JP2004206948A - 反応ガス循環型燃料電池システム - Google Patents

反応ガス循環型燃料電池システム Download PDF

Info

Publication number
JP2004206948A
JP2004206948A JP2002372451A JP2002372451A JP2004206948A JP 2004206948 A JP2004206948 A JP 2004206948A JP 2002372451 A JP2002372451 A JP 2002372451A JP 2002372451 A JP2002372451 A JP 2002372451A JP 2004206948 A JP2004206948 A JP 2004206948A
Authority
JP
Japan
Prior art keywords
fuel
circulation
fuel cell
flow path
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002372451A
Other languages
English (en)
Other versions
JP3939640B2 (ja
Inventor
Takeshi Ushio
健 牛尾
Yoshinori Wariishi
義典 割石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002372451A priority Critical patent/JP3939640B2/ja
Publication of JP2004206948A publication Critical patent/JP2004206948A/ja
Application granted granted Critical
Publication of JP3939640B2 publication Critical patent/JP3939640B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】反応ガスを循環させるために要する出力が増大したり、システムが大型化することを抑制しつつ、所望の反応ガスの循環量を確保する。
【解決手段】燃料供給装置13とアノード32側の入口側配管41との間にエゼクタ14を配置し、エゼクタ14の副流導入口と燃料電池11のアノード側の出口側配管43とを接続する燃料循環流路15に循環ポンプ16を迂回するバイパス流路17を設けた。バイパス流路17には、ガスの流通方向に沿って順次、第1の逆止弁21と、バイパス側ポンプ18と、燃料分離器19と、第2の逆止弁22とを備えた。燃料分離器19を、水素を選択的に透過させる水素選択透過膜19aを両側から挟み込むようにして配置されたガス導入室19bと水素分離室19cとを備えて構成し、水素選択透過膜19aを、例えばパラジウムの薄膜や芳香族ポリイミド等の高分子膜とした。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、例えば固体高分子膜型燃料電池等の燃料電池を備える反応ガス循環型燃料電池システムに関する。
【0002】
【従来の技術】
従来、例えば固体高分子膜型燃料電池は、固体高分子電解質膜を燃料極(アノード)と酸素極(カソード)とで両側から挟み込んで形成されたセルに対し、複数のセルを積層して構成されたスタック(以下において燃料電池と呼ぶ)を備えており、燃料極に燃料として水素が供給され、酸素極に酸化剤として空気が供給されて、燃料極で触媒反応により発生した水素イオンが、固体高分子電解質膜を通過して酸素極まで移動して、酸素極で酸素と電気化学反応を起こして発電するようになっている。そして、このような燃料電池において発電効率を高く維持するために、燃料電池から排出される反応ガス(例えば、燃料極側における水素)を新たに燃料電池へ供給される反応ガスに混合して燃料電池へ再循環させる反応ガス循環型燃料電池システムが知られている。
ところで、このような反応ガス循環型燃料電池システムでは、酸素極に供給される空気に含まれる窒素が固体高分子電解質膜を通過して燃料極まで移動することによって、燃料極の循環系内を流通する反応ガス中の窒素濃度が上昇し、相対的に水素の分圧や循環量が低下してしまうという問題が生じる。
このような問題に対して、従来、例えば燃料極の循環系内に、入力される反応ガス中の水素成分を分離し、濃縮して出力する水素分離膜を備えた燃料電池発電プラントが知られている(例えば、特許文献1参照)が知られている。
また、従来、例えば燃料極の循環系内に、入力される反応ガス中の水素成分を電気化学反応により分離して出力する水素分離器を備えた燃料電池発電装置が知られている(例えば、特許文献2参照)が知られている。
【0003】
【特許文献1】
特開平7−302609号公報
【特許文献2】
特開2001−23670号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来技術に係る燃料電池発電プラントや燃料電池発電装置において、燃料極の循環系内を流通する反応ガスは、常に水素分離膜や水素分離器を通過するように設定されていることから、通過時に生じる圧力損失が過剰に増大する場合がある。この場合、所望の水素循環量を確保するためには、例えば水素分離膜や水素分離器を大型化させる必要が生じたり、例えば循環系内にて反応ガスを循環させるための循環ポンプの出力を増大させる必要が生じ、循環ポンプの消費電力が増大したり、循環ポンプや燃料電池システムが大型化してしまうという問題が生じる。
本発明は上記事情に鑑みてなされたもので、反応ガスを循環させるために要する出力が増大したり、システムが大型化することを抑制しつつ、所望の反応ガスの循環量を確保することが可能な反応ガス循環型燃料電池システムを提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決して係る目的を達成するために、請求項1に記載の本発明の反応ガス循環型燃料電池システムは、固体高分子電解質膜を両側から挟み込む燃料極(例えば、実施の形態でのアノード32)と酸素極(例えば、実施の形態でのカソード33)を有し、反応ガスとして、水素を含む燃料が前記燃料極へ供給され、酸素を含む酸化剤が前記酸素極へ供給され、電気化学反応によって発電する燃料電池と、前記燃料極から排出される排出ガスを流通させる排出流路(例えば、実施の形態での出口側配管43)と、前記燃料極へ供給される前記燃料を流通させる供給流路(例えば、実施の形態での入口側配管41、燃料供給管52)とを接続し、前記排出ガスを新たに供給される前記燃料に合流させて前記燃料電池へ再循環させる循環流路(例えば、実施の形態での燃料循環流路15)と、前記循環流路から分岐して前記循環流路または前記供給流路に接続される分岐流路(例えば、実施の形態でのバイパス流路17、第2の燃料循環流路51、バイパス流路53)と、前記分岐流路に配置され、前記分岐流路を流通する前記排出ガスから前記燃料を選択的に分離して前記分岐流路に排出可能な燃料分離器とを備えることを特徴としている。
【0006】
上記構成の反応ガス循環型燃料電池システムによれば、燃料電池の燃料極から排出される排出ガスが、循環流路によって燃料電池の燃料極へ再循環させられる状態において、例えば酸素極から燃料極への適宜のガス(例えば、窒素等)の透過等によって、排出ガス中の燃料の濃度が相対的に低下する虞がある場合であっても、燃料分離器において排出ガスから燃料が分離されて分岐流路へ排出されることから、燃料極へ再循環させられる排出ガス中の燃料の濃度が過剰に低下することを防止することができる。
しかも、燃料分離器は循環流路から分岐する分岐流路に配置されていることから、例えば燃料分離器における圧力損失等によって、循環流路における燃料の循環量が過剰に低下することを防止することができる。
【0007】
さらに、請求項2に記載の本発明の反応ガス循環型燃料電池システムは、前記循環流路に配置され、前記排出ガスを循環させる循環ポンプを備え、前記分岐流路は前記循環ポンプの上流部と下流部とを接続し、前記循環ポンプを迂回するように前記排出ガスを流通させることを特徴としている。
【0008】
上記構成の反応ガス循環型燃料電池システムによれば、燃料分離器は循環ポンプを迂回する分岐流路に配置されていることから、循環流路における燃料の所望の循環量を確保するために要する循環ポンプの出力が過剰に増大することを防止することができる。
【0009】
さらに、請求項3に記載の本発明の反応ガス循環型燃料電池システムは、前記循環流路に配置され、前記排出ガスを循環させる循環ポンプを備え、前記分岐流路は前記循環ポンプの上流部と下流部とを接続し、前記循環ポンプを再循環するように前記排出ガスを流通させることを特徴としている。
【0010】
上記構成の反応ガス循環型燃料電池システムによれば、燃料分離器は循環ポンプを再循環する分岐流路に配置されていることから、循環ポンプの出力を有効に利用して分岐流路に排出ガスを流通させることができる。
【0011】
さらに、請求項4に記載の本発明の反応ガス循環型燃料電池システムは、前記分岐流路において、前記燃料分離器の上流側に配置され、前記排出ガスを前記燃料分離器へ流通させる流通ポンプ(例えば、実施の形態でのバイパス側ポンプ18)を備えることを特徴としている。
【0012】
上記構成の反応ガス循環型燃料電池システムによれば、流通ポンプの駆動により、例えば燃料電池の発電状態や燃料電池から排出される排出ガスに含まれる燃料や燃料以外の物質の濃度等に応じて、循環流路を流通する排出ガスのうち、燃料分離器へ供給される排出ガスの流量や圧力を適宜に変更することができ、燃料極へ再循環させられる排出ガス中の燃料の濃度を適切に制御することができる。
【0013】
さらに、請求項5に記載の本発明の反応ガス循環型燃料電池システムでは、前記分岐流路は、前記排出ガスの逆流を規制する逆止弁(例えば、実施の形態での第1および第2の逆止弁21,22)を備えることを特徴としている。
【0014】
上記構成の反応ガス循環型燃料電池システムによれば、例えば燃料電池の発電状態の変動に応じて燃料極に供給される燃料の供給圧力が変化した場合には、燃料分離器の下流側と上流側との間の圧力差を過渡的に増大させることができるため、燃料分離器において分離効率を高めることができる。
【0015】
さらに、請求項6に記載の本発明の反応ガス循環型燃料電池システムは、前記燃料分離器に接続され、前記排出ガスから前記燃料が分離されてなる不純物を外部に排出可能な不純物排出流路(例えば、実施の形態での排出管23a)を備えることを特徴としている。
【0016】
上記構成の反応ガス循環型燃料電池システムによれば、燃料分離器に供給された排出ガスのうち、分離された燃料以外の不純物を外部に排出することによって、例えば分岐流路および循環流路および供給流路を備えて構成される燃料の供給系において、不純物の濃度が過剰に増大することを防止することができる。
【0017】
さらに、請求項7に記載の本発明の反応ガス循環型燃料電池システムは、前記不純物排出流路に配置され、前記不純物の流量を変更可能な制御弁(例えば、実施の形態での排出弁23)を備えることを特徴としている。
【0018】
上記構成の反応ガス循環型燃料電池システムによれば、例えば燃料電池の発電状態や燃料電池から排出される排出ガスに含まれる燃料や燃料以外の物質の濃度等に応じて、分岐流路および循環流路および供給流路を備えて構成される燃料の供給系における不純物の濃度を適切に制御することができる。
【0019】
さらに、請求項8に記載の本発明の反応ガス循環型燃料電池システムは、前記不純物排出流路に配置され、前記不純物に含まれる前記燃料を燃焼可能な燃焼器を備えることを特徴としている。
【0020】
上記構成の反応ガス循環型燃料電池システムによれば、不純物排出流路を流通する不純物に燃料が含まれる場合であっても、燃料が外部に排出されてしまうことを防止することができる。しかも、燃料の燃焼により発生した熱を、例えば燃料電池に対する加温等に利用することができる。
【0021】
さらに、請求項9に記載の本発明の反応ガス循環型燃料電池システムは、前記排出ガスから前記燃料を選択的に分離する際に、前記排出ガスに含まれる前記燃料以外の物質が分離された燃料に混入する割合の逆数に係る分離率が、前記燃料分離器の前記分離率よりも小さな値である第2の燃料分離器を前記循環流路に備え、前記分岐流路は、前記第2の燃料分離器と、前記循環経路または前記供給流路とを接続し、前記第2の燃料分離器にて前記排出ガスから前記燃料が分離されてなる不純物濃縮ガスを前記燃料分離器へ供給することを特徴としている。
【0022】
上記構成の反応ガス循環型燃料電池システムによれば、循環流路に配置された第2の燃料分離器によって相対的に小さな分離率で燃料を分離し、さらに、分岐流路の燃料分離器によって相対的に大きな分離率で燃料を分離することによって、燃料極へ再循環させられる排出ガス中の燃料の濃度が過剰に低下することを、より一層、確実に防止することができる。しかも、第2の燃料分離器の分離率が相対的に小さな値に設定されることで、循環流路を流通する排出ガスが定常的に第2の燃料分離器を通過する際の圧力損失が増大することを抑制し、循環流路における燃料の循環量が過剰に低下することを防止することができる。
【0023】
さらに、請求項10に記載の本発明の反応ガス循環型燃料電池システムは、少なくとも前記供給流路または前記排出流路の何れかに配置され、前記燃料あるいは前記燃料以外の所定物質の濃度を検出する濃度検出器(例えば、実施の形態での第1および第2の水素センサ45,46)と、前記濃度検出器の検出結果に応じて、前記不純物排出流路から排出される前記不純物の流量を制御する排出流量制御手段(例えば、実施の形態での制御装置24)および前記燃料分離器での前記排出ガスの分離状態を制御する分離制御手段(例えば、実施の形態での制御装置24が兼ねる)とを備えることを特徴としている。
【0024】
上記構成の反応ガス循環型燃料電池システムによれば、例えば、燃料電池の燃料極に再循環させられる排出ガスや燃料極から排出される排出ガスに含まれる燃料の濃度が所定の下限値を超えたり、燃料以外の所定物質の濃度が所定の上限値を超えるときには、排出流量制御手段により不純物排出流路から排出される不純物の流量を増大させると共に分離制御手段により、例えば燃料分離器へ供給される排出ガスの圧力を増大させることで、分岐流路および循環流路および供給流路を備えて構成される燃料の供給系において燃料の濃度が過剰に低下することを防止することができる。
【0025】
さらに、請求項11に記載の本発明の反応ガス循環型燃料電池システムは、前記燃料電池の状態を検出する状態検出手段(例えば、実施の形態でのセル電圧検出器47)と、前記状態検出手段の検出結果に応じて、前記不純物排出流路から排出される前記不純物の流量を制御する排出流量制御手段(例えば、実施の形態での制御装置24)および前記燃料分離器での前記排出ガスの分離状態を制御する分離制御手段(例えば、実施の形態での制御装置24が兼ねる)とを備えることを特徴としている。
【0026】
上記構成の反応ガス循環型燃料電池システムによれば、状態検出手段は燃料電池の状態として、例えば陽イオン交換膜等からなる固体高分子電解質膜を燃料極と酸素極とで挟持してなる電解質電極構造体を、更に一対のセパレータで挟持してなる燃料電池セルの電圧等を検出する。ここで、排出流量制御手段および供給圧力制御手段は、検出されたセルの電圧が所定の下限値を超えた場合には、分岐流路および循環流路および供給流路を備えて構成される燃料の供給系において燃料の濃度が過剰に低下する虞があると判断する。そして、排出流量制御手段および分離制御手段は、不純物排出流路から排出される不純物の流量を増大させると共に、例えば燃料分離器へ供給される排出ガスの圧力を増大させる。これにより、燃料の供給系において燃料の濃度が過剰に低下することを防止することができる。
【0027】
さらに、請求項12に記載の本発明の反応ガス循環型燃料電池システムでは、前記燃料分離器は、前記燃料を選択的に透過させる選択透過膜(例えば、実施の形態での水素選択透過膜19a)、または、イオン化された前記燃料に対する導電性を有する電解質膜(例えば、実施の形態での固体電解質膜)および該電解質膜を両側から挟み込み、外部電源から通電される電極部材を具備する電気化学的ポンプ(例えば、実施の形態での電気化学的水素ポンプ)を備えることを特徴としている。
【0028】
上記構成の反応ガス循環型燃料電池システムによれば、燃料分離器は、排出ガスの供給圧力により選択透過膜の一方の面と他方の面との間に生じる圧力差に応じて排出ガスから燃料を選択的に分離したり、外部電源からの通電により一方の電極部材にて燃料をイオン化すると共に、他方の電極部材にてイオンから燃料を生成することにより排出ガスから燃料を選択的に分離する。
【0029】
【発明の実施の形態】
以下、本発明の反応ガス循環型燃料電池システムの一実施形態について添付図面を参照しながら説明する。
本実施の形態に係る反応ガス循環型燃料電池システム10は、例えば燃料電池車両に駆動用電源として搭載されており、図1に示すように、燃料電池11と、エアーコンプレッサー12と、燃料供給装置13と、エゼクタ14と、燃料循環流路15と、循環ポンプ16と、バイパス流路17と、バイパス側ポンプ18と、燃料分離器19と、2つの第1および第2の逆止弁21,22と、排出弁23と、制御装置(ECU)24とを備えて構成されている。
【0030】
燃料電池11は、陽イオン交換膜等からなる固体高分子電解質膜(膜)31を、アノード触媒およびガス拡散層からなる燃料極(アノード)32と、カソード触媒およびガス拡散層からなる酸素極(カソード)33とで挟持してなる電解質電極構造体を、更に一対のセパレータ34,35で挟持してなる燃料電池セルを多数組積層して構成されている。
そして、電解質電極構造体と対向する各セパレータ34,35の表面上には凹溝が形成されており、各凹溝と電解質電極構造体とによってアノード流路およびカソード流路が形成されている。
【0031】
燃料電池11のアノード32には、アノード流路に接続された入口側配管41から水素等の燃料ガス(反応ガス)が供給され、アノード32の触媒電極上で触媒反応によりイオン化された水素は、適度に加湿された固体高分子電解質膜21を介してカソード33へと移動し、この移動に伴って発生する電子が外部回路(図示略)に取り出され、直流の電気エネルギとして利用される。カソード33には、例えば酸素を含む酸化剤ガス(反応ガス)である空気が、カソード流路に接続された入口側配管42からエアーコンプレッサー12によって供給され、このカソード33において、水素イオン、電子及び酸素が反応して水が生成される。そして、アノード流路に接続された出口側配管43およびカソード流路に接続された出口側配管44から未反応の反応ガスを含む排出ガスが燃料電池11の外部に排出される。
【0032】
燃料供給装置13は、例えば高圧の水素タンクと、エアーコンプレッサー12から供給される空気の圧力を信号圧として所定圧力の水素を排出する空気式の比例圧力制御弁等とを備えて構成され、この燃料供給装置13から供給される水素は、エゼクタ14を介して燃料電池11のアノード32側の入口側配管41へと流通させられる。
エゼクタ14は、燃料供給装置13から供給され、内部を流通する高速の水素ガス流の近傍に発生する負圧によって、副流とされる燃料電池11のアノード側の出口側配管43からの排出ガスを吸い込み、この排出ガスを燃料供給装置13から供給される水素と混合し、反応ガスとして燃料電池11へ再度供給することで、燃料電池11から排出される排出ガスを循環させる。すなわち、エゼクタ14の副流導入口は燃料循環流路15によって燃料電池11のアノード側の出口側配管43と接続されており、さらに、この燃料循環流路15には排出ガスを循環させるための循環ポンプ16が備えられている。
【0033】
燃料循環流路15には、循環ポンプ16を迂回するバイパス流路17が設けられており、このバイパス流路17には、排出ガスの流通方向に沿って順次、第1の逆止弁21と、バイパス側ポンプ18と、燃料分離器19と、第2の逆止弁22とが備えられている。
例えば、燃料電池11の発電状態等に応じて、バイパス側ポンプ18が制御装置24の制御により駆動されると、燃料循環流路15内を流通する排出ガスの全量あるいは適宜の量が燃料分離器19に導入され、燃料分離器19にて分離された水素が燃料循環流路15内に戻るようになっている。
【0034】
燃料分離器19は、導入された排出ガスに含まれる水素のみを選択的に分離してバイパス流路17へ排出するものであって、例えば、水素を選択的に透過させる水素選択透過膜19aを両側から挟み込むようにして配置されたガス導入室19bと水素分離室19cとを備えて構成されている。なお、水素選択透過膜19aは、例えばパラジウムの薄膜や芳香族ポリイミド等の高分子膜とされている。ここで、バイパス側ポンプ18によって燃料循環流路15からバイパス流路17へ分流された排出ガスは、先ず、ガス導入室19bに導入される。そして、ガス導入室19bの排出ガスに含まれる水素は、バイパス側ポンプ18により発生させられた圧力によって、水素選択透過膜19aを透過させられ、水素分離室19cへと流通させられる。一方、水素以外の不純物(例えば、窒素等)はガス導入室19bに残留させられ、バイパス側ポンプ18により発生させられた圧力によって濃縮される。そして、水素分離室19cの水素は、バイパス流路17の第2の逆止弁22を介して燃料循環流路15へと流通させられる。
なお、ガス導入室19bには、例えば制御装置24により開閉制御される排出弁23を有する排出管23aが設けられており、ガス導入室19bに残留する水素以外の不純物を外部に排出することができるようにされている。
【0035】
制御装置24は、例えば、車両の運転状態に応じてエアーコンプレッサー12の回転数に対する指令値を算出し、この指令値に応じてエアーコンプレッサー12の動作を制御することによって、燃料電池11の発電状態を制御する。
さらに、制御装置24は、例えば、燃料電池11のアノード32に供給される反応ガスに含まれる水素の濃度や燃料電池11のアノード32から排出される排出ガスに含まれる水素の濃度や燃料電池11の発電状態(例えば、燃料電池セルの出力電圧であるセル電圧等)に基づいて、バイパス側ポンプ18の駆動および排出弁23の開閉動作を制御する。
【0036】
例えば、制御装置24は、燃料電池11に供給される反応ガスや燃料電池11から排出される排出ガスの水素濃度が所定濃度以下になったときや、セル電圧が所定電圧以下になったときにバイパス側ポンプ18を駆動し、燃料循環流路15内の排出ガスが燃料分離器19へ導入されるように設定する。このとき、制御装置24は、例えば車両の運転状態等に応じて、バイパス側ポンプ18と共に循環ポンプ16の動作を制御することによって、燃料分離器19へ導入する排出ガスの量を適宜に変更可能であり、燃料循環流路15内を流通する排出ガスの全量あるいは適宜の量を燃料分離器19へ導入可能である。
さらに、このとき、燃料分離器19へ導入する排出ガスの量を制御することに加えて、制御装置24は、燃料分離器19へ導入する排出ガスの圧力を制御することで分離状態を制御する。すなわち、燃料分離器19においては、水素選択透過膜19aの上流側のガス導入室19bと下流側の水素分離室19cとの間の差圧が大きくなることに伴い、水素選択透過膜19aを透過する水素の量が増大するため、制御装置24は、例えばバイパス側ポンプ18へ供給する駆動電流に対する電流指令値を増大させて、ガス導入室19bに導入される排出ガスの圧力を増大させる。これにより、水素選択透過膜19aの上流側と下流側との間の差圧が増大し、水素選択透過膜19aを透過して燃料循環流路15内に戻る水素の量が増大すると共に、燃料循環流路15内に存在する水素以外の不純物の量が低減され、燃料循環流路15内を流通する排出ガスの水素濃度が増大させられる。
【0037】
このため、制御装置24には、例えば、燃料電池11のアノード32側の入口側配管41に設けられた第1の水素センサ45から出力される検出信号と、燃料電池11のアノード32側の出口側配管43に設けられた第2の水素センサ46から出力される検出信号と、燃料電池11の発電状態を検出するためのセル電圧検出器47から出力される検出信号とが入力されている。
なお、各水素センサ45,46は、例えばガス接触燃焼式の水素センサや、例えば熱伝導式水素センサや、例えば超音波式ガスセンサ等とされている。
【0038】
上述したように、本実施の形態による反応ガス循環型燃料電池システム10によれば、燃料循環流路15を流通する排出ガスのうち燃料分離器19へ導入される排出ガスの量を適宜に変更可能であり、燃料電池11の運転時において、循環ポンプ16の出力が増大することを抑制しつつ、燃料循環流路15を流通する排出ガスおよび反応ガス中の不純物の濃度が過剰に増大することを防止することができる。
【0039】
なお、上述した本実施の形態においては、燃料循環流路15の循環ポンプ16を迂回するバイパス流路17に燃料分離器19を配置するとしたが、これに限定されず、例えば図2に示す本実施形態の第1変形例に係る反応ガス循環型燃料電池システム10のように、循環ポンプ16により排出ガスを循環させるための第2の燃料循環流路51を、循環ポンプ16に対して燃料循環流路15と並列に設け、この第2の燃料循環流路51に燃料分離器19を配置してもよい。なお、この第2の燃料循環流路51においては、ガスの流通方向に沿って順次、第1の逆止弁21と、バイパス側ポンプ18と、燃料分離器19と、第2の逆止弁22とが備えられている。
この場合、循環ポンプ16から排出された排出ガスのうちの適宜の量が第2の燃料循環流路51に分流され、燃料分離器19に導入されるようになり、上述した本実施の形態におけるバイパス側ポンプ18を省略することができ、反応ガス循環型燃料電池システム10の小型化に資することができる。
【0040】
また、上述した本実施の形態において、バイパス流路17は燃料循環流路15に設けられているとしたが、これに限定されず、例えば図3に示す本実施形態の第2変形例に係る反応ガス循環型燃料電池システム10のように、循環ポンプ16を迂回すると共に、燃料供給装置13とエゼクタ14とを接続する燃料供給管52に接続されるバイパス流路53を設け、このバイパス流路53に燃料分離器19を配置してもよい。
この場合、循環ポンプ16の下流側において燃料循環流路15からバイパス流路53へ分流された排出ガスは、第1の逆止弁21を介して燃料分離器19に導入され、燃料分離器19にて分離された水素が第2の逆止弁22を介して燃料供給管52に導入されるようになっている。
これにより、エゼクタ14の負荷(例えば、副流の吸い込み量等)を増大させること無しに、燃料電池11のアノード32に対する水素の循環量を増大させることができる。
【0041】
また、上述した本実施の形態においては、バイパス流路17に燃料分離器19を配置するとしたが、これに限定されず、例えば図4に示す本実施形態の第3変形例に係る反応ガス循環型燃料電池システム10のように、バイパス流路17に燃料分離器19を配置すると共に、燃料分離器19とは異なる水素分離率、例えば燃料分離器19よりも小さな水素分離率を有する第2の燃料分離器54を循環ポンプ16の下流側の燃料循環流路15に設けてもよい。ここで、第2の燃料分離器54は、例えば水素を選択的に透過させる水素選択透過膜54aを両側から挟み込むようにして配置されたガス導入室54bと水素分離室54cとを備えて構成され、ガス導入室54bにバイパス流路17が接続されている。
なお、水素分離率は水素を選択的に分離する能力に係るパラメータであって、例えば排出ガスに含まれる水素以外の物質(例えば、窒素等)が、分離された水素に混入する割合の逆数等とされ、水素分離率が大きくなるほど水素選択透過膜19a,54aを透過して水素分離室19c,54cへと流通する水素以外の不純物の量が減少し、水素分離室19c,54cにおける水素濃度が上昇する。一方、水素分離率が小さくなるほど水素選択透過膜19a,54aを透過して水素分離室19c,54cへと流通する水素以外の不純物の量が増大し、水素分離室19c,54cにおける水素濃度が低下する。
【0042】
すなわち、この第3変形例に係る反応ガス循環型燃料電池システム10において、燃料循環流路15を流通する排出ガスは、先ず、第2の燃料分離器54に導入され、相対的に小さな水素分離率の水素選択透過膜54aによっていわば粗く水素が選択分離され、選択分離された水素および水素選択透過膜54aを透過した適宜の量の不純物が、水素分離室54cから循環ポンプ16へと流通させられる。また、第2の燃料分離器54のガス導入室54bには水素選択透過膜54aを透過しなかった不純物が残留することから、この不純物と共に、ガス導入室54b内の排出ガスのうちの適宜の量がバイパス側ポンプ18によってバイパス流路17へと分流され、第1の逆止弁21を介して燃料分離器19へと流通させられる。
これにより、第2の燃料分離器54のガス導入室54bにおいていわば粗く濃縮された不純物は、燃料分離器19のガス導入室19bを介して排出弁23から外部へと排出されるため、燃料循環流路15を流通する排出ガスが水素選択透過膜54aを通過する際に生じる圧力損失が過剰に増大することを抑制しつつ、燃料循環流路15において不純物の濃度が過剰に増大することを、より一層、確実に防止することができる。
【0043】
なお、上述した本実施形態の第3変形例に係る反応ガス循環型燃料電池システム10においては、第2の燃料分離器54のガス導入室54bにバイパス流路17が接続されるとしたが、これに限定されず、例えば図5に示す本実施形態の第4変形例に係る反応ガス循環型燃料電池システム10のように、第2の燃料分離器54の水素分離室54cにバイパス流路17が接続されてもよい。
【0044】
また、上述した本実施の形態においては、排出弁23によりガス導入室19b内のガスを外部に排出するとしたが、これに限定されず、例えば図6に示す本実施形態の第5変形例に係る反応ガス循環型燃料電池システム10のように、排出弁23の下流側に燃焼器55を備え、ガス導入室19b内のガスを燃焼器55に導入してもよい。この燃焼器55には、例えば制御装置24により制御される流量調整弁56を介して酸素を含む酸化剤ガスである空気が供給され、燃料分離器19において分離されずにガス導入室19b内に残留し、燃焼器55に導入された水素が燃焼させられる。
これにより、水素が外部に排出されてしまうことを防止すると共に、燃焼器55にて発生した燃焼熱を、例えば燃料電池11の暖機や車両の車室内の暖房等に利用することができる。
【0045】
なお、上述した本実施の形態および第1〜第5の変形例において、燃料分離器19は水素選択透過膜19aを備えるとしたが、これに限定されず、水素選択透過膜19aの替わりに、例えば適宜の電源からの電力供給によって水素を選択的に分離可能な電気化学的水素ポンプを備えて構成されてもよい。
また、上述した第3,第4の変形例において、第2の燃料分離器54は、水素選択透過膜54aの替わりに、電気化学的水素ポンプを備えて構成されてもよい。
ここで、電気化学的水素ポンプは、例えば、プロトン導電性を有する固体電解質膜と、この固体電解質膜を両側から挟み込むガス拡散性の2つの電極部材とを備えて構成され、外部の電源から供給される電力により、一方の電極部材において水素をイオン化して固体電解質膜内を通過させ、他方の電極基材において水素イオンから水素を生成することによって、一方の電極部材に接触するガス中から水素を他方の電極部材側へと選択的に分離する。
【0046】
この電気化学的水素ポンプにおいては、供給される通電量が大きくなることに伴い、分離される水素の量が増大するため、例えば、制御装置24は、燃料電池11に供給される反応ガスや燃料電池11から排出される排出ガスの水素濃度が所定濃度以下になったときや、セル電圧が所定電圧以下になったときに、電気化学的水素ポンプへ導入する排出ガスの量を増大させると共に、電気化学的水素ポンプへ供給する通電量に対する電流指令値を増大させることで分離状態を制御する。
これにより、燃料分離器19または第2の燃料分離器54から燃料循環流路15内に戻る水素の量が増大すると共に、燃料循環流路15内に存在する水素以外の不純物の量が低減され、燃料循環流路15内を流通する排出ガスの水素濃度が増大させられる。
【0047】
なお、上述した本実施の形態および第1〜第5の変形例においては、燃料電池11のアノード32側の入口側配管41および出口側配管43に第1およひ第2の水素センサ45,46を備えるとしたが、これに限定されず、水素センサ45,46の替わりに、例えば窒素等の不純物の濃度を検出する不純物センサを備えてもよい。
【0048】
なお、上述した本実施の形態および第1〜第5の変形例においては、第1および第2の逆止弁21,22を省略可能である。
【0049】
【発明の効果】
以上説明したように、本発明の反応ガス循環型燃料電池システムによれば、循環流路における燃料の循環量が過剰に低下することを防止しつつ、燃料極へ再循環させられる排出ガス中の燃料の濃度が過剰に低下することを防止することができる。
さらに、請求項2に記載の反応ガス循環型燃料電池システムによれば、循環流路における燃料の所望の循環量を確保するために要する循環ポンプの出力が過剰に増大することを防止することができる。
さらに、請求項3に記載の反応ガス循環型燃料電池システムによれば、循環ポンプの出力を有効に利用して分岐流路に排出ガスを流通させることができる。
【0050】
さらに、請求項4に記載の反応ガス循環型燃料電池システムによれば、流通ポンプの駆動により、循環流路を流通する排出ガスのうち、燃料分離器へ供給される排出ガスの流量や圧力を適宜に変更することができ、燃料極へ再循環させられる排出ガス中の燃料の濃度を適切に制御することができる。
さらに、請求項5に記載の反応ガス循環型燃料電池システムによれば、例えば燃料極に供給される燃料の供給圧力が変化した場合には、燃料分離器の下流側と上流側との間の圧力差を過渡的に増大させることができるため、燃料分離器において分離効率を高めることができる。
【0051】
さらに、請求項6に記載の燃料電池システムによれば、燃料分離器に供給された排出ガスのうち、分離された燃料以外の不純物を外部に排出することによって、分岐流路および循環流路および供給流路を備えて構成される燃料の供給系において、不純物の濃度が過剰に増大することを防止することができる。
さらに、請求項7に記載の反応ガス循環型燃料電池システムによれば、例えば燃料電池の発電状態や燃料電池から排出される排出ガスに含まれる燃料や燃料以外の物質の濃度等に応じて、分岐流路および循環流路および供給流路を備えて構成される燃料の供給系における不純物の濃度を適切に制御することができる。
【0052】
さらに、請求項8に記載の燃料電池システムによれば、不純物排出流路を流通する不純物に燃料が含まれる場合であっても、燃料が外部に排出されてしまうことを防止することができる。しかも、燃料の燃焼により発生した熱を、例えば燃料電池に対する加温等に利用することができる。
さらに、請求項9に記載の燃料電池システムによれば、燃料極へ再循環させられる排出ガス中の燃料の濃度が過剰に低下することを、より一層、確実に防止することができる。しかも、循環流路を流通する排出ガスが定常的に第2の燃料分離器を通過する際の圧力損失が増大することを抑制し、循環流路における燃料の循環量が過剰に低下することを防止することができる。
【0053】
さらに、請求項11に記載の燃料電池システムによれば、燃料電池の状態に応じて、例えば分岐流路および循環流路および供給流路を備えて構成される燃料の供給系での燃料の濃度が所定濃度を超えて低下する虞があるか否かを判定することができ、燃料極へ再循環させられる排出ガス中の燃料の濃度を制御する際の制御方法の多様性を増大させることができる。
さらに、請求項12に記載の燃料電池システムによれば、選択透過膜を備えて燃料分離器を構成することにより、燃料分離器の構成に要する費用を削減することができる。また、電気化学的ポンプを備えて燃料分離器を構成することにより、燃料分離器における圧力損失の増大を抑制することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る反応ガス循環型燃料電池システムの構成図である。
【図2】本実施形態の第1変形例に係る反応ガス循環型燃料電池システムの構成図である。
【図3】本実施形態の第2変形例に係る反応ガス循環型燃料電池システムの構成図である。
【図4】本実施形態の第3変形例に係る反応ガス循環型燃料電池システムの構成図である。
【図5】本実施形態の第4変形例に係る反応ガス循環型燃料電池システムの構成図である。
【図6】本実施形態の第5変形例に係る反応ガス循環型燃料電池システムの構成図である。
【符号の説明】
10 反応ガス循環型燃料電池システム
15 燃料循環流路(循環流路)
17 バイパス流路(分岐流路)
18 バイパス側ポンプ(流通ポンプ)
19a 水素選択透過膜(選択透過膜)
21 第1の逆止弁
22 第2の逆止弁
23 排出弁(制御弁)
23a 排出管(不純物排出流路)
24 制御装置(排出流量制御手段、分離制御手段)
32 アノード(燃料極)
33 カソード(酸素極)
41 入口側配管(供給流路)
43 出口側配管(排出流路)
45 第1の水素センサ(濃度検出器)
46 第2の水素センサ(濃度検出器)
47 セル電圧検出器(状態検出手段)
51 第2の燃料循環流路(分岐流路)
52 燃料供給管(供給流路)
53 バイパス流路(分岐流路)

Claims (12)

  1. 固体高分子電解質膜を両側から挟み込む燃料極と酸素極を有し、反応ガスとして、水素を含む燃料が前記燃料極へ供給され、酸素を含む酸化剤が前記酸素極へ供給され、電気化学反応によって発電する燃料電池と、
    前記燃料極から排出される排出ガスを流通させる排出流路と、前記燃料極へ供給される前記燃料を流通させる供給流路とを接続し、前記排出ガスを新たに供給される前記燃料に合流させて前記燃料電池へ再循環させる循環流路と、
    前記循環流路から分岐して前記循環流路または前記供給流路に接続される分岐流路と、
    前記分岐流路に配置され、前記分岐流路を流通する前記排出ガスから前記燃料を選択的に分離して前記分岐流路に排出可能な燃料分離器とを備えることを特徴とする反応ガス循環型燃料電池システム。
  2. 前記循環流路に配置され、前記排出ガスを循環させる循環ポンプを備え、
    前記分岐流路は前記循環ポンプの上流部と下流部とを接続し、前記循環ポンプを迂回するように前記排出ガスを流通させることを特徴とする請求項1に記載の反応ガス循環型燃料電池システム。
  3. 前記循環流路に配置され、前記排出ガスを循環させる循環ポンプを備え、
    前記分岐流路は前記循環ポンプの上流部と下流部とを接続し、前記循環ポンプを再循環するように前記排出ガスを流通させることを特徴とする請求項1に記載の反応ガス循環型燃料電池システム。
  4. 前記分岐流路において、前記燃料分離器の上流側に配置され、前記排出ガスを前記燃料分離器へ流通させる流通ポンプを備えることを特徴とする請求項1から請求項3の何れかに記載の反応ガス循環型燃料電池システム。
  5. 前記分岐流路は、前記排出ガスの逆流を規制する逆止弁を備えることを特徴とする請求項1から請求項4の何れかに記載の反応ガス循環型燃料電池システム。
  6. 前記燃料分離器に接続され、前記排出ガスから前記燃料が分離されてなる不純物を外部に排出可能な不純物排出流路を備えることを特徴とする請求項1から請求項5の何れかに記載の反応ガス循環型燃料電池システム。
  7. 前記不純物排出流路に配置され、前記不純物の流量を変更可能な制御弁を備えることを特徴とする請求項6に記載の反応ガス循環型燃料電池システム。
  8. 前記不純物排出流路に配置され、前記不純物に含まれる前記燃料を燃焼可能な燃焼器を備えることを特徴とする請求項6または請求項7の何れかに記載の反応ガス循環型燃料電池システム。
  9. 前記排出ガスから前記燃料を選択的に分離する際に、前記排出ガスに含まれる前記燃料以外の物質が分離された燃料に混入する割合の逆数に係る分離率が、前記燃料分離器の前記分離率よりも小さな値である第2の燃料分離器を前記循環流路に備え、
    前記分岐流路は、前記第2の燃料分離器と、前記循環経路または前記供給流路とを接続し、前記第2の燃料分離器にて前記排出ガスから前記燃料が分離されてなる不純物濃縮ガスを前記燃料分離器へ供給することを特徴とする請求項1から請求項8の何れかに記載の反応ガス循環型燃料電池システム。
  10. 少なくとも前記供給流路または前記排出流路の何れかに配置され、前記燃料あるいは前記燃料以外の所定物質の濃度を検出する濃度検出器と、
    前記濃度検出器の検出結果に応じて、前記不純物排出流路から排出される前記不純物の流量を制御する排出流量制御手段および前記燃料分離器での前記排出ガスの分離状態を制御する分離制御手段とを備えることを特徴とする請求項6から請求項9の何れかに記載の反応ガス循環型燃料電池システム。
  11. 前記燃料電池の状態を検出する状態検出手段と、
    前記状態検出手段の検出結果に応じて、前記不純物排出流路から排出される前記不純物の流量を制御する排出流量制御手段および前記燃料分離器での前記排出ガスの分離状態を制御する分離制御手段とを備えることを特徴とする請求項6から請求項9の何れかに記載の反応ガス循環型燃料電池システム。
  12. 前記燃料分離器は、前記燃料を選択的に透過させる選択透過膜、または、イオン化された前記燃料に対する導電性を有する電解質膜および該電解質膜を両側から挟み込み、外部電源から通電される電極部材を具備する電気化学的ポンプを備えることを特徴とする請求項1から請求項11の何れかに記載の反応ガス循環型燃料電池システム。
JP2002372451A 2002-12-24 2002-12-24 反応ガス循環型燃料電池システム Expired - Fee Related JP3939640B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002372451A JP3939640B2 (ja) 2002-12-24 2002-12-24 反応ガス循環型燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002372451A JP3939640B2 (ja) 2002-12-24 2002-12-24 反応ガス循環型燃料電池システム

Publications (2)

Publication Number Publication Date
JP2004206948A true JP2004206948A (ja) 2004-07-22
JP3939640B2 JP3939640B2 (ja) 2007-07-04

Family

ID=32811050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002372451A Expired - Fee Related JP3939640B2 (ja) 2002-12-24 2002-12-24 反応ガス循環型燃料電池システム

Country Status (1)

Country Link
JP (1) JP3939640B2 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203143A (ja) * 2004-01-13 2005-07-28 Toyota Motor Corp 燃料電池システム
JP2006100238A (ja) * 2004-09-06 2006-04-13 Toyota Motor Corp 燃料電池システム
JP2007042506A (ja) * 2005-08-04 2007-02-15 Honda Motor Co Ltd 燃料電池システム
JP2007042452A (ja) * 2005-08-03 2007-02-15 Seiko Instruments Inc 燃料電池システム
JP2007048493A (ja) * 2005-08-08 2007-02-22 Hitachi Ltd 燃料電池発電システム
JP2007128889A (ja) * 2005-11-03 2007-05-24 Gm Global Technology Operations Inc 1段目にガス流リサイクルを備えたカスケード式スタック
JP2007157718A (ja) * 2005-12-06 2007-06-21 Honda Motor Co Ltd 燃料電池の操作方法及び燃料電池システム
JP2007516585A (ja) * 2003-12-23 2007-06-21 ユーティーシー フューエル セルズ,エルエルシー 水素ポンプ式燃料電池
JP2008507102A (ja) * 2004-07-20 2008-03-06 コンセプション エ デヴェロップマン ミシュラン ソシエテ アノニム 燃料電池の高分子膜の加湿制御
JP2008523550A (ja) * 2004-12-10 2008-07-03 ヌベラ・フュエル・セルズ・ヨーロッパ・ソチエタ・ア・レスポンサビリタ・リミタータ 水素を内部で再循環させる燃料電池
JP2009503790A (ja) * 2005-07-25 2009-01-29 ブルーム エナジー コーポレーション 電気化学アノードの排気のリサイクルを行う燃料電池システム
JP2009503789A (ja) * 2005-07-25 2009-01-29 ブルーム エナジー コーポレーション アノード排気を部分的にリサイクルする燃料電池システム
WO2009016985A1 (ja) * 2007-07-27 2009-02-05 Toyota Jidosha Kabushiki Kaisha 燃料電池システム及びその制御方法
JP2009295377A (ja) * 2008-06-04 2009-12-17 Toyota Boshoku Corp 燃料電池システム
WO2010134174A1 (ja) * 2009-05-20 2010-11-25 トヨタ自動車株式会社 燃料電池システム
CN101978541A (zh) * 2008-03-18 2011-02-16 戴姆勒股份公司 燃料电池系统
JP2011100698A (ja) * 2009-11-09 2011-05-19 Itochu Ceratech Corp 2次電池と固体酸化物型燃料電池とを備えた電動式移動体
CN102376967A (zh) * 2010-08-20 2012-03-14 波音公司 燃料电池电力和水产生系统
US8298712B2 (en) 2007-07-18 2012-10-30 Toyota Jidosha Kabushiki Kaisha Fuel cell system, and control method for fuel cell
JP2014046250A (ja) * 2012-08-30 2014-03-17 Tokyo Gas Co Ltd 水素付臭剤の除去方法及び装置、燃料電池の運転方法及び燃料電池システム
DE102021202494A1 (de) 2021-03-15 2022-09-15 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzellensystem, Verfahren zum Betreiben eines Brennstoffzellensystems sowie Verwendung eines elektrochemischen Kompressors in einem Brennstoffzellensystem

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007516585A (ja) * 2003-12-23 2007-06-21 ユーティーシー フューエル セルズ,エルエルシー 水素ポンプ式燃料電池
JP2005203143A (ja) * 2004-01-13 2005-07-28 Toyota Motor Corp 燃料電池システム
JP4617675B2 (ja) * 2004-01-13 2011-01-26 トヨタ自動車株式会社 燃料電池システム
JP2008507102A (ja) * 2004-07-20 2008-03-06 コンセプション エ デヴェロップマン ミシュラン ソシエテ アノニム 燃料電池の高分子膜の加湿制御
JP2006100238A (ja) * 2004-09-06 2006-04-13 Toyota Motor Corp 燃料電池システム
JP2008523550A (ja) * 2004-12-10 2008-07-03 ヌベラ・フュエル・セルズ・ヨーロッパ・ソチエタ・ア・レスポンサビリタ・リミタータ 水素を内部で再循環させる燃料電池
JP2009503789A (ja) * 2005-07-25 2009-01-29 ブルーム エナジー コーポレーション アノード排気を部分的にリサイクルする燃料電池システム
JP2009503790A (ja) * 2005-07-25 2009-01-29 ブルーム エナジー コーポレーション 電気化学アノードの排気のリサイクルを行う燃料電池システム
JP2007042452A (ja) * 2005-08-03 2007-02-15 Seiko Instruments Inc 燃料電池システム
JP2007042506A (ja) * 2005-08-04 2007-02-15 Honda Motor Co Ltd 燃料電池システム
JP2007048493A (ja) * 2005-08-08 2007-02-22 Hitachi Ltd 燃料電池発電システム
JP2007128889A (ja) * 2005-11-03 2007-05-24 Gm Global Technology Operations Inc 1段目にガス流リサイクルを備えたカスケード式スタック
JP2007157718A (ja) * 2005-12-06 2007-06-21 Honda Motor Co Ltd 燃料電池の操作方法及び燃料電池システム
US8298712B2 (en) 2007-07-18 2012-10-30 Toyota Jidosha Kabushiki Kaisha Fuel cell system, and control method for fuel cell
WO2009016985A1 (ja) * 2007-07-27 2009-02-05 Toyota Jidosha Kabushiki Kaisha 燃料電池システム及びその制御方法
US9450257B2 (en) 2007-07-27 2016-09-20 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its control method
CN101978541A (zh) * 2008-03-18 2011-02-16 戴姆勒股份公司 燃料电池系统
JP2011514643A (ja) * 2008-03-18 2011-05-06 ダイムラー・アクチェンゲゼルシャフト 燃料電池システム
US8920988B2 (en) 2008-03-18 2014-12-30 Daimler Ag Fuel cell system
JP2009295377A (ja) * 2008-06-04 2009-12-17 Toyota Boshoku Corp 燃料電池システム
WO2010134174A1 (ja) * 2009-05-20 2010-11-25 トヨタ自動車株式会社 燃料電池システム
US8426072B2 (en) 2009-05-20 2013-04-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP5429163B2 (ja) * 2009-05-20 2014-02-26 トヨタ自動車株式会社 燃料電池システム
JP2011100698A (ja) * 2009-11-09 2011-05-19 Itochu Ceratech Corp 2次電池と固体酸化物型燃料電池とを備えた電動式移動体
CN102376967A (zh) * 2010-08-20 2012-03-14 波音公司 燃料电池电力和水产生系统
JP2014046250A (ja) * 2012-08-30 2014-03-17 Tokyo Gas Co Ltd 水素付臭剤の除去方法及び装置、燃料電池の運転方法及び燃料電池システム
DE102021202494A1 (de) 2021-03-15 2022-09-15 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzellensystem, Verfahren zum Betreiben eines Brennstoffzellensystems sowie Verwendung eines elektrochemischen Kompressors in einem Brennstoffzellensystem

Also Published As

Publication number Publication date
JP3939640B2 (ja) 2007-07-04

Similar Documents

Publication Publication Date Title
JP3939640B2 (ja) 反応ガス循環型燃料電池システム
JP4877711B2 (ja) 燃料電池システム
JP4350944B2 (ja) 燃料電池電力設備の作動効率の向上方法
US7531257B2 (en) Fuel cell system programmed to control reactant gas flow in a gas circulation path
JP5504293B2 (ja) 燃料電池システムの運転停止方法および燃料電池システム
JP2004031135A (ja) 燃料電池およびその制御方法
CA2473213C (en) Method of starting up operation of fuel cell at low temperature
JP2007179949A (ja) 燃料電池システム
JP2007317475A (ja) 燃料電池システム
JP3832249B2 (ja) 燃料電池装置
JP2005302422A (ja) 燃料電池システム
JP5067524B2 (ja) 燃料電池システムおよびその制御方法
JP4028320B2 (ja) 燃料循環式燃料電池システム
JP2011008916A (ja) 燃料電池冷却システム
JP2007294291A (ja) 燃料電池システム
JP2014150036A (ja) 燃料電池システムの制御方法
JP2006134807A (ja) 燃料電池システム
JP2013165047A (ja) 燃料電池システムの起動方法および起動装置
JP5151185B2 (ja) 燃料電池システムおよびその掃気処理方法
JP2009245818A (ja) 燃料電池装置
JP2010140700A (ja) 固体高分子形燃料電池発電システム
JP4790964B2 (ja) 除加湿装置付き燃料電池
JP2007048531A (ja) 燃料電池システム
JP2005108698A (ja) 燃料電池システム
JP2006066204A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees