TWI300873B - - Google Patents

Download PDF

Info

Publication number
TWI300873B
TWI300873B TW93109963A TW93109963A TWI300873B TW I300873 B TWI300873 B TW I300873B TW 93109963 A TW93109963 A TW 93109963A TW 93109963 A TW93109963 A TW 93109963A TW I300873 B TWI300873 B TW I300873B
Authority
TW
Taiwan
Prior art keywords
layer
electrode
insulating layer
gate
transparent
Prior art date
Application number
TW93109963A
Other languages
Chinese (zh)
Other versions
TW200506511A (en
Inventor
Kawasaki Kiyohiro
Original Assignee
Quanta Display Inc
Quanta Display Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quanta Display Inc, Quanta Display Japan Inc filed Critical Quanta Display Inc
Publication of TW200506511A publication Critical patent/TW200506511A/en
Application granted granted Critical
Publication of TWI300873B publication Critical patent/TWI300873B/zh

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

1300873 (1) 玖、發明說明 【發明所屬之技術領域】 本發明是關於具有彩色畫像顯示功能的液晶顯示裝置 ,尤其是關於主動(active )型的液晶顯示裝置。 【先前技術】 近年來,隨著微細加工技術、液晶材料技術及高密度 安裝技術等技術的進步,5至5 0 cm對角的液晶顯示裝置 之電視畫像或各種畫像顯示機器在商用基礎(base )下被 大量提供。又,藉由在構成液晶面板之兩片玻璃基板的一 邊,預先形成RGB的著色層,也比較容易實現彩色顯示 。尤其各畫素內設有開關元件之所謂的主動式(active ) 液晶面板中,信號間串訊(c Γ 〇 s s _ t a 1 k )較少、響應速度 也較快,保證得以獲致具有高對比値的畫像。 一般,這些液晶顯示裝置(液晶面板)是具有200至 1 200條之掃描線,3 00至1 600條左右之信號線之矩陣構 成,近來,可對應顯示容量增大之大畫面化和高精細化正 同時進行中。 第23圖是顯示液晶顯示面板的安裝狀態,利用COG (Chip-On-Glass )方式或 TCP (Tape-Carrier-Package) 方式等安裝手段,將電信號供給至畫像顯示部。該COG 方式,是使用導電性黏著劑,連接用以將驅動信號供給至 掃描線電極端子群5的半導體積體電路晶片3,而該掃描 線電極端子群5乃形成於構成液晶面板1 一邊的透明性絕 (2) 1300873 緣基板例如玻璃基板2上。該T C P方式,是以聚醯亞胺 系樹脂薄膜爲基底,利用含導電性媒介之適當黏著劑,將 具有金或鍍銲錫銅箔端子的TCP薄膜4,壓接於信號線的 電極端子群6而固定。此處,爲了方面說明,同時圖示了 兩種安裝方式,而實際上適當選擇任一種方式即可。 用來連接位於液晶面板1大致中央部之畫像顯示部內 的畫素、和掃描線及信號線之電極端子5、6間的配線路 是7、8,不一定要使用與電極端子群5、6相同的導電材 來構成。9是在相對面上具有所有液晶晶胞共通之透明導 電性對向電極之另一片透明性絕緣基板之對向玻璃基板或 彩色濾光片。 第24圖是表示將絕緣閘極型電晶體1 0配置於各畫素 作爲開關元件之主動式液晶顯示裝置的等效電路圖,1 1 ( 第23圖是7)是掃描線、12 (第23圖是8)是信號線、 1 3是液晶晶胞,而液晶晶胞1 3係作爲電容元件來處理。 實線所描繪之元件類是形成於構成液晶面板之一片玻璃基 板2上,虛線所描繪之與所有液晶晶胞1 2共通的對向電 極1 4則形成於另一片玻璃基板9的相對主面上。在絕緣 閘極型電晶體1〇之OFF電阻或液晶晶胞13之電阻較低 時、或重視顯示畫像之灰階性時’可設法增加電路設置, 即將輔助儲存電容1 5與液晶晶胞1 3並聯而增設,而該輔 助儲存電容1 5可增加作爲負載之液晶晶胞1 3的時間常數 。此外,1 6是儲存電容1 5的共通母線。 第2 5圖是液晶顯示裝置之畫像顯示部的主要部位剖 (3) 1300873 面圖,構成液晶面板1的兩片玻璃基板2、9,是藉由樹 脂性纖維、粒子或形成於彩色濾光片9上之支柱狀間隔片 等間隔材(未圖示),隔著數μπι左右的特定間隔而形成 ,並且,其間隙(gap )在玻璃基板9的周緣部,乃形成 被有機性樹脂所構成之密封材及/或封口材(任一者皆未 圖示)密封的密閉空間,而在該密閉空間中塡充液晶1 7 〇 因爲實現彩色顯示時,是在玻璃基板9的密閉空間側 ,被覆稱爲著色層18之含有染料或顏料的任一者或兩者 之厚度1至2//m左右的有機薄膜,以賦予顏色顯示的功 能,所以此時,玻璃基板9又可稱爲彩色濾光片(Color Filter簡稱爲CF )。而且,按液晶材料17的性質,而在 玻璃基板9的上面或玻璃基板2的下面之任一面或兩面上 黏貼偏光板1 9,使液晶面板1具有電光學元件的功能。 目前,市面上販售的大部分液晶面板,都是在液晶材料上 使用 TN ( twist nematic )系的構造,因此一般需要兩片 偏光板。雖然圖中未表示,然而在透過型液晶面板,乃配 置有背面光源作爲光源,由下方照射白色光。 與液晶1 7接觸而形成於兩片玻璃基板2、9上之例如 厚度ο.ίμιη左右的聚醯亞胺系樹脂薄膜20,是用以令液 晶分子配向於特定方向的配向膜。2 1是用以連接絕緣閘 極型電晶體1 〇之汲極與透明導電性畫素電極22之汲極電 極(配線),多半與信號線(源極線)12同時形成。位 於信號線1 2和汲極電極21之間的是半導體層2 3,而該 -6 - 1300873 (4) 半導體層23之後會詳細說明。在彩色濾光片9上 於著色層18交界之厚度0.1// m左右的Cr薄膜層 用來防止外部光入射至半導體層23和掃描線1 1及 12的光遮蔽構件,這就是習用之黑色矩陣(Black ,簡稱BM)技術。 於此,說明有關作爲開關元件之絕緣閘極型電 構造和製造方法。目前常用的絕緣閘極型電晶體有 以其中一種稱爲通道蝕刻型者作爲習知例而予以介 由乾式蝕刻技術的導入,當初需要使用八道左右的 目前減少爲五道,這對於製程成本(process cost 低有相當大的助益。第26圖是構成習知液晶面板 式基板(顯示裝置用半導體裝置)的單位畫素平面 弟26圖表不弟27圖(e)之A — A 、B — B 及C c /線的剖面圖,以下簡單說明其製造工程。 首先,如第26圖(a)和第27圖(a)所示, 〇·5至Ι.Ι/zm左右的玻璃基板2,例如康寧公司製 名1737的一主面上,使用SPT (濺鍍)等真空製 ,被覆膜厚0.1至0.3// m左右的第一金屬層,作 性、耐藥品性和透明性高的絕緣性基板,且利用微 技術,選擇性地形成兼作閘極電極1 1 A的掃描線: 存電容線1 6。就掃描線材質而言,綜合考慮耐熱 藥品性、耐氫氟酸性和導電性後,一般選擇使用 、MoW合金等耐熱性高的金屬或合金。 爲了因應液晶面板的大畫面化和高精細化,降 ,形成 24,是 信號線 Matrix 晶體的 兩種, 紹。藉 光罩, )的降 之主動 圖。於 在厚度 •商品 膜裝置 爲耐熱 細加工 1和儲 性、耐 Cr、Ta 低掃描 (5) 1300873 線的電阻値,使用A1 (鋁)作爲掃描線的材料是合 ’但由於A1的單體耐熱性低,所以目前採用的技術 層上述耐熱金屬之Cr、Ta、Mo或這些的矽化物,或 在A1表面,利用陽極氧化附加氧化層(ai2〇3 )。也 說’掃描線1 1是由一層以上的金屬層所構成。 而且,在玻璃基板2的整面上,使用pCVD (電 學氣相沉積)裝置,例如分別以〇.3 /i m、0.05 // m 左右的膜厚,依序被覆三種薄膜層:作爲閘極絕 的第一 SiNx (氮化砍)層30 ;和作爲幾乎不含雜質 緣閘極型電晶體通道的第一非晶質矽(a— Si)層31 作爲保護通道的絕緣層的第二SiNx層32,並且如| 圖(b )和第2 7圖(b )所示,利用微細加工技術, 性地殘留閘極電極1 1 A上的第二SiNx層32,使其寬 閘極電極11A更細而形成32D,露出第一非晶質矽f 〇 接著,同樣使用PCVD裝置,以例如0.05 // m左 膜厚,整面被覆含雜質例如磷之第二非晶質矽層33 如第26圖(c )和第27圖(c )所示,使用SPT等真 膜裝置,依序被覆:膜厚0.1 # m左右的例如Ti、Cr 等薄膜層34作爲耐熱金屬層、膜厚〇.3//m左右的 A1薄膜層3 5作爲低電阻配線層、膜厚〇 · 1 // m左右 如Ti薄膜層3 6作爲中間導電層,而且,利用微細加 術,選擇性地形成··由作爲源極•汲極配線材之這三 膜34A、35A、36A的積層所構成的絕緣閘極型電晶 理的 是積 者, 就是 漿化 ' 0.1 緣層 之絕 :和 g 26 選擇 幅比 |31 右的 後, 空製 、Μ 〇 例如 的例 工技 種薄 體的 (6) 1300873 汲極電極2 1、和兼作源極電極的信號線1 2。該選擇性圖 案的形成方式,是以源極•汲極配線形成時所使用的感光 性樹脂圖案作爲遮罩,依序蝕刻Ti薄膜層3 6、A1薄膜層 3 5、T i薄膜層3 4後,去除源極•汲極電極丨2、2 1間的 桌一非晶質砂層33,而露出第二SiNx層32D,同時亦於 其它區域去除第一非晶質矽層3 1,而露出閘極絕緣層3 0 。如上所述,因爲具有作爲通道保護層之第二SiNx層 3 2D,故第二非晶質矽層3 3的蝕刻會自動結束,所以該 製法即稱爲蝕刻終止法。 以絕緣閘極型電晶體不會形成偏置構造之方式,使源 極•汲極電極1 2、2 1與蝕刻終止層3 2 D在平面上呈部分 (數μιη)重疊。由於該重疊部分在電性上具有寄生電容 的作用,故愈小愈好,但因爲是由曝光機的對準精度、光 罩的精度和玻璃基板的膨脹係數及曝光時的玻璃基板溫度 所決定,故實際的數値頂多2//m左右。 再者,去除上述感光性樹脂圖案後,與閘極絕緣層同 樣地,使用PC VD裝置,在玻璃基板2的整面,被覆膜厚 〇. 3 v m左右的S iNx層作爲透明性絕緣層,而形成鈍化絕 緣層37,然後,如第26圖(d )和第27圖(d )所示, 利用微細加工技術,選擇性地去除鈍化絕緣層3 7,形成 :開口部62位於汲極電極21上;和開口部63位於畫像 顯示部以外的區域且形成有掃描線1 1之電極端子5的位 置上;和開口部64位於形成有信號線1 2之電極端子6的 部位,而露出汲極電極21和掃描線1 1和部分信號線1 2 -9 - 1300873 (7) 。在儲存電容線1 6 (平行綁束的圖案電極)上形成開口 部6 5,而露出部分儲存電容線1 6。 最後,使用SPT等真空製膜裝置,被覆例如ITO ( Indium-Tin-Oxide )或 IZO(Indium-Zinc-Oxide),如第 2 6圖(e )和第2 7圖(e )所示,利用微細加工技術,含 開口部62地在鈍化絕緣層37上選擇性地形成畫素電極 22,而完成主動式基板2。亦可將開口部63內露出的部 分掃描線1 1設爲電極端子5,將開口部64內露出的部分 信號線12設爲電極端子6,亦可如圖所示,含開口部63 、64地在鈍化絕緣層37上,選擇性地形成由ITO所構成 的電極端子 5A、6A,一般,連接電極端子 5A、6A間的 透明導電性短路線40也會同時形成。此處雖未圖示,然 而,之所以如此是因爲將電極端子5A、6A和短路線40 間形成爲細長的線(stripe )狀,可高電阻化而形成靜電 對策用高電阻之故。同樣地,可含開口部6 5地形成儲存 電容線1 6的電極端子。 信號線1 2的配線電阻不會造成問題時,就不一定要 使用由A1構成的低電阻配線層35,此時,若選擇Cr、Ta 、Mo等耐熱金屬材料的話,可將源極•汲極配線12、21 單層化、簡化。藉此構成,源極•汲極配線使用耐熱金屬 層’來確保與第二非晶質矽層電性連接是很重要的,另外 ’關於絕緣閘極型電晶體的耐熱性,則詳細記載於習知例 之日本特開平7-74368號公報。此外,第26圖(c)中, 儲存電容線1 6和汲極電極2 1,中介著閘極絕緣層3 0呈 •10- 1300873 (8) 平面重疊的區域50(右下斜線部),係形成有儲存電容 1 5,但是,在此省略其詳細的說明。 上述五道光罩製程是半導體層之島化工程的合理化、 和形成接觸工程減少一次所獲得的結果,此處省略說明其 詳細的原委。當初,需要使用七至八道光罩左右,可藉由 乾蝕刻技術的導入,目前減少爲五道,這對於製程成本的 降低有相當大的助益。爲了降低液晶顯示裝置的生產成本 ,有效的方式是降低主動式基板之製作工程中的製程成本 ,再者,降低面板組裝工程和模組安裝工程中的構件成本 ,此乃爲眾所週知的開發目標。此外,爲了降低製程成本 ,例如有使製程變少之工程數減少、廉價製程開發或製程 的置換等方式,此處例舉以四道光罩製得主動式基板的四 道光罩製程,來說明工程的減少。四道光罩製程係藉由半 色調曝光技術的導入,來減少照相蝕刻工程,第2 8圖是 對應於四道光罩製程之主動式基板的單位畫素平面圖,於 第28圖表示第29圖(e)之A— 、B— β /及C—C^ 線的剖面圖。如上所述,目前較常使用的絕緣型電晶體有 兩種,在此採用的是通道蝕刻型的絕緣閘極型電晶體。 首先,與五道光罩製程同樣地,在玻璃基板2的一主 面上,使用SPT等真空製膜裝置,被覆膜厚〇·1至〇·3μ m左右的第一金屬層,接著,如第28圖(a)和第29圖 (a )所示,利用微細加工技術,選擇性地形成兼作閘極 電極1 1 A的掃描線1 1和儲存電容線1 6。 其次,在玻璃基板2的整面,使用PCVD (電漿化學 -11 - (9) 1300873 氣相沉積)裝置,例如分別以〇·3 // m、0.2坎m、0.05 # m左右的膜厚,依序被覆三種薄膜層:作爲閘極絕緣層 之SiNx層30、作爲幾乎不含雜質之絕緣閘極型電晶體通 道的第一非晶質矽層3 1、作爲含雜質之絕緣閘極型電晶 體之源極•汲極的第二非晶質矽層33。接著,使用SPT 等真空製膜裝置,依序被覆:膜厚〇.l/im左右的例如Ti 薄膜層34作爲耐熱金屬層;和膜厚〇.3//m左右的A1薄 膜層3 5作爲低電阻配線層;和膜厚0.1 // m左右的例如 Ti薄膜層3 6作爲中間導電層,亦即,依序被覆源極•汲 極配線材。利用微細加工技術,選擇性地形成絕緣閘極型 電晶體的汲極電極2 1、和兼作源極電極的信號線1 2,而 該選擇圖案形成時,最大特徵係如第28圖(b)和第29 圖(b )所示,形成在源極•汲極間之通道形成區域8 0B (斜線部)的膜厚例如爲1 .5 // m,比源極•汲極配線形 成區域80A(12) 、80A(21)的膜厚3/im更薄的感光 性樹脂圖案80A、80B。 由於此種感光性樹脂圖案80A、80B在液晶顯示裝置 用基板的製作中,一般使用正性感光性樹脂,所以源極· 汲極配線形成區域80A爲黑色,即形成Cr薄膜;通道區 域8 0B爲灰色,即形成例如寬度0.5至1 // m左右之線/ 間距(line and space)的Cr圖案;其它區域爲白色,即 使用去除Cr薄膜的光罩即可。由於灰色區域,曝光機的 解析度不足,故線/間距(line and space )無法被解析, 可使發自光源的光罩照射光透過一半左右,因此依據正感 -12 - 1300873 (10) 光性樹脂的殘膜特性,可獲致具有第29圖(b ) 面形狀的感光性樹脂圖案8 0 A、8 0 B。 以上述感光性樹脂圖案80A、80B作爲遮罩 圖(Μ所示地依序蝕刻:Ti薄膜層36、A1薄月 Ti薄膜層34、第二非晶質矽層33及第一非晶] ,而露出閘極絕緣層3 0後,如第2 8圖(c )和售 c )所示,利用氧電漿等灰化手段,令感光性 80A、80B的膜厚,減少例如從3 // m減少1.5 // ,感光性樹脂圖案80B消失,而露出通道區域, 在源極•汲極配線形成區域上殘留80C ( 12 )、 )。在此,以膜厚減少的感光性樹脂圖案80C 80C ( 21 )作爲遮罩,再依序蝕刻源極·汲極配 道形成區域)的Ti薄膜層、A1薄膜層、Ti薄膜 非晶質矽層33A及第一非晶質矽層31A,使第一 層31A殘留約0.05至0.1//m左右。此外,爲了 氧電漿處理時圖案尺寸產生變化,故以加強異向 其理由於後詳述。 再者,去除上述感光性樹脂圖案80C ( 12 ) 21 )後,與五道光罩製程同樣地,如第2 8圖| 29圖(d)所示地,在玻璃基板2整面,被覆< 右膜厚的SiNx層作爲透明性絕緣層,而形成鈍 3 7,在形成汲極電極2 1和掃描線1 1和信號線: 端子的區域上,分別形成開口部62、63、04 ’ 除開口部63內的鈍化絕緣層37和閘極絕緣層 所示之剖 ,如第2 9 廷層3 5、 ί砂層3 1 ^ 29 圖( 樹脂圖案 m以上時 同時僅可 80C ( 21 (12 )、 線間(通 層、第二 非晶質矽 抑制上述 性爲佳, 、80C ( :d )和第 )· 3 // m 左 化絕緣層 1 2之電極 接著,去 3 0,而露 -13- 1300873 (11) 出部分掃描線η,同時去除開口部62、64內的鈍化絕緣 層3 7,而露出部分汲極電極2 1和部分信號線。 最後,使用SPT等真空製膜裝置,被覆例如IT Ο或 IZO,作爲膜厚0.1至〇.2μιη左右的透明導電層,如第28 圖(e )和第2 9圖(e )所示,利用微細加工技術,在鈍 化絕緣層3 7上,含開口部62地選擇性形成透明導電性畫 素電極22,而完成主動式基板2。關於電極端子,在此係 於鈍化絕緣層3 7上,含開口部63、64而選擇性地形成由 ITO構成的透明導電性電極端子5A、6A。 【發明內容】 [發明所欲解決之課題] 藉此構成,由於在五道光罩製程和四道光罩製程中, 對於汲極電極2 1和掃描線1 1的形成接觸工程是同時完成 的,故與此等對應之開口部62、63內的絕緣層厚度和種 類是不同的。鈍化絕緣層3 7相較於閘極絕緣層3 0,製膜 溫度較低且膜質較低劣,利用氫氟酸系鈾刻液施行蝕刻時 ,兩者的蝕刻速度分別爲數1 000A/分、數100A/分, 相差一位數,而且,由於汲極電極2 1上之開口部6 2的剖 面形狀,在上部發生過度蝕刻而無法控制孔徑的理由,所 以採使用氟系氣體的乾式蝕刻(dry-etch )。 即使採用乾蝕刻時,由於汲極電極2 1上的開口部62 僅爲鈍化絕緣層3 7,所以與掃描線1 1上的開口部63相 比較,無法避免過度鈾刻,而依照材質之不同,有時會有 -14- 1300873 (12) 中間導電層3 6 A因蝕刻氣體而導致膜厚減少的情形 ,一般而言,蝕刻結束後,欲去除感光性樹脂圖案時 先爲了去除氟化表面的聚合物,故利用氧電漿灰化, 光性樹脂圖案的表面,減少0.1至0.3 // m左右,然 再使用有機剝離液,例如東京應化工業株氏會社製的 液106,進行藥液處理。而當中間導電層36A的膜厚 ,呈露出基底鋁層35A的狀態時,利用氧電漿灰化 ,在鋁層35A的表面形成作爲絕緣體之Al2〇3,使其 素電極22間無法獲得歐姆接觸。在此,亦可將膜厚 例如0·2 μ m,使中間導電層36A膜厚減少,即可避 問題發生。或者,開口部62至65形成時,去除鋁層 ,露出作爲基底耐熱金屬層之Ti薄膜層34A後,再 畫素電極22亦是解決對策,而此時具有從最初即不 中間導電層3 6 A的優點。 然而,以前者的對策而言,當這些薄膜之膜厚的 均勻性不良時,此配合不一定可有效地發揮作用,此 當蝕刻速度的面內均勻性不良時,也是完全同樣的情 後者的對策雖可不需要中間導電層36A,但是,會增 層3 5 A的去除工程,此外,當開口部62的剖面控制 足時,恐怕會有畫素電極22發生斷裂之虞。1300873 (1) Field of the Invention The present invention relates to a liquid crystal display device having a color image display function, and more particularly to an active liquid crystal display device. [Prior Art] In recent years, with the advancement of technologies such as microfabrication technology, liquid crystal material technology, and high-density mounting technology, TV images of various liquid crystal display devices of 5 to 50 cm diagonal or various image display devices are on a commercial basis (base ) is provided in large quantities. Further, by forming the RGB coloring layer in advance on one side of the two glass substrates constituting the liquid crystal panel, color display can be easily realized. In particular, in the so-called active liquid crystal panel with switching elements in each pixel, the inter-signal crosstalk (c Γ 〇ss _ ta 1 k ) is small, and the response speed is also fast, ensuring high contrast. A portrait of a donkey. In general, these liquid crystal display devices (liquid crystal panels) are composed of a matrix of 200 to 1 200 scanning lines and a signal line of about 300 to 1,600, and recently, large screens and high definitions corresponding to an increase in display capacity. The process is in progress at the same time. Fig. 23 is a view showing a state in which the liquid crystal display panel is mounted, and an electric signal is supplied to the image display unit by means of a mounting means such as a COG (Chip-On-Glass) method or a TCP (Tape-Carrier-Package) method. In the COG method, a semiconductor integrated circuit wafer 3 for supplying a driving signal to the scanning line electrode terminal group 5 is connected by using a conductive adhesive, and the scanning line electrode terminal group 5 is formed on one side of the liquid crystal panel 1. Transparency (2) 1300873 The edge substrate is, for example, a glass substrate 2. In the TCP method, a TCP film 4 having a gold or a copper-plated copper foil terminal is crimped to an electrode terminal group 6 of a signal line by using a polyimide-based resin film as a base and a suitable adhesive containing a conductive medium. And fixed. Here, for the sake of explanation, two types of mounting methods are illustrated at the same time, and any one of them may be appropriately selected. The pixels for connecting the pixels in the image display portion located at the substantially central portion of the liquid crystal panel 1 and the electrode terminals 5 and 6 of the scanning lines and the signal lines are 7 and 8, and the electrode terminal groups 5 and 6 are not necessarily used. It is composed of the same conductive material. 9 is a counter-glass substrate or a color filter of another transparent insulating substrate having a transparent conductive opposite electrode which is common to all liquid crystal cells on the opposite surface. Fig. 24 is an equivalent circuit diagram showing an active liquid crystal display device in which an insulating gate type transistor 10 is disposed as a switching element, and 1 1 (Fig. 23 is 7) is a scanning line, 12 (23th) The figure is 8) is a signal line, 13 is a liquid crystal cell, and the liquid crystal cell 13 is treated as a capacitive element. The components depicted by the solid line are formed on one of the glass substrates 2 constituting the liquid crystal panel, and the counter electrode 14 which is common to all the liquid crystal cells 12 as indicated by a broken line is formed on the opposite main surface of the other glass substrate 9. on. When the OFF resistance of the insulated gate type transistor 1 or the resistance of the liquid crystal cell 13 is low, or when the gray scale of the image is emphasized, it is possible to increase the circuit setting, that is, the auxiliary storage capacitor 15 and the liquid crystal cell 1 3 is added in parallel, and the auxiliary storage capacitor 15 can increase the time constant of the liquid crystal cell 13 as a load. Further, 16 is a common bus of the storage capacitor 15. FIG. 25 is a cross-sectional view of a main portion of the image display unit of the liquid crystal display device (3) 1300873, and the two glass substrates 2 and 9 constituting the liquid crystal panel 1 are formed of resin fibers, particles, or color filters. A spacer (not shown) such as a pillar-shaped spacer on the sheet 9 is formed at a predetermined interval of several μm or so, and a gap is formed in the peripheral portion of the glass substrate 9 to be composed of an organic resin. In the sealed space sealed by the sealing material and/or the sealing material (none of which is not shown), the liquid crystal is filled in the sealed space, and the color display is performed on the sealed space side of the glass substrate 9. An organic thin film having a thickness of about 1 to 2/m thick, which is called a dye or a pigment of either or both of the dyed layer 18, is applied to impart a color display function. Therefore, the glass substrate 9 may be referred to as color at this time. Filter (Color Filter is abbreviated as CF). Further, the polarizing plate 19 is adhered to either or both of the upper surface of the glass substrate 9 or the lower surface of the glass substrate 2 in accordance with the properties of the liquid crystal material 17, so that the liquid crystal panel 1 has the function of an electro-optical element. At present, most of the liquid crystal panels sold on the market use a TN (twist nematic) structure on a liquid crystal material, and therefore generally require two polarizing plates. Although not shown in the drawing, in the transmissive liquid crystal panel, a back light source is disposed as a light source, and white light is irradiated from below. The polyimine-based resin film 20, which is formed on the two glass substrates 2, 9 and which is in contact with the liquid crystal 17 and has a thickness of about ο. ίμιη, is an alignment film for aligning the liquid crystal molecules in a specific direction. 2 1 is a drain electrode (wiring) for connecting the drain of the insulating gate type transistor 1 and the transparent conductive pixel electrode 22, and is mostly formed at the same time as the signal line (source line) 12. Between the signal line 12 and the drain electrode 21 is a semiconductor layer 23, and the -6 - 1300873 (4) semiconductor layer 23 will be described in detail later. A Cr film layer having a thickness of about 0.1/m at the boundary of the colored layer 18 on the color filter 9 serves to prevent external light from entering the light shielding member of the semiconductor layer 23 and the scanning lines 11 and 12, which is a conventional black. Matrix (Black, BM for short) technology. Here, an insulating gate type electrical structure and a manufacturing method as a switching element will be described. At present, the commonly used insulated gate type transistor has been introduced into the dry etching technique by one of them as a channel etching type. The current use of eight channels is currently reduced to five channels, which is a process cost ( The process cost is quite helpful. Figure 26 is a diagram of a unit pixel surface of a conventional liquid crystal panel substrate (semiconductor device for a display device). Figure 26: Figure A (A) A - A, B - The cross-sectional view of B and C c / line, the following is a brief description of the manufacturing process. First, as shown in Fig. 26 (a) and Fig. 27 (a), the glass substrate 2 of 〇·5 to Ι.Ι/zm 2 For example, on the main surface of Corning's name 1737, a vacuum is used, such as SPT (sputtering), to coat a first metal layer with a thickness of about 0.1 to 0.3/m, which is high in workability, chemical resistance and transparency. The insulating substrate is selectively formed by a micro-technology to form a scanning line that also serves as the gate electrode 1 1 A: a storage capacitor line 16. In terms of the material of the scanning line, comprehensive consideration is given to heat-resistant chemical properties, hydrogen fluoride resistance, and conductivity. After the sex, it is generally used, and the heat resistance is high such as MoW alloy. Metal or alloy. In order to respond to the large screen and high definition of the liquid crystal panel, the formation of 24 is the signal line of the Matrix crystal, which is the active picture of the drop mask. In the thickness of the product film device for heat-resistant fine processing 1 and storage, Cr, Ta low scan (5) 1300873 line resistance 値, the use of A1 (aluminum) as the material of the scan line is combined but due to A1 monomer Since the heat resistance is low, the technical layer currently used is Cr, Ta, Mo or a telluride of the above-mentioned heat resistant metal, or an anodized additional oxide layer (ai2〇3) is used on the surface of A1. It is also said that the scanning line 11 is composed of one or more metal layers. Further, on the entire surface of the glass substrate 2, a pCVD (Electrical Vapor Deposition) device is used, for example, a film thickness of about 〇.3 /im, 0.05 // m, respectively, and three kinds of thin film layers are sequentially coated: as a gate a first SiNx (nitriding chopped) layer 30; and a first amorphous germanium (a-Si) layer 31 as a substantially free impurity gate-type transistor channel as a second SiNx layer of the insulating layer of the protective via 32, and as shown in FIG. (b) and FIG. 27(b), the second SiNx layer 32 on the gate electrode 1 1 A is left by the microfabrication technique to make the wide gate electrode 11A more 32D is formed thin to expose the first amorphous 矽f 〇 Next, a PCVD device is also used, for example, a left film thickness of 0.05 // m, and the entire surface is covered with a second amorphous germanium layer 33 containing impurities such as phosphorus, such as the 26th As shown in Fig. 3(c) and Fig. 27(c), a thin film layer 34 such as Ti or Cr having a thickness of about 0.1 m is used as a heat-resistant metal layer and a film thickness 使用.3 using a film apparatus such as SPT. The A1 film layer 35 of about //m is used as the low-resistance wiring layer, and the film thickness is about 1 // m, such as the Ti film layer 36 as the intermediate conductive layer, and Fine addition, selective formation · The insulating gate type electro-crystallography consisting of the laminate of the three films 34A, 35A, and 36A as the source/drainage wiring material is the accumulator, that is, pulping '0.1 The edge layer is: and g 26 selects the width ratio |31 right after the empty system, Μ 〇, for example, the thin-formed (6) 1300873 drain electrode 2 1 , and the signal line 1 which also serves as the source electrode 2. The selective pattern is formed by using a photosensitive resin pattern used for forming the source/drain wiring as a mask, and sequentially etching the Ti thin film layer 36, the A1 thin film layer 35, and the Ti thin film layer 34. Thereafter, the table-amorphous sand layer 33 between the source and drain electrodes 丨2, 2 1 is removed, and the second SiNx layer 32D is exposed, and the first amorphous germanium layer 3 1 is removed in other regions. Gate insulation layer 3 0 . As described above, since the second SiNx layer 3 2D is provided as the channel protective layer, the etching of the second amorphous germanium layer 3 3 is automatically ended, so this method is called an etching termination method. The source/drain electrodes 1 2, 2 1 and the etch stop layer 3 2 D are partially overlapped (number μm) in a plane so that the insulating gate type transistor does not form an offset structure. Since the overlapping portion electrically has a parasitic capacitance, the smaller the better, but it is determined by the alignment accuracy of the exposure machine, the accuracy of the mask, the expansion coefficient of the glass substrate, and the temperature of the glass substrate during exposure. Therefore, the actual number of domes is about 2/m. Further, after removing the photosensitive resin pattern, a Si Vx layer having a thickness of about 3 vm is used as a transparent insulating layer on the entire surface of the glass substrate 2 by using a PC VD device in the same manner as the gate insulating layer. The passivation insulating layer 37 is formed, and then, as shown in FIGS. 26(d) and 27(d), the passivation insulating layer 3 is selectively removed by a microfabrication technique to form: the opening portion 62 is located at the bungee The electrode 21 is exposed; the opening portion 63 is located at a position other than the image display portion and the electrode terminal 5 of the scanning line 11 is formed; and the opening portion 64 is located at a portion where the electrode terminal 6 of the signal line 12 is formed, and is exposed. The drain electrode 21 and the scanning line 1 1 and part of the signal line 1 2 -9 - 1300873 (7). An opening portion 65 is formed on the storage capacitor line 16 (the pattern electrode that is bundled in parallel), and a portion of the storage capacitor line 16 is exposed. Finally, a vacuum film forming apparatus such as SPT is used, and, for example, ITO (Indium-Tin-Oxide) or IZO (Indium-Zinc-Oxide) is coated, as shown in FIGS. 26(e) and 27(e), In the microfabrication technique, the pixel electrode 22 is selectively formed on the passivation insulating layer 37 including the opening portion 62, and the active substrate 2 is completed. A part of the scanning line 1 1 exposed in the opening 63 may be the electrode terminal 5, and part of the signal line 12 exposed in the opening 64 may be the electrode terminal 6, or may include openings 63 and 64 as shown in the drawing. Electrode terminals 5A and 6A made of ITO are selectively formed on the passivation insulating layer 37. Generally, the transparent conductive short-circuit lines 40 connecting the electrode terminals 5A and 6A are simultaneously formed. Though it is not shown here, the reason is that the electrode terminals 5A and 6A and the short-circuit line 40 are formed in a slender shape, and the resistance can be increased to form a high resistance for electrostatic countermeasures. Similarly, the electrode terminal of the storage capacitor line 16 may be formed to include the opening portion 65. When the wiring resistance of the signal line 12 does not cause a problem, it is not necessary to use the low-resistance wiring layer 35 composed of A1. In this case, if a heat-resistant metal material such as Cr, Ta, or Mo is selected, the source can be used. The pole wirings 12 and 21 are single-layered and simplified. According to this configuration, it is important to ensure that the source/drain wiring uses a heat-resistant metal layer to ensure electrical connection with the second amorphous germanium layer, and the heat resistance of the insulated gate transistor is described in detail. Japanese Laid-Open Patent Publication No. Hei 7-74368. Further, in Fig. 26(c), the storage capacitor line 16 and the drain electrode 2 1 are interposed with a region 50 (lower right oblique line portion) in which the gate insulating layer 30 is in a plane of 10 - 1300873 (8), The storage capacitor 15 is formed, but a detailed description thereof will be omitted herein. The above-mentioned five mask processes are the rationalization of the islanding process of the semiconductor layer, and the result obtained by reducing the contact engineering once, and the detailed description thereof is omitted here. At the beginning, seven to eight masks were needed, which could be reduced to five by the introduction of dry etching technology, which is quite helpful for the reduction of process cost. In order to reduce the production cost of the liquid crystal display device, an effective method is to reduce the process cost in the production process of the active substrate, and further, to reduce the component cost in the panel assembly project and the module installation project, which is a well-known development goal. In addition, in order to reduce the cost of the process, for example, there is a reduction in the number of engineering processes for reducing the number of processes, a process development of a low-cost process, or a replacement of a process. Here, a four-mask process for producing an active substrate by using four masks is exemplified to illustrate the engineering. Reduction. The four-mask process reduces the photographic etching process by the introduction of the halftone exposure technique, and the figure 28 is the unit pixel plan of the active substrate corresponding to the four-mask process, and the figure 29 is shown in Figure 28. e) A section of the A-, B-β/ and C-C^ lines. As described above, there are two types of insulating type transistors which are currently used more frequently, and a channel-etching type insulating gate type transistor is used here. First, in the same manner as the five mask processes, a vacuum film forming apparatus such as SPT is used on one main surface of the glass substrate 2 to coat a first metal layer having a thickness of about 1 to about 3 μm. As shown in Fig. 28(a) and Fig. 29(a), the scanning line 11 and the storage capacitor line 16 which also serve as the gate electrode 11A are selectively formed by the microfabrication technique. Next, on the entire surface of the glass substrate 2, a PCVD (plasma chemistry-11 - (9) 1300873 vapor deposition) device is used, for example, film thicknesses of 〇·3 // m, 0.2 mbar, and 0.05 # m, respectively. Three thin film layers are sequentially coated: a SiNx layer 30 as a gate insulating layer, a first amorphous germanium layer 31 as an insulating gate type transistor channel containing almost no impurities, and an insulating gate type containing impurities The source of the transistor • the second amorphous layer 33 of the drain. Then, a vacuum film forming apparatus such as SPT is used to sequentially coat, for example, a film thickness of about 1/min, such as a Ti film layer 34, as a heat-resistant metal layer; and an A1 film layer 35 having a film thickness of about 3/m. The low-resistance wiring layer; and the Ti thin film layer 36 having a film thickness of about 0.1 // m is used as the intermediate conductive layer, that is, the source/drain wiring material is sequentially coated. The gate electrode 2 1 of the insulating gate type transistor and the signal line 12 which also serves as the source electrode are selectively formed by the microfabrication technique, and when the selection pattern is formed, the maximum characteristic is as shown in FIG. 28(b) As shown in Fig. 29(b), the film thickness of the channel formation region 80B (hatched portion) formed between the source and the drain is, for example, 1.5 Ω, which is larger than the source/drain wiring formation region 80A. (12) 80A (21) photosensitive resin patterns 80A and 80B having a film thickness of 3/im. Since the photosensitive resin patterns 80A and 80B are generally made of a positive photosensitive resin in the production of the substrate for a liquid crystal display device, the source/drain wiring formation region 80A is black, that is, a Cr film is formed; the channel region 80B It is gray, that is, a Cr pattern of, for example, a line and a space having a width of about 0.5 to 1 // m is formed; other areas are white, that is, a mask for removing the Cr film is used. Due to the gray area, the resolution of the exposure machine is insufficient, so the line and space cannot be resolved, so that the illuminating light from the light source can be transmitted through about half of the light, so according to the positive sense -12 - 1300873 (10) light The residual film characteristics of the resin can obtain the photosensitive resin patterns 80A and 80B having the surface shape of Fig. 29(b). The photosensitive resin patterns 80A and 80B are used as a mask pattern (sequential etching: Ti thin film layer 36, A1 thin moon Ti thin film layer 34, second amorphous germanium layer 33, and first amorphous), After the gate insulating layer 30 is exposed, as shown in FIG. 28(c) and c), the film thickness of the photosensitive layers 80A and 80B is reduced by, for example, 3 // by means of ashing means such as oxygen plasma. When m is reduced by 1.5 //, the photosensitive resin pattern 80B disappears, and the channel region is exposed, and 80C (12), ) remains in the source/drain wiring formation region. Here, the Ti thin film layer, the A1 thin film layer, and the Ti thin film amorphous germanium are sequentially etched by the photosensitive resin pattern 80C 80C ( 21 ) having a reduced film thickness as a mask and sequentially etching the source/drain formation formation region). The layer 33A and the first amorphous germanium layer 31A leave the first layer 31A at about 0.05 to 0.1/m. Further, in order to change the pattern size during the oxygen plasma treatment, the reason for the anisotropy is enhanced, and the reason will be described in detail later. Further, after removing the photosensitive resin pattern 80C ( 12 ) 21 ), the entire surface of the glass substrate 2 is covered as shown in Fig. 28 (29), as in the case of the five mask processes. The SiNx layer of the right film thickness serves as a transparent insulating layer, and forms a blunt 3-7. On the region where the gate electrode 2 1 and the scanning line 1 1 and the signal line: terminal are formed, openings 62, 63, and 04' are respectively formed. The passivation insulating layer 37 in the opening portion 63 and the gate insulating layer are shown as a cross section, such as the 2nd 9th layer, and the sand layer 3 1 ^ 29 (the resin pattern m or more can only be 80C (21 (12) at the same time). Between the lines (the pass layer, the second amorphous yttrium suppresses the above properties, 80C (:d) and the third) · 3 // m left the insulating layer 1 2 electrode, then go to 30, and dew - 13-1300873 (11) A part of the scanning line η is removed, and the passivation insulating layer 3 7 in the openings 62 and 64 is removed to expose a part of the drain electrode 2 1 and a part of the signal line. Finally, a vacuum film forming apparatus such as SPT is used. Coating, for example, IT Ο or IZO, as a transparent conductive layer having a film thickness of about 0.1 to 2.2 μηη, as shown in Figs. 28(e) and 29(e), In the fine processing technique, the transparent conductive pixel electrode 22 is selectively formed on the passivation insulating layer 37 including the opening portion 62, and the active substrate 2 is completed. The electrode terminal is here on the passivation insulating layer 37, The transparent conductive electrode terminals 5A and 6A made of ITO are selectively formed by the openings 63 and 64. [Explanation] [Problems to be Solved by the Invention] By this, due to the five-mask process and four masks In the process, the formation contact process of the drain electrode 2 1 and the scanning line 11 is completed at the same time, so the thickness and type of the insulating layer in the openings 62 and 63 corresponding thereto are different. The passivation insulating layer 3 7 Compared with the gate insulating layer 30, the film forming temperature is lower and the film quality is lower. When the etching is performed by using the hydrofluoric acid-based uranium engraving solution, the etching rates of the two are respectively several thousand A/min and several hundred A/min. The difference between the one-digit number and the cross-sectional shape of the opening portion 6 2 on the gate electrode 2 1 causes excessive etching in the upper portion and the reason why the aperture cannot be controlled. Therefore, dry-etching using a fluorine-based gas is employed. Even when dry etching is used, Since the opening portion 62 on the drain electrode 2 1 is only the passivation insulating layer 3 7, compared with the opening portion 63 on the scanning line 11, it is impossible to avoid excessive uranium engraving, and depending on the material, there may be - 14- 1300873 (12) When the intermediate conductive layer 3 6 A is reduced in thickness due to etching gas, generally, after removing the photosensitive resin pattern, the polymer is removed to remove the polymer on the fluorinated surface. Oxygen plasma ashing, the surface of the photoreceptor pattern is reduced by about 0.1 to 0.3 // m, and then an organic peeling liquid, for example, a liquid 106 manufactured by Tokyo Chemical Industry Co., Ltd., is used for chemical treatment. When the film thickness of the intermediate conductive layer 36A is in a state in which the underlying aluminum layer 35A is exposed, Al2〇3 as an insulator is formed on the surface of the aluminum layer 35A by oxygen plasma ashing, so that ohmic is not obtained between the element electrodes 22. contact. Here, the film thickness may be, for example, 0·2 μm, and the thickness of the intermediate conductive layer 36A may be reduced to avoid problems. Alternatively, when the openings 62 to 65 are formed, the aluminum layer is removed to expose the Ti thin film layer 34A as the base heat resistant metal layer, and the re-pixel electrode 22 is also a countermeasure, and at this time, there is no intermediate conductive layer from the beginning. The advantages of A. However, in the countermeasures of the former, when the uniformity of the film thickness of these films is poor, the compounding does not necessarily work effectively, and when the in-plane uniformity of the etching rate is poor, the same is true. Although the intermediate conductive layer 36A is not required for the countermeasure, the removal of the layer 35 A is increased, and when the cross section of the opening 62 is controlled enough, there is a fear that the pixel electrode 22 is broken.

再加上,通道蝕刻型的絕緣閘極型電晶體中,通 域之不含雜質的第一非晶質矽層3 1,沒有事先被覆 的厚度(一般爲0 · 2 // m以上)時,會對玻璃基板的 的均勻性產生很大的影響,電晶體特性特別是OFF 。又 ,首 將感 後, 剝離 減少 處理 跑書 設爲 免此 35A 形成 需要 面內 外, 加鋁 不充 道區 較厚 面內 電流 -15- (13) 1300873 容易發生不一致的現象。這點受到PC VD的運轉率和粒子 發生狀況的影響很大,從生產成本觀點來看’也是非常重 要的事項。 再者,由於適用於四道光罩製程的通道形成工程’是 選擇性地去除源極•汲極配線1 2、2 1間的源極·汲極配 線材和含雜質的半導體層,所以是用來決定大幅左右絕緣 閘極型電晶體之ON特性之通道長度(目前的量產品是4 至6 // m )的工程。由於該通道長度的變動會使絕緣閘極 型電晶體的ON電流値產生大幅變化,所以一般都會要求 嚴謹的製造管理。然而,現狀是通道長度亦即半色調曝光 區域的圖案尺寸,乃受到曝光量(光源強度和光罩的圖案 精度,尤其是線/間距尺寸)、感光性樹脂的塗布厚度、 感光性樹脂的顯影處理、以及該蝕刻工程之感光性樹脂膜 厚減少量等諸多參數的影響,再加上此等諸量的面內均勻 性,所以不一定可以在良率高且穩定的狀態生產’必須有 較以往更加嚴格的製造管理,因此不能說已達高水準的完 成度。特別是通道長度爲6//m以下時,隨著光阻圖案膜 厚的減少,對圖案尺寸產生的影響很大的傾向更爲明顯。 本發明是有鑒於相關現狀而發明的,其目的不僅在於 避免以往五道光罩製程或四道光罩製程,共同在形成接觸 時產生的不良情況,藉由採用製造餘裕度(margin )較大 的半色調曝光技術,來實現製造工程的減少。此外’要實 現液晶面板的低價格化,因應需求的增加,必須刻意追求 更少的製造工程數,而藉由附加於其它主要製造工程的簡 -16- (14) 1300873 略化或低成本化的技術,得以更爲提高本發明 [用以解決課題之手段] 本發明中,首先採用將半色調曝光技術, 精度管理容易施行的蝕刻終止層的形成工程與 成工程,以實現製造工程的減少。其次,爲了 汲極配線有效地鈍化,融合習知技術之日本特 2-2 1612號公報所揭示,在由鋁所構成的源極 的表面,形成絕緣層之陽極氧化技術,以實現 化和低溫化。再者,於習知技術之日本特開平 5-268726號公報所揭示,將畫素電極形成工 構成適用於本發明。又,爲了進一步減少工程 極配線的陽極氧化層形成亦適用半色調曝光技 極端子的保護層形成工程合理化。 申請專利範圍第1項所記載的底部閘極型 型電晶體,其特徵爲:在絕緣基板的主面上形 ,在上述閘極電極的側面形成絕緣層,同時在 極上形一層以上的閘極絕緣層和不含雜質的第 ,在上述第一半導體層上,形成寬幅比上述閘 的保護絕緣層,在上述部分保護絕緣層上和第 上和絕緣基板上,形成由含雜質的第二半導體 上的金屬層所積層而構成的源極•汲極配線; ,使用半色調曝光技術,可用一道光罩來處理 形成工程、和通道保護層的形成工程。閘極電 的價値。 適用在圖案 掃描線的形 僅將源極· 開平第 •汲極配線 工程的合理 第 程合理化的 ,源極•汲 術,以將電 的絕緣閘極 成閘極電極 上述閘極電 一半導體層 極電極還細 一半導體層 層與一層以 藉由此構成 閘極電極的 極的側面的 -17- 1300873 (15) 絕緣層可選擇無機材質與有機材質等兩種,將以申請專利 範圍第2、3項來做說明。 申請專利範圍第2項所記載的絕緣閘極型電晶體,是 以絕緣層爲有機絕緣層爲其特徵之蝕刻終止型的絕緣閘極 型電晶體,不受限於閘極電極的材質而可應用至液晶顯示 裝置。與液晶顯示裝置的關係,在申請專利範圍第5、6 、7、8、9、10、11、12 和 13 項,以及第一、第二、第 三、第四、第五、第六、第七、第八和第九實施例就很明 確。 申請專利範圍第3項所記載的絕緣閘極型電晶體,係 以閘極電極是由可陽極氧化的金屬層所構成,且絕緣層是 陽極氧化層爲其特徵的蝕刻終止型的絕緣閘極型電晶體, 與液晶顯示裝置的關係,在申請專利範圍第5、6、1 0、 11、12、13和14項,以及第一、第二、第六、第七、第 八、第九和第十實施例明確說明。 申請專利範圍第4項所記載的絕緣閘極型電晶體,係 以閘極電極是由透明導電層與金屬層的積層所構成,且絕 緣層是有機絕緣層爲其特徵之蝕刻終止型之絕緣閘極型電 晶體,藉此構成,用一道光罩來形成閘極電極(掃描線) 與畫素電極,實現工程的削減。與液晶顯示裝置的關係, 在申請專利範圍第7、8和9項,以及第三、四和五實施 例明確說明。 申請專利範圍第5項所記載的液晶顯示裝置,係於在 一主面上至少具有:絕緣閘極型電晶體、兼作前述絕緣閘 -18- (16) 1300873 極型電晶體之閘極電極之掃描線、兼作源極配線之信號線 、連接於汲極配線之畫素電極等等之單位畫素被配列成二 維矩陣狀的第一透明性絕緣基板;和與上述第一透明性絕 緣基板相對的第二透明性絕緣基板或是彩色濾光片之間塡 充液晶而構成的液晶顯示裝置’其特徵爲: 至少在第一透明性絕緣基板的一主面上,形成有由一 層以上的第一金屬層所構成’且其側面具有絕緣層的掃描 線, 在閘極電極上,形成一層以上的閘極絕緣層與不含雜 質的第一半導體層, 在上述第一半導體層上,形成寬幅比閘極電極還細的 保護絕緣層, 在畫像顯示部以外的區域,於掃描線上的閘極絕緣層 形成開口部, 在上述部分保護絕緣層上、第一半導體層上以及第一 透明性絕緣基板上,形成由含雜質的第二半導體層與一層 以上可陽極氧化之金屬層的積層所構成的源極(信號線) •汲極配線、和包含上述開口部周邊之第一半導體層與第 二半導體層與一層以上可陽極氧化之金屬層的積層所構成 的掃描線的電極端子, 在上述汲極配線上之一部分上與第一透明性絕緣基板 上,形成透明導電性的畫素電極、和在畫像顯示部以外的 區域於信號線上形成透明導電性的電極端子’ 除了上述汲極配線之與畫素電極重疊的區域與信號線 -19- 1300873 (17) 的電極端子的區域以外’在源極•汲極配線的表面,形成 陽極氧化層。 藉此構成,閘極絕緣層是以與掃描線同樣的圖案寬度 形成的,在掃描線的側面被提供閘極絕緣層以外的絕緣層 ,掃描線與信號線的交叉因而成爲可能。此乃共通於本發 明之構造特徵。而且,在源極•汲極間的通道上形成保護 絕緣層,用來保護通道,同時在信號線和汲極配線的表面 形成屬於絕緣性的陽極氧化層的五氧化鉅(Ta20 5 )或是 氧化鋁(A 1 203 ),以賦予鈍化功能,故不需將鈍化絕緣 層被覆於玻璃基板的整面,且絕緣閘極型電晶體的耐熱性 不會產生問題。於是,可獲致具有透明導電性之電極端子 的TN型液晶顯示裝置。 申請專利範圍第6項所記載的液晶顯示裝置,同樣的 在第一透明性絕緣基板的一主面上,形成由一層以上的第 一金屬層所構成,且其側面具有絕緣層的掃描線, 在閘極電極上形成一層以上的閘極絕緣層與不含雜質 的第一半導體層, 在上述第一半導體層上形成寬幅比閘極電極還細的保 護絕緣層, 在上述保護絕緣層之一部分與第一半導體層上與第一 透明性絕緣基板上,形成由含雜質的第二半導體層與一層 以上之第二金屬層的積層所構成的源極(信號線)•汲極 配線, 在上述汲極配線上與畫像顯示部以外的區域,於上述 -20- 1300873 (18) 第一透明性絕緣基板上形成在掃描線與信號線的電極端子 形成區域上具有開口部的透明絕緣層, 去除上述掃描線的電極端子形成區域上的閘極絕緣層 包含上述汲極配線上的開口部,而在透明絕緣層上形 成透明導電性的畫素電極爲其特徵。 藉此構成,與習知例同樣地,由於對鈍化絕緣層的開 口部形成工程,可兼作對掃描線之電性連接的連接形成工 程,製造工程減少,故能用四道光罩來製作TN型的液晶 顯示裝置。而在作爲透明絕緣層之鈍化絕緣層採用厚的透 明樹脂層時,可得到開口率高的TN型的液晶顯示裝置。 申請專利範圍第7項所記載的液晶顯示裝置,同樣的 在第一透明性絕緣基板的一主面上形成由透明導電層與第 一金屬層的積層所構成且其側面具有絕緣層的掃描線、和 透明導電性的畫素電極與信號線的電極端子, 在閘極電極上形成有一層以上的閘極絕緣層與不含雜 質的第一半導體層, 在上述第一半導體層上形成寬幅比閘極電極還細的保 護絕緣層, 在畫像顯示部以外的區域,於掃描線上的閘極絕緣層 形成開口部,而於上述開口部內露出作爲掃描線的電極端 子的透明導電層, 在上述保護絕緣層之一部分上與第一半導體層上與第 一透明性絕緣基板上,形成由含雜質的第.二半導體層與一 -21 - !3〇0873 (19) 層以上的第二金屬層的積層所構成的源極配線(信號線) 、和在上述信號線的電極端子的一部上形成由一層以上的 第二金屬層所構成的上述源極配線的一部分、和在上述部 分保護絕緣層的一部分上、和第一半導體層上及第一透明 性絕緣基板上形成由含雜質的第二半導體層與一層以上的 第二金屬層的積層所構成的汲極配線、和在上述部分畫素 電極上形成由一層以上的第一金屬層所構成的上述汲極配 線的一部分, 在上述源極•汲極配線上形成感光性有機絕緣層爲其 特徵。 藉此構成,由於在源極•汲極間的通道上形成保護絕 緣層來保護通道,同時在源極•汲極配線的表面形成感光 性有機絕緣層,以賦予鈍化功能,故不需將鈍化絕緣層被 覆於玻璃基板的整面,且絕緣閘極型電晶體的耐熱性不會 產生問題。於是,可獲致具有透明導電性電極端子的TN 型液晶顯不裝置。 申請專利範圍第8項所記載的液晶顯示裝置,同樣在 第一透明性絕緣基板的一主面上形成由透明導電層與第一 金屬層的積層所構成’且其側面具有絕緣層的掃描線與透 明導電性的畫素電極, 在閘極電極上形成有一層以上的閘極絕緣層與不含雜 質的第一半導體層, 在上述第一半導體層上形成寬幅比閘極電極還細的保 護絕緣層, -22- (20) 1300873 在書像顯示部以外的區域,於掃描線上的閘極絕緣層 形成開口部,並在上述開口部內露出透明導電層’ 在上述保護絕緣層之一部分上、第一半導體層上以及 第一透明性絕緣基板上’形成由含雜質的第二半導體層與 一層以上的第二金屬層的積層所構成的 '源極配線(信號線 ):和在上述部分保護絕緣層之一部分上、第二半導體層 上以及第一透明性絕緣基板上形成由含雜質的第二半導體 層與一層以上的第二金屬層的積層所構成的汲極配線;和 在上述畫素電極之一部分上形成由一層以上的第二金屬層 所構成的上述汲極配線之一部分;和包括上述開口部周邊 的第一半導體層、第二半導體層以及上述開口部內的透明 導電層形成由第二金屬層所構成的掃描線的電極端子;和 在畫像顯示部以外的區域由部分信號線所構成的信號線的 電極端子, 除了上述信號線的電極端子上以外,在信號線上形成 有感光性有機絕緣層爲其特徵。 藉此構成,在源極•汲極間的通道上,形成保護絕緣 層以保護通道,同時在信號線(源極配線)的表面,形成 感光性有機絕緣層,以賦予鈍化功能,可獲得與申請專利 範圍第7項所記載的液晶顯示裝置相同的效果。而且可獲 得具有與信號線相同金屬性的電極端子的TN型液晶顯示 裝置。 申請專利範圍第9項所記載的液晶顯示裝置,同樣在 第一透明性絕緣基板的〜主面上,形成由透明導電層與第 -23- (21) 1300873 一金屬層的積層所構成,且其側面具有絕緣層的掃描線與 透明導電位的畫素電極, 在閘極電極上形成有一層以上的閘極絕緣層與不含雜 質的第一半導體層, 在上述第一半導體層上形成有寬幅比閘極電極還細的 保護絕緣層, 在畫像顯示部以外的區域,於掃描線上的閘極絕緣層 形成開口部,並在上述開口部內露出透明導電層, 在上述保護絕緣層之一部分上、第一半導體層上以及 第一透明性絕緣基板上,形成由含雜質的第二半導體層與 一層以上的可陽極氧化的金屬層的積層所構成的源極配線 (信號線);和在上述部分保護絕緣層上、第一半導體層 上及第一透明性絕緣基板上形成由含雜質的第二半導體層 與一層以上的可陽極氧化的金屬層的積層所構成的汲極配 線;和在上述畫素電極之一部分上形成由可陽極氧化的金 屬層所構成的上述汲極配線之一部分;和包括上述開口部 周邊的第一半導體層、第二半導體層與上述開口部內的透 明導電層形成由可陽極氧化的金屬層所構成的掃描線的電 極端子;和在畫像顯示部以外的區域形成由信號線之一部 分所構成的信號線的電極端子, 除了上述信號線的電極端子上以外,在源極·汲極配 線上形成陽極氧化層爲其特徵。 藉此構成,在源極•汲極間的通道上,形成保護絕緣 層,用來保護通道,同時在信號線和汲極配線的表面形成 •24- (22) 1300873 屬於絕緣性的陽極氧化層之五氧化鉅(Ta205 )或是氧化 鋁(A 1 203 ),以賦予鈍化功能,可獲得與申請專利範圍 第7項所記載的液晶顯示裝置相同的效果。而且可獲得具 有與信號線相同的金屬性的電極端子的TN型液晶顯示裝 置。 申請專利範圍第1 0項所記載的液晶顯示裝置,係在 第一透明性絕緣基板的一主面上形成由一層以上的第一金 屬層所構成,且其側面具有絕緣層的掃描線, 在閘極電極上形成一層以上的閘極絕緣層與不含雜質 的第一半導體層, 在上述第一半導體層上形成寬幅比閘極電極還細的保 護絕緣層, 在上述保護絕緣層之一部分上、第一半導體層上及第 一透明性絕緣基板上,形成由含雜質的第一半導體層與一 層以上的第二金屬層的積層所構成的源極(信號線)•汲 極配線, 於第一透明性絕緣基板上形成在上述汲極配線上以及 掃描線與信號線的電極端子形成區域上具有開口部的透明 樹脂層, 去除上述掃描線的電極端子形成區域上的閘極絕緣層 包含上述開口部的導電性畫素電極、和包含掃描線上 與信號線上的導電性對向電極,是形成在上述透明樹脂層 上爲其特徵。 25- (23) 1300873 藉此構成,由於在主動式基板上形成較 層,以賦予鈍化功能,故不但可獲得與申請 項所記載的液晶顯示裝置相同的效果,還可 對向電極配置在透明樹脂層上,開口率高的 容易達成,可獲得畫質局的IPS型液晶顯示 申請專利範圍第1 1項所記載的液晶顯 在第一透明性絕緣基板的一主面上形成由一 金屬層所構成,且其側面具有絕緣層的掃描Further, in the channel-etched insulating gate type transistor, the first amorphous germanium layer 3 1 containing no impurities in the pass region is not covered with a thickness (generally 0 · 2 // m or more) It has a great influence on the uniformity of the glass substrate, and the transistor characteristics are particularly OFF. In addition, after the first feeling, the peeling reduction processing is set to avoid the need for the 35A formation. The aluminum-filled non-filled area thicker in-plane current -15- (13) 1300873 is prone to inconsistency. This is greatly affected by the operating rate of the PC VD and the occurrence of particles, and it is also very important from the viewpoint of production cost. Furthermore, since the channel forming process for the four-mask process is to selectively remove the source/drain wiring material and the impurity-containing semiconductor layer between the source and drain wirings 1, 2, 2, it is used. To determine the length of the channel length of the ON gate of the insulated gate transistor (currently, the product is 4 to 6 // m). Since the variation in the length of the channel causes a large change in the ON current of the insulated gate transistor, strict manufacturing management is generally required. However, the current situation is that the channel length, that is, the pattern size of the halftone exposure region, is subjected to exposure (light source intensity and pattern accuracy of the mask, especially line/pitch size), coating thickness of the photosensitive resin, development processing of the photosensitive resin. And the influence of many parameters such as the amount of reduction in the thickness of the photosensitive resin film in the etching process, and the in-plane uniformity of these amounts, it is not always possible to produce in a high-yield and stable state. More rigorous manufacturing management, so can not be said to have achieved a high level of completion. In particular, when the channel length is 6/m or less, the influence on the pattern size is more pronounced as the thickness of the photoresist pattern is reduced. The present invention has been invented in view of the related art, and its purpose is not only to avoid the conventional five mask process or four mask processes, but also to jointly produce a problem in contact, by using a manufacturing margin of a larger half. Tone exposure technology to reduce manufacturing engineering. In addition, in order to realize the low price of the liquid crystal panel, in order to increase the demand, it is necessary to deliberately pursue a smaller number of manufacturing projects, and to simplify or reduce the cost by adding to other major manufacturing projects, Jane-16-(14) 1300873. The present invention can further improve the present invention. [Means for Solving the Problem] In the present invention, the formation and engineering of an etch stop layer which is easy to implement by using a halftone exposure technique and precision management is firstly employed to achieve a reduction in manufacturing engineering. . Next, in order to effectively passivate the drain wiring, an anodic oxidation technique for forming an insulating layer on the surface of a source made of aluminum is disclosed in Japanese Patent Publication No. 2-2 1612, which incorporates a conventional technique, to realize the low temperature and low temperature. Chemical. Further, the pixel electrode forming structure is applied to the present invention as disclosed in Japanese Laid-Open Patent Publication No. Hei 5-268726. Further, in order to further reduce the formation of the anodized layer of the engineered wiring, it is also suitable to rationalize the formation of the protective layer of the halftone exposure technique. The bottom gate type transistor according to the first aspect of the invention is characterized in that, on the main surface of the insulating substrate, an insulating layer is formed on a side surface of the gate electrode, and one or more gates are formed on the pole. An insulating layer and a layer containing no impurities, forming a protective insulating layer having a width ratio of the gate on the first semiconductor layer, and forming a second impurity-containing layer on the partial protective insulating layer and the upper and insulating substrates A source/drain wiring formed by laminating a metal layer on a semiconductor; using a halftone exposure technique, a photomask can be used to process the formation process and the formation of the channel protective layer. The price of the gate is very low. Applicable to the shape of the pattern scan line only rationalizes the reasonable range of the source · Kaiping · 汲 配线 wiring project, the source 汲 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The electrode electrode is further thinned by a semiconductor layer and a layer of -17-1300873 (15) insulating layer which is formed by the side of the pole of the gate electrode. The inorganic material and the organic material can be selected, and the patent application scope is 2nd. 3 items to explain. The insulating gate type transistor described in the second paragraph of the patent application is an etch-stop type insulated gate type transistor characterized in that the insulating layer is an organic insulating layer, and is not limited to the material of the gate electrode. Applied to a liquid crystal display device. Relationship with liquid crystal display devices, in the scope of patent applications Nos. 5, 6, 7, 8, 9, 10, 11, 12 and 13, and first, second, third, fourth, fifth, sixth, The seventh, eighth and ninth embodiments are clear. The insulated gate type transistor described in the third paragraph of the patent application is characterized in that the gate electrode is composed of an anodizable metal layer, and the insulating layer is an etch-stop type insulating gate characterized by an anodized layer. Type transistor, relationship with liquid crystal display device, in the scope of patent application Nos. 5, 6, 10, 11, 12, 13 and 14, and first, second, sixth, seventh, eighth, ninth And the tenth embodiment is clearly explained. The insulating gate type transistor described in claim 4 is characterized in that the gate electrode is composed of a laminate of a transparent conductive layer and a metal layer, and the insulating layer is an etch-stop type insulating feature characterized by an organic insulating layer. The gate type transistor is constructed by using a mask to form a gate electrode (scanning line) and a pixel electrode to achieve engineering reduction. The relationship with the liquid crystal display device is clearly explained in the claims 7, 7 and 9 and the third, fourth and fifth embodiments. The liquid crystal display device according to claim 5, comprising at least an insulating gate type transistor and a gate electrode serving as the insulating gate -18-(16) 1300873 pole type transistor on one main surface. a first transparent insulating substrate in which a scanning line, a signal line serving as a source wiring, a pixel electrode connected to a drain wiring, or the like is arranged in a two-dimensional matrix; and the first transparent insulating substrate a liquid crystal display device comprising: a liquid crystal display device in which a liquid crystal is interposed between a second transparent insulating substrate or a color filter; wherein at least one layer of the first transparent insulating substrate is formed on one main surface a scan line composed of a first metal layer and having an insulating layer on its side surface, and one or more gate insulating layers and a first semiconductor layer containing no impurities are formed on the gate electrode, and formed on the first semiconductor layer a protective insulating layer having a wider width than the gate electrode, and an opening portion formed in the gate insulating layer on the scanning line in a region other than the image display portion, on the partial protective insulating layer, the first half a source (signal line) formed by laminating a second semiconductor layer containing impurities and one or more anodizable metal layers on the bulk layer and the first transparent insulating substrate, a drain wiring, and the opening portion An electrode terminal of a scan line formed by laminating a peripheral first semiconductor layer and a second semiconductor layer and one or more anodizable metal layers is formed on a portion of the drain wiring and the first transparent insulating substrate A transparent conductive pixel electrode and a transparent conductive electrode terminal formed on a signal line in a region other than the image display portion. In addition to the region of the above-described drain wiring overlapping the pixel electrode and the signal line -19-1300873 (17) Outside the area of the electrode terminal, an anodized layer is formed on the surface of the source/drain wiring. With this configuration, the gate insulating layer is formed in the same pattern width as the scanning line, and an insulating layer other than the gate insulating layer is provided on the side surface of the scanning line, and the intersection of the scanning line and the signal line becomes possible. This is common to the structural features of the present invention. Moreover, a protective insulating layer is formed on the channel between the source and the drain to protect the channel, and at the same time, an anodic oxide layer (Ta20 5 ) which is an insulating anodized layer is formed on the surface of the signal line and the drain wiring or Alumina (A 1 203 ) imparts a passivation function, so that it is not necessary to coat the entire surface of the glass substrate with the passivation insulating layer, and the heat resistance of the insulating gate type transistor does not cause a problem. Thus, a TN type liquid crystal display device having a transparent conductive electrode terminal can be obtained. In the liquid crystal display device of the sixth aspect of the invention, a scanning line composed of one or more first metal layers and having an insulating layer on its side surface is formed on one main surface of the first transparent insulating substrate. Forming one or more gate insulating layers and a first semiconductor layer containing no impurities on the gate electrode, and forming a protective insulating layer having a wider width than the gate electrode on the first semiconductor layer, in the protective insulating layer a source (signal line) and a drain wiring formed on a portion of the first semiconductor layer and the first transparent insulating substrate, which are formed by laminating a second semiconductor layer containing impurities and a second metal layer or more. A transparent insulating layer having an opening in an electrode terminal forming region of the scanning line and the signal line is formed on the first transparent insulating substrate of the -20-1300873 (18) on the drain wiring and the region other than the image display portion. The gate insulating layer on the electrode terminal forming region from which the scanning line is removed includes the opening portion on the above-described drain wiring, and transparent conductive is formed on the transparent insulating layer Its characteristic pixel electrode. With this configuration, in the same manner as the conventional example, the formation of the opening portion of the passivation insulating layer can be used as a connection forming process for electrically connecting the scanning lines, and the manufacturing process is reduced. Therefore, the TN type can be produced by using four masks. Liquid crystal display device. On the other hand, when a transparent transparent resin layer is used as the passivation insulating layer as the transparent insulating layer, a TN type liquid crystal display device having a high aperture ratio can be obtained. In the liquid crystal display device of the seventh aspect of the invention, a scanning line composed of a laminate of a transparent conductive layer and a first metal layer and having an insulating layer on its side surface is formed on one main surface of the first transparent insulating substrate. And a transparent conductive pixel electrode and an electrode terminal of the signal line, wherein one or more gate insulating layers and a first semiconductor layer containing no impurities are formed on the gate electrode, and a wide width is formed on the first semiconductor layer a protective insulating layer which is thinner than the gate electrode, and an opening portion is formed in the gate insulating layer on the scanning line in a region other than the image display portion, and a transparent conductive layer as an electrode terminal of the scanning line is exposed in the opening portion, a portion of the protective insulating layer and the first semiconductor layer and the first transparent insulating substrate are formed with a second semiconductor layer containing impurities and a second metal layer of a layer of -21 - !3〇0873 (19) a source wiring (signal line) formed by the buildup, and a source of the second metal layer formed on one of the electrode terminals of the signal line And a portion of the partial protective insulating layer and the first semiconductor layer and the first transparent insulating substrate are formed by laminating a second semiconductor layer containing impurities and a second metal layer or more. The drain wiring and a portion of the drain wiring formed of one or more first metal layers on the partial pixel electrode are characterized in that a photosensitive organic insulating layer is formed on the source/drain wiring. With this configuration, since a protective insulating layer is formed on the channel between the source and the drain to protect the channel, and a photosensitive organic insulating layer is formed on the surface of the source/drain wiring to impart a passivation function, no passivation is required. The insulating layer is coated on the entire surface of the glass substrate, and the heat resistance of the insulating gate type transistor does not cause a problem. Thus, a TN type liquid crystal display device having a transparent conductive electrode terminal can be obtained. In the liquid crystal display device of the eighth aspect of the invention, a scanning line formed by laminating a transparent conductive layer and a first metal layer and having an insulating layer on its side surface is formed on one main surface of the first transparent insulating substrate. And a transparent conductive pixel electrode, wherein one or more gate insulating layers and a first semiconductor layer containing no impurities are formed on the gate electrode, and a wide width is formed on the first semiconductor layer than a gate electrode Protective insulating layer, -22- (20) 1300873 An opening is formed in the gate insulating layer on the scanning line in a region other than the book image display portion, and a transparent conductive layer is exposed in the opening portion' on one of the protective insulating layers a 'source wiring (signal line) formed by laminating a second semiconductor layer containing impurities and one or more second metal layers on the first semiconductor layer and on the first transparent insulating substrate: and in the above portion Forming a second semiconductor layer containing impurities and one or more second metal layers on a portion of the protective insulating layer, on the second semiconductor layer, and on the first transparent insulating substrate a drain wiring formed of a laminate; and a portion of the drain wiring formed of one or more second metal layers on one of the pixel electrodes; and a first semiconductor layer including the periphery of the opening a semiconductor layer and a transparent conductive layer in the opening portion form an electrode terminal of a scanning line formed of a second metal layer; and an electrode terminal of a signal line composed of a partial signal line in a region other than the image display portion, except for the signal line In addition to the electrode terminals, a photosensitive organic insulating layer is formed on the signal lines. With this configuration, a protective insulating layer is formed on the channel between the source and the drain to protect the channel, and a photosensitive organic insulating layer is formed on the surface of the signal line (source wiring) to impart a passivation function. The same effect as the liquid crystal display device described in claim 7 of the patent application. Further, a TN type liquid crystal display device having electrode terminals having the same metallicity as the signal lines can be obtained. In the liquid crystal display device of the ninth aspect of the invention, the transparent conductive layer and the -23-(21) 1300873 metal layer are formed on the main surface of the first transparent insulating substrate, and a scanning electrode having an insulating layer on the side thereof and a pixel electrode having a transparent conductive position, wherein one or more gate insulating layers and a first semiconductor layer containing no impurities are formed on the gate electrode, and the first semiconductor layer is formed on the first semiconductor layer a protective insulating layer having a wider width than the gate electrode, and an opening portion formed in the gate insulating layer on the scanning line in a region other than the image display portion, and a transparent conductive layer is exposed in the opening portion, in a portion of the protective insulating layer a source wiring (signal line) formed by laminating a second semiconductor layer containing impurities and one or more anodizable metal layers on the upper, first semiconductor layer and the first transparent insulating substrate; Forming a second semiconductor layer containing impurities and one or more layers of anodic oxygen on the partial protective insulating layer, on the first semiconductor layer, and on the first transparent insulating substrate a drain wiring formed by laminating a metal layer; and a portion of the above-described drain wiring formed of an anodizable metal layer on a portion of the pixel electrode; and a first semiconductor layer including the periphery of the opening a second semiconductor layer and a transparent conductive layer in the opening portion form an electrode terminal of a scanning line formed of an anodizable metal layer; and a signal line formed by a portion of the signal line is formed in a region other than the image display portion The electrode terminal is characterized in that an anodized layer is formed on the source/drain wiring in addition to the electrode terminal of the signal line. By this, a protective insulating layer is formed on the channel between the source and the drain to protect the channel while forming a surface on the signal line and the drain wiring. 24-(22) 1300873 is an insulating anodized layer. The pentoxide oxide (Ta205) or the aluminum oxide (A1 203) is provided with a passivation function, and the same effects as those of the liquid crystal display device described in claim 7 can be obtained. Further, a TN type liquid crystal display device having an electrode terminal having the same metallicity as the signal line can be obtained. The liquid crystal display device according to claim 10, wherein a scanning line composed of one or more first metal layers and having an insulating layer on its side surface is formed on one main surface of the first transparent insulating substrate. Forming more than one gate insulating layer and a first semiconductor layer containing no impurities on the gate electrode, and forming a protective insulating layer having a wider width than the gate electrode on the first semiconductor layer, in a portion of the protective insulating layer On the upper, first semiconductor layer and the first transparent insulating substrate, a source (signal line) and a drain wiring formed by laminating a first semiconductor layer containing impurities and one or more second metal layers are formed. a transparent resin layer having an opening formed on the drain wiring and the electrode terminal forming region of the scanning line and the signal line on the first transparent insulating substrate, and the gate insulating layer on the electrode terminal forming region where the scanning line is removed includes The conductive pixel electrode of the opening portion and the conductive counter electrode including the scanning line and the signal line are formed on the transparent resin layer Characterized. 25-(23) 1300873 With this configuration, since a layer is formed on the active substrate to impart a passivation function, not only the same effect as the liquid crystal display device described in the application can be obtained, but also the counter electrode can be disposed in a transparent manner. In the resin layer, the opening ratio is high, and the liquid crystal display described in the first aspect of the first transparent insulating substrate is formed of a metal layer. a scan that has an insulating layer on its side

J 在對向電極上形成有一層以上的閘極絕 極電極上形成有一層以上的閘極絕緣層與不 半導體層, 在上述第一半導體層上形成寬幅比閘極 護絕緣層, 在畫像顯示部以外的區域,於掃描線上 形成開口部, 在上述保護絕緣層部之一部分上、第一 第一透明性絕緣基板上,形成有由含雜質的 與一上層以上的第二金屬層的積層所構成的 號線)•汲極配線(畫素電極)、和包含上 的第一半導體層與第二半導體層並由第二金 掃描線的電極端子、和在畫像顯示部以外的 號線所構成的信號線的電極端子, 除了上述信號線的電極端子上以外’在 厚的透明樹脂 專利範圍第7 將畫素電極與 配向處理也很 裝置。 示裝置,同樣 層以上的第一 線與對向電極 緣層、和在閘 含雜質的第一 電極還細的保 的閘極絕緣層 半導體層上及 第二半導體層 源極配線(信 述開口部周邊 屬層所構成的 區域由部分信 信號線上形成 -26- (24) 1300873 感光性有機絕緣層爲其特徵。 藉此構成,在源極•汲極間的通道上形成保護絕緣層 ,以保護通道,同時在信號線的表面形成感光性有機絕緣 層’以賦予鈍化功能,在對向電極上形成閘極絕緣層,故 可得到與申請專利範圍第7項所記載的液晶顯示裝置同樣 的效果。而且,可得到具有與信號線相同的金屬性的電極 端子的IPS型液晶顯示裝置。 申請專利範圍第1 2項所記載的液晶顯示裝置,同樣 在第一透明性絕緣基板的一主面上形成由一層以上的第一 金屬層所構成,且其側面具有絕緣層的掃描線與對向電極 在對向電極上形成一層以上的閘極絕緣層;和在閘極 電極上形成一層以上的閘極絕緣層與不含雜質的第一半導 體層, 在上述第一半導體層上形成寬幅比閘極電極還細的保 護絕緣層, 在畫像顯示部以外的區域,於掃描線上的閘極絕緣層 形成開口部, 在上述保護絕緣層之一部分上、第一半導體層上及第 一透明性絕緣基板上,形成由含雜質的第二半導體層與一 層以上之可陽極氧化的金屬層的積層所構成的源極配線( 信號線)•汲極配線(畫素電極);和包含上述開口部周 邊的第一半導體層與第二半導體層形成由可陽極氧化的金 屬層所構成的掃描線的電極端子;和在晝像顯示部以外的 -27- 1300873 (25) 區域形成由信號線之一部分所構成的信號線的電極端子, 除了上述信號線的電極端子上以外,在源極·汲極配 線的表面形成陽極氧化層爲其特徵。 藉此構成,在源極•汲極間的通道上形成保護絕緣層 ,以保護通道,同時在信號線與汲極配線的表面形成屬於 絕緣性的陽極氧化層之五氧化鉅(Ta20 )或是氧化鋁( ai2〇3 ),以賦予鈍化功能,在對向電極上形成閘極絕緣 層,故可得到與申請專利範圍第7項所記載的液晶顯示裝 置同樣的效果。而且,可得到具有與信號線相同的金屬性 的電極端子的IPS型液晶顯示裝置。 申請專利範圍第1 3項所記載的液晶顯示裝置,同樣 在第一透明性絕緣基板的一主面上形成由一層以上的第一 金屬層所構成,且其側面具有絕緣層的掃描線與對向電極 在對向電極上形成一層以上的閘極絕緣層;和在閘極 電極上形成一層以上的閘極絕緣層與不含雜質的第一半導 體層, 在上述第一半導體層上形成寬幅比閘極電極還細的保 護絕緣層, 在上述保護絕緣層之一部分上、第一半導體層上以及 第〜透明性絕緣基板上,形成由含雜質的第二半導體層以 及〜層以上的第二金屬層的積層所構成的源極配線(信號 線)、汲極配線(畫素電極), 在畫像顯示部以外的區域,於第一透明性絕緣基板上 •28- (26) 1300873 形成之在掃描線的電極端子形成區域上與由部分信號線所 構成的信號線的電極端子上具有開口部之透明絕緣層, 在上述開口部內露出作爲掃描線的電極端子之部分掃 描線與信號線之電極端子爲其特徵。 藉此構成,在主動式基板上提供由透明絕緣層所構成 的鈍化絕緣層,若在透明絕緣層使用較厚的透明樹脂,很 容易配向處理,不但可得到畫質較高的IPS型液晶顯示裝 置,還可用同一光罩來處理掃描線上的閘極絕緣層的開口 部形成工程與汲極電極上的鈍化絕緣層的開口部形成工程 ,減少工程數,可僅使用三道光罩製作液晶顯示裝置。 申請專利範圍第1 4項所記載的液晶顯示裝置,同樣 在第一透明性絕緣基板的一主面上形成由一層以上的第一 金屬層所構成,且其側面具有絕緣層的掃描線與對向電極 在對向電極上形成絕緣層, 在閘極電極上形成閘極絕緣層、不含雜質的第一半導 體層以及比上述第一半導體層還小的保護絕緣層, 在掃描線與信號線的交叉點附近上、對向電極與信號 線的交叉點附近上以及對向電極與畫素電極的交叉點附近 上’形成比閘極絕緣層與上述閘極絕緣層還小的第一半導 體層與保護絕緣層, 在掃描線與信號線的交叉點上、對向電極與信號線的 交叉點上以及對向電極與畫素電極的交叉點上的閘極絕緣 層上’形成第一半導體層與含雜質之第二半導體層,在保 • 29 - (27) 1300873 護絕緣層上形成含雜質之第二半導體層, 在閘極電極上的部分保護絕緣層上、第一半導體層上 以及第一透明性絕緣基板上,形成由含雜質的第二半導體 層與一層以上可陽極氧化的金屬層的積層所構成的源極配 線(信號線)•汲極配線(畫素電極)、和由部分信號線 所構成的信號線的電極端子、和在畫像顯示部以外的區域 包含部分掃描線並在第一透明性絕緣基板上形成由含雜質 的第二半導體層與一層以上可陽極氧化的金屬層的積層所 構成的掃描線的電極端子, 除了上述電極端子上以外,在源極•汲極配線的表面 形成陽極氧化層爲其特徵。 藉此構成,在源極•汲極間的通道上形成保護絕緣層 ,以保護通道,同時在信號線與汲極配線的表面形成屬於 絕緣性的陽極氧化層之五氧化鉬(Ta205 )或是氧化鋁( Al2〇3 ),以賦予鈍化功能,亦在掃描線與對向電極上形 成陽極氧化層,故可得到與申請專利範圍第7項所記載的 液晶顯示裝置同樣的效果。而且,可得到具有與信號線相 同金屬性的電極端子的IPS型液晶顯示裝置。 申請專利範圍第1 5項所記載的液晶画像顯示裝置, 係特徵爲形成在掃描線之側面的絕緣層爲有機絕緣層之申 請專利範圍第5、6、7、8、9、10、1 1、12及1 3項所記 載的液晶顯示裝置。 藉此構成,可以不受限於掃描線的材質或構成,而能 利用電鍍(electro-plaling)法在掃描線的側面形成有機 -30- (28) 1300873 絕緣層,並能使用半色調曝光技術,以一道光罩連續處理 掃描線的形成工程和蝕刻終止層的形成工程。 申請專利範圍第1 6項所記載的液晶画像顯示裝置, 係如申請專利範圍第5、6 ' 1 0、1 1、1 2、1 3及1 4項所記 載的液晶顯示裝置,其中,第一金屬層是由可陽極氧化的 金屬層所構成,形成在掃描線之側面的絕緣層是陽極氧化 層。 藉此構成,可藉由陽極氧化在掃描線的側面形成陽極 氧化層,且可使用半色調曝光技術,以一道光罩連續處理 掃描線的形成工程和蝕刻終止層的形成工程。 申請專利範圍第1 7項係如申請專利範圍第5項所記 載之液晶顯示裝置的製造方法,其特徵爲具有: 至少在第一透明性絕緣基板的一主面上,依序被覆: 一層以上的金屬層、一層以上的閘極絕緣層、不含雜質的 第一非晶質矽層以及保護絕緣層的工程; 形成對應於掃描線的保護絕緣層形成區域上的膜厚比 其它區域還厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩而依序蝕刻上述保護 絕緣層、第一非晶質矽層、閘極絕緣層以及第一金屬層的 工程; 減少上述感光性樹脂圖案的膜厚出露出保護絕緣層的 工程; 在閘極電極上留下寬幅比閘極電極還細的保護絕緣層 而露出第一非晶質矽層的工程; -31 - (29) 1300873 減少膜厚的上述感光性樹脂圖案被去除後’在掃描線 之側面形成絕緣層的工程; 在整面覆蓋含雜質的第二非晶質砂層的工程; 在畫像顯示部以外的區域,於掃描線的電極端子形成 區域形成開口部並選擇性去除開口部內的第二非晶質矽層 、第一非晶質矽層以及閘極絕緣層而露出部分掃描線的工 程; 以部分與上述保護絕緣層重疊的方式,形成由第二非 晶質矽層、一層以上的可陽極氧化的金屬層的積層所構成 的源極(信號線)•汲極配線、和包含上述開口部而形成 由第二非晶質矽層、一層以上的可陽極氧化的金屬層的積 層所構成的掃描線的電極端子的工程; 在上述第一透明性絕緣基板之一部分上與汲極配線上 形成透明導電位的畫素電極、和在畫像顯示部以外的區域 ,於信號線上形成透明導電位的電極端子、和在掃描線的 電極端子上形成透明導電性的電極端子的工程;及 以使用於上述畫素電極與電極端子的選擇圖案形成的 感光性樹脂圖案作爲遮罩,保護透明導電性的畫素電極與 透明導電性的電極端子,同時陽極氧化源極·汲極配線的 工程。 藉此構成,可用一道光罩來處理蝕刻終止層的形成工 程與掃描線的形成工程,以實現微影蝕刻工程數的減少。 而且,蝕刻終止層係與閘極電極自行整合而形成,掃描線 的側面則賦予閘極絕緣層以外的其它絕緣層,而使得掃描 -32- 1300873 (30) 線和信號線可形成交叉。此乃共通於本發明之製法上的特 徵。而且,畫素電極形成時,藉由將源極•汲極配線施以 陽極氧化,亦可減少鈍化絕緣層形成時不必要的製造工程 ,結果,可使用四道光罩來製作TN型液晶顯示裝置。 申請專利範圍第1 8項係如申請專利範圍第6項所記 載的液晶顯示裝置的製造方法,其特徵爲具有: 至少在第一透明性絕緣基板的一主面上,依序被覆: 一層以上的第一金屬層、一層以上的閘極絕緣層、不含雜 質的第一非晶質矽層以及保護絕緣層的工程; 對應於掃描線,形成保護絕緣層形成區域上的膜厚比 其它區域還厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,依序蝕刻上述保護 絕緣層、第一非晶質矽層、閘極絕緣層以及第一金屬層的 工程; 減少上述感光性樹脂圖案的膜厚而露出保護絕緣層的 工程; 在閘極電極上留下寬幅比閘極電極還細的保護絕緣層 而露出第一非晶質矽層的工程; 減少膜厚的上述感光性樹脂圖案被去除後,在掃描線 之側面形成絕緣層的工程; 整面被覆含雜質的第二非晶質矽層的工程; 以部分與上述保護絕緣層重疊的方式形成由第二非晶 質矽層、一層以上的第二金屬層的積層所構成的源極(信 號線)·汲極配線的工程; -33- (31) 1300873 在上述第一透明性絕緣基板上形成在汲極配線上、以 及在畫像顯示部以外的區域之掃描線的電極端子形成區域 上,與在部分信號線所構成的信號線的電極端子上皆具有 開口部的透明絕緣層的工程; 去除上述掃描線的電極端子形成區域上的閘極絕緣層 而露出部分掃描線的工程;及 包含汲極配線上的開口部內而將透明導電性的畫素電 極,形成在上述透明絕緣層上的工程。 藉此構成,可用一道光罩來處理蝕刻終止層的形成工 程與掃描線的形成工程,以實現微影蝕刻工程數的減少。 而且,與習知例同樣地,對鈍化絕緣層的開口部形成工程 兼作對掃描線之連接的連接形成工程,製造工程減少,故 可用四道光罩來製作TN型液晶顯示裝置。而且,如果在 屬於鈍化絕緣層的透明絕緣層使用較厚的透明樹脂層,可 得到開口率高的TN型液晶顯示裝置。 申請專利範圍第1 9項係如申請專利範圍第7項所記 載之液晶顯示裝置的製造方法,其特徵爲具有: 至少在第一透明性絕緣基板的一主面上,依序被覆: 透明導電層、第一金屬層、一層以上的閘極絕緣層、不含 雜質的第一非晶質矽層以及保護絕緣層的工程; 對應於掃描線與畫素電極以及掃描線與信號線的電極 端子,形成保護絕緣層形成區域上的膜厚比其它區域還厚 的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,依序飩刻保護絕緣 -34- (32) 1300873 層、第一非晶質矽層、閘極絕緣層、第一金屬層以及透明 導電層的工程; 減少上述感光性樹脂圖案的膜厚而露出保護絕緣層的 工程; 在閘極電極上留下寬幅比閘極電極還細的保護絕緣層 而露出第一非晶質矽層的工程; 減少膜厚的上述感光性樹脂圖案被去除後’在掃描線 之側面形成絕緣層的工程; 整面被覆含雜質的第二非晶質矽層的工程; 在畫素電極上與畫像顯示部以外的區域’在掃描線與 信號線的模擬電極端子上形成具有開口部的感光性樹脂圖 案,並選擇性去除上述開口部內的第二非晶質矽層、第二 非晶質矽層、閘極絕緣層以及第一金屬層,而露出透明導 電性的畫素電極與電極端子的工程;及 被覆一層以上的第二金屬層後,以部分與由第二非晶 質矽層與第二金屬層的積層所構成的上述保護絕緣層重疊 的方式,形成包含信號線的電極端子並在其表面具有感光 性有機絕緣層的源極配線(信號線),與形成包含畫素電 極並在其表面具有感光性有機絕緣層的汲極配線的工程。 藉此構成,使用一道光罩,處理畫素電極與掃描線的 微影蝕刻工程數的減少、和使用一道光罩,處理蝕刻終止 層的形成工程與掃描線的形成工程的微影蝕刻工程數的減 少’得以同時實現。而且,源極•汲極配線形成時,僅在 源極•汲極配線上選擇性地形成感光性有機絕緣層,以此 -35- 1300873 (33) 方式,亦可減少鈍化絕緣層形成時不必要的製造工程,結 果,可使用三道光罩來製作TN型液晶顯示裝置。 申請專利範圍第20項係如申請專利範圍第8項所記 載之液晶顯示裝置的製造方法,其特徵爲具有: 至少在第一透明性絕緣基板的一主面上,依序被覆: 透明導電層、第一金屬層、一層以上的閘極絕緣層、不含 雜質的第一非晶質矽層以及保護絕緣層的工程; 對應於掃描線與畫素電極而形成保護絕緣層形成區域 上的膜厚比其它區域還厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,而依序蝕刻:保護 絕緣層、第一非晶質矽層、閘極絕緣層、第一金屬層以及 透明導電層的工程; 減少上述感光性樹脂圖案的膜厚而露出保護絕緣層的 工程; 在閘極電極上留下寬幅比閘極電極還細的保護絕緣層 而露出第一非晶質矽層的工程; 減少膜厚的上述感光性樹脂圖案被去除後’在掃描線 之側面形成絕緣層的工程; 整面被覆含雜質的第二非晶質矽層的工程; 在畫素電極上與畫像顯示部以外的區域’形成在掃插 線之模擬電極端子上具有開口部的感光性樹脂圖案’選擇 性去除上述開口部內的第二非晶質矽層、第一非晶質矽層 、閘極絕緣層以及第一金屬層,而露出透明導電性的畫素 電極與部分掃描線的工程; -36- 1300873 (34) 在被覆一層以上的第二金屬層後’形成: 保護絕緣層重疊的源極配線(信號線)' 和爸 的部分與上述保護絕緣層重疊的汲極配線、爸 導電性的部分掃描線的掃描線的電極端子、對 顯示部以外的區域由部分信號線所構成的信號 子而且信號線上的膜厚比其它區域還厚的感光 層圖案等工程; 以上述感光性有機絕緣層圖案作爲遮罩, 一層以上的第二金屬層、第二非晶質矽層以及 矽層,而形成掃描線、信號線的電極端子以及 配線的工程;以及 減少上述感光性有機絕緣層圖案的膜厚, 線、信號線的電極端子以及汲極配線的工程。 藉此構成,使用一道光罩,處理畫素電極 微影鈾刻工程數的減少、和使用一道光罩,處 層的形成工程與掃描線的形成工程的微影蝕刻 少,得以同時實現。而且,源極•汲極配線形 半色調曝光技術,僅在信號線上選擇性地殘留 絕緣層,以此方式,亦可減少鈍化絕緣層形成 製造工程,結果,可使用三道光罩來製作TN 裝置。 申請專利範圍第2 1項係如申請專利範圍 載之液晶顯示裝置的製造方法,其特徵爲具有 至少在第一透明性絕緣基板的一主面上, 部分與上述 •有畫素電極 有上述透明 應於在畫像 線的電極端 性有機絕緣 選擇性去除 第一非晶質 源極•汲極 而露出掃描 與掃描線的 理蝕刻終止 工程數的減 成時,使用 感光性有機 時不必要的 型液晶顯示 第9項所記 依序被覆: •37- (35) 1300873 透明導電層、第一金屬層、閘極絕緣層、不含雜質的第一 非晶質砂層以及保護絕緣層的工程; 對應於掃描線與畫素電極,形成保護絕緣層形成區域 上的膜厚比其它區域還厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩’依序鈾刻:保護絕 緣層、第一非晶質矽層、閘極絕緣層、第一金屬層以及透 明導電層的工程; 減少上述感光性樹脂圖案的膜厚,而露出保護絕緣層 的工程; 在閘極電極上留下寬幅比閘極電極還細的保護絕緣層 ,而露出第一非晶質矽層的工程; 減少上述膜厚的感光性樹脂圖案去除後,在掃描線之 側面形成絕緣層的工程; 在整面被覆含雜質的第二非晶質矽層的工程; 在畫素電極上與畫像顯示部以外的區域,形成在掃描 線的模擬電極端子上具有開口部的感光性樹脂圖案’選擇 性去除上述開口部內的第二非晶質矽層、第一非晶質矽層 、閘極絕緣層以及第一金屬層,而露出透明導電性的畫素 電極與都分掃描線的工程; 被覆一層以上之可陽極氧化的金屬層後,形成部分與 上述保護絕緣層重疊的源極配線(信號線)、包含畫素電 極形成部分與上述保護絕緣層重疊的汲極配線、包含上述 透明導電性的部分掃描線形成掃描線的電極端子、在畫像 顯示部以外的區域,對應於由部分信號線所構成的信號線 -38- (36) 1300873 的電極端子形成掃描線與信號線的電極端子上的 定區域還厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,選擇性去 上之可陽極氧化的金屬層、第二非晶質矽層以及 質矽層,而形成掃描線與信號線的電極端子與源 線的工程; 減少上述感光性樹脂圖案的膜厚,而露出源 配線的工程;以及 保護上述電極端子,同時陽極氧化源極•汲 工程。 藉此構成,使用一道光罩,處理畫素電極與 微影蝕刻工程數的減少、和使用一道光罩,處理 層的形成工程與掃描線的形成工程的微影蝕刻工 少,得以同時實現。而且,在源極•汲極間的通 形成保護絕緣層以保護通道,同時源極·汲極配 ,使用半色調曝光技術,在源極·汲極配線上選 成陽極氧化層,以此方式,亦可減少形成鈍化絕 必要的製造工程,結果,可使用三道光罩來製作 晶顯示裝置。 申請專利範圍第22項係如申請專利範圍第1 載之液晶顯示裝置的製造方法,其特徵爲具有: 至少在第一透明性絕緣基板的一主面上,依 一層以上的第一金屬層、一層以上的閘極絕緣層 質的第一非晶質矽層以及保護絕緣層的工程; 膜厚比其 除一層以 第一非晶 極汲極配 極•汲極 極配線的 掃描線的 倉虫刻終止 程數的減 道上,可 線形成時 擇性地形 緣層時不 TN型液 〇項所記 序被覆: 、不含雜 -39- (37) 1300873 對應於掃描線,形成保護絕緣層形成區域上的膜厚比 其它區域還厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,依序蝕刻:保護絕 緣層、第一非晶質矽層、閘極絕緣層以及第一金屬層的工 程; 減少上述感光性樹脂圖案的膜厚而露出保護絕緣層的 工程; 在閘極電極上留下寬幅比閘極電極還細的保護絕緣層 而露出第一非晶質矽層的工程; 減少膜厚的上述感光性樹脂圖案被去除後,在掃描線 之側面形成絕緣層的工程; 整面被覆含雜質的第二非晶質矽層的工程; 以部分與上述保護絕緣層重疊的方式,形成由第二非 晶質矽層與一層以上的第二金屬層的積層所構成的源極( 信號線)•汲極配線的工程; 在汲極配線上、在畫像顯示部以外的區域的掃描線的 電極端子形成區域上以及由部分信號線所構成的信號線的 電極端子上,分別具有開口部的透明樹脂層,被形成在上 述第二透明性絕緣基板上的工程; 去除上述掃描線的電極端子形成區域上的閘極絕緣層 而露出部分掃描線的工程;以及 將包含上述汲極配線上的開口部的導電性的畫素電極 、以及包含掃描線上與信號線上之導電性的對向電極,形 成在上述透明樹脂層上的工程。 -40 - (38) 1300873 藉此構成,可使用一道光罩來處理掃描線的形成工程 與鈾刻終止層的形成工程,以實現微影鈾刻工程數的減少 。而且,與習知例同樣地,對鈍化絕緣層的開口部形成工 程兼作連接掃描線的連接形成工程,製造工程亦減少,故 可使用四道光罩來製作IPS型液晶顯示裝置。 申請專利範圍第23項係如申請專利範圍第1 1項所記 載之液晶顯示裝置的製造方法,其特徵爲具有: 至少在第一透明性絕緣基板的一主面上,依序被覆: 一層以上的第一金屬層、一層以上的閘極絕緣層、不含雜 質的第一非晶質矽層以及保護絕緣層的工程; 對應於掃描線與對向電極,形成保護絕緣層形成區域 上的膜厚比其它區域還厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,依序蝕刻:保護絕 緣層、第一非晶質矽層、閘極絕緣層以及第一金屬層的工 程; 減少上述感光性樹脂圖案的膜厚而露出保護絕緣層的 工程; 在閘極電極上留下寬幅比閘極電極還細的保護絕緣層 ,而露出第一非晶質矽層的工程; 減少膜厚的上述感光性樹脂圖案被去除後,在掃描線 與對向電極之側面形成絕緣層的工程; 整面被覆含雜質的第二非晶質矽層的工程; 在畫像顯示部以外的區域,於掃描線的電極端子形成 區域形成開口部,選擇性去除上述開口部內的第二非晶質 -41 - (39) 1300873 矽層、第一非晶質矽層以及閘極絕緣層,而露出部分掃描 線的工程; 被覆一層以上的第二金屬層後,形成對應於部分與上 述保護絕緣層重疊的源極配線(信號線)•汲極配線(畫 素電極)、包含上述開口部形成掃描線的電極端子、在畫 像顯示部以外的區域形成由部分信號線所構成的信號線之 電極端子,形成信號線上的膜厚比其它區域還厚的感光性 有機絕緣層圖案等工程; 以上述感光性有機絕緣層圖案作爲遮罩,選擇性去除 第二金屬層、第二非晶質矽層以及第一非晶質矽層,而形 成掃描線與信號線的電極端子以及源極•汲極配線的工程 :以及 減少上述感光性有機絕緣層圖案的膜厚,而露掃描線 與信號線之電極端子以及汲極配線的工程。 藉此構成,可使用一道光罩來處理蝕刻終止層的形成 工程與掃描線的形成工程,以實現微影蝕刻工程數的減少 。而且,源極•汲極配線形成時,使用半色調曝光技術, 僅在信號線上選擇性地殘留感光性有機絕緣層,以此方式 ,亦可減少形成鈍化絕緣層時不必要的製造工程,結果, 可使用三道光罩來製作TN型液晶顯示裝置。 申請專利範圍第24項係如申請專利範圍第1 2項所記 載之液晶顯示裝置的製造方法,其特徵爲具有: 至少在第一透明性絕緣基板的一主面上,依序被覆: 一層以上的第一金屬層、一層以上的閘極絕緣層、不含雜 42_ (40) 1300873 質的第一非晶質矽層以及保護絕緣層的工程; 對應於掃描線與對向電極,而形成保護絕緣層形成區 域上的膜厚比其它區域還厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,依序蝕刻:保護絕 緣層、第一非晶質矽層、閘極絕緣層以及第一金屬層的工 程; 減少已減少上述膜厚的感光性樹脂圖案的膜厚,而露 出保護絕緣層的工程; 在閘極電極上留下寬幅比閘極電極還細的保護絕緣層 ,而露出第一非晶質矽層的工程; 和上述感光性樹脂圖案去除後,在掃描線與對向電極 之側面形成絕緣層的工程; 整面被覆含雜質的第二非晶質矽層的工程; 在畫像顯示部以外的區域,於掃描線的電極端子形成 區域形成開口部,選擇性去除開口部內的第二非晶質矽層 、第一非晶質矽層以及閘極絕緣層,而露出部分掃描線的 工程; 被覆一層以上之可陽極氧化的金屬層後,形成對應部 分與上述保護絕緣層重疊的源極配線(信號線)•汲極配 線(畫素電極)、包含上述開口部形成掃描線的電極端子 、在畫像顯示部外的區域對應於由部分信號線所構成的信 號線的電極端子,形成掃描線與信號線的電極端子上的膜 厚比其它區域還厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,選擇性去除可陽極 •43- (41) 1300873 氧化的金屬層、第二非晶質矽層以及第一非晶質矽層’而 形成掃描線與信號線的電極端子以及源極•汲極配線的工 程; 減少上述感光性樹脂圖案的膜厚,而露出源極·汲極 配線的工程;以及 保護上述電極端子,同時陽極氧化源極•汲極配線的 工程。 藉此構成,可使用一道光罩來處理蝕刻終止層的形成 工程與掃描線的形成工程,以實現微影蝕刻工程數的減少 。而且,在在源極•汲極間的通道上,可形成保護絕緣層 以保護通道,同時源極•汲極配線形成時,使用半色調曝 光技術,在源極•汲極配線上選擇性地形成陽極氧化層, 以此方式,亦可減少形成鈍化絕緣層時不必要的製造工程 ,結果,能使用三道光罩來製作TN型液晶顯示裝置。 申請專利範圍第25項係如申請專利範圍第1 3項所記 載之液晶顯示裝置的製造方法,其特徵爲具有: 至少在第一透明性絕緣基板的一主面上,依序被覆: 一層以上的第一金屬層、和一層以上的閘極絕緣層、不含 雜質的第一非晶質矽層以及保護絕緣層的工程; 對應於掃描線與對向電極,形成保護絕緣層形成區域 上的膜厚比其它區域還厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,依序蝕刻:保護絕 緣層、第一非晶質矽層、閘極絕緣層以及第一金屬層的工 程; -44 - (42) 1300873 減少上述感光性樹脂圖案的膜厚而露出保護絕緣層的 工程; 在閘極電極上留下寬幅閘極電極還細的保護絕緣層, 而露出第一非晶質矽層的工程; 減少膜厚的上述感光性樹脂圖案被去除後’在掃描線 與對向電極的側面形成絕緣層的工程; 整面被覆含雜質的第二非晶質矽層的工程; 以部分與上述保護絕緣層重疊的方式,形成由第二非 晶質矽層與一層以上的第二金屬層的積層所構成的源極配 線(信號線)•汲極配線(畫素電極)源極•汲極配線的 工程; 在畫像顯示部以外的區域,於第一透明性絕緣基板上 形成在掃描線的電極端子形成區域上及由部分信號線所構 成的信號線的電極端子上具有開口部的透明絕緣層的工程 ;以及 去除在上述掃描線的電極端子形成區域上的閘極絕緣 層,而露出部分掃描線的工程。 藉此構成,使用一道光罩,處理蝕刻終止層之形成程 與掃描線之形成工程,以實現微影蝕刻工程數的減少。而 且,與習知例同樣地,對鈍化絕緣層的開口形成工程,兼 作連接掃描線的連接形成工程’製造工程亦可減少’故使 用三道光罩就能製作IPS型液晶顯示裝置。 申請專利範圍第26項係如申請專利範圍第1 4項所記 載之液晶顯示裝置的製造方法’其特徵爲具有: -45- (43) 1300873 至少在第一透明性絕緣基板的一主面上,依序蝕刻: 一層以上的第一金屬層、一層以上的閘極絕緣層、不含雜 質的第一非晶質矽層以及保護絕緣層的工程; 對應於掃描線與對向電極,形成在閘極電極上、掃描 線與信號線的交叉區域上、對向電極與信號線的交叉區域 上以及對向電極與畫素電極的交叉區域上膜厚比其它區域 還厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,依序蝕刻:保護絕 緣層、第一非晶質矽層、閘極絕緣層以及第一金屬層的工 程; 在掃描線與對向電極的側面形成絕緣層的工程; 減少上述感光性樹脂圖案的膜厚而露出保護絕緣層, 去除掃描線上與對向電極上的保護絕緣層、第一非晶質矽 層、閘極絕緣層,而露出掃描線與對向電極的工程; 和進一步減少已減少膜厚的上述感光性樹脂圖案的膜 厚,在閘極電極上留下寬幅比閘極電極還細的保護絕緣層 ,而露出第一非晶質矽層的工程; 整面被覆含雜質的第二非晶質矽層的工程; 被覆一層以上之可陽極氧化的金屬層後,形成部分與 上述保護絕緣層重疊的源極配線(信號線)、汲極配線( 畫素電極)、在畫像顯示部以外的區域包含部分掃描線的 掃描線的電極端子、對應於由部分信號線所構成的信號線 形成電極端子,形成上述電極端子上的膜厚比其它區域還 厚的感光性樹脂圖案的工程; -46- (44) 1300873 以上述感光性樹脂圖案作爲遮罩,選擇性去除 氧化的金屬層與第二非晶質矽層以及第一非晶質矽 形成掃描線與信號線的電極端子以及源極•汲極配 程; 減少上述感光性樹脂圖案的膜厚而露出源極· 線的工程;以及 保護上述電極端子,同時陽極氧化源極•汲極 對向電極的工程。 藉此構成,使用一道光罩,處理鈾刻終止層的 程與掃描線之形成工程、以及露出掃描線之工程之 刻工程數的減少得以實現。此外,在源極·汲極間 上,可形成保護絕緣層以保護通道,同時源極•汲 形成時,使用半色調曝光技術,在源極•汲極配線 性地形成陽極氧化層,以此方式,亦可減少形成鈍 層時不必要的製造工程,結果,使用兩道光罩,即 IPS型液晶顯示裝置。 申請專利範圍第2 7項係如申請專利範圍第1 7 19 、 20 、 21 、 22 、 23 、 24 、 25 、 26 項所記載之液 裝置的製造方法,其中,形成於掃描線側面的絕緣 機絕緣層,且藉由電鍍(elechoplahing)形成者。 藉此構成,不管掃描線的材質或構成爲何,可 鍍法在掃描線的側面形成有機絕緣層,且可使用半 光技術,以一道光罩,連續處理掃描線形成工程和 止層形成工程。 可陽極 層,而 線的工 汲極配 配線與 形成工 微影蝕 的通道 極配線 上選擇 化絕緣 可製作 、1 8、 晶顯不 層是有 藉由電 色g周曝 蝕刻終 -47- (45) 1300873 申請專利範圍第2 8項係如申請專利範圍第1 7、1 8、 22、23、24、25、26項所記載之液晶顯示裝置的製造方 法,其中,第一金屬層是由可陽極氧化的金屬層所構成, 而形成於掃描線側面的絕緣層是藉由陽極氧化形成者。 藉此構成,可藉由陽極氧化在掃描線的側面形成陽極 氧化層,且可使用半色調曝光技術,以一道光罩,連續處 理掃描線形成工程和鈾刻終止層形成工程。J. More than one gate insulating layer and no semiconductor layer are formed on one or more gate electrode electrodes formed on the opposite electrode.  Forming a wide aspect ratio gate insulating layer on the first semiconductor layer,  In an area other than the image display unit, Forming an opening on the scanning line,  On a portion of the above protective insulating layer portion, On the first first transparent insulating substrate, A line formed of a layer containing an impurity and a second metal layer of an upper layer or more is formed) • a drain wiring (pixel electrode), And an electrode terminal including the first semiconductor layer and the second semiconductor layer and the second gold scan line, The electrode terminal of the signal line formed by the line other than the image display unit,  In addition to the above-mentioned electrode terminals of the signal line, the pixel electrode and the alignment treatment in the thick transparent resin patent range are also very suitable.  Display device, The first line above the same layer and the opposite electrode edge layer, And a gate insulating layer semiconductor layer and a second semiconductor layer source wiring which are finely protected on the gate-containing impurity-containing first electrode (the region formed by the peripheral layer of the opening portion is formed by the partial signal line -26- (24) 1300873 is characterized by a photosensitive organic insulating layer.  By this, Forming a protective insulating layer on the channel between the source and the drain To protect the channel, At the same time, a photosensitive organic insulating layer is formed on the surface of the signal line to impart a passivation function. Forming a gate insulating layer on the opposite electrode, Therefore, the same effects as those of the liquid crystal display device described in claim 7 can be obtained. and, An IPS type liquid crystal display device having electrode terminals having the same metallicity as the signal lines can be obtained.  The liquid crystal display device described in claim 12, Similarly, one or more first metal layers are formed on one main surface of the first transparent insulating substrate, And a scanning line and an opposite electrode having an insulating layer on the side thereof form one or more gate insulating layers on the opposite electrode; And forming more than one gate insulating layer and the first semiconductor layer without impurities on the gate electrode,  Forming a protective insulating layer having a wider width than the gate electrode on the first semiconductor layer,  In an area other than the image display unit, Opening a gate insulating layer on the scan line,  On one of the above protective insulating layers, On the first semiconductor layer and on the first transparent insulating substrate, Forming a source wiring (signal line) • a drain wiring (pixel electrode) composed of a layer of an impurity-containing second semiconductor layer and one or more anodizable metal layers; And an electrode terminal forming a scan line formed of an anodizable metal layer, comprising a first semiconductor layer and a second semiconductor layer including the periphery of the opening; And an electrode terminal for forming a signal line composed of one of the signal lines in the -27-1300873 (25) region other than the key display portion,  In addition to the electrode terminals of the above signal lines, An anodized layer is formed on the surface of the source/drain wiring.  By this, Forming a protective insulating layer on the channel between the source and the drain To protect the channel, At the same time, on the surface of the signal line and the surface of the drain, an anodic oxide layer (Ta20) or aluminum oxide (ai2〇3) which is an insulating anodized layer is formed. To impart a passivation function, Forming a gate insulating layer on the counter electrode, Therefore, the same effects as those of the liquid crystal display device described in claim 7 can be obtained. and, An IPS type liquid crystal display device having an electrode terminal having the same metallicity as the signal line can be obtained.  Patent Document No. 13 of the patent application, Similarly, one or more first metal layers are formed on one main surface of the first transparent insulating substrate, And a scanning line and an opposite electrode having an insulating layer on the side thereof form one or more gate insulating layers on the opposite electrode; And forming more than one gate insulating layer and the first semiconductor layer without impurities on the gate electrode,  Forming a protective insulating layer having a wider width than the gate electrode on the first semiconductor layer,  On one of the above protective insulating layers, On the first semiconductor layer and on the first transparent insulating substrate, a source wiring (signal line) formed by laminating a second semiconductor layer containing impurities and a second metal layer of ~ or more layers, Bungee wiring (pixel electrode),  In an area other than the image display unit, On the first transparent insulating substrate, 28-(26) 1300873 is formed with a transparent insulating layer having an opening on the electrode terminal forming region of the scanning line and the electrode terminal of the signal line formed by the partial signal line.  An electrode terminal that exposes a part of the scanning line and the signal line of the electrode terminal as the scanning line in the opening portion is characterized.  By this, Providing a passivation insulating layer composed of a transparent insulating layer on the active substrate, If a thick transparent resin is used in the transparent insulating layer, Very easy to align, Not only can the IPS type liquid crystal display device with high image quality be obtained. The same mask can also be used to process the opening portion of the gate insulating layer on the scan line and the opening portion of the passivation insulating layer on the gate electrode. Reduce the number of projects, The liquid crystal display device can be fabricated using only three photomasks.  Patent Document No. 14 of the patent application, Similarly, one or more first metal layers are formed on one main surface of the first transparent insulating substrate, And the scanning line and the opposite electrode having the insulating layer on the side thereof form an insulating layer on the opposite electrode,  Forming a gate insulating layer on the gate electrode, a first semiconductor layer free of impurities and a protective insulating layer smaller than the first semiconductor layer,  Near the intersection of the scan line and the signal line, A first semiconductor layer and a protective insulating layer which are smaller than the gate insulating layer and the gate insulating layer are formed on the vicinity of the intersection of the counter electrode and the signal line and in the vicinity of the intersection of the counter electrode and the pixel electrode,  At the intersection of the scan line and the signal line, a first semiconductor layer and a second semiconductor layer containing impurities are formed on the gate insulating layer at the intersection of the counter electrode and the signal line and at the intersection of the counter electrode and the pixel electrode, Forming a second semiconductor layer containing impurities on the protective layer of the protective layer 29, (27) 1300873,  On a portion of the protective insulating layer on the gate electrode, On the first semiconductor layer and on the first transparent insulating substrate, Forming a source wiring (signal line) composed of a second semiconductor layer containing impurities and one or more anodized metal layers, • a drain wiring (pixel electrode), And an electrode terminal of a signal line composed of a part of signal lines, And an electrode terminal including a scanning line formed by laminating a second semiconductor layer containing impurities and one or more anodizable metal layers on the first transparent insulating substrate in a region other than the image display portion;  In addition to the above electrode terminals, An anodized layer is formed on the surface of the source/drain wiring.  By this, Forming a protective insulating layer on the channel between the source and the drain To protect the channel, At the same time, molybdenum pentoxide (Ta205) or aluminum oxide (Al2〇3), which is an insulating anodized layer, is formed on the surface of the signal line and the drain wiring. To impart a passivation function, An anodized layer is also formed on the scan line and the counter electrode. Therefore, the same effects as those of the liquid crystal display device described in claim 7 can be obtained. and, An IPS type liquid crystal display device having electrode terminals having the same metallicity as the signal lines can be obtained.  The liquid crystal image display device described in claim 15 of the patent application,  The invention is characterized in that the insulating layer formed on the side of the scanning line is an organic insulating layer. 6, 7, 8, 9, 10. 1 1. Liquid crystal display devices as recorded in items 12 and 13.  By this, Can be free from the material or composition of the scan line, An organic -30- (28) 1300873 insulating layer can be formed on the side of the scanning line by electro-plaling. And can use halftone exposure technology, The forming process of the scanning line and the formation of the etch stop layer are continuously processed by a mask.  The liquid crystal image display device described in claim 16 of the patent application,  For example, if the scope of patent application is 5th. 6 ' 1 0, 1 1. 1 2 The liquid crystal display device recorded in 1 3 and 1 4, among them, The first metal layer is composed of an anodizable metal layer. The insulating layer formed on the side of the scanning line is an anodized layer.  By this, An anodic oxide layer can be formed on the side of the scan line by anodization. And halftone exposure technology is available. The forming process of the scanning line and the formation of the etch stop layer are continuously processed by a mask.  Patent Application No. 17 is a method of manufacturing a liquid crystal display device as recited in claim 5, It is characterized by:  At least on one main surface of the first transparent insulating substrate, Suddenly covered:  More than one layer of metal, More than one layer of gate insulation, a first amorphous germanium layer containing no impurities and a project for protecting the insulating layer;  A process of forming a photosensitive resin pattern having a thickness larger than that of other regions on the protective insulating layer forming region corresponding to the scanning line;  The protective insulating layer is sequentially etched by using the photosensitive resin pattern as a mask, The first amorphous layer, a gate insulating layer and a first metal layer;  Reducing the film thickness of the photosensitive resin pattern to expose the protective insulating layer;  Leaving a protective insulating layer having a wider width than the gate electrode on the gate electrode to expose the first amorphous germanium layer;  -31 - (29) 1300873 A process of forming an insulating layer on the side of the scanning line after the above-mentioned photosensitive resin pattern having a reduced film thickness is removed;  a process of covering a second amorphous sand layer containing impurities on the entire surface;  In an area other than the image display unit, Forming an opening in the electrode terminal forming region of the scanning line and selectively removing the second amorphous germanium layer in the opening portion, a first amorphous germanium layer and a gate insulating layer to expose a portion of the scan line;  In a manner partially overlapping the above protective insulating layer, Formed by a second non-crystalline layer, Source (signal line) and drain wiring of one or more layers of anodizable metal layers And including the opening portion to form a second amorphous layer, Engineering of electrode terminals of scan lines formed by lamination of one or more layers of anodizable metal layers;  a pixel electrode having a transparent conductive position formed on one of the first transparent insulating substrates and the drain wiring, And in the area other than the image display section, Forming a transparent conductive electrode terminal on the signal line, And a process of forming a transparent conductive electrode terminal on the electrode terminal of the scanning line; And a photosensitive resin pattern formed using the selection pattern of the pixel electrode and the electrode terminal as a mask, Protecting the transparent conductive pixel electrode and the transparent conductive electrode terminal, At the same time, anodizing the source and drain wiring works.  By this, A mask can be used to process the formation of the etch stop layer and the formation of the scan lines. To achieve a reduction in the number of lithography etching projects.  and, The etch stop layer is formed by self-integration with the gate electrode. The side of the scan line is provided with an insulating layer other than the gate insulating layer. This allows the scan of the -32-1300873 (30) line and the signal line to form an intersection. This is a feature common to the method of the present invention. and, When the pixel electrode is formed, By applying source and drain wiring to anodization, It can also reduce unnecessary manufacturing engineering when the passivation insulating layer is formed. result, A four-mask can be used to fabricate a TN type liquid crystal display device.  Patent Application No. 18 is a method of manufacturing a liquid crystal display device as described in claim 6 of the patent application scope. It is characterized by:  At least on one main surface of the first transparent insulating substrate, Suddenly covered:  More than one layer of the first metal layer, More than one layer of gate insulation, a first amorphous ruthenium layer free of impurities and a protective insulating layer;  Corresponding to the scan line, A process of forming a photosensitive resin pattern having a thicker film thickness on a protective insulating layer forming region than other regions;  Using the above photosensitive resin pattern as a mask, Etching the above protective insulating layer in sequence, The first amorphous layer, a gate insulating layer and a first metal layer;  a process of reducing the film thickness of the photosensitive resin pattern to expose the protective insulating layer;  Leaving a protective insulating layer having a wider width than the gate electrode on the gate electrode to expose the first amorphous germanium layer;  After the photosensitive resin pattern having a reduced film thickness is removed, a process of forming an insulating layer on the side of the scanning line;  Engineering of coating a second amorphous layer containing impurities on the entire surface;  Forming a second amorphous germanium layer in such a manner as to partially overlap the above protective insulating layer a source (signal line) and a drain wiring formed by laminating one or more second metal layers;  -33- (31) 1300873 is formed on the first transparent insulating substrate on the drain wiring, And an electrode terminal forming region of the scanning line in a region other than the image display portion, And a process of having a transparent insulating layer with an opening on the electrode terminals of the signal lines formed by the partial signal lines;  a process of removing a gate insulating layer on an electrode terminal forming region of the scan line to expose a portion of the scan line; And a transparent conductive pixel electrode including an opening in the drain wiring. A process formed on the above transparent insulating layer.  By this, A mask can be used to process the formation of the etch stop layer and the formation of the scan lines. To achieve a reduction in the number of lithography etching projects.  and, As in the conventional example, The formation of the opening portion of the passivation insulating layer also serves as a connection forming process for the connection of the scanning lines. Manufacturing engineering is reduced, Therefore, a four-mask can be used to fabricate a TN type liquid crystal display device. and, If a thick transparent resin layer is used for the transparent insulating layer belonging to the passivation insulating layer, A TN type liquid crystal display device having a high aperture ratio can be obtained.  Patent Application No. 19 is a method of manufacturing a liquid crystal display device as recited in claim 7 of the patent application scope, It is characterized by:  At least on one main surface of the first transparent insulating substrate, Suddenly covered:  Transparent conductive layer, First metal layer, More than one layer of gate insulation, a first amorphous tantalum layer containing no impurities and a protective insulating layer;  Corresponding to the electrode terminals of the scanning line and the pixel electrode and the scanning line and the signal line, a process of forming a photosensitive resin pattern having a film thickness on a protective insulating layer forming region that is thicker than other regions;  Using the above photosensitive resin pattern as a mask, Sequentially engraved protective insulation -34- (32) 1300873 layers, The first amorphous layer, Gate insulation layer, Engineering of the first metal layer and the transparent conductive layer;  a process of reducing the film thickness of the photosensitive resin pattern to expose the protective insulating layer;  Leaving a protective insulating layer having a wider width than the gate electrode on the gate electrode to expose the first amorphous germanium layer;  a process of forming an insulating layer on the side of the scanning line after the photosensitive resin pattern having a reduced film thickness is removed;  Engineering of coating a second amorphous layer containing impurities on the entire surface;  A photosensitive resin pattern having an opening is formed on the pixel electrode and the region other than the image display portion on the analog electrode terminal of the scanning line and the signal line, And selectively removing the second amorphous germanium layer in the opening portion, a second amorphous layer, a gate insulating layer and a first metal layer, The project of exposing the transparent conductive pixel electrode and the electrode terminal; And after coating more than one layer of the second metal layer, In a manner partially overlapping the above-mentioned protective insulating layer composed of a laminate of the second amorphous germanium layer and the second metal layer, a source wiring (signal line) having an electrode terminal including a signal line and having a photosensitive organic insulating layer on a surface thereof, And a process of forming a drain wiring including a pixel electrode and having a photosensitive organic insulating layer on the surface thereof.  By this, Use a reticle, Reduction of the number of lithography processes for processing the pixel electrodes and the scan lines, And using a mask, The reduction of the number of lithography processes for forming the etch stop layer and the formation of the scan line can be simultaneously achieved. and, When source/drain wiring is formed, Selectively forming a photosensitive organic insulating layer only on the source/drain wiring, In this way -35- 1300873 (33), It can also reduce unnecessary manufacturing engineering when the passivation insulating layer is formed. The result, A three-mask can be used to fabricate a TN type liquid crystal display device.  Patent Application No. 20 is a method of manufacturing a liquid crystal display device as recited in claim 8 of the patent application. It is characterized by:  At least on one main surface of the first transparent insulating substrate, Suddenly covered:  Transparent conductive layer, First metal layer, More than one layer of gate insulation, a first amorphous tantalum layer containing no impurities and a protective insulating layer;  a process of forming a photosensitive resin pattern having a thickness larger than that of other regions on the protective insulating layer forming region corresponding to the scanning line and the pixel electrode;  Using the above photosensitive resin pattern as a mask, And sequentially etching: Protective insulation, The first amorphous layer, Gate insulation layer, Engineering of the first metal layer and the transparent conductive layer;  a process of reducing the film thickness of the photosensitive resin pattern to expose the protective insulating layer;  Leaving a protective insulating layer having a wider width than the gate electrode on the gate electrode to expose the first amorphous germanium layer;  a process of forming an insulating layer on the side of the scanning line after the photosensitive resin pattern having a reduced film thickness is removed;  Engineering of coating a second amorphous layer containing impurities on the entire surface;  Selectively removing the second amorphous germanium layer in the opening portion by forming a photosensitive resin pattern having an opening on the dummy electrode terminal of the scan line on the pixel electrode and the region other than the image display portion. First amorphous layer, a gate insulating layer and a first metal layer, And exposing the transparent conductive pixel electrode and part of the scanning line;  -36- 1300873 (34) After being coated with more than one second metal layer, the formation:  a source wiring (signal line) that overlaps the protective insulating layer and a drain wiring in which the portion of the dad overlaps the protective insulating layer, Dad, the electrode terminal of the scanning line of the conductive part of the scanning line, A signal layer composed of a part of signal lines in a region other than the display portion and a photosensitive layer pattern having a thicker film thickness on the signal line than other regions;  Taking the above-mentioned photosensitive organic insulating layer pattern as a mask,  a second metal layer above one layer, a second amorphous layer and a layer of tantalum, And forming a scan line, Electrode terminal of signal line and wiring work; And reducing the film thickness of the photosensitive organic insulating layer pattern,  line, The electrode terminal of the signal line and the work of the drain wiring.  By this, Use a reticle, Processing of pixel electrodes, the reduction of the number of lithography engraving projects, And using a mask, There is less lithography etching of the formation of the layer and the formation of the scanning line. Can be achieved at the same time. and, Source•bungee wiring type halftone exposure technology, Selectively leaving the insulating layer only on the signal line, In this way, It can also reduce the formation of passivation insulation layers, result, Three reticle can be used to make the TN device.  Patent Application No. 21 is a method of manufacturing a liquid crystal display device as claimed in the patent application. Characterized by having at least one major surface of the first transparent insulating substrate,  The portion and the above-mentioned pixel-receiving electrode have the above-mentioned transparency. The electrode is selectively removed at the electrode end of the image line to selectively remove the first amorphous source and the drain to expose the scanning and scanning lines. Time, The type of liquid crystal display that is not necessary when using photosensitive organic is recorded in the 9th item:  •37- (35) 1300873 transparent conductive layer, First metal layer, Gate insulation layer, The first amorphous sand layer containing no impurities and the engineering of protecting the insulating layer;  Corresponding to the scan line and the pixel electrode, a process of forming a photosensitive resin pattern having a film thickness thicker than other regions on the protective insulating layer forming region;  The above-mentioned photosensitive resin pattern is used as a mask. Protect the insulation layer, The first amorphous layer, Gate insulation layer, Engineering of the first metal layer and the transparent conductive layer;  Reducing the film thickness of the above-mentioned photosensitive resin pattern, And expose the protective insulation layer;  Leaving a protective insulating layer on the gate electrode that is wider than the gate electrode, And exposing the first amorphous layer;  After the photosensitive resin pattern having the above film thickness is removed, a process of forming an insulating layer on the side of the scanning line;  a process of coating a second amorphous layer containing impurities on the entire surface;  On the pixel electrode and the area other than the image display unit, The photosensitive resin pattern having an opening formed in the dummy electrode terminal of the scanning line selectively removes the second amorphous layer in the opening, First amorphous layer, a gate insulating layer and a first metal layer, a project in which a transparent conductive pixel electrode and a divided scan line are exposed;  After coating more than one layer of anodizable metal, Forming a source wiring (signal line) partially overlapping the protective insulating layer, a drain wiring including a pixel electrode forming portion overlapping the above protective insulating layer, a partial scan line including the above transparent conductivity forms an electrode terminal of the scan line, In an area other than the image display section, The electrode terminal corresponding to the signal line -38- (36) 1300873 composed of a part of the signal line forms a photosensitive resin pattern thicker than a predetermined area on the electrode terminal of the scanning line and the signal line;  Using the above photosensitive resin pattern as a mask, Selectively anodized metal layer, a second amorphous layer and a layer of enamel, And forming an electrode terminal and a source line of the scan line and the signal line;  Reducing the film thickness of the above-mentioned photosensitive resin pattern, The project that exposes the source wiring; And protecting the above electrode terminals, At the same time anodizing source • 汲 engineering.  By this, Use a reticle, Processing the reduction of the number of pixel electrodes and lithography engineering, And using a mask, There are few lithography etching processes for the formation of the processing layer and the formation of the scanning line. Can be achieved at the same time. and, The pass between the source and the drain forms a protective insulating layer to protect the channel. At the same time, the source and the pole are matched, Using halftone exposure technology, Select an anodized layer on the source and drain wiring. In this way, It also reduces the number of manufacturing processes necessary to form passivation. result, A three-mask can be used to make a crystal display device.  Patent Application No. 22 is a method of manufacturing a liquid crystal display device as set forth in Patent Application No. 1, It is characterized by:  At least on one main surface of the first transparent insulating substrate, According to the first metal layer above one layer, a layer of more than one gate insulating layer of the first amorphous germanium layer and a protective insulating layer;  The film thickness is greater than the cul-de-sequence of the scan line of the first amorphous pole drain electrode and the drain wire. When the line is formed, the edge layer is not covered by the TN type liquid.  , No miscellaneous -39- (37) 1300873 corresponds to the scan line, A process of forming a photosensitive resin pattern having a thicker film thickness on a protective insulating layer forming region than other regions;  Using the above photosensitive resin pattern as a mask, Sequential etching: Protect the insulation layer, The first amorphous layer, a gate insulating layer and a process of the first metal layer;  a process of reducing the film thickness of the photosensitive resin pattern to expose the protective insulating layer;  Leaving a protective insulating layer having a wider width than the gate electrode on the gate electrode to expose the first amorphous germanium layer;  After the photosensitive resin pattern having a reduced film thickness is removed, a process of forming an insulating layer on the side of the scanning line;  Engineering of coating a second amorphous layer containing impurities on the entire surface;  In a manner partially overlapping the above protective insulating layer, Forming a source (signal line) • drain wiring composed of a laminate of a second amorphous germanium layer and one or more second metal layers;  On the bungee wiring, On the electrode terminal forming region of the scanning line in the region other than the image display portion and on the electrode terminal of the signal line composed of the partial signal lines, a transparent resin layer having openings, respectively a process formed on the second transparent insulating substrate;  a process of removing a gate insulating layer on an electrode terminal forming region of the scan line to expose a portion of the scan line; And a conductive pixel electrode including the opening on the above-described drain wiring, And a counter electrode comprising a conductive line on the scan line and the signal line, The work on the above transparent resin layer is formed.  -40 - (38) 1300873 By this, A reticle can be used to handle the formation of the scan line and the formation of the uranium engraved layer. In order to achieve the reduction of the number of lithography engraving projects. and, As in the conventional example, The forming process of the opening portion of the passivation insulating layer also serves as a connection forming process for connecting the scanning lines. Manufacturing engineering is also reduced, Therefore, an IPS type liquid crystal display device can be fabricated using four masks.  Patent Application No. 23 is a method of manufacturing a liquid crystal display device as recited in claim 11 of the patent application. It is characterized by:  At least on one main surface of the first transparent insulating substrate, Suddenly covered:  More than one layer of the first metal layer, More than one layer of gate insulation, a first amorphous ruthenium layer free of impurities and a protective insulating layer;  Corresponding to the scan line and the counter electrode, a process of forming a photosensitive resin pattern having a film thickness thicker than other regions on the protective insulating layer forming region;  Using the above photosensitive resin pattern as a mask, Sequential etching: Protect the insulation layer, The first amorphous layer, a gate insulating layer and a process of the first metal layer;  a process of reducing the film thickness of the photosensitive resin pattern to expose the protective insulating layer;  Leaving a protective insulating layer on the gate electrode that is wider than the gate electrode, And exposing the first amorphous layer;  After the photosensitive resin pattern having a reduced film thickness is removed, a process of forming an insulating layer on a side of a scanning line and a counter electrode;  Engineering of coating a second amorphous layer containing impurities on the entire surface;  In an area other than the image display unit, Forming an opening in the electrode terminal forming region of the scanning line, Selectively removing the second amorphous -41 - (39) 1300873 layer in the opening portion, a first amorphous germanium layer and a gate insulating layer, a project that exposes part of the scan line;  After covering more than one layer of the second metal layer, A source wiring (signal line) and a drain wiring (pixel electrode) which are partially overlapped with the above-mentioned protective insulating layer are formed, An electrode terminal including the opening portion to form a scanning line, An electrode terminal of a signal line composed of a part of signal lines is formed in a region other than the image display portion, Forming a photosensitive organic insulating layer pattern having a film thickness on the signal line that is thicker than other regions;  Taking the above-mentioned photosensitive organic insulating layer pattern as a mask, Selective removal of the second metal layer, a second amorphous germanium layer and a first amorphous germanium layer, The electrode terminals that form the scan lines and signal lines and the source/drain wiring work: And reducing the film thickness of the photosensitive organic insulating layer pattern, The project of the electrode terminals and the drain wiring of the scanning line and the signal line is exposed.  By this, A mask can be used to handle the formation of the etch stop layer and the formation of the scan lines. To achieve a reduction in the number of lithography engineering projects. and, When source/drain wiring is formed, Using halftone exposure technology,  Selectively leaving the photosensitive organic insulating layer only on the signal line, In this way, It also reduces unnecessary manufacturing engineering when forming a passivation insulating layer. result,  A three-mask can be used to fabricate a TN type liquid crystal display device.  Patent Application No. 24 is a method of manufacturing a liquid crystal display device as recited in claim 12 of the patent application. It is characterized by:  At least on one main surface of the first transparent insulating substrate, Suddenly covered:  More than one layer of the first metal layer, More than one layer of gate insulation, No impurity 42_ (40) 1300873 quality first amorphous enamel layer and protective insulation layer works;  Corresponding to the scan line and the counter electrode, And a process of forming a photosensitive resin pattern having a film thickness thicker than other regions on the protective insulating layer forming region;  Using the above photosensitive resin pattern as a mask, Sequential etching: Protect the insulation layer, The first amorphous layer, a gate insulating layer and a process of the first metal layer;  Reducing the film thickness of the photosensitive resin pattern having reduced the film thickness described above, And the project of revealing the protective insulation layer;  Leaving a protective insulating layer on the gate electrode that is wider than the gate electrode, And exposing the first amorphous layer;  After the above photosensitive resin pattern is removed, a process of forming an insulating layer on a side of a scanning line and a counter electrode;  Engineering of coating a second amorphous layer containing impurities on the entire surface;  In an area other than the image display unit, Forming an opening in the electrode terminal forming region of the scanning line, Selectively removing the second amorphous germanium layer in the opening, a first amorphous germanium layer and a gate insulating layer, a project that exposes part of the scan line;  After coating more than one layer of anodizable metal, A source wiring (signal line) and a drain wiring (pixel electrode) in which the corresponding portion overlaps with the protective insulating layer are formed, An electrode terminal including the opening portion forming a scanning line, The area outside the image display portion corresponds to the electrode terminal of the signal line composed of the partial signal lines, a process of forming a photosensitive resin pattern having a film thickness thicker than other regions on the electrode terminals of the scanning lines and the signal lines;  Using the above photosensitive resin pattern as a mask, Selective removal of the anode •43- (41) 1300873 oxidized metal layer, a second amorphous germanium layer and a first amorphous germanium layer' to form electrode terminals of the scan lines and signal lines and a source/drain wiring;  Reducing the film thickness of the above-mentioned photosensitive resin pattern, The project of exposing the source and the bungee wiring; And protecting the above electrode terminals, At the same time anodizing the source and drain wiring works.  By this, A mask can be used to handle the formation of the etch stop layer and the formation of the scan lines. To achieve a reduction in the number of lithography engineering projects. and, On the channel between the source and the bungee, A protective insulating layer can be formed to protect the channel, At the same time, when the source/drain wiring is formed, Using halftone exposure technology, Selectively forming an anodized layer on the source/drain wiring,  In this way, It can also reduce unnecessary manufacturing engineering when forming a passivation insulating layer. result, It is possible to manufacture a TN type liquid crystal display device using three photomasks.  Patent Application No. 25 is a method of manufacturing a liquid crystal display device as recited in claim 13 of the patent application. It is characterized by:  At least on one main surface of the first transparent insulating substrate, Suddenly covered:  More than one layer of the first metal layer, And more than one gate insulation layer, a first amorphous tantalum layer containing no impurities and a protective insulating layer;  Corresponding to the scan line and the counter electrode, a process of forming a photosensitive resin pattern having a film thickness thicker than other regions on the protective insulating layer forming region;  Using the above photosensitive resin pattern as a mask, Sequential etching: Protect the insulation layer, The first amorphous layer, a gate insulating layer and a process of the first metal layer;  -44 - (42) 1300873 The process of reducing the film thickness of the above-mentioned photosensitive resin pattern to expose the protective insulating layer;  A wide gate electrode is left on the gate electrode to further protect the insulating layer.  And exposing the first amorphous layer;  a process of forming an insulating layer on a side surface of a scanning line and a counter electrode after the photosensitive resin pattern having a reduced film thickness is removed;  Engineering of coating a second amorphous layer containing impurities on the entire surface;  In a manner partially overlapping the above protective insulating layer, Forming a source wiring (signal line) • a drain wiring (pixel electrode) source and a drain wiring formed by laminating a second amorphous germanium layer and one or more second metal layers;  In an area other than the image display unit, Forming a transparent insulating layer having an opening on the electrode terminal forming region of the scanning line and the electrode terminal of the signal line composed of the partial signal line on the first transparent insulating substrate; And removing the gate insulating layer on the electrode terminal forming region of the scanning line, And the project of exposing part of the scan line.  By this, Use a reticle, Processing the formation of the etch stop layer and the formation of the scan line, To achieve a reduction in the number of lithography etching projects. And, As in the conventional example, Forming an opening for the passivation insulating layer, The connection forming process for connecting the scanning lines can also be reduced. Therefore, the IPS type liquid crystal display device can be fabricated by using three masks.  Patent Application No. 26 is a method of manufacturing a liquid crystal display device as recited in claim 14 of the patent application, which is characterized by having:  -45- (43) 1300873 at least on one main surface of the first transparent insulating substrate, Sequential etching:  More than one layer of the first metal layer, More than one layer of gate insulation, a first amorphous ruthenium layer free of impurities and a protective insulating layer;  Corresponding to the scan line and the counter electrode, Formed on the gate electrode, On the intersection of the scan line and the signal line, a project of a photosensitive resin pattern having a thicker film thickness than the other regions on the intersection of the counter electrode and the signal line and at the intersection of the counter electrode and the pixel electrode;  Using the above photosensitive resin pattern as a mask, Sequential etching: Protect the insulation layer, The first amorphous layer, a gate insulating layer and a process of the first metal layer;  a process of forming an insulating layer on a side of a scan line and a counter electrode;  Reducing the film thickness of the photosensitive resin pattern to expose the protective insulating layer,  Removing the protective insulating layer on the scan line and the counter electrode, The first amorphous layer, Gate insulation layer, And exposing the scanning line and the opposite electrode;  And further reducing the film thickness of the above-mentioned photosensitive resin pattern having a reduced film thickness, Leaving a protective insulating layer on the gate electrode that is wider than the gate electrode, And exposing the first amorphous layer;  Engineering of coating a second amorphous layer containing impurities on the entire surface;  After coating more than one layer of anodizable metal, Forming a source wiring (signal line) partially overlapping the protective insulating layer, Bungee wiring (pixel electrode), The electrode terminal of the scanning line of the partial scanning line is included in a region other than the image display portion, Corresponding to a signal line formed by a part of signal lines forming an electrode terminal, a process of forming a photosensitive resin pattern having a film thickness on the electrode terminal that is thicker than other regions;  -46- (44) 1300873 using the above-mentioned photosensitive resin pattern as a mask, Selectively removing the oxidized metal layer and the second amorphous germanium layer and the first amorphous germanium to form scan electrode and signal line electrode terminals and source/drain configuration;  a process of reducing the film thickness of the photosensitive resin pattern to expose the source and the line; And protecting the above electrode terminals, At the same time anodizing the source and the drain of the opposite electrode.  By this, Use a reticle, Processing the formation of the uranium engraving layer and the formation of the scan line, And the reduction in the number of engineering works at the time of exposing the scanning line is achieved. In addition, Between the source and the bungee, A protective insulating layer can be formed to protect the channel, At the same time, when the source•汲 is formed, Using halftone exposure technology, Forming an anodized layer on the source and drain electrodes, In this way, It also reduces the unnecessary manufacturing work when forming a blunt layer. result, Use two masks, That is, an IPS type liquid crystal display device.  Article 27 of the scope of application for patents is as for the scope of patent application No. 1 7 19  20,  twenty one ,  twenty two ,  twenty three ,  twenty four ,  25,  The manufacturing method of the liquid device described in item 26, among them, An insulating layer of insulation formed on the side of the scanning line, And formed by electroplating (elechoplahing).  By this, Regardless of the material or composition of the scan line, The plating method forms an organic insulating layer on the side of the scanning line. And semi-light technology can be used. With a mask, The scanning line forming process and the stop layer forming process are continuously processed.  Anode layer, The wiring of the wire and the wiring of the micro-etched channel are selectively insulated and can be fabricated. 1 8,  The crystal display layer is etched by electro-optic g-external etching -47- (45) 1300873 Patent application scope 28 item is as claimed in the patent scope 1 8,  twenty two, twenty three, twenty four, 25, A method of manufacturing a liquid crystal display device according to item 26, among them, The first metal layer is composed of an anodizable metal layer.  The insulating layer formed on the side of the scanning line is formed by anodization.  By this, An anodic oxide layer can be formed on the side of the scan line by anodization. And halftone exposure technology is available. With a mask, The scanning line forming process and the uranium engraving stop layer formation process are continuously processed.

【實施方式】 [發明實施形態] 依據第1圖至第22圖來說明本發明的實施例。於第 1圖表示有關本發明第一實施例的顯示裝置用半導體裝置 (主動式基板)的平面圖,於第2圖表示第1圖之A-A /線上和B - B /線上及C 一 C /線上的製造工程的剖面 圖。同樣的,第二實施例是以第3圖和第4圖,第三實施 例是以第5圖和第6圖,第四實施例是以第7圖和第8圖 ,第五實施例是以第9圖和第1 0圖,第六實施例是以第 11圖和12圖,第七實施例是以第13圖和第14圖,第八 實施例是以第1 5圖和第1 6圖,第九實施例是以第1 7圖 和第1 8圖,第十實施例是以第19圖和第2 0圖,分別表 示主動式基板的平面圖和製造工程的剖面圖。此外,與習 知例同樣的部位,則附以相同的符號以省略詳細的說明。 (第一實施例) •48- (46) l3〇0873 第一實施例係與習知例同樣的,首先,在玻璃基板2 的一主面上,使用SPT等真空製膜裝置,被覆膜厚0.1至 〇·3 v m左右的例如 Cr、Ta、Mo等或這些的合金或矽化 物’作爲第一金屬層。由繼後的說明得知,本發明選擇有 機絕緣層作爲形成於閘極絕緣層側面的絕緣層時,掃描線 材料幾乎沒有限制,然而,選擇陽極氧化層作爲形成於閘 極絕緣層側面的絕緣層時,則該陽極氧化層必須具有絕緣 性’此時若考慮Ta單體的電阻較高、和A1單體缺乏耐熱 性的話,爲了達成掃描線的低電阻化,掃描線的構成可選 擇A1 ( Zr、Ta、Nd)合金等單層構成,或 Al/Ta、Ta/Al/Ta、Al/AL(Ta、Zr、Nd)合金等的 積層構成。此外,A1 ( Ta、Zr、Nd )乃意味添加數%以 下之Ta、Zr或Nd等耐熱性高的A1合金。 其次,使用PCVD裝置,在玻璃基板2整面,例如分 別以 0.3//11]、0.05//111'0.1"111左右的膜厚,依序被覆 :作爲閘極絕緣層的第一 SiNx層30、幾乎不含雜質之絕 緣閘極型電晶體的通道所屬的第一非晶質矽層3 1、以及 用以保護通道之成爲絕緣層的第二SiNx層32等三種薄膜 層,然後,如第1圖(a )和第2圖(a )所示,利用半色 調曝光技術,形成保護絕緣層形成區域即閘極電極1 1 A 上的區域8 1 A的膜厚例如爲2 // m之比對應於掃描線1 1 及儲存電容線16的區域81B上的膜厚l//m更厚的感光 性樹脂圖案8 1 A,8 1 B,以感光性樹脂圖案8 1 A、8 1 B作 爲遮罩,選擇性地去除通道保護層3 2、第一非晶質矽層 -49 - (47) 1300873 3 1、閘極絕緣層3 0以及第一金屬層,而露出玻璃基板2 。由於掃描線上1的線幅寬,由電阻値的關係來看,就算 最窄一般也具有10//m以上的大小,故用以形成81B (中 間調區域)的光罩製作或其加工尺寸的精度管理皆可容易 地施行。 接著,利用氧氣電漿等灰化手段,使上述感光性樹脂 圖案8 1 A、8 1 B的膜厚減少1 μ m以上時,感光性樹脂圖 案81B消失,而露出第二SiNx層32A、32B (圖未表示 ),同時可以只在保護絕緣層形成區域上,選擇性地形成 感光性樹脂圖案8 1 C。由於感光性樹脂圖案8 1 C (黑區域 ),即通道保護層的圖案寬度,是源極•汲極配線間的尺 寸加上光罩對準精度,所以源極•汲極配線間設爲4至6 //m,對準精度設爲±3//m時,最小也有10至12//m, 尺寸精度要求並不嚴格。然而,從光阻圖案81A變換至 8 1 C時,當光阻圖案的膜厚等向性減少1 # m時,尺寸不 僅會減少2 // m,後續源極•汲極配線形成時,光罩對準 精度會縮小l//m,而形成±2//m,在製程上後者的要求 較前者嚴格。因此,上述氧氣電漿處理中,要抑制圖案尺 寸的變化時,以加強向異性爲佳。具體而言,以RIE ( Reactive Ion Etching)方式、具有高密度電漿源之ICP ( Inductive Coupled Plasama )方式或 TCP ( Transfer Coupled Plasama)方式的氧電獎處理爲佳。或者,理想 的情況是,估算光阻圖案的尺寸變化量,將光阻圖案8 1 A 的圖案尺寸預先設計得較大,或以使光阻圖案81A的圖 -50- (48) 1300873 案尺寸增大的曝光、顯影條件謀求製程的因應等處置。而 且,如第1圖(b )和第2圖(b )所示,以感光性樹脂圖 案8 1C作爲遮罩,將第二SiNx層32A,以寛幅比閘極電 極1 1 A還細的方式選擇性施以蝕刻,形成第二SiNx層 32D (鈾刻終止層、通道保護層、保護絕緣層),同時露 出掃描線上1上的第一非晶質矽層3 1 A與儲存電容線1 6 上的第一非晶質矽層3 1 B。保護絕緣層形成區域,即感光 性樹脂圖案8 1 C (黒區域)的大小,最小尺寸至少有1 0 // m的大小,不但白區域與黒區域以外的區域作爲半色調 曝光區域的光罩製作很容易,與通道蝕刻型的絕緣閘極電 晶體比較時,絕緣閘極型電晶體的ON電流是由通道保護 絕緣層32D的尺寸來決定,而不是由源極•汲極配線12 、21間的尺寸來決定,故製程管理更爲容易。具體而言 ,例如以在通道蝕刻型使源極·汲極配線間的尺寸成爲5 ± 1 // m,蝕刻終止型的保護絕緣層的尺寸成爲1 0 ± 1 // m 的方式,在相同的曝光、顯影條件下,ON電流的變動量 約略減半。 去除感光性樹脂圖案81C後,如第1圖(c )和第2 圖(c )所示,在閘極電極1 1 A的側面形成絕緣層7 6。因 此,如第2 1圖所示,必須具將掃描線11 (儲存電容線1 6 也一樣,此處則省略圖示)並列綁束之配線7 7和在玻璃 基板2的外周部電鍍或陽極氧化時用以提供電位的連接圖 案7 8,再者,使用以電漿CV D製得之非晶質矽層3〗和 氮化矽層3 0、3 2之適當遮罩手段的製膜區域7 9,乃限定 -51 - (49) 1300873 在連接圖案7 8的更內側,至少必須露出連接圖案7 8。在 連接圖案78上,使用鱷魚夾等連接手段,賦予+(正) 電位,令玻璃基板2浸透於以乙二醇爲主成份的反應液中 以進行陽極氧化時,若掃描線1 1爲A1系合金的話’則可 以例如反應電壓200V,形成具有0.3 // m膜厚的氧化鋁( A1203 )。電鍍時,如月刊「高分子加工」2 002年1 1月 號文獻所示,含五羧基之聚醯亞胺電鍍液,以數v的電 鍍(electroplating )電壓,形成具有0.3//m膜厚的聚醯 亞胺樹脂層。再者,藉由形成絕緣層76,產生在掃描線 1 1上的閘極絕緣層3 0 A的針孔屬於絕緣層的氧化鋁或是 聚醯亞胺樹脂埋入的緣故,故亦有後述的源極•汲極配線 1 2、2 1之間的層間短路受到抑制的副作用。 然後,使用PCVD裝置,在玻璃基板2的整面’以例 如0.0 5 // m左右的膜厚,被覆含雜質例如磷的第二非晶矽 層3 3後,如第1圖(d )和第2圖(d )所示’在畫像顯 示部以外的區域利用微細加工技術,在掃描線1 1上形成 開口部63A,和在儲存電容線16上或在並列綁束儲存電 容線1 6的電極的電極端子上形成開口部65 A,選擇性地 去除開口部63A內的第一非晶質砂層33、第一非晶質石夕 層3 1 A以及閘極絕緣層3 0 A ’並選擇性地去除部分掃描線 73、開口部65A內的第二非晶質矽層33、第一非晶質矽 層3 1 B以及閘極絕緣層3 0 B,露出部分儲存電容線1 6。 接著,在源極•汲極配線的形成工程中,使用SPT 等真空製膜裝置,依序被覆:膜厚0·1 V m左右之例如Ti -52- (50) 1300873 、Ta等耐熱金屬薄膜層34作爲可施行陽極氧化的耐熱金 屬層;和膜厚〇·3//ιη左右之例如A1薄膜層35作爲同樣 可施行陽極氧化的低電阻配線層;和膜厚0.1 // m左右之 例如T a等耐熱金屬薄膜層3 6作爲同樣可施行陽極氧化的 中間導電層。然後,利用微細加工技術,使用感光性樹脂 圖案,依序蝕刻由這三層薄膜構成的源極·汲極配線材、 和第二非晶質矽層3 3、和第一非晶質矽層3 1 A、3 1 B,而 露出閘極絕緣層30A、30B,並且如第1圖(e)和第2圖 (e)所示,選擇性地形成由34A、35A、36A之積層所構 成的絕緣閘極型電晶體的汲極電極2 1、和兼作源極電極 的信號線1 2。爲了不使源極•汲極配線1 2、2 1偏置而無 法動作,當然必須與通道保護層3 2 D形成部分重疊。再 者,一般爲了避免伴隨電池作用產生的副作用,在源極· 汲極配線1 2、2 1形成的同時,亦同時包含部分掃描線73 地形成掃描線的電極端子5,但因爲電極端子5不是必要 的,所以亦可在後續工程,直接形成透明導電性電極端子 5 A。就源極·汲極配線1 2、2 1的構成而言,電阻値的限 制較鬆時,簡化而形成Ta單層是合理的,此外,添加Nd 的A1合金中,化學電位降低,在鹼性溶液中與ITO產生 的化學腐蝕反應得以受到抑制,所以此時不需要中間導電 層3 6,可將源極•汲極配線1 2、2 1的積層構造形成爲兩 層構成,而源極•汲極配線1 2、21的構成得以獲得若干 簡化。這部分採用IZO來代替ITO亦是同樣的情況。 源極•汲極配線12、21形成後,使用SPT等真空製 -53- (51) 1300873 膜裝置,在玻璃基板2整面,被覆例如膜厚0.1至0.2 /i m左右的ITO作爲透明導電層,並且如第1圖(f) 第2圖(f)所示,利用微細加工技術,包含汲極電極 之部分中間導電層3 6 A,在玻璃基板2上選擇性地形成 素電極2 2。此時,亦在畫素顯示部外的區域,掃描線 電極端子5上和部分信號線的電極端子6上,形成透明 電層圖案,而作爲透明導電性之電極端子5A、6A。如 所述,不形成電極端子5,而在此時包含開口部63 A地 接形成電極端子5A亦可。再者,在此係與習知例同樣 ,藉由設置透明導電性短路線40,將電極端子5A、6A 短路線40間形成爲細長的線狀,進行高電阻化而形成 電對策用的高電阻。 而且,如第1圖(g )和第2圖(g )所示,以使用 畫素電極22之選擇性形成圖案的感光性樹脂圖案83A 爲遮罩,照射光同時源極•汲極配線1 2、2 1施以陽極 化,以在其表面形成氧化層。此時,電極端子5A、6A 以感光性樹脂圖案83B、83C保護。在源極•汲極配線 、21的上面露出Ta,而在側面露出Ta、Al、Ti及第二 晶質矽層33A的積層,且利用陽極氧化分別使第二非 質矽層33A變質成含雜質的氧化矽層(Si02 ) 66,Ti 質成半導體之氧化鈦(Ti02 ) 68,A1變質成作爲絕緣 的氧化銘(AL2O3) 69,而且Ta變質成作爲絕緣層的 氧化鉅(Ta205 ) 70。氧化鈦層68不是絕緣層,膜厚極 ,露出的面積也很小,故在鈍化上不會構成問題,而耐 和 2 1 畫 的 導 上 直 的 和 靜 於 作 氧 是 12 非 晶 變 層 五 薄 熱 •54- (52) 1300873 金屬薄膜層34A亦以選擇Ta爲佳。但是Ta與Ti不同, 其欠缺吸收基底之表面氧化層使歐姆接觸更爲容易的功能 特性,是須留意的。 爲了在汲極配線2 1上形成良好膜質的陽極氧化層, 故照射光同時實施陽極氧化是陽極氧化工程上很重要的一 點,已揭示在先行例中。具體而言,若照射一萬米燭光( lux )左右之強度充足的光,絕緣閘極型電晶體的漏洩電 流超過μΑ的話,由汲極電極21的面積計算,以10mA/ cm2左右的陽極氧化,可得用以獲致良好膜質的電流密度 。而且,即使汲極配線21上陽極氧化層的膜質不充分, 一般可獲得充分可靠性的理由是,施加於液晶晶胞的驅動 信號基本上是父流的,以使在對向電極14、和畫素電極 22 (汲極電極2 1 )之間直流電壓成份變少的方式,在畫 像檢查時調整對向電極1 4的電壓(閃燦降低之調整), 直流電壓成份變少,所以基本的原理上,只要事先形成絕 緣層,僅在信號線1 2上不使直流成分流動即可。 以陽極氧化形成的五氧化鉬70、氧化鋁69、氧化鈦 68、氧化矽層66的各氧化層的膜厚,形成〇.1至〇.2//ηι 左右已足以作爲配線的鈍化,使用乙二醇等的反應液,施 加電壓同樣超過100V來實現。源極•汲極配線12、21 之陽極氧化時應留意的事項是,雖未圖示但所有的信號線 1 2必須形成電性並聯或串聯,後續數個製造工程中,沒 有解除該並聯或串聯時,不僅會對主動式基板2的電氣檢 查造成妨礙,也會對液晶顯示裝置的實際動作造成妨礙。 -55 - (53) 1300873 作爲解除電性連接之手段,可利用雷射光照射使蒸散,或 利用刮除之機械式去除,相當簡單,不過此處省略詳細的 說明。 先以感光性樹脂圖案83A覆蓋畫素電極22的原因, 是不僅不需將畫素電極22陽極氧化,也不用經由絕緣閘 極型電晶體,確保流至汲極電極2 1的反應電流爲必需値 以上。 最後,去除上述感光性樹脂圖案83 A至83C,如第1 圖(h)和第2圖(h)所示地完成主動式基板2(顯示裝 置用半導體裝置)。令以此方式獲得的主動式基板2和彩 色濾光片貼合而液晶面板化,完成本發明的第一實施例。 關於儲存電容1 5的構成,則如第1圖(h )所示,例示了 儲存電容線1 6和畫素電極2 2中介著閘極絕緣層3 0 B形成 平面重疊(左上往右下之斜線部)之構成例,不過儲存電 容1 5的構成並不限於此,亦可在畫素電極22和前段掃描 線1 1之間,中介著含閘極絕緣層3 0 A的絕緣層而構成。 此外,其它構成亦可,不過省略其詳細的說明。同樣地’ 由於具有對掃描線1 1的形成接觸工程,故使用透明導電 層以外的導電性材料或半導體層,來進行靜電對策亦較容 易。 第一實施例,因爲畫素電極形成工程是接著源極•汲 極配線形成工程而施行’故會因源極配線和畫素電極的短 路易產生良率降低,而且與掃描線的重疊,發揮寄生電容 的作用,使畫素電極變大,開口率提高,很不理想。於是 •56- (54) 1300873 ’爲了再提局開口率,使用厚的透明樹脂,將源極•汲極 配線加以鈍化的液晶顯示裝置在第二實施例中說明。 (第二實施例)[Embodiment] [Embodiment of the Invention] An embodiment of the present invention will be described with reference to Figs. 1 to 22 . Fig. 1 is a plan view showing a semiconductor device (active substrate) for a display device according to a first embodiment of the present invention, and Fig. 2 shows AA/line and B-B/line and C-C/line on the first drawing. Sectional view of the manufacturing process. Similarly, the second embodiment is a third diagram and a fourth diagram, the third embodiment is a fifth diagram and a sixth diagram, and the fourth embodiment is a seventh diagram and an eighth diagram. The fifth embodiment is In the ninth and tenth drawings, the sixth embodiment is in Figs. 11 and 12, the seventh embodiment is in the thirteenth and fourteenth, and the eighth embodiment is in the fifteenth and fifteenth embodiments. 6 is a ninth embodiment which is a 17th view and a 18th figure. The tenth embodiment is a plan view and a cross-sectional view of a manufacturing process of the active substrate, respectively, in the 19th and 20th. In addition, the same portions as those of the conventional examples are denoted by the same reference numerals to omit the detailed description. (First Embodiment) • 48-(46) l3〇0873 The first embodiment is the same as the conventional example. First, a vacuum film forming apparatus such as SPT is used on one main surface of the glass substrate 2 to coat the film. An alloy such as Cr, Ta, Mo, or the like having a thickness of about 0.1 to 3·3 vm or a telluride as the first metal layer. As will be understood from the following description, when the present invention selects the organic insulating layer as the insulating layer formed on the side of the gate insulating layer, the scanning line material is hardly limited, however, the anodized layer is selected as the insulating layer formed on the side of the gate insulating layer. In the case of a layer, the anodized layer must have an insulating property. In consideration of the high resistance of the Ta monomer and the lack of heat resistance of the A1 monomer, in order to achieve a low resistance of the scanning line, the composition of the scanning line can be selected from A1. A single layer structure such as (Zr, Ta, Nd) alloy, or a laminated structure of Al/Ta, Ta/Al/Ta, Al/AL (Ta, Zr, Nd) alloy. Further, A1 (Ta, Zr, Nd) means that an A1 alloy having high heat resistance such as Ta, Zr or Nd of several % or less is added. Next, using a PCVD apparatus, the entire surface of the glass substrate 2 is sequentially coated with a film thickness of, for example, 0.3//11] and 0.05//111'0.1 "111, respectively: a first SiNx layer as a gate insulating layer. 30. The first amorphous germanium layer 31 to which the channel of the insulating gate type transistor containing almost no impurities belongs, and the third thin layer of the second SiNx layer 32 to protect the channel as the insulating layer, and then, for example, 1(a) and 2(a), the film thickness of the region 8 1 A on the gate electrode 1 1 A which forms the protective insulating layer forming region by the halftone exposure technique is, for example, 2 // m. The photosensitive resin pattern 8 1 A, 8 1 B having a thickness corresponding to the film thickness l//m on the scanning line 1 1 and the region 81B of the storage capacitor line 16 is a photosensitive resin pattern 8 1 A, 8 1 B as a mask selectively removes the channel protective layer 3, the first amorphous germanium layer -49 - (47) 1300873 3 1, the gate insulating layer 30, and the first metal layer to expose the glass substrate 2. Due to the width of the line on the scanning line 1, the relationship between the resistance 値 and the narrowest is generally 10//m or more, so the reticle used to form the 81B (intermediate adjustment area) or its processing size Precision management can be easily implemented. Then, when the film thickness of the photosensitive resin patterns 8 1 A and 8 1 B is reduced by 1 μm or more by means of an ashing means such as oxygen plasma, the photosensitive resin pattern 81B disappears, and the second SiNx layers 32A and 32B are exposed. (not shown), the photosensitive resin pattern 8 1 C can be selectively formed only on the protective insulating layer forming region. Since the photosensitive resin pattern 8 1 C (black area), that is, the pattern width of the channel protective layer, is the size of the source/drain wiring and the alignment accuracy of the mask, the source/drain wiring is set to 4 Up to 6 //m, when the alignment accuracy is set to ±3//m, the minimum is also 10 to 12//m, and the dimensional accuracy requirements are not strict. However, when the photoresist pattern 81A is changed to 8 1 C, when the film thickness isotropic of the photoresist pattern is reduced by 1 # m, the size is not only reduced by 2 // m, but when the subsequent source/drain wiring is formed, the light is formed. The aligning accuracy of the hood is reduced by l//m, and ±2//m is formed. The latter requirement is stricter than the former in the process. Therefore, in the above oxygen plasma treatment, when the change in the pattern size is suppressed, it is preferable to enhance the anisotropy. Specifically, it is preferable to use an RIE (Reactive Ion Etching) method, an ICP (Inductive Coupled Plasama) method having a high-density plasma source, or a TCP (Transfer Coupled Plasama) method. Alternatively, it is desirable to estimate the dimensional change amount of the photoresist pattern, to pre-design the pattern size of the photoresist pattern 8 1 A to be large, or to make the pattern of the photoresist pattern 81A -50-(48) 1300873 Increased exposure, development conditions, and the like of the process. Further, as shown in FIGS. 1(b) and 2(b), the second SiNx layer 32A is made thinner than the gate electrode 1 1 A with the photosensitive resin pattern 8 1C as a mask. Selectively applying etching to form a second SiNx layer 32D (uranium engraving stop layer, channel protective layer, protective insulating layer) while exposing the first amorphous germanium layer 3 1 A on the scan line 1 and the storage capacitor line 1 The first amorphous germanium layer 3 1 B on 6. The protective insulating layer forming region, that is, the size of the photosensitive resin pattern 8 1 C (黒 region), the minimum size of at least 10 // m, and the region other than the white region and the germanium region as the mask of the halftone exposure region The fabrication is easy. When compared with the channel-etched insulating gate transistor, the ON current of the insulated gate transistor is determined by the size of the channel protection insulating layer 32D, rather than by the source/drain wiring 12, 21 Process size is determined, so process management is easier. Specifically, for example, in the channel etching type, the size between the source and drain wirings is 5 ± 1 // m, and the size of the etch-stop type insulating insulating layer is 10 ± 1 // m, which is the same. Under the exposure and development conditions, the amount of change in the ON current is approximately halved. After the photosensitive resin pattern 81C is removed, as shown in FIGS. 1(c) and 2(c), an insulating layer 76 is formed on the side surface of the gate electrode 1 1 A. Therefore, as shown in Fig. 2, it is necessary to have the wiring 7 7 which is bundled in parallel with the scanning line 11 (the storage capacitor line 16 is the same, not shown here) and the plating or anode on the outer peripheral portion of the glass substrate 2. a connection pattern 7 for providing a potential during oxidation, and a film formation region of an appropriate masking method using an amorphous germanium layer 3 made of a plasma CV D and a tantalum nitride layer 30, 3 2 7 9, is limited to -51 - (49) 1300873 At least on the inner side of the connection pattern 78, at least the connection pattern 7 8 must be exposed. In the connection pattern 78, a + (positive) potential is applied by a connection means such as an alligator clip, and the glass substrate 2 is impregnated into a reaction liquid containing ethylene glycol as a main component to perform anodization, and if the scanning line 1 1 is A1 In the case of an alloy, for example, a reaction voltage of 200 V can be formed to form alumina (A1203) having a film thickness of 0.3 // m. At the time of electroplating, as shown in the monthly publication "Polymer Processing", the January 1st issue of the 002, the pentacarboxy-containing polyimine coating solution is formed to have a film thickness of 0.3/m by electroplating voltage of several v. Polyimine resin layer. Further, by forming the insulating layer 76, the pinholes of the gate insulating layer 30A on the scanning line 11 are embedded in the insulating layer of alumina or polyimide resin, so that it is also described later. The source/drain wiring 1 2, 2 1 between the interlayer short circuit is suppressed side effects. Then, using a PCVD apparatus, a second amorphous germanium layer 3 containing an impurity such as phosphorus is coated on the entire surface of the glass substrate 2 at a film thickness of, for example, about 0.05 // m, as shown in Fig. 1(d) and In the region other than the image display portion, the opening portion 63A is formed on the scanning line 1 1 in the region other than the image display portion, and the storage capacitor line 16 is bundled on the storage capacitor line 16 or in parallel. An opening 65A is formed on the electrode terminal of the electrode, and the first amorphous sand layer 33, the first amorphous layer 3 1 A, and the gate insulating layer 3 0 A ' in the opening 63A are selectively removed and selected Part of the scanning line 73, the second amorphous germanium layer 33 in the opening 65A, the first amorphous germanium layer 3 1 B, and the gate insulating layer 3 0 B are removed, and a portion of the storage capacitor line 16 is exposed. Then, in the process of forming the source/drain wiring, a vacuum film forming apparatus such as SPT is used to sequentially coat a heat-resistant metal film such as Ti-52-(50) 1300873 or Ta with a film thickness of about 0·1 V m. The layer 34 serves as a heat-resistant metal layer capable of performing anodization; and, for example, the A1 film layer 35 having a film thickness of about 3//m, as a low-resistance wiring layer which can be anodized as well; and a film thickness of about 0.1 // m, for example The heat resistant metal thin film layer 36 such as T a is used as an intermediate conductive layer which can also be anodized. Then, the source/drain wiring material composed of the three-layer thin film, the second amorphous germanium layer 3 3, and the first amorphous germanium layer are sequentially etched by a microfabrication technique using a photosensitive resin pattern. 3 1 A, 3 1 B, and the gate insulating layers 30A, 30B are exposed, and as shown in FIGS. 1(e) and 2(e), the layers formed by 34A, 35A, and 36A are selectively formed. The drain electrode 2 1 of the insulated gate type transistor and the signal line 12 2 also serve as the source electrode. In order not to bias the source/drain wirings 1, 2, 2 1 to operate, it is of course necessary to partially overlap the channel protective layer 3 2 D. Further, generally, in order to avoid side effects caused by the action of the battery, the source/drain wirings 1 2 and 2 1 are formed, and the electrode terminals 5 of the scanning lines are also formed at the same time as the partial scanning lines 73, but the electrode terminals 5 are formed. It is not necessary, so the transparent conductive electrode terminal 5 A can be directly formed in the subsequent work. In the case of the composition of the source/drain wirings 1, 2 and 2, when the limitation of the resistance 较 is loose, it is reasonable to simplify the formation of the Ta single layer. Further, in the A1 alloy to which Nd is added, the chemical potential is lowered, and the alkali is lowered. The chemical corrosion reaction with ITO in the solution is suppressed, so that the intermediate conductive layer 3 6 is not required at this time, and the laminated structure of the source/drain wirings 1 2 and 2 1 can be formed into two layers, and the source is formed. • The composition of the bungee wiring 1 2, 21 is somewhat simplified. This is the same situation when IZO is used instead of ITO. After the source/drain wirings 12 and 21 are formed, ITO, such as a film thickness of 0.1 to 0.2 /im, is coated on the entire surface of the glass substrate 2 using a vacuum-53-(51) 1300873 film device such as SPT as a transparent conductive layer. Further, as shown in Fig. 1(f), Fig. 2(f), a portion of the intermediate conductive layer 3 6 A including the drain electrode is selectively formed by the microfabrication technique, and the element electrode 2 2 is selectively formed on the glass substrate 2. At this time, in the region outside the pixel display portion, the transparent electrode layer pattern is formed on the scanning line electrode terminal 5 and the electrode terminal 6 of the partial signal line, and the transparent electrode terminals 5A and 6A are formed. As described above, the electrode terminal 5 is not formed, and the electrode terminal 5A may be formed by including the opening 63 A at this time. In addition, in the same manner as the conventional example, the transparent conductive short-circuit line 40 is provided, and the electrode terminals 5A and 6A are formed in a long line shape between the short-circuit lines 40, and the resistance is increased to form a high electrical countermeasure. resistance. Further, as shown in FIG. 1(g) and FIG. 2(g), the photosensitive resin pattern 83A which is selectively patterned using the pixel electrode 22 is used as a mask, and the light is irradiated while the source/drain wiring 1 is used. 2, 2 1 is anodized to form an oxide layer on the surface thereof. At this time, the electrode terminals 5A and 6A are protected by the photosensitive resin patterns 83B and 83C. Ta is exposed on the upper surface of the source/drain wiring 21, and a layer of Ta, Al, Ti, and the second crystalline germanium layer 33A is exposed on the side surface, and the second non-ferrous layer 33A is deteriorated into a content by anodization. The impurity ruthenium oxide layer (SiO 2 ) 66, Ti is a semiconductor titanium oxide (Ti02 ) 68, A1 is metamorphosed into an insulating oxide (AL2O3) 69, and Ta is degraded into an oxide giant (Ta205) 70 as an insulating layer. The titanium oxide layer 68 is not an insulating layer, the film thickness is extremely large, and the exposed area is also small, so that it does not pose a problem in passivation, and the direct and static oxygenation of the resistance is a 12 amorphous layer. Five thin heat • 54- (52) 1300873 Metal film layer 34A is also better to choose Ta. However, Ta differs from Ti in that it lacks the functional properties of the surface oxide layer of the absorbing substrate to make ohmic contact easier, which is to be noted. In order to form a good film anodized layer on the drain wiring 2, the simultaneous anodization of the irradiated light is an important point in the anodizing process and has been disclosed in the prior art. Specifically, if a sufficient intensity of light of about 10,000 metric lux is applied, and the leakage current of the insulated gate type transistor exceeds μ ,, the anodic oxidation of about 10 mA/cm 2 is calculated from the area of the drain electrode 21 . It can be used to obtain a current density of good film quality. Further, even if the film quality of the anodized layer on the drain wiring 21 is insufficient, the reason why sufficient reliability is generally obtained is that the driving signal applied to the liquid crystal cell is substantially a parent flow so that the counter electrode 14 and When the DC voltage component between the pixel electrodes 22 (the drain electrode 2 1 ) is reduced, the voltage of the counter electrode 14 is adjusted during the image inspection (the adjustment of the flash voltage is reduced), and the DC voltage component is reduced. In principle, as long as the insulating layer is formed in advance, the direct current component is not allowed to flow only on the signal line 12. The film thickness of each of the oxide layers of the molybdenum pentoxide 70, the alumina 69, the titanium oxide 68, and the yttrium oxide layer 66 formed by anodization is sufficient to form a passivation of about 1.1 to 〇.2//ηι. A reaction liquid such as ethylene glycol is used in which the applied voltage is also more than 100V. The anodization of the source/drain wirings 12 and 21 should be noted. Although not shown, all the signal lines 12 must be electrically connected in parallel or in series. In subsequent manufacturing processes, the parallel connection or When connected in series, not only the electrical inspection of the active substrate 2 but also the actual operation of the liquid crystal display device is hindered. -55 - (53) 1300873 As a means of releasing the electrical connection, it is quite simple to use fluoroscopy by laser irradiation or mechanical removal by scraping, but detailed description is omitted here. The reason why the pixel electrode 22 is first covered with the photosensitive resin pattern 83A is that it is necessary not only to anodize the pixel electrode 22 but also to pass through the insulating gate type transistor, and to ensure that the reaction current flowing to the gate electrode 2 1 is necessary.値 Above. Finally, the photosensitive resin patterns 83 A to 83C are removed, and the active substrate 2 (semiconductor device for display device) is completed as shown in Figs. 1(h) and 2(h). The active substrate 2 and the color filter obtained in this manner are bonded together and the liquid crystal is panelized to complete the first embodiment of the present invention. As for the configuration of the storage capacitor 15 as shown in Fig. 1(h), it is exemplified that the storage capacitor line 16 and the pixel electrode 2 2 form a plane overlap with the gate insulating layer 3 0 B (top left to bottom right). Although the configuration of the storage capacitor 15 is not limited to this, the insulating layer including the gate insulating layer 3 0 A may be interposed between the pixel electrode 22 and the front scanning line 1 1 . . Further, other configurations are also possible, but detailed description thereof will be omitted. Similarly, since the contact forming process with respect to the scanning line 11 is performed, it is easier to perform a countermeasure against static electricity by using a conductive material or a semiconductor layer other than the transparent conductive layer. In the first embodiment, since the pixel electrode forming process is performed in accordance with the source/drain wiring formation process, the yield of the source wiring and the pixel electrode is likely to be lowered, and the overlap with the scanning line is exerted. The effect of the parasitic capacitance makes the pixel electrode larger and the aperture ratio increases, which is not ideal. Then, 56-(54) 1300873', in order to increase the aperture ratio, a liquid crystal display device which uses a thick transparent resin to passivate the source/drain wiring is explained in the second embodiment. (Second embodiment)

第二實施例,如第3圖(c )和第4圖(c ))所示, 到閘極電極1 1 A的側面形成絕緣層76爲止,以與第一實 施例相同的製造工程來進行。然後,使用PCVD裝置,在 玻璃基板2整面,以例如0.05 //m左右的膜厚,被覆含雜 質例如磷的第二非晶質矽層3 3後,使用S P T等真空製膜 裝置,依序被覆:膜厚左右的Ti、Ta等薄膜層 34,作爲耐熱金屬層;和膜厚爲0.3 // m左右的A1薄膜層 3 5,作爲低電阻配線層。而且,利用微細加工技術,使用 感光性樹脂圖案,依序餘刻由這三層薄膜構成的源極•汲 極配線材、第二非晶質矽層3 3、和第一非晶質矽層3 1 A ' 3 1B,而露出閘極絕緣層30A、30B。如第3圖(d )和 第4圖(d )所示,選擇性地形成:由34A、35A及36a 積層所構成的絕緣閘極型電晶體的汲極電極2 1和兼作源 極電極的信號線1 2。再者,若電阻値的限制較鬆的話, 則源極•汲極的構成亦可簡化成Ta單層,而且選擇添加 Nd的A1合金,將源極•汲極配線12、21的積層構造作 成兩層構成亦可。 接著,如第3圖(e )和第4圖(e )所示,在玻璃基 板2的整面,塗布厚度1 · 5 // m以上之透明性與耐熱性優 良的感光性聚丙烯酸樹脂3 9作爲透明絕·緣層,較佳者爲 -57- (55) 1300873 以0.3// m左右的厚度來塗佈,藉由使用光罩的選擇性紫 外線照射,在汲極電極21上和畫像顯示部以外的區域, 分別在掃描線的一部分5上和信號線的一部分6上和儲存 電容線的電極端子形成區域上,形成開口部62、63、64 、6 5。而且,後烘培後,以感光性聚丙烯酸樹脂3 9作爲 遮罩,分別選擇性去除開口部63、65內的閘極絕緣層 30A、30B,露出掃描線的一部分73(5)和儲存電容線的 一部分7 5。在開口部6 2、6 4內,於顯影之後,露出汲極 電極的一部分2 1和信號線的一部分74 ( 6 )。再者,開 口率稍有降低,然而可不用感光性聚丙烯酸樹脂3 9,而 採用SiNx層作爲鈍化絕緣層,通常使用透明絕緣層在 SiNx層形成上述開口部62、63、64、65亦可。 最後在玻璃基板2整面使用SPT等真空製膜裝置, 以例如0.1至〇· 2 // m左右的膜厚,被覆例如I TO作爲透 明導電層,如第3圖(f)和第4圖(f)所示,藉由微細 加工技術,在包含露出於開口部6 2內的汲極電極2 1的部 分中間導電層3 6 A的聚丙烯酸樹脂3 9上,選擇性地形成 畫素電極22。感光性聚丙烯酸樹脂3 9很厚,故畫素電極 22形成得盡可能大,即使部分與掃描線1 1或信號線1 2 重疊,亦不會產生串訊等畫質劣化。此時,以包含開口部 63內的部分掃描線73和開口部64內的部分信號線74 ’ 形成透明導電性的電極端子5A、6A。再者,在此與習知 例同樣地,藉由在電極端子5A、6A的外側設置透明導電 性的短路線40,把電極端子5 A、6A和短路線40之間形 •58- (56) 1300873 成爲細長線狀以高電阻化,作爲靜電對策。 使依此所得的主動式基板2和彩色濾色片貼合, 面板化,而完成本發明的第2實施例。有關儲存電^ 的構成,如第3圖(e )所示,例示了儲存電容線1 6 極電極21中介著閘極絕緣層30B和第一非晶質矽層 和第二非晶質矽層而重疊的區域5 0 (左上往右下之 部),構成蓄積電容1 5之例,又,汲極電極2 1和前 掃描線丨〗中介著閘極絕緣層3 〇 A構成儲存電容1 5 ’不過在此省略其詳細說明。 第一和第二實施例中,在所謂掃描線的形成工程 道保護層(蝕刻終止層)的形成工程等圖案精度較低 ’應用半色調曝光技術,來減少微影蝕刻工程,以四 罩製作主動式基板,但是採用一道光罩來處理畫素電 掃描線的形成,可再進一步減少工程,以三道光罩即 作主動式基板,這部分將在第三至第五實施例中說明 (第三實施例) 第三實施例中,首先在玻璃基板2的一主面上, SPT等真空製膜裝置,被覆:膜厚爲0.1至0.2// m 的透明導電層91,例如ITO;和膜厚爲o.l至〇.2// 右的透明導電層91;和膜厚爲0.1至0.3// m左右的 金屬層92。由後續的說明可知悉,第三至第五實施 ,掃描線是透明導電層和金屬層的積層,故無法利用 氧化在掃描線的側面形成絕緣層。於是,因爲是藉由 液晶 ? 15 和汲 3 1 B 斜線 段的 亦可 和通 的層 道光 極和 可製 使用 左右 m左 第一 例中 陽極 電鍍 -59- (57) 1300873 在絕緣層形成有機絕緣層,所以就掃描線材料而言,可採 用不會與作爲透明導電層之ITO發生電池反應的第一金屬 層,例如Cr、Ta、Mo等高熔點金屬或這些的合金或矽化 物。要實現低電阻化時,若採用 A1的話,A1 ( Nd )合金 的單層最爲簡單,接著,介設Ta所構成的Ta/ A1 ( Zr、 Hf)、或Ta/AL/Ta的積層較爲複雜。 其次,在玻璃基板2的整面,使用PC VD裝置,分別 以例如0.3/zm、0.05//m、0.1/zm左右的膜厚,依序被 覆:作爲閘極絕緣層的第一 SiNx層30、作爲幾乎不含雜 質的絕緣閘極型電晶體通道的第一非晶質矽層31以及作 爲用以保護通道的絕緣層的第二SiNx層32,然後,如第 5圖(a )和第6圖(a )所示,利用半色調曝光技術,在 保護絕緣層形成區域即閘極電極11A上區域82A的膜厚 例如爲2 // m,形成膜厚比對應於兼作閘極電極1 1 A的掃 描線1 1和模擬畫素電極93、模擬電極端子94、95的感 光性樹脂圖案82B的膜厚1 // m還厚的感光性樹脂圖案 82A、82B,且以感光性樹脂圖案82A、82B作爲遮罩,加 上第二SiNx層32 (通道保護層)、第一非晶質矽層31、 閘極絕緣層3 0及第一金屬層92,並且也選擇性地去除透 明導電層9 1,而露出玻璃基板2。 以上述方式,獲得對應於兼作閘極電極1 1 A的掃描 線1 1、和模擬畫素電極93、和模擬電極端子94、95的多 層膜圖案後,接著,利用氧電漿等灰化手段,令上述感光 性樹脂圖案82A、82B的膜厚減少1 /i m以上時,感光性 -60- (58) 1300873 樹脂圖案82B消失,露出第二SiNx層33A至33C,同 ,可僅在保護絕緣層形成區域上,選擇性地形成感光性 脂圖案82C。上述氧電漿處理是以後續的源極·汲極配 形成工程的遮罩對準精度不會降低的方式,加強異向性 抑制圖案尺寸的變化爲佳,這與已述的理由相同。而且 如第5圖(b )和第6圖(b )所示,以感光性樹脂圖 82C作爲遮罩,選擇性地蝕刻第二SiNx層32 A至32C 將圖案寬幅比閘極電極1 1 A還細的第一 SiNx層3 2D殘 在閘極電極1 1 A上,同時分別在掃描線1 1上和模擬電 端子94上露出第一非晶質砂層31A,在模擬畫素電極 上露出第一非晶質矽層31B,而且在模擬電極端子95 露出第一非晶質矽層3 1 C。 接著,去除上述感光性樹脂圖案82C後,如第5圖 c )和第6圖(c )所示,在閘極電極1 1 A的側面形成絕 層76。因此,在第21圖所示的連接圖案78使用鱷魚 等的連接手段,賦予掃描線11+ (正)電位,然而亦 根據電鍍液的組成,而賦予-(負)電位。而且,就有 絕緣層而言,以例如數V電鍍電壓,形成具有〇·3 // m 厚的聚醯亞胺樹脂層。模擬畫素電極93因電性獨立, 在模擬畫素電極93的周圍不會形成絕緣層76。 然後,使用PCVD裝置,在玻璃基板2的整面’以 如0.0 5 // m左右的膜厚,被覆含雜質例如磷的第二非晶 矽層3 3,如第5圖(d )和圖6 ( d )所示,藉由使用感 性樹脂圖案88的微細加工技術,在模擬畫素電極93上 時 樹 線 以 案 留 極 93 上 ( 緣 夾 可 機 膜 故 例 質 光 形 -61- (59) 1300873 成開口部3 8、和畫像顯示部以外的區域之掃描線1 擬電極端子94上形成開口部63A、和在信號線的 極端子95上形成開口部64A,加上上述開口部內 非晶質矽層3 3和第一非晶質矽層3 1 A至3 1 C和閘 層3〇a至30C,也選擇性地去除第一金屬層92A至 露出透明導電層和透明導電層所構成的掃描線的電 5A和信號線的電極端子6A、畫素電極22。 最後,使用SPT等真空製膜裝置’依序被覆 0.1# m左右的Ti、Ta等耐熱金屬薄膜層34作爲 屬層,且以膜厚爲〇.3/zm左右的A1薄膜層35作 阻配線層。利用微細加工技術,使用感光性樹脂園 ,依序蝕刻由第二非晶質矽層3 3、和第一非晶 31A,而露出閘極絕緣層30A,如第5圖(e)和第 e )所示,選擇性地形成:含畫素電極22的一部 34A和35A積層所構成之絕緣閘極型電晶體的汲 2 1 ;和同樣含信號線之電極端子6 A的一部分且由 3 5 A積層所構成之絕緣閘極型電晶體的兼作源極電 號線1 2。掃描線的電極端子5 A和信號線的電極端 在源極•汲極配線1 2、2 1的蝕刻結束時,會在玻 2上露出。此外,就源極•汲極配線1 2、21的構 ,若電阻値的限制較鬆的話,則亦可簡化形成Ta MoW等單層。 令以此方式製成的主動式基板2和彩色濾光片 液晶面板化,而完成本發明第三實施例。第三實施 1的模 模擬電 的第二 極絕緣 92C, 極端子 =膜厚 耐熱金 爲低電 3案85 質砂層 6圖( 分且由 極電極 34A和 極的信 寻子6A 璃基板 成而e 、Cr、 貼合, 例中, •62- (60) 1300873 由於感光性樹脂圖案8 5係連接於液晶’故感光性樹脂圖 案85不是以漆用酚醛(novolac)樹脂爲主成份的一般感 光性樹脂,而使用純度高且主成份含丙烯基樹脂或聚醯亞 胺樹脂之耐熱性高的感光性有機絕緣層是很重要的,而且 ,亦可根據材質進行加熱,使其流動化’以覆蓋源極•汲 極電極配線1 2、2 1側面之方式構成,此時’可進一步提 升液晶面板的可靠性。關於儲存電容1 5的構成,係如第 5圖(e )所示,例示了含源極•汲極配線12、2 1與畫素 電極22的一部分,而形成的儲存電極72和設在前段掃描 線1 1的突起部,中介著閘極絕緣層3 0B、第一非晶質矽 層31A、第二非晶質矽層形成平面重疊之例子(左上往右 下之斜線部5 2 ),不過儲存電容1 5的構成並不侷限於此 ,與第一實施例同樣地,亦可在與掃描線1 1同時形成的 共用電容線1 6和畫素電極2 1之間,中介著含閘極絕緣層 3 0的絕緣層來構成。靜電對策線4 0是以連接於電極端子 5 A、6 A的透明導電層構成,然而因其提供對閘極絕緣層 3 0 A至3 0 C之開口部形成工程,所以採其它靜電對策亦可 〇 第三實施例中,會產生像這樣掃描線的電極端子和信 號線的電極端子皆爲透明導電層之裝置構成上的限制,但 是,亦可使用解除該限制的裝置、製程,這部分將在第四 、第五實施例中說明。 (第四實施例) -63- (61) 1300873 第四實施例係如第7圖(d )和第8圖(d )所示,至 形成接觸工程爲止’係以大致相同於第三實施例的工程來 進行。然而,由後述的理由得知,不一定需要模擬電極端 子9 5。其後,在源極·汲極配線形成工程,使用S P T等 真空製膜裝置,依序被覆:膜厚〇·1#ΠΊ左右的Ti、Ta等 耐熱金屬薄膜層34作爲耐熱金屬層;和膜厚爲0.3 /i m左 右的A1薄膜層3 5作爲低電阻配線層。利用微細加工技術 ,使用感光性樹脂圖案8 6,依序蝕刻由這兩層薄膜構成 的源極•汲極配線材、第二非晶質矽層3 3 A、和第一非晶 質砂層31A,而露出閘極絕緣層30A。如第7圖(e)和 第8圖(e )所示,選擇性地形成:含畫素電極22的一部 分且由34A和35A積層所構成之絕緣閘極型電晶體的汲 極電極2 1 ;和兼作源極配線的信號線1 2,且含在源極· 汲極配線1 2、2 1形成時露出的掃描線的一部分5 A,由掃 描線的電極端子5和信號線的一部分所構成的電極端子6 也同時形成。也就是說,不一定需具有如第三實施例之模 擬電極端子9 5。此時,第四實施例的重要特徵是,利用 半色調曝光技術,事先形成感光性樹脂圖案86A、86B, 而該感光性樹脂圖案86A、86B的膜厚係信號線12上之 區域86A的膜厚例如爲3//m、大於汲極電極21上、電 極端子5、6上和儲存電極72上之86B的膜厚1.5/zm。 與電極端子5、6相對應之86B的最小尺寸爲數10//m, 比較大,光罩製作、成品尺寸管理比較容易,而與信號線 1 2相對應之區域8 6 A的最小尺寸爲4至8 // m,尺寸精 -64- (62) 1300873 度要求比較高,故半色調區域必須形成較細的狹縫圖案。 然而,如習知例之說明,與利用一次曝光處理和兩次蝕刻 處理形成的源極•汲極配線1 2、2 1相比較,因爲本發明 之源極•汲極配線1 2、2 1係藉由一次曝光處理和一次蝕 刻處理所形成,所以影響圖案寬度變動的因素較少,而源 極•汲極配線1 2、2 1的尺寸管理、源極•汲極配線1 2、 2 1間即通道長度的尺寸管理,相較於習知的半色調曝光 技術而言,其圖案精度的管理較容易。又,與通道蝕刻型 的絕緣閘極電晶體相比較時,決定絕緣閘極型電晶體的 ON電流,是通道保護絕緣層32D的尺寸,而不是源極· 汲極配線1 2、2 1間的尺寸,由這幾點可知,製程管理更 爲容易。 源極•汲極配線1 2、2 1形成後,利用氧電漿等灰化 手段,使上述感光性樹脂圖案86A、86B的膜厚減少1.5 // m以上時,感光性樹脂圖案86B消失,如第7圖(f) 和第8圖(f)所示,汲極電極21、和電極端子5、6露 出,同時可僅在信號線1 2上,選擇性地形成感光性樹脂 圖案86C,但是,由於利用上述氧電漿處理,使感光性樹 脂圖案86C的圖案寬度變細時,信號線12的上面露出, 可靠性降低,故以加強異向性,抑制圖案尺寸的變化爲佳 。此外,就源極•汲極配線12、2 1的構成而言,若電阻 値的限制較鬆的話,則亦可簡化成T a、C r、Μ 〇等單層。 令以此方式製成的主動式基板2和彩色濾光片貼合, 液晶面板化,而完成本發明第四實施例。由於第四實施例 -65- (63) 1300873 中,感光性樹脂圖案86C係連接於液晶,故感光性樹脂圖 案86C並不是以漆用酚醛樹脂爲主成份的一般感光性樹脂 ,使用純度高且主成份含丙烯基樹脂或聚醯亞胺樹脂之耐 熱性高的感光性有機絕緣層是很重要的,而且亦可隨材質 不同而以加熱並使流動化,覆蓋信線號線1 2側面的方式 所構成。此時,可進一步提升液晶面板的可靠性。關於儲 存電容1 5的構成係如第7圖(f)所示,例示了含源極· 汲極配線1 2、2 1與畫素電極22的一部分,而形成的儲存 電極7 2和設在前段掃描線1 1的突起部,中介著閘極絕緣 層3 0B、第一非晶質矽層31A、第二非晶質矽層形成平面 重疊的例子(左上往右下之斜線部52)。再者,藉由將 用以連接部分掃描線5 A及信號線1 2所形成的透明導電 性圖案6 A (模擬電極端子9 1 C )、和短路線4 0的透明導 電層圖案,其形狀形成爲細長線狀,可形成靜電對策的高 電阻配線,然而,當然亦可使用其它導電性構件作爲靜電 ¥寸策。 本發明的第四實施例中,僅在信號線1 2上形成有機 絕緣層,汲極電極21係在確保導電性的狀態露出,藉此 構成亦可獲得充分的可靠性之理由係由於,施加於液晶晶 胞的驅動信號基本上是交流的,在對向電極1 2和畫素電 極2 2間,以直流電壓成份變少之方式,在畫像檢查時調 整對向電極14的電壓,(閃爍減少之調整),因此,僅 在信號線1 2上事先形成絕緣層,使直流成份不會流通即 可。 •66- 1300873 (64) 本發明之第三和第四實施例中,僅分別在源 配線上和信號線上,選擇性地形成有機絕緣層, 造工程的減少,但是,因爲有機絕緣層的厚度通 μ m以上,故高精細面板的畫素較小時,使用平 配向膜的配向處理,恐怕會因有高度差招致非配 或在液晶晶胞之間隙精度的確保上產生障礙之虞 第五實施例具備藉由增設最小限度的工程數,以 絕緣層的鈍化技術。 (第五實施例) 第五實施例係如第9圖(d )和第1 0圖(d 至形成接觸工程爲止,係以大致相同於第三、第 的工程來進行。繼之,在源極•汲極配線形成工 用SPT等真空製膜裝置,依序被覆:膜厚0.1# Ti、Ta等耐熱金屬薄膜層34作爲可施行陽極氧 金屬層;和膜厚〇·3μπι左右的A1薄膜層35作爲 極氧化的低電阻配線層。然後,利用微細加工技 感光性樹脂圖案8 7,依序蝕刻由這兩層薄膜構 •汲極配線材、第二非晶質矽層33Α、和第一非 3 1 A,而露出閘極絕緣層3 0 Α。如第9圖(e )和 (e )所示,選擇性地形成:含畫素電極22的一 34A和35A積層所構成之絕緣閘極型電晶體的 21、和兼作源極配線的信號線12,同時亦形成 的電極端子5,其包含形成源極•汲極配線12、 極•汲極 以達成製 常爲1 磨用布之 向狀態, 。在此, 變成有機 )所示, 四實施例 程中,使 m左右的 化的耐熱 可施行陽 術,使用 成的源極 晶質砂層 丨第10圖 部分且由 汲極電極 :掃描線 • 21之同 -67- (65) 1300873 時所露出的部分掃描線5A ;和由部分信號線所構 極端子6。此時,第五實施例的重要特徵是,利用 曝光技術,事先形成感光性樹脂圖案87A、87B, 光性樹脂圖案87 A、87B的膜厚係電極端子5、6 域8 7 A (黑區域)的膜厚例如爲3 /i m,大於源極 電極12、21上和儲存電極72上之區域87B (中間 )的膜厚1.5 // m。 源極•汲極配線12、21形成後,利用氧電漿 手段,令上述感光性樹脂圖案87A、87B的膜厚減 // m以上時,感光性樹脂圖案8 7C消失,源極•汲 12、21和儲存電極72露出,同時可僅在掃描線1 擇性地形成感光性樹脂圖案87C。値得一提的特徵 使利用上述氧電漿處理,使感光性樹脂圖案87C的 度變細,由於僅在具有大圖案尺寸的電極端子5、 ,形成陽極氧化層,故幾乎不會對電性特性和良率 造成影響。接著,以感光性樹脂圖案87C作爲遮罩 光,如第9圖(f)和第1 〇圖(f)所示,將源極 配線1 2、2 1施以陽極氧化而形成氧化層6 8、6 9, 源極•汲極配線1 2、2 1下側面所露出的第二非晶 3 3 A施以陽極氧化,而形成作爲絕緣層之氧化矽層 )66 ° 陽極氧化結束後,去除感光性樹脂圖案87C時 9圖(g )和第10圖(g )所示’在其側面露出由 極氧化層之低電阻薄膜層3 5 A所構成的電極端子 成的電 半色調 而該感 上之區 •汲極 調區域 等灰化 少 1.5 極配線 2上選 是,即 圖案寬 6周圍 及品質 ,照射 •汲極 同時將 質矽層 (Si02 ,如第 形成陽 5、6 ° -68- (66) 1300873 可知掃描線電極端子6的側面,係經由靜電對策用高電阻 短路線4 0 ( 9 1 C ),流通陽極氧化電流,故與信號線之電 極端子5相比較,形成於側面之陽極氧化層厚度較薄。此 外,就源極•汲極配線1 2、2 1的構成而言,若電阻値的 限制較鬆的話,則亦可簡化成得以施行陽極氧化的Ta單 層。令以此方式製成的主動式基板2和彩色濾光片貼合, 液晶面板化,而完成本發明第五實施例。關於儲存電容 1 5的構成,係如第9圖(g )所示,例舉了含源極•汲極 配線12、21與畫素電極22的一部分,而形成的儲存電極 72和設在前段掃描線1 1的突起部,介著閘極絕緣層30A 、第一非晶質矽層3 1 A、第二非晶質矽層形成平面重疊的 例子(左上往右下之斜線部52 )。 第五實施例中,像這樣,源極•汲極配線12、21和 第二非晶質矽層33B進行陽極氧化時,與汲極電極21電 性相繫的畫素電極22也會露出,故畫素電極22也同時會 被陽極氧化,這點與第一實施例有很大的不同。因此,隨 著構成畫素電極22之透明導電層的膜質的不同,有時電 阻値會因陽極氧化而增大,此時,必須先適當變更透明導 電層的製膜條件,形成氧不足的膜質,但是透明導電層的 透明度不會因陽極氧化而降低。再者,供汲極電極21、 畫素電極22、和儲存電極72陽極氧化的電流也是經由絕 緣閘極型電晶體的通道而供給,然而,由於畫素電極22 的面積較大,故需要大的反應電流或長時間的反應,不論 照射多強的外光,通道部的電阻都不會產生妨礙,在汲極 -69- (67) 1300873 電極2 1和儲存電極72上,形成與信號線1 2上同等膜質 和膜厚的陽極氧化層,僅利用反應時間的延長實有因應上 的困難。然而,即使形成於汲極配線21上的陽極氧化層 有些不完全’實際上多可獲致沒有妨礙的可靠性。之所以 如此是由於如上所述,僅在信號線1 2上,以直流成份不 會流通之方式事先形成絕緣層即可之故。 上述說明的液晶顯示裝置是使用TN型的液晶晶胞的 構成,而藉由與畫素電極隔著特定距離所形成的一對對向 電極和畫素電極,控制橫方向電場之IPS ( In-Plain-Swt icing)方式的液晶顯示裝置中,本發明所提案的工程 減少是有用的,這部分將於後續的實施例中說明。 (第六實施例) 第六實施例,乃如第1 1圖(e )和第12圖(e )所示 ,在玻璃基板2的整面,以以上的厚度,最好爲 3// m左右的厚度來塗布以感光性聚丙烯酸樹脂39作爲透 明性和耐熱性優的透明樹脂,藉由使用光罩的選擇性紫外 線照射,在汲極電極21上和畫像顯示部以外的區域,分 別在掃描線的一部分5上和信號線的一部分6上和儲存電 容線的電極端子形成區域形成開口部62、63、64、65, 後烘培後,以感光性聚丙烯酸樹脂3 9作爲遮罩,選擇性 去除開口部63、65內的聞極絕緣層30A、30B,到分別露 出掃描線的一部分73 ( 5 )和儲存電容線的一部分75爲 止,是利用與第二實施例相同的製造工程進行的。在開口 * . . * - •70- (68) 1300873 部62、64內,於顯影之後,露出汲極電極2 1和信號線的 一部分 74 ( 6 )。 接著,在玻璃基板2的整面,使用SPT等真空製膜 裝置,被覆以膜厚0.1至0.2 // m左右之例如ITO作爲透 明導電層,如第1 1 ( f)和第12圖(f)所示,使用微細 加工技術,在包含露出在開口部62內的汲極電極2 1的中 間導電層3 6 A的一部分透明樹脂3 9上選擇性地形成:畫 素電極41、和包含掃描線上1上與信號線12上的對向電 極42。此時,包含開口部63內的掃描線的一部分73和 開口部64內的信號線的一部分74作爲透明導電性的電極 端子5 A、6 A,與習知例同樣的,設有透明導電位的短路 線40,藉由將電極端子5A、6A和短路線40之間形成爲 細長的線狀,可高電阻化而形成靜電對策。 於IPS型液晶顯示裝置中,畫素電極4 1和對向電極 42的間隙影響顯示,然而畫素電極4T和對向電極42,其 電極內的電位爲一定,未影響顯示,故以透明導電層形成 畫素電極41和對向電極42,不一定是最適當選擇。使用 金屬性的例如Ti、Cr、MoW合金取代透明導電層時,電 阻値降下,故畫素電極41和對向電極42的膜厚可以變薄 ,提升配向性,或是不須藉由選擇Ti/ A1合金積層,在 源極•汲極配線1 2、2 1的上層部配置Ti或Ta等中間金 屬層,源極•汲極配線1 2、2 1的構成即可簡化。但是, 選擇金屬性電極時,未實施與上述之靜電對策有別的靜電 對策時,高電阻化有困難。在畫素電極41和對向電極42 -71 - (69) 1300873 採用透明導電層的優點佳,是因同時生產TN型液晶面板 和IPS型液晶面板的量產工廠中,不需要更換濺鍍裝置的 標靶,或是不需要兩種濺鍍裝置等理由。 令以此方式製成的主動式基板2和彩色濾光片貼合, 液晶面板化,而完成本發明第六實施例。關於儲存電容 1 5的構成,係如第11圖(d )所示,例舉了儲存電容線 1 6和汲極電極2 1,中介著閘極絕緣層3 0 B、第一非晶質 矽層31B、第二非晶質矽層,而形成重疊的區域50(左上 往右下之斜線部),構成儲存電容1 5之例,汲極電極2 1 和前段的掃描線1 1,中介著閘極絕緣層3 0 A,構成儲存 電容1 5亦可。 第六實施例中,習知光學上無效的掃描線1 1上和信 號線1 2上也可配置對向電極,此結果,賦予顯示的區域 可擴大,可獲得高開口率的IPS型液晶顯示面板,不過, 不易減少更多的製造工程數。於是,合理化鈍化形成,進 一步減少製造工程數的發明,在第七和第八實施例說明。 (第七實施例) 第七實施例中,首先,與習知例同樣地,使用 SPT 等真空製膜裝置,在玻璃基板2的一主面上,被覆膜厚 〇·1至〇.3//m左右的例如Cr、Ta、Mo等或這些的合金或 矽化物,作爲第一金屬層。 接著,使用PCVD裝置,在玻璃基板2的整面,分別 以例如0.3// m ' 〇.〇5/rm、〇.1 β m左右的膜厚,依序被 -72- (70) 1300873 覆:作爲閘極絕緣層之第一 SiNx層30 ;和作爲幾乎不含 雜質之絕緣閘極型電晶體通道之第一非晶質矽層3 1 ;和 作爲保護通道之絕緣層的第二SiNx層32等三種薄膜層, 然後如第1 3圖(a )和第14圖(a )所示,利用半色調曝 光技術,使保護絕緣層形成區域即閘極電極1 1 A上的區 域84A的膜厚例如形成爲2 // m,比對應於兼作掃描線 1 1和儲存電容線的對向電極16的區域84B上的膜厚1 // m更厚的感光性樹脂84A、84B,且以感光性樹脂圖案 84A、84B爲遮罩,選擇性地去除第二SiNx層32(通道 保護層)、第一非晶質矽層3 1、閘極絕緣層3 0及第一金 屬層,而露出玻璃基板2。 接著,利用氧電漿等灰化手段,令上述感光性樹脂圖 案84A、84B的膜厚減少1 // m以上時,感光性樹脂圖案 84B消失,在掃描線11上露出第二SiNx層32A,在對向 電極16上露出第二SiNx層32B,同時可只在保護絕緣層 形成區域寬幅比閘極電極1 1 A更細的選擇性地蝕刻第二 SiNx層32A作爲第二SiNx層32D,同時在掃描線11上 露出第一非晶質矽層31A,且在對向電極16上露出第一 非晶質矽層3 1 B 〇 去除上述感光性樹脂圖案84C後,如第1 3圖(c )和 第14圖(c )所示,在閘極電極1 1A的側面形成絕緣層 76。因此,如第25圖所示,必須具有與掃描線1 1 (儲存 電容線1 6也一樣,此處則省略圖示)並列綁束之配線7 7 、和在玻璃基板2的外周部電鍍(e 1 e c t r ο p 1 a t i n g )或陽極 -73- (71) 1300873 氧化時用以賦予電位之連接圖案78’再者’使用根據電 漿CVD之非晶質砂層31和氮化砂層3()、32之適當電紫 手段的製膜區域7 9 ’乃限定在靠連接圖案7 8的內側’至 少必須露出連接圖案78 〇 umm 那一層都可。 使用 P C V D裝置,在玻璃基板2的整面’以例如 0.05μπι左右的膜厚’被覆含雜質例如碟的第二非晶矽層 3 3後,如第1 3圖(d )和第14圖(d )所示’在畫像顯 示部以外的區域’使用微細加工技術’在掃描線1 1上形 成開口部63A和儲存電容線16’或在並列,綁束儲存電容 線1 6的電極的電極端子上形成開口部6 5 A ’且選性性地 去除開口部63A內的第二非晶質砂層33和第一非晶質5夕 層3 1 A和閘極絕緣層3 0 A,並選性性地去除掃描線的一部 分73、和開口部65 A內的第二非晶質矽層3 3、和第一非 晶質矽層3 1 B、和閘極絕緣層3 0B ’露出儲存電容線1 6 的一部分7 5。 接著,在源極•汲極配線的形成工程中,使用SPT 等真空製膜裝置,依序被覆:膜厚〇」//m左右的例如Ti 、Ta等耐熱金屬薄膜層34作爲耐熱金屬層,且以膜厚爲 〇 · 3 // m左右的A1薄膜層3 5作爲低電阻配線層。然後, 利用微細加工技術,使用感光性樹脂圖案8 6,依序蝕刻 由這兩層薄膜所構成的源極•汲極配線材和第二非晶質矽 層3 3、和第一非晶質矽層3 1 A、3 1 B,露出閘極絕緣層 3 0A、3 0B,如第13圖(e)和第]4圖(e)所示,選擇 -74- (72) 1300873 性地形成:由34A和35A積層所構成之作爲畫素電 絕緣閘極型電晶體的汲極電極2 1 ;和兼作源極配線 號線1 2,同時亦形成:電極端子6,其係含源極·汲 線1 2、2 1形成的同時所露出之部分掃描線7 3,並由 線的電極端子5和部分信號線所構成。此時,利用半 曝光技術,事先形成信號線12上的86A的膜厚例 //m、比汲極電極21及電極端子5、6上的86B的膜 如1 .5 // m更厚的感光性樹脂圖案86A、86B,這是第 施例的重要特徵。 源極•汲極配線1 2、2 1形成後,利用氧電漿等 手段,令上述感光性樹脂圖案86A、86B的膜厚減4 // m以上時,感光性樹脂圖案86B消失,如第1 3圖 和第14圖(f)所示,而露出汲極電極21和電極端 、6,同時可僅在信號線1 2上,選擇性地形成感光性 圖案86C,但是,由於利用上述氧電漿處理,使感光 脂圖案86C的圖案寬度變細時,信號線12的上面露 可靠性降低,故以加強異向性’抑制圖案尺寸的變化 。再者,就源極•汲極配線12、2 1的構成而言,若 値的限制較鬆的話,則亦可簡化形成T a、c r、M 0 w 等單層。 令以此方式製成的主動式基板2和彩色濾光片貼 液晶面板化,而完成本發明第七實施例。IP S型液晶 裝置由上述之說明可知悉’在主動式基板2上,不需 明導電性的畫素電極22,且在彩色濾光片的對向面 極的 的信 極配 掃描 色調 爲3 厚例 七實 灰化 1.5 (f) 子5 樹脂 性樹 出, 爲佳 電阻 合金 合, 顯示 要透 上也 -75- (73) 1300873 不需要透明導電性的對向電極14。因而,也不需要源 極 汲極配線1 2、2 1上的中間導電層。第七實施例’由 於感光性樹脂圖案8 6 C係連接於液晶’故感光性樹脂圖案 86C並不是以漆用酚醛(novolac)樹脂爲主成份的一般 感光性樹脂,而使用純度高且主成份含丙嫌基樹脂或聚醯 亞胺樹脂之耐熱性高的感光性有機絕緣層是很重要的。關 於儲存電容1 5的構成,係如第1 5圖(f)所示’例示了 畫素電極(汲極配線)2 1之一部分和兼作儲存電容線之 對向電極1 6,中介著閘極絕緣層3 0B、第一非晶質矽層 3 1 B、第二非晶質矽層形成平面重疊所構成之例子(左上 往右下之斜線部50)。再者’關於靜電對策’則省略了 記載。 本發明之第七實施例中’僅分別在信號線上形成有機 絕緣層,以達成製造工程的減少,但是,因爲有機絕緣層 的厚度通常爲1 // m以上,故高精細面板的畫素較小時’ 使用平磨用布之配向膜的配向處理,恐怕會因有高度差招 致非配向狀態,或在液晶晶胞之間隙精度的確保上產生障 礙之虞。在此,第八實施例具備藉由增設最小限度的工程 數,以變成有機絕緣層的鈍化技術。 (第八實施例) 第八實施例係如第1 5圖(d )和第1 6圖(d )所示, 至形成接觸工程爲止,係以大致相同於第七實施例的製造 工程來進行。繼之,在源極、汲極配線形成工程中,使用 -76- (74) 1300873 SPT等真空製膜裝置,依序被覆··膜厚〇.i#m 如Ti、Ta等耐熱金屬薄膜層34作爲可施行陽極 熱金屬層;和膜厚0.3/zm左右的A1薄膜層35 行陽極氧化的低電阻配線層。然後,利用微細加 使用感光性樹脂圖案87,依序蝕刻由這兩層薄 源極、汲極配線材、第二非晶質矽層3 3、和第 矽層 31A、31B,而露出閘極絕緣層30A、30B 圖(e )和第1 6圖(e )所示,選擇性地形成:E 35A積層所構成畫素電極之絕緣閘極型電晶體的 2 1、和兼作源極配線的信號線1 2,同時亦形成 子6,其係含源極、汲極配線1 2、2 1形成的同 之部分掃描線73,並由掃描線的電極端子5和 線所構成。此時,利用半色調曝光技術,事先形 1 2上的8 7 A (黑區域)的膜厚例如爲3 // m,比 2 1及電極端子5、6上的區域8 7 B (中間調區域 1 .5 // m更厚的感光性樹脂圖案86A、86B,這是 例的重要特徵。 源極•汲極配線1 2、2 1形成後,利用氧電 手段,令上述感光性樹脂圖案87A、87B的膜厚 // m以上時,感光性樹脂圖案8 7 B消失,源極· 12、21露出,同時可僅在電極端子5、6上選擇 感光性樹脂圖案8 7 C。在此’以感光性樹脂圖案 光罩,照射光同時如第1 5圖(f)和第16圖(J ,將源極•汲極配線V2、21施以陽極氧化’而 左右的例 氧化的耐 作爲可施 工技術, 膜構成的 一非晶質 ,如第1 5 自3 4 A和 汲極電極 :電極端 時所露出 部分信號 成信號線 汲極電極 )的膜厚 第七實施 漿等灰化 減少1 .5 汲極配線 性地形成 87C作爲 Ί所示地 形成氧化 -77- (75) 1300873 層6 8、6 9,同時將源極•汲極配線1 2、2 1下側面所露出 的第二非晶質矽層3 3 A施以陽極氧化,而形成作爲絕緣 層的氧化砂層(Si〇2) 66。 陽極氧化結束後,去除感光性樹脂圖案8 7 C時,如第 15圖(g)和第16(g)所示,露出其表面具有低電阻薄 膜層35A的電極端子5、6。但是,第15圖(f)和第16 圖(f)中,以高電阻性構件,連接掃描線電極端子5和 信號線電極端子6之間的靜電對策,並未特別圖示,所以 在掃描線之電子端子5側面,沒有形成陽極氧化層,然而 ,由於賦予設置開口部63A,露出掃描線1 1之一部分73 的工程’故靜電對策是容易的。此外,就源極•汲極配線 1 2、2 1的構成而言,若電阻値的限制較鬆的話,則亦可 簡化成得以實施陽極氧化的Ta單層。令以此方式製成的 主動式基板2和彩色濾光片貼合,液晶面板化,而完成本 發明第八實施例。關於儲存電容15的構成,如第15圖( g)所示,例舉了部分畫素電極21和對向電極16,介著 閘極絕緣層3 0B、和第一非晶質矽層3 1 B、和第二非晶質 矽層而重疊的區域5 0 (右下斜線部),構成儲存電容1 5 的之例。 本發明的第九實施例中,合理化閘極絕緣層的連接形 成工程’在對鈍化絕緣層的開口部形成時進行其處理,可 獲得進一步的減少製造工程數的IPS型液晶顯示裝置。 (第九實施例) -78 - (76) 1300873 桌九貫施例中’係如第17圖(d)和第18圖(d)所 示,在玻璃基板2上選擇性地形成:由34A和35A的積 層所構成之作爲畫素電極的絕緣閘極型電晶體的汲極電極 2 1、和兼作源極配線的信號線1 2,同時形成由部分信號 線所構成的電極端子6爲止,係以大致與第六實施例相同 的製程來進行。其差異是在於儲存電容線1 6的圖案形狀 ,第九實施例中,儲存電容線16兼作對向電極。 接著,如第17圖(e )和第1 8圖(e )所示,以比 0.5// m更厚,最好爲1.5// m左右的厚度來塗布感光性聚 丙烯酸樹脂3 9作爲透明性和耐熱性優的透明樹脂,藉由 使用光罩的選擇性紫外線照射,在畫像顯示部以外的區域 ,分別在掃描線的一部分5上和信號線的一部分6上和儲 存電容線16的一部分75上形成開口部62、63、64、65 。而且後烘培後,以感光性聚丙烯酸樹脂3 9作爲遮罩, 選擇性去除開口部63、65內的閘極絕緣層30A、30B,而 露出掃描線的一部分5和儲存電容線1 6的一部分7 5而分 別作爲掃描線的電極端子5和儲存電容線的電極端子。再 者,於第九實施例中,得知使用作爲無機材質的SiNx層 取代感光性聚丙烯酸樹脂3 9作爲透明絕緣層,進行使用 感光性樹脂的開口部形成工程亦可。 令以此方式製成的主動式基板2和彩色濾光片貼合, 液晶面板化,而完成本發明第九實施例。在作爲鈍化絕緣 層的透明絕緣層,採用較厚的感光性聚丙烯酸樹脂3 9時 ,吸收對向電極1 6和畫素電極2 1具有的高度差,故配向 79- (77) 1300873 處理很容易’不會發生非配向,反差比亦變高。而且,感 光性聚丙烯酸樹脂3 9依然殘留在玻璃基板2上,故進一 步減少製造工程數的優點亦大,不過無法賦予掃描線的電 極端子5和信號線的電極端子6電性連接的手段,故對靜 電而言,需要慎重處理是比較麻煩的地方。 關於儲存電容15的構成,係如第17圖(e)所示, 例舉了畫素電極22的一部分和對向電極16,中介著閘極 絕緣層30B、第1非晶質矽層31A、第2非晶質矽層而重 疊的區域5 0 (右下斜線部),構成儲存電容1 5之例,畫 素電極2 1和前段的掃描線1 1,中介著閘極絕緣層3 〇 a, 構成儲存電容1 5亦可。 (第十實施例) 於第九實施例中,在鈍化絕緣層使用透明性高的感光 性聚丙烯酸樹脂或SiNx層,然而應用藉由在連接形成工 程的新合理化技術和第五、第七實施例所採用的源極•汲 極配線與通道的陽極氧化的鈍化形成技術時,使用兩道光 罩可得到IPS型液晶顯示裝置,故這部分在第十實施例說 明。 第一實施例中,先在玻璃基板2之一主面上,使用 SPT等真空製膜裝置,被覆膜厚〇.1至〇.3//m左右之可 陽極氧化的第一金屬層。其次,在玻璃基板2的整面,使 用 PCVD 裝置,分別以例如 0.3 // m、0.05 // m、0·1 // m 左右的膜厚,依序被覆:作爲閘極絕緣層的第一 SiNx層 -80· (78) 1300873 3 〇、幾乎不含雜質之絕緣閘極型電晶體的通道所屬的第一 非晶質矽層3 1、以及用以保護通道之成爲絕緣層的第二 SiNx層32等三種薄膜層,且如第19圖(a)和第20圖 (a )所示,利用半色調曝光技術,在半導體層形成區域 即閘極電極1 1 A上的區域8 4 A 1、和掃描線Π及信號線 12交叉的近傍區域上的區域84A2、和對向電極16友信 號線12交叉的近傍區域上的區域84A3、和儲存電容形成 區域即對向電極16的一部分上的區域84 A4上、和畫素 電極21及對向電極16交叉的近傍區域上的區域84A5上 的膜厚例如爲2 // m,比對應於兼作閘極電極1 1 A的掃描 線1 1與對向電極16的感光性樹脂圖案84B的膜厚1 /2 m 更厚的感光性樹脂圖案84A1至84A5及85B,以感光性 樹脂圖案 81 A至84A5以及 81B作爲遮罩,加上第二 SiNx層32、第一非晶質矽層31以及閘極絕緣層層30而 選擇性地去除第一金屬層,露出玻璃基板2。 以此方式製成對應於兼作閘極電極1 1 A的掃描線1 1 和對向電極1 6的多層膜圖案後,接著利用氧電漿等灰化 手段,令上感光性樹脂圖案84A1至84A5以及84B削減 膜厚1 // m以上時,感光性樹脂圖案84B消失,如第1 9 圖(b)和第20圖(b)所示,在掃描線11上露出第二 SiNx層32A,且在對向電極16上露出第二SiNx層32B, 同時僅在閘極電極Η A上、和掃描線1 Ϊ及信號線1 2交 叉的近傍區域上、和對向電極1 6及信號線1 2交叉的近傍 區域上、和儲存電容形成區域上、和畫素電極21及對向 -81 - (79) 1300873 電極1 6交叉的近傍領域上,選擇性地形成感光性樹脂圖 案84C1至84C5。上述氧電漿處理是以不降低後續的源極 •汲極配線形成工程的光罩對準精度的方式’加強異向性 以抑制圖案尺寸的變化爲佳’已如上所述。 與其它實施例相異,第十實施例是必須在蝕刻終止層 形成時露出掃描線1 1,絕緣層7 6形成後進行氧電漿處理 ,故隨著絕緣層76的削減膜厚’解決課題方式變複雜, 故建議在絕緣層76採用陽極氧化層。因此,在第22圖所 示的連接圖案78,使用鱷魚夾等連接手段’賦予掃描線 11和對向電極16(圖未示)+ (正)電位。 在掃描線1 1側面形成絕緣層76後,如第1 9圖(c ) 和第20圖(c )所示,以感光性樹脂圖案84C1至84C5 作爲遮罩,在閘極電極1 1 A上、和掃描線1 1及信號線12 交叉的近傍區域上,選擇性地殘留第二SiNx層32A、第 一非晶質矽31A和閘極絕緣層30A的積層,且在對向電 極1 6及信號線1 2交叉的近傍區域上、和儲存電容形成區 域上、和畫素電極21及對向電極16交叉的近傍區域上, 選擇性地殘留第二SiNx層3 2B、第一非晶質矽31B和閘 極絕緣層3 0 B的積層,同時蝕刻掃描線1 1上的第二S i N X 層32A、第一非晶質矽層31 A及閘極絕緣層30A、和對向 電極16上的第二SiNx層3 2B、第一非晶質矽層31B及閘 極絕緣層3 0B,分別露出掃描線1 1和對向電極1 6。 而且施以氧電漿處理,使上述感光性樹脂圖案84C1 至84C5的膜厚,等向性地減少0.5 // m左右作爲感光性 -82- (80) 1300873 樹脂圖案84D1至84D5時,在84D1至84D5的周圍,第 二SiNx層32A、32B露出寬幅0.5//m左右。此在,如第 1 9圖(d )和第2 0圖(d )所示,以感光性樹脂圖案 84D1至84D5作爲遮罩,選擇性地去除閘極電極11A上 的第二SiNx層32A作爲保護絕緣層(第二SiNx層)32D ,部分性的露出第一非晶質矽層3 1 A。 然後,去除上述感光性樹脂圖案84D1至84D5後, 使用PCVD裝置,在玻璃基板2的整面,以例如〇.〇5 // m 左右的膜厚被覆含雜質例如磷的第二非晶質矽層33,在 源極•汲極配線的形成工程中,使用SPT等真空製膜裝 置,依序被覆:膜厚左右的例如Ti、Ta等耐熱金 屬薄膜層34作爲可陽極氧化的耐熱金屬層,以及膜厚〇.3 // m左右的A1薄膜層3 5同樣作爲可陽極氧化的低電阻配 線層。然後,.藉由微細加工技術,使用感光性樹脂圖案 87,依序蝕刻:由這兩層薄膜所構成的源極•汲極配線材 、第二非晶質矽層3 3和第一非晶質矽層3 1 A、3 1 B,露出 閘極絕緣層30A、30B,如第19圖(e )和第20圖(e ) 所示,選擇性地形成由34A和35A的積層所構成之作爲 畫素電極的絕緣閘極型電晶體的汲極電極2 1和兼作源極 配線的信號線1 2,在源極•汲極配線1 2、2 1形成的同時 所露出的部分掃描線上,也形成由掃描線的電極端子5和 部分信號線所構成的電極端子6。此時,使用半色調曝光 技術,形成比電極端子5、6上的87A的膜厚(黑區域) 例如爲3 // m、比對應於源極•汲極配線1 2、2 1的區域 -83- (81) 1300873 8 7 B (中間調區域)的膜厚1 · 5 μ m更厚的感光性樹脂圖 案87A、87B的情形,也是第十實施例的重要特徵。 源極•汲極配線1 2、2 1形成後,利用氧電漿等灰化 手段,使上述感光性樹脂圖案87 A、87B削減膜厚1.5 // m以上時,感光性樹脂圖案8 7B消失,露出源極•汲極 配線1 2、2 1,同時僅在電極端子5、6上,選擇性地形成 感光性樹脂圖案87C。在此,以感光性樹脂圖案87C作爲 光罩,照射光,同時如第19圖(f)和第20圖(f)所示 ,以源極•汲極配線1 2、2 1作爲陽極氧化,形成氧化層 68、69,同時將源極•汲極配線12、21下側面所露出的 第二非晶質矽層3 3 A施以陽極氧化,形成作爲絕緣層的 氧化矽層(Si02 ) 66。此時,所露出的掃描線1 1和對向 電極1 6亦同時陽極氧化,在其表面形成氧化層7 1。亦如 第22圖所示,在主動式基板2上形成並列綁束掃描線1 1 的配線77和連接圖案78,故源極•汲極配線1 2、2 1陽 極氧化的同時,掃描線Π的陽極氧化也很容易實施。再 者,亦在掃描線1 1和對向電極1 6上面施行陽極氧化,形 成絕緣層之故,在掃描線Π形成可陽極氧化的金屬,即 可選擇Ta單層、Al(Zr、Ta)合金等單層構成或Al/Ta 、Ta/Al/Ta、Al/Al(Ta、Z〇合金等積層構成的情形 ,如以上所述。 陽極氧化結束後,去除感光性樹脂圖案87C時,如第 19圖(g)和第20圖(g)所示,在其側面具有陽極氧化 層,且露出由低電阻金屬層3 5 A所構成的電極端子5 ' 6 . - · -84- (82) 1300873 。再者,就源極•汲極配線1 2、2 1的構成而言’電 的限制較鬆的話,亦可簡化形成可陽極氧化的T a單層 以此方式獲得的主動式基板2和彩色濾光片貼合 晶面板化,完成本發明的第十實施例。關於儲存電^ 的構成,則如第1 9圖(f)所示’顯示畫素電極(汲 極)21和對向電極(儲存電容線)1 6,中介著閘極 層3 0B、第一非晶質矽層31B、第二SiNx層32E和 非晶質矽層的積層形成平面重疊而構成的例子(左上 下之斜線部50),不過儲存電容15的構成並不限於 亦可在畫素電極和前段掃描線之間’中介著含閘極絕 的絕緣層所構成。此外,其它構成亦可,不過省略詳 說明。 [發明之效果] 如以上所述,本發明所記載的液晶顯示裝置,絕 極型電晶體在通道上具有保護絕緣層,故僅在畫像顯 內的源極·汲極配線上,或僅信號線上選擇性地形感 有機絕緣層,或將由可陽極氧化的源極•汲極配線材 成的源極•汲極配線施以陽極氧化,而在其表面形成 層,藉此方式,可賦予主動式基板鈍化功能。同樣地 發明所記載之液晶顯示裝置的其他一部分中,係藉由 氧化在通道上形成氧化矽層,故將可陽極氧化之源極 極配線材所構成的源極·汲極配線與通道同時施以陽 化,而在其表面形成絕緣層,藉此方式,可賦予主動 阻値 ► C 而液 ? 15 極電 絕緣 第二 往右 此, 緣層 細的 緣閘 示部 光性 所構 絕緣 ,本 陽極 •汲 極氧 式基 85- (83) 1300873 板鈍化功能。因此,不需具備特別的加熱工程,以非晶質 矽層作爲半導體層的絕緣閘極電晶體,不需要過度的耐熱 性。換言之,藉由鈍化形成,亦具有不會發生電性性能劣 化的附加效果。此外,源極汲極配線進行陽極氧化時,藉 由半色調曝光技術的導入,可選擇性地保護掃描線或信號 線的電極端子上,而可獲致得以阻止微影蝕刻工程數增加 的效果。 本發明的宗旨在於,可藉由半色調曝光技術的導入, 以一道光罩來處理掃描線的形成工程和蝕刻終止層的形成 工程,來達成工程的減少,在露出的掃描線側面形成有機 絕緣層或陽極氧化層時,同時在掃描線上的閘極絕緣層, 也以有機絕緣層或陽極氧化層來塡補存在的針孔,減少掃 描線和信號線之間的層間短路,附加效果大。 加上,藉由模擬畫素電極的導入,將畫素電極和掃描 線以一道光罩來形成等之合理化,可使微影蝕刻工程數從 習知的5次進一步減少,而使用4道或3道光罩來製作液 晶顯示裝置,從液晶顯示裝置之成本減少的觀點來看的話 ,工業的價値極大。而且,這些工程的圖案精度不是那麼 的高,所以不會對良率或品質造成很大的影響,因此生產 管理也比較容易實施。 再者,第六實施例之IPS型液晶顯示裝置中,對向電 極和畫素電極間所生的電場,僅施加於液晶層,第七實施 例之IPS型液晶顯示裝置中,同樣可施加於對向電極上的 閘極絕緣層和液晶層,此外第八實施例的IPS型液晶顯示 -86- (84) 1300873 裝置中,同樣可施加於對向電極上的閘極絕緣層、 和畫素電極的陽極氧化層,而且第十實施例的IPS 顯示裝置中,同樣可施加於對向電極上的陽極氧化 晶層和畫素電極上的陽極氧化層,故任一者皆不會 知之諸多缺陷的劣質鈍化絕緣層,具有難以產生顯 的燒焦殘影現象的優點。這是因爲汲極配線(畫素 的陽極氧化層,相較於絕緣層,可發揮高電阻層之 所以不會產生電荷蓄積之故。而且,第九實施例的 液晶顯示裝置中,若採用透明樹脂層作爲鈍化絶縁 ,對向電極和晝素電極之間所生的電場,可施加於 緣層、液晶層和透明樹脂層,故不會存在有習知之 陷的劣質鈍化絕緣層,然而雖有因透明樹脂層之硬 而產生顯示畫像之燒焦殘影現象之虞,但主動式基 面爲平坦,故不因配向條件就能形成均勻性高的配 ,獲得無非配向之高反差比的畫像。 再者,本發明之要件由上述說明即可明白,於 止型絶縁閘極型電晶體中,可藉由半色調曝光技術 ,以一道光罩來處理掃描線的形成工程和蝕刻終止 成工程,同時在所露出的掃描線和對向電極的側面 有機絕緣層或陽極氧化層之點,關於除此之外的構 素電極、閘極絕緣層等材質或膜厚等不同的顯示裝 導體裝置、或者其製造方法的差異皆屬於本發明的 亦知使用反射型液晶顯示裝置中,本發明的實用性 ’再者’絕緣閘極型電晶體的半導體層亦不侷限於 液晶層 型液晶 層、液 存有習 不畫像 電極) 功能, IPS型 層的話 閘極絕 諸多缺 化條件 板的表 向處理 蝕刻終 的導入 層的形 ,形成 成,畫 置用半 範疇, 亦不變 非晶質 •87- (85) 1300873 砂。 【圖式簡單說明】 第1圖是關於本發明第一實施形態之顯示裝置用半導 體裝置的平面圖。 第2圖是關於本發明第一實施形態之顯示裝置用半導 體裝置的製造工程剖面圖。 第3圖是關於本發明第二實施形態之顯示裝置用半導 體裝置的平面圖。 第4圖是關於本發明第二實施形態之顯示裝置用半導 體裝置的製造工程剖面圖。 第5圖是關於本發明第三實施形態之顯示裝置用半導 體裝置的平面圖。 第6圖是關於本發明第三實施形態之顯示裝置用半導 體裝置的製造工程剖面圖。 第7圖是關於本發明第四實施形態之顯示裝置用半導 體裝置的平面圖。 第8圖是關於本發明第四實施形態之顯示裝置用半導 體裝置的製造工程剖面圖。 第9圖是關於本發明第五實施形態之顯示裝置用半導 體裝置的平面圖。 第1 〇圖是關於本發明第五實施形態之顯示裝置用半 導體裝置的製造工程剖面圖。 第Π圖是關於本發明第六實施形態之顯示裝置用半 -88- (86) 1300873 導體裝置的平面圖。 第1 2圖是關於本發明第六實施形態之顯示裝置用半 導體裝置的製造工程剖面圖。 第1 3圖是關於本發明第七實施形態之顯示裝置用半 導體裝置的平面圖。 第1 4圖是關於本發明第七實施形態之顯示裝置用半 導體裝置的製造工程剖面圖。 第1 5圖是關於本發明第八實施形態之顯示裝置用半 導體裝置的平面圖。 第16圖是關於本發明第八實施形態之顯示裝置用半 導體裝置的製造工程剖面圖。 第1 7圖是關於本發明第九實施形態之顯示裝置用半 導體裝置的平面圖。 第18圖是關於本發明第九實施形態之顯示裝置用半 導體裝置的製造工程剖面圖。 第19圖是關於本發明第十實施形態之顯示裝置用半 導體裝置的平面圖。 第20圖是關於本發明第十實施形態之顯示裝置用半 導體裝置的製造工程剖面圖。 第21圖是關於本發明第一至第九實施例之供絕緣層 形成的連接圖案的配置圖。 第2 2圖是關於本發明第十實施例絕緣層的連接圖案 的配置圖。 第23圖是表示液晶面板之安裝狀態的立體圖。 -89- (87) (87)1300873 第24圖是液晶面板的等效電路圖。 第2 5圖是習知液晶面板的剖面圖。 第26圖是習知例之主動式基板的平面圖。 第2 7圖是習知例之主動式基板的製造工程剖面圖。 第28圖是合理化之主動式基板的平面圖。 第29圖是合理化之主動式基板的製造工程剖面圖。 〔圖號說明〕 1 :液晶面板 2 :主動式基板(玻璃基板) 3:半導體積體電路晶片 4 : TCP薄膜 5 :掃描線的電極端子、掃描線的一部分 6 :信號線的電極端子、信號線的一部分 9 :彩色濾光片(相對的玻璃基板) 1 〇 :絕緣閘極型電晶體 1 1 :掃描線(閘極電極) 1 1 A :閘極配線、閘極電極 1 2 :信號線(源極配線、源極電極) 16 :儲存電容線(IPS型對向電極) 1 7 :液晶 1 8 :偏光板 20 :配向膜 21 :汲極電極(IPS型畫素電極) -90- (88) (88)1300873 22 :(透明導電性)畫素電極 30、30A、30B、30C:閘極絕緣層(第 ISiNx 層) 3 1、3 1 A、3 1 B、3 1 C :(不含雜質)第1非晶質矽層 32、32A、32B、3 2C :第 2SiNx 層 3 2D :通道保護絕緣層(蝕刻終止層、保護絕緣層) 3 3、3 3 A、3 3 B、3 3 C :(含雜質)第2非晶質矽層 34、 34A:(可陽極氧化)耐熱金屬層 35、 35A:(可陽極氧化)低電阻金屬層(A1) 36、 3 6A :(可陽極氧化)中間導電層 3 7 :鈍化絕緣層 41 : IPS型液晶顯示裝置的畫素電極 42 : IPS型液晶顯示裝置的對向電極 50、51、52:儲存電容形成區域 62 :(汲極電極上的)開口部 63、 63A :(掃描線上的)開口部 64、 64A :(信號線上的)開口部 65、 65A :(對向電極上的)開口部 66 :含雜質的氧化矽層 68 :陽極氧化層(氧化鈦、Ti02) 69 :陽極氧化層(氧化鋁、Al2〇3 ) 70 :陽極氧化層(五氧化鉅、Ta205 ) 71 :(對向電極的)陽極氧化層 7 2 :儲存電極 7 3 : 掃描線的一咅β分 -91 - (89) 1300873 74 :信號線的一部分 7 6 :形成於掃描線側面的絕緣層 80A 、 80B 、 81A 、 81B 、 82A 、 82B 、 84A 、 84 B 、 87A、87B :(以半色調曝光形成的)感光性樹脂圖案 83A :(供畫素電極形成的一般)感光性樹脂圖案 8 5 :感光性有機絕緣層 86A、86B :(以半色調曝光形成的)感光性有機絕緣層 91 :透明導電層 92 :第一金屬層 -92-In the second embodiment, as shown in FIGS. 3(c) and 4(c)), the insulating layer 76 is formed on the side surface of the gate electrode 1 1 A, and the same manufacturing process as in the first embodiment is performed. . Then, using a PCVD apparatus, the entire surface of the glass substrate 2 is, for example, 0. After a film thickness of about 05 m is coated with a second amorphous ruthenium layer 3 containing impurities such as phosphorus, a vacuum film forming apparatus such as SPT is used to sequentially coat a film layer 34 such as Ti or Ta having a film thickness of about As a heat resistant metal layer; and the film thickness is 0. The A1 film layer 3 5 of about 3 // m is used as a low-resistance wiring layer. Further, using a microfabrication technique, a photosensitive resin pattern is used, and a source/drain wiring material, a second amorphous germanium layer 3, and a first amorphous germanium layer composed of the three-layer thin film are sequentially left in sequence. 3 1 A ' 3 1B, and the gate insulating layers 30A, 30B are exposed. As shown in FIG. 3(d) and FIG. 4(d), a gate electrode 2 1 of an insulating gate type transistor composed of a laminate of 34A, 35A, and 36a and a source electrode are also selectively formed. Signal line 1 2. In addition, if the limitation of the resistance 较 is loose, the structure of the source and the drain can be simplified into a single layer of Ta, and the A1 alloy to which Nd is added is selected, and the laminated structure of the source/drain wirings 12 and 21 is formed. Two layers can also be constructed. Next, as shown in FIG. 3(e) and FIG. 4(e), a photosensitive polyacrylic resin 3 having excellent transparency and heat resistance of a thickness of 1·5 // m or more is applied to the entire surface of the glass substrate 2. 9 as a transparent edge layer, preferably -57- (55) 1300873 to 0. Applying a thickness of about 3//m, by selective ultraviolet irradiation using a photomask, on the surface of the drain electrode 21 and the image display portion, respectively, on a portion 5 of the scanning line and a portion of the signal line 6 Openings 62, 63, 64, and 65 are formed on the electrode terminal forming regions of the upper and lower storage capacitor lines. Further, after post-baking, the photosensitive polyacrylic resin 39 is used as a mask to selectively remove the gate insulating layers 30A and 30B in the openings 63 and 65, respectively, to expose a portion 73 (5) of the scanning line and the storage capacitor. Part of the line 7 5. In the openings 6 2, 6 4, after development, a portion 21 of the drain electrode and a portion 74 (6) of the signal line are exposed. Further, the aperture ratio is slightly lowered. However, the photosensitive polyacrylic resin 3 is not used, and the SiNx layer is used as the passivation insulating layer. Usually, the transparent insulating layer is used to form the openings 62, 63, 64, and 65 in the SiNx layer. . Finally, a vacuum film forming apparatus such as SPT is used on the entire surface of the glass substrate 2, for example, 0. a film thickness of about 1 to 2 // m, covering, for example, I TO as a transparent conductive layer, as shown in Figs. 3(f) and 4(f), by microfabrication technique, including inclusion in the opening On the polyacrylic resin 39 of the portion of the intermediate conductive layer 3 6 A of the gate electrode 2 1 in the portion 62, the pixel electrode 22 is selectively formed. Since the photosensitive polyacrylic resin 39 is thick, the pixel electrode 22 is formed as large as possible, and even if it partially overlaps the scanning line 11 or the signal line 12, image quality deterioration such as crosstalk does not occur. At this time, the transparent conductive electrode terminals 5A and 6A are formed by including the partial scanning line 73 in the opening 63 and the partial signal line 74' in the opening 64. Further, similarly to the conventional example, by providing the transparent conductive short-circuit line 40 outside the electrode terminals 5A, 6A, the electrode terminals 5 A, 6A and the short-circuit line 40 are formed. 1300873 is made into a slender line and has a high resistance, which is a countermeasure against static electricity. The active substrate 2 and the color filter obtained in this manner were bonded together and panelized to complete the second embodiment of the present invention. Regarding the configuration of the storage device, as shown in FIG. 3(e), the storage capacitor line 16 is illustrated as being interposed between the gate insulating layer 30B and the first amorphous germanium layer and the second amorphous germanium layer. The overlapping region 50 (the upper left to the lower right portion) constitutes an example of the storage capacitor 15 , and the drain electrode 2 1 and the front scan line 中介 intervene the gate insulating layer 3 〇 A to form the storage capacitor 15 'But detailed description thereof is omitted here. In the first and second embodiments, the formation precision of the so-called scanning line forming the protective layer of the engineering track (etching stop layer) is low, and the halftone exposure technique is applied to reduce the lithography etching process. Active substrate, but using a mask to process the formation of the pixel scanning line, can further reduce the engineering, using three masks as the active substrate, which will be explained in the third to fifth embodiments (the first Third Embodiment In the third embodiment, first, on one main surface of the glass substrate 2, a vacuum film forming apparatus such as SPT is coated with a film thickness of 0. 1 to 0. 2 / / m of transparent conductive layer 91, such as ITO; and film thickness is o. l to 〇. 2 / / right transparent conductive layer 91; and film thickness is 0. 1 to 0. A metal layer 92 of about 3/m. As will be understood from the subsequent description, in the third to fifth embodiments, the scanning line is a laminate of a transparent conductive layer and a metal layer, so that an insulating layer cannot be formed on the side surface of the scanning line by oxidation. Therefore, because it is through the liquid crystal 15 and 汲 3 1 B diagonal segments can also be used to pass the layer photopole and can be used to the left and right m left in the first example of anodizing -59- (57) 1300873 in the formation of organic layers Since the insulating layer is used, in the case of the scanning line material, a first metal layer which does not react with the ITO which is a transparent conductive layer, for example, a high melting point metal such as Cr, Ta or Mo, or an alloy or a telluride of these may be used. In order to achieve low resistance, if A1 is used, the single layer of A1 (Nd) alloy is the simplest, and then the layer of Ta/A1 (Zr, Hf) or Ta/AL/Ta composed of Ta is compared. To be complicated. Next, on the entire surface of the glass substrate 2, a PC VD device is used, for example, 0. 3/zm, 0. 05//m, 0. The film thickness of about 1/zm is sequentially coated: a first SiNx layer 30 as a gate insulating layer, a first amorphous germanium layer 31 as an insulating gate type transistor channel containing almost no impurities, and as a The second SiNx layer 32 of the insulating layer of the protection channel is then, as shown in FIGS. 5(a) and 6(a), a region of the protective insulating layer forming region, that is, the gate electrode 11A, is formed by a halftone exposure technique. The film thickness of 82A is, for example, 2 // m, and a film having a film thickness ratio corresponding to the scanning line 1 1 serving as the gate electrode 1 1 A, the pseudo pixel electrode 93, and the photosensitive resin pattern 82B of the analog electrode terminals 94 and 95 is formed. The photosensitive resin patterns 82A and 82B having a thickness of 1⁄4 m are thick, and the photosensitive resin patterns 82A and 82B are used as masks, and the second SiNx layer 32 (channel protective layer) and the first amorphous germanium layer 31 are added. The gate insulating layer 30 and the first metal layer 92 are also selectively removed from the transparent conductive layer 911 to expose the glass substrate 2. In the above manner, a multilayer film pattern corresponding to the scanning line 11 which is also used as the gate electrode 11A, the analog pixel electrode 93, and the analog electrode terminals 94, 95 is obtained, and then, ashing means such as oxygen plasma is used. When the film thickness of the photosensitive resin patterns 82A and 82B is reduced by 1 /μ or more, the photosensitive -60-(58) 1300873 resin pattern 82B disappears, and the second SiNx layers 33A to 33C are exposed, and the protective insulating layer can be used only. On the layer formation region, a photosensitive grease pattern 82C is selectively formed. The oxygen plasma treatment is preferably such that the mask alignment accuracy of the subsequent source/drain formation process is not reduced, and it is preferable to enhance the change in the anisotropy suppression pattern size, which is the same as the reason described above. Further, as shown in Figs. 5(b) and 6(b), the second SiNx layers 32 A to 32C are selectively etched by using the photosensitive resin pattern 82C as a mask to pattern the width wider than the gate electrode 1 1 A thin first SiNx layer 3 2D remains on the gate electrode 1 1 A while exposing the first amorphous sand layer 31A on the scan line 1 1 and the analog electrical terminal 94, respectively, and exposing on the dummy pixel electrode The first amorphous germanium layer 31B exposes the first amorphous germanium layer 3 1 C at the dummy electrode terminal 95. Next, after the photosensitive resin pattern 82C is removed, as shown in Fig. 5(c) and Fig. 6(c), a layer 76 is formed on the side surface of the gate electrode 1 1 A. Therefore, the connection pattern 78 shown in Fig. 21 is provided with a positive potential of the scanning line 11 by using a connection means such as a crocodile, but a - (negative) potential is also applied depending on the composition of the plating solution. Further, in the case of the insulating layer, a plating voltage of, for example, several V is applied to form a polyimide layer having a thickness of 〇·3 // m. The pseudo pixel electrode 93 is electrically independent, and the insulating layer 76 is not formed around the pseudo pixel electrode 93. Then, using a PCVD apparatus, the entire surface of the glass substrate 2 is, for example, 0. a film thickness of about 0 5 //m, coated with a second amorphous germanium layer 3 3 containing impurities such as phosphorus, as shown in Fig. 5 (d) and Fig. 6 (d), by using a fine of the inductive resin pattern 88 In the processing technique, when the pixel element 93 is simulated, the tree line is on the case of the hole 93 (the edge of the film can be made into a film-61-(59) 1300873 as the opening portion 38, and the area other than the image display portion The scanning line 1 has an opening 63A formed in the pseudo electrode terminal 94, and an opening 64A formed in the terminal 95 of the signal line, and the amorphous germanium layer 3 3 and the first amorphous germanium layer 3 1 in the opening are added. A to 3 1 C and gate layers 3〇a to 30C, also selectively removing the first metal layer 92A to the electrode 5A of the scanning line formed by the transparent conductive layer and the transparent conductive layer, and the electrode terminal 6A of the signal line, drawing Prime electrode 22. Finally, using a vacuum film forming device such as SPT 'sequentially coated 0. A heat-resistant metal film layer 34 such as Ti or Ta around 1#m is used as a genus layer, and the film thickness is 〇. The A1 film layer 35 of about 3/zm serves as a resistance wiring layer. The gate insulating layer 30A is exposed by the microfabrication technique using a photosensitive resin chamber sequentially etching the second amorphous germanium layer 3 3 and the first amorphous layer 31A, as shown in Fig. 5(e) and e Illustrated, selectively formed: 汲2 1 of an insulating gate type transistor composed of a laminate of a portion 34A and 35A of the pixel electrode 22; and a portion of the electrode terminal 6 A also including a signal line and composed of 3 The insulating gate type transistor composed of 5 A laminates also serves as the source electric signal line 1 2 . The electrode terminal 5 A of the scanning line and the electrode terminal of the signal line are exposed on the glass 2 at the end of the etching of the source/drain wirings 1, 2, and 2 1 . In addition, in the case of the structure of the source/drain wirings 1, 2 and 21, if the resistance 値 is loose, the formation of a single layer such as Ta MoW can be simplified. The active substrate 2 and the color filter liquid crystal panel produced in this manner are panelized to complete the third embodiment of the present invention. The third-pole insulation 92C of the third embodiment 1 is simulated, and the electrode-thickness heat-resistant gold is the low-voltage 3 case 85-quality sand layer 6 (divided by the electrode 34A and the pole of the 6A glass substrate) e, Cr, bonding, in the example, • 62-(60) 1300873 Since the photosensitive resin pattern 8 5 is connected to the liquid crystal 'the photosensitive resin pattern 85 is not a general photosensitive material mainly composed of a novolac resin. As the resin, it is important to use a photosensitive organic insulating layer having high purity and a high heat resistance of the main component containing a propylene-based resin or a polyimide resin, and it is also possible to heat and fluidize the material according to the material. Covering the source and drain electrode wirings 1 and 2 1 side, the reliability of the liquid crystal panel can be further improved. The configuration of the storage capacitor 15 is as shown in Fig. 5(e), exemplifying The storage electrode 72 including the source/drain wirings 12, 21 and a part of the pixel electrode 22 and the protrusions provided on the front scanning line 11 interpose the gate insulating layer 30B, the first non- The crystalline germanium layer 31A and the second amorphous germanium layer form a flat layer The example of the surface overlap (the upper left to the lower right oblique line portion 5 2 ), but the configuration of the storage capacitor 15 is not limited thereto, and similarly to the first embodiment, the shared capacitor formed simultaneously with the scanning line 1 1 may be used. Between the line 16 and the pixel electrode 2, an insulating layer including the gate insulating layer 30 is interposed. The electrostatic countermeasure line 40 is composed of a transparent conductive layer connected to the electrode terminals 5 A and 6 A. Since the opening portion forming of the gate insulating layers 30A to 30C is provided, other electrostatic countermeasures can be taken. In the third embodiment, the electrode terminals of the scanning lines and the electrode terminals of the signal lines are generated. The arrangement of the devices which are all transparent conductive layers is limited, but a device and a process for releasing the restrictions can also be used, which will be explained in the fourth and fifth embodiments. (Fourth embodiment) -63- (61 1300873 The fourth embodiment is performed as shown in FIGS. 7(d) and 8(d), and is formed to be substantially the same as the third embodiment except for forming a contact project. However, the reason will be described later. It is known that the analog electrode terminal 9 5 is not necessarily required. Thereafter, In the source-drain wiring formation process, a vacuum film forming apparatus such as SPT is used to sequentially coat a heat-resistant metal thin film layer 34 such as Ti or Ta having a thickness of about 1#ΠΊ as a heat-resistant metal layer; and a film thickness of 0 . The A1 film layer 35 of 3 /i m is used as a low-resistance wiring layer. The source/drain wiring material, the second amorphous germanium layer 3 3 A, and the first amorphous sand layer 31A composed of the two thin films are sequentially etched by the microfabrication technique using the photosensitive resin pattern 86. The gate insulating layer 30A is exposed. As shown in Figs. 7(e) and 8(e), a gate electrode 2 of an insulating gate type transistor including a portion of the pixel electrode 22 and laminated by 34A and 35A is selectively formed. And a signal line 12 which also serves as the source wiring, and includes a part 5 A of the scanning line exposed when the source/drain wirings 1 2, 2 1 are formed, and the electrode terminal 5 of the scanning line and a part of the signal line The electrode terminals 6 thus formed are also formed at the same time. That is, it is not necessary to have the analog electrode terminal 915 as in the third embodiment. At this time, an important feature of the fourth embodiment is that the photosensitive resin patterns 86A and 86B are formed in advance by the halftone exposure technique, and the film thickness of the photosensitive resin patterns 86A and 86B is the film of the region 86A on the signal line 12. The film thickness is, for example, 3//m, larger than the film thickness of the 86B on the gate electrode 21, the electrode terminals 5, 6 and the storage electrode 72. 5/zm. The minimum size of 86B corresponding to the electrode terminals 5, 6 is 10/m, which is relatively large, and the mask manufacturing and finished product size management are relatively easy, and the minimum size of the area 8 6 A corresponding to the signal line 12 is 4 to 8 // m, size fine -64- (62) 1300873 degrees are relatively high, so the halftone area must form a thin slit pattern. However, as explained in the conventional example, compared with the source/drain wirings 1, 2, 2 1 formed by one exposure processing and two etching processes, since the source/drain wirings of the present invention are 1, 2, 2 1 It is formed by one exposure process and one etching process, so there are fewer factors affecting the variation of the pattern width, and the size management of the source/drain wirings 1, 2, 2 1 and the source/drain wiring 1 2, 2 1 The size management of the channel length is easier to manage the pattern accuracy than the conventional halftone exposure technique. Moreover, when compared with the channel-etched insulating gate transistor, the ON current of the insulating gate type transistor is determined to be the size of the channel protective insulating layer 32D, not the source/drain wiring 1 2, 2 1 The size of these points shows that process management is easier. After the source/drain wirings 1, 2 and 2 are formed, the film thickness of the photosensitive resin patterns 86A and 86B is reduced by an ashing means such as oxygen plasma. When 5 / m or more, the photosensitive resin pattern 86B disappears, and as shown in Fig. 7 (f) and Fig. 8 (f), the drain electrode 21 and the electrode terminals 5, 6 are exposed, and only at the signal line In the case of the photosensitive resin pattern 86C, the photosensitive resin pattern 86C is selectively formed. However, when the pattern width of the photosensitive resin pattern 86C is reduced by the oxygen plasma treatment, the upper surface of the signal line 12 is exposed, and the reliability is lowered. Enhance the anisotropy and suppress the change in the size of the pattern. Further, in the configuration of the source/drain wirings 12 and 2, if the resistance 値 is loose, the single layer such as T a, C r or Μ 。 can be simplified. The active substrate 2 and the color filter fabricated in this manner are bonded together, and the liquid crystal is panelized to complete the fourth embodiment of the present invention. In the fourth embodiment-65-(63) 1300873, since the photosensitive resin pattern 86C is connected to the liquid crystal, the photosensitive resin pattern 86C is not a general photosensitive resin containing a phenol resin as a main component, and the purity is high. It is important that the main component contains a photosensitive organic insulating layer having high heat resistance of a propylene-based resin or a polyimide resin, and may be heated and fluidized depending on the material, covering the side of the signal line 1 2 The way it is composed. At this time, the reliability of the liquid crystal panel can be further improved. The configuration of the storage capacitor 15 is as shown in Fig. 7(f), and the storage electrode 7 2 and the source electrode diodes 1 2 and 2 1 and the pixel electrode 22 are illustrated. The protrusion of the front scanning line 1 1 is an example in which the gate insulating layer 30B, the first amorphous germanium layer 31A, and the second amorphous germanium layer are formed to overlap each other (the upper left oblique line portion 52 to the lower right). Further, the transparent conductive pattern 6 A (the analog electrode terminal 9 1 C ) formed by connecting the partial scanning line 5 A and the signal line 1 2, and the transparent conductive layer pattern of the short-circuit line 40 are shaped. The high-resistance wiring can be formed in a slim line shape to form a countermeasure against static electricity. However, it is of course possible to use other conductive members as the static electricity. In the fourth embodiment of the present invention, the organic insulating layer is formed only on the signal line 12, and the drain electrode 21 is exposed in a state in which conductivity is ensured, whereby the reason why sufficient reliability can be obtained is due to the application. The driving signal of the liquid crystal cell is substantially alternating, and the voltage of the counter electrode 14 is adjusted during the image inspection between the counter electrode 12 and the pixel electrode 22 in such a manner that the DC voltage component is reduced. The adjustment is reduced. Therefore, the insulating layer is formed only on the signal line 12 so that the DC component does not flow. • 66- 1300873 (64) In the third and fourth embodiments of the present invention, the organic insulating layer is selectively formed only on the source wiring and the signal line, respectively, and the fabrication is reduced, but because of the thickness of the organic insulating layer When the pixel size of the high-definition panel is small, the alignment treatment using the flat alignment film may cause obstacles due to the difference in height or the gap precision of the liquid crystal cell. The embodiment has a passivation technique of insulating layers by adding a minimum number of engineering numbers. (Fifth Embodiment) The fifth embodiment is based on Fig. 9(d) and Fig. 10(d) until the formation of the contact project is performed substantially the same as the third and the first project. Then, at the source The pole and the bungee wire are formed into a vacuum film forming apparatus such as SPT, which is sequentially coated: the film thickness is 0. The heat-resistant metal thin film layer 34 such as 1# Ti or Ta is used as an anodic oxymetal layer; and the A1 thin film layer 35 having a film thickness of about 3 μm is used as a highly oxidized low-resistance wiring layer. Then, by using the microfabrication photosensitive resin pattern 87, the two layers of the thin film structure, the second amorphous germanium layer 33, and the first non-3 1 A are sequentially etched to expose the gate insulating. Layer 3 0 Α. As shown in Fig. 9 (e) and (e), 21 which is an insulating gate type transistor composed of a laminate of 34A and 35A including the pixel electrode 22, and a signal line which also serves as a source wiring are selectively formed. 12. The electrode terminal 5 is also formed at the same time, and includes a source/drain wiring 12, a pole and a drain to achieve a state in which the cloth is often used as a 1 grinding cloth. Here, as shown in the organic), in the four-implementation routine, the heat resistance of about m can be applied, and the source crystal sand layer is used. Part 10 of the figure and by the drain electrode: scan line • 21 The same as -67- (65) 1300873 part of the scanning line 5A exposed; and part of the signal line formed by the terminal 6. At this time, an important feature of the fifth embodiment is that the photosensitive resin patterns 87A and 87B are formed in advance by the exposure technique, and the film thickness of the optical resin patterns 87 A and 87B is the electrode terminals 5 and 6 of the field 8 7 A (black area). The film thickness is, for example, 3 /im, which is larger than the film thickness of the region 87B (middle) on the source electrode 12, 21 and the storage electrode 72. 5 // m. After the source/drain wirings 12 and 21 are formed, when the film thickness of the photosensitive resin patterns 87A and 87B is reduced by /m or more by the oxygen plasma means, the photosensitive resin pattern 8 7C disappears, and the source 汲12 The 21 and the storage electrode 72 are exposed, and the photosensitive resin pattern 87C can be selectively formed only on the scanning line 1. In addition, the characteristics of the photosensitive resin pattern 87C are thinned by the above-described oxygen plasma treatment, and since the anodized layer is formed only in the electrode terminal 5 having a large pattern size, it is hardly electrical. Characteristics and yield have an impact. Next, the photosensitive resin pattern 87C is used as the mask light, and as shown in FIG. 9(f) and FIG. 1(f), the source wirings 1 2, 2 1 are anodized to form an oxide layer 6 8 . , 6, 9, source and drain wirings 1, 2, 2, the second amorphous 3 3 A exposed on the lower side is anodized to form a layer of tantalum oxide as an insulating layer) 66 ° after the anodization is completed, remove In the photosensitive resin pattern 87C, as shown in Fig. (g) and Fig. 10(g), the electric halftone of the electrode terminal composed of the low-resistance thin film layer 35A of the electrode oxide layer is exposed on the side surface thereof. The upper area and the 汲 调 区域 area are less grayed. The 5 pole wiring 2 is selected, that is, the width of the pattern is around 6 and the quality, and the radiant and bungee layer is simultaneously placed on the enamel layer (Si02, such as the first forming yang 5, 6 ° -68- (66) 1300873, the scanning line electrode terminal 6 is known. On the side surface, the anodic oxidation current flows through the high-resistance short-circuit line 40 (9 1 C) through the static electricity countermeasure, so that the thickness of the anodized layer formed on the side surface is thinner than the electrode terminal 5 of the signal line. In the structure of the pole/drain wirings 1, 2 and 2, if the limitation of the resistor 较 is loose, it can be simplified into a single layer of Ta which can be anodized. The active substrate 2 and the substrate 2 are formed in this manner. The color filter is bonded and the liquid crystal is panelized to complete the fifth embodiment of the present invention. The configuration of the storage capacitor 15 is as shown in Fig. 9(g), and the source/drain wiring 12 is exemplified. a storage electrode 72 formed on a portion of the pixel electrode 22 and a portion of the pixel electrode 22, and a protrusion portion provided on the front scanning line 11, via the gate insulating layer 30A, the first amorphous germanium layer 3 1 A, and the second non- The crystalline germanium layer forms an example of plane overlap (the upper left to the lower right oblique line portion 52). In the embodiment, when the source/drain wirings 12 and 21 and the second amorphous germanium layer 33B are anodized, the pixel electrode 22 electrically connected to the gate electrode 21 is also exposed, so that The element electrode 22 is also anodized at the same time, which is quite different from the first embodiment. Therefore, as the film quality of the transparent conductive layer constituting the pixel electrode 22 is different, the resistance 有时 is sometimes anodized. In this case, it is necessary to appropriately change the film formation conditions of the transparent conductive layer to form a film having insufficient oxygen, but the transparency of the transparent conductive layer is not lowered by anodization. Further, the gate electrode 21 and the pixel electrode are provided. 22. The current anodized with the storage electrode 72 is also supplied through the passage of the insulated gate type transistor. However, since the area of the pixel electrode 22 is large, a large reaction current or a long-term reaction is required, regardless of the irradiation. Strong external light, the resistance of the channel portion is not hindered, and an anodized layer having the same film quality and film thickness as that on the signal line 12 is formed on the drain-69-(67) 1300873 electrode 2 1 and the storage electrode 72. , using only the reaction The extension between the two is difficult. However, even if the anodized layer formed on the drain wiring 21 is somewhat incomplete, it is actually more reliable without hindrance. The reason is that as described above, only in In the signal line 12, the insulating layer may be formed in advance so that the DC component does not flow. The liquid crystal display device described above is configured by using a TN type liquid crystal cell, and is separated from the pixel electrode by a specific In the liquid crystal display device of the IPS (In-Plain-Swt icing) method of controlling the lateral electric field between the pair of counter electrodes and the pixel electrodes formed, the engineering reduction proposed by the present invention is useful, and this part will be This is illustrated in the subsequent examples. (Sixth embodiment) The sixth embodiment has the above thickness, preferably 3/m, on the entire surface of the glass substrate 2 as shown in Figs. 1 (e) and 12 (e). The photosensitive polyacrylic resin 39 is applied as a transparent resin having excellent transparency and heat resistance to the left and right thicknesses, and is selectively irradiated on the surface of the drain electrode 21 and the image display portion by selective ultraviolet irradiation using a photomask. The opening portion 62, 63, 64, 65 is formed on a portion 5 of the scanning line and a portion 6 of the signal line and the electrode terminal forming region of the storage capacitor line, and after baking, the photosensitive polyacrylic resin 39 is used as a mask. Selectively removing the gate insulating layers 30A, 30B in the openings 63, 65 to expose a portion 73 (5) of the scanning line and a portion 75 of the storage capacitor line, respectively, using the same manufacturing process as in the second embodiment. of. In the opening * .  .   * - • 70- (68) 1300873 Parts 62, 64, after development, expose the drain electrode 2 1 and a portion 74 ( 6 ) of the signal line. Next, the entire surface of the glass substrate 2 is covered with a film thickness of 0 by using a vacuum film forming apparatus such as SPT. 1 to 0. 2 / m or so of ITO as a transparent conductive layer, as shown in the 1st (f) and 12th (f), using a microfabrication technique, including the gate electrode 2 1 exposed in the opening portion 62 A part of the transparent resin 319 of the intermediate conductive layer 3 6 A is selectively formed: a pixel electrode 41, and a counter electrode 42 on the scanning line 1 and the signal line 12. At this time, a part 73 of the scanning line in the opening 63 and a part 74 of the signal line in the opening 64 are used as the transparent conductive electrode terminals 5 A and 6 A, and a transparent conductive position is provided similarly to the conventional example. The short-circuit line 40 is formed in an elongated linear shape between the electrode terminals 5A and 6A and the short-circuit line 40, and can be formed with high resistance to form static electricity. In the IPS type liquid crystal display device, the influence of the gap between the pixel electrode 41 and the counter electrode 42 is displayed. However, the potential of the pixel electrode 4T and the counter electrode 42 in the electrode is constant, and the display is not affected, so that the transparent electrode is transparent. The formation of the pixel electrode 41 and the counter electrode 42 is not necessarily the most appropriate choice. When a transparent conductive layer is replaced with a metallic Ti, Cr, or MoW alloy, the resistance 値 is lowered, so that the film thickness of the pixel electrode 41 and the counter electrode 42 can be thinned, the alignment is improved, or the Ti is not required to be selected. / A1 alloy laminate, an intermediate metal layer such as Ti or Ta is placed in the upper layer of the source/drain wirings 1, 2, and 2, and the source/drain wirings 1 and 2 1 can be simplified. However, when a metallic electrode is selected, it is difficult to increase the resistance when an electrostatic countermeasure different from the above-described electrostatic countermeasure is not performed. The advantage of using a transparent conductive layer on the pixel electrode 41 and the opposite electrode 42-71 - (69) 1300873 is that in a mass production plant that simultaneously produces a TN type liquid crystal panel and an IPS type liquid crystal panel, there is no need to replace the sputtering apparatus. The target, or the reasons for not needing two kinds of sputtering devices. The active substrate 2 and the color filter fabricated in this manner are bonded together, and the liquid crystal is panelized to complete the sixth embodiment of the present invention. The configuration of the storage capacitor 15 is as shown in FIG. 11(d), exemplifying the storage capacitor line 16 and the drain electrode 2 1, interposing the gate insulating layer 3 0 B, and the first amorphous germanium. The layer 31B and the second amorphous germanium layer form an overlapping region 50 (the upper left to the lower right oblique line portion), constituting the storage capacitor 15 as an example, and the drain electrode 2 1 and the front scanning line 1 1 are interposed. The gate insulating layer 3 0 A may constitute the storage capacitor 15 . In the sixth embodiment, the opposite electrode can be disposed on the optically ineffective scanning line 1 1 and the signal line 12, and as a result, the area to be displayed can be enlarged, and an IPS type liquid crystal display having a high aperture ratio can be obtained. Panels, however, are not easy to reduce the number of manufacturing projects. Thus, the invention of rationalizing passivation formation and further reducing the number of manufacturing engineering is explained in the seventh and eighth embodiments. (Seventh embodiment) In the seventh embodiment, first, a vacuum film forming apparatus such as SPT is used to coat a film thickness 〇·1 to 〇 on one main surface of a glass substrate 2 as in the conventional example. An alloy or a telluride such as Cr, Ta, Mo or the like of about 3/m is used as the first metal layer. Next, using a PCVD apparatus, on the entire surface of the glass substrate 2, for example, 0. 3// m ' 〇. 〇5/rm, 〇. The film thickness of about 1 β m is sequentially covered by -72-(70) 1300873: the first SiNx layer 30 as a gate insulating layer; and the first non-insulating gate type transistor channel which is almost free of impurities a thin film layer such as a crystalline germanium layer 3 1 and a second SiNx layer 32 as an insulating layer of a protective channel, and then, as shown in FIGS. 13(a) and 14(a), using a halftone exposure technique, The film thickness of the region 84A on the gate electrode 1 1 A, which is the protective insulating layer forming region, is formed, for example, at 2 // m, which corresponds to the region 84B corresponding to the counter electrode 16 which also serves as the scanning line 11 and the storage capacitor line. The photosensitive resin 84A, 84B having a thickness of 1 / 4 m is thicker, and the second SiNx layer 32 (channel protective layer) and the first amorphous germanium are selectively removed by using the photosensitive resin patterns 84A and 84B as masks. The layer 3 1 , the gate insulating layer 30 and the first metal layer expose the glass substrate 2 . Then, when the film thickness of the photosensitive resin patterns 84A and 84B is reduced by 1 // m or more by the ashing means such as oxygen plasma, the photosensitive resin pattern 84B disappears, and the second SiNx layer 32A is exposed on the scanning line 11. Exposing the second SiNx layer 32B on the counter electrode 16 while selectively etching the second SiNx layer 32A as the second SiNx layer 32D only in a manner that the protective insulating layer forming region is wider than the gate electrode 11 A, At the same time, the first amorphous germanium layer 31A is exposed on the scanning line 11, and the first amorphous germanium layer 3 1 B is exposed on the counter electrode 16 to remove the photosensitive resin pattern 84C, as shown in FIG. c) and FIG. 14(c), an insulating layer 76 is formed on the side surface of the gate electrode 11A. Therefore, as shown in Fig. 25, it is necessary to have the wiring 7 7 bundled in parallel with the scanning line 1 1 (the same as the storage capacitor line 16 and not shown here), and the plating on the outer peripheral portion of the glass substrate 2 ( e 1 ectr ο p 1 ating ) or anode-73- (71) 1300873 is used to impart a potential connection pattern 78' during oxidation, and further uses an amorphous sand layer 31 and a nitrided sand layer 3 () according to plasma CVD, The film-forming region 7 9 ' of the appropriate electro-violet means of 32 is limited to the inner side of the connection pattern 78. At least the layer of the connection pattern 78 〇umm must be exposed. Using the P C V D device, the entire surface of the glass substrate 2 is, for example, 0. After the film thickness of about 05 μπι is coated with the second amorphous germanium layer 3 3 containing impurities such as a dish, as shown in Fig. 13 (d) and Fig. 14 (d), the 'area other than the image display portion' is fine. The processing technique 'forms the opening portion 63A and the storage capacitor line 16' on the scanning line 1 1 or in parallel, forming an opening portion 6 5 A ' on the electrode terminal of the electrode that bundles the storage capacitor line 16 and selectively removing the opening a second amorphous sand layer 33 and a first amorphous layer 3 1 A and a gate insulating layer 30 A in the portion 63A, and selectively removing a portion 73 of the scanning line and the opening portion 65 A The second amorphous germanium layer 3 3 , and the first amorphous germanium layer 3 1 B, and the gate insulating layer 30B' expose a portion 75 of the storage capacitor line 16 . Then, in the formation of the source/drain wiring, a vacuum film forming apparatus such as SPT is used to sequentially coat a heat-resistant metal thin film layer 34 such as Ti or Ta having a thickness of about ///m as a heat-resistant metal layer. Further, the A1 thin film layer 35 having a film thickness of about 3·3 // m is used as the low-resistance wiring layer. Then, using the microfabrication technique, the source/drain wiring layer and the second amorphous germanium layer 3 3 composed of the two thin films and the first amorphous material are sequentially etched using the photosensitive resin pattern 86. The germanium layer 3 1 A, 3 1 B exposes the gate insulating layers 30A, 30B, as shown in Fig. 13(e) and Fig. 4(e), and selects -74-(72) 1300873 to form sexually. : a drain electrode 2 1 composed of a laminate of 34A and 35A as a pixel electrically insulating gate type transistor; and a source wiring line 1 2, and also an electrode terminal 6 including a source · A portion of the scanning line 7 3 which is formed while the twist line 1 2, 2 1 is formed, is composed of the electrode terminal 5 of the line and a part of the signal line. At this time, the film thickness of 86A on the signal line 12 is //m, and the film of 86B on the drain electrode 21 and the electrode terminals 5, 6 is formed in advance by a half exposure technique. 5 / m thick photosensitive resin patterns 86A, 86B, which is an important feature of the first embodiment. After the source/drain wirings 1 and 2 are formed, when the film thickness of the photosensitive resin patterns 86A and 86B is reduced by 4 // m or more by means of oxygen plasma or the like, the photosensitive resin pattern 86B disappears. 1 and FIG. 14(f), the gate electrode 21 and the electrode terminal 6 are exposed, and the photosensitive pattern 86C can be selectively formed only on the signal line 12, but due to the use of the above oxygen In the plasma treatment, when the pattern width of the photosensitive grease pattern 86C is made thinner, the reliability of the upper surface of the signal line 12 is lowered, so that the change in the pattern size is suppressed by the enhanced anisotropy. Further, in the configuration of the source/drain wirings 12 and 2 1 , if the limitation of the crucible is loose, it is also possible to simplify the formation of a single layer such as T a, c r or M 0 w . The active substrate 2 and the color filter fabricated in this manner are panel-fitted to liquid crystal, and the seventh embodiment of the present invention is completed. As described above, the IP S-type liquid crystal device can be understood that the pixel electrode 22 which does not require conductivity is provided on the active substrate 2, and the scanning tone of the opposite surface of the color filter is 3 Thick case seven graying 1. 5 (f) Sub-5 resinous tree, which is a good resistance alloy, which is shown to be transparent -75- (73) 1300873 The counter electrode 14 which does not require transparent conductivity. Therefore, the intermediate conductive layer on the source drain wirings 1, 2, 2 1 is also not required. In the seventh embodiment, since the photosensitive resin pattern 8 6 C is connected to the liquid crystal, the photosensitive resin pattern 86C is not a general photosensitive resin containing novolac resin as a main component, and the purity is high and the main component is used. It is important that the photosensitive organic insulating layer having a high heat resistance containing a propylene base resin or a polyimide resin is used. The configuration of the storage capacitor 15 is as shown in Fig. 15(f), exemplifying a portion of the pixel electrode (drain wiring) 21 and a counter electrode 6 which also serves as a storage capacitor line. The insulating layer 30B, the first amorphous germanium layer 3 1 B, and the second amorphous germanium layer form an example in which planes are overlapped (the upper left oblique line portion 50 to the lower right). In addition, the description of "static countermeasures" is omitted. In the seventh embodiment of the present invention, the organic insulating layer is formed only on the signal lines, respectively, to achieve a reduction in manufacturing engineering. However, since the thickness of the organic insulating layer is usually 1 // m or more, the pixels of the high-definition panel are higher. Hour's use of the alignment treatment of the alignment film of the flat-grinding cloth may cause a non-alignment state due to the difference in height or an obstacle to the accuracy of the gap of the liquid crystal cell. Here, the eighth embodiment has a passivation technique of becoming an organic insulating layer by adding a minimum number of engineering numbers. (Eighth Embodiment) The eighth embodiment is as shown in Figs. 15(d) and 16(d), and is formed in a manufacturing process substantially the same as that of the seventh embodiment until the contact engineering is formed. . Then, in the source and drain wiring formation process, a vacuum film forming apparatus such as -76- (74) 1300873 SPT is used to sequentially cover the film thickness. i#m such as Ti, Ta, etc., the heat resistant metal film layer 34 as an anodic hot metal layer; and the film thickness is 0. A1 thin film layer of about 3/zm 35 rows of anodized low resistance wiring layers. Then, the photosensitive resin pattern 87 is finely applied, and the two thin source, the drain wiring, the second amorphous germanium layer 3, and the second germanium layers 31A and 31B are sequentially etched to expose the gate. The insulating layers 30A, 30B are shown in Fig. (e) and Fig. 6(e), selectively forming: an insulating gate type transistor of the pixel electrode formed by the E 35A layer, and a source wiring. The signal line 12 also forms a sub-piece 6, which is a portion of the scanning line 73 formed by the source and drain wirings 1, 2, 2, and is composed of the electrode terminals 5 and lines of the scanning line. At this time, by the halftone exposure technique, the film thickness of 8 7 A (black area) on the shape of 1 2 is, for example, 3 // m, the ratio is 2 1 and the area on the electrode terminals 5, 6 is 8 7 B (middle tone) Area 1 . 5 / m thick photosensitive resin patterns 86A, 86B, this is an important feature of the example. After the source/drain wirings 1 and 2 are formed, when the film thickness of the photosensitive resin patterns 87A and 87B is equal to or greater than m, the photosensitive resin pattern 8 7 B disappears, and the source 12 When the 21 is exposed, the photosensitive resin pattern 8 7 C can be selected only on the electrode terminals 5 and 6. Here, in the photosensitive resin pattern mask, the light is irradiated while the left and right sides are oxidized as shown in FIGS. 15(f) and 16(J, the source/drain wirings V2 and 21 are anodized). Resistant to the construction technology, the film is composed of an amorphous material, such as the film thickness of the first 5 from the 3 4 A and the drain electrode: the exposed part of the signal is the signal line drain electrode) Reduced by 1 5 汲 配线 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化The crystalline germanium layer 3 3 A is anodized to form an oxide sand layer (Si〇 2) 66 as an insulating layer. After the completion of the anodization, when the photosensitive resin pattern 8 7 C is removed, as shown in Figs. 15(g) and 16(g), the electrode terminals 5 and 6 having the low-resistance film layer 35A on the surface thereof are exposed. However, in FIGS. 15(f) and 16(f), the countermeasure against static electricity between the scanning line electrode terminal 5 and the signal line electrode terminal 6 by the high-resistance member is not shown in the figure, so the scanning is performed. The anodic oxide layer is not formed on the side surface of the electronic terminal 5 of the line. However, since the opening portion 63A is provided and the portion 73 of the scanning line 11 is exposed, the countermeasure against static electricity is easy. Further, in the configuration of the source/drain wirings 1, 2 and 2, if the resistance 値 is loose, the Ta single layer which is anodized can be simplified. The active substrate 2 and the color filter which were produced in this manner were bonded together, and the liquid crystal was panelized to complete the eighth embodiment of the present invention. Regarding the configuration of the storage capacitor 15, as shown in Fig. 15(g), a part of the pixel electrode 21 and the counter electrode 16 are illustrated, via the gate insulating layer 30B, and the first amorphous germanium layer 3 1 B. An area 50 (the lower right oblique line portion) overlapping the second amorphous germanium layer constitutes an example of the storage capacitor 15 . In the ninth embodiment of the present invention, the connection forming process of the gate insulating layer is rationalized. When the opening of the passivation insulating layer is formed, the IPS type liquid crystal display device having a further reduction in the number of manufacturing processes can be obtained. (Ninth Embodiment) -78 - (76) 1300873 The table nine embodiment is selectively formed on the glass substrate 2 as shown in Figs. 17(d) and 18(d): by 34A And a gate electrode 2 1 of an insulating gate type transistor which is a pixel electrode and a signal line 12 which also serves as a source line formed by a laminate of 35A, and an electrode terminal 6 composed of a partial signal line is formed at the same time. This is carried out in substantially the same process as the sixth embodiment. The difference is in the pattern shape of the storage capacitor line 16. In the ninth embodiment, the storage capacitor line 16 doubles as the counter electrode. Then, as shown in Fig. 17 (e) and Fig. 18 (e), the ratio is 0. 5// m is thicker, preferably 1. The photosensitive polyacrylic resin 3 is applied as a transparent resin having excellent transparency and heat resistance at a thickness of about 5//m. By selective ultraviolet irradiation using a photomask, the scanning lines are respectively in regions other than the image display portion. The portion 5 and the portion 6 of the signal line and the portion 75 of the storage capacitor line 16 form openings 62, 63, 64, 65. After the post-baking, the photosensitive polyacrylic resin 39 is used as a mask to selectively remove the gate insulating layers 30A and 30B in the openings 63 and 65 to expose a portion 5 of the scanning line and the storage capacitor line 16. A portion 7 5 serves as an electrode terminal 5 of the scanning line and an electrode terminal of the storage capacitor line, respectively. Further, in the ninth embodiment, it is known that the SiNx layer as the inorganic material is used instead of the photosensitive polyacrylic resin 39 as the transparent insulating layer, and the opening portion forming process using the photosensitive resin may be performed. The active substrate 2 and the color filter fabricated in this manner are bonded together, and the liquid crystal is panelized to complete the ninth embodiment of the present invention. When a thick photosensitive polyimide resin is used as the transparent insulating layer as the passivation insulating layer, the height difference between the counter electrode 16 and the pixel electrode 21 is absorbed, so that the alignment is 79-(77) 1300873. It is easy to 'no misalignment, and the contrast ratio is also high. Further, since the photosensitive polyacrylic resin 39 remains on the glass substrate 2, the number of manufacturing steps is further reduced, and the electrode terminal 5 of the scanning line and the electrode terminal 6 of the signal line cannot be electrically connected. Therefore, for static electricity, it is a troublesome place to be treated with caution. The configuration of the storage capacitor 15 is as shown in Fig. 17(e), and a part of the pixel electrode 22 and the counter electrode 16 are interposed, and the gate insulating layer 30B and the first amorphous germanium layer 31A are interposed. The region 50 (the lower right oblique line portion) in which the second amorphous germanium layer overlaps constitutes an example of the storage capacitor 15 , and the pixel electrode 2 1 and the scanning line 1 1 of the preceding stage are interposed with the gate insulating layer 3 〇a , constituting the storage capacitor 1 5 is also possible. (Tenth Embodiment) In the ninth embodiment, a photosensitive polyacrylic resin or a SiNx layer having high transparency is used for the passivation insulating layer, but the application is carried out by a new rationalization technique in the connection forming process and the fifth and seventh embodiments. In the case of the passivation forming technique of the source/drain wiring and the anodization of the channel, an IPS type liquid crystal display device can be obtained by using two masks, and this portion is explained in the tenth embodiment. In the first embodiment, a vacuum film forming apparatus such as SPT is used on one main surface of the glass substrate 2 to coat the film. 1 to 〇. An anodized first metal layer of about 3/m. Next, on the entire surface of the glass substrate 2, a PCVD apparatus is used, for example, 0. 3 // m, 0. 05 // m, 0·1 // m film thickness, sequentially coated: first SiNx layer as gate insulating layer -80· (78) 1300873 3 〇, insulating gate type with almost no impurities The first amorphous germanium layer 31 to which the channel of the crystal belongs, and the third thin layer of the second SiNx layer 32 to protect the via as the insulating layer, and as shown in FIGS. 19(a) and 20(a) As shown, the semiconductor layer forming region, that is, the region 8 4 A 1 on the gate electrode 1 1 A, the region 84A2 on the proximal region where the scanning line Π and the signal line 12 intersect, and the counter electrode are shown by the halftone exposure technique. A region 84A3 on the near pupil region where the 16-friend signal line 12 intersects, and a storage capacitor formation region, that is, a region on the portion 84 A4 of the counter electrode 16 and the region on the near region intersecting the pixel electrode 21 and the counter electrode 16 The film thickness at 84A5 is, for example, 2 // m, which is thicker than the film thickness 1 /2 m corresponding to the scanning line 1 1 which also serves as the gate electrode 1 1 A and the photosensitive resin pattern 84B of the counter electrode 16 Resin patterns 84A1 to 84A5 and 85B, with photosensitive resin patterns 81 A to 84A5 and 81B as masks, plus a second SiNx The layer 32, the first amorphous germanium layer 31, and the gate insulating layer 30 are selectively removed from the first metal layer to expose the glass substrate 2. After the multilayer film pattern corresponding to the scanning line 1 1 and the counter electrode 16 which also serves as the gate electrode 1 1 A is formed in this manner, the upper photosensitive resin patterns 84A1 to 84A5 are then removed by means of ashing means such as oxygen plasma. When the film thickness of the film is reduced by 1/4 or more, the photosensitive resin pattern 84B disappears, and as shown in FIGS. 19(b) and 20(b), the second SiNx layer 32A is exposed on the scanning line 11, and The second SiNx layer 32B is exposed on the counter electrode 16 while being on only the gate electrode Η A, the near pupil region intersecting the scan line 1 Ϊ and the signal line 12, and the counter electrode 16 and the signal line 1 2 The photosensitive resin patterns 84C1 to 84C5 are selectively formed on the adjacent near pupil region and on the storage capacitor forming region, and in the vicinity of the pixel electrode 21 and the opposite-81 - (79) 1300873 electrode 16. The above-described oxygen plasma treatment is to enhance the anisotropy to suppress the change in the pattern size without lowering the alignment accuracy of the mask of the subsequent source/drain wiring formation, which is as described above. Different from the other embodiments, in the tenth embodiment, it is necessary to expose the scanning line 11 when the etching stopper layer is formed, and to perform the oxygen plasma treatment after the formation of the insulating layer 76, so that the film thickness is reduced with the insulating layer 76. The method is complicated, so it is recommended to use an anodized layer on the insulating layer 76. Therefore, in the connection pattern 78 shown in Fig. 22, the scanning line 11 and the counter electrode 16 (not shown) are given a + (positive) potential by a connecting means such as an alligator clip. After the insulating layer 76 is formed on the side of the scanning line 1 1 , as shown in FIGS. 19 (c ) and 20 ( c ), the photosensitive resin patterns 84C1 to 84C5 are used as masks on the gate electrode 1 1 A. And a layer of the second SiNx layer 32A, the first amorphous germanium 31A and the gate insulating layer 30A selectively remaining on the near germanium region intersecting the scan line 11 and the signal line 12, and at the opposite electrode 16 and The second SiNx layer 3 2B and the first amorphous germanium are selectively left on the near pupil region where the signal line 12 intersects, and the near region of the storage capacitor forming region intersecting the pixel electrode 21 and the opposite electrode 16 . 31B and a gate insulating layer 3 0 B are laminated, simultaneously etching the second S i NX layer 32A on the scan line 1 1 , the first amorphous germanium layer 31 A and the gate insulating layer 30A, and the counter electrode 16 The second SiNx layer 3 2B, the first amorphous germanium layer 31B, and the gate insulating layer 30B expose the scan line 1 1 and the counter electrode 16 respectively. Further, by applying an oxygen plasma treatment, the film thickness of the photosensitive resin patterns 84C1 to 84C5 is reduced isotropically by 0. 5 / m or so as the photosensitive -82- (80) 1300873 resin patterns 84D1 to 84D5, around the 84D1 to 84D5, the second SiNx layers 32A, 32B exposed a wide width of 0. 5//m or so. Thus, as shown in FIGS. 19(d) and 20(d), the second SiNx layer 32A on the gate electrode 11A is selectively removed by using the photosensitive resin patterns 84D1 to 84D5 as masks. The protective insulating layer (second SiNx layer) 32D partially exposes the first amorphous germanium layer 3 1 A. Then, after removing the above-described photosensitive resin patterns 84D1 to 84D5, using a PCVD apparatus, on the entire surface of the glass substrate 2, for example, 〇. The film thickness of 〇5 // m is covered with a second amorphous germanium layer 33 containing impurities such as phosphorus, and in the formation process of the source/drain wiring, a vacuum film forming apparatus such as SPT is used to sequentially cover the film thickness: The heat-resistant metal film layer 34 such as Ti or Ta is used as an anodizable heat-resistant metal layer, and the film thickness is 〇. The A1 film layer 3 5 of about 3 // m is also used as an anodizable low-resistance wiring layer. then,. The photosensitive resin pattern 87 is sequentially etched by a microfabrication technique: a source/drain wiring layer composed of two layers of thin films, a second amorphous germanium layer 3 3 and a first amorphous germanium layer 3 1 A, 3 1 B, exposing the gate insulating layers 30A, 30B, as shown in Figs. 19(e) and 20(e), selectively forming a pixel composed of the laminates of 34A and 35A The drain electrode 2 1 of the insulated gate type transistor of the electrode and the signal line 1 2 which also serves as the source wiring are formed on a part of the scanning line which is formed while the source/drain wirings 2 2 and 2 1 are formed. The electrode terminal 5 of the scanning line and the electrode terminal 6 formed by a part of the signal line. At this time, using the halftone exposure technique, the film thickness (black area) of 87A on the electrode terminals 5, 6 is formed, for example, 3 // m, which corresponds to the area of the source/drain wiring 1 2, 2 1 - 83-(81) 1300873 8 7 B (intermediate adjustment region) The case where the photosensitive resin patterns 87A and 87B having a thickness of 1 · 5 μm is also an important feature of the tenth embodiment. After the formation of the source/drain wirings 1, 2 and 2, the photosensitive resin patterns 87 A and 87B are reduced in film thickness by an ashing means such as oxygen plasma. When 5 / m or more, the photosensitive resin pattern 8 7B disappears, and the source/drain wirings 2 2 and 2 1 are exposed, and the photosensitive resin pattern 87C is selectively formed only on the electrode terminals 5 and 6. Here, the photosensitive resin pattern 87C is used as a mask to irradiate light, and as shown in FIGS. 19(f) and 20(f), the source/drain wirings 1, 2, 2 1 are used for anodization. The oxide layers 68 and 69 are formed, and the second amorphous germanium layer 3 3 A exposed on the lower side of the source/drain wirings 12 and 21 is anodized to form a hafnium oxide layer (SiO 2 ) as an insulating layer. . At this time, the exposed scanning line 1 1 and the counter electrode 16 are also anodized at the same time, and an oxide layer 71 is formed on the surface thereof. As shown in Fig. 22, the wiring 77 and the connection pattern 78 of the scanning line 1 1 are bundled in parallel on the active substrate 2, so that the source/drain wirings 1 2, 2 1 are anodized simultaneously, and the scanning line Π Anodizing is also easy to implement. Furthermore, anodization is also performed on the scan line 1 1 and the counter electrode 16 to form an insulating layer, and an anodizable metal is formed on the scan line, and a Ta single layer, Al (Zr, Ta) can be selected. In the case of a single layer structure such as an alloy or a laminated structure of Al/Ta, Ta/Al/Ta, Al/Al (Ta, Z〇 alloy, etc.), as described above, when the photosensitive resin pattern 87C is removed after the anodization is completed, Figs. 19(g) and 20(g) show an anodized layer on the side surface thereof, and an electrode terminal 5'6 composed of a low-resistance metal layer 35A is exposed.  - · -84- (82) 1300873. Furthermore, in the case of the configuration of the source/drain wirings 1, 2, 2 1 'the electrical limitation is loose, the active substrate 2 and the color obtained by forming the anodizable T a single layer in this manner can be simplified. The filter is bonded to the crystal panel to complete the tenth embodiment of the present invention. Regarding the configuration of the storage device ^, as shown in Fig. 19 (f), the display pixel electrode (drain) 21 and the counter electrode (storage capacitor line) 16 are interposed with the gate layer 3 0B, first. The laminated layers of the amorphous germanium layer 31B, the second SiNx layer 32E, and the amorphous germanium layer are formed by overlapping planes (the left and right oblique line portions 50), but the configuration of the storage capacitor 15 is not limited to the pixel. The electrode and the front scanning line are formed by interposing an insulating layer containing a gate. Further, other configurations are also possible, but detailed descriptions are omitted. [Effects of the Invention] As described above, in the liquid crystal display device of the present invention, since the absolute-type transistor has a protective insulating layer on the channel, it is only on the source/drain wiring in the image display, or only the signal Selectively apply an organic insulating layer on the line, or apply anodization to the source/drain wiring made of anodizable source/drain wiring, and form a layer on the surface. Substrate passivation function. In the other part of the liquid crystal display device of the invention, the yttrium oxide layer is formed on the via by oxidation, so that the source/drain wiring formed of the anodizable source wiring material is simultaneously applied to the channel. It is masculine and forms an insulating layer on its surface. In this way, the active barrier C► C can be imparted to the liquid. The 15 poles are electrically insulated to the right, and the edge of the edge layer is lightly insulated. Anode • Bipolar Oxygen Group 85- (83) 1300873 Plate passivation function. Therefore, it is not necessary to have a special heating process, and an amorphous gate layer is used as the insulating gate transistor of the semiconductor layer, and excessive heat resistance is not required. In other words, by passivation formation, there is an additional effect that electrical performance deterioration does not occur. In addition, when the source drain wiring is anodized, the introduction of the halftone exposure technique can selectively protect the electrode terminals of the scanning line or the signal line, thereby achieving an effect of preventing an increase in the number of lithography processes. The object of the present invention is to realize the reduction of engineering and the formation of organic insulation on the side of the exposed scanning line by processing the formation process of the scanning line and the formation of the etch stop layer by a mask by the introduction of the halftone exposure technique. In the case of the layer or the anodized layer, the gate insulating layer on the scanning line is also used to fill the existing pinhole with the organic insulating layer or the anodized layer, thereby reducing the interlayer short circuit between the scanning line and the signal line, and the additional effect is large. In addition, by introducing the analog pixel electrode, rationalizing the pixel electrode and the scan line by a mask, the number of the lithography process can be further reduced from the conventional 5 times, and 4 channels or The three-layer photomask is used to manufacture a liquid crystal display device, and the industrial price is extremely large from the viewpoint of cost reduction of the liquid crystal display device. Moreover, the pattern accuracy of these projects is not so high, so it does not have a large impact on yield or quality, so production management is easier to implement. Further, in the IPS type liquid crystal display device of the sixth embodiment, the electric field generated between the counter electrode and the pixel electrode is applied only to the liquid crystal layer, and the IPS type liquid crystal display device of the seventh embodiment can be similarly applied to The gate insulating layer and the liquid crystal layer on the counter electrode, in addition to the IPS type liquid crystal display -86-(84) 1300873 device of the eighth embodiment, the gate insulating layer and the pixel which are equally applied to the counter electrode The anodized layer of the electrode, and the IPS display device of the tenth embodiment, can also be applied to the anodized layer on the counter electrode and the anodized layer on the pixel electrode, so that none of the defects are known. The inferior passivation insulating layer has the advantage that it is difficult to produce a significant burnt afterimage phenomenon. This is because the anodic oxide layer (the anodized layer of the pixel exhibits no charge accumulation due to the high-resistance layer compared to the insulating layer. Moreover, in the liquid crystal display device of the ninth embodiment, if transparent is used The resin layer is used as a passivation, and the electric field generated between the counter electrode and the halogen electrode can be applied to the edge layer, the liquid crystal layer and the transparent resin layer, so that there is no inferior passivation insulating layer which is conventionally trapped. Since the transparent resin layer is hard and the burnt image phenomenon of the image is displayed, the active base surface is flat, so that a uniformity can be formed without alignment conditions, and an image with high contrast ratio without non-alignment can be obtained. Furthermore, the requirements of the present invention can be understood from the above description. In the stop type gate-type transistor, the formation process and the etching termination process of the scan line can be processed by a half mask by a halftone exposure technique. At the same time, at the point of the exposed scanning line and the side organic insulating layer or the anodized layer of the counter electrode, the material or film thickness of the other elemental electrode, gate insulating layer, etc. The difference between the display-mounted conductor device and the manufacturing method thereof is also known in the present invention. In the reflective liquid crystal display device, the semiconductor layer of the practical 'further' insulated gate type transistor of the present invention is not limited to liquid crystal. The layered liquid crystal layer and the liquid have the function of the image electrode. In the case of the IPS type layer, the gate of the IPS type has many defects, and the surface of the plate is processed to form the shape of the layer to be etched. Amorphous • 87- (85) 1300873 sand. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view showing a semiconductor device for a display device according to a first embodiment of the present invention. Fig. 2 is a cross-sectional view showing the manufacturing process of the semiconductor device for a display device according to the first embodiment of the present invention. Fig. 3 is a plan view showing a semiconductor device for a display device according to a second embodiment of the present invention. Fig. 4 is a cross-sectional view showing the manufacturing process of the semiconductor device for a display device according to the second embodiment of the present invention. Fig. 5 is a plan view showing a semiconductor device for a display device according to a third embodiment of the present invention. Figure 6 is a cross-sectional view showing the manufacturing process of a semiconductor device for a display device according to a third embodiment of the present invention. Fig. 7 is a plan view showing a semiconductor device for a display device according to a fourth embodiment of the present invention. Figure 8 is a cross-sectional view showing the manufacturing process of a semiconductor device for a display device according to a fourth embodiment of the present invention. Figure 9 is a plan view showing a semiconductor device for a display device according to a fifth embodiment of the present invention. Fig. 1 is a cross-sectional view showing a manufacturing process of a semiconductor device for a display device according to a fifth embodiment of the present invention. Fig. 1 is a plan view showing a half-88-(86) 1300873 conductor device for a display device according to a sixth embodiment of the present invention. Fig. 2 is a cross-sectional view showing the manufacturing process of a semiconductor device for a display device according to a sixth embodiment of the present invention. Fig. 3 is a plan view showing a semiconductor device for a display device according to a seventh embodiment of the present invention. Fig. 14 is a cross-sectional view showing the manufacturing process of a semiconductor device for a display device according to a seventh embodiment of the present invention. Fig. 15 is a plan view showing a semiconductor device for a display device according to an eighth embodiment of the present invention. Figure 16 is a cross-sectional view showing the manufacturing process of a semiconductor device for a display device according to an eighth embodiment of the present invention. Fig. 17 is a plan view showing a semiconductor device for a display device according to a ninth embodiment of the present invention. Figure 18 is a cross-sectional view showing the manufacturing process of a semiconductor device for a display device according to a ninth embodiment of the present invention. Figure 19 is a plan view showing a semiconductor device for a display device according to a tenth embodiment of the present invention. Figure 20 is a cross-sectional view showing the manufacturing process of a semiconductor device for a display device according to a tenth embodiment of the present invention. Fig. 21 is a view showing the arrangement of the connection pattern formed by the insulating layer in the first to ninth embodiments of the present invention. Fig. 2 is a layout view showing a connection pattern of an insulating layer according to a tenth embodiment of the present invention. Fig. 23 is a perspective view showing a mounted state of the liquid crystal panel. -89- (87) (87) 1300873 Figure 24 is an equivalent circuit diagram of the liquid crystal panel. Figure 25 is a cross-sectional view of a conventional liquid crystal panel. Figure 26 is a plan view of a conventional substrate of a conventional example. Fig. 27 is a cross-sectional view showing the manufacturing process of the active substrate of the conventional example. Figure 28 is a plan view of a rationalized active substrate. Figure 29 is a cross-sectional view showing the manufacturing process of a rationalized active substrate. [Description of the figure] 1 : Liquid crystal panel 2 : Active substrate (glass substrate) 3 : Semiconductor integrated circuit wafer 4 : TCP film 5 : Electrode terminal of scanning line, part of scanning line 6 : Electrode terminal of signal line, signal Part of the line 9 : Color filter (opposing glass substrate) 1 〇: Insulated gate type transistor 1 1 : Scanning line (gate electrode) 1 1 A : Gate wiring, gate electrode 1 2 : Signal line (source wiring, source electrode) 16 : storage capacitor line (IPS type counter electrode) 1 7 : liquid crystal 18: polarizing plate 20: alignment film 21: drain electrode (IPS type pixel electrode) -90- ( 88) (88) 1300873 22 : (transparent conductive) pixel electrodes 30, 30A, 30B, 30C: gate insulating layer (ISiNx layer) 3 1 , 3 1 A, 3 1 B, 3 1 C : (No Impurity-containing) first amorphous germanium layer 32, 32A, 32B, 3 2C : second SiNx layer 3 2D : channel protective insulating layer (etch stop layer, protective insulating layer) 3 3, 3 3 A, 3 3 B, 3 3 C : (with impurities) 2nd amorphous bismuth layer 34, 34A: (anodable) refractory metal layer 35, 35A: (anodable) low-resistance metal layer (A1) 36, 3 6A :( Anodized) intermediate conductive layer 3 7 : passivation insulating layer 41 : pixel electrode 42 of IPS type liquid crystal display device: opposite electrode 50, 51, 52 of IPS type liquid crystal display device: storage capacitor forming region 62 : (drain electrode The upper openings 63, 63A: (on the scanning line) the openings 64, 64A: (on the signal line) the openings 65, 65A: the opening portion 66 (on the counter electrode): the impurity-containing yttrium oxide layer 68: Anodized layer (titanium oxide, TiO 2 ) 69 : anodized layer (alumina, Al 2 〇 3 ) 70 : anodized layer (penta pentoxide, Ta 205 ) 71 : anodized layer of (opposite electrode) 7 2 : storage electrode 7 3 : One 咅 β of the scanning line -91 - (89) 1300873 74 : Part of the signal line 7 6 : Insulation layers 80A , 80B , 81A , 81B , 82A , 82B , 84A , 84 B formed on the side of the scanning line , 87A, 87B: photosensitive resin pattern 83A (formed by halftone exposure): (general for photoreceptor electrode) photosensitive resin pattern 8 5 : photosensitive organic insulating layer 86A, 86B: (formed by halftone exposure) Photosensitive organic insulating layer 91: transparent conductive layer 92: first metal layer -92-

Claims (1)

(1) 1300873 拾、申請專利範圍 1. 一種底部閘極型的絕緣閘極型電晶體,其特徵爲 在絕緣基板的主面上形成閘極電極,在上述閘極電極 的側面形成絕緣層,同時在上述閘極電極上形成一層以上 ,的閘極絕緣層和不含雜質的第一半導體層,在上述第一半 導體層上,形成寬幅比上述閘極電極還細的保護絕緣層, 在上述保護絕緣層之一部分上和第一半導體層上和絕緣基 板上,形成由含雜質的第二半導體層與一層以上的金屬層 所積層而構成的源極•汲極配線。 2 ·如申請專利範圍第1項所記載的底部閘極型的絕 緣閘極型電晶體,其中,絕緣層爲有機絕緣層。 3 ·如申請專利範圍第1項所記載的底部閘極型的絕 緣閘極型電晶體,其中,閘極電極是由可陽極氧化的金屬 層所構成,且絕緣層是陽極氧化層。 4 ·如申請專利範圍第1項所記載的底部閘極型的絕 緣閘極型電晶體,其中,閘極電極是由透明導電層與金屬 層的積層所構成,且絕緣層是有機絕緣層。 5 . —種液晶顯示裝置,係於在一主面上至少具有: 絕緣閘極型電晶體、兼作前述絕緣閘極型電晶體的閘極電 極之掃描線、兼作源極配線之信號線、以及連接於汲極配 線之,畫素電極等等之單位畫素被配列成二維矩陣狀的第一 透明性絕緣基板;和與上述第一透明性絕緣基板相對的第 二透明性絕緣基板或是彩色濾光片之間塡充液晶而構成的 -93 - (2) 1300873 液晶顯示裝置,其特徵爲: 至少在第一透明性絕緣基板的一主面上’形成有由一 層以上的第一金屬層所構成,且其側面具有絕緣層的掃描 線, 在閘極電極上,形成一層以上的閘極絕緣層與不含雜 質的第一半導體層, 在上述第一半導體層上’形成寬幅比閘極電極還細的 保護絕緣層, 在畫像顯示部以外的區域’於掃描線上的閘極絕緣層 形成開口部, 在上述部分保護絕緣層上、第一半導體層上以及第一 透明性絕緣基板上,形成由含雜質的第二半導體層與一層 以上可陽極氧化之金屬層的積層所構成的源極(信號線) •汲極配線、和包含上述開口部周邊之第一半導體層與第 二半導體層與一層以上可陽極氧化之金屬層的積層所構成 的掃描線的電極端子, 在上述汲極配線之一部分上與第一透明性絕緣基板上 ,形成透明導電性的畫素電極、和在畫像顯示部以外的1S 域於信號線上形成透明導電性的電極端子, 除了上述汲極配線之與畫素電極重疊的區域與信號線 的電極端子的區域以外,在源極•汲極配線的表面,形成 陽極氧化層。 6. 一種液晶顯示裝置,係於在一主面上至少具有: 絕緣閘極型電晶體、兼作前述絕緣閘極型電晶體的閛極電 -94- (3) 1300873 極之掃描線、兼作源極配線之信號線、以及連接於汲極配 線之畫素電極等等之單位畫素被配列成二維矩陣狀的第一 透明性絕緣基板;和與上述第一透明性絕緣基板相對的第 二透明性絕緣基板或是彩色濾光片之間塡充液晶而構成的 液晶顯示裝置,其特徵爲: 至少在第一透明性絕緣基板的一主面上,形成由一層 以上的第一金屬層所構成,且其側面具有絕緣層的掃描線 在閘極電極上形成一層以上的閘極絕緣層與不含雜質 的第一半導體層, 在上述第一半導體層上形成寬幅比閘極電極還細的保 護絕緣層, 在上述保護絕緣層之一部分與第一半導體層上與第一 透明性絕緣基板上,形成由含雜質的第二半導體層與一層 以上之第二金屬層的積層所構成的源極(信號線)•汲極 配線, 在上述汲極配線上與畫像顯示部以外的區域,於上述 第一透明性絕緣基板上形成在掃描線與信號線的電極端子 形成區域上具有開口部的透明絕緣層, 去除上述掃描線的電極端子形成區域上的閘極絕緣層 包含上述汲極配線上的開口部,而在透明絕緣層上形 成透明導電性的畫素電極。 7 · —種液晶顯示裝置,係於在一主面上至少具有:. -95- (4) 1300873 絕緣閘極型電晶體、兼作前述絕緣閘極型電晶體的閘極電 極之掃描線、兼作源極配線之信號線、以及連接於汲極配 線之畫素電極等等之單位畫素被配列成二維矩陣狀的第一 透明性絕緣基板;和與上述第一透明性絕緣基板相對的第 二透明性絕緣基板或是彩色濾光片之間塡充液晶而構成的 液晶顯示裝置,其特徵爲:(1) 1300873 Pickup, Patent Application Range 1. A bottom gate type insulated gate type transistor, characterized in that a gate electrode is formed on a main surface of an insulating substrate, and an insulating layer is formed on a side surface of the gate electrode. At the same time, one or more gate insulating layers and a first semiconductor layer containing no impurities are formed on the gate electrode, and a protective insulating layer having a width wider than the gate electrode is formed on the first semiconductor layer. A source/drain wiring formed by laminating a second semiconductor layer containing impurities and one or more metal layers is formed on one portion of the protective insulating layer and on the first semiconductor layer and the insulating substrate. 2. The bottom gate type insulated gate type transistor according to the first aspect of the invention, wherein the insulating layer is an organic insulating layer. 3. The bottom gate type insulated gate type transistor according to the first aspect of the invention, wherein the gate electrode is composed of an anodizable metal layer, and the insulating layer is an anodized layer. 4. The bottom gate type insulated gate type transistor according to the first aspect of the invention, wherein the gate electrode is composed of a laminate of a transparent conductive layer and a metal layer, and the insulating layer is an organic insulating layer. A liquid crystal display device having at least an insulating gate type transistor, a scanning line serving as a gate electrode of the insulating gate type transistor, a signal line serving as a source wiring, and a first transparent insulating substrate in which a unit pixel of a pixel electrode or the like is connected to a gate electrode, and a second transparent insulating substrate opposite to the first transparent insulating substrate or A -93 - (2) 1300873 liquid crystal display device comprising a liquid crystal between the color filters, wherein: at least one first metal is formed on one main surface of the first transparent insulating substrate a scan line composed of a layer having an insulating layer on a side thereof, and one or more gate insulating layers and a first semiconductor layer containing no impurities are formed on the gate electrode, and a width ratio is formed on the first semiconductor layer The gate electrode also has a fine protective insulating layer, and an opening portion is formed in the gate insulating layer on the scanning line in a region other than the image display portion, and the first semiconductor layer is formed on the partial protective insulating layer. And a source (signal line) formed by laminating a second semiconductor layer containing impurities and one or more anodizable metal layers on the first transparent insulating substrate, a drain wiring, and a periphery including the opening An electrode terminal of a scan line formed by laminating a first semiconductor layer and a second semiconductor layer and one or more anodizable metal layers, forming transparent conductivity on a portion of the drain wiring and the first transparent insulating substrate The pixel electrode and the 1S field other than the image display portion form a transparent conductive electrode terminal on the signal line, and the source is in addition to the region of the drain wiring overlapping the pixel electrode and the electrode terminal of the signal line. The surface of the pole • bungee wiring forms an anodized layer. A liquid crystal display device having at least an insulating gate type transistor and a scan line of a drain-electro-94-(3) 1300873 pole which serves as the insulating gate type transistor on one main surface, and serves as a source a signal line of the pole wiring, a unit pixel connected to the pixel electrode of the drain wiring, and the like, a first transparent insulating substrate arranged in a two-dimensional matrix; and a second opposite to the first transparent insulating substrate A liquid crystal display device comprising a transparent insulating substrate or a color filter filled with a liquid crystal, wherein at least one first metal layer is formed on one main surface of the first transparent insulating substrate A scanning line having an insulating layer on its side surface forms one or more gate insulating layers and a first semiconductor layer containing no impurities on the gate electrode, and a wider width is formed on the first semiconductor layer than a gate electrode a protective insulating layer, on a portion of the protective insulating layer and the first semiconductor layer and the first transparent insulating substrate, forming a second semiconductor layer containing impurities and a second gold layer or more A source (signal line) and a drain line formed by stacking layers of the constitutive layer, and electrodes formed on the first transparent insulating substrate on the scan line and the signal line on the drain wiring and the region other than the image display portion a transparent insulating layer having an opening in the terminal forming region, wherein the gate insulating layer on the electrode terminal forming region from which the scanning line is removed includes an opening portion on the drain wiring, and a transparent conductive pixel is formed on the transparent insulating layer electrode. 7 - A liquid crystal display device having at least: -95- (4) 1300873 insulated gate type transistor, and a scanning line serving as a gate electrode of the insulating gate type transistor, on both sides of a main surface a signal line of the source wiring, a unit pixel of a pixel electrode connected to the drain wiring, and the like, and a first transparent insulating substrate arranged in a two-dimensional matrix; and a surface opposite to the first transparent insulating substrate A liquid crystal display device comprising two transparent insulating substrates or a color filter interposed between liquid crystals, wherein: 至少在第一透明性絕緣基板的一主面上形成由透明導 電層與第一金屬層的積層所構成且其側面具有絕緣層的掃 描線、和透明導電性的畫素電極與信號線的電極端子, 在閘極電極上形成有一層以上的閘極絕緣層與不含雜 質的第一半導體層, 在上述第一半導體層上形成寬幅比閘極電極還細的保 護絕緣層, 在畫像顯示部以外的區域,於掃描線上的閘極絕緣層 形成開口部,而於上述開口部內露出作爲掃描線的電極端A scan line composed of a laminate of a transparent conductive layer and a first metal layer and having an insulating layer on a side surface thereof, and a transparent conductive pixel electrode and a signal line electrode are formed on at least one main surface of the first transparent insulating substrate a terminal, wherein one or more gate insulating layers and a first semiconductor layer containing no impurities are formed on the gate electrode, and a protective insulating layer having a width wider than that of the gate electrode is formed on the first semiconductor layer, and is displayed in an image. In a region other than the portion, an opening is formed in the gate insulating layer on the scanning line, and an electrode end as a scanning line is exposed in the opening portion 子的透明導電層, 在上述保護絕緣層之一部分上與第一半導體層上與第 一透明性絕緣基板上,形成由含雜質的第二半導體層與一 層以上的第二金屬層的積層所構成的源極配線(信號線) 、和在上述信號線的電極端子的一部分上形成由一層以上 的第二金屬層所構成的上述源極配線的一部分、和在上述 保護絕緣層的一部分上和第一半導體層上及第一透明性絕 緣基板上形成由含雜質的第二半導體層與一層以上的第二 金屬層的積層所構成的汲極配線、和在上述部分畫素電極 -96- (5) 1300873 上形成由一層以上的第一金屬層所構成的上述汲極配線的 一部分, 在上述源極•汲極配線上形成感光性有機絕緣層。 8. —種液晶顯示裝置,係於在一主面上至少具有: 絕緣閘極型電晶體、兼作前述絕緣閘極型電晶體的閘極電 極之掃描線、兼作源極配線之信號線、以及連接於汲極配 線之畫素電極等等之單位畫素被配列成二維矩陣狀的第一 透明性絕緣基板;和與上述第一透明性絕緣基板相對的第 二透明性絕緣基板或是彩色濾光片之間塡充液晶而構成的 液晶顯示裝置,其特徵爲: 至少在第一透明性絕緣基板的一主面上形成由透明導 電層與第一金屬層的積層所構成,且其側面具有絕緣層的 掃描線與透明導電性的畫素電極, 在閘極電極上形成有一層以上的閘極絕緣層與不含雜 質的第一半導體層, 在上述第一半導體層上形成寬幅比閘極電極還細的保 護絕緣層, 在畫像顯示部以外的區域,於掃描線上的閘極絕緣層 形成開口部,並在上述開口部內露出透明導電層, 在上述保護絕緣層之一部分上、第一半導體層上以及 第一透明性絕緣基板上,形成由含雜質的第二半導體層與 一層以上的第二金屬層的積層所構成的源極配線(信號線 );和在上述保護絕緣層之一部分上、第二半導體層上以 及第一透明性絕緣基板上形成由含雜質的第二半導體層與 -97- (6) 1300873 一層以上的第二金屬層的積層所構成的汲極配線;和在上 述畫素電極之一部分上形成由一層以上的第二金屬層所構 成的上述汲極配線的一部分;和包括上述開口部周邊的第 一半導體層、第二半導體層以及上述開口部內的透明導電 層形成由第二金屬層所構成的掃描線的電極端子;和在畫 像顯示部以外的區域由部分信號線所構成的信號線的電極 端子, 除了上述信號線的電極端子上以外,在信號線上形成 有感光性有機絕緣層。 9. 一種液晶顯示裝置,係於在一主面上至少具有: 絕緣閘極型電晶體、兼作前述絕緣閘極型電晶體的閘極電 極之掃描線、兼作源極配線之信號線、以及連接於汲極配 線之畫素電極等等之單位畫素被配列成二維矩陣狀的第一 透明性絕緣基板;和與上述第一透明性絕緣基板相對的第 二透明性絕緣基板或是彩色濾光片之間塡充液晶而構成的 液晶顯示裝置,其特徵爲: 至少在第一透明性絕緣基板的一主面上,形成由透明 導電層與第一金屬層的積層所構成,且其側面具有絕緣層 的掃描線與透明導電位的畫素電極, 在閘極電極上形成有一層以上的閘極絕緣層與不含雜 質的第一半導體層, 在上述第一半導體層上形成有寬幅比閘極電極還細的 保護絕緣層, 在畫像顯示部以外的區域,於掃描線上的閘極絕緣層 -98- (7) 1300873 形成開口部,並在上述開口部內露出透明導電層’ 在上述保護絕緣層之一部分上、第一半導體層上以及 第一透明性絕緣基板上,形成由含雜質的第二半導體層與 一層以上的可陽極氧化的金屬層的積層所構成的源極配線 (信號線);和在上述部分保護絕緣層上、第一半導體層 上及第一透明性絕緣基板上形成由含雜質的第二半導體層 與一層以上的可陽極氧化的金屬層的積層所構成的汲極配 線;和在上述畫素電極之一部分上形成由可陽極氧化的金 屬層所構成的上述汲極配線之一部分;和包括上述開口部 周邊的第一半導體層、第二半導體層與上述開口部內的透 明導電層形成由可陽極氧化的金屬層所構成的掃描線的電 極端子;和在畫像顯示部以外的區域形成由信號線之一部 分所構成的信號線的電極端子, 除了上述信號線的電極端子上以外,在源極·汲極配 線上形成陽極氧化層。 1 〇 · —種液晶顯示裝置,係於在一主面上至少具有絕 緣閘極型電晶體、兼作前述絕緣閘極型電晶體的閘極電極 的掃描線、兼作源極配線的信號線、連接於前述絕緣閘極 型電晶體的汲極之畫素電極、以及與前述畫素電極隔著特 定距離所形成的對向電極等等之單位畫素被配列成二維矩 陣狀的第一透明性絕緣基板;和與前述第一透明性絕緣基 板相對的第二透明性絕緣基板或是彩色濾光片之間塡充液 晶而構成的液晶顯示裝置,其特徵爲: 至少在第一透明性絕緣基板的一主面上形成由一層以 -99- (9) 1300873 晶而構成的液晶顯示裝置,其特徵爲: 至少在第一透明性絕緣基板的一主面上形成由一層以 上的第一金屬層所構成,且其側面具有絕緣層的掃描線與 對向電極, 在對向電極上形成有一層以上的閘極絕緣層、和在閘 極電極上形成有一層以上的閘極絕緣層與不含雜質的第一 半導體層, 在上述第一半導體層上形成寬幅比閘極電極還細的保 護絕緣層, 在畫像顯示部以外的區域,於掃描線上的閘極絕緣層 形成開口部, 在上述保護絕緣層部之一部分上、第一半導體層上及 第一透明性絕緣基板上,形成有由含雜質的第二半導體層 與一上層以上的第二金屬層的積層所構成的源極配線(信 號線)•汲極配線(畫素電極)、和包含上述開口部周邊 的第一半導體層與第二半導體層並由第二金屬層所構成的 掃描線的電極端子、和在畫像顯示部以外的區域由部分信 號線所構成的信號線的電極端子、 除了上述信號線的電極端子上以外,在信號線上形成 感光性有機絕緣層。 12. —種液晶顯示裝置,係於在一主面上至少具有絕 緣閘極型電晶體、兼作前述絕緣閘極型電晶體的閘極電極 之掃描線、兼作源極配線之信號線、連接於前述絕緣閘極 型電晶體的汲極之畫素電極、以及與前述畫素電極隔著特 •101 - (10) 1300873 定距離所形成的對向電極等等之單位畫素被配列 陣狀的第一透明性絕緣基板;和與前述第一透明 板相對的第二透明性絕緣基板或是彩色濾光片之 晶而構成的液晶顯示裝置’其特徵爲: 至少在第一透明性絕緣基板的一主面上形成 上的第一金屬層所構成,且其側面具有絕緣層的 對向電極, 在對向電極上形成一層以上的閘極絕緣層; 電極上形成一層以上的閘極絕緣層與不含雜質的 體層, 在上述第一半導體層上形成寬幅比閘極電極 護絕緣層, 在畫像顯示部以外的區域,於掃描線上的閘 形成開口部 在上述保護絕緣層之一部分上、第一半導體 一透明性絕緣基板上,形成:由含雜質的第二半 一層以上之可陽極氧化的金屬層的積層所構成的 (信號線)•汲極配線(畫素電極);和包含上 周邊的第一半導體層與第二半導體層形成由可陽 金屬層所構成的掃描線的電極端子;和在畫像顯 的區域形成由信號線之一部分所構成的信號線的 除了上述信號線的電極端子上以外,在源極 線的表面形成陽極氧化層.。 成二維矩 性絕緣基 間塡充液 由一層以 掃描線與 和在閘極 第一半導 還細的保 極絕緣層 層上及第 導體層與 源極配線 述開口部 極氧化的 示部以外 電極端子 •汲極配 -102- 1300873 (11) 13. 一種液晶顯示裝置,係於在一主面上至少具有絕 緣閘極型電晶體、兼作前述絕緣閘極型電晶體的閘極電極 之掃描線、兼作源極配線之信號線、連接於前述絕緣閘極 型電晶體的汲極之畫素電極、以及與前述畫素電極隔著特 定距離所形成的對向電極等等之單位畫素被配列成二維矩 陣狀的第一透明性絕緣基板;和與前述第一透明性絕緣基 板相對的第二透明性絕緣基板或是彩色濾光片之間塡充液 晶而構成的液晶顯示裝置,其特徵爲: 至少在第一透明性絕緣基板的一主面上形成由一層以 上的第一金屬層所構成,且其側面具有絕緣層的掃描線與 對向電極, 在對向電極上形成一層以上的閘極絕緣層;和在閘極 電極上形成一層以上的閘極絕緣層與不含雜質的第一半導 體層, 在上述第一半導體層上形成寬幅比閘極電極還細的保 護絕緣層, 在上述保護絕緣層之一部分上、第一半導體層上以及 第一透明性絕緣基板上,形成由含雜質的第二半導體層以 及一層以上的第二金屬層的積層所構成的源極配線(信·號 線)•汲極配線(畫素電極), 在畫像顯示部以外的區域,於第一透明性絕緣基板上 形成之在掃描線的電極端子形成區域上與由部分信號線所 構成的信號線的電極端子上具有開口部之透明絕緣層, 在上述開口部內露出作爲掃描線的電極端子之部分掃 •103· (12) 1300873 描線與信號線之電極端子。 14. 一種液晶顯示裝置,係於在一主面上 緣閘極型電晶體、兼作前述絕緣閘極型電晶體 之掃描線、兼作源極配線之信號線、連接於前 型電晶體的汲極之畫素電極、以及與前述畫素 定距離所形成的對向電極等等之單位畫素被配 陣狀的第一透明性絕緣基板;和與前述第一透 板相對的第二透明性絕緣基板或是彩色濾光片 晶而構成的液晶顯示裝置,其特徵爲: 至少在第一透明性絕緣基板的一主面上形 上的第一金屬層所構成,且其側面具有絕緣層 對向電極, 在對向電極上形成絕緣層, 在閘極電極上形成閘極絕緣層、不含雜質 體層以及比上述第一半導體層還小的保護絕緣 在掃描線與信號線的交叉點附近上、對向 線的交叉點附近上以及對向電極與畫素電極的 上,形成比閘極絕緣層與上述閘極絕緣層還小 體層與保護絕緣層, 在掃描線與信號線的交叉點上、對向電極 交叉點上以及對向電極與畫素電極的交叉點上 層上,形成第一半導體層與含雜質之第二半導 護絕緣層上形成含雜質之第二半導體層 在閘極電極上的部分保護絕緣層上、第一 至少具有絕 的閘極電極 述絕緣閘極 電極隔著特 列成二維矩 明性絕緣基 之間塡充液 成由一層以 的掃描線與 的第一半導 層, 電極與信號 交叉點附近 的第一半導 與信號線的 的閘極絕緣 體層,在保 半導體層上 -104- (13) 1300873 以及第一透明性絕緣基板上,形成由含雜質的第二半導體 層與一層以上可陽極氧化的金屬層的積層所構成的源極配 線(信號線)•汲極配線(畫素電極)、和由部分信號線 所構成的信號線的電極端子、和在畫像顯示部以外的區域 包含部分掃描線並在第一透明性絕緣基板上形成由含雜質 的第二半導體層與一層以上可陽極氧化的金屬層的積層所 構成的掃描線的電極端子, 除了上述電極端子上以外,在源極•汲極配線的表面 形成陽極氧化層。 15.如申請專利範圍第 5、6、7、8、9、10、11、12 及1 3項所記載的液晶顯示裝置,其中,形成在掃描線之 側面的絕緣層爲有機絕緣層。 1 6.如申請專利範圍第5、6、1 0、1 1、1 2、1 3及14 項所記載的液晶顯示裝置,其中,第一金屬層是由可陽極 氧化的金屬層所構成,形成在掃描線之側面的絕緣層是陽 極氧化層。 17. —種液晶顯示裝置之製造方法,係於在一主面上 至少具有:絕緣閘極型電晶體、兼作前述絕緣閘極型電晶 體之閘極電極之掃描線、兼作源極配線之信號線、連接於 汲極配線之畫素電極等等之單位畫素被配列成二維矩陣狀 的第一透明性絕緣基板;和與上述第一透明性絕緣基板相 對的第二透明性絕緣基板或是彩色濾光片之間塡充液晶而 構成的液晶顯示裝置之製造方法,其特徵爲具有: 至少在第一透明性絕緣基板的一主面上,依序被覆: •105- (15) 1300873 形成透明導電性的畫素電極、和在畫像顯示部以外的區域 ,於信號線上形成透明導電位的電極端子、和在掃描線的 電極端子上形成透明導電性的電極端子的工程;及 以使用於上述畫素電極與電極端子的選擇圖案形成的 感光性樹脂圖案作爲遮罩,保護透明導電性的畫素電極與 透明導電性的電極端子,同時陽極氧化源極•汲極配線的 工程。 1 8 · —種液晶顯示裝置之製造方法,係於在一主面上 至少具有:絕緣閘極型電晶體、兼作前述絕緣閘極型電晶 體之閘極電極之掃描線、兼作源極配線之信號線、連接於 汲極配線之畫素電極等等之單位畫素被配列成二維矩陣狀 的第一透明性絕緣基板;和與上述第一透明性絕緣基板相 對的第二透明性絕緣基板或是彩色濾光片之間塡充液晶而 構成的液晶顯示裝置之製造方法,其特徵爲具有: 至少在第一透明性絕緣基板的一主面上,依序被覆: 一層以上的第一金屬層、一層以上的閘極絕緣層、不含雜 質的第一非晶質矽層以及保護絕緣層的工程; 對應於掃描線’形成保護絕緣層形成區域上的膜厚比 其它區域還厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,依序蝕刻上述保護 絕緣層、第一非晶質矽層、閘極絕緣層以及第一金屬層的 工程; 減少上述感光性樹脂圖案的膜厚而露出保護絕緣層的 工程; -107- (16) 1300873 在閘極電極上留下寬幅比閘極電極還細的保護絕緣層 而露出第一非晶質矽層的工程; 減少膜厚的上述感光性樹脂圖案被去除後,在掃描線 之側面形成絕緣層的工程; 全面被覆含雜質的第二非晶質矽層的工程; 以部分與上述保護絕緣層重疊的方式形成由第二非晶 質砂層、一層以上的第二金屬層的積層所構成的源極(信 號線)·汲極配線的工程; 在上述第一透明性絕緣基板上形成在汲極配線上、以 及在畫像顯示部以外的區域之掃描線的電極端子形成區域 上,與在部分信號線所構成的信號線的電極端子上皆具有 開口部的透明絕緣層的工程; 去除上述掃描線的電極端子形成區域上的閘極絕緣層 而露出部分掃描線的工程;及 包含汲極配線上的開口部內而將透明導電性的畫素電 極,形成在上述透明絕緣層上的工程。 1 9 · 一種液晶顯示裝置之製造方法,係於在一主面上 至少具有:絕緣閘極型電晶體、兼作前述絕緣閘極型電晶 體之閘極電極之掃描線、兼作源極配線之信號線、連接於 汲極配線之畫素電極等等之單位畫素被配列成二維矩陣狀 的第一透明性絕緣基板;和與上述第一透明性絕緣基板相 對的第二透明性絕緣基板或是彩色濾光片之間塡充液晶而 構成的液晶顯示裝置之製造方法,其特徵爲具有: 至少在第一透明性絕.緣基板的一主面上,依序被覆: -108- 1300873 (17) 透明導電層、第一金屬層、一層以上的閘極絕緣層、不含 雜質的第一非晶質矽層以及保護絕緣層的工程; 對應於掃描線與畫素電極以及掃描線與信號線的電極 端子,形成保護絕緣層形成區域上的膜厚比其它區域還厚 的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,依序蝕刻保護絕緣 層、第一非晶質砂層、閘極絕緣層、第一金屬層以及透明 導電層的工程; 減少上述感光性樹脂圖案的膜厚而露出保護絕緣層的 工程; 在閘極電極上留下寬幅比閘極電極還細的保護絕緣層 而露出第一非晶質矽層的工程; 減少膜厚的上述感光性樹脂圖案被去除後,在掃描線 之側面形成絕緣層的工程; 全面被覆含雜質的第二非晶質矽層的工程; 在畫素電極上與畫像顯示部以外的區域,在掃描線與 信號線的模擬電極端子上形成具有開口部的感光性樹脂圖 案,並選擇性去除上述開口部內的第二非晶質矽層、第二 非晶質矽層、閘極絕緣層以及第一金屬層,而露出透明導 電性的畫素電極與電極端子的工程;及 被覆一層以上的第二金屬層後,以部分與由第二非晶 質矽層與第二金屬層的積層所構成的上述保護絕緣層重疊 的方式,形成包含信號線的電極端子並在其表面具有感光 性有機絕緣層的源極配線(信號線),與形成包含畫素電 -109 - (18) 1300873 極並在其表面具有感光性有機絕緣層的汲極配線的工程。 20· —種液晶顯示裝置之製造方法,係於在一主面上 至少具有:絕緣閘極型電晶體、兼作前述絕緣閘極型電晶 體之閘極電極之掃描線、兼作源極配線之信號線、連接於 汲極配線之畫素電極等等之單位畫素被配列成二維矩陣狀 的第一透明性絕緣基板;和與上述第一透明性絕緣基板相 對的第二透明性絕緣基板或是彩色濾光片之間塡充液晶而 構成的液晶顯示裝置之製造方法,其特徵爲具有: 至少在第一透明性絕緣基板的一主面上,依序被覆: 透明導電層、第一金屬層、一層以上的閘極絕緣層、不含 雜質的第一非晶質矽層以及保護絕緣層的工程; 對應於掃描線與畫素電極而形成保護絕緣層形成區域 上的膜厚比其它區域還厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,而依序触刻:保護 絕緣層、第一非晶質砂層、閘極絕緣層、第一金屬層以及 透明導電層的工程; 減少上述感光性樹脂圖案的膜厚而露出保護絕緣層的 工程; 在閘極電極上留下寬幅比閘極電極還細的保護絕緣層 而露出第一非晶質矽層的工程; 減少膜厚的上述感光性樹脂圖案被去除後,在掃描線 之側面形成絕緣層的工程; 全面被覆含雜質的第二非晶質矽層的工程; 在畫素電極上與畫像顯示部以外的區域,形成在掃描 -110- (19) 1300873 線之模擬電極端子上具有開口部的感光性樹脂圖案’選擇 性去除上述開口部內的第二非晶質矽層、第一非晶質矽層 、閘極絕緣層以及第一金屬層,而露出透明導電性的畫素 電極與部分掃描線的工程; 在被覆一層以上的第二金屬層後’形成:部分與上述 保護絕緣層重疊的源極配線(信號線)、和含有畫素電極 的部分與上述保護絕緣層重疊的汲極配線、含有上述透明 導電性的部分掃描線的掃描線的電極端子、對應於在畫像 顯示部以外的區域由部分信號線所構成的信號線的電極端 子而且信號線上的膜厚比其它區域還厚的感光性有機絕緣 層圖案等工程; 以上述感光性有機絕緣層圖案作爲遮罩,選擇性去除 一層以上的第二金屬層、第二非晶質矽層以及第一非晶質 矽層,而形成掃描線、信號線的電極端子以及源極•汲極 配線的工程;及 減少上述感光性有機絕緣層圖案的膜厚,而露出掃描 線、信號線的電極端子以及汲極配線的工程。 2 1 · —種液晶顯示裝置之製造方法,係於在一主面上 至少具有:絕緣閘極型電晶體、兼作前述絕緣閘極型電晶 體之閘極電極之掃描線、兼作源極配線之信號線、連接於 汲極配線之畫素電極等等之單位畫素被配列成二維矩陣狀 的第一透明性絕緣基板;和與上述第一透明性絕緣基板相 對的第一透明性絕緣基板或是彩色據光片之間塡充液晶而 構成的液晶顯示裝置之製造方法,其特徵爲具有: -111 - (20) 1300873 至少在第一透明性絕緣基板的一主面上,依序被覆: 透明導電層、第一金屬層、閘極絕緣層、不含雜質的第一 非晶質矽層以及保護絕緣層的工程; 對應於掃描線與畫素電極,形成保護絕緣層形成區域 上的膜厚比其它區域還厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,依序鈾刻:保護'絕 緣層、第一非晶質矽層、閘極絕緣層、第一金屬層以及透 明導電層的工程; 減少上述感光性樹脂圖案的膜厚,而露出保護絕緣層 的工程; 在閘極電極上留下寬幅比閘極電極還細的保護絕緣層 ,而露出第一非晶質矽層的工程; 減少膜厚的感光性樹脂圖案被去除後,在掃描線之側 面形成絕緣層的工程; 全面被覆含雜質的第二非晶質矽層的工程; 在畫素電極上與畫像顯示部以外的區域,形成在掃描 線的模擬電極端子上具有開口部的感光性樹脂圖案,選擇 性去除上述開口部內的第二非晶質矽層、第一非晶質矽層 、閘極絕緣層以及第一金屬層,而露出透明導電性的畫素 電極與部分掃描線的工程; 被覆一層以上之可陽極氧化的金屬層後,形成部分與 上述保護絕緣層重疊的源極配線(信號線)、包含畫素電 極形成部分與上述保護絕緣層重疊的汲極配線、包含上述 透明導電性的部分掃描線形成掃描線的電極端子、在畫像 •112- (21) 1300873 顯示部以外的區域,對應於由部分信號線所構成的信號線 的電極端子形成掃描線與信號線的電極端子上的膜厚比其 定區域還厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,選擇性去除一層以 上之可陽極氧化的金屬層、第二非晶質矽層以及第一非晶 質矽層,而形成掃描線與信號線的電極端子與源極汲極配 線的工程、 減少上述感光性樹脂圖案的膜厚,而露出源極•汲極 配線的工程;及 保護上述電極端子,同時陽極氧化源極•汲極配線的 工程。 22. —種液晶顯示裝置之製造方法,係於在一主面上 至少具有絕緣閘極型電晶體、兼作前述絕緣閘極型電晶體 的閘極電極的掃描線、兼作源極配線的信號線、連接於前 述絕緣閘極型電晶體的汲極的畫素電極、以及與前述畫素 電極隔著特定距離所形成的對向電極等等之單位畫素被配 列成二維矩陣狀的第一透明性絕緣基板;和與前述第一透 明性絕緣基板相對的第二透明性絕緣基板或是彩色濾光片 之間塡充液晶而構成的液晶顯示裝置之製造方法,其特徵 爲具有: 至少在第一透明性絕緣基板的一主面上,依序被覆: 一層以上的第一金屬層、一層以上的閘極絕緣層、不含雜 質的第一非晶質矽層以及保護絕緣層的工程; 對應於掃描線,形成保護絕緣層形成區域上的膜厚比 -113· (22) 1300873 其它區域還厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,依序蝕刻:保護絕 緣層、第一非晶質矽層、閘極絕緣層以及第一金屬層的工 程; 減少上述感光性樹脂圖案的膜厚而露出保護絕緣層的 工程; 在閘極電極上留下寬幅比閘極電極還細的保護絕緣層 而露出第一非晶質矽層的工程; 減少膜厚的上述感光性樹脂圖案被去除後,在掃描線 之側面形成絕緣層的工程; 全面被覆含雜質的第二非晶質矽層的工程; 以部分與上述保護絕緣層重疊的方式,形成由第二非 晶質矽層與一層以上的第二金屬層的積層所構成的源極( 信號線)•汲極配線的工程; 和將在汲極配線上、在畫像顯示部以外的區域的掃描 線的電極端子形成區域上以及由部分信號線所構成的信號 線的電極端子上,分別具有開口部的透明樹脂層,被形成 在上述第二透明性絕緣基板上的工程; 去除上述掃描線的電極端子形成區域上的閘極絕緣層 而露出部分掃描線的工程;及 將包含上述汲極配線上的開口部的導電性的畫素電極 、以及包含掃描線上與信號線上之導電性的對向電極,形 成在上述透明樹脂層上的工程。 23. —種液晶顯示裝置之製造方法,係於在一主面上 -114- (23) 1300873 至少具有絕緣閘極型電晶體、兼作前述絕緣閘極型電晶體 的閘極電極的掃描線、兼作源極配線的信號線、連接於前 述絕緣閘極型電晶體的汲極的畫素電極、及與前述畫素電 極隔著特定距離所形成的對向電極等等之單位畫素被配列 成一維矩陣狀的弟一*透明性絕緣基板;和與前述第一透明 性絕緣基板相對的第二透明性絕緣基板或是彩色濾光片之 間塡充液晶而構成的液晶顯示裝置之製造方法,其特徵爲 具有: 至少在第一透明性絕緣基板的一主面上,依序被覆: 一層以上的第一金屬層、一層以上的閘極絕緣層、不含雜 質的第一非晶質矽層以及保護絕緣層的工程; 對應於掃描線與對向電極,形成保護絕緣層形成區域 上的膜厚比其它區域還厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,依序蝕刻:保護絕 緣層、第一非晶質矽層、閘極絕緣層以及第一金屬層的工 程; 減少上述感光性樹脂圖案的膜厚而露出保護絕緣層的 工程; 在閘極電極上留下寬幅比閘極電極還細的保護絕緣層 ,而露出第一非晶質矽層的工程; 減少膜厚的上述感光性樹脂圖案被去除後’在掃描線 與對向電極之側面形成絕緣層的工程; 全面被覆含雜質的第二非晶質矽層的工程; 在畫像顯示部以外的區域,於掃描線的電極端子形成 -115- (24) 1300873 區域形成開口部’選擇性去除上述開口部內的第二非晶質 矽層、第一非晶質矽層以及閘極絕緣層,而露出部分掃描 線的工程; 被覆一層以上的第二金屬層後,形成對應於部分與上 述保護絕緣層重疊的源極配線(信號線)•汲極配線(畫 素電極)、包含上述開口部形成掃描線的電極端子、在畫 像顯示部以外的區域形成由部分信號線所構成的信號線之 電極端子,形成信號線上的膜厚比其它區域還厚的感光性 有機絕緣層圖案等工程; 以上述感光性有機絕緣層圖案作爲遮罩,選擇性去除 第二金屬層、第二非晶質矽層以及第一非晶質矽層,而形 成掃描線與信號線的電極端子以及源極•汲極配線的工程 :及 減少上述感光性有機絕緣層圖案的膜厚,而露掃描線 與信號線之電極端子以及汲極配線的工程。 2 4 · —種液晶顯示裝置之製造方法,係於在一主面上 至少具有絕緣閘極型電晶體、兼作前述絕緣閘極型電晶體 的閘極電極的掃描線、兼作源極配線的信號線、連接於前 述絕緣閘極型電晶體的汲極的畫素電極、以及與前述畫素 電極隔著特定距離所形成的對向電極等等之單位畫素被配 列成二維矩陣狀的第一透明性絕緣基板;和與前述第一透 明性絕緣基板相對的第二透明性絕緣基板或是彩色濾光片 之間塡充液晶而構成的液晶顯示裝置之製造方法,其特徵 爲具有: -116- (25) 1300873 至少在第一透明性絕緣基板的一主面上’依序被覆: —層以上的第一金屬層、一層以上的閘極絕緣層、不含雜 質的第一非晶質矽層以及保護絕緣層的工程; 對應於掃描線與對向電極,而形成保護絕緣層形成區 域上的膜厚比其它區域還厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,依序蝕刻:保護絕 緣層、第一非晶質矽層、閘極絕緣層以及第一金屬層的工 程; 減少已減少上述膜厚的感光性樹脂圖案的膜厚,而露 出保護絕緣層的工程; 在閘極電極上留下寬幅比閘極電極還細的保護絕緣層 ,而露出第一非晶質矽層的工程; 上述感光性樹脂圖案去除後,在掃描線與對向電極之 側面形成絕緣層的工程; 全面被覆含雜質的第二非晶質矽層的工程; 在畫像顯示部以外的區域,於掃描線的電極端子形成 區域形成開口部,選擇性去除開口部內的第二非晶質矽層 、第一非晶質矽層以及閘極絕緣層,而露出部分掃描線的 工程; 被覆一層以上之可陽極氧化的金屬層後,形成對應部 分與上述保護絕緣層重疊的源極配線(信號線)•汲極配 線(畫素電極)、包含上述開口部形成掃描線的電極端子 、在畫像顯示部外的區域對應於由部分信號線所構成的信 號線的電極端子,形成掃描線與信號線的電極端子上的膜 -117- (26) 1300873 厚比其它區域還厚的感光性樹脂圖案的工程;. 以上述感光性樹脂圖案作爲遮罩,選擇性去除可陽極 氧化的金屬層、第二非晶質矽層以及第一非晶質矽層,而 形成掃描線與信號線的電極端子以及源極•汲極配線的工 程; 減少上述感光性樹脂圖案的膜厚,而露出源極•汲極 配線的工程;及 保護上述電極端子,同時陽極氧化源極•汲極配線的 工程。 25. —種液晶顯示裝置之製造方法,係於在一主面上 至少具有絕緣閘極型電晶體、兼作前述絕緣閘極型電晶體 的閘極電極的掃描線、兼作源極配線的信號線、連接於前 述絕緣閘極型電晶體的汲極的畫素電極、以及與前述畫素 電極隔著特定距離所形成的對向電極等等之單位畫素被配 列成二維矩陣狀的第一透明性絕緣基板;和與前述第一透 明性絕緣基板相對的第二透明性絕緣基板或是彩色濾光片 之間塡充液晶而構成的液晶顯示裝置之製造方法,其特徵 爲具有: 至少在第一透明性絕緣基板的一主面上,依序被覆: 一層以上的第一金屬層、和一層以上的閘極絕緣層、不含 雜質的第一非晶質矽層以及保護絕緣層的工程; 對應於掃描線與對向電極,形成保護絕緣層形成區域 上的膜厚比其它區域還厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,依序蝕刻:保護絕 -118- (27) 1300873 緣層、第一非晶質矽層、閘極絕緣層以及第一金屬層的工 程; 減少上述感光性樹脂圖案的膜厚而露出保護絕緣層的 工程; 在閘極電極上留下寬幅閘極電極還細的保護絕緣層, 而露出第一非晶質矽層的工程; 減少膜厚的上述感光性樹脂圖案被去除後,在掃描線 與對向電極的側面形成絕緣層的工程; 全面被覆含雜質的第二非晶質矽層的工程; 以部分與上述保護絕緣層重疊的方式,形成由第二非 晶質矽層與一層以上的第二金屬層的積層所構成的源極配 線(信號線)•汲極配線(畫素電極)的工程; 在畫像顯示部以外的區域,於第一透明性絕緣基板上 形成在掃描線的電極端子形成區域上及由部分信號線所構 成的信號線的電極端子上具有開口部的透明絕緣層的工程 ;及 去除在上述掃描線的電極端子形成區域上的閘極絕緣 層,而露出部分掃描線的工程。 26. —種液晶顯示裝置之製造方法,係於在一主面上 至少具有絕緣閘極型電晶體、兼作前述絕緣閘極型電晶體 的閘極電極的掃描線、兼作源極配線的信號線、連接於前 述絕緣閘極型電晶體的汲極的畫素電極、與前述畫素電極 隔著特定距離所形成的對向電極等等之單位畫素被配列成 二維矩陣狀的第一透.明性絕緣基板;和與前述第一透明性 -119- (28) 1300873 絕緣基板相對的第二透明性絕緣基板或是彩色濾光片之間 塡充液晶而構成的液晶顯示裝置之製造方法,其特徵爲具 有: 至少在第一透明性絕緣基板的一主面上,依序蝕刻: 一層以上的第一金屬層、一層以上的閘極絕緣層、不含雜 質的第一非晶質矽層以及保護絕緣層的工程; 對應於掃描線與對向電極,形成在閘極電極上、掃描 線與信號線的交叉區域上、對向電極與信號線的交叉區域 上以及對向電極與畫素電極的交叉區域上的膜厚比其它區 域還厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,依序蝕刻:保護絕 緣層、第一非晶質矽層、閘極絕緣層以及第一金屬層的工 程; 在掃描線與對向電極的側面形成絕緣層的工程; 減少上述感光性樹脂圖案的膜厚而露出保護絕緣層, 去除掃描線上與對向電極上的保護絕緣層、第一非晶質矽 層、閘極絕緣層,而露出掃描線與對向電極的工程; 進一步減少已減少膜厚的上述感光性樹脂圖案的膜厚 ,在閘極電極上留下寬幅比閘極電極還細的保護絕緣層’ 而露出第一非晶質矽層的工程; 全面被覆含雜質的第二非晶質矽層的工程; 被覆一層以上之可陽極氧化的金屬層後,形成部分與 上述保護絕緣層重疊的源極配線(信號線)•汲極配線( 畫素電極)、在畫像顯示部以外的區域包含部分掃描線形 •120- (29) 1300873 成掃描線的電極端子、對應於由部分信號線所構成的信號 線的電極端子,形成上述電極端子上的膜厚比其它區域還 厚的感光性樹脂圖案的工程; 以上述感光性樹脂圖案作爲遮罩,選擇性去除可陽極 氧化的金屬層、第二非晶質矽層以及第一非晶質矽層,而 形成掃描線與信號線的電極端子以及源極•汲極配線的工 壬口 · 不壬, 減少上述感光性樹脂圖案的膜厚而露出源極·汲極配 線的工程;及 保護上述電極端子,同時陽極氧化源極•汲極配線與 對向電極的工程。 2 7.如申請專利範圍第17、18、19、20、21、22、 23、24、25以及26項所記載的液晶顯示裝置之製造方法 ,其中,形成在掃描線的側面的絕緣層爲有機絕緣層,係 利用電鑛(electroplating)所形成。 28·如申請專利範圍第17、18、22、23、24、25以 及26項所記載的液晶顯示裝置之製造方法,其中,第— 金屬層是由可陽極氧化的金屬層所構成,形成在掃描線的 側面的絕緣層是利用陽極氧化所形成。 -121 -a transparent conductive layer formed on a portion of the protective insulating layer and a layer of a second semiconductor layer containing impurities and a second metal layer on the first transparent layer and the first transparent insulating substrate a source wiring (signal line), and a part of the source wiring formed of one or more second metal layers on a part of the electrode terminal of the signal line, and a part of the protective insulating layer a drain wiring composed of a laminate of a second semiconductor layer containing impurities and a second metal layer on the first transparent insulating substrate, and a partial pixel electrode-96- (5) A part of the above-described drain wiring composed of one or more first metal layers is formed on 1300873, and a photosensitive organic insulating layer is formed on the source/drain wiring. 8.  A liquid crystal display device having at least an insulating gate type transistor, a scanning line serving as a gate electrode of the insulating gate type transistor, a signal line serving as a source wiring, and a connection to a main surface a unit transparent pixel of a pixel electrode or the like of the drain wiring is arranged in a two-dimensional matrix-shaped first transparent insulating substrate; and a second transparent insulating substrate opposite to the first transparent insulating substrate or color filter A liquid crystal display device comprising a liquid crystal display device between the sheets, wherein at least one main surface of the first transparent insulating substrate is formed by laminating a transparent conductive layer and a first metal layer, and the side surface thereof is insulated. a scanning line of a layer and a transparent conductive pixel electrode, wherein one or more gate insulating layers and a first semiconductor layer containing no impurities are formed on the gate electrode, and a wide aspect gate is formed on the first semiconductor layer The electrode further protects the insulating layer, and an opening is formed in the gate insulating layer on the scanning line in a region other than the image display portion, and the transparent conductive layer is exposed in the opening. a source wiring (signal line) formed by laminating a second semiconductor layer containing impurities and one or more second metal layers on a portion of the protective insulating layer, on the first semiconductor layer, and on the first transparent insulating substrate And forming a second semiconductor layer containing impurities and a second metal layer of -97-(6) 1300873 or more on a portion of the above protective insulating layer, on the second semiconductor layer, and on the first transparent insulating substrate a drain wiring formed of a laminate; and a portion of the drain wiring formed of one or more second metal layers on one of the pixel electrodes; and a first semiconductor layer including the periphery of the opening a semiconductor layer and a transparent conductive layer in the opening portion form an electrode terminal of a scanning line formed of a second metal layer; and an electrode terminal of a signal line composed of a partial signal line in a region other than the image display portion, except for the signal line In addition to the electrode terminals, a photosensitive organic insulating layer is formed on the signal lines. 9.  A liquid crystal display device having at least an insulating gate type transistor, a scanning line serving as a gate electrode of the insulating gate type transistor, a signal line serving as a source wiring, and a connection line on a main surface a unit transparent element of a pixel electrode of a pole wiring or the like, a first transparent insulating substrate arranged in a two-dimensional matrix; and a second transparent insulating substrate or a color filter opposite to the first transparent insulating substrate A liquid crystal display device comprising a liquid crystal display device, wherein at least one main surface of the first transparent insulating substrate is formed by laminating a transparent conductive layer and a first metal layer, and the side surface thereof is insulated. a scanning electrode of the layer and a pixel electrode of a transparent conductive position, wherein one or more gate insulating layers and a first semiconductor layer containing no impurities are formed on the gate electrode, and a wide specific gate is formed on the first semiconductor layer The electrode electrode further protects the insulating layer, and an opening portion is formed in the gate insulating layer -98-(7) 1300873 on the scanning line in a region other than the image display portion, and is formed in the opening portion. Exposing a transparent conductive layer ′ on a portion of the above-mentioned protective insulating layer, on the first semiconductor layer, and on the first transparent insulating substrate, forming a layer of a second semiconductor layer containing impurities and one or more anodizable metal layers a source wiring (signal line); and forming a second semiconductor layer containing impurities and one or more anodizable metals on the partial protective insulating layer, the first semiconductor layer, and the first transparent insulating substrate a drain wiring formed of a layer of a layer; and a portion of the drain wiring formed of an anodizable metal layer formed on one of the pixel electrodes; and a first semiconductor layer including the periphery of the opening An electrode terminal of a scanning line formed of an anodizable metal layer and a electrode terminal formed of a signal line formed by a portion of the signal line in a region other than the image display portion; and a transparent conductive layer in the opening portion; An anodized layer is formed on the source/drain wiring in addition to the electrode terminal of the signal line. A liquid crystal display device is characterized in that it has at least an insulating gate type transistor on one main surface, a scanning line which also serves as a gate electrode of the insulating gate type transistor, a signal line which serves as a source wiring, and a connection. The first pixel of the pixel electrode of the drain gate type of the insulating gate type transistor and the counter electrode formed by the specific distance from the pixel electrode is arranged in a two-dimensional matrix. a liquid crystal display device comprising: an insulating substrate; and a second transparent insulating substrate or a color filter opposed to the first transparent insulating substrate; wherein: at least the first transparent insulating substrate A liquid crystal display device comprising a layer of -99-(9) 1300873 crystal formed on one main surface, wherein: at least one first metal layer is formed on one main surface of the first transparent insulating substrate A scan line and a counter electrode having an insulating layer on the side thereof, one or more gate insulating layers are formed on the counter electrode, and one or more gates are formed on the gate electrode In the insulating layer and the first semiconductor layer containing no impurities, a protective insulating layer having a wider width than the gate electrode is formed on the first semiconductor layer, and a gate insulating layer is formed on the scanning line in a region other than the image display portion. The opening portion is formed on a portion of the protective insulating layer portion, on the first semiconductor layer, and on the first transparent insulating substrate, and is formed by laminating a second semiconductor layer containing impurities and a second metal layer having an upper layer or more. Source wiring (signal line), drain wiring (pixel electrode), and electrode terminal of a scanning line including a first semiconductor layer and a second semiconductor layer around the opening and composed of a second metal layer, and In the region other than the image display portion, a photosensitive organic insulating layer is formed on the signal line, except for the electrode terminal of the signal line composed of the partial signal line and the electrode terminal of the signal line. 12.  A liquid crystal display device having at least an insulating gate type transistor on a main surface, a scanning line serving as a gate electrode of the insulating gate type transistor, a signal line serving as a source wiring, and a connection to the insulating layer The pixel electrode of the gate of the gate type transistor and the unit pixel of the counter electrode formed by the distance of the above-mentioned pixel electrode with a distance of 101-(10) 1300873 are arrayed first. a transparent insulating substrate; and a liquid crystal display device formed by a second transparent insulating substrate or a crystal of a color filter opposite to the first transparent plate; characterized in that: at least one main body of the first transparent insulating substrate a counter electrode formed on the surface of the first metal layer and having an insulating layer on the side thereof, and one or more gate insulating layers are formed on the opposite electrode; more than one gate insulating layer is formed on the electrode and is not included In the bulk layer of the impurity, a wide-width gate electrode insulating layer is formed on the first semiconductor layer, and a gate is formed on the scanning line in a region other than the image display portion. A portion of the insulating layer is formed on the first semiconductor-transparent insulating substrate by a laminate of an anodizable metal layer of a second half or more containing impurities (signal line) and a drain wiring (pixel) And an electrode terminal including a first semiconductor layer and an upper semiconductor layer and a second semiconductor layer forming a scan line formed of a positive metal layer; and a signal line formed by a portion of the signal line in the image-displayed region In addition to the electrode terminals of the above signal lines, an anodized layer is formed on the surface of the source line. . The two-dimensional rectangular insulating layer is filled with a layer of a portion of the gate insulating layer on the gate insulating layer and the first layer of the gate and the first layer of the gate and the source layer and the source wiring. External electrode terminal • Bungee with -102- 1300873 (11) 13.  A liquid crystal display device having at least an insulating gate type transistor on a main surface, a scanning line serving as a gate electrode of the insulating gate type transistor, a signal line serving as a source wiring, and a connection to the insulating gate a pixel electrode of a pole of a polar transistor, and a first transparent insulating substrate in which a unit pixel of a counter electrode or the like formed at a specific distance from the pixel electrode is arranged in a two-dimensional matrix; and a liquid crystal display device comprising a liquid crystal display device interposed between a second transparent insulating substrate or a color filter opposed to the first transparent insulating substrate, and characterized in that: at least one main surface of the first transparent insulating substrate Forming a scan line and a counter electrode having one or more first metal layers and having an insulating layer on the side thereof, forming one or more gate insulating layers on the counter electrode; and forming one or more layers on the gate electrode a gate insulating layer and a first semiconductor layer containing no impurities, and a protective insulating layer having a width wider than that of the gate electrode is formed on the first semiconductor layer, On one of the layers, on the first semiconductor layer, and on the first transparent insulating substrate, a source wiring (signal line) composed of a second semiconductor layer containing impurities and a second metal layer of one or more layers is formed. • Bipolar wiring (pixel electrode), an electrode terminal formed on the first transparent insulating substrate and formed on the electrode terminal forming region of the scanning line and the signal line formed by the partial signal line in a region other than the image display portion A transparent insulating layer having an opening is formed, and a portion of the electrode terminal as a scanning line is exposed in the opening portion. 103 (12) 1300873 An electrode terminal for drawing a line and a signal line. 14.  A liquid crystal display device is a gate electrode type transistor on a main surface, a scan line which also serves as the insulating gate type transistor, a signal line which also serves as a source wiring, and a picture of a bungee which is connected to a front type transistor. a first transparent insulating substrate in which a unit pixel and a counter electrode formed at a predetermined distance from the pixel are arranged in a matrix; and a second transparent insulating substrate opposite to the first transparent plate or a liquid crystal display device comprising a color filter crystal, characterized in that: at least a first metal layer formed on one main surface of the first transparent insulating substrate is formed, and a side surface of the first transparent insulating substrate has an insulating layer counter electrode, An insulating layer is formed on the counter electrode, a gate insulating layer is formed on the gate electrode, and the impurity-free body layer is formed, and the protective insulating layer smaller than the first semiconductor layer is on the opposite side of the intersection of the scanning line and the signal line. Forming a smaller body layer and a protective insulating layer than the gate insulating layer and the gate insulating layer on the vicinity of the intersection of the line and on the opposite electrode and the pixel electrode, at the intersection of the scanning line and the signal line Forming a first semiconductor layer and a second semiconductor insulating layer containing impurities on the upper layer of the intersection of the opposite electrode and the opposite electrode and the pixel electrode to form a second semiconductor layer containing impurities on the gate electrode The upper part of the protective insulating layer, the first at least one of the gate electrodes, the insulating gate electrode is interposed between the two-dimensional rectangular insulating layer and the first layer of the scan line a semi-conductive layer, a gate insulator layer of the first semi-conducting and signal line near the intersection of the electrode and the signal, formed on the semiconductor layer -104-(13) 1300873 and the first transparent insulating substrate, containing impurities a source wiring (signal line), a drain wiring (pixel electrode), and an electrode terminal of a signal line composed of a part of signal lines, which are formed by laminating a second semiconductor layer and one or more anodizable metal layers, And including a part of the scanning lines in a region other than the image display portion and forming a product of the second semiconductor layer containing impurities and one or more anodizable metal layers on the first transparent insulating substrate Scan line electrode terminal constituted, in addition to the electrode terminal, an anodized layer is formed on the source • drain wiring surface. 15. The liquid crystal display device of the fifth aspect, wherein the insulating layer formed on the side surface of the scanning line is an organic insulating layer. 1 6. The liquid crystal display device of claim 5, wherein the first metal layer is formed of an anodizable metal layer and is formed in a scan. The insulating layer on the side of the line is an anodized layer. 17.  A method of manufacturing a liquid crystal display device comprising: at least an insulating gate type transistor, a scanning line serving as a gate electrode of the insulating gate type transistor, and a signal line serving as a source wiring, on one main surface; a unit transparent pixel connected to a pixel electrode of the drain wiring or the like, a first transparent insulating substrate arranged in a two-dimensional matrix; and a second transparent insulating substrate opposite to the first transparent insulating substrate or colored A method of manufacturing a liquid crystal display device comprising a liquid crystal between filters, characterized in that: at least on one main surface of the first transparent insulating substrate, sequentially coated: • 105-(15) 1300873 is transparent a conductive pixel electrode and an electrode terminal having a transparent conductive position on a signal line and a transparent conductive electrode terminal formed on the electrode terminal of the scanning line in a region other than the image display portion; A photosensitive resin pattern formed by a selection pattern of a pixel electrode and an electrode terminal serves as a mask to protect a transparent conductive pixel electrode and a transparent conductive electrode Son, while anodizing source • drain wiring project. A manufacturing method of a liquid crystal display device comprising at least an insulating gate type transistor, a scanning line serving as a gate electrode of the insulating gate type transistor, and a source wiring a first transparent insulating substrate in which a unit line of a signal line, a pixel electrode connected to the drain wiring, and the like are arranged in a two-dimensional matrix; and a second transparent insulating substrate opposite to the first transparent insulating substrate Or a method of manufacturing a liquid crystal display device comprising a liquid crystal display device, wherein the method further comprises: sequentially coating at least one main surface of the first transparent insulating substrate: one or more layers of the first metal a layer, a gate insulating layer of more than one layer, a first amorphous germanium layer containing no impurities, and a protective insulating layer; a film thickness corresponding to the scan line 'forming a protective insulating layer to form a thicker film than other regions Engineering of a resin pattern; sequentially etching the protective insulating layer, the first amorphous germanium layer, the gate insulating layer, and the first metal layer by using the photosensitive resin pattern as a mask Engineering; reducing the film thickness of the above-mentioned photosensitive resin pattern to expose the protective insulating layer; -107- (16) 1300873 leaving a protective insulating layer wider than the gate electrode on the gate electrode to expose the first non- The operation of the crystalline germanium layer; the process of forming the insulating layer on the side of the scanning line after removing the photosensitive resin pattern having a reduced film thickness; the engineering of completely covering the second amorphous germanium layer containing impurities; Forming source (signal line) and drain wiring composed of a second amorphous sand layer and a layer of a second metal layer or more, and forming a protective insulating layer on the first transparent insulating substrate In the electrode terminal forming region of the scanning line in the drain wiring and in the region other than the image display portion, and the transparent insulating layer having the opening portion on the electrode terminal of the signal line formed by the partial signal line; The electrode terminal of the scan line forms a gate insulating layer on the region to expose a portion of the scan line; and includes an opening in the drain wiring to be transparent A conductive pixel electrode is formed on the above transparent insulating layer. 1 9 A manufacturing method of a liquid crystal display device having at least an insulating gate type transistor, a scanning line serving as a gate electrode of the insulating gate type transistor, and a signal serving as a source wiring on a main surface a unit, a pixel element connected to the pixel electrode of the drain wiring, and the like, a first transparent insulating substrate arranged in a two-dimensional matrix; and a second transparent insulating substrate opposite to the first transparent insulating substrate or The invention relates to a method for manufacturing a liquid crystal display device which is formed by charging a liquid crystal between color filters, and has the following features: at least in the first transparency. On one main surface of the edge substrate, sequentially coated: -108- 1300873 (17) Transparent conductive layer, first metal layer, more than one gate insulating layer, first amorphous germanium layer without impurities, and protective insulation a process of forming a photosensitive resin pattern having a film thickness thicker than other regions on the protective insulating layer forming region corresponding to the electrode terminals of the scanning line and the pixel electrode and the scanning line and the signal line; The pattern is used as a mask to sequentially etch the protective insulating layer, the first amorphous sand layer, the gate insulating layer, the first metal layer, and the transparent conductive layer; reducing the film thickness of the photosensitive resin pattern to expose the protective insulating layer Engineering; leaving a protective insulating layer wider than the gate electrode on the gate electrode to expose the first amorphous germanium layer; the photosensitive resin pattern having a reduced film thickness is removed, and the scan line is Engineering for forming an insulating layer on the side; engineering for completely covering the second amorphous layer containing impurities; on the pixel electrode and the region other than the image display portion, in the scanning line and signal Forming a photosensitive resin pattern having an opening on the dummy electrode terminal, and selectively removing the second amorphous germanium layer, the second amorphous germanium layer, the gate insulating layer, and the first metal layer in the opening portion, and a process of exposing a transparent conductive pixel electrode and an electrode terminal; and coating the protective layer with a portion and a second amorphous layer and a second metal layer after coating one or more second metal layers In an overlapping manner, a source wiring (signal line) having a photosensitive organic insulating layer on the surface of the electrode terminal including the signal line is formed, and a pixel containing the pixel-109 - (18) 1300873 is formed and is sensitized on the surface thereof. Engineering of the bungee wiring of the organic insulating layer. 20. A method of manufacturing a liquid crystal display device comprising: at least an insulating gate type transistor, a scanning line serving as a gate electrode of the insulating gate type transistor, and a signal serving as a source wiring; a unit, a pixel element connected to the pixel electrode of the drain wiring, and the like, a first transparent insulating substrate arranged in a two-dimensional matrix; and a second transparent insulating substrate opposite to the first transparent insulating substrate or A method of manufacturing a liquid crystal display device comprising liquid crystals between color filters, characterized in that: at least on one main surface of the first transparent insulating substrate, sequentially coated: a transparent conductive layer, a first metal a layer, a gate insulating layer of more than one layer, a first amorphous germanium layer containing no impurities, and a protective insulating layer; the film thickness on the region where the protective insulating layer is formed corresponding to the scan line and the pixel electrode is larger than other regions Engineering of a thick photosensitive resin pattern; using the above-mentioned photosensitive resin pattern as a mask, and sequentially engraving: protective insulating layer, first amorphous sand layer, gate insulating layer, first Engineering of the metal layer and the transparent conductive layer; reducing the film thickness of the photosensitive resin pattern to expose the protective insulating layer; leaving a protective insulating layer wider than the gate electrode on the gate electrode to expose the first non- Engineering of crystalline germanium layer; engineering of forming an insulating layer on the side of the scanning line after removing the photosensitive resin pattern having a reduced film thickness; engineering of completely covering the second amorphous germanium layer containing impurities; at the pixel electrode A photosensitive resin pattern having an opening on the analog electrode terminal of the scanning-110-(19) 1300873 line is formed in a region other than the image display portion, and the second amorphous germanium layer in the opening portion is selectively removed. An amorphous germanium layer, a gate insulating layer and a first metal layer to expose a transparent conductive pixel electrode and a portion of the scan line; after coating a layer of the second metal layer, a portion is formed and protected a source wiring (signal line) in which an insulating layer overlaps, a drain wiring in which a portion including a pixel electrode overlaps the protective insulating layer, and a transparent conductive layer containing the transparent conductive property An electrode terminal of a scanning line of a part of the scanning line, an electrode terminal corresponding to a signal line composed of a partial signal line in a region other than the image display portion, and a photosensitive organic insulating layer pattern having a thickness larger than that of other regions on the signal line The electrode is formed by selectively removing one or more second metal layers, a second amorphous germanium layer, and a first amorphous germanium layer by using the photosensitive organic insulating layer pattern as a mask to form scan electrodes and signal lines The work of the terminal and the source/drain wiring; and the process of reducing the film thickness of the photosensitive organic insulating layer pattern to expose the electrode terminals of the scanning lines and signal lines and the drain wiring. 2 1 - A method of manufacturing a liquid crystal display device having at least an insulating gate type transistor, a scanning line serving as a gate electrode of the insulating gate type transistor, and a source wiring a first transparent insulating substrate in which a unit line of a signal line, a pixel electrode connected to the drain wiring, and the like are arranged in a two-dimensional matrix; and a first transparent insulating substrate opposite to the first transparent insulating substrate Or a method for manufacturing a liquid crystal display device comprising a liquid crystal display device, wherein: -111 - (20) 1300873 is sequentially coated on at least one main surface of the first transparent insulating substrate. : a transparent conductive layer, a first metal layer, a gate insulating layer, a first amorphous germanium layer containing no impurities, and a protective insulating layer; corresponding to the scan line and the pixel electrode, forming a protective insulating layer forming region Engineering of a photosensitive resin pattern having a thicker film thickness than other regions; using the above-mentioned photosensitive resin pattern as a mask, sequentially uranium engraving: protecting 'insulating layer, first amorphous germanium layer, gate insulating layer Engineering of the first metal layer and the transparent conductive layer; reducing the film thickness of the photosensitive resin pattern to expose the protective insulating layer; leaving a protective insulating layer wider than the gate electrode on the gate electrode, and a process of exposing the first amorphous germanium layer; a process of forming an insulating layer on the side of the scanning line after removing the photosensitive resin pattern having a reduced film thickness; and a process of completely covering the second amorphous germanium layer containing impurities; A photosensitive resin pattern having an opening on the analog electrode terminal of the scanning line is formed on the pixel electrode and a region other than the image display portion, and the second amorphous germanium layer and the first amorphous material in the opening portion are selectively removed. a layer of a gate layer, a gate insulating layer, and a first metal layer to expose a transparent conductive pixel electrode and a portion of the scan line; after coating more than one layer of the anodizable metal layer, forming a portion overlapping the protective insulating layer a source wiring (signal line), a drain wiring including a pixel electrode forming portion overlapping the protective insulating layer, and a partial scan including the transparent conductive portion The electrode terminal on which the scanning line is formed, and the film thickness on the electrode terminal forming the scanning line and the signal line corresponding to the electrode terminal of the signal line formed by the partial signal line in the area other than the image portion 112-2 (21) 1300873 Projecting a photosensitive resin pattern thicker than a predetermined region; selectively removing one or more anodizable metal layers, a second amorphous germanium layer, and a first amorphous material using the photosensitive resin pattern as a mask In the enamel layer, the electrode terminal and the source drain wiring of the scanning line and the signal line are formed, the film thickness of the photosensitive resin pattern is reduced, the source/drain wiring is exposed, and the electrode terminal is protected. Anodizing source • Deuterium wiring works. twenty two.  A method of manufacturing a liquid crystal display device is characterized in that it has at least an insulating gate type transistor on one main surface, a scanning line which also serves as a gate electrode of the insulating gate type transistor, a signal line which serves as a source wiring, and a connection The first pixel of the pixel electrode of the drain gate type of the insulating gate type transistor and the counter electrode formed by the specific distance from the pixel electrode is arranged in a two-dimensional matrix. An insulating substrate; and a method of manufacturing a liquid crystal display device comprising a second transparent insulating substrate facing the first transparent insulating substrate or a color filter, wherein the liquid crystal display device comprises: at least first a main surface of the transparent insulating substrate is sequentially coated: one or more first metal layers, one or more gate insulating layers, a first amorphous germanium layer containing no impurities, and a protective insulating layer; Scanning line, forming a film thickness ratio on the protective insulating layer forming region -113· (22) 1300873 Projecting a photosensitive resin pattern thicker in other regions; using the above photosensitive resin pattern Etching, sequentially etching: protecting the insulating layer, the first amorphous germanium layer, the gate insulating layer, and the first metal layer; reducing the film thickness of the photosensitive resin pattern to expose the protective insulating layer; An operation of exposing the first amorphous germanium layer to the gate electrode by leaving a protective insulating layer thinner than the gate electrode; and removing the photosensitive resin pattern having a reduced film thickness and forming an insulating layer on the side of the scan line Engineering of the layer; engineering of completely covering the second amorphous germanium layer containing impurities; forming a layer of the second amorphous germanium layer and one or more second metal layers by partially overlapping the protective insulating layer The source (signal line) and the drain wiring of the structure; and the signal terminal line formed by the electrode terminal forming region of the scanning line in the region other than the image display portion on the drain wiring and the signal line a step of forming a transparent resin layer having an opening on the electrode terminal on the second transparent insulating substrate; removing the electrode terminal forming region of the scanning line a gate insulating layer to expose a portion of the scanning line; and a conductive pixel electrode including an opening on the drain wiring; and a conductive counter electrode including a conductive line on the scanning line and the signal line; Engineering on the resin layer. twenty three.  A manufacturing method of a liquid crystal display device is a scanning line of a gate electrode having at least an insulating gate type transistor and a gate electrode of the insulating gate type transistor on a main surface -114-(23) 1300873 a signal line of the pole wiring, a pixel electrode connected to the drain of the insulating gate type transistor, and a pixel of the opposite electrode formed by a predetermined distance from the pixel electrode are arranged in a one-dimensional matrix. a transparent dielectric substrate; and a method of manufacturing a liquid crystal display device comprising a liquid crystal display device formed by filling a liquid crystal between a second transparent insulating substrate or a color filter facing the first transparent insulating substrate The method has: at least on one main surface of the first transparent insulating substrate, sequentially covering: one or more first metal layers, one or more gate insulating layers, a first amorphous germanium layer containing no impurities, and protection Engineering of the insulating layer; corresponding to the scanning line and the counter electrode, forming a photosensitive resin pattern having a thicker film thickness on the protective insulating layer forming region than other regions; The grease pattern is used as a mask to sequentially etch: a process of protecting the insulating layer, the first amorphous germanium layer, the gate insulating layer, and the first metal layer; and reducing the film thickness of the photosensitive resin pattern to expose the protective insulating layer Having a protective insulating layer that is wider than the gate electrode on the gate electrode, and exposing the first amorphous germanium layer; the above-mentioned photosensitive resin pattern having a reduced film thickness is removed after the scan line A process of forming an insulating layer on the side surface of the counter electrode; a process of completely covering the second amorphous germanium layer containing impurities; forming a region of -115-(24) 1300873 at the electrode terminal of the scanning line in a region other than the image display portion The opening portion 'selectively removes the second amorphous germanium layer, the first amorphous germanium layer, and the gate insulating layer in the opening portion to expose a portion of the scanning line; and after coating the second metal layer or more, forming a source wiring (signal line)/dipper wiring (pixel electrode) partially overlapping the protective insulating layer, and an electrode terminal including the opening portion forming a scanning line, and drawing An electrode terminal of a signal line composed of a part of signal lines is formed in a region other than the display portion, and a photosensitive organic insulating layer pattern having a thickness larger than that of other regions on the signal line is formed; and the photosensitive organic insulating layer pattern is used as a mask a cover for selectively removing the second metal layer, the second amorphous germanium layer, and the first amorphous germanium layer to form electrode terminals of the scan lines and signal lines and source/drain wiring: and reducing the above-mentioned light sensitivity The film thickness of the organic insulating layer pattern, and the electrode terminal of the scanning line and the signal line and the wiring of the drain wiring. A manufacturing method of a liquid crystal display device is characterized in that it has at least an insulating gate type transistor on one main surface, a scanning line which also serves as a gate electrode of the insulating gate type transistor, and a signal which also serves as a source wiring. a line, a pixel electrode connected to the drain of the insulating gate type transistor, and a unit pixel of a counter electrode formed by a predetermined distance from the pixel electrode, and the like are arranged in a two-dimensional matrix. a transparent insulating substrate; and a method of manufacturing a liquid crystal display device comprising a second transparent insulating substrate or a color filter opposed to the first transparent insulating substrate; wherein the liquid crystal display device comprises: 116- (25) 1300873 is sequentially coated on at least one main surface of the first transparent insulating substrate: - a first metal layer above the layer, one or more gate insulating layers, and a first amorphous material containing no impurities a layer of a germanium layer and a protective insulating layer; a project of forming a photosensitive resin pattern having a thickness larger than that of other regions on the protective insulating layer forming region corresponding to the scanning line and the counter electrode; The photosensitive resin pattern is sequentially etched as a mask: a process of protecting the insulating layer, the first amorphous germanium layer, the gate insulating layer, and the first metal layer; and reducing the film thickness of the photosensitive resin pattern having reduced the film thickness And exposing the protective insulating layer; leaving a protective insulating layer wider than the gate electrode on the gate electrode to expose the first amorphous germanium layer; after the photosensitive resin pattern is removed, a process of forming an insulating layer on the side surface of the scanning line and the counter electrode; a process of completely covering the second amorphous germanium layer containing impurities; forming an opening in the electrode terminal forming region of the scanning line in a region other than the image display portion, and selecting The second amorphous germanium layer, the first amorphous germanium layer and the gate insulating layer in the opening portion are removed to expose a part of the scanning line; after coating one or more anodizable metal layers, a corresponding portion is formed The source wiring (signal line) and the drain wiring (pixel electrode) in which the protective insulating layer overlaps, and the electrode terminal including the opening portion forming the scanning line, and the image display The portion outside the portion corresponds to the electrode terminal of the signal line composed of the partial signal lines, and the film-117- (26) 1300873 on the electrode terminal forming the scanning line and the signal line is thicker than other regions of the photosensitive resin pattern engineering;.   Selectively removing the anodizable metal layer, the second amorphous germanium layer, and the first amorphous germanium layer by using the photosensitive resin pattern as a mask to form electrode terminals and source lines of scan lines and signal lines. The work of the bungee wiring; the process of reducing the film thickness of the photosensitive resin pattern to expose the source/drain wiring; and the process of protecting the electrode terminal and anodizing the source and drain wiring. 25.  A method of manufacturing a liquid crystal display device is characterized in that it has at least an insulating gate type transistor on one main surface, a scanning line which also serves as a gate electrode of the insulating gate type transistor, a signal line which serves as a source wiring, and a connection The first pixel of the pixel electrode of the drain gate type of the insulating gate type transistor and the counter electrode formed by the specific distance from the pixel electrode is arranged in a two-dimensional matrix. An insulating substrate; and a method of manufacturing a liquid crystal display device comprising a second transparent insulating substrate facing the first transparent insulating substrate or a color filter, wherein the liquid crystal display device comprises: at least first a main surface of the transparent insulating substrate is sequentially coated: one or more first metal layers, one or more gate insulating layers, a first amorphous germanium layer containing no impurities, and a protective insulating layer; In the scanning line and the counter electrode, a photosensitive resin pattern having a thickness larger than that of other regions on the protective insulating layer forming region is formed; and the photosensitive resin pattern is used as the photosensitive resin pattern The cover is sequentially etched: the protective -118- (27) 1300873 edge layer, the first amorphous germanium layer, the gate insulating layer and the first metal layer are processed; the film thickness of the photosensitive resin pattern is reduced to expose the protection The operation of the insulating layer; leaving a wide gate electrode on the gate electrode to further protect the insulating layer, and exposing the first amorphous germanium layer; after the above-mentioned photosensitive resin pattern having reduced film thickness is removed, a process of forming an insulating layer between the scan line and the side surface of the counter electrode; a process of completely covering the second amorphous germanium layer containing the impurity; forming a second amorphous germanium layer by partially overlapping the protective insulating layer Source wiring (signal line) and drain wiring (pixel electrode) formed by laminating one or more second metal layers; forming a scan on the first transparent insulating substrate in a region other than the image display portion Engineering of a transparent insulating layer having an opening portion on an electrode terminal forming region of a line and an electrode terminal of a signal line composed of a part of signal lines; and removing an electrode terminal shape on the scanning line A gate insulating layer on the area, exposed portions of the scanning lines of the project. 26.  A method of manufacturing a liquid crystal display device is characterized in that it has at least an insulating gate type transistor on one main surface, a scanning line which also serves as a gate electrode of the insulating gate type transistor, a signal line which serves as a source wiring, and a connection The pixel elements of the drain electrode of the insulating gate type transistor, the counter electrode formed by a specific distance from the pixel electrode, and the like are arranged in a two-dimensional matrix. a transparent insulating substrate; and a method of manufacturing a liquid crystal display device comprising a second transparent insulating substrate or a color filter interposed between the first transparent 119-(28) 1300873 insulating substrate and a color filter; The method is characterized in that: at least on one main surface of the first transparent insulating substrate, sequentially etching: one or more first metal layers, one or more gate insulating layers, and the first amorphous germanium layer containing no impurities And a process for protecting the insulating layer; corresponding to the scan line and the opposite electrode, formed on the gate electrode, the intersection of the scan line and the signal line, the intersection area of the counter electrode and the signal line, and the opposite electrode and the pixel Engineering of a photosensitive resin pattern having a film thickness thicker than other regions in the intersection region of the electrode; etching with the above-mentioned photosensitive resin pattern as a mask: protective insulating layer, first amorphous germanium layer, gate insulating Engineering of the layer and the first metal layer; engineering of forming an insulating layer on the side faces of the scanning line and the counter electrode; reducing the film thickness of the photosensitive resin pattern to expose the protective insulating layer, Except for the protective insulating layer on the scan line and the counter electrode, the first amorphous germanium layer, and the gate insulating layer to expose the scanning line and the opposite electrode; further reducing the above-mentioned photosensitive resin pattern having a reduced film thickness a film thickness, leaving a protective insulating layer that is wider than the gate electrode on the gate electrode to expose the first amorphous germanium layer; a process of completely covering the second amorphous germanium layer containing impurities; After coating one or more layers of the anodizable metal layer, a source wiring (signal line) and a drain wiring (pixel electrode) partially overlapping the protective insulating layer are formed, and a portion other than the image display portion includes a partial scanning line shape. 120-(29) 1300873 is an electrode terminal of a scanning line and an electrode terminal corresponding to a signal line composed of a part of signal lines, and a process of forming a photosensitive resin pattern having a thickness larger than that of other regions on the electrode terminal; The photosensitive resin pattern serves as a mask to selectively remove the anodizable metal layer, the second amorphous germanium layer, and the first amorphous germanium layer to form a scan line and The electrode terminal of the line and the gate of the source/drain wiring are not required, and the thickness of the photosensitive resin pattern is reduced to expose the source/drain wiring; and the electrode terminal is protected and the anodizing source is protected. Extreme • Bipolar wiring and counter electrode engineering. 2 7. The method of manufacturing a liquid crystal display device according to claim 17, wherein the insulating layer formed on the side surface of the scanning line is an organic insulating layer. , formed by electroplating. The method of manufacturing a liquid crystal display device according to claim 17, wherein the first metal layer is formed of an anodizable metal layer. The insulating layer on the side of the scanning line is formed by anodization. -121 -
TW093109963A 2003-06-26 2004-04-09 Liquid crystal display unit and its manufacturing method TW200506511A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003182107A JP2005019664A (en) 2003-06-26 2003-06-26 Liquid crystal display unit and its manufacturing method

Publications (2)

Publication Number Publication Date
TW200506511A TW200506511A (en) 2005-02-16
TWI300873B true TWI300873B (en) 2008-09-11

Family

ID=34182581

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093109963A TW200506511A (en) 2003-06-26 2004-04-09 Liquid crystal display unit and its manufacturing method

Country Status (2)

Country Link
JP (1) JP2005019664A (en)
TW (1) TW200506511A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5342731B2 (en) * 2005-03-25 2013-11-13 エーユー オプトロニクス コーポレイション Liquid crystal display device and manufacturing method thereof
EP1933293A4 (en) 2005-10-05 2009-12-23 Idemitsu Kosan Co Tft substrate and method for manufacturing tft substrate
WO2007063966A1 (en) 2005-12-02 2007-06-07 Idemitsu Kosan Co., Ltd. Tft substrate and tft substrate manufacturing method
WO2007088722A1 (en) 2006-01-31 2007-08-09 Idemitsu Kosan Co., Ltd. Tft substrate, reflective tft substrate and method for manufacturing such substrates
JP2007212699A (en) 2006-02-09 2007-08-23 Idemitsu Kosan Co Ltd Reflective tft substrate and method for manufacturing same
JPWO2008136505A1 (en) 2007-05-08 2010-07-29 出光興産株式会社 Semiconductor device, thin film transistor, and manufacturing method thereof
TWI508282B (en) * 2008-08-08 2015-11-11 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
US8461630B2 (en) * 2010-12-01 2013-06-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
TW200506511A (en) 2005-02-16
JP2005019664A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
KR100710532B1 (en) Liquid crystal display and fabricating the same
KR100632097B1 (en) Liquid crystal display and fabricating the same
TWI287161B (en) Liquid crystal display device and manufacturing method thereof
US7417693B2 (en) Liquid crystal display device and its manufacturing method
TW526380B (en) Liquid crystal display device and producing method
TWI300868B (en)
TWI300873B (en)
US7982837B2 (en) Liquid crystal display device and its manufacturing method
TWI281999B (en) LCD device and manufacturing method thereof
TWI305288B (en)
WO2016021320A1 (en) Active matrix substrate and method for producing same
TWI304145B (en)
TWI247158B (en) Liquid crystal display device and its manufacturing method
JP4538218B2 (en) Liquid crystal display device and manufacturing method thereof
JP3391304B2 (en) Liquid crystal image display device and method of manufacturing semiconductor device for image display device
JP2000250065A (en) Liquid crystal image display device and production of semiconductor device for image display device
JP4538219B2 (en) Liquid crystal display device and manufacturing method thereof
JP4871507B2 (en) Liquid crystal display device and manufacturing method thereof
JP2005215276A (en) Liquid crystal display and its manufacturing method
JP2001215530A (en) Method for manufacturing liquid crystal image display device and semiconductor device for image display device
JP2006267877A (en) Liquid crystal display device and its manufacturing method
JP2002270847A (en) Liquid crystal image display and manufacturing method semiconductor device for the image display
JP2000250072A (en) Manufacture of liquid crystal image display device, and semiconductor device for image display device
JP2002184991A (en) Liquid crystal image display and manufacturing method of semiconductor device for image display

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees