JP2005120874A - バルブタイミング調整装置 - Google Patents

バルブタイミング調整装置 Download PDF

Info

Publication number
JP2005120874A
JP2005120874A JP2003355279A JP2003355279A JP2005120874A JP 2005120874 A JP2005120874 A JP 2005120874A JP 2003355279 A JP2003355279 A JP 2003355279A JP 2003355279 A JP2003355279 A JP 2003355279A JP 2005120874 A JP2005120874 A JP 2005120874A
Authority
JP
Japan
Prior art keywords
motor
valve timing
control signal
signal
target value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003355279A
Other languages
English (en)
Other versions
JP4305953B2 (ja
Inventor
Hideji Tani
秀司 谷
Haruyuki Urushibata
晴行 漆畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003355279A priority Critical patent/JP4305953B2/ja
Priority to US10/961,038 priority patent/US7146944B2/en
Priority to DE102004050114.9A priority patent/DE102004050114B4/de
Publication of JP2005120874A publication Critical patent/JP2005120874A/ja
Application granted granted Critical
Publication of JP4305953B2 publication Critical patent/JP4305953B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/022Chain drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism

Abstract

【課題】 バルブタイミングの保持精度を確保するモータ利用型バルブタイミング調整装置を提供する。
【解決手段】 モータ12の回転トルクを利用してエンジンのバルブタイミングを調整するバルブタイミング調整装置であって、エンジン回転数信号並びに制御回路150が生成した制御信号を受信し、受信したエンジン回転数信号が表すエンジン回転数と、受信した制御信号が表すモータ回転数の目標変化量とに基づき、モータ12を通電駆動する駆動回路110を備える。
【選択図】 図1

Description

本発明は、モータの回転トルクを利用してエンジンのバルブタイミングを調整するバルブタイミング調整装置(以下、モータ利用型バルブタイミング調整装置という)に関する。
例えば特許文献1に開示されるようなモータ利用型バルブタイミング調整装置では、制御回路が生成した制御信号を受信する駆動回路を用いて、その制御信号に従う通電をモータに対し実施している。このモータ利用型バルブタイミング調整装置では、バルブタイミングを保持するときにクランク軸に対するモータの回転位相を変化させないことが重要である。クランク軸に対するモータの回転位相が変化すると、クランク軸に対するカム軸の回転位相が変化し、ひいてはバルブタイミングが変化してしまうからである。そこで、従来、モータへの通電を制御してクランク軸に対するモータの回転位相を保持する技術が考えられている。具体的にかかる技術では、モータ回転数の目標値に比例した電圧の制御信号を制御回路で生成し、駆動回路によって実際のモータ回転数を制御信号が表す目標値に一致させている。
実開平4−105906号公報
しかし、車両等に設置されるバルブタイミング調整装置では信号電圧の大きさが制限されるため、上記従来技術において制御信号の電圧により表される目標値の分解能を高めるには限界がある。そのため、エンジンの運転状況に応じて頻繁に変動するクランク軸の回転数に対しモータ回転数の追従性が悪くなり、意図しないバルブタイミングの変化が惹起されてしまう。
本発明の目的は、バルブタイミングの保持精度を確保するモータ利用型バルブタイミング調整装置を提供することにある。
請求項1に記載の発明によると、駆動回路は、エンジン回転数信号が表すエンジン回転数と、制御回路が生成した制御信号が表すモータ回転数の目標変化量とに基づきモータを通電駆動する。これにより、バルブタイミングを保持するときには、モータ回転数の目標変化量を実質的に0とすることで、エンジン回転数に応じてモータ回転数を変化させることができる。ここで、エンジン回転数信号により表されるエンジン回転数の分解能は、エンジン回転数より変化幅の大きなモータ回転数の目標値を一信号で表す場合の当該目標値の分解能に比べ、高くなる。以上より、バルブタイミングの保持時には、高い分解能をもって表されるエンジン回転数に応じてモータ回転数を変化させることができるので、エンジンのクランク軸の回転数に対するモータ回転数の追従性が向上する。かかる追従性の向上により、バルブタイミングの保持精度が確保される。
尚、上述した通電駆動を実施する請求項1に記載の駆動回路によれば、バルブタイミングの変化に必要なモータ回転数の目標変化量及びエンジン回転数の双方に応じてモータ回転数を変化させることで、バルブタイミングを変化させることができる。
請求項2に記載の発明によると、エンジン回転数信号が表すエンジン回転数に比例する値と、制御信号が表すモータ回転数の目標変化量との和をモータ回転数の目標値として設定するので、当該目標値の設定を容易且つ正確に実施できる。
請求項3に記載の発明によると、バルブタイミングを保持する保持モードが選択されるとき駆動回路の保持手段は、エンジン回転数信号が表すエンジン回転数に基づきモータを通電駆動するので、エンジン回転数に応じてモータ回転数を変化させることができる。ここで、エンジン回転数信号により表されるエンジン回転数の分解能は、エンジン回転数より変化幅の大きなモータ回転数の目標値を一信号で表した場合の当該目標値の分解能に比べ、高くなる。以上より、バルブタイミングの保持時には、高い分解能をもって表されるエンジン回転数に応じてモータ回転数を変化させることができるので、エンジンのクランク軸の回転数に対するモータ回転数の追従性が向上する。かかる追従性の向上により、バルブタイミングの保持精度が確保される。
尚、請求項3に記載の発明では、変化モードが選択されたときに、制御回路が生成した制御信号に従ってモータ回転数を駆動回路の変化手段により変化させることで、バルブタイミングを変化させることができる。
請求項4,5に記載の発明によると、バルブタイミングを変化させる変化モードが選択されるとき駆動回路の変化手段は、制御回路が生成した制御信号が表すモータ回転数又は制御信号が表すモータ電流の目標値及びモータ回転方向に基づきモータを通電駆動する。これにより、変化モードの選択時には保持モードの選択時とは異なる方法でモータを通電駆動して、バルブタイミングを確実に変化させることができる。
請求項6に記載の発明によると、バルブタイミングを変化させる変化モードが選択されるとき駆動回路の変化手段は、第一制御信号が表すモータ電流の目標値と、第二制御信号が表すモータ回転方向とに基づきモータを通電駆動する。これにより、変化モードの選択時には保持モードの選択時とは異なる方法でモータを通電駆動して、バルブタイミングを確実に変化させることができる。また、第一制御信号により表されるモータ電流の目標値は、モータ電流の目標値及びモータ回転方向の双方を一信号で表す場合の目標値に比べ、分解能の高い値となる。そのため、バルブタイミングの変化時には、高い分解能をもって表される値に基づきモータ回転数を変化させることができるので、バルブタイミングの高精度な調整が可能になる。
請求項4,5,6に記載の発明において駆動回路の保持手段は、保持モードの選択時に制御信号によらずにモータを通電駆動することができる。よって、保持モードの選択時には、制御信号が表すモータ回転数の目標値又は制御信号若しくは第一制御信号が表すモータ電流の目標値を0としても問題がない。
そこで、請求項7に記載の発明によると、制御信号が表すモータ回転数の目標値又は制御信号若しくは第一制御信号が表すモータ電流の目標値が実質的に0となるとき駆動回路の選択手段が保持モードを選択する。また、請求項7に記載の発明によると、制御信号が表すモータ回転数の目標値又は制御信号若しくは第一制御信号が表すモータ電流の目標値が0とならないとき選択手段が変化モードを選択する。以上により、モード選択用の新たな信号を使用する必要がなくなるので、信号線の削減を図ることができる。信号線の削減により、ノイズによる影響が軽減され、またコストが低減される。
請求項8に記載の発明によると、バルブタイミングを変化させる変化モードが選択されるとき駆動回路の変化手段は、第一制御信号が表すモータ回転数の目標値の絶対値と、第二制御信号が表す当該目標値の符号とに基づきモータを通電駆動する。これにより、変化モードの選択時には保持モードの選択時とは異なる方法でモータを通電駆動して、バルブタイミングを確実に変化させることができる。また、第一制御信号により表されるモータ回転数の目標値の絶対値は、符号の付いた目標値自体を一信号で表した場合の目標値に比べ、分解能の高い値となる。そのため、バルブタイミングの変化時には、高い分解能をもって表される値に基づきモータ回転数を変化させることができるので、バルブタイミングの高精度な調整が可能になる。
請求項8に記載の発明において駆動回路の保持手段は、保持モードの選択時に第一及び第二制御信号によらずにモータを通電駆動することができる。よって、保持モードの選択時には、第一制御信号が表すモータ回転数の目標値の絶対値を0としても問題がない。
そこで、請求項9に記載の発明によると、制御信号が表すモータ回転数の目標値の絶対値が実質的に0となるとき駆動回路の選択手段が保持モードを選択し、当該絶対値が0とならないとき選択手段が変化モードを選択する。これにより、モード選択用の新たな信号を使用する必要がなくなるので、信号線の削減を図ることができる。信号線の削減により、ノイズによる影響が軽減され、またコストが低減される。
請求項10に記載の発明によると、保持モード及び変化モードのうち、制御回路が生成したモード指令信号が表すモードを駆動回路の選択手段は選択する。これにより、保持モードと変化モードとを正確に切り換えることができる。
請求項11に記載の発明によると、エンジン回転数信号は、エンジン回転数に比例した周波数の信号であるので、その周波数に基づきエンジン回転数を正確に知ることができる。正確なエンジン回転数に応じたモータ回転数の変化もまた正確なものとなるので、バルブタイミングの保持精度等といった調整特性が向上する。
請求項12に記載の発明によると、駆動回路は、制御回路が生成した制御信号が周波数により表すモータ回転数の目標値に基づきモータを通電駆動するので、当該目標値に応じてモータ回転数を変化させることができる。ここで、制御信号の周波数により表される目標値の分解能については、制御信号の電圧により表される目標値の分解能に比べて高くすることができる。これは、信号の電圧がバルブタイミング調整の設置個所等により制限されるのに対し、信号の周波数は時間軸上で大きな自由度をもって設定することができるからである。以上より、バルブタイミングを保持するときには、高い分解能をもって表される目標値に応じてモータ回転数を変化させることができるので、エンジンのクランク軸の回転数に対するモータ回転数の追従性が向上する。かかる追従性の向上により、バルブタイミングの保持精度が確保される。
尚、上述した通電駆動を実施する請求項12に記載の駆動回路によれば、バルブタイミングの変化に必要なモータ回転数の目標値に応じてモータ回転数を変化させることで、バルブタイミングを変化させることができる。
請求項13に記載の発明によると、制御信号は、モータ回転数の目標値に比例した周波数の信号であるので、その周波数に基づきモータ回転数の目標値を正確に知ることができる。正確な目標値に応じたモータ回転数の変化もまた正確なものとなるので、バルブタイミングの保持精度等といった調整特性が向上する。
請求項14に記載の発明によると、駆動回路は、制御回路が生成した第一制御信号及び第二制御信号を受信する。そして制御回路は、第一制御信号が周波数により表すモータ回転数の目標値の絶対値と、第二制御信号が表すモータ回転数の目標値の符号とに基づきモータを通電駆動するので、それら絶対値及び符号に応じてモータ回転数を変化させることができる。ここで、第一制御信号の周波数により表される目標値の絶対値は、信号電圧により目標値の絶対値を表す場合のその絶対値に比べ、分解能の高い値となる。また、第一制御信号により表されるモータ回転数の目標値の絶対値は、符号の付いた目標値自体を一信号で表した場合の目標値に比べ、分解能の高い値となる。以上より、バルブタイミングを保持するときには、高い分解能をもって表される目標値の絶対値に応じてモータ回転数を変化させることができるので、エンジンのクランク軸の回転数に対するモータ回転数の追従性が向上する。かかる追従性の向上により、バルブタイミングの保持精度が確保される。
尚、上述した通電駆動を実施する請求項14に記載の駆動回路によれば、バルブタイミングの変化に必要なモータ回転数の目標値の絶対値及び符号に応じてモータ回転数を変化させることで、バルブタイミングを変化させることができる。しかもそのバルブタイミングの変化時に、上述した如く高い分解能をもって表される値に基づきモータ回転数を変化させることができるので、バルブタイミングの高精度な調整が可能になる。
請求項15に記載の発明によると、第一制御信号は、モータ回転数の目標値の絶対値に比例した周波数の信号であるので、その周波数に基づいて目標値の絶対値を正確に知ることができる。正確な目標値の絶対値に応じたモータ回転数の変化もまた正確なものとなるので、バルブタイミングの保持精度等といった調整特性が向上する。
請求項16に記載の発明によると、モータ回転数の目標値は、エンジン回転数を表すエンジン回転数信号を用いて制御回路により設定される値であるので、エンジンの運転状況を十分に反映したものとなる。これにより、エンジンの運転状況に応じて緻密にバルブタイミングを調整することができる。
エンジン回転数については、エンジンのクランク軸又はカム軸の回転数から直接的に知ることができる。また、エンジンの点火装置を駆動するための点火信号の周波数はエンジン回転数に比例するので、点火信号の周波数から間接的にエンジン回転数を知ることができる。またさらに、エンジンの燃料噴射装置を駆動するための燃料噴射信号の周波数はエンジン回転数に比例するので、燃料噴射信号の周波数から間接的にエンジン回転数を知ることができる。以上より、請求項17に記載の発明によると、クランク軸の回転数を検出するセンサの検出信号、カム軸の回転数を検出するセンサの検出信号、エンジンの点火装置を駆動するための点火信号、若しくはエンジンの燃料噴射装置を駆動するための燃料噴射信号のいずれか一つをエンジン回転数信号として用いる。
以下、本発明の複数の実施形態を図面に基づいて説明する。
(第一実施形態)
本発明の第一実施形態によるバルブタイミング調整装置を図2〜4に示す。バルブタイミング調整装置10は車両に設置され、エンジンのクランク軸の駆動トルクをエンジンのカム軸11に伝達する伝達系に設けられる。バルブタイミング調整装置10は、モータ制御装置100により制御されたモータ12の回転トルクを利用して、エンジンの吸、排気バルブのバルブタイミングを調整する。即ちバルブタイミング調整装置10は、モータ利用型バルブタイミング調整装置である。
図2及び図3に示すようにバルブタイミング調整装置10のモータ12は、モータ軸14、軸受16、回転数センサ18、ステータ20等から構成される三相モータである。
モータ軸14は、二つの軸受16により軸方向の二箇所を支持されて軸線O周りに回転可能である。モータ軸14は、軸本体から径方向外側に突出する円形板状のロータ部15を形成しており、ロータ部15の外周壁に複数の磁石15aが埋設されている。回転数センサ18はロータ部15の近傍に配設され、各磁石15aの形成磁界の強さを感知することによりモータ軸14の回転数(以下、モータ回転数という)を検出する。回転数センサ18は、モータ回転数の検出値Rmを表すモータ回転数信号を生成する。
ステータ20はモータ軸14の外周側に配設されている。ステータ20の複数のコア21はモータ軸14の軸線O周りに等間隔に並んでいる。各コア21に巻線22が一つずつ巻回しされている。例えば図5に示すように巻線22は、三つを一組としてスター結線され、各非結線側の端子23u,23v,23wをモータ制御装置100の駆動回路110に接続されている。モータ制御装置100の制御に従って各巻線22は、図3の時計方向又は反時計方向の回転磁界をモータ軸14の外周側に形成する。図3の時計方向の回転磁界が形成されるときには、ロータ部15の各磁石が順に吸引力と反発力とを受け、図3の時計方向の回転トルクがモータ軸14に付与される。同様に、図3の反時計方向の回転磁界が形成されるときには、図3の反時計方向の回転トルクがモータ軸14に付与される。
図2及び図4に示すようにバルブタイミング調整装置10の位相変化機構30は、スプロケット32、リングギア33、偏心軸34、遊星歯車35、出力軸36等から構成されている。
スプロケット32は出力軸36の外周側に同軸上に配設されており、出力軸36に対してモータ軸14と同じ軸線O周りに相対回転可能である。クランク軸の駆動トルクがチェーンベルトを通じてスプロケット32に入力されるとき、スプロケット32はクランク軸に対する回転位相を保ちつつ、軸線Oを中心として図4の時計方向に回転する。リングギア33は内歯車で構成されてスプロケット32の内周壁に同軸上に固定されており、スプロケット32と一体に回転する。
偏心軸34は、モータ軸14に連結固定されることにより軸線Oに対し偏心して配設されており、モータ軸14と一体となって回転可能である。遊星歯車35は外歯車で構成されており、複数の歯の一部をリングギア33の複数の歯の一部に噛み合わせるようにしてリングギア33の内周側に遊星運動可能に配設されている。偏心軸34の外周壁に同軸上に支持されている遊星歯車35は、偏心軸34に対して偏心軸線P周りに相対回転可能である。出力軸36はカム軸11に同軸上にボルト固定されており、モータ軸14と同じ軸線Oを中心としてカム軸11と一体に回転する。出力軸36には、軸線Oを中心とする円環板状の係合部37が形成されている。係合部37には、軸線O周りに等間隔に複数の係合孔38が設けられている。遊星歯車35には、各係合孔38と向き合う箇所に係合突起39が設けられている。複数の係合突起39は、偏心軸線P周りに等間隔に配設されている。係合突起39は出力軸36側に突出し、対応する係合孔38に突入している。
モータ軸14がスプロケット32に対して相対回転しないときには、クランク軸の回転に伴い遊星歯車35が、リングギア33との噛合位置を保ちつつスプロケット32と一体に図4の時計方向に回転する。このとき、係合突起39が係合孔38の内周壁を回転方向に押圧するため、出力軸36はスプロケット32に対して相対回転することなく図4の時計方向に回転する。これにより、クランク軸に対するカム軸11の回転位相(以下、単に回転位相ともいう)が保たれる。一方、モータ軸14がスプロケット32に対して図4の反時計方向に相対回転するときには、遊星歯車35がその遊星運動により、偏心軸34に対して図4の時計方向へ相対回転しつつリングギア33との噛合位置を変化させる。このとき、係合突起39が係合孔38を回転方向に押圧する力が増大するため、出力軸36はスプロケット32に対して進角する。これにより、回転位相が進角側に変化する。また一方、モータ軸14がスプロケット32に対して図4の時計方向に相対回転するときには、遊星歯車35がその遊星運動により、偏心軸34に対して図4の反時計方向へ相対回転しつつリングギア33との噛合位置を変化させる。このとき、係合突起39が係合孔38を反回転方向に押圧するようになるため、出力軸36はスプロケット32に対して遅角する。これにより、回転位相が遅角側に変化する。
次に、モータ制御装置100について詳細に説明する。
モータ制御装置100は、駆動回路110、制御回路150等から構成されている。尚、図2では、駆動回路110及び制御回路150を模式的にモータ12の外部に位置するように示しているが、駆動回路110及び制御回路150の各設置箇所については適宜設定できる。例えば、駆動回路110をモータ12内に設置し、制御回路150をモータ12外に設置するようにしてもよい。また例えば、駆動回路110の一部をモータ12内に設置し、駆動回路110の残部及び制御回路150をモータ12外に設置するようにしてもよい。
制御回路150は、駆動回路110によるモータ12の通電を制御すると共に、点火装置及び燃料噴射装置の駆動等といったエンジンの作動を制御する。具体的に制御回路150は電子回路で構成され、図1に示すように回転数センサ160,170に接続されている。回転数センサ160は、クランク軸の回転数(以下、クランク回転数という)を検出し、その検出値Rcrを表すクランク回転数信号を制御回路150に送信する。ここでクランク回転数信号は、クランク回転数の検出値Rcrに比例した周波数(図6に示す周期Tの逆数)の信号であり、図6(A)に示す如きデジタル信号であっても図6(B)に示すアナログ信号であってもよい。回転数センサ170は、カム軸11の回転数(以下、カム回転数という)を検出し、その検出値Rcaを表すカム回転数信号を制御回路150に送信する。
制御回路150は、受信したクランク回転数信号及びカム回転数信号等に基づき、バルブタイミングを保持するか変化させるかを決定する。この決定は、スロットル開度、油温、クランク回転数の検出値Rcr又はカム回転数Rca等のエンジン運転状況から設定した目標の回転位相と、クランク回転数の検出値Rcr及びカム回転数Rcaから割り出した実際の回転位相とを比較することにより行う。バルブタイミングを保持すると決定したとき制御回路150は、モータ回転数の目標変化量ΔRを実質的に0とする。また一方、バルブタイミングを変化させると決定したとき制御回路150は、上述のようにクランク回転数信号等に基づき求められた目標の回転位相と実際の回転位相とを比較して位相差を算出し、その算出した位相差からモータ回転数の目標変化量ΔRを設定する。本実施形態の制御回路150は、目標の回転位相と実際の回転位相との位相差と、モータ回転数の目標変化量ΔRとの相関を予めメモリに記憶しており、その相関に従って目標変化量ΔRを求めることができる。ここで目標変化量ΔRは、目標の回転位相に実際の回転位相を一致させるのに必要な位相変化速度に対応している。こうして設定された目標変化量ΔRを電圧で表す制御信号を、制御回路150は生成する。この制御信号は、図7に示す如く数値が0の目標変化量ΔRに対して所定範囲Wcの電圧が対応し、数値が0以外の目標変化量ΔRに対して電圧が比例するように生成される。
駆動回路110はモータ12を通電駆動する。具体的に駆動回路110は電子回路で構成され、図1に示すように設定部112及び通電部114を有している。
設定手段としての設定部112は、信号線118,119を介して制御回路150に接続されている。信号線118は、制御回路150から設定部112へ制御信号を送信する経路である。信号線119は、制御回路150が受信したクランク回転数信号を制御回路150から設定部112へ送信する経路である。ここで、クランク回転数信号が図6(B)に示す如きアナログ信号である場合には、当該信号を制御回路150により図6(A)に示す如きデジタル信号に変換してから設定部112に送信する構成を採用してもよい。設定部112は、受信した制御信号が表すモータ回転数の目標変化量ΔRと、受信したクランク回転数信号が表すクランク回転数の検出値Rcrに比例する値(本実施形態では比例係数1/2)との和を、モータ回転数の目標値Rとして設定する。以上、クランク回転数の検出値Rcrがエンジン回転数に相当し、クランク回転数信号がエンジン回転数信号に相当している。
図1に示すように通電手段としての通電部114は、設定部112と、モータ12の回転数センサ18及び端子23u,23v,23wとに接続されている。通電部114は、設定部112で設定されたモータ回転数の目標値Rと、受信したモータ回転数信号が表すモータ回転数の検出値Rmとに基づき、モータ12への通電を実施する。図5に示すように本実施形態の通電部114は、モータ12を負荷とするブリッジからなるインバータ回路115を備えている。かかる通電部114では、インバータ回路115の複数のスイッチング素子116のオンオフを切り換えることで、実際のモータ回転数である検出値Rmを目標値Rに一致させる通電をモータ12に対して実施する。
ここで、モータ制御装置100の全体作動を説明する。
制御回路150がバルブタイミングの保持を決定し、モータ回転数の目標変化量ΔRを実質的に0とすると、設定部112が設定するモータ回転数の目標値Rはクランク回転数の検出値Rcrに比例することになる。そのため、実際のクランク回転数である検出値Rcrの変動に合わせてモータ回転数の目標値Rが変動し、さらには通電部114によって目標値Rと一致させられる実際のモータ回転数もまた、検出値Rcrの変動に合わせて変動する。これにより、スプロケット32に対するモータ軸14の相対回転が抑制されるので、バルブタイミングが保持される。尚、本実施形態では、数値が0の目標変化量ΔRに対し所定範囲Wcの電圧が対応した制御信号を用いることで、当該制御信号が表す目標変化量ΔRが信号電圧の僅かな変動により0からずれてバルブタイミングが保持されなくなる事態を防止している。
一方、制御回路150がバルブタイミングの変化を決定し、その変化に必要な0以外の数値に目標変化量ΔRを設定すると、設定部112が設定するモータ回転数の目標値Rは目標変化量ΔRの変化に合わせて変化する。そのため、通電部114により目標値Rと一致させられる実際のモータ回転数も目標変化量ΔRの変化に合わせて変化するので、スプロケット32に対しモータ軸14が相対回転してバルブタイミングが変化する。
以上説明した第一実施形態によると、クランク回転数信号が表すクランク回転数の検出値Rcrについて、それよりも変化幅の大きなモータ回転数の目標値を一制御信号で表している従来技術の当該目標値に比べ、高い分解能を実現できる。そのため、バルブタイミングの保持時には、高い分解能をもって表されるクランク回転数の検出値Rcrに合わせてモータ回転数を変化させることができるので、クランク回転数に対するモータ回転数の追従性が向上する。かかる追従性の向上により、バルブタイミングの保持精度が確保される。
しかも第一実施形態の駆動回路110は、バルブタイミングの変化時に保持時と同じ方法でモータ12を通電駆動できるので、比較的簡素な構成となる。
(第二実施形態)
本発明の第二実施形態によるバルブタイミング調整装置のモータ制御装置200を図8に示す。第二実施形態は第一実施形態の変形例であり、第一実施形態と実質的に同一の構成部分には同一符号を付す。
第二実施形態の制御回路210は、モータ回転数の目標変化量ΔRではなく、モータ回転数の目標値Rを表す制御信号を生成する。具体的には、バルブタイミングの保持を決定したとき制御回路210は、クランク回転数信号が表すクランク回転数の検出値Rcrに応じてモータ回転数の目標値Rを増減する。また一方、バルブタイミングの変化を決定したとき制御回路210は、第一実施形態と同様にしてクランク回転数信号等に基づき求められた目標の回転位相と実際の回転位相とを比較して位相差を算出し、その算出した位相差からモータ回転数の目標値Rを設定する。本実施形態の制御回路210では、目標の回転位相と実際の回転位相との位相差と、モータ回転数の目標値Rとの相関を予めメモリに記憶させておき、その相関に従って目標値Rを求めるようにしてもよい。あるいは、第一実施形態と同様にして目標変化量ΔRを求めてから、当該目標変化量ΔRと検出値Rcrに比例する値(本実施形態では比例係数1/2)との和により目標値Rを求めるようにしてもよい。以上、バルブタイミングの保持時及び変化時のいずれにおいても制御回路210は、エンジン回転数信号に相当するクランク回転数信号を用いてモータ回転数の目標値Rを設定する。こうして設定されたモータ回転数の目標値Rに対し図9に示すように比例する周波数の制御信号を、制御回路210は生成する。
図8に示すように第二実施形態の駆動回路220には、設定部112及び信号線119が設けられず、制御信号を伝播する信号線118の反制御回路側端が通電部114に接続されている。通電部114は、受信した制御信号が表すモータ回転数の目標値Rと、受信したモータ回転数信号が表すモータ回転数の検出値Rmとに基づき、モータ12を通電駆動する。この通電駆動においては、第一実施形態と同様、実際のモータ回転数たる検出値Rmが目標値Rと一致するようにインバータ回路115の各スイッチング素子をオンオフする。
ここで、第二実施形態によるモータ制御装置200の全体作動を説明する。
制御回路210は、バルブタイミングの保持を決定すると、クランク回転数の検出値Rcrに応じてモータ回転数の目標値Rを増減する。そのため、実際のクランク回転数たる検出値Rcrの変動に合わせてモータ回転数の目標値Rが変動し、さらには通電部114により目標値Rと一致させられる実際のモータ回転数もまた、検出値Rcrの変動に合わせて変動する。これにより、スプロケット32に対するモータ軸14の相対回転が抑制されるので、バルブタイミングが保持される。
一方、制御回路210は、バルブタイミングの変化を決定すると、その変化に必要な目標値Rを設定する。すると、通電部114により実際のモータ回転数が目標値Rに向かって変化するため、スプロケット32に対しモータ軸14が相対回転してバルブタイミングが変化する。
以上説明した第二実施形態によると、モータ回転数の目標値Rを表す制御信号の周波数について、時間軸上で大きな自由度をもって設定することができる。そのため、周波数で表される目標値Rは、制限された信号電圧により表される従来技術の目標値に比べ、高い分解能を実現できる。したがって、バルブタイミングの保持時には、高い分解能をもって表される目標値Rに合わせてモータ回転数を変化させることができるので、クランク回転数に対するモータ回転数の追従性が向上する。かかる追従性の向上により、バルブタイミングの保持精度が確保される。
さらに第二実施形態によると、制御回路210から駆動回路220に与えられる制御信号は、クランク回転数信号を用いて設定されたモータ回転数の目標値Rを表している。駆動回路220は、そのような制御信号に従ってモータ12を通電駆動するので、エンジンの運転状況に応じた緻密なバルブタイミング調整が可能となる。
またさらに第二実施形態の駆動回路220は、バルブタイミングの変化時に保持時と同じ方法でモータ12を通電駆動できるので、比較的簡素な構成となる。
加えて第二実施形態では、制御回路210から駆動回路220にクランク回転数信号を送信する信号線を省くことができるので、ノイズによる影響が軽減されると共にコストが低減される。
(第三実施形態)
本発明の第三実施形態によるバルブタイミング調整装置のモータ制御装置250を図10に示す。第三実施形態は第二実施形態の変形例であり、第二実施形態と実質的に同一の構成部分には同一符号を付す。
第三実施形態の制御回路260は、第二実施形態と同様にして求めたモータ回転数の目標値Rから、当該目標値Rの絶対値|R|を表す第一制御信号と、当該目標値Rの符号+/−を表す即ち目標のモータ回転方向を表す第二制御信号とを生成する。ここで第一制御信号は、目標値Rの絶対値|R|に比例する周波数の信号とされ、第二制御信号は、目標値Rの符号+/−を電圧(例えばその正負)で表す信号とされる。
第三実施形態の駆動回路270には、制御信号を受信する通電部114の代わりに、第一制御信号及び第二制御信号を受信する通電部272が設けられている。また、駆動回路270と制御回路260との間には、信号線118がなく、その代わりに信号線274,275が介装されている。信号線274は、制御回路260から通電部272へ第一制御信号を送信する経路であり、信号線275は、制御回路260から通電部272へ第二制御信号を送信する経路である。
通電手段としての通電部272は、信号線274,275と、モータ12の回転数センサ18及び端子23u,23v,23wとに接続されている。通電部272は、受信した第一制御信号が表すモータ回転数の目標値Rの絶対値|R|と、受信した第二制御信号が表す目標値Rの符号+/−と、受信したモータ回転数信号が表すモータ回転数の検出値Rmとに基づきモータ12への通電を実施する。本実施形態の通電部272は、第一実施形態の通電部114と同様なインバータ回路115を備えている。かかる通電部272では、絶対値|R|及び符号+/−から割り出される目標値Rに実際のモータ回転数たる検出値Rmが一致するようにインバータ回路115の各スイッチング素子をオンオフしてモータ12を通電駆動する。
以上説明した第三実施形態では、第二実施形態と同様な原理により、バルブタイミングの保持精度が確保されると共に、駆動回路270の構成が簡素化される。
しかも第三実施形態によると、第一制御信号により表される目標値Rの絶対値|R|は、符号の付いた目標値Rを一信号で表す場合に比べ、分解能の高い値となる。そのため、バルブタイミングの変化時においても、高い分解能をもって表される絶対値|R|に基づきモータ回転数を変化させることができるので、バルブタイミングを高精度に調整することができる。
(第四実施形態)
本発明の第四実施形態によるバルブタイミング調整装置のモータ制御装置300を図11に示す。第四実施形態は第二実施形態の変形例であり、第二実施形態と実質的に同一の構成部分には同一符号を付す。
第四実施形態の制御回路310は、バルブタイミングを保持するか変化させるかの決定に従い、モード指令信号を生成する。このモード指令信号の電圧は、バルブタイミングの保持が決定されたとき保持モードを表す値に、バルブタイミングの変化が決定されたとき変化モードを表す値に設定される。さらに制御回路310は、バルブタイミングの変化を決定したとき、第二実施形態と同様にして目標値Rを設定し、図12に示す如き目標値Rに比例した電圧の制御信号を生成する。尚、本実施形態の制御回路310においてバルブタイミングの保持を決定したときには、制御信号を生成する必要はないが、例えば数値が0等の目標値Rを表す制御信号を生成するようにしてもよい。
図11に示すように第四実施形態の駆動回路320には、通電部114が設けられず、その代わりに、選択部322、保持通電部324及び変化通電部326が設けられている。駆動回路320と制御回路310との間には、信号線118に加え、信号線328,329が介装されている。信号線328は、制御回路310から選択部322へモード指令信号を送信する経路である。信号線329は、制御回路310が受信したクランク回転数信号を制御回路310から保持通電部324へ送信する経路である。制御信号を伝播する信号線118の反制御回路側端は変化通電部326に接続されており、制御信号は制御回路310から変化通電部326へと送信される。
選択手段としての選択部322は、信号線328と、保持通電部324及び変化通電部326とに接続されている。選択部322は、保持モード及び変化モードのうち受信したモード指令信号が表すモードを選択する。保持モードを選択したとき選択部322は保持通電部324を駆動し、変化モードを選択したとき選択部322は変化通電部326を駆動する。
保持手段としての保持通電部324は、信号線329と、モータ12の回転数センサ18及び端子23u,23v,23wとに接続されている。保持通電部324は、選択部322により駆動されるとき、受信したクランク回転数信号が表すクランク回転数の検出値Rcrと、受信したモータ回転数信号が表すモータ回転数の検出値Rmとに基づき、モータ12への通電を実施する。本実施形態の保持通電部324は、第一実施形態の通電部114と同様なインバータ回路115を備えている。かかる保持通電部324では、クランク回転数の検出値Rcrに比例する値(本実施形態では比例係数1/2)をモータ回転数の目標値Rとして設定し、実際のモータ回転数たる検出値Rmが目標値Rと一致するようにインバータ回路115の各スイッチング素子をオンオフしてモータ12を通電駆動する。
変化手段としての変化通電部326は、信号線118と、モータ12の回転数センサ18及び端子23u,23v,23wとに接続されている。変化通電部326は、選択部322により駆動されるとき、受信した制御信号が表すモータ回転数の目標値Rと、受信したモータ回転数信号が表すモータ回転数の検出値Rmとに基づき、モータ12への通電を実施する。本実施形態の変化通電部326は、保持通電部324とインバータ回路115を共有しており、実際のモータ回転数たる検出値Rmが目標値Rと一致するようにインバータ回路115の各スイッチング素子をオンオフしてモータ12を通電駆動する。
ここで、第四実施形態によるモータ制御装置300の全体作動を説明する。
制御回路310がバルブタイミングの保持を決定すると、選択部322により保持通電部324が駆動される。このとき、保持通電部324はクランク回転数の検出値Rcrに比例する値をモータ回転数の目標値Rとして用いるので、保持通電部324により目標値Rと一致させられる実際のモータ回転数は検出値Rcrの変動に合わせて変動する。これにより、スプロケット32に対するモータ軸14の相対回転が抑制されるので、バルブタイミングが保持される。
一方、制御回路310がバルブタイミングの変化を決定すると、バルブタイミングの変化に必要な目標値Rが制御回路310により設定され、選択部322が駆動する変化通電部326により実際のモータ回転数が目標値Rに向かって変化する。これにより、スプロケット32に対しモータ軸14が相対回転してバルブタイミングが変化する。
以上説明した第四実施形態によると、クランク回転数信号が表すクランク回転数の検出値Rcrについて、それよりも変化幅の大きなモータ回転数の目標値を一制御信号で表している従来技術の当該目標値に比べ、高い分解能を実現できる。そのため、バルブタイミングを保持するときには、高い分解能をもって表されるクランク回転数の検出値Rcrに合わせてモータ回転数を変化させることができるので、クランク回転数に対するモータ回転数の追従性が向上する。かかる追従性の向上により、バルブタイミングの保持精度が確保される。
しかも第四実施形態の駆動回路320は、バルブタイミングを保持するときクランク回転数信号に従う通電をモータ12に対して実施する一方、バルブタイミングを変化させるとき制御信号に従う通電をモータ12に対して実施する。そのため、バルブタイミングの保持時には上記保持精度の確保を達成しつつ、バルブタイミングの変化時にはエンジンの運転状況を反映した変化を確実に実現することができる。
加えて第四実施形態によると、図12に示すように制御信号の電圧がその全範囲Waでモータ回転数の目標値Rに対し比例している。そのような制御信号が表す目標値Rは、所定範囲の電圧が一目標値に対応する制御信号を用いた場合の目標値に比べ、高い分解能を実現できる。そのため、バルブタイミングの変化時においても、高い分解能をもって表される目標値Rに基づきモータ回転数を変化させることができるので、バルブタイミングを高精度に調整することができる。
(第五実施形態)
本発明の第五実施形態によるバルブタイミング調整装置のモータ制御装置350を図13に示す。第五実施形態は第四実施形態の変形例であり、第四実施形態と実質的に同一の構成部分には同一符号を付す。
第五実施形態の制御回路360は、バルブタイミングの変化を決定したとき、第二実施形態と同様にして求めたモータ回転数の目標値Rから、当該目標値Rの絶対値|R|を表す第一制御信号と、当該目標値Rの符号+/−を表す第二制御信号とを生成する。ここで第一制御信号は、絶対値|R|に比例した電圧の信号とされ、第二制御信号は、目標値Rの符号+/−を電圧の正負で表す信号とされる。
第五実施形態の駆動回路370には、制御信号を受信する変化通電部326の代わりに、第一制御信号及び第二制御信号を受信する変化通電部372が設けられている。また、駆動回路370と制御回路360との間には、信号線118がなく、その代わりに信号線374,375が介装されている。信号線374は、制御回路360から変化通電部372へ第一制御信号を送信する経路であり、信号線375は、制御回路360から変化通電部372へ第二制御信号を送信する経路である。
変化手段としての変化通電部372は、選択部322と、信号線374,375と、モータ12の回転数センサ18及び端子23u,23v,23wとに接続されている。変化通電部372は、変化モードを選択した選択部322によって駆動されるとき、受信した第一制御信号が表すモータ回転数の目標値Rの絶対値|R|と、受信した第二制御信号が表す目標値Rの符号+/−と、受信したモータ回転数信号が表すモータ回転数の検出値Rmとに基づきモータ12への通電を実施する。本実施形態の変化通電部372は、保持通電部324とインバータ回路115を共有している。かかる変化通電部372では、絶対値|R|及び符号+/−から割り出される目標値Rに実際のモータ回転数たる検出値Rmが一致するようにインバータ回路115の各スイッチング素子をオンオフしてモータ12を通電駆動する。
以上説明した第五実施形態では、第四実施形態と同様な原理により、バルブタイミングの保持精度が確保されると共に、エンジンの運転状況を反映したバルブタイミングの変化が確実に実現される。
しかも第五実施形態によると、第一制御信号により表される目標値Rの絶対値|R|は、符号の付いた目標値Rを一信号で表す場合に比べ、分解能の高い値となる。そのため、バルブタイミングの変化時においても、高い分解能をもって表される絶対値|R|に基づきモータ回転数を変化させることができるので、バルブタイミングを高精度に調整することができる。
(第六実施形態)
本発明の第六実施形態によるバルブタイミング調整装置のモータ制御装置400を図14に示す。第六実施形態は第四実施形態の変形例であり、第四実施形態と実質的に同一の構成部分には同一符号を付す。
第六実施形態の制御回路410は、モード指令信号を生成しない。さらに制御回路410は、バルブタイミングの保持を決定したときモータ回転数の目標値Rを実質的に0とする一方で、バルブタイミングの変化を決定したとき第二実施形態と同様にして目標値Rを設定する。そして制御回路410は、図15に示すように数値が実質的に0の目標値Rに対して所定範囲Wcの電圧が対応し、数値が0以外の目標値Rに対して電圧が比例する制御信号を生成する。
図14に示すように第六実施形態の駆動回路420には、モード指令信号を受信する選択部322の代わりに、制御信号を受信する選択部422が設けられている。また、駆動回路420と制御回路410との間には信号線328がなく、その代わりに、駆動回路420内で信号線118から分岐する内部信号線424が設けられている。信号線118及び内部信号線424は共同して、制御回路410から選択部422へ制御信号を送信する経路を構成している。
選択手段としての選択部422は、内部信号線424と、保持通電部324及び変化通電部326とに接続されている。選択部422は、受信した制御信号が表すモータ回転数の目標値Rが実質的に0となるとき保持モードを選択して保持通電部324を駆動し、目標値Rが0とならないとき変化モードを選択して変化通電部326を駆動する。
以上説明した第六実施形態では、第四実施形態と同様な原理により、バルブタイミングの保持精度を確保しつつ、エンジンの運転状況を反映したバルブタイミングの変化を確実に実現することができる。
しかも第六実施形態によると、制御回路410から駆動回路420にモード指令信号を送信する長い信号線の代わりに、制御信号を送信する信号線118から駆動回路420内で分岐した短い内部信号線424を用いるので、ノイズによる影響が軽減されると共にコストが低減される。
(第七実施形態)
本発明の第七実施形態によるバルブタイミング調整装置のモータ制御装置450を図16に示す。第七実施形態は第六実施形態の変形例であり、第六実施形態と実質的に同一の構成部分には同一符号を付す。
第七実施形態の制御回路460は、第六実施形態と同様にして求めた目標値Rから、当該目標値Rの絶対値|R|を表す第一制御信号と、当該目標値Rの符号+/−を表す第二制御信号とを生成する。ここで第一制御信号は、数値が0の絶対値|R|に対して所定範囲の電圧が対応し、数値が0以外の絶対値|R|に対して電圧が比例するように生成される。また、第二制御信号は、目標値Rの符号+/−を電圧で表すように生成される。
第七実施形態の駆動回路470には、制御信号を受信する選択部422の代わりに、第一制御信号を受信する選択部472が設けられている。また、駆動回路470には、制御信号を受信する変化通電部326の代わりに、第一制御信号及び第二制御信号を受信する変化通電部474が設けられている。またさらに、駆動回路470と制御回路460との間には信号線118及び内部信号線424がなく、その代わりに信号線476,477及び内部信号線478が設けられている。信号線476は、制御回路460から変化通電部474へ第一制御信号を送信する経路であり、信号線477は、制御回路460から変化通電部474へ第二制御信号を送信する経路である。内部信号線478は駆動回路470内で信号線476から分岐しており、信号線476と共同して制御回路460から選択部472へ第一制御信号を送信する経路を構成している。
選択手段としての選択部472は、内部信号線478と、保持通電部324及び変化通電部474とに接続されている。選択部472は、受信した制御信号が表すモータ回転数の目標値Rの絶対値|R|が実質的に0となるとき保持モードを選択して保持通電部324を駆動し、絶対値|R|が0とならないとき変化モードを選択して変化通電部474を駆動する。
変化手段としての変化通電部474は、信号線476,477と、モータ12の回転数センサ18及び端子23u,23v,23wとに接続されている。変化通電部474は、選択部472により駆動されるとき、受信した第一制御信号が表すモータ回転数の目標値Rの絶対値|R|と、受信した第二制御信号が表す目標値Rの符号+/−と、受信したモータ回転数信号が表すモータ回転数の検出値Rmとに基づきモータ12への通電を実施する。本実施形態の変化通電部474は、保持通電部324とインバータ回路115を共有している。かかる変化通電部474では、絶対値|R|及び符号+/−から割り出される目標値Rに実際のモータ回転数たる検出値Rmが一致するようにインバータ回路115の各スイッチング素子をオンオフしてモータ12を通電駆動する。
以上説明した第七実施形態では、第六実施形態と同様に、バルブタイミングの保持精度を確保しつつ、エンジンの運転状況を反映したバルブタイミングの変化を確実に実現することができる。
しかも第七実施形態によると、第一制御信号により表される目標値Rの絶対値|R|は、符号の付いた目標値Rを一信号で表す場合に比べ、分解能の高い値となる。そのため、バルブタイミングの変化時において、高い分解能をもって表される絶対値|R|に基づきモータ回転数を変化させることができるので、バルブタイミングを高精度に調整することができる。
(第八実施形態)
本発明の第八実施形態によるバルブタイミング調整装置のモータ制御装置500を図17に示す。第八実施形態は第四実施形態の変形例であり、第四実施形態と実質的に同一の構成部分には同一符号を付す。
第八実施形態の制御回路510は、バルブタイミングの変化を決定したとき、モータ回転数の目標値Rではなく、モータ12の負荷電流(以下、モータ電流という)の目標値I及び目標のモータ回転方向(以下、目標回転方向という)Dを表す制御信号を生成する。具体的に制御回路510は、第二実施形態と同様にして求めたモータ回転数の目標値Rを実現するのに必要なモータ電流の目標値I並びに目標回転方向Dを、クランク回転数の検出値Rcr又はカム回転数Rcaや油温、電源電圧等の環境変数を考慮して設定する。本実施形態の制御回路510は、環境変数に応じて定められた目標値Rと目標値I及び目標回転方向Dとの相関を予めメモリに記憶しており、その相関に従って目標値I及び目標回転方向Dを求めることができる。こうして設定されたモータ電流の目標値I及び目標回転方向Dを表す制御信号を、制御回路510は生成する。ここで制御信号は、図18に示すように、目標回転方向Dが逆転方向のときの目標値Iに比例する電圧範囲W1と、目標回転方向Dが正転方向のときの目標値Iに比例する電圧範囲W2とを発現するように生成される。尚、本実施形態の制御回路510においてバルブタイミングの保持を決定したときには、制御信号を生成する必要はないが、例えば数値が0等の目標値Iを表す制御信号を生成するようにしてもよい。
図17に示すように第八実施形態の駆動回路520には、モータ電流を検出する電流計522が設けられると共に、モータ回転数の目標値Rを利用する変化通電部326の代わりに、モータ電流の目標値I及び目標回転方向Dを利用する変化通電部524が設けられている。
電流計522は、例えば保持通電部324と変化通電部524とが共有するインバータ回路115の信号線に接続され、モータ電流の検出値Imを表すモータ電流信号を生成する。尚、電流計522については、駆動回路520ではなくモータ12に設けて、巻線22等に接続するようにしてもよい。
変化手段としての変化通電部524は、制御信号を伝播する信号線118を介して制御回路510に接続されている。また、変化通電部524は、選択部322と、電流計522と、モータ12の端子23u,23v,23wとに接続されている。変化通電部326は、選択部322により駆動されるとき、受信した制御信号が表すモータ電流の目標値I及び目標回転方向Dと、受信したモータ電流信号が表すモータ電流の検出値Imとに基づき、モータ12への通電を実施する。本実施形態の変化通電部524は、実際のモータ電流である検出値Imが目標値Iと一致するように且つ実際のモータ回転方向が目標回転方向Dと一致するように、インバータ回路115の各スイッチング素子をオンオフしてモータ12を通電駆動する。
このような第八実施形態のモータ制御装置500では、制御回路510がバルブタイミングの変化を決定すると、バルブタイミングの変化に必要なモータ電流の目標値Iが制御回路310により設定され、選択部322が駆動する変化通電部524により実際のモータ電流が目標値Iに向かって変化する。これにより、スプロケット32に対しモータ軸14が相対回転してバルブタイミングが変化する。
以上説明した第八実施形態によると、第四実施形態と同様な原理により、バルブタイミングの保持精度を確保しつつ、エンジンの運転状況を反映したバルブタイミングの変化を確実に実現することができる。
尚、第五〜第七実施形態の制御回路360,410,460において、モータ回転数の目標値Rの代わりに、第八実施形態の制御回路510と同様なモータ電流の目標値I及び目標回転方向Dを設定するようにしてもよい。但し、第五実施形態の場合には、バルブタイミングの変化を決定した制御回路360によって、目標値Iに比例する電圧の第一制御信号と、目標回転方向Dを電圧(例えばその正負)で表す第二制御信号とを生成する。第六及び第七実施形態の場合、制御回路410,460によって、バルブタイミングの保持の決定時には目標値Iを0とし、バルブタイミングの変化の決定時には目標値I及び目標回転方向Dを適宜設定する。そして第六実施形態の場合には、制御回路410によって、図19に示す如く数値が0の目標値Iに対して所定範囲Wcの電圧が対応し且つ目標回転方向Dが正転方向及び逆転方向のときの数値が0以外の目標値Iに対して電圧が比例する制御信号を生成し、選択部422によって、目標値Iが0であるか否かに応じたモード選択を行う。また、第七実施形態の場合には、制御回路460によって、数値が0の目標値Iに対して所定範囲の電圧が対応し且つ数値が0以外の目標値Iに対して電圧が比例する第一制御信号と、目標回転方向Dを電圧で表す第二制御信号とを生成し、選択部472によって、目標値Iが0であるか否かに応じたモード選択を行う。このように第五〜第七実施形態の制御回路360,410,460において目標値I及び目標回転方向Dを設定する場合、対応する実施形態の変化通電部372,326,474において、第八実施形態の変化通電部524と同様にモータ電流の目標値I及び検出値Imと目標回転方向Dを用いて、モータ12を通電駆動する。
また、第一及び第四〜第八実施形態では、制御回路150,310,360,410,460,510により、モータ回転数の目標変化量ΔR、モータ回転数の目標値R、当該目標値の絶対値|R|若しくはモータ電流の目標値Iを電圧で表す制御信号又は第一制御信号を生成している。これに対し、第一及び第四〜第八実施形態の制御回路150,310,360,410,460,510において、目標変化量ΔR、目標値R、絶対値|R|若しくは目標値Iをデューティ比や周波数で表す制御信号又は第一制御信号を生成するようにしてもよい。例えば、第一実施形態の制御回路150では、数値が0の目標変化量ΔRに対して所定範囲のデューティ比が対応し、数値が0以外の目標変化量ΔRに対してデューティ比が比例する制御信号を生成することができる。
さらに第一及び第四〜第八実施形態では、制御回路150,310,360,410,460,510を経由してクランク回転数信号を駆動回路110,320,370,420,470,520に与えている。これに対し、制御回路150,310,360,410,460,510を経由しないで、駆動回路110,320,370,420,470,520に直接にクランク回転数信号を与えるようにしてもよい。あるいは、駆動回路110,320,370,420,470,520を経由して、クランク回転数信号を制御回路150,310,360,410,460,510に与えるようにしてもよい。
またさらに第一〜第八実施形態では、クランク回転数を検出する回転数センサ160の検出信号をエンジン回転数信号として用いている。これに対し、カム回転数を検出する回転数センサ170の検出信号や、エンジンの点火装置を駆動するための点火信号、エンジンの燃料噴射装置を駆動するための燃料噴射信号をエンジン回転数信号として用いてもよい。
第一実施形態によるモータ制御装置を示すブロック図である。 第一実施形態によるバルブタイミング調整装置を示す断面図である。 図2のIII−III線断面図である。 図2のIV−IV線断面図である。 第一実施形態によるバルブタイミング調整装置の要部を示す回路図である。 第一実施形態によるクランク回転数信号を示す特性図である。 第一実施形態による制御信号について説明するための特性図である。 第二実施形態によるモータ制御装置を示すブロック図である。 第二実施形態による制御信号について説明するための特性図である。 第三実施形態によるモータ制御装置を示すブロック図である。 第四実施形態によるモータ制御装置を示すブロック図である。 第四実施形態による制御信号について説明するための特性図である。 第五実施形態によるモータ制御装置を示すブロック図である。 第六実施形態によるモータ制御装置を示すブロック図である。 第六実施形態による制御信号について説明するための特性図である。 第七実施形態によるモータ制御装置を示すブロック図である。 第八実施形態によるモータ制御装置を示すブロック図である。 第八実施形態による制御信号について説明するための特性図である。 第六実施形態の変形例による制御信号について説明するための特性図である。
符号の説明
10 バルブタイミング調整装置、11 カム軸、12 モータ、14 モータ軸、18,160,170 回転数センサ、30 位相変化機構、100,200,250,300,350,400,450,500 モータ制御装置、110,220,270,320,370,420,470,520 駆動回路、112 設定部(設定手段)、114,272 通電部(通電手段)、115 インバータ回路、118,119,274,275,328,329,374,375,476,477 信号線、150,210,260,310,360,410,460,510 制御回路、322,422,472 選択部(選択手段)、324 保持通電部(保持手段)、326,372,474,524 変化通電部(変化手段)、424,478 内部信号線、522 電流計

Claims (18)

  1. モータの回転トルクを利用してエンジンのバルブタイミングを調整するバルブタイミング調整装置であって、
    エンジン回転数信号並びに制御回路が生成した制御信号を受信し、前記エンジン回転数信号が表すエンジン回転数と前記制御信号が表すモータ回転数の目標変化量とに基づき前記モータを通電駆動する駆動回路を、
    備えることを特徴とするバルブタイミング調整装置。
  2. 前記駆動回路は、前記エンジン回転数に比例する値と前記目標変化量との和をモータ回転数の目標値として設定する設定手段、並びに実際のモータ回転数を前記目標値に一致させる通電を前記モータに対して実施する通電手段を有することを特徴とする請求項1に記載のバルブタイミング調整装置。
  3. モータの回転トルクを利用してエンジンのバルブタイミングを調整するバルブタイミング調整装置であって、
    エンジン回転数信号並びに制御回路が生成した制御信号を受信する駆動回路を備えており、
    前記駆動回路は、前記バルブタイミングを保持する保持モード又は前記バルブタイミングを変化させる変化モードのいずれか一方を選択する選択手段、前記保持モードが選択されるとき、前記エンジン回転数信号が表すエンジン回転数に基づき前記モータを通電駆動することで前記バルブタイミングを保持する保持手段、並びに前記変化モードが選択されるとき、前記制御信号に従って前記モータを通電駆動することで前記バルブタイミングを変化させる変化手段を有することを特徴とするバルブタイミング調整装置。
  4. 前記変化手段は、前記制御信号が表すモータ回転数の目標値に基づき前記モータを通電駆動することを特徴とする請求項3に記載のバルブタイミング調整装置。
  5. 前記変化手段は、前記制御信号が表すモータ電流の目標値及びモータ回転方向に基づき前記モータを通電駆動することを特徴とする請求項3に記載のバルブタイミング調整装置。
  6. 前記駆動回路は、二つの前記制御信号として第一制御信号及び第二制御信号を受信し、
    前記変化手段は、前記第一制御信号が表すモータ電流の目標値と前記第二制御信号が表すモータ回転方向とに基づき前記モータを通電駆動することを特徴とする請求項3に記載のバルブタイミング調整装置。
  7. 前記選択手段は、前記目標値が実質的に0となるとき前記保持モードを選択し、前記目標値が0とならないとき前記変化モードを選択することを特徴とする請求項4〜6のいずれか一項に記載のバルブタイミング調整装置。
  8. 前記駆動回路は、二つの前記制御信号として第一制御信号及び第二制御信号を受信し、
    前記変化手段は、前記第一制御信号が表すモータ回転数の目標値の絶対値と前記第二制御信号が表すモータ回転数の目標値の符号とに基づき前記モータを通電駆動することを特徴とする請求項3に記載のバルブタイミング調整装置。
  9. 前記選択手段は、前記絶対値が実質的に0となるとき前記保持モードを選択し、前記絶対値が0とならないとき前記変化モードを選択することを特徴とする請求項8に記載のバルブタイミング調整装置。
  10. 前記駆動回路は、前記制御回路が生成したモード指令信号を受信し、
    前記選択手段は、前記保持モード及び前記変化モードのうち前記モード指令信号が表すモードを選択することを特徴とする請求項4〜6,8のいずれか一項に記載のバルブタイミング調整装置。
  11. 前記エンジン回転数信号は、前記エンジン回転数に比例した周波数の信号であることを特徴とする請求項1〜10のいずれか一項に記載のバルブタイミング調整装置。
  12. モータの回転トルクを利用してエンジンのバルブタイミングを調整するバルブタイミング調整装置であって、
    制御回路が生成した制御信号を受信し、前記制御信号が周波数により表すモータ回転数の目標値に基づき前記モータを通電駆動する駆動回路を、
    備えることを特徴とするバルブタイミング調整装置。
  13. 前記制御信号は、前記目標値に比例した周波数の信号であることを特徴とする請求項12に記載のバルブタイミング調整装置。
  14. モータの回転トルクを利用してエンジンのバルブタイミングを調整するバルブタイミング調整装置であって、
    制御回路が生成した第一制御信号及び第二制御信号を受信し、前記第一制御信号が周波数により表すモータ回転数の目標値の絶対値と前記第二制御信号が表すモータ回転数の目標値の符号とに基づき前記モータを通電駆動する駆動回路を、
    備えることを特徴とするバルブタイミング調整装置。
  15. 前記第一制御信号は、前記絶対値に比例した周波数の信号であることを特徴とする請求項14に記載のバルブタイミング調整装置。
  16. 前記目標値は、エンジン回転数を表すエンジン回転数信号を用いて前記制御回路により設定される値であることを特徴とする請求項12〜15のいずれか一項に記載のバルブタイミング調整装置。
  17. 前記エンジンのクランク軸の回転数を検出するセンサの検出信号、前記エンジンのカム軸の回転数を検出するセンサの検出信号、前記エンジンの点火装置を駆動するための点火信号、若しくは前記エンジンの燃料噴射装置を駆動するための燃料噴射信号のいずれか一つを前記エンジン回転数信号として用いることを特徴とする請求項1〜11,16のいずれか一項に記載のバルブタイミング調整装置。
  18. 前記エンジンを制御する前記制御回路を備えることを特徴とする請求項1〜17のいずれか一項に記載のバルブタイミング調整装置。
JP2003355279A 2003-10-15 2003-10-15 バルブタイミング調整装置 Expired - Lifetime JP4305953B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003355279A JP4305953B2 (ja) 2003-10-15 2003-10-15 バルブタイミング調整装置
US10/961,038 US7146944B2 (en) 2003-10-15 2004-10-12 Valve timing controller
DE102004050114.9A DE102004050114B4 (de) 2003-10-15 2004-10-14 Ventilzeitsteuerungsvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003355279A JP4305953B2 (ja) 2003-10-15 2003-10-15 バルブタイミング調整装置

Publications (2)

Publication Number Publication Date
JP2005120874A true JP2005120874A (ja) 2005-05-12
JP4305953B2 JP4305953B2 (ja) 2009-07-29

Family

ID=34509757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003355279A Expired - Lifetime JP4305953B2 (ja) 2003-10-15 2003-10-15 バルブタイミング調整装置

Country Status (3)

Country Link
US (1) US7146944B2 (ja)
JP (1) JP4305953B2 (ja)
DE (1) DE102004050114B4 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057455A (ja) * 2006-08-31 2008-03-13 Toyota Motor Corp 可変バルブタイミング装置
JP2009121292A (ja) * 2007-11-13 2009-06-04 Denso Corp バルブタイミング調整装置
US7739988B2 (en) 2006-08-31 2010-06-22 Toyota Jidosha Kabushiki Kaisha Variable valve timing system and method for controlling the same
US7802545B2 (en) 2006-08-25 2010-09-28 Denso Corporation Valve timing controller

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005022714A1 (de) * 2005-05-18 2006-11-23 Schaeffler Kg Vorrichtung mit einem elektrischen Nockenwellenversteller, einer Steuereinheit und einem zentralen Steuergerät
JP4779800B2 (ja) * 2006-05-23 2011-09-28 トヨタ自動車株式会社 車両およびその制御方法
JP4438781B2 (ja) * 2006-08-22 2010-03-24 株式会社デンソー バルブタイミング調整装置
JP4649386B2 (ja) * 2006-08-29 2011-03-09 トヨタ自動車株式会社 可変バルブタイミング装置
JP4668150B2 (ja) * 2006-08-31 2011-04-13 トヨタ自動車株式会社 可変バルブタイミング装置
JP4171036B2 (ja) * 2006-09-14 2008-10-22 トヨタ自動車株式会社 可変バルブタイミング装置
WO2011086693A1 (ja) * 2010-01-15 2011-07-21 トヨタ自動車 株式会社 バルブ作用角可変システム
US10294831B2 (en) * 2017-06-23 2019-05-21 Schaeffler Technologies AG & Co. KG Cam phasing assemblies with electromechanical locking control and method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613171B2 (ja) 1990-08-27 1994-02-23 近畿コンクリート工業株式会社 ケミカルプレストレストコンクリート及びその製造方法
JPH04105906U (ja) 1991-02-27 1992-09-11 株式会社アツギユニシア 内燃機関のバルブタイミング制御装置
JPH05308794A (ja) 1992-04-28 1993-11-19 Matsushita Electric Ind Co Ltd モータの異常検出回路
JP3985305B2 (ja) 1997-10-07 2007-10-03 マツダ株式会社 回転位相制御装置
EP0918142B1 (en) 1997-11-21 2003-10-15 Mazda Motor Corporation Apparatus for controlling rotational phase
JPH11324625A (ja) 1998-05-19 1999-11-26 Nissan Motor Co Ltd 内燃機関の可変動弁機構
US6012437A (en) * 1998-07-06 2000-01-11 Eaton Corporation EGR system with improved control logic
US6257186B1 (en) 1999-03-23 2001-07-10 Tcg Unitech Aktiengesellschaft Device for adjusting the phase angle of a camshaft of an internal combustion engine
DE10116707B4 (de) 2001-04-04 2017-01-19 Schaeffler Technologies AG & Co. KG Vorrichtung zur Relativverdrehung einer Nockenwelle gegenüber einer Kurbelwelle einer Brennkraftmaschine
JP4160491B2 (ja) * 2003-03-28 2008-10-01 株式会社デンソー バルブタイミング調整装置
JP4269338B2 (ja) * 2003-10-16 2009-05-27 株式会社デンソー バルブタイミング調整装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802545B2 (en) 2006-08-25 2010-09-28 Denso Corporation Valve timing controller
DE102007000442B4 (de) * 2006-08-25 2016-12-22 Denso Corporation Ventilsteuerzeiten-Steuerungsvorrichtung
JP2008057455A (ja) * 2006-08-31 2008-03-13 Toyota Motor Corp 可変バルブタイミング装置
US7739988B2 (en) 2006-08-31 2010-06-22 Toyota Jidosha Kabushiki Kaisha Variable valve timing system and method for controlling the same
JP4678350B2 (ja) * 2006-08-31 2011-04-27 トヨタ自動車株式会社 可変バルブタイミング装置
US7938088B2 (en) 2006-08-31 2011-05-10 Toyota Jidosha Kabushiki Kaisha Variable valve timing system
DE102007000472B4 (de) * 2006-08-31 2015-09-24 Toyota Jidosha Kabushiki Kaisha Variables Ventilzeitgebungssystem und Verfahren zu dessen Steuerung
JP2009121292A (ja) * 2007-11-13 2009-06-04 Denso Corp バルブタイミング調整装置
JP4506817B2 (ja) * 2007-11-13 2010-07-21 株式会社デンソー バルブタイミング調整装置

Also Published As

Publication number Publication date
DE102004050114A1 (de) 2005-05-25
US20050081808A1 (en) 2005-04-21
DE102004050114B4 (de) 2019-07-11
US7146944B2 (en) 2006-12-12
JP4305953B2 (ja) 2009-07-29

Similar Documents

Publication Publication Date Title
JP4269341B2 (ja) バルブタイミング調整装置
US8076899B2 (en) Valve timing control apparatus
JP4952653B2 (ja) バルブタイミング調整装置
JP4305953B2 (ja) バルブタイミング調整装置
JP2005133708A (ja) バルブ特性調整装置
US7377245B2 (en) Valve timing controller
JP4269169B2 (ja) 内燃機関の回転状態検出装置
JP5126028B2 (ja) バルブタイミング調整装置
JP2006191709A (ja) 基準位置認識装置
JP4269338B2 (ja) バルブタイミング調整装置
US9777605B2 (en) Motor control apparatus
JP4591366B2 (ja) 内燃機関の回転直線運動変換機構の制御装置
US7631623B2 (en) Valve timing controller
JP2013036391A (ja) 電動バルブタイミング可変装置
JP5472044B2 (ja) モータ制御装置
JP4218062B2 (ja) バルブタイミング調整装置
JP2011247391A (ja) レンジ切換制御装置
JP5578130B2 (ja) モータ駆動装置、および、それを用いたバルブタイミング調整装置
US20070277759A1 (en) Valve timing controller
JP4840613B2 (ja) 内燃機関の回転状態検出装置
JP2004350446A (ja) モータ駆動装置
JP7211302B2 (ja) バルブタイミング調整装置
JP2004350447A (ja) モータ駆動回路
JP2023058122A (ja) パルス信号生成装置
JPH04353230A (ja) 車両用モータの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090426

R150 Certificate of patent or registration of utility model

Ref document number: 4305953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term