JP2005088854A - 車両用サスペンションシステム - Google Patents

車両用サスペンションシステム Download PDF

Info

Publication number
JP2005088854A
JP2005088854A JP2003328799A JP2003328799A JP2005088854A JP 2005088854 A JP2005088854 A JP 2005088854A JP 2003328799 A JP2003328799 A JP 2003328799A JP 2003328799 A JP2003328799 A JP 2003328799A JP 2005088854 A JP2005088854 A JP 2005088854A
Authority
JP
Japan
Prior art keywords
vehicle
hydraulic
shock absorbers
piston
pistons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003328799A
Other languages
English (en)
Other versions
JP4356409B2 (ja
Inventor
Masaaki Tabata
雅朗 田畑
Kazuyuki Mizuno
和之 水野
Kazunari Kamimura
一整 上村
Koichi Morita
晃一 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003328799A priority Critical patent/JP4356409B2/ja
Publication of JP2005088854A publication Critical patent/JP2005088854A/ja
Application granted granted Critical
Publication of JP4356409B2 publication Critical patent/JP4356409B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

【課題】ショックアブソーバにおいて、発生する減衰力が大きい状態と小さい状態とを生じさせるようにする。
【解決手段】車両の前後左右のショックアブソーバ10〜16は、セントラルシリンダ38に接続される。車両のローリングが生じ、右側の前後輪のショックアブソーバ12、16の液圧が高くなり、左側の前後輪のショックアブソーバ10、16の液圧が低くなっても、制御ピストン68は動くことがない。4つのショックアブソーバ10〜16は、発生する減衰力が大きい状態とされ、ローリングが抑制される。路面入力により、前側の左右輪のショックアブソーバ10,12の液圧が高くなった場合には、制御ピストン68は移動する。それによって、ショックアブソーバ10〜16は、発生する減衰力が小さい状態とされ、左右輪の同相移動が許容される。
【選択図】図4

Description

本発明は、セントラルシリンダを備えた車両用サスペンションシステムに関するものである。
セントラルシリンダを備えた車両用サスペンションシステムの一例が特許文献1に記載されている。この特許文献1に記載の車両用サスペンションシステムは、(a)車両の車輪毎に設けられ、弾性力に応じた圧力を発生する4つの弾性力発生装置と、(b)それら4つの弾性力発生装置に接続され、(i)ハウジングと、(ii)そのハウジングに摺動可能に嵌合された第1,第2の2つのピストンと、(iii)それら2つのピストンを連結する連結ロッドとを備えたセントラルシリンダとを含む。このセントラルシリンダにおいては、第1ピストン、第2ピストンの外側が、それぞれ、左後輪、右後輪の弾性力発生装置の液圧を受ける受圧面とされ、第1ピストン、第2ピストンの内側が、それぞれ、左前輪、右前輪の弾性力発生装置の液圧を受ける受圧面とされる。例えば、車両にローリングが生じ、車両の右前輪の弾性力発生装置の圧力と右後輪の弾性力発生装置の圧力とが高くなり、左前輪の弾性力発生装置の圧力と左後輪の弾性力発生装置の圧力とが低くなった場合には、第1、第2ピストンが動かないため、4つの弾性力発生装置が互いに独立となり、車両のローリングが抑制される。
米国特許第3024037号明細書
本発明の課題は、セントラルシリンダを備えた車両用サスペンションシステムの改良である。
この課題は、請求項1に記載の発明によれば、車両用サスペンションシステムを、(a)車両の複数の車輪毎に、車輪側部材と車体側部材との間にそれぞれ設けられたショックアブソーバと、(b)それら複数のショックアブソーバの液圧をそれぞれ受ける複数の受圧面を有する1つ以上のピストンを備え、その1つ以上のピストンの作動により、前記複数のショックアブソーバのうちの少なくとも1つにおいて、発生する減衰力が大きい状態と、発生する減衰力が小さい状態とを生じさせる液圧シリンダとを含むものとすることによって解決され、請求項2に記載の発明によれば、車両用サスペンションシステムを、(a)車両の複数の車輪毎に、車輪側部材と車体側部材との間にそれぞれ設けられたショックアブソーバと、(b)それら複数のショックアブソーバの液圧をそれぞれ受ける複数の受圧面を有する1つ以上のピストンを備え、その1つ以上のピストンの作動により、少なくとも車両のローリングを抑制する液圧シリンダとを含むものとすることによって解決され、請求項3に記載の発明によれば、車両用サスペンションシステムを、(a)車両の前後左右の4つの車輪毎に、車輪側部材と車体側部材との間にそれぞれ設けられたショックアブソーバと、(b)前記車両の前側、後側のそれぞれの左右のショックアブソーバの液圧を受ける受圧面が同じ向きに、前記車両の右側、左側のそれぞれの前後のショックアブソーバの液圧を受ける受圧面が互いに反対向きに設けられた1つ以上のピストンを含む液圧シリンダとを含むことによって解決される。
請求項1に記載の車両用サスペンションシステムにおいて、セントラルシリンダとしての液圧シリンダにおいて、ショックアブソーバの作動に応じてピストンが動く場合は、ショックアブソーバにおいて、発生する減衰力が小さい状態とされ、液圧シリンダにおいてピストンが動かない場合は、ショックアブソーバにおいて発生する減衰力が大きい状態とされる。このように、液圧シリンダの作動により、複数のショックアブソーバの少なくとも1つにおいて、発生する減衰力が大きい状態と、発生する減衰力が小さい状態とを生じさせることができる。
請求項2に記載の車両用サスペンションシステムにおいて、少なくとも、車両にローリングが生じた場合にショックアブソーバにおいて発生する減衰力が大きい状態とされる。そのため、ローリングを抑制することができる。
請求項3に記載の車両用サスペンションシステムにおいては、車両にローリングが生じた場合に液圧シリンダにおいてピストンは動かないが、ピッチングが生じた場合、または、前側と後側とのいずれか一方の左右輪に路面から車輪側部材と車体側部材との間の間隔を同じように変化させる力(同相の力)が加えられた場合にはピストンが動く。ローリングが生じた場合に、ショックアブソーバにおいて発生する減衰力が大きい状態とされ、ピッチングが生じた場合、左右輪に同相の力が加わった場合に発生する減衰力が小さい状態とされる。そのため、ローリングを抑制し、ピッチングまたは左右輪の同相移動を許容することができる。
特許請求が可能な発明
以下に、本願において特許請求が可能と認識されている発明(以下、「請求可能発明」という場合がある。請求可能発明は、少なくとも、請求の範囲に記載された発明である「本発明」ないし「本願発明」を含むが、本願発明の下位概念発明や、本願発明の上位概念あるいは別概念の発明を含むこともある。)の態様をいくつか例示し、それらについて説明する。各態様は請求項と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、あくまでも請求可能発明の理解を容易にするためであり、請求可能発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載,実施例の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も、また、各項の態様から構成要素を削除した態様も、請求可能発明の一態様となり得るのである。
以下の各項のうち、(1)項〜(4)項が請求項1,2,4,5に対応し、(8)項、(6)項が請求項6,7に対応し、(9)項が請求項3に対応し、(11)項、(16)項が請求項8,9に対応する。
(1)車両の複数の車輪毎に、車輪側部材と車体側部材との間にそれぞれ設けられたショックアブソーバと、
それら複数のショックアブソーバの液圧をそれぞれ受ける複数の受圧面を有する1つ以上のピストンを備え、その1つ以上のピストンの作動により、前記複数のショックアブソーバのうちの少なくとも1つにおいて、発生する減衰力が大きい状態と小さい状態とを生じさせる液圧シリンダと
を含むことを特徴とする車両用サスペンションシステム。
本車両用サスペンションシステムにおいて、液圧シリンダに車輪毎に設けられた複数のショックアブソーバが接続される。ショックアブソーバは、車輪側部材と車体側部材との間に設けられ、ハウジングと、そのハウジングに摺動可能に嵌合されたピストンと、そのピストンに設けられ、ピストンによって仕切られた上室と下室とを連通させる絞り機能を有する連通路とを含む。上述の液圧シリンダには、ショックアブソーバの上室と下室とのいずれか一方が接続されるのであり、液圧シリンダの1つ以上のピストンの複数の受圧面に、それぞれ、ショックアブソーバの上室と下室とのいずれか一方の液圧が作用する状態で接続される。換言すれば、複数のショックアブソーバを互いに関連させた状態で接続されるのである。以下、特に区別する必要がある場合に、ショックアブソーバのピストンをアブソーバピストンと称し、液圧シリンダのピストンを制御ピストンと称することがある。また、液圧シリンダを制御シリンダあるいはセントラルシリンダと称することがある。
液圧シリンダの1つ以上の制御ピストンは、複数のショックアブソーバの液圧をそれぞれ受ける複数の受圧面を有するものであり、1つ以上のピストンの作動により、少なくとも1つのショックアブソーバにおいて、発生する減衰力が大きい状態と発生する減衰力が小さい状態とを生じさせる。少なくとも1つのショックアブソーバにおいて発生する減衰力が大きい状態とされれば、車両の姿勢の変化を抑制することができる。
液圧シリンダは、制御ピストンを1つ含むものであっても2つ以上含むものであってもよい。1つの制御ピストンは、受圧面を1つ有するものであっても受圧面を2つ有するものであっても、3つ以上有するものであってもよい。一方、2つ以上の受圧面を有する制御ピストンは、2つ以上の制御ピストンから構成されると考えることができる。いずれにしても、1つ以上の制御ピストンは複数の受圧面を有するものであり、複数の受圧面のそれぞれに、複数のショックアブソーバの上室と下室とのいずれか一方の液圧がそれぞれ作用し、それに応じて作動させられる。2つ以上の制御ピストンは、一体的に移動可能なものとしたり、別個に移動可能なものとしたりすることができる。液圧シリンダには、車両の前後左右の車輪にそれぞれ対応して設けられたショックアブソーバすべてが接続されても、前後左右のショックアブソーバのうちの少なくとも2つが接続されてもよい。車両用サスペンションシステムには、複数の液圧シリンダが設けられることもある。
液圧シリンダにおいて、1つ以上の制御ピストンが移動しない場合は、複数のショックアブソーバが別個独立にされた状態となり、1つ以上の制御ピストンが移動する場合は、複数のショックアブソーバのうちの2つ以上が実質的に連結された状態となる。
複数のショックアブソーバが別個独立にされた場合には、ショックアブソーバの各々において、車輪側部材と車体側部材との間に力が加えられると、上室と下室との間に液圧差が生じる。上室と下室とのうち液圧が高い方から低い方に向かって、アブソーバピストンに設けられた絞り機能を有する連通路を経て作動液が流れ、アブソーバピストンがハウジングに対して相対移動させられる。絞りが同じである場合には、車体側部材と車輪側部材との間に、連通路を流れる作動液の流速に応じた減衰力が発生させられる。作動液の流速は、上室と下室との間の液圧差が大きい場合は小さい場合より大きくなる。この状態が、ショックアブソーバにおいて発生する減衰力が大きい状態である。
それに対して、例えば、制御シリンダに、第1,第2の2つのショックアブソーバが接続された場合において、制御ピストンが、対向する第1,第2の2つの受圧面を有し、第1の受圧面に第1のショックアブソーバの液圧を受け、第2の受圧面に第2のショックアブソーバの液圧を受ける状態で配設されている場合には、第1のショックアブソーバの液圧が高くなり、第2のショックアブソーバの液圧が低くなると(第1の受圧面が受ける液圧に応じた力が第2の受圧面が受ける液圧に応じた力より大きくなると)、制御ピストンは移動させられる。この場合には、制御ピストンの第1の受圧面に対向する第1の液圧室の容積が増加し、第2の受圧面に対向する第2の液圧室の容積が減少する。第1のショックアブソーバの液圧室から作動液が流出し、第2のショックアブソーバに作動液が流入することになり、制御シリンダを介して、実質的に第1のショックアブソーバと第2のショックアブソーバとが連結され、これらの間で作動液の授受が行われることになる。第1のショックアブソーバの液圧室の液圧の増加が抑制され、第2のショックアブソーバの液圧室の液圧の減少が抑制されることになり、第1、第2のショックアブソーバにおいては、ショックアブソーバが別個独立にされた場合に比較して、車輪側部材と車体側部材との間に加えられる力が同じ場合の、上室と下室との間の液圧差が小さくなり、発生する減衰力が小さくなる。この状態が、ショックアブソーバにおいて発生する減衰力が小さい状態である。なお、制御ピストンは、第1のショックアブソーバの液圧が高くなると(第1の受圧面に加わる力が第2の受圧面に加わる力に対して大きくなると)移動させられるが、この場合には、少なくとも、第1のショックアブソーバにおいて、液圧室の液圧の増加が抑制されて、上室と下室との間の液圧差が小さくなり、発生する減衰力が小さくなる。
このように、発生する減衰力が大きい状態と発生する減衰力が小さい状態とを生じさせ得るようにすれば、例えば、車両の複数種類の姿勢変化のうちの1種類の姿勢変化が生じた場合に大きな減衰力が発生する状態とし、他の種類の姿勢変化が生じた場合に小さい減衰力が発生する状態とすることができる。換言すれば、大きな減衰力が要求される種類の姿勢変化が生じた場合に、発生する減衰力が大きい状態とし、減衰力が要求されないか小さな減衰力が要求される種類の姿勢変化が生じた場合に、発生する減衰力が小さい状態とすることができるのであり、姿勢変化の種類に応じた減衰力の要求を満たすことが可能となる。
また、複数のショックアブソーバの各々に減衰力制御装置を設けなくても、アブソーバピストンに設けられた絞りの形状(流路面積等)を大きな減衰力が発生するように設計しておけば、制御シリンダの作動により、発生する減衰力を小さくすることができる。
(2)車両の複数の車輪毎に、車輪側部材と車体側部材との間にそれぞれ設けられたショックアブソーバと、
それら複数のショックアブソーバの液圧をそれぞれ受ける複数の受圧面を有する1つ以上のピストンを備え、その1つ以上のピストンの作動により、少なくとも車両のローリングを抑制する液圧シリンダと
を含むことを特徴とする車両用サスペンションシステム。
通常、車両にローリングが生じた場合には大きな減衰力が要求される。したがって、ローリングが生じた場合に発生する減衰力が大きな状態とされれば、要求を満たすことができ、ローリングをより効果的に抑制することができる。
また、路面入力によって、前輪側または後輪側の左右輪に車輪側部材と車体側部材との間隔を同じ向きに変化させる力が加わった場合(ピッチ入力と称することがある)には、小さい減衰力が要求されるか、減衰力が要求されないかのいずれかである。したがって、ピッチ入力があった場合に発生する減衰力が小さい状態とされれば、ピッチ入力に起因する左右輪の同相移動が許容され、車輪の接地性の低下を抑制し、乗り心地の低下を抑制することができる。
さらに、路面入力によって、1輪のみに上下方向の力が加わった場合に、発生する減衰力が小さい状態とされれば、その1輪の上下方向移動が許容される。したがって、1輪のみに上下方向の力が加わった場合にも乗り心地の低下を抑制することができる。
対角車輪に同様に上下方向の力が加わった場合に、発生する減衰力が小さい状態とされれば、対角車輪の同相移動が許容され、車輪の接地性の低下を抑制することができる。
(3)前記液圧シリンダと前記複数のショックアブソーバとをそれぞれ接続する複数の個別通路と、
それら複数の個別通路にそれぞれ設けられた流路抵抗調整装置と
を含む(1)項または(2)項に記載の車両用サスペンションシステム。
複数のショックアブソーバと1つの液圧シリンダとが、複数のショックアブソーバの液圧室の液圧が、それぞれ、制御ピストンの、それに対応する受圧面に加えられる状態で、個別通路によって接続される。個別通路の各々には流路抵抗調整装置が設けられる。
流路抵抗調整装置によれば、ショックアブソーバにおける液圧変化が液圧シリンダに伝達され難くすることができ、ショックアブソーバにおける液圧変化に対する液圧シリンダの応答性を低くすることができる。
また、流路抵抗調整装置によれば、ショックアブソーバの高周波数の液圧変化が吸収されるため、高周波の液圧変化を伝達し難くすることもできる。
さらに、個別通路の長さはショックアブソーバの各々と液圧シリンダとの間の相対位置関係で決まるが、複数の個別通路は、それぞれ同じ長さになるとは限らない。個別通路の長さが異なる場合には、車体の姿勢変化に伴う複数のショックアブソーバにおける液圧変化が1つの液圧シリンダに同時に伝達されず、ばらつきが生じる。そこで、個別通路の長さに基づいて流路抵抗調整装置を設計すれば、ショックアブソーバ各々における液圧変化が、ほぼ同時に液圧シリンダに伝達されるようにすることができる。
流路抵抗調整装置は、例えば、オリフィス、ノズル等の絞りを含むものとすることができる。絞りは固定絞りであっても、可変絞りであってもよい。また、絞りの形状は、その絞りの程度(主通路の流路面積に対する絞り部の流路面積の比率)、ノズルの長さ等で決まる。
(4)前記複数のショックアブソーバが、それぞれ、ハウジングと、そのハウジングに摺動可能に嵌合されたピストンとを含み、前記ハウジングが前記車輪側部材と前記車体側部材とのいずれか一方に取り付けられ、前記ピストンのピストンロッドがいずれか他方に取り付けられたものであり、前記ピストンによって仕切られた2つの液圧室のうち、前記車輪側部材と前記車体側部材との間の間隔が大きくなった場合に液圧が高くなる液圧室がそれぞれ前記液圧シリンダに接続された(1)項ないし(3)項のいずれか1つに記載の車両用サスペンションシステム。
ショックアブソーバは、ハウジングと、そのハウジングに摺動可能に嵌合されたピストンとを含むものであり、ハウジングが車輪側部材と車体側部材とのいずれか一方に取り付けられ、ピストンのピストンロッドがいずれか他方に取り付けられる。ショックアブソーバのアブソーバピストンで仕切られた上室と下室とのいずれか一方においては、車輪側部材と車体側部材との間の間隔が大きくなった場合に容積が小さくなり、液圧が高くなる。車両においては、基準姿勢から、車輪側部材と車体側部材との間の間隔が大きくなった場合に、間隔が小さくなった場合より、アブソーバピストンのハウジングに対する相対速度に応じた減衰力の変化が大きくなるように設計されるのが普通である。したがって、車輪側部材と車体側部材との間の間隔が大きくなった場合に、液圧が高くなる液圧室の液圧がピストンの受圧面に作用するようにすれば、減衰力の制御の幅を大きくすることができ、有効である。
(5)前記複数のショックアブソーバが、それぞれ、ハウジングと、そのハウジングに摺動可能に嵌合されたピストンとを含み、前記ハウジングが前記車輪側部材と前記車体側部材とのいずれか一方に取り付けられ、前記ピストンのピストンロッドがいずれか他方に取り付けられたものであり、前記ピストンによって仕切られた2つの液圧室のうち、前記車輪側部材と前記車体側部材との間の間隔が大きくなった場合に液圧が低くなる液圧室がそれぞれ前記液圧シリンダに接続された(1)項ないし(3)項のいずれか1つに記載の車両用サスペンションシステム。
本項に記載の車両用サスペンションシステムにおいては、車輪側部材と車体側部材との間の間隔が大きくなった場合に容積が大きくなり、液圧が低くなる液圧室(車輪側部材と車体側部材との間の間隔が小さくなった場合に容積が小さくなり、液圧が高くなる液圧室)が液圧シリンダに接続される。
(6)前記ショックアブソーバが、車両の前後左右の4つの車輪毎に、車輪側部材と車体側部材との間にそれぞれ設けられ、前記液圧シリンダが、前記1つ以上のピストンの作動により、前記車両の互いに対角位置にある車輪の同相移動を許容する(1)項ないし(5)項いずれか1つに記載の車両用サスペンションシステム。
例えば、路面入力等により、車両の対角位置にある車輪について、車輪側部材と車体側部材との間の間隔を同じ向きに変化させる力が加わった場合(上下方向の同じ向きの力が加わった場合)には、それら対角車輪のショックアブソーバの液圧室の液圧は同様に変化する。それらの液圧の変化により、制御ピストンが移動させられれば、複数のショックアブソーバのそれぞれにおいて、発生する減衰力が小さい状態とされるのであり、対角車輪の同相移動が許容される。
(7)前記ショックアブソーバが、車両の前後左右の4つの車輪毎に、車輪側部材と車体側部材との間にそれぞれ設けられ、前記液圧シリンダが、前記1つ以上のピストンの作動により、前記車両の前側と後側との少なくとも一方の側の左右の車輪の同相移動を許容する(1)項ないし(6)項のいずれか1つに記載の車両用サスペンションシステム。
例えば、前側と後側とのいずれか一方の側の左右の車輪について、上下方向の同じ向きの力が加わった場合には、左右輪のショックアブソーバの液圧室の液圧は同様に変化する。それらの液圧の変化に起因して制御ピストンが移動させられれば、左右輪のショックアブソーバのそれぞれにおいて、発生する減衰力が小さい状態とされ、左右輪の同相移動が許容される。例えば、大きな凹凸の路面を走行する場合には、左右輪に上下方向の同じ向き力が加わるが、この場合に、左右車輪の同相移動が許容されれば、車輪の接地性の低下を抑制することができる。
(8)前記液圧シリンダが、第1,第2の2つのハウジングと、それら第1,第2の2つのハウジングにそれぞれ液密かつ摺動可能に嵌合された第1,第2の2つのピストンと、それら2つのピストンを連結する連結ロッドと、前記2つのピストンにそれぞれ設けられ、2つのピストン各々によって仕切られた2つの液圧室同士を互いに連通させる連通路と、前記第1,第2のハウジングと前記第1、第2のピストンとの間にそれぞれ設けられた第1,第2のスプリングとを含む(1)項ないし(7)項のいずれか1つに記載の車両用サスペンションシステム。
第1ピストン、第2ピストンは、第1ハウジング、第2ハウジングにシール部材を介して嵌合されるのが普通である。この場合にシール部材の劣化に起因して液漏れが生じることがある。また、第1ピストン、第2ピストンが第1ハウジング、第2ハウジングに対して相対移動する際の摩擦力を小さくするために、シール性が悪いシール部材を使用することがある。この場合においても、シール部材を介して液漏れが生じることがある。そのため、第1スプリング、第2スプリングによって第1ピストン、第2ピストンが中立位置に戻された場合に、第1ピストン、第2ピストンによって仕切られる2つの液圧室の間に液圧差が生じる。そこで、第1ピストン、第2ピストンに連通路を設ければ、液圧が高い方の液圧室から低い方の液圧室に作動液が流れ、2つの液圧室の間の液圧差をなくすことができる。
連通路の流路面積は、制御ピストンの作動中においては、液圧差を許容し、静止状態において、作動液の流れを許容する大きさにすることが望ましい。
第1ハウジング、第2ハウジングは、別体のものであっても、一体的に設けられたものであってもよい。また、第1ピストン、第2ピストンも別体のものであっても、一体的に設けられたものであってもよい。第1ハウジング、第2ハウジングが直列に連結され、それぞれに、第1ピストン、第2ピストンが嵌合されている場合には、第1ハウジング、第2ハウジングの連結壁部に連通路を設けることもできる。
(9)前記ショックアブソーバが、車両の前後左右の4つの車輪毎に、車輪側部材と車体側部材との間にそれぞれ設けられ、前記液圧シリンダが、前記車両の前側、後側のそれぞれの左右のショックアブソーバの液圧を受ける受圧面が同じ向きに、前記車両の右側、左側のそれぞれの前後のショックアブソーバの液圧を受ける受圧面が互いに反対向きに設けられた1つ以上のピストンを含むものである(1)項ないし(8)項のいずれか1つに記載の車両用サスペンションシステム。
液圧シリンダの1つ以上のピストンにおいて、左前輪のショックアブソーバの液圧に応じた力(液圧に受圧面積を掛けた大きさであり、以下、同様である)と右前輪のショックアブソーバの液圧に応じた力との和である前輪側の力が一方から他方に向かって作用し、左後輪のショックアブソーバの液圧に応じた力と右後輪のショックアブソーバの液圧に応じた力との和である後輪側の力が他方から一方に向かって作用する。1つ以上のピストンにおいて、前輪側の力と後輪側の力とが互いに反対向きに作用するのであり、液圧に応じた力以外の力を無視した場合には、これらが等しい場合にはピストンが移動することはないが、等しくない場合には、ピストンは移動する。
例えば、右前輪のショックアブソーバの液圧と右後輪のショックアブソーバの液圧とが同様に高くなり、左前輪のショックアブソーバの液圧と左後輪のショックアブソーバの液圧とが同様に低くなった場合には、前輪側の力と後輪側の力の釣り合いが変わらないため、ピストンは移動しない。前後左右の各車輪のショックアブソーバは別個独立にされ、発生する減衰力が大きい状態とされる。それによって、車両のローリングを抑制することができる。
また、右前輪のショックアブソーバの液圧と左前輪のショックアブソーバの液圧とが高くなった場合には、前輪側の液圧が後輪側の液圧より高くなるため、ピストンが移動する。複数のショックアブソーバにおいて発生する減衰力が小さい状態とされ、それによって、左右輪の同相移動が許容される。
(10)前記液圧シリンダが、前記車両の右側、左側のそれぞれの前後のショックアブソーバの液圧を受ける受圧面も、前記車両の前側、後側のそれぞれの左右のショックアブソーバの液圧を受ける受圧面も、互いに反対向きに設けられた1つ以上のピストンを備えたものである(1)項ないし(8)項のいずれか1つに記載の車両用サスペンションシステム。
液圧シリンダの1つ以上のピストンにおいて、左前輪のショックアブソーバの液圧に応じた力と右後輪のショックアブソーバの液圧に応じた力との和である第1対角の力が一方から他方に向かって作用し、左後輪のショックアブソーバの液圧に応じた力と右前輪のショックアブソーバの液圧に応じた力との和である第2対角の力が他方から一方に向かって作用する。1つ以上のピストンにおいて、第1対角の力と第2対角の力とが互いに反対向きに作用する。これらが等しい場合はピストンは移動せず、等しくない場合に移動する。
例えば、右前輪、右後輪のショックアブソーバの液圧が高くなり、左前輪、左後輪のショックアブソーバの液圧が低くなった場合には、第1対角の力と第2対角の力との関係は変わらないため、ピストンは移動しない。前後左右のショックアブソーバにおいて減衰力が大きい状態とされるため、車両のローリングを抑制することができる。
左右前輪のショックアブソーバの液圧が高くなった場合には、第1対角の力と第2対角の力の関係が変わらないため、ピストンが移動することはない。それによって、左右輪の同位相移動が抑制される。
また、右前輪のショックアブソーバの液圧と左後輪のショックアブソーバの液圧とが高くなった場合には、第1対角の液圧より第2対角の液圧が高くなり、ピストンが移動する。複数のショックアブソーバにおいて発生する減衰力が小さい状態とされ、路面入力に起因する対角車輪の同相移動が許容される。
(11)前記右側、左側の前後のショックアブソーバの間に前記液圧シリンダと並行に設けられ、それら右側、左側の前後のショックアブソーバの間の作動液の流れを許容する状態と抑制する状態とに切り換え可能なピッチ制御装置を含む(10)項に記載の車両用サスペンションシステム。
前述のように、(10)項に記載の車両用サスペンションシステムにおいては、前側、後側のいずれか一方の左右輪のショックアブソーバの液圧が高くなっても、第1対角の力と第2対角の力との間の関係は変わらないため、ピストンが移動することはない。そのため、車両の前後加速度に起因するピッチングも路面入力に起因する左右同相移動も抑制されることになる。
それに対して、ピッチ制御装置によって、右側、左側の前後のショックアブソーバの間の作動液の流れが許容されれば、前後のショックアブソーバの間に液圧差が生じた場合に、これらの間の作動液の流れが許容され、ショックアブソーバにおいて発生する減衰力が小さい状態とされる。それによって、左右輪の同相移動が許容される。車両の前後加速度に起因する場合も路面入力に起因する場合も許容されることになる。
このように、ピッチ制御装置を設ければ、左右輪の同相移動を許容する状態と抑制する状態とに切り換えることが可能となる。また、左右輪のショックアブソーバの液圧の変化が、車両の前後加速度に起因するものであるか路面入力に起因するものであるかを区別して検出する車両状態検出装置を設ければ、車両の前後加速度に起因する場合に減衰力が大きい状態とし、路面入力に起因する場合に減衰力が小さい状態とすることができる。車両の前後加速度に起因するピッチングを抑制し、路面入力に起因する左右輪の同相移動を許容することができるのである。
車両状態検出装置は、車両の前後加速度を検出する前後加速度検出装置を含むものとすることができる。前後加速度が設定値以上である場合には、前後加速度に起因するピッチングが生じたとすることができる。
(12)前記ピッチ制御装置が、前記右側、左側の前後のショックアブソーバの間を前記液圧シリンダをバイパスして接続するバイパス通路と、そのバイパス通路に設けられ、少なくとも、2つのショックアブソーバを連通させる状態と遮断する状態とに切り換え可能なバイパス用電磁弁を含む(11)項に記載の車両用サスペンションシステム。
バイパス用電磁弁の開状態において、これらの間の作動液の流れが許容され、左右輪の同相移動が許容される。バイパス用電磁弁の閉状態において、これらの間の作動液の流れが阻止され、左右輪の同相移動が抑制される。
また、後輪側の積載重量の増加により、後輪側の車高が低くなった場合にバイパス用電磁弁が閉状態とされれば、後輪側のショックアブソーバと前輪側のショックアブソーバとを遮断することができ、後輪側の車高の低下を抑制することができる。
さらに、電磁弁は、供給電流のON・OFFにより開状態と閉状態とに切り換え可能な電磁開閉弁としたり、開状態において、それの開度を調整可能なリニア流量制御弁としたりすることができる。
(13)前記ピッチ制御装置が、前記バイパス通路に、前記バイパス用電磁弁と直列に設けられたアキュムレータを含む(12)項に記載の車両用サスペンションシステム。
バイパス用電磁弁が閉状態にあっても、そのバイパス用電磁弁よりアキュムレータ側に接続されたショックアブソーバとアキュムレータとが連通させられ、これらの間で作動液の授受が許容される。このように、バイパス用電磁弁の閉状態においても、アキュムレータとショックアブソーバとが連通させられるため、〔実施例〕で後述するように、左右輪に同様に上下方向の力が加わった場合に、液圧シリンダにおいて、ピストンが移動できることになり、それによって、複数のショックアブソーバにおいて発生する減衰力が小さくなる状態とされる。左右輪の同相移動が許容されることになり、車輪の接地性の低下を抑制することができ、乗り心地の低下を抑制することができる。
(14)前記ピッチ制御装置が、そのバイパス通路と前記アキュムレータとの間に設けられたアキュムレータ用電磁弁を含む(13)項に記載の車両用サスペンションシステム。
アキュムレータ用電磁弁の閉状態においては、アキュムレータは2つのショックアブソーバから遮断される。アキュムレータ用電磁弁が開状態とされ、前述のバイパス用電磁弁が遮断状態とされた場合には、アキュムレータ側に接続されたショックアブソーバと連通させられる。
このように、バイパス用電磁弁とアキュムレータ用電磁弁との両方を設け、それぞれを制御すれば、前後のショックアブソーバを遮断するとともにアキュムレータからも遮断する状態と、前後のショックアブソーバを遮断するとともに一方のショックアブソーバをアキュムレータに連通させる状態と、前後のショックアブソーバを連通させてアキュムレータから遮断する状態とに切り換えることが可能となる。
アキュムレータ用電磁弁は、電流のON・OFFにより開閉可能な電磁開閉弁とすることができる。
(15)前記ピッチ制御装置が、前記右側と左側とのいずれか一方の側の前後のショックアブソーバの間に、前記アキュムレータが後輪のショックアブソーバに連通させられる状態で設けられた後輪ピッチ制御装置と、いずれか他方の側の前後のショックアブソーバの間に、前記アキュムレータが前輪のショックアブソーバに連通させられる状態で設けられた前輪ピッチ制御装置との両方を含む(13)項または(14)項に記載の車両用サスペンションシステム。
バイパス用電磁弁の閉状態において前輪側の左右輪にピッチ入力があった場合に、前輪ピッチ制御装置により前輪のショックアブソーバとアキュムレータとが連通させられるため、左右前輪のショックアブソーバが連通させられ、減衰力が小さい状態とされる。後輪側にピッチ入力があった場合には、後輪ピッチ制御装置により後輪のショックアブソーバとアキュムレータとが連通させられるため、左右後輪のショックアブソーバにおいて減衰力が小さい状態とされる。
このように、前輪ピッチ制御装置と後輪ピッチ制御装置との両方が設けられる場合には、バイパス用制御弁の閉状態において、前輪側の左右輪にピッチ入力があった場合にも後輪側の左右輪にピッチ入力があった場合にも、乗り心地の低下を抑制することが可能となる。
前輪ピッチ制御装置と後輪ピッチ制御装置との両方を設けることは不可欠ではなく、いずれか一方が設けられれば、いずれか一方のピッチ入力時の乗り心地の低下を抑制することが可能となる。
(16)前記液圧シリンダが、前記1つ以上のピストンの作動により、前記車両のローリングとピッチングとの両方を抑制するものであり、当該車両用サスペンションシステムが、前記車両の右側、左側のそれぞれの前後のショックアブソーバの間に、前記液圧シリンダと並列に設けられ、前記ピッチングを許容する状態と抑制する状態とに切り換え可能なピッチ制御装置を含む(1)項ないし(15)項のいずれか1つに記載の車両用サスペンションシステム。
(17)前記ショックアブソーバが、前記車両の前後左右の車輪毎に、車輪側部材と車体側部材との間に設けられ、当該車両用サスペンションシステムが、前記前側、後側の左右のショックアブソーバの間に前記液圧シリンダと並行に設けられ、それら前側、後側の左右のショックアブソーバの間の作動液の流れを許容する状態と抑制する状態とに切り換え可能なロール制御装置を含む(1)項ないし(16)項のいずれか1つに記載の車両用サスペンションシステム。
前側の左右のショックアブソーバの間の作動液の流れが許容されれば、ローリングが生じた場合に、これらの間に作動液が流れ、ショックアブソーバにおいて発生する減衰力が小さい状態にされ、それによって、ローリングが許容される。これらの間の作動液の流れが抑制されればローリングが抑制される。
(18)車両の複数の車輪毎に、車輪側部材と車体側部材との間にそれぞれ設けられた液圧シリンダと、
それら複数の液圧シリンダの液圧をそれぞれ受ける複数の受圧面を有する1つ以上のピストンを備え、その1つ以上のピストンの作動により、車両の複数種類の姿勢の変化のうちの少なくとも1つを抑制する制御シリンダと
を含む車両用サスペンションシステム。
本項に記載の車両用サスペンションは、(2)項ないし(17)項のいずれかに記載の特徴を採用することができる。換言すれば、制御シリンダに接続される車輪毎の液圧シリンダは、ショックアブソーバに限らないのであり、減衰力発生機能を有しない液圧シリンダとすることができる。例えば、車輪側部材と車体側部材との間の間隔の変化量に応じた弾性力を発生可能な弾性力発生装置が接続されるようにすることができる。弾性力は、車輪側部材と車体側部材との間の距離の変化に伴って変化する力であり、減衰力は、これらの間の距離の変化速度の変化に伴って変化する力であり、弾性力発生装置と減衰力発生装置とは異なるものである。
(19)車両の複数の車輪毎に、車輪側部材と車体側部材との間にそれぞれ設けられた複数のショックアブソーバと、
それら複数のショックアブソーバの液圧に基づいて作動し、前記複数のショックアブソーバのうちの少なくとも1つにおいて、発生する減衰力が大きい状態と発生する減衰力が小さい状態とを生じさせる減衰力発生状態制御装置と
を含む車両用サスペンションシステム。
本項に記載の車両用サスペンションシステムには、(1)項ないし(18)項のいずれかに記載の特徴を採用することができる。換言すれば、減衰力発生状態制御装置は、液圧シリンダを含むものに限らない。液圧に応じた力で可動するレバーを有するもの等とすることができる。
本発明の一実施形態である車両用サスペンションシステムについて図面に基づいて詳細に説明する。
図1において、車両の前後左右のそれぞれの車輪に対応して、ショックアブソーバ10〜16が、車輪側部材17と車体側部材18との間に設けられる。なお、図示は省略するが、車輪側部材17と車体側部材18との間には、ショックアブソーバ10〜16と並列にサスペンションスプリングが設けられる。
ショックアブソーバ10〜16は、それぞれ、ハウジング20と、それに液密かつ摺動可能に嵌合されたピストン22とを含む。本実施例においては、ハウジング20が車輪側部材17に取り付けられ、ピストン22のピストンロッドが車体側部材18に取り付けられる。
ピストン22には、そのピストン22で仕切られた2つの液圧室24,25を連通させる連通路が設けられるとともに、その連通路に絞り26が設けられる。絞り26により、ピストン22のハウジング20に対する相対移動速度(絞り26を流れる作動液の流速)に応じた減衰力が発生させられる。本実施形態においては、絞り26は固定絞りであり、流路面積が小さめにされている。
ショックアブソーバ10〜16は、それぞれ、個別通路30〜36を介して液圧シリンダとしてのセントラルシリンダ38に接続される。
セントラルシリンダ38は、第1,第2の2つのハウジング40,42と、これら2つのハウジング40,42にそれぞれ液密かつ摺動可能に嵌合された第1、第2の2つのピストン44,46と、2つのピストン44,46を連結する連結ロッド48とを含む。第1ピストン44の外側が第1外側受圧面50とされ、内側が第1内側受圧面52とされるとともに、第2ピストン46の外側が第2外側受圧面54とされ、内側が第2内側受圧面56とされる。そして、第1ピストン44において、第1外側受圧面50に対向する液圧室が液圧室60とされて、個別通路30を介して左前輪のショックアブソーバ10の液圧室24が接続され、第1内側受圧面52に対向する液圧室が液圧室62とされて、個別通路34を介して左後輪のショックアブソーバ14の液圧室24が接続される。同様に、第2ピストン46において、第2外側受圧面54に対向する液圧室64に個別通路32を介して右前輪のショックアブソーバ12の液圧室24が接続され、第2内側受圧面56に対向する液圧室66に個別通路36を介して右後輪のショックアブソーバ16の液圧室24が接続される。
また、第1、第2のハウジング40、42が直列に連結され、これらの連結壁部67が第1ピストン44,第2ピストン46の間に位置する。前述の連結ロッド48は、連結壁部67を液密かつ摺動可能に貫通して設けられる。
本実施形態においては、個別通路30〜36によってショックアブソーバ10〜16の液圧室24が接続される。液圧室24は、車輪側部材17と車体側部材18との間の間隔が大きくなった場合に液圧が高くなる液圧室である。車両においては、通常、基準位置より車輪側部材17と車体側部材18との間の間隔が大きくなる場合に間隔が小さくなる場合より減衰力の変化幅が大きくなるように設計されるのが普通である。そのため、液圧室24にセントラルシリンダ38が接続される方が液圧室25が接続される場合に比較して、減衰力の制御範囲を大きくすることができ、有効である。
本実施形態においては、第1,第2ピストン44,46において、第1外側受圧面50,第2内側受圧面56が同じ向きに設けられ、それぞれ、左前輪のショックアブソーバ10の液圧室24の液圧、右後輪のショックアブソーバ16の液圧を受ける。また、第1内側受圧面52,第2外側受圧面54が、同じ向きに、かつ、上述の第1外側受圧面50,第2内側受圧面56と反対向きに設けられ、それぞれ、左後輪のショックアブソーバ14の液圧、右前輪のショックアブソーバ12の液圧を受ける。
図1に示すように、第1,第2ピストン44,46は、連結ロッド48によって連結されているため、第1,第2の内側受圧面52,56の受圧面積は、第1,第2の外側受圧面50,54の受圧面積より小さくなる。
第1ピストン44,第2ピストン46および連結ロッド48は一体的に移動させられるため、これらを制御ピストン68と称する。
第1,第2ピストン44,46には、それぞれ、連通路70,72が設けられる。連通路70によって2つの液圧室60,62が連通させられ、連通路72によって2つの液圧室64,66が連通させられる。
第1ピストン44,第2ピストン46と第1ハウジング40,第2ハウジング42との間には、それぞれ、スプリング76,78が設けられる。スプリング76,78は、第1ピストン44,第2ピストン46を中立位置に戻すものである。本実施形態においては、スプリング76,78が第1ピストン44,第2ピストン46の内側に配設される。
第1ピストン44,第2ピストン46と第1,第2ハウジング40,42との間には、シール部材が設けられるが、シール部材の劣化に起因して液漏れが生じる。また、制御ピストン68の第1,第2ハウジング40,42に対する相対移動の際の摩擦力を小さくするために、シール部材としてシール性の悪いものを用いることがあり、この場合においても、シール部材を介して液漏れが生じる。そのため、スプリング76,78等の中立位置復帰部材により、第1、第2ピストン44,46が中立位置に戻された場合に、液圧室60,62の間、液圧室64,66の間に液圧差が生じることがある。それに対して、連通路70,72が設けられれば、連通路70,72を介して作動液が流れ、液圧室60,62の間、液圧室64,66の間の液圧差をなくすことができる。
なお、連通路70,72の流路面積は、制御ピストン68の作動中には、液圧差を許容し、静止状態において作動液の流れを許容する大きさとされる。
個別通路30〜36には、それぞれ、流路抵抗調整装置としての絞り80〜86が設けられる。絞り80〜86は、固定絞りであって可変絞りであってもよい。
絞り80〜86によれば、各ショックアブソーバ10〜16における液圧変化のセントラルシリンダ38への伝達を遅らせることができる。そのため、ショックアブソーバ10〜16の液圧変化に対するセントラルシリンダ38の作動の応答性を低くすることができ、セントラルシリンダ38がショックアブソーバ10〜16の僅かな液圧変化によって不必要に作動させられることを回避することができる。
また、ショックアブソーバ10〜16における液圧の高周波の変化を吸収できるという利点もある。
さらに、個別通路30〜36の長さに応じて絞り80〜86の形状(流路面積や長さ等)が決定されれば、各ショックアブソーバ10〜16における液圧変化のセントラルシリンダ38への伝達ばらつきを小さくすることができる。
以上のように構成された車両用サスペンションシステムにおける作動について説明する。
制御ピストン68には、左前輪のショックアブソーバ10の液圧に応じた力(液圧に第1外側受圧面50の受圧面積を掛けた大きさ、以下同じ)および右後輪のショックアブソーバ16の液圧に応じた力、右前輪のショックアブソーバ12の液圧に応じた力および左後輪のショックアブソーバ14の液圧に応じた力、スプリング76,78の弾性力が作用し、静止状態においては、これらが釣り合っている。
車両にローリングが生じ、例えば、車両の左側において、車輪側部材17と車体側部材18との間の間隔が、右側におけるより相対的に大きくなると、左前輪のショックアブソーバ10の液圧室24の液圧と左後輪のショックアブソーバ14の液圧室24の液圧とが高くなり、右前輪のショックアブソーバ12の液圧室24の液圧と右後輪のショックアブソーバ16の液圧とが低くなる。第1ピストン44の受圧面50,52の液圧が高くなり、第2ピストン46の受圧面54,56の液圧が低くなるが、この場合には、制御ピストン68に作用する力の釣り合いの状態は変わらないため、制御ピストン68が移動することはない。
各ショックアブソーバ10〜16は、それぞれ、独立とされ、車輪側部材17と車体側部材18との相対移動に伴って(ピストン22の移動に伴って)、ショックアブソーバ10〜16の各々において減衰力が発生させられる。この状態が発生する減衰力が大きい状態である。
車両にピッチングが生じ、例えば、車両の前側において、車輪側部材17と車体側部材18との間の間隔が後側におけるより相対的に大きくなると、左右前輪のショックアブソーバ10、12の液圧室24の液圧が高くなり、左右後輪のショックアブソーバ14,16の液圧が低くなる。第1ピストン44の受圧面50,第2ピストン46の受圧面54の液圧が高くなり、第1ピストン44の受圧面52,第2ピストン46の受圧面56の液圧が低くなる。この場合には、制御ピストン68に作用する力の釣り合いの関係は変わらない。制御ピストン68は動かないのであり、ショックアブソーバ10〜16の各々において減衰力が大きい状態とされる。
前後左右の車輪のうちの1輪(例えば、左前輪)に上下方向に力が加わり、ショックアブソーバ10の液圧室24の液圧が高くなった場合には、第1外側受圧面50に受ける液圧が高くなり、制御ピストン68は移動する。この制御ピストン68の移動により、ショックアブソーバ10において、液圧室24の液圧の増加が抑制されて、液圧室24と液圧室25との間の液圧差が小さくなり、ショックアブソーバ10において絞り26を流れる作動液の速度が小さくなる。車輪に加わる力が同じである場合に、発生する減衰力が小さくなる。この状態が発生する減衰力が小さい状態である。
路面から、前後左右の車輪のうちの対角位置にある車輪に、車輪側部材17と車体側部材18との間を同じ向きに変化させる力が加わって、例えば、ショックアブソーバ10,16の液圧室24の液圧が高くなり、ショックアブソーバ12,14の液圧室24の液圧が低くなった場合には、第1外側受圧面50,第2内側受圧面56が受ける液圧が高くなり、第1内側受圧面52,第2外側受圧面54の液圧が低くなる。制御ピストン68において力の関係が変わり、紙面の右方へ移動する。セントラルシリンダ38において、液圧室60、66の容積が大きくなり、液圧室62,64の容積が小さくなる。ショックアブソーバ10,16の液圧室24から作動液が流出し、液圧室62,64の容積が小さくなることにより、ショックアブソーバ12,14に作動液が流入する。セントラルシリンダ38を介して、ショックアブソーバ10,16とショックアブソーバ12,14とが実質的に連通させられることになり、これらの間で(セントラルシリンダ38を介して)作動液の授受が行われることになる。各ショックアブソーバ10〜16において、液圧室24,25の間の液圧差が小さくなり、発生する減衰力が小さい状態となる。それによって、対角車輪の同相移動が許容される。
このように、本実施形態の車両用サスペンションシステムによれば、対角車輪の同相移動を許容しつつ、ローリング、ピッチングを抑制することができる。
また、スプリング76,78により、ピストン44,46を中立位置に戻すことができ、その場合に、連通路70,72により、液圧室60,62の液圧差、液圧室64,66の液圧差をなくすことができる。
さらに、各ショックアブソーバ10〜16の液圧室24,すなわち、車輪側部材17と車体側部材18との間の間隔が大きくなった場合に、液圧が高くなる液圧室にセントラルシリンダ38が接続される。したがって、図2に示すように、減衰力を、実線の内側の範囲内において制御することができるのであり、制御可能な範囲が大きくなる。
また、ローリング時、ピッチング時等に発生する減衰力が大きい状態とされ、対角車輪に上下方向の同相の力が加わった場合、1輪に上下方向の力が加わった場合には、減衰力が小さい状態とされるため、ショックアブソーバ10〜16の各々に減衰係数制御装置を設けなくても、姿勢変化または路面入力状態に応じて要求される減衰力(減衰特性)を得ることができる。
なお、上記実施形態においては、個別通路30〜36に絞り80〜86が設けられたが、絞り80〜86を設けることは不可欠ではない。
また、スプリング76,78を設けること、ピストン44,46に連通路70,72を設けること等も不可欠ではない。さらに、スプリングは、ピストン44,46の内側ではなく、外側に設けることができる。スプリングを、ピストン44の第1外側受圧面50とハウジング40との間、ピストン46の第2外側受圧面54とハウジング42との間にそれぞれ設けることができるのである。
さらに、連通路は、第1ハウジング40と第2ハウジング42との連結壁部67に設けることもできる。
さらに、上記実施形態においては、ショックアブソーバ10〜16の液圧室24にセントラルシリンダ38が接続されるようにされていたが、液圧室25にセントラルシリンダ38が接続されるようにすることができる。
また、セントラルシリンダ38におけるショックアブソーバ10〜16の接続の態様は、上記実施例のそれに限らない。例えば、液圧室62に右前輪のショックアブソーバ12が接続され、液圧室64に左後輪のショックアブソーバ14が接続されるようにすることができる。さらに、液圧室62に左前輪のショックアブソーバ10が接続され、液圧室66に右前輪のショックアブソーバ12が接続されるとともに、液圧室60に左後輪14のショックアブソーバ14が接続され、液圧室64に右後輪のショックアブソーバ16が接続されるようにすること等ができる。
また、上記実施形態においては、セントラルシリンダ38にショックアブソーバ10〜16が接続されていたが、減衰力発生機能を備えていない液圧シリンダが接続されるようにすることもできる。例えば、弾性力発生機能を備えた液圧シリンダが接続されるようにすることができる。
また、セントラルシリンダ38の構造は上記実施形態におけるそれに限らない。例えば、図3に示す構造を成したものとすることができる。図3に示すセントラルシリンダ98においては、ピストン100が段付き形状を成したものとされ、ハウジング102のシリンダボアが段付き形状を成したものとされる。
段付きピストン100は、大径部110と小径部112,114とを有するものであり、段付きハウジング102のシリンダボアも大径部120と小径部122,124とを有するものである。段付きピストン100の大径部110がシリンダボアの大径部120に摺動可能に嵌合され、小径部112,114がシリンダボアの小径部122,124に摺動可能に嵌合される。
段付きピストン100の小径部112,114の端面が、第1,第2受圧面130,132とされ、大径部110と小径部112,114との段部の環状の端面が、第3,第4受圧面134,136とされる。また、ハウジング102の内側の、第1,第2受圧面130,132に対向する室が液圧室140,142とされ、第3,第4受圧面134,136に対向する環状の室が液圧室144,146とされる。
本実施形態においては、液圧室140,142に、それぞれ、左前輪、右前輪のショックアブソーバ10,12の液圧室24が接続され、液圧室144,146に、それぞれ、右後輪のショックアブソーバ16,左後輪のショックアブソーバ14が接続される。
また、段付きピストン100の小径部112とハウジング102との間にスプリング150が配設され、小径部114とハウジング102との間にスプリング152が配設される。スプリング150,152はリターンスプリングである。
上述の第1,第2受圧面130,132および環状を成した第3,第4受圧面134,136の面積は、互いに同じ大きさとすることができるが、スプリング150,152の弾性力を考慮して、第1,第2受圧面130,132を多少小さめにすることもできる。
例えば、車両にローリングが生じ、ショックアブソーバ10,14の液圧が高くなり、ショックアブソーバ12,16の液圧が低くなった場合には、第1受圧面130,第4受圧面136が受ける液圧が高くなり、第2受圧面132,第3受圧面134が受ける液圧が低くなる。段付きピストン100において、これら液圧に応じた力、スプリング150,152の弾性力等が釣り合い、移動することはない。各ショックアブソーバ10〜16において、発生する減衰力が大きい状態とされ、車両のローリングが抑制される。
例えば、ピッチングが生じ、ショックアブソーバ10,12の液圧が高くなって、ショックアブソーバ14,16の液圧が低くなった場合には、第1受圧面130,第2受圧面132が受ける力が高くなり、第3受圧面134,第4受圧面136が受ける力が低くなる。この場合においても、段付きピストン100は移動することがなく、発生する減衰力が大きい状態とされ、ピッチングが抑制される。
車両の前後左右の車輪のうちの1輪、例えば、左前輪に上下方向の力が加わって、第1受圧面130が受ける液圧が高くなると、段付きピストン100は右方へ移動し、ショックアブソーバ10において発生する減衰力が小さい状態とされる。それによって、1輪の上下移動が許容される。
車両の前後左右の車輪のうちの対角車輪について同様に車輪側部材17と車体側部材18との間隔を変化させる向きの力が加わって、例えば、ショックアブソーバ10,16の液圧が高くなり、ショックアブソーバ12,14の液圧が低くなった場合には、第1受圧面130,第3受圧面134が受ける液圧が高くなり、第2受圧面132,第4受圧面136が受ける力が低くなる。それによって、段付きピストン100が移動し、対角車輪の同相移動が許容される。
上記実施形態において、段付きピストン100が1つのピストンであり、4つの受圧面130,132,134,136を有するものであると考えることができるが、それに限らない。
例えば、段付きピストン100の第1受圧面130,第2受圧面132を含む部分を第1ピストン、第3受圧面134,第4受圧面136を含む部分を第2ピストンと考え、段付きハウジング102のシリンダボアの小径部122,124を含む部分を第1ハウジング、シリンダボアの大径部120を含む部分を第2ハウジングと考えることができる。
また、段付きピストン100の第1受圧面130,第4受圧面136を含む部分を第1ピストン、第2受圧面132,第3受圧面134を含む部分を第2ピストンを考え、段付きハウジング102のシリンダボアの小径部122,大径部120を含む部分を第1ハウジング、小径部124,大径部120を含む部分を第2ハウジングと称することができる。
さらに、段付きピストン100の第1受圧面130を含む部分を第1ピストン、第2受圧面132を含む部分を第2ピストン、第3受圧面134を含む部分を第3ピストン、第4受圧面136を含む部分を第4ピストンであると考え、段付きハウジング102のシリンダボアの小径部122を含む部分を第1ハウジング、小径部124を含む部分を第2ハウジング、大径部120の紙面の左方の部分を第3ハウジング、大径部120の紙面の右方の部分を第4ハウジングであると考えることができる。
また、第1実施例においては、第1外側受圧面50,第2外側受圧面54の受圧面積が第1内側受圧面52,第2内側受圧面56の受圧面積より大きくされたが、これら受圧面50〜56の受圧面積が互いに同じになるようにすることができる。さらに、セントラルシリンダ38におけるショックアブソーバ10〜16の接続の仕方は上記実施例におけるそれに限らない。
例えば、図4に示すように、セントラルシリンダ198において、第1,第2ピストン44,46の外側に連結ロッド48と横断面積が同じロッド200,202が第1,第2のハウジング40,42をそれぞれ貫通する状態で設けられる。これによって、第1,第2ピストン44,46の内側と外側とで、受圧面積が同じになる。本実施例においては、第1、第2ピストン44,46,連結ロッド48,ロッド200,202により制御ピストン204が構成される。
また、セントラルシリンダ198において、液圧室62に個別通路210を介して左前輪のショックアブソーバ10の液圧室24が接続され、液圧室64に個別通路212を介して右前輪のショックアブソーバ12の液圧室24が接続され、液圧室60に個別通路214を介して左後輪のショックアブソーバ14の液圧室24が接続され、液圧室66に個別通路216を介して右後輪のショックアブソーバ16の液圧室24が接続される。第1外側受圧面50に左後輪のショックアブソーバ14の液圧を受け、第1内側受圧面52に左前輪のショックアブソーバ10の液圧を受け、第2外側受圧面54に右前輪のショックアブソーバ12の液圧を受け、第2内側受圧面56に右後輪のショックアブソーバ16の液圧を受けることになる。
車両にローリングが生じ、例えば、ショックアブソーバ10,14の液圧室24の液圧が高くなり、ショックアブソーバ12,16の液圧室24の液圧が低くなった場合には、第1外側受圧面50,第1内側受圧面52の液圧が高くなり、第2外側受圧面54,第2内側受圧面56の液圧が低くなる。制御ピストン204において、力が釣り合うため、移動することはなく、車両のローリングが抑制される。
車両にピッチングが生じ、例えば、ショックアブソーバ10,12の液圧が高くなり、ショックアブソーバ14,16の液圧が低くなった場合には、第1内側受圧面52,第2外側受圧面54の液圧が高くなり、第1外側受圧面50,第2内側受圧面56の液圧が低くなる。制御ピストン204は、紙面の左方へ移動する。各ショックアブソーバ10〜16において、発生する減衰力が小さい状態とされ、車両のピッチングが許容される。
路面入力に起因して前輪側あるいは後輪側の左右輪に、上下方向に同じ向きの力(車輪側部材17と車体側部材18との間の距離を同じ向きに変化させる力)が加わった場合も同様である。各ショックアブソーバ10〜16において発生する減衰力が小さい状態とされ、左右輪の同相移動が許容される。
車両の前後左右の車輪のうちの1輪、例えば、左前輪に上下方向の力が加わり、例えば、第1内側受圧面52が受ける液圧が高くなった場合には、制御ピストン204に作用する力の関係が変わるため、制御ピストン204が移動する。ショックアブソーバ10において発生する減衰力が小さい状態とされ、1輪の上下移動が許容される。
このように、本実施例においては、ローリングを抑制しつつ、ピッチング、左右輪の同相移動、1輪の上下移動を許容することができる。
なお、セントラルシリンダ38と並列にピッチ制御装置を設けることができる。例えば、図5に示すように、ピッチ制御装置250、252は、それぞれ、左側の前後のショックアブソーバ10,14の間、右側の前後のショックアブソーバ12,16の間にそれぞれ設けられる。ピッチ制御装置250,252は接続の向きは逆であるが、構成は同じものであるため、ピッチ制御装置250について説明する。
ピッチ制御装置250は、セントラルシリンダ38と並列に設けられたバイパス通路258と、そのバイパス通路258に直列に設けられたサブシリンダ260および電磁開閉弁262とを含む。サブシリンダ260は、ハウジング270とハウジング270に液密かつ摺動可能に嵌合されたフリーピストン272とを含み、フリーピストン272によって仕切られた2つの液圧室274,276のうちの一方である液圧室274に電磁開閉弁280を介してアキュムレータ282が接続される。電磁開閉弁262は常開弁であり、電磁開閉弁280は常閉弁である。
ピッチ制御装置250においては、サブシリンダ260が前輪側のショックアブソーバ10に接続され、ピッチ制御装置252においては、サブシリンダ260が後輪側のショックアブソーバ16に接続される。
本実施例においては、ショックアブソーバ10〜16の液圧室25がセントラルシリンダ38に接続される。液圧室25は、車輪側部材17と車体側部材18との間隔が小さくなった場合に液圧が高くなる液圧室である。
電磁開閉弁262,280等はサスペンションECU300の指令に基づいて制御される。サスペンションECU300は、コンピュータを主体とするものであり、CPU,RAM,ROM,入出力部等を含む。入出力部には、各車輪毎に設けられた車高センサ302〜308、車両の前後加速度を検出する前後Gセンサ310等が接続されるとともに、電磁開閉弁262,280のソレノイドが図示しない駆動回路を介して接続される。
電磁開閉弁262,280は、図示する原位置にある。
例えば、車両にローリングが生じた場合には、上記第1実施例における場合と同様に、セントラルシリンダ38の作動により、各ショックアブソーバ10〜16において発生する減衰力が大きい状態とされて、ローリングが抑制される。
例えば、車両の前後左右の車輪のうちの1輪について車輪側部材17と車体側部材18との間隔が小さくなった場合には、4つの液圧室60〜66のうちの1つの液圧が高くなり、制御ピストン68が移動させられる。それによって、1輪の上下方向の移動が許容される。
前後加速度に起因するピッチングが生じた場合には、左前輪のショックアブソーバ10の液圧室25と左後輪のショックアブソーバ14の液圧室25との間に液圧差が生じる。電磁開閉弁262が開状態で電磁開閉弁280が閉状態にある場合には、ショックアブソーバ10,14のうち、液圧室25の液圧が高い方から低い方に向かって作動液がバイパス通路258を経て実質的に流れる。例えば、ショックアブソーバ10の液圧室25の液圧の方が高い場合には、ショックアブソーバ10から作動液が流出し、サブシリンダ260の液圧室276に供給される。それによって、ピストン272が移動し、液圧室276の容積が大きくなり、液圧室274の容積が小さくなる。液圧室274の作動液はショックアブソーバ14の液圧室25に流入するのであり、ショックアブソーバ10,14が実質的に連通させられることになる。ショックアブソーバ10,14において、発生する減衰力が小さい状態とされ、ピッチングが許容される。
路面入力等に起因して前輪側あるいは後輪側の左右輪に車輪側部材17と車体側部材18との間隔を同じ向きに変化させる力が加わった場合も同様であり、左右輪の同相移動が許容される。
後輪側の積載重量が大きくなり、後輪側の車高が前輪側の車高に対して低くなった場合には、ピッチ制御装置250,252において、電磁開閉弁262が閉状態とされ、電磁開閉弁280が開状態とされる。
電磁開閉弁262が閉状態とされるため、左側の前後のショックアブソーバ10,14が遮断されるとともに、右側の前後のショックアブソーバ12,16が遮断される。それによって、後輪側のショックアブソーバ14,16の液圧室25の作動液が前輪側のショックアブソーバ10,12に向かって流出することを防止することができ、後輪の車高の低下を抑制することができる。
また、電磁開閉弁280が開状態にあるため、電磁開閉弁262が閉状態にあっても、個別通路30,36とアキュムレータ282との間で作動液の授受が可能となる。例えば、左右前輪に車輪側部材17と車体側部材18との間隔を小さくする向きの力が加わった場合に、左前輪のショックアブソーバ10とアキュムレータ282との間で作動液の授受が行われるため、セントラルシリンダ38において、第2外側受圧面54の液圧の増加に伴って、制御ピストン68が紙面の左方へ移動することが可能となる。その結果、左右前輪の同相移動が許容される。制御ピストン68の左方への移動に伴って、液圧室60の作動液は、ショックアブソーバ10の液圧室25に供給されたり、アキュムレータ282に供給されたりする。また、液圧室66の容積の減少に伴って、液圧室66の作動液は右後輪のショックアブソーバ16に供給されたり、アキュムレータ282に供給されたりする。さらに、液圧室62の容積の増加に伴って左後輪のショックアブソーバ14から作動液が流出させられることになる。
左右後輪に車輪側部材17と車体側部材18との間隔を小さくする向きの力が加わった場合には、右後輪のショックアブソーバ16とアキュムレータ282との間で作動液の授受が行われるため、セントラルシリンダ38において、第1内側受圧面52の液圧の増加によって、制御ピストン68の紙面の左方への移動が可能となる。それによって、左右後輪の同相移動が許容される。
本実施例においては、図6のフローチャートで表される電磁制御プログラムが予め定められた設定時間毎に実行される。ステップ1(以下、S1と略称する。他のステップについても同様とする)において、後輪側の車高が前輪側の車高に対して低く、後輪の積載荷重が大きいか否かが判定される。例えば、後輪側の車高が前輪側の車高より設定値以上低い場合、後輪側の車高を前輪側の車高で割った値である比率が設定比率より小さい場合に、後輪の積載荷重が大きい状態であるとすることができる。後輪の積載荷重が大きい状態にあると判定された場合には、S2において、電磁開閉弁262が閉状態とされ、電磁開閉弁280が開状態とされる。それに対して、積載荷重が大きくない場合には、S3において、図示する原位置に戻される。電磁開閉弁262が開状態とされ、電磁開閉弁280が閉状態とされるのである。
このように、本実施例においては、車両のローリングを抑制しつつ車両の前後加速度に起因するピッチング、左右輪の同相移動を許容することができる。また、後輪荷重が大きくなった場合の、後輪側の車高の低下を抑制することができる。さらに、電磁開閉弁262が閉状態にあり、ピッチ抑制状態にあっても、前輪または後輪のいずれかに路面入力があった場合には、左右輪の同相移動を許容し、車輪の接地性の低下を抑制することができる。また、バイパス通路258にサブシリンダ260が設けられるため、サブシリンダ260のいずれか一方の側において液漏れ等が生じても、その影響が他方に及ぶことを防止することができる。
なお、電磁開閉弁262,280は、図7のフローチャートで表される電磁弁制御プログラムの実行に従って制御されるようにすることもできる。
後輪側の積載荷重が小さく、S1における判定がNOである場合には、S11において、前後加速度が設定値以上であるかどうかが判定される。前後加速度が設定値以上であり、車両にピッチングが生じたとされた場合には、S12において、電磁開閉弁262が閉状態とされ、電磁開閉弁282が閉状態とされる。右側、左側において、前後のショックアブソーバが遮断されるとともに、アキュムレータ282から遮断される。それによって、車両の前後加速度に起因するピッチングが抑制される。
前後加速度が設定値以下である場合には、S3において、電磁開閉弁262,280が図示する原位置に戻される。この状態において、左右輪に上下方向の力が同じ向きに加わった場合には、ピッチ制御装置250,252により、左右輪の同相移動が許容される。それによって、車輪の接地性の低下を抑制し、乗り心地の低下を抑制することができる。
このようにすれば、車両の前後加速度に起因するピッチングを抑制し、路面入力に起因する左右輪の同相移動を許容することができる。
また、上記実施例においては、右側と左側とにそれぞれピッチ制御装置250,252の両方が設けられていたが、いずれか一方のみでもよい。
さらに、電磁開閉弁280は不可欠ではない。電磁開閉弁280がない場合には、ショックアブソーバとアキュムレータとが常に連通させられることになる。
また、上記実施形態において、ピッチ抑制装置250,252が、アキュムレータ282,サブシリンダ260,電磁開閉弁262を含むものであったが、それに限らない。電磁開閉弁262を含むものであれば、電磁開閉弁262の開閉により、ピッチングを抑制する状態と許容する状態とに切り換えることができる。さらに、サブシリンダ260がなくてもよく、バイパス通路258にアキュムレータ282が電磁開閉弁280を介して接続されるようにすることもできる。
また、セントラルシリンダ38と並列に、前側の左右のショックアブソーバ10,12の間、後側の左右のショックアブソーバ14,16の間に、それぞれ、ロール制御装置を設けることができる。図8に示すように、ロール制御装置は、バイパス通路330と、そのバイパス通路330に設けられた電磁開閉弁332とを含む。電磁開閉弁332は、常閉弁とし、ローリングを許容する場合に開状態に切り換えられる。
図9に示すように、4つのショックアブソーバ10〜16の間に、セントラルシリンダを複数個設けることができる。本実施形態においては、第1,第2の2つのセントラルシリンダ400,402が設けられる。
第1,第2セントラルシリンダ400,402は、上記第3実施例(図4に示す態様)におけるセントラルシリンダ198と構造が同じものであるため、説明を省略する。
本実施形態においては、第1セントラルシリンダ400の液圧室60に左前輪のショックアブソーバ10の液圧室24が接続される。第1センサシリンダ400の液圧室60は第2セントラルシリンダ402の液圧室60に接続される。
第1セントラルシリンダ400の液圧室64には右前輪のショックアブソーバ12の液圧室24が接続され、第1セントラルシリンダ400の液圧室64は、第2セントラルシリンダ402の液圧室66に接続される。
また、第2セントラルシリンダ402の液圧室62には左後輪のショックアブソーバ14の液圧室24が接続され、第2セントラルシリンダ402の液圧室62には第1セントラルシリンダ400の液圧室62が接続される。
第2セントラルシリンダ402の液圧室64には右後輪のショックアブソーバ16が接続され、その液圧室64には、第1セントラルシリンダ400の液圧室66が接続される。
したがって、第1セントラルシリンダ400において、制御ピストン204には、左前輪のショックアブソーバ10の液圧に応じた力および右後輪のショックアブソーバ16の液圧に応じた力と、右前輪のショックアブソーバ12の液圧に応じた力および左後輪のショックアブソーバ14の液圧に応じた力と、スプリング76,78の弾性力とが加わる。第2セントラルシリンダ402において、制御ピストン204には、左前輪のショックアブソーバ10の液圧に応じた力および右前輪のショックアブソーバ12の液圧に応じた力と、左後輪のショックアブソーバ14の液圧に応じた力および右後輪のショックアブソーバ16の液圧に応じた力と、スプリング76,78の弾性力とが加わる。
車両にローリングが生じ、例えば、左前輪、左後輪のショックアブソーバ10,14の液圧が高くなった場合には、第1セントラルシリンダ400,第2セントラルシリンダ402のいずれにおいても、制御ピストン204が移動することはない。それによってローリングが抑制される。
車両に前後加速度に起因するピッチングが生じ、例えば、左右前輪のショックアブソーバ10,12の液圧が高くなった場合には、第1セントラルシリンダ400において制御ピストン204は移動しないが、第2セントラルシリンダ402において制御ピストン204は移動する。それによって、ピッチングが許容される。
路面入力により、左右輪の両方に上下方向の力が同じ向きに加わった場合も同様であり、左右輪の同相移動が許容される。
前後左右の車輪のうちの1輪に上下方向の力が加わった場合には、第1セントラルシリンダ400においても第2セントラルシリンダ402においても、制御ピストン204における力の関係が変わるため、制御ピストン204が移動する。それによって、1輪の上下方向移動が許容される。
また、対角車輪に上下方向の力が同じ向きに加わった場合には、第2セントラルシリンダ402においては、制御ピストン204における力の関係が変わることはないが、第1セントラルシリンダ400においては、力の関係が変わるため、制御ピストン204が移動する。例えば、路面入力に起因して、左前輪、右後輪のショックアブソーバ10,16の液圧が高くなった場合には、第1セントラルシリンダ400においては、液圧室60,66の液圧が液圧室62,64の液圧に対して高くなるため、制御ピストン204は移動させられるが、第2セントラルシリンダ402においては、力のバランスが変わらないため、制御ピストン204は移動しないのである。それによって、対角車輪の同相移動が許容される。
このように、本実施例においては、ローリングを抑制しつつ、左右輪の同位相移動、対角車輪の同位相移動、1輪の上下方向移動を許容することができる。
なお、上記第6実施例においては、セントラルシリンダが4つのショックアブソーバの間に2つ設けられていると説明したが、2つのショックアブソーバの間に、それぞれ、セントラルシリンダが設けられ、2つのセントラルシリンダ同士が接続されると考えることもできる。
以上複数の実施例について説明したが、これらのすべてまたは一部を互いに組み合わせた態様でも、本発明を実施することができる。
その他、本発明は、前述の態様の他、当業者の知識に基づいて種々の変更、改良を施した態様で実施することができる。
本発明の第1実施例に係る車両用サスペンションシステムを概念的に示す図である。 上記車両用サスペンションシステムによって制御される減衰力の範囲を示す図である。 本発明の第2実施例に係る車両用サスペンションシステムの一部を概念的に示す図である。 本発明の第3実施例に係る車両用サスペンションシステムを概念的に示す図である。 本発明の第4実施例に係る車両用サスペンションシステムを概念的に示す図である。 上記実施例の車両用サスペンションシステムのサスペンションECUのROMに記憶された電磁弁制御プログラムを表すフローチャートである。 上記実施例のサスペンションECUのROMに記憶された別の電磁弁制御プログラムを表すフローチャートである。 本発明の第5実施例に係る車両用サスペンションシステムを概念的に示す図である。 本発明の第6実施例に係る車両用サスペンションシステムを概念的に示す図である。
符号の説明
10〜16:ショックアブソーバ 38:セントラルシリンダ 30〜36:個別通路 44,46:ピストン 50〜56:受圧面 68:制御ピストン 70,72:連通路 76,78:スプリング 80〜86:絞り 98:セントラルシリンダ 100:ピストン 130〜136:受圧面 150,152:スプリング 204:制御ピストン 250.252:ピッチ制御装置 262:電磁開閉弁 280:電磁開閉弁 282:アキュムレータ 300:サスペンションECU 400,402:セントラルシリンダ

Claims (9)

  1. 車両の複数の車輪毎に、車輪側部材と車体側部材との間にそれぞれ設けられたショックアブソーバと、
    それら複数のショックアブソーバの液圧をそれぞれ受ける複数の受圧面を有する1つ以上のピストンを備え、その1つ以上のピストンの作動により、前記複数のショックアブソーバのうちの少なくとも1つにおいて、発生する減衰力が大きい状態と小さい状態とを生じさせる液圧シリンダと
    を含むことを特徴とする車両用サスペンションシステム。
  2. 車両の複数の車輪毎に、車輪側部材と車体側部材との間にそれぞれ設けられたショックアブソーバと、
    それら複数のショックアブソーバの液圧をそれぞれ受ける複数の受圧面を有する1つ以上のピストンを備え、その1つ以上のピストンの作動により、少なくとも車両のローリングを抑制する液圧シリンダと
    を含むことを特徴とする車両用サスペンションシステム。
  3. 車両の前後左右の4つの車輪毎に、車輪側部材と車体側部材との間にそれぞれ設けられたショックアブソーバと、
    前記車両の前側、後側のそれぞれの左右のショックアブソーバの液圧を受ける受圧面が同じ向きに、前記車両の右側、左側のそれぞれの前後のショックアブソーバの液圧を受ける受圧面が互いに反対向きに設けられた1つ以上のピストンを含む液圧シリンダと
    を含むことを特徴とする車両用サスペンションシステム。
  4. 前記液圧シリンダと前記複数のショックアブソーバとをそれぞれ接続する複数の個別通路と、
    それら複数の個別通路にそれぞれ設けられた流路抵抗調整装置と
    を含む請求項1ないし3のいずれか1つに記載の車両用サスペンションシステム。
  5. 前記複数のショックアブソーバが、それぞれ、ハウジングと、そのハウジングに摺動可能に嵌合されたピストンとを含み、前記ハウジングが前記車輪側部材と前記車体側部材とのいずれか一方に取り付けられ、前記ピストンのピストンロッドがいずれか他方に取り付けられたものであり、前記ピストンによって仕切られた2つの液圧室のうち、前記車輪側部材と前記車体側部材との間の間隔が大きくなった場合に液圧が高くなる液圧室がそれぞれ前記液圧シリンダに接続された請求項1ないし4のいずれか1つに記載の車両用サスペンションシステム。
  6. 前記液圧シリンダが、第1,第2の2つのハウジングと、それら第1,第2の2つのハウジングにそれぞれ摺動可能に嵌合された第1,第2の2つのピストンと、それら2つのピストンを連結する連結ロッドと、前記2つのピストンにそれぞれ設けられ、2つのピストン各々によって仕切られた2つの液圧室同士を互いに連通させる連通路と、前記第1,第2のハウジングと前記第1、第2のピストンとの間にそれぞれ設けられた第1,第2のスプリングとを含む請求項1ないし5のいずれか1つに記載の車両用サスペンションシステム。
  7. 前記ショックアブソーバが、車両の前後左右の4つの車輪毎に設けられ、前記液圧シリンダが、前記1つ以上のピストンの作動により、前記車両の互いに対角位置にある車輪の同相移動を許容する請求項1ないし6のいずれか1つに記載の車両用サスペンションシステム。
  8. 前記ショックアブソーバが、車両の前後左右の4つの車輪毎に設けられ、前記液圧シリンダが、前記車両の右側、左側のそれぞれの前後のショックアブソーバの液圧を受ける受圧面も、前記車両の前側、後側のそれぞれの左右のショックアブソーバの液圧を受ける受圧面も、互いに反対向きに設けられた1つ以上のピストンを備え、当該サスペンションシステムが、前記右側、左側の前後のショックアブソーバの間に前記液圧シリンダと並行に設けられ、少なくとも、それら右側、左側の前後のショックアブソーバの間の作動液の流れを実質的に許容する状態と抑制する状態とに切り換え可能なピッチ制御装置を含む請求項1,2,4ないし7のいずれか1つに記載の車両用サスペンションシステム。
  9. 前記ショックアブソーバが、車両の前後左右の4つの車輪毎に設けられ、前記液圧シリンダが、前記1つ以上のピストンの作動により、前記車両のローリングとピッチングとの両方を抑制するものであり、当該車両用サスペンションシステムが、前記車両の右側、左側のそれぞれの前後のショックアブソーバの間に、前記液圧シリンダと並列に設けられ、前記車両の前側と後側との少なくとも一方の左右輪の同相移動を許容する状態と抑制する状態とに切り換え可能なピッチ制御装置を含む請求項1,2,4ないし8のいずれか1つに記載の車両用サスペンションシステム。
JP2003328799A 2003-09-19 2003-09-19 車両用サスペンションシステム Expired - Fee Related JP4356409B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003328799A JP4356409B2 (ja) 2003-09-19 2003-09-19 車両用サスペンションシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003328799A JP4356409B2 (ja) 2003-09-19 2003-09-19 車両用サスペンションシステム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008274769A Division JP2009012770A (ja) 2008-10-24 2008-10-24 車両用サスペンションシステム

Publications (2)

Publication Number Publication Date
JP2005088854A true JP2005088854A (ja) 2005-04-07
JP4356409B2 JP4356409B2 (ja) 2009-11-04

Family

ID=34458265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003328799A Expired - Fee Related JP4356409B2 (ja) 2003-09-19 2003-09-19 車両用サスペンションシステム

Country Status (1)

Country Link
JP (1) JP4356409B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306282A (ja) * 2005-04-28 2006-11-09 Toyota Motor Corp サスペンション装置
JP2007022436A (ja) * 2005-07-20 2007-02-01 Toyota Motor Corp サスペンション装置
JP2007137155A (ja) * 2005-11-16 2007-06-07 Toyota Motor Corp サスペンション装置
JP2007145121A (ja) * 2005-11-25 2007-06-14 Toyota Motor Corp 後輪クロス連結型ショックアブソーバシステムを備えた車輌
JP2007237882A (ja) * 2006-03-08 2007-09-20 Toyota Motor Corp 復帰促進式クロス連結型ショックアブソーバシステムを備えた車輌
WO2011145226A1 (ja) * 2010-05-19 2011-11-24 トヨタ自動車株式会社 車両用サスペンション装置
CN111959219A (zh) * 2020-09-03 2020-11-20 摩登汽车有限公司 汽车稳定系统及汽车

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8465731B2 (en) 2010-03-12 2013-06-18 Elc Management, Llc Probiotic color cosmetic compositions and methods

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3024037A (en) * 1956-10-16 1962-03-06 Daimler Benz Ag Wheel suspension and compensating mechanism for vehicles
US3032349A (en) * 1957-11-26 1962-05-01 Daimler Benz Ag Equalization spring system for vehicles
US3112923A (en) * 1959-12-23 1963-12-03 Ley Wilhelm Hydropneumatic stabilizer and spring suspension device for motor vehicles
JPS58124312U (ja) * 1982-02-17 1983-08-24 日産自動車株式会社 前後連成サスペンシヨン
JPS59134004A (ja) * 1983-01-21 1984-08-01 Hideo Nakada 左右交互前後関連懸架装置
JPS61285111A (ja) * 1985-06-07 1986-12-15 フオルクスヴア−ゲン・アクチエンゲゼルシヤフト 自動車用の空気圧式又は油圧空気圧式の懸架ばね装置
JPH0672127A (ja) * 1992-06-22 1994-03-15 Yamaha Motor Co Ltd 4輪車用懸架装置
JPH089288B2 (ja) * 1989-11-07 1996-01-31 メルセデス―ベンツ・アクチエンゲゼルシヤフト 液圧―空気圧懸架装置
JPH11157320A (ja) * 1997-11-27 1999-06-15 Harumitsu Matsushita 連結型ショックアブソーバー
JPH11334338A (ja) * 1998-05-25 1999-12-07 Yamaha Motor Co Ltd 車両用緩衝装置
JP2000505755A (ja) * 1994-02-25 2000-05-16 キネティック リミテッド ピッチおよびロール・コントロールつきハイドロリック・サスペンション
JP2001506560A (ja) * 1996-12-24 2001-05-22 キネティック リミテッド ロール制御機構を有する受動的車両用サスペンション装置
JP2001191778A (ja) * 2000-01-11 2001-07-17 Yamaha Motor Co Ltd 四輪車用懸架装置
JP2002067651A (ja) * 2000-08-29 2002-03-08 Kayaba Ind Co Ltd ロール制御装置
JP2003505297A (ja) * 1999-07-30 2003-02-12 ブッフ, ホセ フォントデカバ 車両用アンチロールおよびアンチピッチシステム、およびその実行用装置
JP2003146043A (ja) * 2001-11-14 2003-05-21 Toyota Motor Corp 車両用サスペンション装置
JP2004268888A (ja) * 2003-03-12 2004-09-30 Toyota Motor Corp 車両懸架装置

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3024037A (en) * 1956-10-16 1962-03-06 Daimler Benz Ag Wheel suspension and compensating mechanism for vehicles
US3032349A (en) * 1957-11-26 1962-05-01 Daimler Benz Ag Equalization spring system for vehicles
US3112923A (en) * 1959-12-23 1963-12-03 Ley Wilhelm Hydropneumatic stabilizer and spring suspension device for motor vehicles
JPS58124312U (ja) * 1982-02-17 1983-08-24 日産自動車株式会社 前後連成サスペンシヨン
JPS59134004A (ja) * 1983-01-21 1984-08-01 Hideo Nakada 左右交互前後関連懸架装置
JPS61285111A (ja) * 1985-06-07 1986-12-15 フオルクスヴア−ゲン・アクチエンゲゼルシヤフト 自動車用の空気圧式又は油圧空気圧式の懸架ばね装置
JPH089288B2 (ja) * 1989-11-07 1996-01-31 メルセデス―ベンツ・アクチエンゲゼルシヤフト 液圧―空気圧懸架装置
JPH0672127A (ja) * 1992-06-22 1994-03-15 Yamaha Motor Co Ltd 4輪車用懸架装置
JP2000505755A (ja) * 1994-02-25 2000-05-16 キネティック リミテッド ピッチおよびロール・コントロールつきハイドロリック・サスペンション
JP2001506560A (ja) * 1996-12-24 2001-05-22 キネティック リミテッド ロール制御機構を有する受動的車両用サスペンション装置
JPH11157320A (ja) * 1997-11-27 1999-06-15 Harumitsu Matsushita 連結型ショックアブソーバー
JPH11334338A (ja) * 1998-05-25 1999-12-07 Yamaha Motor Co Ltd 車両用緩衝装置
JP2003505297A (ja) * 1999-07-30 2003-02-12 ブッフ, ホセ フォントデカバ 車両用アンチロールおよびアンチピッチシステム、およびその実行用装置
JP2001191778A (ja) * 2000-01-11 2001-07-17 Yamaha Motor Co Ltd 四輪車用懸架装置
JP2002067651A (ja) * 2000-08-29 2002-03-08 Kayaba Ind Co Ltd ロール制御装置
JP2003146043A (ja) * 2001-11-14 2003-05-21 Toyota Motor Corp 車両用サスペンション装置
JP2004268888A (ja) * 2003-03-12 2004-09-30 Toyota Motor Corp 車両懸架装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306282A (ja) * 2005-04-28 2006-11-09 Toyota Motor Corp サスペンション装置
JP4631528B2 (ja) * 2005-04-28 2011-02-16 トヨタ自動車株式会社 サスペンション装置
JP2007022436A (ja) * 2005-07-20 2007-02-01 Toyota Motor Corp サスペンション装置
JP4581880B2 (ja) * 2005-07-20 2010-11-17 トヨタ自動車株式会社 サスペンション装置
JP2007137155A (ja) * 2005-11-16 2007-06-07 Toyota Motor Corp サスペンション装置
JP4534960B2 (ja) * 2005-11-16 2010-09-01 トヨタ自動車株式会社 サスペンション装置
JP4552838B2 (ja) * 2005-11-25 2010-09-29 トヨタ自動車株式会社 後輪クロス連結型ショックアブソーバシステムを備えた車輌
JP2007145121A (ja) * 2005-11-25 2007-06-14 Toyota Motor Corp 後輪クロス連結型ショックアブソーバシステムを備えた車輌
JP2007237882A (ja) * 2006-03-08 2007-09-20 Toyota Motor Corp 復帰促進式クロス連結型ショックアブソーバシステムを備えた車輌
WO2011145226A1 (ja) * 2010-05-19 2011-11-24 トヨタ自動車株式会社 車両用サスペンション装置
US8556273B2 (en) 2010-05-19 2013-10-15 Toyota Jidosha Kabushiki Kaisha Vehicle suspension device
JP5429369B2 (ja) * 2010-05-19 2014-02-26 トヨタ自動車株式会社 車両用サスペンション装置
CN111959219A (zh) * 2020-09-03 2020-11-20 摩登汽车有限公司 汽车稳定系统及汽车
CN111959219B (zh) * 2020-09-03 2023-01-10 摩登汽车有限公司 汽车稳定系统及汽车

Also Published As

Publication number Publication date
JP4356409B2 (ja) 2009-11-04

Similar Documents

Publication Publication Date Title
US7789398B2 (en) Hydraulic system for a vehicle suspension
US7686309B2 (en) Hydraulic system for a vehicle suspension
JP4254701B2 (ja) 車両懸架システム
KR100822391B1 (ko) 차량 서스펜션 시스템
EP1879760B1 (en) Hydraulic system for a vehicle suspension
EP1853442B1 (en) Hydraulic system for a vehicle suspension
JP4403475B2 (ja) サスペンション装置
JPH0419210A (ja) 車両の揺動減衰装置
JP4151599B2 (ja) 車両懸架システム
EP1989072A1 (en) Hydraulic system for a vehicle suspension
US20050252699A1 (en) Hydraulic suspension with a lock-out mechanism for an off-highway vehicle
JP4356409B2 (ja) 車両用サスペンションシステム
JP6361414B2 (ja) 車両のサスペンション装置
JP2002127727A (ja) サスペンション装置
AU2005266861B2 (en) Hydraulic vehicle suspension system
KR20050046721A (ko) 진동 댐퍼용의 제어 가능한 피스톤 밸브 및 플랩 밸브
JP5549889B2 (ja) 車両のサスペンション装置
JP2009012770A (ja) 車両用サスペンションシステム
JP2005145137A (ja) サスペンションシステム
JP2008008471A (ja) 減衰力調整式油圧緩衝器
AU2004215923A1 (en) Hydraulic system for a vehicle suspension
JP2020001489A (ja) サスペンション装置
JP2003159924A (ja) 車両用サスペンション装置
JP2003011636A (ja) サスペンション装置
JP2005127440A (ja) 流体作動装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees