JP4871507B2 - Liquid crystal display device and manufacturing method thereof - Google Patents

Liquid crystal display device and manufacturing method thereof Download PDF

Info

Publication number
JP4871507B2
JP4871507B2 JP2004365487A JP2004365487A JP4871507B2 JP 4871507 B2 JP4871507 B2 JP 4871507B2 JP 2004365487 A JP2004365487 A JP 2004365487A JP 2004365487 A JP2004365487 A JP 2004365487A JP 4871507 B2 JP4871507 B2 JP 4871507B2
Authority
JP
Japan
Prior art keywords
insulating layer
liquid crystal
crystal display
display device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004365487A
Other languages
Japanese (ja)
Other versions
JP2006171496A (en
Inventor
清弘 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AU Optronics Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Priority to JP2004365487A priority Critical patent/JP4871507B2/en
Publication of JP2006171496A publication Critical patent/JP2006171496A/en
Application granted granted Critical
Publication of JP4871507B2 publication Critical patent/JP4871507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

本発明はカラー画像表示機能を有する液晶表示装置、とりわけアクティブ型の液晶表示装置に関するものである。 The present invention relates to a liquid crystal display device having a color image display function, and more particularly to an active liquid crystal display device.

近年の微細加工技術、液晶材料技術および高密度実装技術等の進歩により、5〜75cm対角の液晶表示装置でテレビジョン画像や各種の画像表示機器が商用ベースで大量に提供されている。また、液晶パネルを構成する2枚のガラス基板の一方にRGBの着色層を形成しておくことによりカラー表示も容易に実現している。特にスイッチング素子を絵素毎に内蔵させた、いわゆるアクティブ型の液晶パネルではクロストークも少なく、応答速度も早く高いコントラスト比を有する画像が保証されている。 With recent advances in microfabrication technology, liquid crystal material technology, high-density packaging technology, and the like, television images and various image display devices are provided in large quantities on a commercial basis in a 5-75 cm diagonal liquid crystal display device. In addition, color display can be easily realized by forming an RGB colored layer on one of the two glass substrates constituting the liquid crystal panel. In particular, a so-called active liquid crystal panel in which a switching element is incorporated for each picture element guarantees an image having a low contrast and a fast response speed and a high contrast ratio.

これらの液晶表示装置(液晶パネル)は走査線としては200〜1200本、信号線としては300〜1600本程度のマトリクス編成が一般的であるが、最近は表示容量の増大に対応すべく大画面化と高精細化とが同時に進行している。 These liquid crystal display devices (liquid crystal panels) generally have a matrix organization of 200 to 1200 scanning lines and 300 to 1600 signal lines, but recently, a large screen is required to cope with an increase in display capacity. And high definition are progressing simultaneously.

図7は液晶パネルへの実装状態を示し、液晶パネル1を構成する一方の透明性絶縁基板、例えばガラス基板2上に形成された走査線の電極端子群5に駆動信号を供給する半導体集積回路チップ3を導電性の接着剤を用いて接続するCOG(Chip−On−Glass)方式や、例えばポリイミド系樹脂薄膜をベースとし、金または半田メッキされた銅箔の端子を有するTCPフィルム4を信号線の電極端子群6に導電性媒体を含む適当な接着剤で圧接して固定するTCP(Tape−Carrier−Package)方式などの実装手段によって電気信号が画像表示部に供給される。ここでは便宜上二つの実装方式を同時に図示しているが実際には何れかの方式が適宜選択される。 FIG. 7 shows a state of mounting on a liquid crystal panel, and a semiconductor integrated circuit that supplies a drive signal to an electrode terminal group 5 of a scanning line formed on one transparent insulating substrate, for example, a glass substrate 2, constituting the liquid crystal panel 1. A COG (Chip-On-Glass) system in which the chip 3 is connected using a conductive adhesive, or a TCP film 4 having terminals of gold or solder-plated copper foil based on, for example, a polyimide resin thin film as a signal An electrical signal is supplied to the image display unit by a mounting means such as a TCP (Tape-Carrier-Package) method in which the electrode terminal group 6 of the wire is fixed by being pressed with an appropriate adhesive containing a conductive medium. Here, for convenience, two mounting methods are shown at the same time, but in actuality, either method is appropriately selected.

液晶パネル1のほぼ中央部に位置する画像表示部内の画素と走査線及び信号線の電極端子5,6との間を接続する配線路が7、8で、必ずしも電極端子群5,6と同一の導電材で構成される必要はない。9は全ての液晶セルに共通する透明導電性の対向電極を対向面上に有するもう1枚の透明性絶縁基板である対向ガラス基板またはカラーフィルタである。 Wiring paths 7 and 8 connect the pixels in the image display unit located almost at the center of the liquid crystal panel 1 to the electrode terminals 5 and 6 of the scanning lines and signal lines, and are not necessarily the same as the electrode terminal groups 5 and 6. It is not necessary to be made of a conductive material. Reference numeral 9 denotes a counter glass substrate or color filter which is another transparent insulating substrate having a transparent conductive counter electrode common to all liquid crystal cells on the counter surface.

図8はスイッチング素子として絶縁ゲート型トランジスタ10を絵素毎に配置したアクティブ型液晶表示装置の等価回路図を示し、11(図7では7)は走査線、12(図7では8)は信号線、13は液晶セルであって、液晶セル13は電気的には容量素子として扱われる。実線で描かれた素子類は液晶パネルを構成する一方のガラス基板2上に形成され、点線で描かれた全ての液晶セル13に共通な対向電極14はもう一方のガラス基板9の対向する主面上に形成されている。絶縁ゲート型トランジスタ10のOFF抵抗あるいは液晶セル13の抵抗が低い場合や表示画像の階調性を重視する場合には、負荷としての液晶セル13の時定数を大きくするための補助の蓄積容量15を液晶セル13に並列に加える等の回路的工夫が加味される。なお16は蓄積容量15の共通母線となる蓄積容量である。 FIG. 8 shows an equivalent circuit diagram of an active liquid crystal display device in which insulated gate transistors 10 are arranged for each picture element as a switching element, 11 (7 in FIG. 7) is a scanning line, and 12 (8 in FIG. 7) is a signal. A line 13 is a liquid crystal cell, and the liquid crystal cell 13 is electrically treated as a capacitive element. Elements drawn with solid lines are formed on one glass substrate 2 constituting a liquid crystal panel, and the counter electrode 14 common to all liquid crystal cells 13 drawn with dotted lines is the main electrode facing the other glass substrate 9. It is formed on the surface. When the OFF resistance of the insulated gate transistor 10 or the resistance of the liquid crystal cell 13 is low, or when importance is attached to the gradation of the display image, an auxiliary storage capacitor 15 for increasing the time constant of the liquid crystal cell 13 as a load. Is added to the liquid crystal cell 13 in parallel. Reference numeral 16 denotes a storage capacitor serving as a common bus for the storage capacitor 15.

図9は液晶表示装置の画像表示部の要部断面図を示し、液晶パネル1を構成する2枚のガラス基板2,9は樹脂性のファイバ、ビーズあるいはカラーフィルタ9上に形成された同じく樹脂性の柱状スペーサ等のスペーサ材(図示せず)によって数μm程度の所定の距離を隔てて形成され、その間隙(ギャップ)はガラス基板9の周縁部において有機性樹脂よりなるシール材と封口材(何れも図示せず)とで封止された閉空間になっており、この閉空間に液晶17が充填されている。 FIG. 9 is a cross-sectional view of the main part of the image display portion of the liquid crystal display device, and the two glass substrates 2 and 9 constituting the liquid crystal panel 1 are made of resin fibers, beads, or the same resin formed on the color filter 9. Formed by a spacer material (not shown) such as a porous columnar spacer at a predetermined distance of about several μm, and the gap (gap) is a sealing material and a sealing material made of an organic resin at the peripheral edge of the glass substrate 9. It is a closed space sealed with (not shown), and this closed space is filled with liquid crystal 17.

カラー表示を実現する場合には、ガラス基板9の閉空間側に着色層18と称する染料または顔料のいずれか一方もしくは両方を含む厚さ1〜2μm程度の有機薄膜が被着されて色表示機能が与えられるので、その場合にはガラス基板9は別名カラーフィルタ(Color Filter 略語はCF)と呼称される。そして液晶材料17の性質によってはガラス基板9の上面またはガラス基板2の下面の何れかもしくは両面上に偏光板19が貼付され、液晶パネル1は電気光学素子として機能する。現在、市販されている大部分の液晶パネルでは液晶材料にTN(ツイスト・ネマチック)系の物を用いており、偏光板19は通常2枚必要である。図示はしないが、透過型液晶パネルでは光源として裏面光源が配置され、下方より白色光が照射される。 In the case of realizing color display, an organic thin film having a thickness of about 1 to 2 μm containing either or both of a dye and a pigment called a colored layer 18 is deposited on the closed space side of the glass substrate 9 to provide a color display function. In this case, the glass substrate 9 is also called a color filter (color filter abbreviation is CF). Depending on the properties of the liquid crystal material 17, a polarizing plate 19 is attached to either or both of the upper surface of the glass substrate 9 and the lower surface of the glass substrate 2, and the liquid crystal panel 1 functions as an electro-optical element. Currently, most liquid crystal panels on the market use a TN (twisted nematic) type liquid crystal material, and two polarizing plates 19 are usually required. Although not shown, in the transmissive liquid crystal panel, a back light source is disposed as a light source, and white light is irradiated from below.

液晶17に接して2枚のガラス基板2,9上に形成された例えば厚さ0.1μm程度のポリイミド系樹脂薄膜20は液晶分子を決められた方向に配向させるための配向膜である。21は絶縁ゲート型トランジスタ10のドレインと透明導電性の絵素電極22とを接続するドレイン電極(配線)であり、信号線(ソース線)12と同時に形成されることが多い。信号線12とドレイン電極21との間に位置するのは半導体層23であり詳細は後述する。カラーフィルタ9上で隣り合った着色層18の境界に形成された厚さ0.1μm程度のCr薄膜層24は半導体層23と走査線11及び信号線12に外部光が入射するのを防止するための光遮蔽部材で、いわゆるブラックマトリクス(Black Matrix 略語はBM)として定着化した技術である。 The polyimide resin thin film 20 having a thickness of, for example, about 0.1 μm formed on the two glass substrates 2 and 9 in contact with the liquid crystal 17 is an alignment film for aligning liquid crystal molecules in a predetermined direction. Reference numeral 21 denotes a drain electrode (wiring) that connects the drain of the insulated gate transistor 10 and the transparent conductive pixel electrode 22, and is often formed simultaneously with the signal line (source line) 12. The semiconductor layer 23 is located between the signal line 12 and the drain electrode 21 and will be described in detail later. The Cr thin film layer 24 having a thickness of about 0.1 μm formed at the boundary between the adjacent colored layers 18 on the color filter 9 prevents external light from entering the semiconductor layer 23, the scanning line 11, and the signal line 12. It is a technology that is fixed as a so-called black matrix (Black Matrix abbreviation is BM).

ここでスイッチング素子として絶縁ゲート型トランジスタの構造と製造方法に関して説明する。絶縁ゲート型トランジスタには2種類のものが現在多用されており、そのうちの一つのエッチストップ型と呼称されるものを従来例として紹介する。図10は従来の液晶パネルを構成するアクティブ基板(表示装置用半導体装置)の単位絵素の平面図であり、図10(e)のA−A’、B−B’およびC−C’線上の断面図を図11に示し、その製造工程を以下に簡単に説明する。 Here, a structure and a manufacturing method of an insulated gate transistor as a switching element will be described. Two types of insulated gate transistors are currently widely used, and one of them called etch stop type is introduced as a conventional example. FIG. 10 is a plan view of unit picture elements of an active substrate (semiconductor device for display device) that constitutes a conventional liquid crystal panel, on the lines AA ′, BB ′, and CC ′ of FIG. FIG. 11 shows a cross-sectional view of this, and the manufacturing process will be briefly described below.

先ず図10(a)と図11(a)に示したように耐熱性と耐薬品性と透明性が高い絶縁性基板として厚さ0.5〜1.1mm程度のガラス基板2、例えばコーニング社製の商品名1737の一主面上にSPT(スパッタ)等の真空製膜装置を用いて膜厚0.1〜0.3μm程度の第1の金属層を被着し、微細加工技術によりゲート電極11Aも兼ねる走査線11と蓄積容量線16を選択的に形成する。走査線の材質は耐熱性と耐薬品性と耐弗酸性と導電性を総合的に勘案して選択するが一般的にはCr,Ta,MoW合金等の耐熱性の高い金属または合金が使用される。 First, as shown in FIG. 10 (a) and FIG. 11 (a), a glass substrate 2 having a thickness of about 0.5 to 1.1 mm as an insulating substrate having high heat resistance, chemical resistance and transparency, for example, Corning A first metal layer having a film thickness of about 0.1 to 0.3 μm is deposited on one main surface of a product name 1737 manufactured by using a vacuum film forming apparatus such as SPT (sputtering), and gates are formed by a fine processing technique. The scanning lines 11 and the storage capacitor lines 16 that also serve as the electrodes 11A are selectively formed. The scanning line material is selected by comprehensively considering heat resistance, chemical resistance, hydrofluoric acid resistance, and conductivity. Generally, a metal or alloy having high heat resistance such as Cr, Ta, or MoW alloy is used. The

液晶パネルの大画面化や高精細化に対応して走査線の抵抗値を下げるためには走査線の材料としてAL(アルミニウム)を用いるのが合理的であるが、ALは単体では耐熱性が低いので上記した耐熱金属であるCr,Ta,Moまたはそれらのシリサイドと積層化する、あるいはALの表面に陽極酸化で酸化層(Al2O3)を付加することも現在では一般的な技術である。すなわち走査線11は1層以上の金属層で構成される。 It is reasonable to use AL (aluminum) as the scanning line material to reduce the resistance value of the scanning line in response to the increase in the screen size and resolution of the liquid crystal panel. Since it is low, it is a common technique to stack with Cr, Ta, Mo or their silicides as mentioned above, or to add an oxide layer (Al 2 O 3) by anodic oxidation on the surface of AL. That is, the scanning line 11 is composed of one or more metal layers.

次にガラス基板2の全面にPCVD(プラズマ・シーブイディ)装置を用いてゲート絶縁層となる第1のSiNx(シリコン窒化)層30、不純物をほとんど含まず絶縁ゲート型トランジスタのチャネルとなる第1の非晶質シリコン(a−Si)層31、及びチャネルを保護する絶縁層となる第2のSiNx層32と3種類の薄膜層を例えば、0.3−0.05−0.1μm程度の膜厚で順次被着した後、図10(b)と図11(b)に示したように微細加工技術によりゲート電極11A上の第2のSiNx層をゲート電極11Aよりも幅細く選択的に残して保護絶縁層32Dとし、第1の非晶質シリコン層31を露出する。 Next, a first SiNx (silicon nitride) layer 30 serving as a gate insulating layer is formed on the entire surface of the glass substrate 2 by using a PCVD (plasma sieve fluid) apparatus, and a first serving as a channel of an insulated gate transistor containing almost no impurities. An amorphous silicon (a-Si) layer 31, a second SiNx layer 32 serving as an insulating layer for protecting the channel, and three kinds of thin film layers, for example, a film of about 0.3-0.05-0.1 μm After sequentially depositing with a thickness, as shown in FIGS. 10B and 11B, the second SiNx layer on the gate electrode 11A is selectively left narrower than the gate electrode 11A by a microfabrication technique. As a protective insulating layer 32D, the first amorphous silicon layer 31 is exposed.

続いて同じくPCVD装置を用いて全面に不純物として例えば燐を含む第2の非晶質シリコン層33を例えば0.05μm程度の膜厚で被着した後、図10(c)と図11(c)に示したようにSPT等の真空製膜装置を用いて膜厚0.1μm程度の耐熱金属層として例えばTi,Cr,Mo等の薄膜層34と、低抵抗金属層として膜厚0.3μm程度のAL薄膜層35と、さらに膜厚0.1μm程度の中間導電層として例えばTi薄膜層36を順次被着し、微細加工技術によりソース・ドレイン配線材であるこれら3種の薄膜層34A,35A及び36Aの積層からなる絶縁ゲート型トランジスタのドレイン電極21と信号線も兼ねるソース電極12を選択的に形成する。この選択的パターン形成は、ソース・ドレイン配線の形成に用いられる感光性樹脂パターンをマスクとしてTi薄膜層36、AL薄膜層35、Ti薄膜層34を順次食刻した後、ソース・ドレイン電極12,21間の第2の非晶質シリコン層33を除去して第2のSiNx層32Dを露出するとともに、その他の領域では第1の非晶質シリコン層31をも除去してゲート絶縁層30を露出することによってなされる。このようにチャネルの保護層である第2のSiNx層32Dが存在して第2の非晶質シリコン層33の食刻が自動的に終了することからこの製法はエッチストップと呼称される。 Subsequently, a second amorphous silicon layer 33 containing, for example, phosphorus as an impurity is deposited on the entire surface using a PCVD apparatus in a thickness of about 0.05 μm, for example, and then FIG. 10C and FIG. ) Using a vacuum film-forming apparatus such as SPT, as a heat-resistant metal layer having a film thickness of about 0.1 μm, for example, a thin film layer 34 of Ti, Cr, Mo or the like, and a film having a thickness of 0.3 μm as a low-resistance metal layer. For example, a Ti thin film layer 36 is sequentially deposited as an intermediate thin film layer having a thickness of about 0.1 μm, and these three kinds of thin film layers 34A, which are source / drain wiring materials, are formed by a fine processing technique. A source electrode 12 that also serves as a signal line and a drain electrode 21 of an insulated gate transistor including a stack of 35A and 36A are selectively formed. In this selective pattern formation, the Ti thin film layer 36, the AL thin film layer 35, and the Ti thin film layer 34 are sequentially etched using the photosensitive resin pattern used for forming the source / drain wiring as a mask, and then the source / drain electrodes 12, The second amorphous silicon layer 33 between the two regions 21 is removed to expose the second SiNx layer 32D, and the first amorphous silicon layer 31 is also removed in other regions to form the gate insulating layer 30. Made by exposing. Since the second SiNx layer 32D serving as the channel protective layer exists in this manner and the etching of the second amorphous silicon layer 33 is automatically terminated, this manufacturing method is called an etch stop.

さらに上記感光性樹脂パターンを除去した後、ガラス基板2の全面に透明性の絶縁層としてゲート絶縁層と同様にPCVD装置を用いて0.3μm程度の膜厚のSiNx層を被着してパシベーション絶縁層37とし、図10(d)と図11(d)に示したようにパシベーション絶縁層37を微細加工技術により選択的に除去してドレイン電極21上に開口部62と、画像表示部外の領域で走査線11上に開口部63と、信号線12上に開口部64を形成してドレイン電極21と走査線11と信号線12の一部分を露出する。同様に蓄積容量線16を平行に束ねた電極パターン上には開口部65を形成して蓄積容量線16の一部を露出する。 Further, after removing the photosensitive resin pattern, a SiNx layer having a thickness of about 0.3 μm is deposited on the entire surface of the glass substrate 2 as a transparent insulating layer using a PCVD apparatus in the same manner as the gate insulating layer. As the insulating layer 37, as shown in FIGS. 10D and 11D, the passivation insulating layer 37 is selectively removed by a microfabrication technique, and an opening 62 is formed on the drain electrode 21 and outside the image display portion. In this region, an opening 63 is formed on the scanning line 11 and an opening 64 is formed on the signal line 12 to expose the drain electrode 21, the scanning line 11, and a part of the signal line 12. Similarly, an opening 65 is formed on the electrode pattern in which the storage capacitor lines 16 are bundled in parallel to expose a part of the storage capacitor line 16.

最後にSPT等の真空製膜装置を用いて膜厚0.1〜0.2μm程度の透明導電層として例えばITO(Indium−Tin−Oxide)あるいはIZO(Indium−Zinc−Oxide)を被着し、図10(e)と図11(e)に示したように微細加工技術により開口部62を含んでパシベーション絶縁層37上に絵素電極22を選択的に形成してアクティブ基板2として完成する。開口部63内の露出している走査線11の一部を電極端子5とし、開口部64内の露出している信号線12の一部を電極端子6としても良く、図示したように開口部63,64を含んでパシベーション絶縁層37上にITOよりなる電極端子5A,6Aを選択的に形成しても良いが、通常は電極端子5A,6A間を接続する透明導電性の短絡線40も同時に形成される。その理由は、図示はしないが電極端子5A,6Aと短絡線40との間を細長いストライプ状に形成することにより高抵抗化して静電気対策用の高抵抗とすることが出来るからである。同様に番号は付与しないが開口部65を含んで蓄積容量線16への電極端子が形成される。 Finally, for example, ITO (Indium-Tin-Oxide) or IZO (Indium-Zinc-Oxide) is applied as a transparent conductive layer having a film thickness of about 0.1 to 0.2 μm using a vacuum film forming apparatus such as SPT. As shown in FIG. 10E and FIG. 11E, the pixel electrode 22 is selectively formed on the passivation insulating layer 37 including the opening 62 by a microfabrication technique to complete the active substrate 2. A part of the exposed scanning line 11 in the opening 63 may be used as the electrode terminal 5 and a part of the exposed signal line 12 in the opening 64 may be used as the electrode terminal 6. As shown in FIG. The electrode terminals 5A and 6A made of ITO may be selectively formed on the passivation insulating layer 37 including 63 and 64. Usually, however, the transparent conductive short-circuit line 40 connecting the electrode terminals 5A and 6A is also provided. Formed simultaneously. The reason is that although not shown, the resistance between the electrode terminals 5A and 6A and the short-circuit line 40 can be increased in resistance by increasing the resistance by forming an elongated stripe. Similarly, although no number is given, an electrode terminal to the storage capacitor line 16 is formed including the opening 65.

信号線12の配線抵抗が問題とならない場合にはALよりなる低抵抗配線層35は必ずしも必要ではなく、その場合にはCr,Ta,Mo等の耐熱金属材料を選択すればソース・ドレイン配線12,21を単層化して簡素化することが可能である。このようにソース・ドレイン配線は耐熱金属層を用いて第2の非晶質シリコン層と電気的な接続を確保することが重要であり、絶縁ゲート型トランジスタの耐熱性については先行例である特開平7−74368号公報に詳細が記載されている。なお、図10(c)において蓄積容量線16とドレイン電極21がゲート絶縁層30を介して平面的に重なっている領域50(右下がり斜線部)が蓄積容量15を形成しているが、ここではその詳細な説明は省略する。 When the wiring resistance of the signal line 12 does not become a problem, the low resistance wiring layer 35 made of AL is not necessarily required. In this case, the source / drain wiring 12 can be selected by selecting a heat-resistant metal material such as Cr, Ta, and Mo. , 21 can be simplified by forming a single layer. As described above, it is important to ensure electrical connection between the source / drain wiring and the second amorphous silicon layer by using a refractory metal layer, and the heat resistance of the insulated gate transistor is a precedent example. Details are described in Japanese Utility Model Publication No. 7-74368. In FIG. 10C, the storage capacitor 15 is formed by a region 50 (shaded portion to the right) where the storage capacitor line 16 and the drain electrode 21 overlap in plan view with the gate insulating layer 30 interposed therebetween. Then, the detailed description is abbreviate | omitted.

以上述べた5枚マスク・プロセスは詳細な経緯は省略するが、半導体層の島化工程の合理化とコンタクト形成工程が1回削減された結果得られたもので、ドライエッチ技術の導入により当初は7〜8枚程度必要であったフォトマスクも現時点では5枚に減少してプロセスコストの削減に大きく寄与している。液晶表示装置の生産コストを下げるためにはアクティブ基板の作製工程ではプロセスコストを、またパネル組立工程とモジュール実装工程では部材コストを下げることが有効であることは周知の開発目標である。プロセスコストを下げるためにはプロセスを短くする工程削減と、安価なプロセス開発またはプロセスへの置き換えとがあるが、ここでは4枚のフォトマスクでアクティブ基板が得られる4枚マスク・プロセスを工程削減の一例として説明する。4枚マスク・プロセスはハーフトーン露光技術の導入により写真食刻工程を削減するもので、図12は4枚マスク・プロセスに対応したアクティブ基板の単位絵素の平面図で、図12(e)のA−A’、B−B’及びC−C’線上の断面図を図13に示す。既に述べたように絶縁ゲート型トランジスタには2種類のものが現在多用されているが、ここではチャネルエッチ型の絶縁ゲート型トランジスタを採用している。 Although the detailed process of the five-mask process described above is omitted, it was obtained as a result of streamlining the semiconductor layer islanding process and reducing the contact formation process once. The number of photomasks that required about 7 to 8 sheets has been reduced to 5 at the present time, greatly contributing to the reduction of process costs. In order to reduce the production cost of the liquid crystal display device, it is a well-known development target that it is effective to reduce the process cost in the manufacturing process of the active substrate and the member cost in the panel assembly process and the module mounting process. In order to lower the process cost, there are a process reduction that shortens the process and a cheap process development or replacement with a process. Here, the process is reduced to a four-mask process where an active substrate can be obtained with four photomasks. An example will be described. The four-mask process reduces the number of photo-etching steps by introducing halftone exposure technology. FIG. 12 is a plan view of unit picture elements of an active substrate corresponding to the four-mask process. FIG. 13 is a cross-sectional view taken along the lines AA ′, BB ′, and CC ′. As already described, two types of insulated gate transistors are currently widely used. Here, a channel-etched insulated gate transistor is used.

先ず5枚マスク・プロセスと同様にガラス基板2の一主面上にSPT等の真空製膜装置を用いて膜厚0.1〜0.3μm程度の第1の金属層を被着し、図12(a)と図13(a)に示したように微細加工技術によりゲート電極11Aも兼ねる走査線11と蓄積容量線16を選択的に形成する。 First, as in the five-mask process, a first metal layer having a thickness of about 0.1 to 0.3 μm is deposited on one main surface of the glass substrate 2 using a vacuum film forming apparatus such as SPT. As shown in FIGS. 12A and 13A, the scanning lines 11 and the storage capacitor lines 16 that also serve as the gate electrodes 11A are selectively formed by a fine processing technique.

次にガラス基板2の全面にPCVD装置を用いてゲート絶縁層となるSiNx層30、不純物をほとんど含まず絶縁ゲート型トランジスタのチャネルとなる第1の非晶質シリコン層31、及び不純物を含み絶縁ゲート型トランジスタのソース・ドレインとなる第2の非晶質シリコン層33と3種類の薄膜層を、例えば0.3−0.2−0.05μm程度の膜厚で順次被着する。引き続き、SPT等の真空製膜装置を用いて膜厚0.1μm程度の耐熱金属層として例えばTi薄膜層34と、膜厚0.3μm程度の低抵抗金属層としてAL薄膜層35と、さらに膜厚0.1μm程度の中間導電層として例えばTi薄膜層36を、すなわちソース・ドレイン配線材を順次被着し、微細加工技術により絶縁ゲート型トランジスタのドレイン電極21とソース電極も兼ねる信号線12を選択的に形成するのであるが、この選択的パターン形成に当たりハーフトーン露光技術により図12(b)と図13(b)に示したようにソース・ドレイン間のチャネル形成領域80B(斜線部)の膜厚が例えば1.5μmで、ソース・ドレイン配線形成領域80A(12),80A(21)の膜厚3μmよりも薄い感光性樹脂パターン80A,80Bを形成する点が大きな特徴である。 Next, a SiNx layer 30 that becomes a gate insulating layer, a first amorphous silicon layer 31 that hardly contains impurities and becomes a channel of an insulated gate transistor, and an insulating material that contains impurities by using a PCVD apparatus over the entire surface of the glass substrate 2. The second amorphous silicon layer 33 and the three types of thin film layers that are the source and drain of the gate type transistor are sequentially deposited with a film thickness of, for example, about 0.3-0.2-0.05 μm. Subsequently, using a vacuum film forming apparatus such as SPT, for example, a Ti thin film layer 34 as a heat resistant metal layer having a film thickness of about 0.1 μm, an AL thin film layer 35 as a low resistance metal layer having a film thickness of about 0.3 μm, and a film For example, a Ti thin film layer 36, that is, a source / drain wiring material is sequentially deposited as an intermediate conductive layer having a thickness of about 0.1 μm, and the signal line 12 also serving as the drain electrode 21 and the source electrode of the insulated gate transistor is formed by a fine processing technique. In this selective pattern formation, the source / drain channel formation region 80B (shaded portion) is formed by a halftone exposure technique as shown in FIGS. 12 (b) and 13 (b). The photosensitive resin patterns 80A, 8 having a film thickness of, for example, 1.5 μm and thinner than the film thickness of 3 μm of the source / drain wiring formation regions 80A (12), 80A (21). A major feature is that 0B is formed.

このような感光性樹脂パターン80A,80Bは、液晶表示装置用基板の作製には通常ポジ型の感光性樹脂を用いるので、ソース・ドレイン配線形成領域80Aが黒、すなわちCr薄膜が形成されており、チャネル領域80Bは灰色(中間調)、たとえば幅0.5〜1μm程度のラインアンドスペースのCrパターンが形成されており、その他の領域は白、すなわちCr薄膜が除去されているようなフォトマスクを用いれば良い。灰色領域は露光機の解像力が不足しているために微細なラインアンドスペースが解像されることはなく、ランプ光源からのフオトマスク照射光を半分程度透過させることが可能であるので、ポジ型感光性樹脂の残膜特性に応じて図13(b)に示したような断面形状を有する感光性樹脂パターン80A,80Bを得ることができる。なお、灰色領域にCr薄膜のスリットではなく、Cr薄膜とは異なった膜厚の例えばMoSi2薄膜を形成することより同等の機能を有するフォトマスクを得る事もできる。 Since the photosensitive resin patterns 80A and 80B usually use a positive photosensitive resin for the production of a substrate for a liquid crystal display device, the source / drain wiring formation region 80A is black, that is, a Cr thin film is formed. The channel region 80B is gray (halftone), for example, a line and space Cr pattern having a width of about 0.5 to 1 μm is formed, and the other regions are white, that is, a photomask from which the Cr thin film has been removed. Should be used. In the gray area, since the resolution of the exposure machine is insufficient, fine line and space is not resolved, and it is possible to transmit about half of the photomask irradiation light from the lamp light source. The photosensitive resin patterns 80A and 80B having a cross-sectional shape as shown in FIG. 13B can be obtained according to the remaining film characteristics of the photosensitive resin. It is also possible to obtain a photomask having an equivalent function by forming, for example, a MoSi2 thin film having a thickness different from that of the Cr thin film instead of the Cr thin film slit in the gray region.

上記感光性樹脂パターン80A,80Bをマスクとして図12(b)に示したようにTi薄膜層36、AL薄膜層35、Ti薄膜層34、第2の非晶質シリコン層33及び第1の非晶質シリコン層31を順次食刻してゲート絶縁層30を露出した後、図12(c)と図13(c)に示したように酸素プラズマ等の灰化手段により感光性樹脂パターン80A,80Bを1.5μm以上膜減りさせると感光性樹脂パターン80Bが消失してチャネル領域が露出するとともに、ソース・ドレイン配線形成領域にのみ膜減りした感光性樹脂パターン80C(12),80C(21)をそのまま残すことができる。そこで膜減りした感光性樹脂パターン80C(12),80C(21)をマスクとして、再びソース・ドレイン配線間(チャネル形成領域)のTi薄膜層,AL薄膜層,Ti薄膜層,第2の非晶質シリコン層33A及び第1の非晶質シリコン層31Aを順次食刻し、第1の非晶質シリコン層31Aは0.05〜0.1μm程度残して食刻する。ソース・ドレイン配線がソース・ドレイン配線材をエッチングした後に第1の非晶質シリコン層31Aを0.05〜0.1μm程度残して食刻することによりなされるので、このような製法で得られる絶縁ゲート型トランジスタはチャネルエッチ型と呼称されている。なお上記酸素プラズマ処理においてレジストパターン80Aは膜減りして80Cに変換されるのでパターン寸法の変化を抑制するため異方性を強めることが望ましく、具体的にはRIE(Reactive Ion Etching)方式、さらに高密度のプラズマ源を有するICP(Inductive Coupled Plasama)方式やTCP(Transfer Coupled Plasama)方式の酸素プラズマ処理がより望ましい。 Using the photosensitive resin patterns 80A and 80B as a mask, as shown in FIG. 12B, the Ti thin film layer 36, the AL thin film layer 35, the Ti thin film layer 34, the second amorphous silicon layer 33, and the first non-crystalline layer 33 are used. After sequentially etching the crystalline silicon layer 31 to expose the gate insulating layer 30, as shown in FIGS. 12C and 13C, the photosensitive resin pattern 80A, When the film thickness of 80B is reduced by 1.5 μm or more, the photosensitive resin pattern 80B disappears, the channel region is exposed, and the photosensitive resin patterns 80C (12) and 80C (21) whose film thickness is reduced only in the source / drain wiring formation region. Can be left as is. Therefore, the Ti thin film layer, the AL thin film layer, the Ti thin film layer, and the second amorphous film between the source and drain wirings (channel formation region) are again formed using the photosensitive resin patterns 80C (12) and 80C (21) whose thickness has been reduced as a mask. The porous silicon layer 33A and the first amorphous silicon layer 31A are sequentially etched, and the first amorphous silicon layer 31A is etched leaving about 0.05 to 0.1 μm. Since the source / drain wiring is formed by etching the source / drain wiring material and then leaving the first amorphous silicon layer 31A by about 0.05 to 0.1 μm, it can be obtained by such a manufacturing method. The insulated gate transistor is called a channel etch type. In the oxygen plasma treatment, the resist pattern 80A is reduced to 80C and is preferably converted to 80C. Therefore, it is desirable to increase the anisotropy in order to suppress the change in the pattern dimension. Specifically, the RIE (Reactive Ion Etching) method, An ICP (Inductive Coupled Plasma) method or a TCP (Transfer Coupled Plasma) method oxygen plasma treatment having a high-density plasma source is more desirable.

さらに上記感光性樹脂パターン80C(12),80C(21)を除去した後は、5枚マスク・プロセスと同じく図12(d)と図13(d)に示したようにガラス基板2の全面に透明性の絶縁層として0.3μm程度の膜厚の第2のSiNx層を被着してパシベーション絶縁層37とし、ドレイン電極21上と画像表示部外の領域で走査線11上と信号線12上にそれぞれ開口部62,63,64を形成し、開口部63内のパシベーション絶縁層37とゲート絶縁層30を除去して開口部63内に走査線の一部を露出するとともに、開口部62,64内のパシベーション絶縁層37を除去して開口部62内にドレイン電極21の一部と開口部64内に信号線の一部を露出する。 Further, after removing the photosensitive resin patterns 80C (12) and 80C (21), as shown in FIGS. 12D and 13D, the entire surface of the glass substrate 2 is formed as in the five-mask process. A second SiNx layer having a thickness of about 0.3 μm is deposited as a transparent insulating layer to form a passivation insulating layer 37, on the scanning electrode 11 and the signal line 12 on the drain electrode 21 and in a region outside the image display portion. Openings 62, 63, 64 are respectively formed thereon, the passivation insulating layer 37 and the gate insulating layer 30 in the opening 63 are removed, and a part of the scanning line is exposed in the opening 63, and the opening 62 is formed. , 64 is removed to expose part of the drain electrode 21 in the opening 62 and part of the signal line in the opening 64.

最後にSPT等の真空製膜装置を用いて膜厚0.1〜0.2μm程度の透明導電層として例えばITOあるいはIZOを被着し、図12(e)と図13(e)に示したように微細加工技術によりパシベーション絶縁層37上に開口部62を含んで透明導電性の絵素電極22を選択的に形成してアクティブ基板2として完成する。電極端子は絵素電極22と同時にパシベーション絶縁層37上にITOよりなる透明導電性の電極端子5A,6Aを形成している。 Finally, for example, ITO or IZO was deposited as a transparent conductive layer having a film thickness of about 0.1 to 0.2 μm using a vacuum film forming apparatus such as SPT, as shown in FIGS. 12 (e) and 13 (e). As described above, the transparent conductive picture element electrode 22 including the opening 62 is selectively formed on the passivation insulating layer 37 by the fine processing technique to complete the active substrate 2. The electrode terminals are formed on the passivation insulating layer 37 at the same time as the pixel electrodes 22 with transparent conductive electrode terminals 5A and 6A made of ITO.

既に述べたように液晶セルのギャップを規制するための部材がスペーサであり、歴史的には先ず単純型のTN液晶パネル直径10μm程度のアルミナボールから始まったが、アルミナボールの剛性が高くギャップ精度は高いものの、ガラス基板に傷が入ったり割れたりする不具合が多かった。しかも後発のアクティブ型の液晶パネルではアクティブ素子を形成するので段差が大きくてギャップ精度も低下し、何よりも絶縁ゲート型トランジスタが破壊されたので、スペーサ材に可撓性を付与するために樹脂製の直径10μm、長さ50μm程度のファイバが導入され、数年を経てギャップ精度向上の観点から樹脂製ビーズに移行し、さらなるコントラスト比の向上のため、すなわち表示画質向上の観点から最近ではCF上に耐熱性の高い樹脂製の柱状スペーサが形成されている。柱状スペーサの直径は10μm、高さは通常3〜5μmの範囲であり、ラビング布を傷つけないようにその断面形状はテーパ化されている。 As already mentioned, the spacer is the member that regulates the gap of the liquid crystal cell. Historically, it started with an alumina ball with a simple TN liquid crystal panel diameter of about 10 μm, but the alumina ball has high rigidity and gap accuracy. However, there were many problems that the glass substrate was scratched or cracked. In addition, since the active element is formed in the later active type liquid crystal panel, the level difference is large and the gap accuracy is lowered, and above all, the insulated gate transistor is destroyed, so the resin material is used to give the spacer material flexibility. A fiber with a diameter of about 10 μm and a length of about 50 μm has been introduced, and after several years, it has shifted to resin beads from the viewpoint of improving the gap accuracy, and recently in order to further improve the contrast ratio, that is, from the viewpoint of improving the display image quality, A columnar spacer made of resin having high heat resistance is formed. The columnar spacer has a diameter of 10 μm and a height of usually 3 to 5 μm, and its cross-sectional shape is tapered so as not to damage the rubbing cloth.

このような柱状スペーサは従来のCF上に写真食刻技術を用いて感光性樹脂よりなる樹脂製の柱状スペーサを形成するので、当然従来のCFと比較すると製造工程数も必要な部材も増加するのでCFの購入価格あるいは製造価格が上昇するのは避けられない。 Since such columnar spacers form resin-made columnar spacers made of a photosensitive resin on a conventional CF using a photo-etching technique, naturally, the number of manufacturing steps and necessary members increase as compared with the conventional CF. Therefore, it is inevitable that the purchase price or production price of CF will rise.

しかしながら大型の液晶表示装置として今後大きく発展していく事を期待されている液晶TVでは価格競争も激しく、従来の技術で説明したが、ハーフトーン露光技術の採用により可能となった4枚マスク・プロセスのように生産コストを下げるための技術開発も部材のコストダウンと同様に大切である。 However, liquid crystal TVs, which are expected to develop greatly as large liquid crystal display devices in the future, are fiercely priced. As explained in the previous technology, the four-mask mask that has become possible through the use of halftone exposure technology. Technological development to reduce production costs as in processes is as important as cost reduction of components.

本発明はかかる現状に鑑みなされたもので、アクティブ基板の製造工程に創意・工夫を凝らしてアクティブ基板上に柱状スペーサを形成し、もって液晶表示装置の生産コストの低減を図るものである。 The present invention has been made in view of the present situation, and is intended to reduce the production cost of a liquid crystal display device by forming columnar spacers on an active substrate by concentrating on the manufacturing process of the active substrate.

請求項1に記載の液晶表示装置は一主面上に少なくとも絶縁ゲート型トランジスタと、前記絶縁ゲート型トランジスタのゲート電極も兼ねる走査線とソース電極も兼ねる信号線と、ドレイン電極に接続された絵素電極とを有する単位絵素が二次元のマトリクスに配列された第1の透明性絶縁基板と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、前記液晶表示装置は、前記第1の透明性絶縁基板上に形成された無機材質よりなるパシベーション絶縁層をさらに備え、前記パシベーション絶縁層が複数の異なる開口を有し、且つ前記パシベーション絶縁層の表面には感光性有機絶縁層よりなる柱状スペーサを有し、前記柱状スペーサは、前記パシベーション絶縁層に形成された前記複数の異なる開口のうちの少なくとも一つの開口と自己整合していることを特徴とする。 The liquid crystal display device according to claim 1, comprising at least an insulated gate transistor on one principal surface, and a signal line serves also as the scanning lines and the source electrode serves also as a gate electrode of said insulated gate transistor, connected to the drain electrode a first transparent insulating substrate unit pixel having a pixel electrode are arranged in a two-dimensional matrix, and the first transparent insulating substrate facing the second transparent insulating substrate or a color filter In the liquid crystal display device in which liquid crystal is filled in between, the liquid crystal display device further includes a passivation insulating layer made of an inorganic material formed on the first transparent insulating substrate, and the passivation insulating layer includes a plurality of passivation insulating layers. The passivation insulating layer has a columnar spacer made of a photosensitive organic insulating layer on the surface of the passivation insulating layer, and the columnar spacer has the passivation layer. Characterized in that it at least one aperture and self-alignment of the plurality of different apertures formed in the down insulating layer.

請求項2に記載の液晶表示装置において、前記少なくとも一つの開口は、前記走査線上のパシベーション絶縁層に形成された開口、または前記信号線上のパシベーション絶縁層に形成された開口である。3. The liquid crystal display device according to claim 2, wherein the at least one opening is an opening formed in a passivation insulating layer on the scanning line or an opening formed in a passivation insulating layer on the signal line.

請求項3に記載の液晶表示装置において、前記柱状スペーサの膜厚は6μmである。The liquid crystal display device according to claim 3, wherein the columnar spacer has a thickness of 6 μm.
請求項4に記載の液晶表示装置において、前記柱状スペーサの膜厚は3μmである。5. The liquid crystal display device according to claim 4, wherein the thickness of the columnar spacer is 3 μm.
請求項5に記載の液晶表示装置において、前記柱状スペーサは、前記信号線上に形成されている。6. The liquid crystal display device according to claim 5, wherein the columnar spacer is formed on the signal line.

これらの構成によりアクティブ基板上に形成された感光性有機絶縁層パターンを柱状スペーサとして機能させることが可能となり、CF上に柱状スペーサは不要となる。 With these configurations it is possible to function the photosensitive organic insulating layer pattern formed on the active substrate and a columnar space Sa, columnar spacers on CF is not needed.

このように本発明は感光性有機絶縁層パターンよりなる柱状スペーサの形成に当たり、アクティブ基板を構成する部位の形成のために用いられる写真食刻工程を活用して、製造工程数が増加しないように創意と工夫を凝らしたものであるAs described above, according to the present invention, when forming the columnar spacers made of the photosensitive organic insulating layer pattern, the number of manufacturing steps is not increased by utilizing the photolithography process used for forming the portion constituting the active substrate. in which elaborate creativity and ingenuity to.

請求項は請求項1に記載の液晶表示装置の製造方法であって、少なくとも、第1の透明性絶縁基板上に、少なくとも走査線と信号線と絶縁ゲート型トランジスタとを形成する工程と、前記工程で少なくとも前記走査線と信号線と絶縁ゲート型トランジスタとを形成した後に、前記第1の透明性絶縁基板上に無機材質よりなるパシベーション絶縁層を被着する工程と、前記パシベーション絶縁層の表面に、感光性有機絶縁層パターンを形成する工程と、前記感光性有機絶縁層パターンをマスクとして前記パシベーション絶縁層の一部を除去し、該パシベーション絶縁層に複数の異なる開口を形成する工程とを含むことを特徴とする。 6. The method of manufacturing a liquid crystal display device according to claim 1, at least, the first transparent insulating substrate, forming a at least a scanning line signal Line interruption edge gate transistor Depositing a passivation insulating layer made of an inorganic material on the first transparent insulating substrate after forming at least the scanning line, the signal line, and the insulated gate transistor in the step; and the passivation insulating layer. Forming a photosensitive organic insulating layer pattern on the surface of the substrate, removing a part of the passivation insulating layer using the photosensitive organic insulating layer pattern as a mask, and forming a plurality of different openings in the passivation insulating layer It is characterized by including .

請求項7に記載の液晶表示装置の製造方法は、前記感光性有機絶縁層パターンの膜厚を減少させて前記パシベーション絶縁層を露出する工程をさらに含むことを特徴とする。The method of manufacturing a liquid crystal display device according to claim 7 further includes a step of exposing the passivation insulating layer by reducing a film thickness of the photosensitive organic insulating layer pattern.
請求項8に記載の液晶表示装置の製造方法によれば、前記感光性有機絶縁層パターンは異なる膜厚を有し、そのうちの厚い部分は柱状スペーサを形成することを特徴とする。According to the method for manufacturing a liquid crystal display device according to an eighth aspect, the photosensitive organic insulating layer patterns have different film thicknesses, and a thick portion of them forms columnar spacers.

請求項9に記載の液晶表示装置の製造方法は、ハーフトーン露光法を用いて前記感光性有機絶縁層パターンを形成することを特徴とする。The method for producing a liquid crystal display device according to claim 9 is characterized in that the photosensitive organic insulating layer pattern is formed using a halftone exposure method.

請求項10に記載の液晶表示装置の製造方法は、前記信号線上に前記柱状スペーサを形成することを特徴とする。The method for manufacturing a liquid crystal display device according to claim 10 is characterized in that the columnar spacers are formed on the signal lines.

請求項11に記載の液晶表示装置の製造方法は、複数の異なる開口を有する前記パシベーション絶縁層の表面に前記絵素電極を形成する工程をさらに含むことを特徴とする。The method for manufacturing a liquid crystal display device according to claim 11 further includes a step of forming the pixel electrode on a surface of the passivation insulating layer having a plurality of different openings.

この構成により、無機材質よりなるパシベーション絶縁層への開口形成に用いた感光性有機絶縁層パターンを膜減りさせてアクティブ基板上にそのまま残った感光性有機絶縁層パターンを柱状スペーサとして機能させることが可能となる。一方、従来の液晶表示装置でもパシベーション絶縁層への開口形成のための写真食刻工程は必要であるから、その製造工程を柱状スペーサの形成工程と兼ねた分、液晶表示装置の製造コストは低下する。なお本発明では上記のように同一のフォトマスクを用いて開口と柱状スペーサを形成しているので、柱状スペーサは開口と自己整合して、柱状スペーサと開口との相対的な位置は多面付けされたガラス基板2内の各々の画像表示部内のどこでも一定で変わらない。すなわち、開口と柱状スペーサの形成工程を2枚のフォトマスクを用いて製作した液晶表示装置と比較すると、フォトマスクの合わせずれに対応した現象が発生しない。With this configuration, the photosensitive organic insulating layer pattern used for forming the opening in the passivation insulating layer made of an inorganic material can be reduced in thickness so that the photosensitive organic insulating layer pattern remaining on the active substrate can function as a columnar spacer. It becomes possible. On the other hand, since the conventional liquid crystal display device also requires a photolithography process for forming an opening in the passivation insulating layer, the manufacturing cost of the liquid crystal display device is reduced because the manufacturing process is combined with the columnar spacer formation process. To do. In the present invention, since the opening and the columnar spacer are formed using the same photomask as described above, the columnar spacer is self-aligned with the opening, and the relative positions of the columnar spacer and the opening are multifaceted. Further, it is constant and unchanged everywhere in each image display section in the glass substrate 2. That is, when the formation process of the opening and the columnar spacer is compared with a liquid crystal display device manufactured using two photomasks, a phenomenon corresponding to the misalignment of the photomask does not occur.

このように本願発明では、アクティブ基板を保護するパシベーション絶縁層あるいは同等の機能を発揮するソース・ドレイン配線上の感光性有機絶縁層を形成するための写真食刻工程においてハーフトーン露光技術を採用することにより、これらのパシベーション機能を有する部位を局所的に厚く形成しており、局所的に厚く形成された部位が柱状スペーサとして機能する。 As described above, in the present invention, the halftone exposure technique is employed in the photolithography process for forming the passivation insulating layer for protecting the active substrate or the photosensitive organic insulating layer on the source / drain wiring that exhibits an equivalent function. Thus, the portion having the passivation function is locally thickened, and the locally thick portion functions as a columnar spacer.

この結果、アクティブ基板の製造工程数を増加することなくアクティブ基板上に柱状スペーサを形成することが可能となり、液晶表示装置の製造コスト削減に大きく貢献する効果が得られる。 As a result, columnar spacers can be formed on the active substrate without increasing the number of manufacturing steps of the active substrate, and the effect of greatly contributing to the reduction in manufacturing cost of the liquid crystal display device can be obtained.

本発明の要件は上記の説明からも明らかなようにアクティブ基板の作製に当たり、アクティブ基板を保護するパシベーション絶縁層あるいは同等の機能を発揮するソース・ドレイン配線上の感光性有機絶縁層を形成するための写真食刻工程においてハーフトーン露光技術を採用することにより、これらのパシベーション機能を有する部位を局所的に厚く形成することで柱状スペーサを形成した点にあり、それ以外の構成に関しては走査線、信号線、ゲート絶縁層等の材質や膜厚等が異なった表示装置用半導体装置、あるいはその製造方法の差異も本発明の範疇に属することは自明であり、垂直配向の液晶を用いた液晶表示装置においても本発明の有用性は変らない。さらにTN液晶とは異なり、アクティブ基板上に形成され所定の距離を隔てて形成された一対の絵素電極と対向電極との間で液晶に横方向の電界を印加するIPS(In−Plain−Switching)型の液晶パネルへの適用も容易であり、請求項1に記載の液晶表示装置が該当する。ただし、この場合ドレイン電極(絵素電極)上に開口部形成は不要であり、対向電極は走査線と同時にガラス基板上に形成されるのが一般的である。請求項2に記載の液晶表示装置は絵素電極と対向電極を厚いパシベーション絶縁層上に形成した高開口率のIPS型の液晶表示装置に該当している。また絶縁ゲート型トランジスタの半導体層も非晶質シリコンに限定されるものでないことも明らかであり、請求項3と請求項6を除いて絶縁ゲート型トランジスタの構成による差異は無い。 As is apparent from the above description, the requirement of the present invention is to form a passivation insulating layer that protects the active substrate or a photosensitive organic insulating layer on the source / drain wiring that exhibits an equivalent function when manufacturing the active substrate. By adopting a halftone exposure technique in the photo-etching process, a columnar spacer is formed by locally forming a portion having these passivation functions, and for other configurations, a scanning line, It is obvious that a semiconductor device for a display device having a different material or film thickness, such as a signal line or a gate insulating layer, or a manufacturing method thereof belongs to the category of the present invention, and a liquid crystal display using vertically aligned liquid crystal The usefulness of the present invention does not change even in an apparatus. Further, unlike a TN liquid crystal, an IPS (In-Plane-Switching) that applies a horizontal electric field to a liquid crystal between a pair of pixel electrodes formed on an active substrate and spaced apart from each other by a predetermined distance. The liquid crystal display device according to claim 1 is applicable. However, in this case, it is not necessary to form an opening on the drain electrode (pixel electrode), and the counter electrode is generally formed on the glass substrate simultaneously with the scanning line. The liquid crystal display device according to claim 2 corresponds to an IPS liquid crystal display device with a high aperture ratio in which a pixel electrode and a counter electrode are formed on a thick passivation insulating layer. It is also clear that the semiconductor layer of the insulated gate transistor is not limited to amorphous silicon, and there is no difference depending on the configuration of the insulated gate transistor except for claims 3 and 6.

本発明の実施例を図1〜図6に基づいて説明する。図1に本発明の実施例1に係る表示装置用半導体装置(アクティブ基板)の平面図を示し、図2に図1のA−A’線上とB−B’線上及びC−C’線上の製造工程の断面図を示す。同様に実施例2は図3と図4、実施例3は図5と図6で夫々アクティブ基板の平面図と製造工程の断面図を示す。なお従来例と同一の部位については同一の符号を付して詳細な説明は省略する。 An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a plan view of a semiconductor device (active substrate) for a display device according to Embodiment 1 of the present invention, and FIG. 2 is on the AA ′ line, the BB ′ line, and the CC ′ line in FIG. Sectional drawing of a manufacturing process is shown. Similarly, FIG. 3 and FIG. 4 show Example 2 and FIGS. 5 and 6 show Example 3 and FIG. 5 and FIG. In addition, about the site | part same as a prior art example, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

実施例1では従来例と同様にチャネルエッチ型の絶縁ゲート型トランジスタをスイッチング素子とする5枚マスク・プロセスを基本としたデバイス作製を行い、図1(c)と図2(c)に示したようにソース・ドレイン配線12,21の形成までは同一の製造工程を進行する。 In Example 1, as in the conventional example, a device was manufactured based on a five-mask process using a channel-etched insulated gate transistor as a switching element, as shown in FIGS. 1 (c) and 2 (c). Thus, the same manufacturing process proceeds until the source / drain wirings 12 and 21 are formed.

ソース・ドレイン配線12,21の形成後、ガラス基板2の全面に無機材質の透明性の絶縁層として従来通りPCVD装置を用いて0.3μm程度の膜厚の第2のSiNx層を被着してパシベーション絶縁層37とし、図1(d)と図2(d)に示したようにドレイン電極21上に開口部62と、画像表示部外の領域で走査線の一部5上に開口部63と、信号線の一部6上に開口部64を有すると共に、柱状スペーサに対応した領域85Aの膜厚が4μmで、その他の領域85Bの膜厚が1μmであるような感光性有機絶縁層パターン85A,85Bをハーフトーン露光技術により形成する。 After the source / drain wirings 12 and 21 are formed, a second SiNx layer having a thickness of about 0.3 μm is deposited on the entire surface of the glass substrate 2 as a transparent insulating layer made of an inorganic material using a conventional PCVD apparatus. As shown in FIGS. 1D and 2D, an opening 62 is formed on the drain electrode 21 , and an opening is formed on a part 5 of the scanning line in a region outside the image display section. 63, a photosensitive organic insulating layer having an opening 64 on a part 6 of the signal line, a thickness of the region 85A corresponding to the columnar spacer being 4 μm, and a thickness of the other region 85B being 1 μm. Patterns 85A and 85B are formed by a halftone exposure technique.

このように膜厚差が大きいパターン形成ではフォトマスクの透過光量を制御するためには従来の細いスリットパターンよりは透過率の異なる2種類の金属薄膜パターンを形成されたグレートーン・マスクの方が好ましい結果が得られる。 In order to control the amount of light transmitted through the photomask in the pattern formation with such a large difference in film thickness, the gray tone mask formed with two types of metal thin film patterns having different transmittances is more suitable than the conventional thin slit pattern. Favorable results are obtained.

上記の感光性有機絶縁層パターン85A,85Bをマスクとして、従来例と同様に開口部63内のパシベーション絶縁層37とゲート絶縁層30を除去して開口部63内に走査線の一部5を露出するとともに、開口部62,64内のパシベーション絶縁層37を除去して開口部62内にドレイン電極21の一部と開口部64内に信号線の一部6を露出する。 Using the photosensitive organic insulating layer patterns 85A and 85B as a mask, the passivation insulating layer 37 and the gate insulating layer 30 in the opening 63 are removed as in the conventional example, and a part 5 of the scanning line is formed in the opening 63. In addition to being exposed, the passivation insulating layer 37 in the openings 62 and 64 is removed to expose a part of the drain electrode 21 in the opening 62 and a part 6 of the signal line in the opening 64.

そして酸素プラズマ等の灰化手段により感光性有機絶縁層パターン85A,85Bを1μm以上膜減りさせると、図1(e)と図2(e)に示したように感光性有機絶縁層パターン85Bが消失してパシベーション絶縁層37が露出すると共に、ソース・ドレイン配線12,21上の所定の領域にのみ膜減りした感光性有機絶縁層パターン85Cをそのまま残すことができる。 Then, when the photosensitive organic insulating layer patterns 85A and 85B are reduced by 1 μm or more by ashing means such as oxygen plasma, the photosensitive organic insulating layer pattern 85B is formed as shown in FIGS. 1 (e) and 2 (e). It disappears and the passivation insulating layer 37 is exposed, and the photosensitive organic insulating layer pattern 85 </ b> C whose thickness is reduced only in a predetermined region on the source / drain wirings 12 and 21 can be left as it is.

最後にSPT等の真空製膜装置を用いて膜厚0.1〜0.2μm程度の透明導電層として例えばITOあるいはIZOまたはこれらの混晶体を被着し、図1(f)と図2(f)に示したように微細加工技術により開口部62を含んでパシベーション絶縁層37上に絵素電極22を選択的に形成してアクティブ基板2として完成する。電極端子は絵素電極22と同時にパシベーション絶縁層37上にITOよりなる透明導電性の電極端子5A,6Aを形成している。 Finally, for example, ITO, IZO, or a mixed crystal thereof is deposited as a transparent conductive layer having a film thickness of about 0.1 to 0.2 μm by using a vacuum film forming apparatus such as SPT, and FIGS. As shown in f), the pixel electrode 22 is selectively formed on the passivation insulating layer 37 including the opening 62 by the microfabrication technique to complete the active substrate 2. The electrode terminals are formed on the passivation insulating layer 37 at the same time as the pixel electrodes 22 with transparent conductive electrode terminals 5A and 6A made of ITO.

このようにして得られたアクティブ基板2とカラーフィルタ9を貼り合わせて液晶パネル化し、本発明の実施例1が完了する。膜厚3μmの感光性有機絶縁層パターン85Cは柱状スペーサ77として機能し、アクティブ基板2とカラーフィルタ9との間隙を一定に保つことは説明するまでも無いだろう。 The active substrate 2 and the color filter 9 thus obtained are bonded to form a liquid crystal panel, and Example 1 of the present invention is completed. It goes without saying that the photosensitive organic insulating layer pattern 85C having a film thickness of 3 μm functions as the columnar spacer 77 and keeps the gap between the active substrate 2 and the color filter 9 constant.

垂直配向の液晶で無い限り、通常は配向膜への配向処理にラビング布による配向処理が行われるので、柱状スペーサ77の高い段差による配向処理の乱れが表示画像に表れないためには柱状スペーサ77を絵素電極22から離れた場所に配置することが望ましく、図示はしないが絶縁ゲート型トランジスタのチャネルに近いドレイン電極21上または走査線11と信号線12の交差領域上の信号線12上に柱状スペーサ77を配置するのが最善である。 Unless the liquid crystal is a vertically aligned liquid crystal, an alignment process with a rubbing cloth is usually performed for the alignment process on the alignment film. Therefore, in order to prevent disturbance of the alignment process due to a high step of the columnar spacer 77 in the display image, the columnar spacer 77 is used. Is preferably arranged at a location away from the pixel electrode 22, although not shown, on the drain electrode 21 close to the channel of the insulated gate transistor or on the signal line 12 on the intersection region of the scanning line 11 and the signal line 12. It is best to arrange the columnar spacers 77.

また絵素電極の形成工程で損傷を受けて膜厚が減少する、あるいは形状が崩れる等の不具合を回避するためには柱状スペーサ77は耐熱性と対薬品性に優れた感光性有機絶縁層である必要があり、主成分がアクリル樹脂やポリイミド樹脂であるような感光性有機絶縁層が選択される。さらに柱状スペーサ77は液晶セルの中で液晶17と接するので不純物が溶出して液晶の諸特性を劣化させないためには高い純度も必要である。 The columnar spacer 77 is a photosensitive organic insulating layer excellent in heat resistance and chemical resistance in order to avoid problems such as damage in the pixel electrode formation process and reduction in film thickness or collapse of the shape. It is necessary to select a photosensitive organic insulating layer whose main component is an acrylic resin or a polyimide resin. Further, since the columnar spacer 77 is in contact with the liquid crystal 17 in the liquid crystal cell, high purity is required in order to prevent impurities from eluting and to deteriorate various characteristics of the liquid crystal.

なお詳細な説明は省略するが、パシベーション絶縁層37の被着よりも先に透明導電性の絵素電極が形成されているアクティブ基板や、あるいはパシベーション絶縁層37の形成後に金属層と透明導電層との積層よりなる積層パターン上に開口部を形成し、開口部内のパベーション絶縁層に加えて前記積層パターンの金属層を除去して露出した透明導電性の絵素電極を得るようなアクティブ基板においても請求項1(実施例1)の有効性は変わらない事を補足しておく。なぜならばパシベーション絶縁層の形成後には必ず走査線、信号線、ドレイン電極の一部を露出して電気的な接続箇所を設ける必要があり、あるいは絵素電極上の劣悪な膜質のパシベーション絶縁層を除去して表示画像の焼付けを防止するために必ずパペーション絶縁層への開口部形成工程が付随して発生するからである。 Although not described in detail, the active substrate on which the transparent conductive pixel electrode is formed prior to the deposition of the passivation insulating layer 37 or the metal layer and the transparent conductive layer after the formation of the passivation insulating layer 37 is described. An active substrate in which an opening is formed on a laminate pattern composed of a laminate and an exposed transparent conductive pixel electrode is obtained by removing the metal layer of the laminate pattern in addition to the passivation insulating layer in the opening However, it is supplemented that the effectiveness of claim 1 (Example 1) does not change. This is because after the passivation insulating layer is formed, it is necessary to expose a part of the scanning line, the signal line, and the drain electrode to provide an electrical connection place, or to form a poor film quality passivation insulating layer on the pixel electrode. This is because a step of forming an opening in the penetration insulating layer is always accompanied with the removal in order to prevent the display image from being burned out.

本発明者は既に工程削減の観点から多種多様の液晶表示装置とアクティブ基板を発案して先行出願しており、パベーション絶縁層の形成前に透明導電性の絵素電極22を形成しておくようなアクティブ基板としては、特願2003−109729,2003−182106,2003−282303及び2003−396557号公報に、また開口部内のパベーション絶縁層に加えて金属層と透明導電層との積層パターン上の金属層を除去して露出した透明導電層パターンを絵素電極22とするようなアクティブ基板としては、特願2003−182106,2003−182303,2003−396557,2003−396558,2004−21288,2004−21290及び2004−93945号の各公報に詳細な実施例が記載されている。
特願2003−109729号公報 特願2003−182106号公報 特願2003−282303号公報 特願2003−396557号公報 特願2003−396558号公報 特願2004−21288号公報 特願2004−21290号公報 特願2004−93945号公報
The present inventor has already filed and filed a wide variety of liquid crystal display devices and active substrates from the viewpoint of process reduction, and the transparent conductive pixel electrode 22 is formed before the formation of the passivation insulating layer. Examples of such active substrates include Japanese Patent Application Nos. 2003-109729, 2003-182006, 2003-282303, and 2003-396557, and a laminated pattern of a metal layer and a transparent conductive layer in addition to the passivation insulating layer in the opening. As an active substrate in which the transparent conductive layer pattern exposed by removing the metal layer is used as the pixel electrode 22, Japanese Patent Application Nos. 2003-182006, 2003-182303, 2003-396558, 2003-396558, 2004-21288, 2004 are available. Detailed examples are described in publications Nos. 21290 and 2004-93945. It has been mounting.
Japanese Patent Application No. 2003-109729 Japanese Patent Application No. 2003-182106 Japanese Patent Application No. 2003-282303 Japanese Patent Application No. 2003-396557 Japanese Patent Application No. 2003-396558 Japanese Patent Application No. 2004-21288 Japanese Patent Application No. 2004-21290 Japanese Patent Application No. 2004-93945

実施例1では柱状スペーサ77の膜厚は、感光性有機絶縁層の塗布時の均一性と酸素プラズマによる膜厚減少時に均一性が悪いと当然ばらつきが発生してしまい、ギャップ斑の原因として例えば±0.2μm程度の膜厚ばらつきが問題となることもあるので、以降の実施例では柱状スペーサ77の膜厚ばらつきが小さい液晶表示装置について説明する。 In Example 1, the film thickness of the columnar spacer 77 varies naturally if the uniformity when the photosensitive organic insulating layer is applied and when the film thickness is reduced by oxygen plasma, the variation is naturally caused. Since a variation in film thickness of about ± 0.2 μm may be a problem, a liquid crystal display device in which the thickness variation of the columnar spacer 77 is small will be described in the following examples.

実施例2でも実施例1と同様に図3(c)と図4(c)に示したようにソース・ドレイン配線12,21の形成までは同一の製造工程を進行する。 In the second embodiment, as in the first embodiment, the same manufacturing process is performed until the source / drain wirings 12 and 21 are formed as shown in FIGS. 3 (c) and 4 (c).

ソース・ドレイン配線12,21の形成後、ガラス基板2の全面に無機材質の透明性の絶縁層としてPCVD装置を用いて0.3μm程度の膜厚の第2のSiNx層を被着してパシベーション絶縁層37とし、図3(d)と図4(d)に示したようにドレイン電極22上に開口部62と、画像表示部外の領域で走査線の一部5上に開口部63と、信号線の一部6上に開口部64を有すると共に、柱状スペーサに対応した領域86A(77)の膜厚が6μmで、その他の領域86Bの膜厚が3μmであるような感光性有機絶縁層パターン86A,86Bをハーフトーン露光技術により形成する。 After the source / drain wirings 12 and 21 are formed, a second SiNx layer having a thickness of about 0.3 μm is deposited on the entire surface of the glass substrate 2 as a transparent insulating layer made of an inorganic material using a PCVD apparatus. As shown in FIGS. 3D and 4D, the insulating layer 37 is formed, and the opening 62 is formed on the drain electrode 22, and the opening 63 is formed on a part 5 of the scanning line in a region outside the image display unit. The photosensitive organic insulation has an opening 64 on a part 6 of the signal line, the thickness of the region 86A (77) corresponding to the columnar spacer is 6 μm, and the thickness of the other region 86B is 3 μm. Layer patterns 86A and 86B are formed by a halftone exposure technique.

そして上記の感光性有機絶縁層パターン86A,86Bをマスクとして、従来例と同様に開口部63内のパシベーション絶縁層37とゲート絶縁層30を除去して開口部63内に走査線の一部5を露出するとともに、開口部62,64内のパシベーション絶縁層37を除去して開口部62内にドレイン電極21の一部と開口部64内に信号線の一部6を露出する。ただし、チャネル上に保護絶縁層を有するエッチストップ型の絶縁ゲート型トランジスタを採用した場合にはパシベーション絶縁層37が存在しなくても支障は無いので、感光性有機絶縁層パターン86A,86Bの形成直後から開口部62,64内にはドレイン電極21の一部と信号線の一部6が露出しており、開口部63内のゲート絶縁層30を除去して開口部63内に走査線の一部5を露出するだけで良い。 Then, using the photosensitive organic insulating layer patterns 86A and 86B as a mask, the passivation insulating layer 37 and the gate insulating layer 30 in the opening 63 are removed as in the conventional example, and a part of the scanning line 5 is formed in the opening 63. In addition, the passivation insulating layer 37 in the openings 62 and 64 is removed to expose part of the drain electrode 21 in the opening 62 and part 6 of the signal line in the opening 64. However, when an etch stop type insulated gate transistor having a protective insulating layer on the channel is employed, there is no problem even if the passivation insulating layer 37 is not present. Therefore, formation of the photosensitive organic insulating layer patterns 86A and 86B is not required. Immediately after that, a part of the drain electrode 21 and a part 6 of the signal line are exposed in the openings 62 and 64, and the gate insulating layer 30 in the opening 63 is removed and the scanning line is formed in the opening 63. It is only necessary to expose part 5.

最後にSPT等の真空製膜装置を用いて膜厚0.1〜0.2μm程度の透明導電層として例えばITOあるいはIZOを被着し、図3(e)と図4(e)に示したように微細加工技術により開口部62を含んで感光性有機絶縁層パターン86B上に絵素電極22を選択的に形成してアクティブ基板2として完成する。電極端子は絵素電極22と同時にパシベーション絶縁層37上にITOよりなる透明導電性の電極端子5A,6Aを形成している。 Finally, for example, ITO or IZO was deposited as a transparent conductive layer having a film thickness of about 0.1 to 0.2 μm using a vacuum film forming apparatus such as SPT, as shown in FIGS. 3 (e) and 4 (e). As described above, the pixel electrode 22 is selectively formed on the photosensitive organic insulating layer pattern 86B including the opening 62 by the fine processing technique, and the active substrate 2 is completed. The electrode terminals are formed on the passivation insulating layer 37 at the same time as the pixel electrodes 22 with transparent conductive electrode terminals 5A and 6A made of ITO.

このようにして得られたアクティブ基板2とカラーフィルタ9を貼り合わせて液晶パネル化し、本発明の実施例2が完了する。膜厚6μmの感光性有機絶縁層パターン86Aは柱状スペーサ77として機能する。感光性有機絶縁層パターン86Bの膜厚を3μmと厚く形成する理由はアクティブ基板2の表面を平坦化して配向処理を容易にすると共に、絵素電極22を走査線11や信号線12と重なり合うように大きく形成して開口率の高い液晶表示装置を得るための工夫であり、所謂平坦化技術として周知の技術である。そして感光性有機絶縁層パターン86A,86Bの膜厚差の3μmが液晶セルの厚み(ギャップ厚)となるので、ハーフトーン露光の中間調の透過光量を制御することにより、感光性有機絶縁層パターン86Bの膜厚を2μmとし、液晶セルの厚みを4μmとすることも可能であり、液晶表示装置の光学設計から決定される液晶セルの厚みへの対応も可能である。 The active substrate 2 and the color filter 9 thus obtained are bonded to form a liquid crystal panel, and Example 2 of the present invention is completed. The photosensitive organic insulating layer pattern 86 </ b> A having a thickness of 6 μm functions as the columnar spacer 77. The reason why the photosensitive organic insulating layer pattern 86B is formed as thick as 3 μm is that the surface of the active substrate 2 is flattened to facilitate the alignment process, and the pixel electrode 22 overlaps the scanning line 11 and the signal line 12. This is a device for obtaining a liquid crystal display device having a large aperture ratio and a high aperture ratio, which is a well-known technique as a so-called flattening technique. Since 3 μm of the difference in film thickness between the photosensitive organic insulating layer patterns 86A and 86B is the thickness (gap thickness) of the liquid crystal cell, the photosensitive organic insulating layer pattern is controlled by controlling the halftone transmitted light amount of halftone exposure. The film thickness of 86B can be set to 2 μm, and the thickness of the liquid crystal cell can be set to 4 μm. The thickness of the liquid crystal cell determined from the optical design of the liquid crystal display device can also be accommodated.

実施例2では感光性有機絶縁層パターン86Aよりなる柱状スペーサ77は酸素プラズマ処理による灰化処理を受けないので、実施例1に記載の柱状スペーサと比較すると柱状スペーサとしての膜厚変動は少ないが、感光性有機絶縁層パターン86Bの膜厚が変動すると液晶セルのギャップが変動するのでハーフトーン露光のプロセス管理には細心の注意を払う必要がある。 In Example 2, since the columnar spacer 77 made of the photosensitive organic insulating layer pattern 86A is not subjected to the ashing process by the oxygen plasma process, the film thickness variation as the columnar spacer is small as compared with the columnar spacer described in Example 1. When the film thickness of the photosensitive organic insulating layer pattern 86B changes, the gap of the liquid crystal cell changes, so that it is necessary to pay close attention to the process management of halftone exposure.

実施例3は感光性有機絶縁層パターンを用いてソース・ドレイン配線12,21を形成し、感光性有機絶縁層パターンを除去することなく、さらにアクティブ基板2上にパシベーション絶縁層を形成することもなく、そのまま完成したアクティブ基板2としてカラーフィルタ9と貼り合わせて液晶表示装置を得ることが前提となった液晶表示装置に適用可能な技術であり、本発明者が先に出願した特願2003−109730,2003−182107,2003−282303,2003−336706,2003−336707,2004−21289,2003−339659及び2004−93944号の各公報にその詳細が記載されている。これらの先行文献の中から特願2004−93944号に記載の実施例1として記載されたデバイス及びプロセスを本願発明に適用して本願発明の実施例3を説明する。
特願2003−109730号公報 特願2003−182107号公報 特願2003−336706号公報 特願2003−336707号公報 特願2003−339659号公報 特願2004−21289号公報 特願2004−93944号公報
In the third embodiment, the source / drain wirings 12 and 21 are formed using the photosensitive organic insulating layer pattern, and a passivation insulating layer may be further formed on the active substrate 2 without removing the photosensitive organic insulating layer pattern. However, this is a technique applicable to a liquid crystal display device on the premise that a liquid crystal display device is obtained by bonding the color filter 9 as a completed active substrate 2 as it is, and Japanese Patent Application No. 2003 previously filed by the present inventor. The details are described in the publications Nos. 109730, 2003-182107, 2003-282703, 2003-336706, 2003-336707, 2004-21289, 2003-339659, and 2004-93944. A device and process described as Example 1 described in Japanese Patent Application No. 2004-93944 among these prior documents will be applied to the present invention to explain Example 3 of the present invention.
Japanese Patent Application No. 2003-109730 Japanese Patent Application No. 2003-182107 Japanese Patent Application No. 2003-336706 Japanese Patent Application No. 2003-336707 Japanese Patent Application No. 2003-339659 Japanese Patent Application No. 2004-21289 Japanese Patent Application No. 2004-93944

実施例3では先ずガラス基板2の一主面上にSPT等の真空製膜装置を用いて膜厚0.1〜0.2μm程度の透明導電層91として例えばITOと、膜厚0.1〜0.3μm程度の第1の金属層92を被着し、図5(a)と図6(a)に示したように微細加工技術により感光性樹脂パターンを用いて透明導電層91Aと第1の金属層92Aとの積層よりなりゲート電極11Aも兼ねる走査線11及び走査線の擬似電極端子94と、透明導電層91Bと第1の金属層92Bとの積層よりなる擬似絵素電極93と、透明導電層91Cと第1の金属層92Cとの積層よりなる信号線の擬似電極端子95を選択的に形成する。第1の金属層として例えばCr,Ta,Mo等の高融点金属あるいはそれらの合金やシリサイドが選ばれる。ゲート絶縁層を介して信号線との絶縁耐圧を向上させ、歩留を高めるためにはこれらの電極は乾式食刻(ドライエッチ)による断面形状のテーパ制御を行うことが望ましいが、ITOのドライエッチ技術は食刻ガスに沃化水素や臭化水素を用いたものが開発されたもののガス排気系での反応生成物による堆積量が大きく実用化に至らなかったので、当面は例えばAr(ガス)を用いたスパッタ・エッチを採用すると良い。あるいは製膜温度が低く、殆ど結晶性を有していないIZO等の透明導電層と耐熱性の高いAL(Ta,Nd)合金との組合せであれば、燐酸系のエッチング液でその断面形状をテーパ制御しつつ同時にこれらの多層膜パターン93〜95を得る事も可能である。なお、AL(Ta,Nd)は成分比として数%以下のTaやNdが添加されたAL合金を意味している。 In Example 3, first, as a transparent conductive layer 91 having a film thickness of about 0.1 to 0.2 μm on one main surface of the glass substrate 2 using a vacuum film forming apparatus such as SPT, for example, ITO and a film thickness of 0.1 to A first metal layer 92 having a thickness of about 0.3 μm is deposited, and the transparent conductive layer 91A and the first metal layer 91A are formed using a photosensitive resin pattern by a microfabrication technique as shown in FIGS. 5 (a) and 6 (a). A scanning line 11 and a pseudo electrode terminal 94 of the scanning line that also serve as the gate electrode 11A, and a pseudo pixel electrode 93 that includes the transparent conductive layer 91B and the first metal layer 92B. A pseudo electrode terminal 95 of a signal line made of a laminate of the transparent conductive layer 91C and the first metal layer 92C is selectively formed. As the first metal layer, for example, a refractory metal such as Cr, Ta, or Mo, or an alloy or silicide thereof is selected. In order to improve the withstand voltage with respect to the signal line through the gate insulating layer and increase the yield, it is desirable to control the taper of the cross-sectional shape of these electrodes by dry etching. Although the etching technology was developed using hydrogen iodide or hydrogen bromide as the etching gas, the deposition amount due to the reaction products in the gas exhaust system was large and was not put to practical use. Sputtering and etching using Alternatively, if the film formation temperature is low and the combination of a transparent conductive layer such as IZO that has almost no crystallinity and an AL (Ta, Nd) alloy having high heat resistance, the cross-sectional shape is adjusted with a phosphoric acid-based etching solution. It is also possible to obtain these multilayer film patterns 93 to 95 at the same time while controlling the taper. AL (Ta, Nd) means an AL alloy to which Ta or Nd of several percent or less is added as a component ratio.

次にガラス基板2の全面にプラズマ保護層となる透明絶縁層、例えばTaOxやSiO2を0.1μm程度の膜厚で被着して71とする。このプラズマ保護層71は後続のPCVD装置によるゲート絶縁層であるSiNxの形成時に走査線11と擬似絵素電極93のエッジ部に露出している透明導電層91A,91Bが還元されてSiNxの膜質が変動するのを防止するために必要で、詳細は先行例特開昭59−9962号公報を参照されたい。ただし透明導電層91の膜厚が500Å以下と薄い場合にはSiNx層の透明度の劣化は小さく、プラズマ保護層71の形成を省略することも可能である。 Next, a transparent insulating layer serving as a plasma protective layer, for example, TaOx or SiO 2 is deposited on the entire surface of the glass substrate 2 to a thickness of about 0.1 μm to 71. The plasma protective layer 71 is formed by reducing the transparent conductive layers 91A and 91B exposed at the edge of the scanning line 11 and the pseudo picture element electrode 93 during the formation of SiNx which is a gate insulating layer by a subsequent PCVD apparatus. It is necessary to prevent the fluctuation of the angle, and for details, refer to the prior example Japanese Patent Laid-Open No. 59-9962. However, when the film thickness of the transparent conductive layer 91 is as thin as 500 mm or less, the deterioration of the transparency of the SiNx layer is small, and the formation of the plasma protective layer 71 can be omitted.

プラズマ保護層71の被着後は従来例と同様にPCVD装置を用いてゲート絶縁層となる第1のSiNx層30、不純物をほとんど含まず絶縁ゲート型トランジスタのチャネルとなる第1の非晶質シリコン層31、及びチャネルを保護する絶縁層となる第2のSiNx層32と3種類の薄膜層を、例えば0.2−0.05−0.1μm程度の膜厚で順次被着し、図5(b)と図6(b)に示したように微細加工技術により感光性樹脂パターンを用いて第2のSiNx層32を選択的に食刻してゲート電極11Aよりもパターン幅の細い第2のSiNx層32D(保護絶縁層)とするとともに第1の非晶質シリコン層31を露出する。ここではゲート絶縁層がプラズマ保護層71と第1のSiNx層30との積層になるため第1のSiNx層は従来よりも薄く形成して良い副次的なメリットがある。 After the deposition of the plasma protective layer 71, the first SiNx layer 30 serving as a gate insulating layer is formed using a PCVD apparatus in the same manner as in the conventional example. A silicon layer 31, a second SiNx layer 32 serving as an insulating layer for protecting the channel, and three kinds of thin film layers are sequentially deposited with a film thickness of, for example, about 0.2-0.05-0.1 μm. As shown in FIG. 5B and FIG. 6B, the second SiNx layer 32 is selectively etched using a photosensitive resin pattern by a fine processing technique, and the pattern width is narrower than that of the gate electrode 11A. 2 SiNx layer 32D (protective insulating layer) and the first amorphous silicon layer 31 are exposed. Here, since the gate insulating layer is a laminate of the plasma protective layer 71 and the first SiNx layer 30, there is a secondary merit that the first SiNx layer may be formed thinner than the conventional one.

続いてPCVD装置を用いてガラス基板2の全面に不純物として例えば燐を含む第2の非晶質シリコン層33を例えば0.05μm程度の膜厚で被着した後、図5(c)と図6(c)に示したように微細加工技術により感光性樹脂パターンを用いて擬似絵素電極93上に開口部74と画像表示部外の領域で擬似電極端子94,95上に開口部63A,64Aを形成し、上記開口部内の第2の非晶質シリコン層33、第1の非晶質シリコン層31、ゲート絶縁層30、プラズマ保護層71に加えて第1の金属層92A〜92Cを順次食刻し、走査線11の一部(擬似電極端子94)の透明導電層91Aを露出して走査線の電極端子5Aとし、同様に擬似電極端子95の透明導電層91Cを露出して信号線の電極端子6Aとし、擬似絵素電極93の透明導電層91Bを露出して絵素電極22とする。なお画像表部外の領域でも透明導電層91と第1の金属層92との積層よりなる多層膜パターン96を形成しておけば、この工程で透明導電層よりなる短絡線40が得られるので静電気対策とすることが可能である。 Subsequently, a second amorphous silicon layer 33 containing, for example, phosphorus as an impurity is deposited on the entire surface of the glass substrate 2 by using a PCVD apparatus with a film thickness of, for example, about 0.05 μm, and then FIG. As shown in FIG. 6 (c), an opening 74A is formed on the pseudo picture element electrode 93 and the pseudo electrode terminals 94 and 95 on the pseudo electrode terminals 94 and 95 in a region outside the image display section by using a photosensitive resin pattern by a fine processing technique. In addition to the second amorphous silicon layer 33, the first amorphous silicon layer 31, the gate insulating layer 30, and the plasma protective layer 71 in the opening, the first metal layers 92A to 92C are formed. The transparent conductive layer 91A of a part of the scanning line 11 (pseudo electrode terminal 94) is exposed to form the electrode terminal 5A of the scanning line, and the transparent conductive layer 91C of the pseudo electrode terminal 95 is similarly exposed to expose the signal. The line electrode terminal 6A is used as the pseudo-pixel electrode 93. The pixel electrode 22 to expose the transparent conductive layer 91B. In addition, if the multilayer film pattern 96 which consists of lamination | stacking of the transparent conductive layer 91 and the 1st metal layer 92 is formed also in the area | region outside an image surface part, since the short circuit line 40 which consists of a transparent conductive layer is obtained by this process, It is possible to take measures against static electricity.

引き続きSPT等の真空製膜装置を用いて膜厚0.1μm程度の耐熱金属層として例えばTi,Ta等の薄膜層34と膜厚0.3μm程度の低抵抗金属層としてAL薄膜層35を順次被着する。そして図5(d)と図6(d)に示したようにハーフトーン露光技術によりソース・ドレイン配線12,21に対応し、ソース・ドレイン配線12,21上で柱状スペーサに対応した領域87A(77)の膜厚が3μmで、その他の領域の87Bの膜厚が1~2μmであるような感光性有機絶縁層パターン87A,87Bをハーフトーン露光技術により形成する。そして感光性有機絶縁層パターン87A,87Bをマスクとしてこれら2層の薄膜層よりなるソース・ドレイン配線材と第2の非晶質シリコン層33と第1の非晶質シリコン層31Bを順次食刻して保護絶縁層32Dとゲート絶縁層30Aを露出し、絵素電極22の一部を含んで34Aと35Aとの積層よりなる絶縁ゲート型トランジスタのドレイン電極21と、信号線の電極端子6Aの一部を含んでソース電極も兼ねる信号線12を選択的に形成する。走査線の電極端子5Aはソース・ドレイン配線12,21のエッチングが終了するとアクティブ基板2上に露出する。そして感光性有機絶縁層パターン87A,87Bを除去することなくアクティブ基板2の製造工程を終える。 Subsequently, using a vacuum film forming apparatus such as SPT, a thin film layer 34 of Ti, Ta or the like as a heat resistant metal layer having a thickness of about 0.1 μm and an AL thin film layer 35 as a low resistance metal layer of a thickness of about 0.3 μm are sequentially formed. Adhere. Then, as shown in FIGS. 5D and 6D, the region 87A (corresponding to the columnar spacer on the source / drain wirings 12, 21 corresponding to the source / drain wirings 12, 21 by the halftone exposure technique. 77) The photosensitive organic insulating layer patterns 87A and 87B having a thickness of 3 μm and a thickness of 87B in other regions of 1 to 2 μm are formed by a halftone exposure technique. Then, using the photosensitive organic insulating layer patterns 87A and 87B as a mask, the source / drain wiring material composed of these two thin film layers, the second amorphous silicon layer 33, and the first amorphous silicon layer 31B are sequentially etched. Then, the protective insulating layer 32D and the gate insulating layer 30A are exposed, the drain electrode 21 of the insulated gate transistor including a part of the pixel electrode 22 and a stack of 34A and 35A, and the electrode terminal 6A of the signal line A signal line 12 including a part and also serving as a source electrode is selectively formed. The electrode terminal 5A of the scanning line is exposed on the active substrate 2 after the etching of the source / drain wirings 12 and 21 is completed. Then, the manufacturing process of the active substrate 2 is completed without removing the photosensitive organic insulating layer patterns 87A and 87B.

このようにして得られたアクティブ基板2とカラーフィルタ9を貼り合わせて液晶パネル化し、本発明の実施例3が完了する。膜厚3μmの感光性有機絶縁層パターン87Aは柱状スペーサ77として機能する。絵素電極22がガラス基板2上に形成されているので他の実施例と異なり、液晶セルのギャップが大きくなり易いので、液晶の設計的な観点から感光性有機絶縁層パターン87Aの膜厚をもう少し薄くして例えば2μmとすることも容易である。蓄積容量15の構成に関しては図5(d)に示したようにソース・ドレイン配線12,21と同時に絵素電極22の一部を含んで形成された蓄積電極72と前段の走査線11に設けられた突起部がプラズマ保護層71Aとゲート絶縁層30Aと第1の非晶質シリコン層31Eと第2の非晶質シリコン層33E(共に図示せず)を介して平面的に重なることで構成している例(右下がり斜線部52)を例示している。 The active substrate 2 and the color filter 9 thus obtained are bonded to form a liquid crystal panel, and Example 3 of the present invention is completed. The photosensitive organic insulating layer pattern 87 A having a thickness of 3 μm functions as the columnar spacer 77. Since the pixel electrode 22 is formed on the glass substrate 2, unlike the other embodiments, the gap of the liquid crystal cell tends to be large. Therefore, the thickness of the photosensitive organic insulating layer pattern 87A is set from the viewpoint of liquid crystal design. It is easy to make it a little thinner, for example, 2 μm. With respect to the configuration of the storage capacitor 15, as shown in FIG. 5D, the storage capacitor 72 is formed on the storage electrode 72 formed including a part of the pixel electrode 22 simultaneously with the source / drain wirings 12 and 21 and the scanning line 11 in the previous stage. The protrusions thus formed are planarly overlapped via the plasma protective layer 71A, the gate insulating layer 30A, the first amorphous silicon layer 31E, and the second amorphous silicon layer 33E (both not shown). The example (the downward slanting shaded part 52) is illustrated.

上記のように実施例3によって得られるアクティブ基板2ではチャネル上には保護絶縁層32Dが形成され、ソース・ドレイン配線12,21上には感光性有機絶縁層パターン87A,87Bが形成されているので、さらにアクティブ基板2上に透明絶縁性のパシベーション絶縁層を形成しなくても液晶表示装置として十分な信頼性が得られる。また本発明の主題である柱状スペーサ77に関してもガラス基板2からの高さが液晶セル厚に相当するので、感光性有機絶縁層パターン87Aの塗布厚のばらつきだけでギャップ精度のばらつきが決定され、本願発明の実施例の中では最もギャップ精度のばらつきが小さくなる。 As described above, in the active substrate 2 obtained by the third embodiment, the protective insulating layer 32D is formed on the channel, and the photosensitive organic insulating layer patterns 87A and 87B are formed on the source / drain wirings 12 and 21. Therefore, sufficient reliability as a liquid crystal display device can be obtained without forming a transparent insulating passivation insulating layer on the active substrate 2. Further, regarding the columnar spacer 77 which is the subject of the present invention, the height from the glass substrate 2 corresponds to the thickness of the liquid crystal cell, so that the variation in gap accuracy is determined only by the variation in the coating thickness of the photosensitive organic insulating layer pattern 87A. In the embodiment of the present invention, the variation in gap accuracy is the smallest.

なお、必ずしもソース・配線(信号線)上の感光性有機絶縁層パターンの特定の領域を柱状スペーサとして他の領域よりも膜厚を厚くする必要は無く、例えば、特許引用文献12である特願2003−336707号公報に開示されているように、金属層と透明導電層との積層よりなるソース・配線(信号線)と、透明導電層よりなるドレイン配線(絵素電極)が形成され、画像表示部内のソース・配線(信号線)上に感光性有機絶縁層パターンが形成された液晶表示装置において、前記感光性有機絶縁層パターンの膜厚を厚くして、柱状ではなく堤防状のスペーサとすることも可能である。なぜならばアクティブ基板上には絶縁ゲート型トランジスタを始めとする多くの部位が形成されているので、通常、走査線と信号線の交差領域が最もガラス基板からの高さが高く、この領域がスペーサとして有効に機能し、その他の領域のソース・配線(信号線)上の感光性有機絶縁層パターンと対向するカラーフィルタとの間には0.5μm前後の隙間が形成され、液晶注入時または液晶滴下時に前記堤防状のスペーサによって液晶のセル内での拡散が制約を受けることは少ないからである。 Note that it is not always necessary to use a specific region of the photosensitive organic insulating layer pattern on the source / wiring (signal line) as a columnar spacer to make the film thickness thicker than other regions. As disclosed in Japanese Patent Application Publication No. 2003-336707, a source / wiring (signal line) made of a laminate of a metal layer and a transparent conductive layer and a drain wiring (picture element electrode) made of a transparent conductive layer are formed. In a liquid crystal display device in which a photosensitive organic insulating layer pattern is formed on a source / wiring (signal line) in a display unit, the photosensitive organic insulating layer pattern is thickened to form a bank-like spacer instead of a columnar shape. It is also possible to do. This is because many parts such as insulated gate transistors are formed on the active substrate, and the intersection region of the scanning line and the signal line is usually the highest from the glass substrate, and this region is the spacer. As an effective function, a gap of about 0.5 μm is formed between the photosensitive organic insulating layer pattern on the source / wiring (signal line) of the other region and the color filter facing the other, and when liquid crystal is injected or liquid crystal This is because the diffusion of the liquid crystal in the cell is rarely restricted by the levee-like spacers at the time of dropping.

本発明の実施例1にかかる表示装置用半導体装置の平面図Plan view of a semiconductor device for a display device according to Example 1 of the invention. 本発明の実施例1にかかる表示装置用半導体装置の製造工程断面図Manufacturing process sectional drawing of the semiconductor device for display apparatuses concerning Example 1 of this invention. 本発明の実施例2にかかる表示装置用半導体装置の平面図The top view of the semiconductor device for display apparatuses concerning Example 2 of this invention. 本発明の実施例2にかかる表示装置用半導体装置の製造工程断面図Manufacturing process sectional drawing of the semiconductor device for display apparatuses concerning Example 2 of this invention. 本発明の実施例3にかかる表示装置用半導体装置の平面図The top view of the semiconductor device for display apparatuses concerning Example 3 of this invention. 本発明の実施例3にかかる表示装置用半導体装置の製造工程断面図Manufacturing process sectional drawing of the semiconductor device for display apparatuses concerning Example 3 of this invention. 液晶パネルの実装状態を示す斜視図The perspective view which shows the mounting state of a liquid crystal panel 液晶パネルの等価回路図Equivalent circuit diagram of LCD panel 液晶パネルの断面図Cross section of liquid crystal panel 従来例のアクティブ基板の平面図Plan view of conventional active substrate 従来例のアクティブ基板の製造工程断面図Cross-sectional view of conventional active substrate manufacturing process 合理化されたアクティブ基板の平面図Plan view of streamlined active substrate 合理化されたアクティブ基板の製造工程断面図Streamlined manufacturing process of active substrate

符号の説明Explanation of symbols

1:液晶パネル
2:アクティブ基板(ガラス基板)
3:半導体集積回路チップ
4:TCPフィルム
5:金属層よりなる走査線の電極端子、走査線の一部
5A:透明導電層よりなる走査線の電極端子、走査線の一部
6:金属層よりなる信号線の電極端子、信号線の一部
6A:透明導電層よりなる信号線の電極端子、信号線の一部
9:カラーフィルタ(対向するガラス基板)
10:絶縁ゲート型トランジスタ
11:走査線
11A:(ゲート配線、ゲート電極)
12:信号線(ソース配線、ソース電極)
16:蓄積容量線
21:ドレイン電極
22:(透明導電性の)絵素電極
30,30A,30B,30C:ゲート絶縁層(第1のSiNx層)
31,31A,31B,31C:(不純物を含まない)第1の非晶質シリコン層
32:第2のSiNx層
32D:チャネル保護層(エッチストップ層、保護絶縁層)
33:(不純物を含む)第2の非晶質シリコン層
34,34A:耐熱金属層(シリサイドも含む)
35,35A:低抵抗金属層(AL)
36,36A:中間導電層
37:(SiNxよりなる)パシベーション絶縁層
38:(絵素電極上の)開口部
50,51:蓄積容量形成領域
62:(ドレイン電極上の)開口部
63,63A:(走査線上の)開口部
64,64A:(信号線上の)開口部
65,65A:(蓄積容量線上の)開口部
77:柱状スペーサ(85C,86A,87A)
85A,85B,86A,86B,87A,87B
:ハーフトーン露光技術で形成された感光性有機絶縁層パターン
91,91A,91B,91C:透明導電層
92,91A,91B,91C:第1の金属層
1: Liquid crystal panel 2: Active substrate (glass substrate)
3: Semiconductor integrated circuit chip 4: TCP film 5: scanning line electrode terminal made of metal layer, part of scanning line 5A: scanning line electrode terminal made of transparent conductive layer, part of scanning line 6: metal layer Signal line electrode terminal, signal line part 6A: signal line electrode terminal made of transparent conductive layer, signal line part 9: color filter (opposing glass substrate)
10: Insulated gate transistor 11: Scanning line 11A: (Gate wiring, gate electrode)
12: Signal line (source wiring, source electrode)
16: Storage capacitor line 21: Drain electrode 22: (Transparent conductive) picture element electrode 30, 30A, 30B, 30C: Gate insulating layer (first SiNx layer)
31, 31 </ b> A, 31 </ b> B, 31 </ b> C: first amorphous silicon layer (without impurities) 32: second SiNx layer 32D: channel protective layer (etch stop layer, protective insulating layer)
33: Second amorphous silicon layer (including impurities) 34, 34A: refractory metal layer (including silicide)
35, 35A: Low resistance metal layer (AL)
36, 36A: Intermediate conductive layer 37: Passivation insulating layer (made of SiNx) 38: Opening (on the pixel electrode) 50, 51: Storage capacitor forming region 62: Opening (on the drain electrode) 63, 63A: Opening (on the scanning line) 64, 64A: Opening (on the signal line) 65, 65A: Opening (on the storage capacitor line) 77: Columnar spacer (85C, 86A, 87A)
85A, 85B, 86A, 86B, 87A, 87B
: Photosensitive organic insulating layer pattern formed by halftone exposure technology 91, 91A, 91B, 91C: Transparent conductive layer 92, 91A, 91B, 91C: First metal layer

Claims (11)

一主面上に少なくとも絶縁ゲート型トランジスタと、前記絶縁ゲート型トランジスタのゲート電極も兼ねる走査線と、ソース電極も兼ねる信号線と、ドレイン電極に接続された絵素電極とを有する単位絵素が二次元のマトリクスに配列された第1の透明性絶縁基板と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において
前記液晶表示装置は、前記第1の透明性絶縁基板上に形成された無機材質よりなるパシベーション絶縁層をさらに備え、前記パシベーション絶縁層が複数の異なる開口を有し、且つ
前記パシベーション絶縁層の表面には感光性有機絶縁層よりなる柱状スペーサを有し、
前記柱状スペーサは、前記パシベーション絶縁層に形成された前記複数の異なる開口のうちの少なくとも一つの開口と自己整合していることを特徴とする液晶表示装置。
At least an insulated gate transistor on one principal surface, and a scanning line doubling as a gate electrode of said insulated gate transistor, a signal line also serves as a source electrode, a unit pixel having a pixel electrode connected to the drain electrode A liquid crystal display in which a liquid crystal is filled between a first transparent insulating substrate arranged in a two-dimensional matrix and a second transparent insulating substrate or a color filter facing the first transparent insulating substrate. in the device,
The liquid crystal display device further includes a passivation insulating layer made of an inorganic material formed on the first transparent insulating substrate, and the passivation insulating layer has a plurality of different openings, and
The surface of the passivation insulating layer has a columnar spacer made of a photosensitive organic insulating layer,
The liquid crystal display device, wherein the columnar spacer is self-aligned with at least one of the plurality of different openings formed in the passivation insulating layer.
前記少なくとも一つの開口は、前記走査線上のパシベーション絶縁層に形成された開口、または前記信号線上のパシベーション絶縁層に形成された開口であることを特徴とする請求項1に記載の液晶表示装置。2. The liquid crystal display device according to claim 1, wherein the at least one opening is an opening formed in a passivation insulating layer on the scanning line or an opening formed in a passivation insulating layer on the signal line. 前記柱状スペーサの膜厚は6μmであることを特徴とする請求項1または2に記載の液晶表示装置。The liquid crystal display device according to claim 1, wherein the columnar spacer has a thickness of 6 μm. 前記柱状スペーサの膜厚は3μmであることを特徴とする請求項1または2に記載の液晶表示装置。The liquid crystal display device according to claim 1, wherein the columnar spacer has a thickness of 3 μm. 前記柱状スペーサは、前記信号線上に形成されることを特徴とする請求項1または2に記載の液晶表示装置。The liquid crystal display device according to claim 1, wherein the columnar spacer is formed on the signal line. 一主面上に少なくとも絶縁ゲート型トランジスタと、前記絶縁ゲート型トランジスタのゲート電極も兼ねる走査線と、ソース電極も兼ねる信号線と、ドレイン電極に接続された絵素電極を有する単位絵素が二次元のマトリクスに配列された第1の透明性絶縁基板と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置の製造方法において、少なくとも、
第1の透明性絶縁基板上に、少なくとも走査線と信号線と絶縁ゲート型トランジスタとを形成する工程と、
前記工程で少なくとも前記走査線と信号線と絶縁ゲート型トランジスタとを形成した後に、前記第1の透明性絶縁基板上に無機材質よりなるパシベーション絶縁層を被着する工程と、
前記パシベーション絶縁層の表面に、感光性有機絶縁層パターンを形成する工程と、
前記感光性有機絶縁層パターンをマスクとして前記パシベーション絶縁層の一部を除去し、該パシベーション絶縁層に複数の異なる開口を形成する工程と、
を含むことを特徴とする液晶表示装置の製造方法。
At least an insulated gate transistor on one principal surface, and a scanning line doubling as a gate electrode of said insulated gate transistor, a signal line also serves as a source electrode, a unit pixel having a pixel electrode connected to the drain electrode A liquid crystal display in which a liquid crystal is filled between a first transparent insulating substrate arranged in a two-dimensional matrix and a second transparent insulating substrate or a color filter facing the first transparent insulating substrate. In the device manufacturing method , at least,
Forming at least a scanning line, a signal line, and an insulated gate transistor on a first transparent insulating substrate;
Depositing a passivation insulating layer made of an inorganic material on the first transparent insulating substrate after forming at least the scanning line, the signal line, and the insulated gate transistor in the step;
Forming a photosensitive organic insulating layer pattern on the surface of the passivation insulating layer;
Removing a part of the passivation insulating layer using the photosensitive organic insulating layer pattern as a mask, and forming a plurality of different openings in the passivation insulating layer;
A method of manufacturing a liquid crystal display device comprising:
前記感光性有機絶縁層パターンの膜厚を減少させて前記パシベーション絶縁層を露出する工程をさらに含むことを特徴とする請求項6に記載の液晶表示装置の製造方法。7. The method of manufacturing a liquid crystal display device according to claim 6, further comprising a step of exposing the passivation insulating layer by reducing a film thickness of the photosensitive organic insulating layer pattern. 前記感光性有機絶縁層パターンは異なる膜厚を有し、そのうちの厚い部分は柱状スペーサを形成することを特徴とする請求項6又は7に記載の液晶表示装置の製造方法。8. The method of manufacturing a liquid crystal display device according to claim 6, wherein the photosensitive organic insulating layer pattern has different film thicknesses, and a thick part of the pattern forms columnar spacers. ハーフトーン露光法を用いて前記感光性有機絶縁層パターンを形成することを特徴とする請求項6乃至8のいずれか一つに記載の液晶表示装置の製造方法。The method of manufacturing a liquid crystal display device according to claim 6, wherein the photosensitive organic insulating layer pattern is formed using a halftone exposure method. 前記信号線上に前記柱状スペーサを形成することを特徴とする請求項8又は9に記載の液晶表示装置の製造方法。The method for manufacturing a liquid crystal display device according to claim 8, wherein the columnar spacer is formed on the signal line. 複数の異なる開口を有する前記パシベーション絶縁層の表面に前記絵素電極を形成する工程をさらに含むことを特徴とする請求項7乃至9のいずれか一つに記載の液晶表示装置の製造方法。10. The method of manufacturing a liquid crystal display device according to claim 7, further comprising a step of forming the pixel electrode on a surface of the passivation insulating layer having a plurality of different openings.
JP2004365487A 2004-12-17 2004-12-17 Liquid crystal display device and manufacturing method thereof Active JP4871507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004365487A JP4871507B2 (en) 2004-12-17 2004-12-17 Liquid crystal display device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004365487A JP4871507B2 (en) 2004-12-17 2004-12-17 Liquid crystal display device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006171496A JP2006171496A (en) 2006-06-29
JP4871507B2 true JP4871507B2 (en) 2012-02-08

Family

ID=36672325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004365487A Active JP4871507B2 (en) 2004-12-17 2004-12-17 Liquid crystal display device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4871507B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4940926B2 (en) * 2006-12-14 2012-05-30 ソニー株式会社 Liquid crystal display device and manufacturing method thereof
JP5064124B2 (en) * 2007-06-14 2012-10-31 出光興産株式会社 Display device substrate and method for manufacturing the same, and liquid crystal display device and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3498020B2 (en) * 1999-09-29 2004-02-16 Nec液晶テクノロジー株式会社 Active matrix substrate and manufacturing method thereof
JP2002350868A (en) * 2001-05-29 2002-12-04 Matsushita Electric Ind Co Ltd Liquid crystal display device and its manufacturing method

Also Published As

Publication number Publication date
JP2006171496A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP3939140B2 (en) Liquid crystal display
KR100632097B1 (en) Liquid crystal display and fabricating the same
JP3891846B2 (en) Liquid crystal display
KR100710532B1 (en) Liquid crystal display and fabricating the same
WO2010071160A1 (en) Active matrix substrate manufacturing method and liquid crystal display device manufacturing method
US7417693B2 (en) Liquid crystal display device and its manufacturing method
JP2007011340A (en) Liquid crystal display device and fabricating method thereof
US7982837B2 (en) Liquid crystal display device and its manufacturing method
JP2004317685A (en) Liquid crystal display and its manufacturing method
WO2010071159A1 (en) Insulated gate transistor, active matrix substrate, liquid crystal display unit, and method of production of same
JP5064124B2 (en) Display device substrate and method for manufacturing the same, and liquid crystal display device and method for manufacturing the same
JP2004319655A (en) Liquid crystal display device and manufacturing method thereof
JP2005049667A (en) Liquid crystal display and its manufacturing method
JP4871507B2 (en) Liquid crystal display device and manufacturing method thereof
JP2005019664A (en) Liquid crystal display unit and its manufacturing method
JP2005106881A (en) Liquid crystal display device and its manufacturing method
JP2005215278A (en) Liquid crystal display and its manufacturing method
WO2013122184A1 (en) Liquid crystal display manufacturing method
JP4538219B2 (en) Liquid crystal display device and manufacturing method thereof
JP4538218B2 (en) Liquid crystal display device and manufacturing method thereof
JP2001033816A (en) Liquid crystal image display device and production of semiconductor device for image display device
JP2005215279A (en) Liquid crystal display and its manufacturing method
JP2005215276A (en) Liquid crystal display and its manufacturing method
JP2006267877A (en) Liquid crystal display device and its manufacturing method
JP2002190602A (en) Liquid crystal image display and method for manufacturing semiconductor device for image display device

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20070808

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110929

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

R150 Certificate of patent or registration of utility model

Ref document number: 4871507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250