. Then, the photosensitive resin pattern 84C having a reduced film thickness is removed by a halftone exposure technique, and then a heat-resistant metal layer 34 such as Ti or Ta is sequentially coated as an anodizable film having a film thickness by using a vacuum film forming apparatus. The heat resistant metal A1 film layer 35 has a film thickness of 0. The same anodically low resistance wiring layer of about 3/m. Then, as shown in FIGS. 5(e) and 6(e), the source/drain wiring material composed of the thin films is etched by the microfabrication technique using the photosensitive resin patterns 8 5 A to 8 5 D. The gate electrode including the insulating gate type transistor formed of the laminate of 35A and the portion of the pixel electrode 22 in the opening portion 74 is formed, and the signal line 12 which also serves as the source electrode. Although at the source, its process, the gate technology, but the cover is cut and reduced, the SPT film layer is formed according to the order of 34A I 2 1 •汲-43- (41) 1281999 pole wiring 1 2. When the 2, 2 1 is formed, the electrode terminal 5 including the scanning line of the electrode terminal forming region 5 A composed of the transparent conductive material is formed by one portion of the signal line, but the color tone exposure technique is in advance The area corresponding to the electrode terminals 5, 6 is formed, the film thickness (black area) of 8 5 B is 3 // m, and the area corresponding to the gates 2 2, 2 1 is 8 5 C, 8 5 D (middle tone) Film thickness of the area)  The thick photosensitive resin pattern 8 5 A to 8 5 D is important for the present invention. Although the area corresponding to the regions 85 A, 85B of the electrode terminals 5, 6 is tens of #πι, it is extremely easy to manage the finish for the mask production, but corresponds to the source/drain wiring 1 2, 2 1 The minimum size of the area 8 5 C is 4 to 8 / / m. The dimensional accuracy is relatively high, so a fine stitch pattern is required in terms of the adjustment area. However, the source/drain wirings 12 and 2 1 of the present invention are formed by one exposure treatment and one etching, so that the first halftone and the second etching treatment are used in comparison with the conventional halftone exposure technique. In the case of formation, the size management of the channel length is better than the previous halftone exposure technology, regardless of the size management of the source/twist line 1 2, 2 1 or the source/dole wiring 1 2, 2 1 . Pattern accuracy. When the source/drain wirings 1 and 2 are formed, when the photosensitive resin patterns 8 5 A to 8 5 D are reduced by a thickness of / m or more by the oxygen ashing means, the photosensitive resin is used. The patterns 8 5 c and 8 5 D expose the source/drain wirings 1 2 and 2 1, and the photosensitive resin patterns 8 5 E and 8 5 F can be selectively formed only on the electrode terminals 6. It is also easy to understand from the size of the electrodes 5, 6 'here by the oxygen plasma treatment layer|, and the half 85 A wiring is 5 μm characteristic small size, 85D half color, engraved at the light, Easy tube pulp, etc.; 5 Loss ‘5. Terminals and a few -44-(42) 1281999 The case where the pattern size is not affected is also a feature of the present invention. Here, as shown in Fig. 5 (f) and Fig. 6 (f), the photosensitive resin patterns 8 5 E and 8 5 F are used as masks, and the light is irradiated while the anode is the same as in the second embodiment. The oxidation source and the drain wiring 1 2 and 2 1 form an oxide layer 6 8 and 6 9 , and the anode is oxidized and exposed to the second amorphous germanium layer 3 3 A between the source and drain wirings 1 and 2 1 And a part of the adjacent first amorphous germanium layer 3 1 A forms a cerium oxide layer 66 containing impurities and a cerium oxide layer (not shown) which does not contain impurities. After the anodization is completed, the photosensitive resin patterns 8 5 E, 8 5 F are removed, and as shown in FIGS. 5(g) and 6(g), an anodized layer is formed on the side surface to expose the low-resistance metal. Electrode terminals 5, 6 formed by layers. However, in order to resist static electricity, the electrode terminal forming region 5A is connected to, for example, the short-circuit line 9 1 C, and as shown in the figure, if the electrode terminal 6 is formed without including the short-circuit line 9 1 C, it is on the side of the electrode terminal 5 No anodized layer is formed on the upper surface. Further, in the case of the configuration of the source/drain wirings 1, 2 and 2, if the limitation of the resistance 不 is not critical, the single layer of Ta which can be anodized can be simplified. The active substrate 2 and the color filter thus obtained are bonded to each other to form a liquid crystal panel, and the second embodiment of the present invention is completed. The configuration of the storage capacitor 15 is exemplified as shown in Fig. 5(g), in which a laminate of the plasma protective layer 71A and the gate insulating layer 30A is interposed, and a portion of the pixel electrode 22 is planarly overlapped and simultaneously The storage electrode 7 3 formed by the source/drain wirings 1 2 and 2 1 and the configuration example of the protrusion region formed on the front scanning line 1 1 (the upper left to the lower right oblique line portion 5 2 ) 'but the storage capacitor 〖5 The configuration is not limited thereto, and is the same as that of the second embodiment. -45-1281999 (43) Between the pixel electrode 22 and the common capacitance line 16 formed simultaneously with the scanning line 11, a gate insulating layer 3 Ο A is interposed. The composition of the insulating layer may also be. Further, other configurations are also possible, but detailed descriptions are omitted. In the third embodiment, when the source/drain electrodes 1 2, 2 1 and the second amorphous germanium layer 3 3 A are anodized, the pixel electrode 22 electrically connected to the gate electrode 2 1 is also exposed. Therefore, the pixel electrode 22 is also anodized at the same time. This point is greatly different from that of the first embodiment. Therefore, there is also a case where the resistance of the transparent conductive layer constituting the pixel electrode 22 is different, and the resistance 値 is increased by anodization. At this time, the film formation conditions of the transparent conductive layer must be appropriately changed, and prepared in advance. Oxygen is insufficient in film quality, but the case where the transparency of the transparent conductive layer is not reduced occurs in anodization. Further, although the current for anodizing the gate electrode 21 and the pixel electrode 22 is also supplied through the channel of the insulating gate type transistor, since the area of the pixel electrode 22 is large, a large oxidation is required. The current or the oxidation for a long time does not cause an obstacle to the resistance of the channel portion even if the light is irradiated, and the film thickness and film thickness on the drain electrode 2 1 and the storage electrode 73 are formed on the drain electrode 12 as on the signal line 12. The anodized layer is only insufficient to extend the oxidation time. However, even if the anodic oxide layer formed on the gate electrode 2 1 is somewhat incomplete, it is practically possible to obtain unreliable reliability. Since the driving signal applied to the liquid crystal cell is substantially AC, in order to reduce the DC voltage component between the counter electrode 14 and the pixel electrode 2 2 (the drain electrode 2 1 ), the counter electrode is Since the voltage is adjusted during image inspection (reduction of flicker adjustment), it is only necessary to form an insulating layer without flowing a DC component on the signal line. -46 - 1281999 (44) Although the liquid crystal display device described above uses a TN type liquid crystal cell, it controls a lateral electric field by forming a pair of counter electrode and a pixel electrode at a predetermined distance from the pixel electrode. In the liquid crystal display device of the IPS (In-Plain-Swticing) type, the project deletion proposed by the present invention is also effective, and will be described in the following embodiments. (Fourth Embodiment) In the fourth embodiment, first, a vacuum film forming apparatus such as SPT is used on one main surface of the glass substrate 2, and the coating film is thick. 1~0. The first metal layer of about 3/zm, as shown in Fig. 7 (〇 and Fig. 8(a), is selectively formed by microfabrication technology and also serves as the scan line 1 1 of the gate electrode 1 1 A and is common. Capacitor line 16. Then, using a PCVD device on the entire surface of the glass substrate 2, for example, 0. 3-0. 2-0. The film thickness of about 05/zm is sequentially coated to form the first SiNx layer 30 of the gate insulating layer, and the first amorphous germanium layer 31 which is a channel of the insulating gate type transistor which contains almost no impurities, and It is a three-type thin film layer of the second amorphous germanium layer 3 3 which is a source/drain of the insulated gate-type transistor containing impurities. Then, on the electrode terminal forming region of the scanning line 11, a formation region having an opening portion 63A while insulating the gate-type transistor, that is, a region 82A on the gate electrode 1 1 A is formed by a halftone exposure technique. The film thickness is, for example, 2 // m, and the photosensitive resin patterns 82A and 82B which are thicker than the film thickness of the other regions 82B by 1 // m, as shown in Figs. 7(b) and 8(b), The photosensitive resin patterns 82 A and 82B are selected as a mask. • 47-(45) 1281999 The second amorphous germanium layer 3 3 and the first amorphous germanium layer 3 in the opening portion 6 3 A are removed. And the gate insulating layer 30 exposes a portion 7 2 of the scanning line 1 1 . Next, when the photosensitive resin patterns 8 2 A and 8 2 B are cut by a film thickness of 1 / im or more by an ashing means such as oxygen plasma, as shown in Figs. 7(c) and 8(() As shown in c), the photosensitive resin pattern 82B disappears, and the second amorphous germanium layer 3 3 is exposed, and the photosensitive resin pattern 82C can be selectively formed only on the gate electrode Η A. Here, as shown in FIGS. 7(d) and 8(d), the second amorphous germanium layer 3 3 and the first amorphous layer are selectively selected by using the photosensitive resin pattern 8 2 C as a mask. The ruthenium layer 31 remains as wide as the width of the electrode 11 of the gate electrode 11 and serves as the island shape 31A, 33A to expose the gate insulating layer 30. After the photosensitive resin 82C is removed, a heat-resistant metal thin film layer 34 such as Ti or Ta is sequentially coated as a film thickness by using a vacuum film forming apparatus such as SPT. a heat resistant metal layer of about 1/zm, and a film thickness of A1 as a film thickness of 0. 3 / m low resistance wiring layer. Then, as shown in FIGS. 7(e) and 8(e), the source/drain wiring material composed of the thin films is sequentially etched by a microfabrication technique using a photosensitive resin pattern. The formation of a drain electrode (wiring) 2 1 of an insulating gate type transistor which is a pixel electrode composed of a laminate of 34A and 35A, and a signal line 12 which also serves as a source electrode (wiring), but This is the same as the prior example, sequentially etching the second amorphous germanium layer 3 3 A and the first amorphous germanium layer 3 1A, and the first amorphous germanium layer 31 A is etched into the remaining germanium. 〇5~0. 1 / i m degree. Further, generally, when the source/drain wirings 1 2 and 2 1 are formed, the electrode terminals 5 - 48 - (46) 1281999 of the scanning lines including a part of the scanning lines 11 in the opening portion 6 3 A are simultaneously formed and the signal lines are formed. The electrode terminal 6 formed by one part of 1 2 . In addition, if the structure of the source/drain wiring 1 2 and 2 1 is limited by the resistance, it can be simplified as a single layer of Ta, Cr, which can be anodized. After the formation of the source/drain wirings 1, 2 and 2, the same as the conventional mask process, the entire surface of the glass substrate 2 is covered with 0. 3//] The second SiNx layer of the film thickness is used as a protective insulating layer, and is selectively formed on the electrodes and 6 of the scanning line and the signal line 12 as shown in Fig. 7 (f8 (f)). The opening portions 63 and 64 expose most of the electrode terminal , to complete the active substrate 2. The active substrate 2 and the color filter thus obtained are bonded to each other to form a panel, and the fourth embodiment of the present invention is completed. As apparent from the above description, the device does not require the electrical pixel electrode 22 on the active substrate 2. Therefore, the intermediate conductive layer of the source and the drain is not required. Regarding the configuration of the storage capacitor 15, although f (f) In the example in which the gate electrode insulating layer 30 is interposed between the counter electrode (storage capacitor line) 16 and the pixel electrode layer 21 (the lower left oblique line portion 52), the configuration of the storage capacitor 15 is not limited. Even if it is an insulating layer in which the gate insulating layer 30 is interposed between the pixel electrode 21 and the scanning line 1 1 of the front stage. Further, in FIG. 7 , the electrostatic gas countermeasure between the electrode terminals 5 connected to the electrode terminal 5 of the scanning line is not shown, although a high-resistance member such as an insulating gate crystal or an elongated conductive line in an OFF state is used. However, the opening 63A is exposed to expose a portion 72 of the scanning line 11, and the five terminals of the light is not strict, and the fifth terminal 5:5, 6 is liquid crystal opaque conductive wiring. (The 汲 往 往 存 存 〔 〔 f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f In the fourth embodiment, since the protective layer of the active substrate 2 is made of a tantalum nitride layer (SiNx) which is produced by using a PCVD apparatus in the same manner as in the prior art, there are few process change points in the conventional mass production plant. In the same manner as in the third embodiment, the engineering and cost reduction of the protection technique of the anode and the anodic oxidation by the source and the drain can be further reduced, and the fifth and sixth embodiments will be described. (Fifth Embodiment) In the fifth embodiment, a vacuum film forming apparatus such as SPT is used first on one main surface of the glass substrate 2, and the thickness of the coating film is 0. 1 ~ 〇. The first metal layer of about 3/m is selectively formed by the microfabrication technique as the scanning line 1 of the gate electrode 1 1 A as shown in Fig. 9 (a) and Fig. 10 (a). And the counter electrode 16. Next, using a PCVD apparatus on the entire surface of the glass substrate 2, for example, 0. 3-0· 1-0. The film thickness of about 05 / m is sequentially coated with the first SiNx layer 30 which becomes the gate insulating layer, and the first amorphous germanium layer 3 which becomes the channel of the insulating gate type transistor which contains almost no impurity. And three types of thin film layers of the second amorphous germanium layer 3 3 which are sources and drains of the insulated gate type transistor including impurities. Next, as shown in FIGS. 9(b) and 10(b), the second amorphous germanium layer 3 3 and the first amorphous sand layer 31' are selectively removed by a microfabrication technique and are gated. An island-shaped semiconductor layer 3] A, 3 3 A wider than the width of the gate electrode A of the gate 11 is formed on the electrode 11A to expose the gate insulating layer 3 0 - 50 - (48) 1281999 Next, as shown in Fig. 9(c) As shown in Fig. 1(c), a mouth portion 6 3 A is formed on the electrode terminal forming region of the scanning line 11 by a microfabrication technique, and the gate insulating layer 3 0 in the opening portion 6 3 a is selectively removed. A portion 7 2 of the scanning line 1 1 is exposed. Further, a vacuum film forming apparatus such as SPT is used to sequentially coat Ti, a heat resistant metal thin film layer 34 as a film-thick anodic heat-resistant metal layer, and an A1 film layer 35 as a film thickness of 0. A low-resistance wiring layer that can be anodized around 3/^m. Then, as shown in FIG. 9(d), FIG. 10(d), the source/germanium wiring materials composed of the thin films are sequentially etched by the micro-processing technique using the photosensitive tree patterns 85A to 85D. A drain electrode 2 1 of an insulating gate type transistor which is a pixel electrode composed of a laminate of 3 4 A and 3 5 A and a signal line 1 2 which also serves as a source electrode 1 1 A are selectively formed. At the same time as the formation of the source/drain electrodes 12 and 21, the electrode terminal including the electrode terminal 5 of the scanning line and the signal line portion is formed at the same time. 6. In this case, however, in the same manner as in the third embodiment, the film thickness (black area) of the regions 8 5 A and 8 5 B forming the electrode terminals 5 and 6 is, for example, 3 // m, and the ratio according to the halftone exposure technique. Corresponding to the film of the region 8 5 C, 8 5 D (intermediate adjustment region) of the pole wiring 1 2, 2 1 5/im is also thick photosensitive resin patterns 85A to 85D. When the source/drain wirings 1 and 2 are formed, when the photosensitive resin patterns 85 A to 85D are reduced by a thickness of / m or more by the ashing means of oxygen plasma, the photosensitive resin pattern 85C '85D disappears from the open and Ta and the fat pole will also be lined up in the same phase. 5 and • 51 - (49) 1281999 Exposed source/drain wiring 1 2, 2 1, and the photosensitive resin patterns 8 5 E, 85F can be selectively formed only on the electrode terminal 5 and the electrode terminal 6. Here, as shown in Fig. 9 (e) and Fig. 10 (e), the photosensitive resin patterns 8 5 E and 8 5 F are used as a mask, and the surface is anodized while the light is irradiated. Wirings 1 2 and 2 1 form anodized layers 6 8 and 6 9 on the surface, and anodization is exposed to the second amorphous germanium layer 3 3 A and the first between the source and drain wirings 2 and 2 1 1 A portion of the amorphous germanium layer 3 1 A forms a cerium oxide layer 66 containing impurities and a cerium oxide layer (not shown) containing no impurities. After the completion of the anodization, when the photosensitive resin patterns 85E and 85F are removed, the electrode terminals composed of the low-resistance film layer are exposed as shown in Fig. 9 (f) and Fig. 10 (f). 5 and electrode terminal 6. However, although the anodized layer 6 9 and 6 8 are formed on the side of the electrode terminal 6 of the signal line 12 in the same manner as the signal line 12, it is noted that anodization is not formed on the side of the electrode terminal 5 of the scanning line. Floor. This is to anodize the electrode terminal 5 of the scanning line independently. As in the second embodiment, in order to resist static electricity, the electrode terminal 5 of the scanning line and the electrode terminal 6 of the signal line are connected by a resistive member. At the time of anodization, only a slight anodized layer is formed on the side surface of the electrode terminal 5 of the scanning line. In the case of a resistive member, since the IP S-type liquid crystal display device does not require a transparent conductive layer, any one of a scan line material, a signal line material, and a semiconductor layer is required, but there is a useful connection to the scan line 1 1 Since the opening portion 6 3 A is not limited to which one is selected, a detailed description thereof will be omitted. The active substrate 2 and the color filter thus obtained were bonded together to form a liquid crystal -52-(50) 1281999, and the fourth embodiment of the present invention was completed. The configuration of the storage capacitor 15 is exemplified in FIG. 9(f), in which a counter electrode (storage capacitor line) 16 and a pixel electrode (drain electrode) 2 1 are provided with a gate insulating layer 30. example. In addition to the rationalization of the formation of the opening portion of the semiconductor layer used in the fourth embodiment and the formation of the opening portion of the gate insulating layer, the rationalization of the formation of the protective insulating layer by the source/drain wiring in the fifth embodiment can be simultaneously employed. In the embodiment, this will be described as a sixth embodiment. (sixth embodiment) The sixth embodiment is a project for the islanding process of the semiconductor layer and the formation of the contact engineering as shown in Figs. 1 (d) and 12 (d). 4 The process of the same embodiment is carried out. Next, in the formation of the source/drain wiring, a vacuum film forming apparatus such as Ti or Ta is sequentially applied as a film thickness using a vacuum film forming apparatus such as SPT. An anodized heat-resistant metal layer of about 1/zm, and an A1 thin film layer 35 as an anodizable low-resistance wiring layer having a film thickness of about the same. Then, as shown in FIGS. 1(e) and 12(e), the source/drain wiring composed of the thin films is sequentially etched by the microfabrication technique using the photosensitive resin patterns 85A to 85D. a material, and selectively formed of a laminate of 3 4 A and 3 5 A, which will become the drain electrode 2 1 of the insulating gate type transistor of the pixel electrode and the signal line 1 which also serves as the source electrode 2. At the time of formation of the source/drain wirings 1, 2 and 2, a portion of the scanning line including the opening portion 6 3 A is also formed, and the electrode end of the scanning line is -53-(51) 1281999 sub 5 And an electrode terminal 6 formed by one of the signal lines. At this time, as in the embodiment, the film thickness of the regions 8 5 A, 8 5 B formed on the electrode terminals by the halftone exposure technique is, for example, 3 // m, and the region 8 5 of the corresponding pole wirings 1 2, 2 1 . C, 8 5 D film thickness 1 · 5 ym also thick photosensitive resin pattern 8 5 A~8 5 D. After the source/drain wirings 1 and 2 are formed, the photosensitive resin patterns 8 5 A to 8 5 D are reduced by 1 by oxygen plasma ashing means. · When the film thickness is larger than the above, the photosensitive resin pattern is formed. 8 5 C, 8 5 D disappears and the source/drain wirings 1 2, 2 1, and the photosensitive resin pattern 85E can be selectively formed only on the electrode terminal 5 electrode terminal 6. Here, as shown in Fig. 11 (〇 and Fig. 12 (f), the resin patterns 8 5 E and 85 F are used as masks, and the anode source and drain wirings 12 and 21 are irradiated while the light is being irradiated. The oxide layers 68 and 69 are formed, and at the same time, one of the second amorphous 3 3 A and the first amorphous germanium layer 3 1 A exposed between the source/drain wirings 2 and 2 1 is oxidized to form a portion. The yttrium oxide layer 66 containing impurities and the ruthenium oxide layer containing no impurities are shown. After the anodic oxidation is completed, when the photosensitive resin pattern 8 5 E is removed, the electrode terminal 5 and the electrode terminal formed of the resistive film layer are exposed as shown in FIGS. 1 to 1 (g) and 12 (g). 6. The obtained active substrate 2 and color filter are bonded to each other to form a liquid crystal panel. The fifth embodiment of the present invention. The configuration of the storage capacitor 15 is shown as a configuration example in which the gate insulating layer 30 is interposed between the counter electrode (storage capacitor line) 6 and the pixel (drain electrode) 2 1 . < 5th, 5th, 6th, 5th, 6th, 6th, 5th, 5th, 5th, 5th, 5th, 5th, 5th, 5th, 5th, 5th, 5th, 5th, 5th, 5th, 5th, 5th, 5th, 5th, 5th, 5th The photomasks used in the sixth embodiment are four or three, but the obtained liquid crystal display device has almost no difference. The difference is merely exposed to the electrode terminal formation region formed on the scanning line. A part of the film of the scanning line in the opening portion is reduced or the surface is deteriorated. In other words, the sixth embodiment can be further reduced. [Effect of the Invention] As described above, one part of the liquid crystal display described in the present invention is At the same time, anodizing is performed by a source/drain wiring composed of an anodizable source and drain wiring material, and a channel surface of an insulating gate type transistor, thereby forming a protective layer (passivation layer), so that no additional heating is required. An insulating gate type transistor in which amorphous germanium is used as a semiconductor layer does not require excessive heat resistance. In other words, an effect of not causing deterioration in electrical performance is added to form a protective effect. Furthermore, for the anodization of the source/drain wiring, by introducing a halftone exposure technique, the electrode terminals of the scanning line or the signal line can be selectively protected, and the effect of preventing the number of photoetching projects can be prevented. By anodizing an amorphous tantalum layer containing impurities, the electrochemical separation of the source and the drain of the insulating gate-type transistor is performed on the insulating separation of the amorphous germanium layer containing impurities, so As in the past, the electrical characteristics of the insulating gate type transistor may be deteriorated due to damage during etching of the channel semiconductor layer, and further, the amorphous layer containing no impurities may be formed as a channel. The film thickness is reduced to the most appropriate film thickness, so the operating rate and particle generation of the PCVD device are also significantly improved. • 55- (53) 1281999 In addition to the same light by introducing halftone exposure technology The islanding process for processing the semiconductor layer and the opening portion of the gate insulating layer form a 'cut-off engineering' by using the same pseudo-pixel electrode to form the pixel electrode and the scanning line at the same time. Rationalization, by cutting down the rationalization of the work, the number of uranium engraving projects can be reduced to four or three masks to produce liquid crystal display devices, even from the cost point of the liquid display device. Important features of the IP S-type liquid crystal display in the fifth and sixth embodiments In the middle, the electric field generated between the counter electrode and the pixel electrode is applied to the gate insulating layer and the anodized layer, so that the conventional insulating layer is not present, and the display image is not easily burned. The advantage of the focal image is that the anodized layer of the drain wiring (pixel electrode) functions as a high-resistance layer without using an insulating layer, so that no load is generated. Moreover, the requirements of the present invention are apparent from the above description. In an etched type of gate-type transistor, an anodizable source-drain wiring material is used, and an amorphous layer containing impurities is also applied to the source. The surface of the pole wiring is anodized, and the insulation layer is formed by any one of the other components. The material of the pixel electrode, the gate insulating layer, or the like is different from that of the liquid crystal display device or the manufacturing method. It is also within the scope of the invention. Even if it is a reflective liquid crystal display device, the nature of the present invention will not change. Furthermore, the semiconductor layer cover of the insulated gate type transistor can be used for engineering photomasks and low, and the crystal display engineering has a high display. The application of the applied image is limited to the amorphous sand when the storage channel is extremely polar and the film thickness is not used in this application. -56- (54) 1281999. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view showing a semiconductor device for a display device according to a first embodiment of the present invention. Fig. 2 is a cross-sectional view showing the manufacturing process of the semiconductor device for a display device according to the first embodiment of the present invention. Fig. 3 is a plan view showing a semiconductor device for a display device according to a second embodiment of the present invention. Fig. 4 is a cross-sectional view showing the manufacturing process of the semiconductor device for a display device according to the second embodiment of the present invention. Fig. 5 is a plan view showing a semiconductor device for a display device according to a third embodiment of the present invention. Figure 6 is a cross-sectional view showing the manufacturing process of a semiconductor device for a display device according to a third embodiment of the present invention. Figure 7 is a plan view showing a semiconductor device for a display device according to a fourth embodiment of the present invention. Figure 8 is a cross-sectional view showing the manufacturing process of a semiconductor device for a display device according to a fourth embodiment of the present invention. Figure 9 is a plan view showing a semiconductor device for a display device according to a fifth embodiment of the present invention. Fig. 1 is a cross-sectional view showing a manufacturing process of a semiconductor device for a display device according to a fifth embodiment of the present invention. Fig. 1 is a plan view showing a semiconductor device used in a display device -57-(55) 1281999 according to a sixth embodiment of the present invention. Fig. 2 is a cross-sectional view showing the manufacturing process of the semiconductor device for a display device according to the sixth embodiment of the present invention. Fig. 13 is a view showing a state in which the liquid crystal panel is mounted. Figure 14 is an equivalent circuit diagram of the liquid crystal panel. Fig. 15 is a cross-sectional view showing a conventional liquid crystal panel. Figure 16 is a plan view of the active substrate of the prior art. Figure 17 is a cross-sectional view showing the manufacturing process of the active substrate of the prior art. Figure 18 is a plan view of the rationalized active substrate. Figure 19 is a cross-sectional view showing the manufacturing process of the rationalized active substrate. [Description of symbols] 1 : Liquid crystal panel 2 : Active substrate (glass substrate) 3 _• Semiconductor integrated circuit wafer 4 : TCP film 5 , 6 : Electrode terminal 9 : Color filter (opposite glass substrate ) 1 〇 : Insulation Gate type transistor 1 1 : Scanning line (gate wiring, gate electrode) 1 2 : Signal line (source wiring, source electrode) 16 : Common capacitance line (opposite electrode in IPS type) 1 7 : Liquid crystal I 9 : polarizing plate - 58 - (56) 1281999 20 : alignment film 21 : drain electrode (dip wiring, IPS type is pixel electrode 22 : (transparent conductive) pixel electrode 3 〇 = gate Insulation layer 3 1 : (1) amorphous germanium layer 3 3 containing no impurities (2) amorphous germanium layer 34 containing impurities (heat-resistant metal layer 35 (anodable): (anodable) Low-resistance metal layer (A1) 3 6 : (anodable) intermediate conductive layer 3 7 : protective insulating layer

Claims (1)

12819¾ il09959號,95年1月修正肩: (1) 拾、申請專利範圍 1 · 一種位於一絕緣基板上之底部閘極型之絕緣閘極 型電晶體,其係包含: 一具有至少一第1金屬層之閘極電極; 至少一位於該閘極電極上之閘極絕緣層; 一位於該閘極絕緣層之島狀第1半導體層,且該第1 半導體層不含雜質;128193⁄4 il09959, revised shoulders in January 1995: (1) Pickup, Patent Application No. 1 · A bottom gate type insulated gate type transistor on an insulating substrate, comprising: at least one first a gate electrode of the metal layer; at least one gate insulating layer on the gate electrode; an island-shaped first semiconductor layer on the gate insulating layer, and the first semiconductor layer contains no impurities; 一對位於該第1半導體層上且含有雜質的第2半導體 層,部分該第2半導體與該閘極電極重疊,以形成一源極 或汲極; 一位於該第2半導體層上和該閘極絕緣層上之源極/ 汲極配線,且該源極/汲極配線含有一耐熱金屬層以及至 少一可陽極氧化之金屬層;以及a pair of second semiconductor layers on the first semiconductor layer and containing impurities, and a portion of the second semiconductor overlaps with the gate electrode to form a source or a drain; a gate on the second semiconductor layer and the gate a source/drain wiring on the pole insulating layer, and the source/drain wiring includes a heat resistant metal layer and at least one anodizable metal layer; 一位於該源極/汲極配線與該第1半導體層上之陽極 氧化層,且該陽極氧化層位於該源極配線之電氣性連接區 域之外。 2. —種液晶顯示裝置,係包含: 一具有絕緣閘極型電晶體以及一畫素電極之第1透明 性絕緣基板; •-與該第1透明性絕緣基板對向的第2透明性絕緣性 基板;以及 一充塡於該第1透明性絕緣基板及該第2透明性絕緣 性基板之間之液晶; 其中該絕緣閘極型電晶體包含: -60- 1281999 (2) 一具有一金屬層以及一透明導電層之閘極電極,該透 明導電層位於該第1透明性絕緣基板之一主表面,且該金 屬層位於該透明導電層之上; 一位於該閘極電極上之閘極絕緣層; 一位於該閘極絕緣層上之電漿保護層; 一位於該電漿保護層上之島狀第1半導體層,且該第 1半導體層不含雜質; -位於該第1半導體層上且含雜質之第2半導體層, 其中部分該第2半導體層與該閘極電極重疊以成爲該絕緣 閘極型電晶體之源極或汲極;以及 一位於該第2半導體層上或該閘極絕緣層上之源極配 線或汲極配線,其中該源極配線或該汲極配線含有一耐熱 金屬層及至少1層之可陽極氧化的金屬層。 3 .如申請專利範圍第2項所述之液晶顯示裝置,其 更包括一在該畫素電極上具有一開口部之保護絕緣層,且 該保護絕緣層是被形成在第1透明性絕緣基板上。 4.如申請專利範圍第2項所述之液晶顯示裝置,其 中該第1透明性絕緣基板更包括複數個掃描線,且該掃瞄 線與該閘極電性連接。 5 ·如申請專利範圍第2項所述之液晶顯示裝置,其 中該第1透明性絕緣基板更包括有複數個兼作該源極配線 或該汲極配線的訊號線。 6·如申請專利範圍第2項所述之液晶顯示裝置,其 中該畫素電極於該第1透明性絕緣基板上配列成二次元之 -61 - (3) 1281999 矩陣。 7·如申請專利範圍第5項所述之液晶顯示裝置,其 更包括一位於該源極配線或該汲極配線上之陽極氧化層, 且部分該陽極氧化層並形成於該源極配線或該汲極配線間 之該第1半導體層t。 8. 如申請專利範圍第7項所述之液晶顯示裝置,其 中該陽極氧化層爲氧化矽層。 9. 一種液晶顯示裝置,其係包含: 一具有絕緣閘極型電晶體以及一畫素電極之第1透明 性絕緣基板; 一與該第1透明性絕緣基板對向的第2透明性絕緣性 基板;以及 一充塡於該第1透明性絕緣基板及該第2透明性絕緣 性基板之間之液晶; 其中該絕緣閘極型電晶體包含: 一具有一金屬層之閘極電極,該透明導電層位於該第 1透明性絕緣基板之一主表面; 一位於該閘極電極上之閘極,絕緣層; •一位於該閘極絕緣層上之島狀第1半導體層,且該第 1半導體層不含雜質; 一位於該第1半導體層上且含雜質之第2半導體層’ 其中部分該第2半導體層與該閘極電極重疊以成爲該絕緣 闊極型電晶體之源極或汲極, 一位於該第2半導體層上或該閘極絕緣層上之源極配 -62- 1281999 (4) 線或汲極配線,其中該源極配線或該汲極配線含有一耐熱 金屬層及至少1層以上之可陽極氧化的金屬層;以及 一位於該源極配線或該汲極配線上之陽極氧化層,且 部分該陽極氧化層並形成於該源極配線或該汲極配線間之 該第1半導體層上。 10.如申請專利範圍第9項所述之液晶顯示裝置,其 中該陽極氧化層爲氧化矽層。 1 1 .如申請專利範圍第9項所述之液晶顯示裝置,其 中該第1透明性絕緣基板更包括複數個掃描線,且該掃瞄 線與該閘極電性連接。 1 2.如申請專利範圍第9項所述之液晶顯示裝置,其 中該第1透明性絕緣基板更包括有複數個兼作該源極配線 或該汲極配線的訊號線。 1 3 ·如申請專利範圍第9項所述之液晶顯示裝置,其 中該畫素電極於該第1透明性絕緣基板上配列成二次元之 矩陣。 14. 一種液晶顯示裝置,其係包含: 一具有絕緣閘極型電晶體以及一畫素電極之第1透明 性絕緣基板; • ·與該第1透明性絕緣基板對向的第2透明性絕緣性 基板;以及 一充塡於該第1透明性絕緣基板及該第2透明性絕緣 性基板之間之液晶; 其中該絕緣閘極型電晶體包含: -63- 1281999 (5) 一具有一金屬層之閘極電極,該透明導電層位於該第 1透明性絕緣基板之一主表面; 一位於該閘極電極上之閘極絕緣層; 一位於該閘極絕緣層上之島狀第1半導體層,且該第 1半導體層不含雜質; 一位於該第1半導體層上且含雜質之第2半導體層, 其中部分該第2半導體層與該閜極電極重疊以成爲該絕緣 閘極型電晶體之源極或汲極;以及 一位於該第2半導體層上或該閘極絕緣層上之源極配 線或汲極配線,其中該源極配線或該汲極配線含有一耐熱 金屬層及至少1層以上之可陽極氧化的金屬層。 1 5 .如申請專利範圍第1 4項所述之液晶顯示裝置, 其更包含一保護絕緣層,係全面上形成於第1透明性絕緣 基板上。 16. 如申請專利範圍第14項所述之液晶顯示裝置, 其中該第1透明性絕緣基板更包括複數個掃描線,且該掃 瞄線與該閘極電性連接。 17. 如申請專利範圍第14項所述之液晶顯示裝置, 其中該第1透明性絕緣基板更包括有複數個兼作該源極配 線或該汲極配線的訊號線。 1 8 .如申請專利範圍第1 4項所述之液晶顯示裝置, 其中該畫素電極於該第1透明性絕緣基板上配列成二次元 之矩陣。 -64- 1281999 (6) 1 9 .如申請專利範圍第1 4項所述之液晶顯示裝置, 其更包括一在畫像顯示部以外區域之開口部,且在該掃描 線上之開口部內的閘極絕緣層被除去。 20.如申請專利範圍第14項所述之液晶顯示裝置, 其更包括一陽極氧化層,其中該有陽極氧化層係於該訊號 線之電極端子區域外,且於該源極配線或該汲極配線之表 面上形成;以及 一位於該源極配線或該汲極配線上之陽極氧化層,且 部分該陽極氧化層並形成於源極配線或該汲極配線間之該 第1半導體層上。 2 1.如申請專利範圍第20項所述之液晶顯示裝置, 其中該陽極氧化層爲氧化矽層。 2 2. —種液晶顯示裝置用下基板之製造方法,其包含 有以下步驟: 在第1透明性絕緣基板之一主表面上,形成由透明導 電層和第1金屬層所構成之掃描線和擬似畫素電極; 依序被覆一電漿保護層、一閘極絕緣層、不含雜質之 第1非晶質矽層和含有雜質之第2非晶質矽層; 在掃描線之電極端子形成區域和擬似畫素電極上’形 成具有開口部且閘極電極上之膜厚比其他區域之膜厚還厚 的感光性樹脂圖案; 除去該開口部內之第2非晶質矽層、第1非晶質矽層 、閘極絕緣層、電漿保護層和第1金屬層’而露出透明導 電性之掃描線一部分和畫素電極; -65- 1281999 (7) 減少該感光性樹脂圖案之膜厚而露出第2非晶質矽層 在閘極電極上島狀地形成比閘極電極寬度還寬的第2 非晶質矽層和第1非晶質矽層; 被覆1層以上之第2金屬層,以在閘極絕緣層上和第 2非晶質矽層上形成並與閘極電極部分重疊之源極配線( 訊號線)或汲極配線、包含該開口部掃描線之電極端子、 以及和該訊號線之一部分所構成之訊號線之電極端子; 除去該源極•汲極配線間之第2非晶質矽層; 在該第1透明性絕緣基板之全面上形成保護絕緣層; 以及 在該電極端子上和畫素電極上選擇性地除去保護絕緣 層,以於保護絕緣層上形成開口部。 23. —種液晶顯示裝置用下基板之製造方法,包含有 以下步驟: 於至少在一第1透明性絕緣基板之一主表面上,形成 由1層以上之金屬層所構成之掃描線; 依序被覆1層以上之閘極絕緣層和不含雜質之第1非 晶質矽層和含有雜質之第2非晶質矽層; 在掃描線之電極端子形成區域上,形成具有開口部且 閘極電極上之膜厚比其他區域之膜厚還厚的感光性樹脂圖 案; 除去該開口部內之第2非晶質矽層、第1非晶質矽層 、閘極絕緣層; 晒66- 1281999 (8) 減少該感光性樹脂圖案之膜厚而露出第2非晶質矽層 9 在閘極電極上島狀地形成比閘極電極寬度還寬的第2 非晶質矽層和第1非晶質矽層; 在閘極絕緣層上和第2非晶質矽層上,使一部分與閘 極電極重疊地形成由1層以上之可陽極氧化之金屬層所構 成之源極配線(訊號線)或汲極配線; 在閘極絕緣層上和該汲極配線之一部分上,於透明導 電性之畫素電極和畫像顯示部之外的區域,形成透明導電 性之電極端子於訊號線上;以及 將被使用於該畫素電極和電極端子之選擇性圖案的感 光性樹脂圖案當作遮罩,保護畫素電極和訊號線之電極端 子,同時陽極氧化源極配線,或汲極配線,和源極配線或 汲極配線間之非晶質砂層。 24· —種液晶顯示裝置用下基板之製造方法,包含有 以下步驟: 至少在第1透明性絕緣基板之一主表面上,形成由透 明導電層和第1金屬層所構成之掃描線和擬似畫素電極; 依序被覆電漿保護層、閘極絕緣層、不含雜質之第1 非晶質矽層和含有雜質之第2非晶質矽層; 在掃描線之電極端子形成區域和擬似畫素電極上,形 成具有開口部且閘極電極上之膜厚比其他區域之膜厚還厚 的感光性樹脂圖案; 除去該開口部內之第2非晶質矽層、第1非晶質矽層 -67- 1281999 (9) 、閘極絕緣層、電漿保護層和金屬層,而露出透明導電性 之掃描線一部分和畫素電極; 減少該感光性樹脂圖案之膜厚而露出第2非晶質矽層 在閘極電極上島狀地形成比閘極電極寬度還寬的第2 非晶質矽層和第1非晶質矽層; 被覆1層以上之可陽極氧化之金屬層後,於包含有該 透明導電性之掃描線的一部分之電極端子,以及訊號線之 一部分所構成之訊號線之電極端子上形成一部分與閘極電 極重疊,且對應於掃描線和訊號線之電極端子上的膜厚比 其他區域還厚的感光性樹脂圖案; 將該感光性樹脂圖案當作遮罩,選擇性除去可陽極氧 化之金屬層而形成源極配線或汲極配線和掃描線之電極端 子和訊號線之電極端子; 減少該感光性樹脂圖案的膜厚而露出源極配線或汲極 配線;及 保護該電極端子,同時陽極氧化源極配線或汲極配線 和源極配線或汲極配線間之非晶質矽層。 25. —種液晶顯示裝置用下基板之製造方法,包含有 以下步驟: 至少在第1透明性絕緣基板之一主表面上,形成由1 層以上之金屬層所構成之掃描線和對向電極; 依序被覆1層以上之閘極絕緣層和不含雜質之第1非 晶質矽層和含有雜質之第2非晶質矽層; -68- 1281999 (10) 在掃描線之電極端子形成區域上,形成具有開口部且 閘極電極上之膜厚比其他區域之膜厚還厚的感光性樹脂圖 案; 除去該開口部內之第2非晶質矽層、第1非晶質矽層 、閘極絕緣層; 減少該感光性樹脂圖案之膜厚而露出第2非晶質矽層 在閘極電極上島狀地形成比閘極電極寬度還寬的第2 非晶質矽層和第1非晶質矽層; 在閘極絕緣層上,以至少1層以上之第2金屬層於該 第2非晶質矽層形成一由1層以上之第2金屬層所構成之 源極配線(訊號線)或汲極配線(畫素電極)、含有該開 口部掃描線之電極端子、以及訊號線之一部分所構成之訊 號線之電極端子,其中該第2非晶質矽層與部分閘極電極 重疊; 除去該源極配線或汲極配線間之第2非晶質矽層;及 除該掃描線和訊號線之電極端子之外,在第1透明性 絕緣基板之全面上形成保護絕緣層。 26. —種液晶顯示裝置之製造方法,包含有以下步驟 至少在第1透明性絕緣基板之一主表面上,形成由1 層以上之金屬層所構成之掃描線和對向電極; 依序被覆1層以上之閘極絕緣層和不含雜質之第1非 晶質矽層和含有雜質之第2非晶質矽層; 69 - 1281999 (11) 在閘極電極上島狀地形成比閘極電極寬度還寬之第2 非晶質矽層和第1非晶質矽層而露出閘極絕緣層; 在掃描線之電極端子形成區域上,形成具有開口部而 除去該開口部內之閘極絕緣層; 被覆1層以上之可陽極氧化之金屬層後,於包含有該 開口部之掃描線的電極端子,以及訊號線之一部分所構成 之訊號線之電極端子上形成一部分與閘極電極重疊,且對 應於掃描線和訊號線之電極端子上的膜厚比其他區域還厚 的感光性樹脂圖案; 將該感光性樹脂圖案當作遮罩,選擇性除去可陽極氧 化之金屬層而形成源極配線或汲極配線和掃描線之電極端 子和訊號線之電極端子; 減少該感光性樹脂圖案的膜厚而露出源極配線或汲極 配線;及 保護該電極端子,同時陽極氧化源極配線、汲極配線 、和源極配線或汲極配線間之非晶質矽層。 27. —種液晶顯示裝置用下基板之製造方法,包含有 以下步驟: 至少在第1透明性絕緣基板之一主表面上,形成由1 層以上之金屬層所構成之掃描線和對向電極; 依序被覆1層以上之閘極絕緣層和不含雜質之第1非 晶質矽層和含有雜質之第2非晶質矽層; 在掃描線之電極端子形成區域上,形成具有開口部且 閘極電極上之膜厚比其他區域之膜厚還厚的感光性樹脂圖 -70- 1281999 (12) 案; 除去該開口部內之第2非晶質矽層、第1非晶質矽層 、閘極絕緣層; 減少該感光性樹脂圖案之膜厚而露出第2非晶質矽層 在閘極電極上島狀地形成比閘極電極寬度還寬的第2 非晶質矽層和第1非晶質矽層; 被覆1層以上之可陽極氧化之金屬層後,於包含有該 開口部之掃描線的電極端子,以及訊號線之一部分所構成 之訊號線之電極端子上形成一部分與閜極電極重疊,且對 應於掃描線和訊號線之電極端子上的膜厚比其他區域還厚 感光性樹脂圖案; 將該感光性樹脂圖案當作遮罩,選擇性除去可陽極氧 化之金屬層而形成源極配線或汲極配線和掃描線之電極端 子和訊號線之電極端子; 減少該感光性樹脂圖案的膜厚而露出源極配線或汲極 配線;及 保護該電極端子,同時陽極氧化源極配線、汲極配線 、和源極配線或汲極配線間之非晶質矽層。 -71 -An anodic oxide layer on the source/drain wiring and the first semiconductor layer, and the anodic oxide layer is outside the electrical connection region of the source wiring. 2. A liquid crystal display device comprising: a first transparent insulating substrate having an insulating gate type transistor and a pixel electrode; - a second transparent insulating layer opposed to the first transparent insulating substrate And a liquid crystal interposed between the first transparent insulating substrate and the second transparent insulating substrate; wherein the insulating gate type transistor comprises: -60-1281999 (2) one having a metal And a gate electrode of a transparent conductive layer, the transparent conductive layer is located on a main surface of the first transparent insulating substrate, and the metal layer is located above the transparent conductive layer; a gate on the gate electrode An insulating layer; a plasma protective layer on the gate insulating layer; an island-shaped first semiconductor layer on the plasma protective layer, wherein the first semiconductor layer contains no impurities; - the first semiconductor layer a second semiconductor layer containing impurities, wherein a portion of the second semiconductor layer overlaps with the gate electrode to become a source or a drain of the insulating gate type transistor; and a second semiconductor layer or the Gate insulation The source wiring or the drain wiring, wherein the source wiring or the drain wiring layer comprising a heat-resistant metal and at least one layer of metal may be anodized layer. 3. The liquid crystal display device of claim 2, further comprising a protective insulating layer having an opening on the pixel electrode, wherein the protective insulating layer is formed on the first transparent insulating substrate on. 4. The liquid crystal display device of claim 2, wherein the first transparent insulating substrate further comprises a plurality of scanning lines, and the scanning line is electrically connected to the gate. The liquid crystal display device according to claim 2, wherein the first transparent insulating substrate further includes a plurality of signal lines that also serve as the source wiring or the drain wiring. The liquid crystal display device according to claim 2, wherein the pixel electrode is arranged in a quadratic-61 - (3) 1281999 matrix on the first transparent insulating substrate. The liquid crystal display device of claim 5, further comprising an anodized layer on the source wiring or the drain wiring, and a portion of the anodized layer is formed on the source wiring or The first semiconductor layer t of the drain wiring. 8. The liquid crystal display device of claim 7, wherein the anodized layer is a hafnium oxide layer. A liquid crystal display device comprising: a first transparent insulating substrate having an insulating gate type transistor and a pixel electrode; and a second transparent insulating layer opposed to the first transparent insulating substrate a substrate; and a liquid crystal that is interposed between the first transparent insulating substrate and the second transparent insulating substrate; wherein the insulating gate type transistor comprises: a gate electrode having a metal layer, the transparent a conductive layer on one of the main surfaces of the first transparent insulating substrate; a gate on the gate electrode, an insulating layer; an island-shaped first semiconductor layer on the gate insulating layer, and the first The semiconductor layer does not contain impurities; a second semiconductor layer ′ on the first semiconductor layer and containing impurities; wherein a portion of the second semiconductor layer overlaps with the gate electrode to become a source or a drain of the insulating wide-polarity transistor a source, the source of the second semiconductor layer or the gate insulating layer is provided with a -62-1281999 (4) line or a drain wiring, wherein the source wiring or the drain wiring comprises a heat resistant metal layer and At least 1 layer or more An anodized metal layer; and an anodized layer on the source wiring or the drain wiring, and partially forming the anodized layer and forming the first semiconductor layer between the source wiring or the drain wiring on. 10. The liquid crystal display device of claim 9, wherein the anodized layer is a hafnium oxide layer. The liquid crystal display device of claim 9, wherein the first transparent insulating substrate further comprises a plurality of scanning lines, and the scanning line is electrically connected to the gate. 1. The liquid crystal display device of claim 9, wherein the first transparent insulating substrate further comprises a plurality of signal lines that also serve as the source wiring or the drain wiring. The liquid crystal display device according to claim 9, wherein the pixel electrodes are arranged in a matrix of two elements on the first transparent insulating substrate. A liquid crystal display device comprising: a first transparent insulating substrate having an insulating gate type transistor and a pixel electrode; • a second transparent insulating layer opposed to the first transparent insulating substrate And a liquid crystal that is interposed between the first transparent insulating substrate and the second transparent insulating substrate; wherein the insulating gate type transistor comprises: -63-1281999 (5) one having a metal a gate electrode of the layer, the transparent conductive layer is located on one main surface of the first transparent insulating substrate; a gate insulating layer on the gate electrode; and an island-shaped first semiconductor on the gate insulating layer a layer, wherein the first semiconductor layer does not contain impurities; a second semiconductor layer on the first semiconductor layer and containing impurities, wherein a portion of the second semiconductor layer overlaps with the drain electrode to form the insulating gate type a source or a drain of the crystal; and a source wiring or a drain wiring on the second semiconductor layer or the gate insulating layer, wherein the source wiring or the drain wiring includes a heat resistant metal layer and at least 1 or more layers An anodically oxidizable metal layer. The liquid crystal display device of claim 14, further comprising a protective insulating layer formed entirely on the first transparent insulating substrate. 16. The liquid crystal display device of claim 14, wherein the first transparent insulating substrate further comprises a plurality of scanning lines, and the scanning line is electrically connected to the gate. 17. The liquid crystal display device of claim 14, wherein the first transparent insulating substrate further comprises a plurality of signal lines that also serve as the source wiring or the drain wiring. The liquid crystal display device according to claim 14, wherein the pixel electrodes are arranged in a matrix of two elements on the first transparent insulating substrate. The liquid crystal display device of claim 14, further comprising an opening in an area other than the image display portion and a gate in the opening portion of the scanning line. The insulating layer is removed. 20. The liquid crystal display device of claim 14, further comprising an anodized layer, wherein the anodized layer is outside the electrode terminal region of the signal line, and the source wiring or the anode Forming on the surface of the pole wiring; and an anodized layer on the source wiring or the drain wiring, and partially forming the anodized layer on the first semiconductor layer between the source wiring or the drain wiring . 2. The liquid crystal display device of claim 20, wherein the anodized layer is a hafnium oxide layer. 2. A method of manufacturing a lower substrate for a liquid crystal display device, comprising the steps of: forming a scanning line composed of a transparent conductive layer and a first metal layer on one main surface of the first transparent insulating substrate; a pseudo-pixel electrode; sequentially coated with a plasma protective layer, a gate insulating layer, a first amorphous germanium layer containing no impurities, and a second amorphous germanium layer containing impurities; forming an electrode terminal at the scan line a photosensitive resin pattern having an opening and having a film thickness on the gate electrode thicker than that of the other regions is formed on the region and the pseudo-pixel electrode; the second amorphous germanium layer and the first non-deposited portion in the opening portion are removed a crystalline germanium layer, a gate insulating layer, a plasma protective layer, and a first metal layer' to expose a portion of the transparent conductive scan line and a pixel electrode; -65- 1281999 (7) reducing the film thickness of the photosensitive resin pattern The second amorphous germanium layer is exposed to form a second amorphous germanium layer and a first amorphous germanium layer wider than the gate electrode width on the gate electrode, and the second metal layer is coated with one or more layers. To the gate insulating layer and the second amorphous layer a source wiring (signal line) or a drain wiring formed on the gate electrode portion, an electrode terminal including the scan line of the opening portion, and an electrode terminal formed by a signal line formed by a portion of the signal line; a second amorphous germanium layer in the source/drain wiring; forming a protective insulating layer over the entire first transparent insulating substrate; and selectively removing the protective insulating layer on the electrode terminal and the pixel electrode In order to form an opening on the protective insulating layer. A method of manufacturing a lower substrate for a liquid crystal display device, comprising the steps of: forming a scan line composed of one or more metal layers on at least one main surface of a first transparent insulating substrate; The gate insulating layer of one or more layers and the first amorphous germanium layer containing no impurities and the second amorphous germanium layer containing impurities are sequentially coated; and an opening portion and a gate are formed on the electrode terminal forming region of the scanning line a photosensitive resin pattern having a film thickness on the electrode electrode that is thicker than the film thickness in the other regions; removing the second amorphous germanium layer, the first amorphous germanium layer, and the gate insulating layer in the opening portion; drying 66-1281999 (8) The film thickness of the photosensitive resin pattern is reduced to expose the second amorphous germanium layer 9. The second amorphous germanium layer and the first amorphous layer having a width wider than the gate electrode are formed in an island shape on the gate electrode. a source layer (signal line) composed of one or more layers of anodizable metal layers on a gate insulating layer and a second amorphous layer on a gate insulating layer Or bungee wiring; on the gate insulating layer and the bungee a portion of the line, in a region other than the transparent conductive pixel electrode and the image display portion, forming a transparent conductive electrode terminal on the signal line; and a selective pattern to be used for the pixel electrode and the electrode terminal The photosensitive resin pattern acts as a mask to protect the electrode terminals of the pixel electrodes and the signal lines, and anodically oxidizes the source wiring, or the drain wiring, and the amorphous sand layer between the source wiring or the drain wiring. A method for manufacturing a lower substrate for a liquid crystal display device, comprising the steps of: forming a scan line and a pseudo-conformation composed of a transparent conductive layer and a first metal layer on at least one main surface of the first transparent insulating substrate a pixel electrode; sequentially coating a plasma protective layer, a gate insulating layer, a first amorphous germanium layer containing no impurities, and a second amorphous germanium layer containing impurities; forming an electrode terminal region and a pseudo-like in the scan line A photosensitive resin pattern having an opening and having a film thickness on the gate electrode thicker than that of the other regions is formed on the pixel electrode; the second amorphous germanium layer and the first amorphous germanium in the opening are removed Layer-67-1281999 (9), gate insulating layer, plasma protective layer and metal layer, and partially exposing a transparent conductive scan line and a pixel electrode; reducing the film thickness of the photosensitive resin pattern to expose the second non- The crystalline germanium layer forms a second amorphous germanium layer and a first amorphous germanium layer wider than the gate electrode width on the gate electrode; after coating one or more layers of the anodizable metal layer, Included with this transparent conductivity sweep The electrode terminal of a part of the trace line and the electrode terminal formed by the signal line formed by the signal line overlap with the gate electrode, and the film thickness on the electrode terminal corresponding to the scan line and the signal line is thicker than other regions. a photosensitive resin pattern; the photosensitive resin pattern is used as a mask, and the anodizable metal layer is selectively removed to form a source wiring or a drain terminal and an electrode terminal of the scan line and an electrode terminal of the signal line; The thickness of the resin pattern is such that the source wiring or the drain wiring is exposed; and the electrode terminal is protected, and the source wiring or the amorphous germanium layer between the drain wiring and the source wiring or the drain wiring is anodized. 25. A method of manufacturing a lower substrate for a liquid crystal display device, comprising the steps of: forming a scan line and a counter electrode formed of a metal layer of one or more layers on at least one main surface of the first transparent insulating substrate; A gate insulating layer of one or more layers and a first amorphous germanium layer containing no impurities and a second amorphous germanium layer containing impurities are sequentially coated; -68-1281999 (10) Forming at electrode terminals of the scanning lines a photosensitive resin pattern having an opening and having a film thickness on the gate electrode thicker than that of the other regions is formed in the region; the second amorphous germanium layer and the first amorphous germanium layer in the opening are removed, a gate insulating layer; a second amorphous ruthenium layer is formed on the gate electrode to form a second amorphous ruthenium layer having a width wider than the gate electrode width and a first non-existence in the second amorphous ruthenium layer a crystalline germanium layer; a source wiring composed of at least one or more second metal layers on the gate insulating layer and having a second metal layer of one or more layers (signal) Line) or bungee wiring (pixel electrode), including the opening scanning An electrode terminal of the signal electrode formed by the electrode terminal of the line and a signal line, wherein the second amorphous germanium layer overlaps with a portion of the gate electrode; and the second amorphous portion between the source wiring and the drain wiring is removed The protective layer is formed on the entire surface of the first transparent insulating substrate except for the electrode terminals of the scanning line and the signal line. 26. A method of manufacturing a liquid crystal display device comprising the steps of forming a scan line and a counter electrode composed of a metal layer of one or more layers on at least one main surface of a first transparent insulating substrate; 1 or more gate insulating layers and a first amorphous germanium layer containing no impurities and a second amorphous germanium layer containing impurities; 69 - 1281999 (11) forming a gate electrode on the gate electrode in an island shape a second amorphous tantalum layer and a first amorphous tantalum layer having a wide width to expose the gate insulating layer; and an opening portion is formed in the electrode terminal forming region of the scanning line to remove the gate insulating layer in the opening portion After coating one or more layers of the anodizable metal layer, a portion of the electrode terminal of the signal line including the scanning line of the opening portion and the signal line formed by one of the signal lines is partially overlapped with the gate electrode, and a photosensitive resin pattern having a film thickness corresponding to other regions on the electrode terminals of the scanning lines and the signal lines; using the photosensitive resin pattern as a mask to selectively remove the anodizable metal layer An electrode terminal of the source wiring or the drain wiring and the scanning line and an electrode terminal of the signal line; reducing the film thickness of the photosensitive resin pattern to expose the source wiring or the drain wiring; and protecting the electrode terminal while anodizing the source Amorphous germanium between the pole wiring, the drain wiring, and the source wiring or the drain wiring. 27. A method of manufacturing a lower substrate for a liquid crystal display device, comprising the steps of: forming a scan line and a counter electrode formed of a metal layer of one or more layers on at least one main surface of the first transparent insulating substrate; A gate insulating layer of one or more layers and a first amorphous germanium layer containing no impurities and a second amorphous germanium layer containing impurities are sequentially coated; and an opening portion is formed in an electrode terminal forming region of the scanning line Further, the photosensitive resin on the gate electrode is thicker than the film thickness in the other regions - 70-1281999 (12); the second amorphous germanium layer and the first amorphous germanium layer in the opening are removed. a gate insulating layer; a film thickness of the photosensitive resin pattern is reduced to expose the second amorphous germanium layer, and a second amorphous germanium layer wider than the gate electrode width and the first one are formed on the gate electrode in an island shape An amorphous germanium layer; after coating one or more layers of the anodizable metal layer, a part of the electrode terminal of the signal line including the scanning line of the opening portion and the signal line formed by one of the signal lines is formed on the electrode terminal The pole electrodes overlap and correspond The photosensitive resin pattern is thicker than the other regions on the electrode terminals of the scanning lines and the signal lines; the photosensitive resin pattern is used as a mask to selectively remove the anodizable metal layer to form source wiring or germanium Electrode terminals of the electrode wiring and the scanning line and electrode terminals of the signal line; reducing the film thickness of the photosensitive resin pattern to expose the source wiring or the drain wiring; and protecting the electrode terminal while anodizing the source wiring and the drain wiring And an amorphous layer between the source wiring or the drain wiring. -71 -
TW93109959A 2003-04-15 2004-04-09 LCD device and manufacturing method thereof TWI281999B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003109729A JP2004319655A (en) 2003-04-15 2003-04-15 Liquid crystal display device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200428086A TW200428086A (en) 2004-12-16
TWI281999B true TWI281999B (en) 2007-06-01

Family

ID=33470774

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93109959A TWI281999B (en) 2003-04-15 2004-04-09 LCD device and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP2004319655A (en)
TW (1) TWI281999B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100357817C (en) * 2004-11-29 2007-12-26 广辉电子股份有限公司 Liquid crystal display and its producing method
CN100543569C (en) * 2004-11-29 2009-09-23 友达光电股份有限公司 Liquid crystal disply device and its preparation method
KR101107267B1 (en) * 2004-12-31 2012-01-19 엘지디스플레이 주식회사 Thin Film Transistor Substrate And Fabricating Method Thereof, Liquid Crystal Display Panel Using The Same And Fabricating Method Thereof
JP2006278728A (en) * 2005-03-29 2006-10-12 Sony Corp Conductive film modifying method, laminated structure, and thin film transistor
CN101283388B (en) 2005-10-05 2011-04-13 出光兴产株式会社 TFT substrate and method for manufacturing TFT substrate
WO2007063966A1 (en) 2005-12-02 2007-06-07 Idemitsu Kosan Co., Ltd. Tft substrate and tft substrate manufacturing method
CN101416320B (en) 2006-01-31 2011-08-31 出光兴产株式会社 TFT substrate, reflective TFT substrate, and manufacturing method thereof
JP2007212699A (en) 2006-02-09 2007-08-23 Idemitsu Kosan Co Ltd Reflective tft substrate and method for manufacturing same
JP2007310334A (en) 2006-05-19 2007-11-29 Mikuni Denshi Kk Manufacturing method of liquid crystal display device using half-tone exposure method
JPWO2008136505A1 (en) 2007-05-08 2010-07-29 出光興産株式会社 Semiconductor device, thin film transistor, and manufacturing method thereof
TWI701768B (en) * 2019-08-28 2020-08-11 力晶積成電子製造股份有限公司 Method of manufacturing interconnect structure

Also Published As

Publication number Publication date
TW200428086A (en) 2004-12-16
JP2004319655A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
KR100710532B1 (en) Liquid crystal display and fabricating the same
TWI287161B (en) Liquid crystal display device and manufacturing method thereof
KR100632097B1 (en) Liquid crystal display and fabricating the same
US20050212985A1 (en) Liquid crystal display device and its manufacturing method
TWI281999B (en) LCD device and manufacturing method thereof
TWI300868B (en)
TWI304145B (en)
TWI300873B (en)
TWI247158B (en) Liquid crystal display device and its manufacturing method
JP5342731B2 (en) Liquid crystal display device and manufacturing method thereof
JP2002368011A (en) Insulated gate transistor and liquid crystal display
JP4538218B2 (en) Liquid crystal display device and manufacturing method thereof
JP4538219B2 (en) Liquid crystal display device and manufacturing method thereof
JP2001033816A (en) Liquid crystal image display device and production of semiconductor device for image display device
JP2005215276A (en) Liquid crystal display and its manufacturing method
JP4871507B2 (en) Liquid crystal display device and manufacturing method thereof
JP2002184992A (en) Liquid crystal image display and manufacturing method of semiconductor device for image display
JP2002270847A (en) Liquid crystal image display and manufacturing method semiconductor device for the image display
JP4846227B2 (en) Liquid crystal display device and manufacturing method thereof
JP2002076363A (en) Liquid crystal display
JP2002184991A (en) Liquid crystal image display and manufacturing method of semiconductor device for image display
JP2006267877A (en) Liquid crystal display device and its manufacturing method
KR100692717B1 (en) Liquid crystal display and fabricating the same
JP2001217426A (en) Liquid crystal image display and method of manufacturing semiconductor device for image displays
JP2002185004A (en) Liquid crystal image display device and method for manufacturing semiconductor device for image display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees