JP4028320B2 - 燃料循環式燃料電池システム - Google Patents

燃料循環式燃料電池システム Download PDF

Info

Publication number
JP4028320B2
JP4028320B2 JP2002228938A JP2002228938A JP4028320B2 JP 4028320 B2 JP4028320 B2 JP 4028320B2 JP 2002228938 A JP2002228938 A JP 2002228938A JP 2002228938 A JP2002228938 A JP 2002228938A JP 4028320 B2 JP4028320 B2 JP 4028320B2
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
humidity
gas
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002228938A
Other languages
English (en)
Other versions
JP2004071349A (ja
Inventor
健 牛尾
和也 青木
竜 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002228938A priority Critical patent/JP4028320B2/ja
Publication of JP2004071349A publication Critical patent/JP2004071349A/ja
Application granted granted Critical
Publication of JP4028320B2 publication Critical patent/JP4028320B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、燃料循環式燃料電池システムに関するものである。
【0002】
【従来の技術】
燃料電池自動車等に搭載される燃料電池には、固体高分子電解質膜の両側にアノードとカソードとを備え、アノードに燃料ガス(例えば水素ガス)を供給し、カソードに酸化剤ガス(例えば酸素あるいは空気)を供給して、これらガスの酸化還元反応にかかる化学エネルギを直接電気エネルギとして抽出するようにしたものがある。
【0003】
この燃料電池では、アノードで水素ガスがイオン化して固体高分子電解質中を移動し、電子は、外部負荷を通ってカソードに移動し、酸素と反応して水を生成する一連の電気化学反応による電気エネルギを取り出すことができるようになっている。このように、燃料電池での発電には水の生成を伴うので、燃料電池から排出される酸化剤ガス(すなわち、酸化剤オフガス)には水分が含まれている。また、燃料電池から排出される燃料ガス(すなわち、燃料オフガス)にも生成水が固体高分子電解質膜を透過してくることにより水分が含まれている。
また、この種の燃料電池では、一般に、発電に供された後に燃料電池から排出される燃料ガス、すなわち燃料オフガスには未反応の燃料ガスが含まれているので、燃費向上のため、燃料オフガスをリサイクルさせ新鮮な燃料ガスと混合して再度燃料電池に供給している。
【0004】
ところで、この燃料電池にあっては、固体高分子電解質膜が乾燥してしまうと、イオン伝導率が低下し、発電出力が低下するため、良好な発電性能を保つために固体高分子電解質膜に水分を供給する必要がある。
このため、この種の燃料電池では、一般に、燃料電池に供給する前に予め燃料ガスあるいは酸化剤ガス若しくはこれら両方のガスを加湿器で加湿し、加湿されたこれらガスを固体高分子電解質膜に供給することにより、固体高分子電解質膜に水分を供給している(特開平8−273687号等)。
【0005】
一方、固体高分子電解質膜への水分供給が過多になると、燃料電池内部のガス通路内で水蒸気が凝縮して該ガス通路を閉塞(フラッディング)し、ガス供給を阻害して発電が不安定になり、発電出力(セル電圧)が低下する場合がある。特に、アノード側においては、燃料オフガスを循環利用しているため、水分が徐々に増えていく傾向にあり、水分過多になり易い。
そのため、従来は、セル電圧が低下した場合には、燃料オフガスの循環流路に設けられたパージ弁を開放して燃料オフガスを外部にパージし、燃料電池内部のガス流速を一時的に速めることにより燃料電池内の余分な水分を系外に放出し、発電を安定させてセル電圧を回復させていた。
【0006】
【発明が解決しようとする課題】
しかしながら、従来のようにパージ弁を開放して水分を放出するようにした場合には、水分の放出と同時に燃料ガスも系外に放出されることとなるため、燃料消費率(燃費という場合もある)が悪くなるという問題がある。
そこで、この発明は、燃料電池のアノードに供給される燃料の湿度を最適に制御することができ、燃料の外部放出の抑制により燃費向上を図ることができる燃料循環式燃料電池システムを提供するものである。
【0007】
【課題を解決するための手段】
上記課題を解決するために、請求項1に記載した発明は、燃料(例えば、後述する実施の形態における水素ガス)および酸化剤(例えば、後述する実施の形態における空気)を供給されて発電を行う燃料電池(例えば、後述する実施の形態における燃料電池1)と、前記燃料電池に前記燃料を供給する燃料供給流路(例えば、後述する実施の形態における水素ガス供給流路10)と、前記燃料電池から排出される燃料オフガス(例えば、後述する実施の形態における水素オフガス)を前記燃料供給流路に合流させる循環流路(例えば、後述する実施の形態における水素オフガス循環流路20)と、を備えた燃料循環式燃料電池システムにおいて、前記循環流路および/または前記合流後の燃料供給流路の内部流体と前記酸化剤または前記燃料電池から排出される酸化剤オフガスとの間で水分を移動させることにより前記内部流体を加湿または除湿して該内部流体の湿度を所望に調整可能にする加湿機能と除湿機能とを有する水透過膜式湿度調整装置(例えば、後述する実施の形態における湿度調整装置21)を、前記循環流路および/または前記合流後の燃料供給流路に備えることを特徴とする。
このように構成することにより、燃料を放出することなく燃料オフガスの湿度を所望に調整することができ、その結果、燃料電池に供給される燃料の湿度を所望に調整することができる。
なお、「湿度を所望に調整可能にする」とは、単にこれまでより高い湿度へと調整可能にするのみならず、必要に応じてこれまでより低い湿度に変更調整可能としたり、一定の湿度に維持調整可能にするものを含む意味である。
【0009】
請求項に記載した発明は、請求項1に記載の発明において、前記湿度調整装置に供給される前記酸化剤または酸化剤オフガスとして、前記内部流体よりも低い湿度の流体と高い湿度の流体のいずれか一方を選択供給可能にする切り替え手段(例えば、後述する実施の形態における第1切替弁41)を備えることを特徴とする。
このように構成することにより、湿度調整装置の除湿機能と加湿機能の切り替えが簡単にできる。
【0010】
請求項に記載した発明は、請求項に記載の発明において、前記燃料電池に供給される酸化剤は、前記酸化剤オフガスの水分を該酸化剤に移動可能な膜加湿器(例えば、後述する実施の形態におけるカソード加湿器3)によって加湿されたのちに前記燃料電池に供給され、前記湿度調整装置に供給される前記酸化剤または酸化剤オフガスとして前記膜加湿器に導入される前の前記酸化剤と前記酸化剤オフガスのいずれか一方を選択供給可能にする第1の切り替え手段(例えば、後述する実施の形態における第1切替弁41)を備えることを特徴とする。
このように構成することにより、第1の切り替え手段によって、前記膜加湿器に導入される前の前記酸化剤を選択した場合には湿度調整装置を除湿器として機能させることができ、酸化剤オフガスを選択した場合には湿度調整装置を加湿器として機能させることができる。
【0011】
請求項に記載した発明は、請求項に記載の発明において、前記燃料電池に供給される燃料の湿度を検出する湿度センサ(例えば、後述する実施の形態における湿度センサ61)と前記燃料オフガスの湿度を検出する湿度センサの少なくとも一方の湿度センサを備え、この湿度センサで検出された湿度に基づいて前記第1の切り替え手段が切り替えられることを特徴とする。
このように構成することにより、前記湿度センサで検出される湿度に基づいて除湿と加湿のいずれが必要かを判断し、その判断結果に応じて第1の切り替え手段を切り替えることができる。
【0012】
請求項に記載した発明は、請求項に記載の発明において、前記燃料電池のセル電圧を検出するセル電圧検出手段(例えば、後述する実施の形態におけるセル電圧センサ64)を備え、前記セル電圧検出手段で検出されたセル電圧に基づいて前記第1の切り替え手段が切り替えられることを特徴とする。
このように構成することにより、セル電圧検出手段で検出されるセル電圧に基づいて除湿と加湿のいずれが必要かを判断し、その判断結果に応じて第1の切り替え手段を切り替えることができる。
【0013】
請求項に記載した発明は、請求項から請求項のいずれかに記載の発明において、前記湿度調整装置から排出される前記酸化剤または酸化剤オフガスを、前記酸化剤に合流させる流路(例えば、後述する実施の形態における湿調空気排出流路55)と系外に排出させる流路(例えば、後述する実施の形態における湿調空気排出流路56)のいずれか一方に選択的に流通可能にする第2の切り替え手段(例えば、後述する実施の形態における第2切替弁42)を備えることを特徴とする。
このように構成することにより、湿度調整装置を除湿器として機能させているときに、第2の切り替え手段によって、湿度調整装置から排出される酸化剤または酸化剤オフガスを酸化剤に合流させる流路に流通するように切り替えると、燃料オフガスから除去した水分を酸化剤とともに燃料電池のカソードに供給することができる。
【0014】
請求項に記載した発明は、請求項1に記載の発明において、前記湿度調整装置に供給される前記酸化剤または酸化剤オフガスの湿度は、前記燃料電池に供給される前記燃料の目標湿度に応じて予め調整されていることを特徴とする。
このように構成することにより、湿度調整装置において燃料オフガスの湿度は予め所定に調整された前記酸化剤または酸化剤オフガスの湿度と平衡するので、燃料オフガスの湿度を目標とする所定の湿度に自動調整することができる。
【0015】
請求項に記載した発明は、請求項1から請求項のいずれかに記載の発明において、前記燃料電池は第1燃料電池(例えば、後述する実施の形態における第1燃料電池1A)と第2燃料電池(例えば、後述する実施の形態における第2燃料電池1B)を直列に接続されてなり、前記第1燃料電池から排出される燃料オフガスが前記第2燃料電池に燃料として供給され、前記第2燃料電池から排出される酸化剤オフガスが前記第1燃料電池に酸化剤として供給され、前記燃料供給流路は前記第1燃料電池に接続され、前記循環流路は前記第2燃料電池から排出される燃料オフガスを前記燃料供給流路に合流させ、前記第2燃料電池から排出される前記燃料オフガスが合流する前の前記燃料を前記第1燃料電池から排出される燃料オフガスと合流させて第2燃料電池に燃料として供給する補助燃料供給流路(例えば、後述する実施の形態における水素ガス供給流路13)を備えることを特徴とする。
燃料電池内を流通する燃料は燃料電池の出口に接近するにしたがって湿度が上昇していくが、前述のように構成することにより、第2燃料電池の入口において燃料の湿度を下げることができる。
【0016】
請求項に記載した発明は、請求項1から請求項のいずれかに記載の発明において、前記循環流路にはパージ用バルブ(例えば、後述する実施の形態におけるパージ弁23)が設けられていることを特徴とする。
このように構成することにより、必要に応じてパージ用バルブを開放して燃料オフガスを放出することができる。
【0017】
【発明の実施の形態】
以下、この発明に係る燃料循環式燃料電池システムの実施の形態を図1から図の図面を参照して説明する。なお、以下に説明する各実施の形態は、燃料電池自動車に搭載される燃料循環式燃料電池システムの態様である。
【0018】
〔第1の実施の形態〕
初めに、この発明に係る燃料循環式燃料電池システム(以下、燃料電池システムと略す)の第1の実施の形態を図1の図面を参照して説明する。
図1は、第1の実施の形態における燃料電池システムの概略構成図である。
燃料電池1は、例えば固体ポリマーイオン交換膜等からなる固体高分子電解質膜をアノードとカソードとで両側から挟み込んで形成されたセルを複数積層して構成されたスタックからなり、アノードに燃料として水素ガスを供給し、カソードに酸化剤として酸素を含む空気を供給すると、アノードで触媒反応により発生した水素イオンが、固体高分子電解質膜を通過してカソードまで移動して、カソードで酸素と電気化学反応を起こして発電し、水が生成される。カソード側で生じた生成水の一部は固体高分子電解質膜を介してアノード側に逆拡散するため、アノード側にも生成水が存在する。
【0019】
大気からエアクリーナ5を介して取り入れられた空気はコンプレッサ2により加圧され、空気流路31を通って燃料電池1のカソードに供給される。空気流路31にはカソード加湿器(膜加湿器)3が設けられており、空気はカソード加湿器3の加湿側に供給される。燃料電池1に供給された空気は発電に供された後、燃料電池1からカソード側の生成水と共に空気オフガスとして空気オフガス流路32に排出され、カソード加湿器3の加湿媒体側に供給された後、圧力制御弁4を介して排出される。カソード加湿器3において、空気オフガスの水分が燃料電池1に供給される空気に受け渡されて、該空気が加湿される。したがって、燃料電池1のカソードにはカソード加湿器3で加湿された空気が供給される。
【0020】
一方、水素タンク6から供給される水素ガスは、レギュレータ7で所定圧力に減圧された後、水素ガス供給流路(燃料供給流路)10を通って燃料電池1のアノードに供給される。そして、消費されなかった未反応の水素ガスは、アノード側の生成水と共に水素オフガスとしてアノードから水素オフガス循環流路(循環流路)20に排出される。水素オフガス循環流路20は、水素オフガスをエゼクタ11を介して水素ガス供給流路10に合流させる流路であり、水素オフガス循環流路20には湿度調整装置21と水素ポンプ22が設けられている。
【0021】
湿度調整装置21は、ガスの透過を阻止し水蒸気の透過だけを許可する非多孔質な透過膜(イオン水和型透過膜あるいは溶解拡散型透過膜など)21cを挟んで第1流路21aと第2流路21bを備えており、透過膜21cは透過膜21cの両面に接する流体間で水分量の多い流体から水分量の少ない流体に水分を移動させる性質を有している。すなわち、湿度調整装置21はいわゆる水透過膜式湿度調整装置で構成されている。透過膜21cの素材としては、ペルフルオロスルホン酸ポリマーを例示することができる。
水素オフガス循環流路20は湿度調整装置21の第1流路21aに接続されており、その内部流体である水素オフガスは第1流路21aを流通した後、水素ポンプ22で加圧されてエゼクタ11に導入され、水素タンク6から供給される新鮮な水素ガスと合流して、再び燃料電池1のアノードに供給される。
なお、湿度調整装置21は、水素オフガス循環流路20に配置する以外にも、上記合流後の水素ガス供給流路10に配置してもよい。この場合、湿度調整装置21の第1流路21aに合流後の水素ガス供給流路10が接続され、水素オフガスと新鮮な水素ガスとが合流した後のガス(これが内部流体である)が第1流路21aを流通した後、燃料電池1のアノードに供給される。さらに、湿度調整装置21を水素オフガス循環流路20と合流後の水素ガス供給流路10との両方に配置してもよく、いずれの配置であっても燃料電池1に供給される水素ガスの湿度調整が行われる。
【0022】
湿度調整装置21の第2流路21bの入口は、湿度調整用空気供給流路(以下、湿調空気供給流路と略す)51を介して第1切替弁(第1の切り替え手段)41に接続されている。第1切替弁41は3つのポートを有し、その第1ポートに湿調空気供給流路51が接続され、第2ポートにカソード加湿器3よりも上流の空気流路31から分岐した湿調空気供給流路52が接続され、第3ポートにカソード加湿器3よりも上流の空気オフガス流路32から分岐した湿調空気供給流路53が接続されている。第1切替弁41は、第2ポートと第3ポートのいずれか一方を選択して第1ポートに接続する切替弁であり、第2ポートが選択された場合にはカソード加湿器3で加湿される前の湿度の低い乾燥した空気を湿度調整装置21の第2流路21bに供給可能となり、第3ポートが選択された場合には燃料電池1から排出された湿度の高い空気オフガスを湿度調整装置21の第2流路21bに供給可能となる。
【0023】
また、湿度調整装置21の第2流路21bの出口は、湿度調整用空気排出流路(以下、湿調空気排出流路と略す)54を介して第2切替弁(第2の切り替え手段)42に接続されている。第2切替弁42は3つのポートを有し、その第1ポートに湿調空気排出流路54が接続され、第2ポートにカソード加湿器3よりも下流の空気流路31に連なる湿調空気排出流路55が接続され、第3ポートに圧力制御弁4より下流の空気オフガス流路32に連なる湿調空気排出流路56が接続されている。第2切替弁42は、第2ポートと第3ポートのいずれか一方を選択して第1ポートに接続する切替弁であり、第2ポートが選択された場合には湿度調整装置21の第2流路21bから排出された空気をカソード加湿器3よりも下流の空気流路31に排出可能となり、第3ポートが選択された場合には圧力制御弁4よりも下流の空気オフガス流路32に排出可能となる。
【0024】
次に、この燃料電池システムの作用を説明する。
図2は、燃料電池1のアノードガス流路内における湿度変化の様子を示したものであり、燃料電池1のアノード出口に接近するにしたがって徐々に湿度が上昇していく。
ここで、燃料電池1の発電性能を高く維持するためには、燃料電池1のアノード出口における水素ガスの湿度を100%を超えない範囲で可能な限り高く管理するのが良いとされている。湿度が100%を越えると燃料電池1内で水素ガス中の水分が凝縮しフラッデイングを起こす虞があるからであり、また、湿度が低いとイオン伝導率が低下する虞があるからである。
【0025】
そこで、この燃料電池システムでは、切替弁41,42を切り替えることにより、燃料電池1のアノードに供給される水素ガスの湿度(換言すれば、アノード入口における水素ガスの湿度)を適切に調整し、アノード出口における水素ガスの湿度を前述の如く適切な湿度となるようにする。
例えば、燃料電池1のアノード入口における水素ガスの湿度が不足している場合には、第1切替弁41の第1ポートと第3ポートを接続し第2ポートを遮断するように第1切替弁41を切り替え、第2切替弁42の第1ポートと第3ポートを接続し第2ポートを遮断するように第2切替弁42を切り替える。
【0026】
このように第1切替弁41を切り替えると、燃料電池1のカソードから排出されカソード加湿器3に導入される前の湿度の高い空気オフガスが、湿調空気供給流路53,51を介して湿度調整装置21の第2流路21bに供給される。その結果、湿度調整装置21において、第2流路21bに湿度の高い空気オフガスが流れ、この空気オフガスよりも湿度の低い水素オフガスが第1流路21aに流れるので、空気オフガス中の水分が透過膜21cを介して水素オフガスへと移動し、水素オフガスを加湿する。すなわち、この場合には、湿度調整装置21は水素オフガスを加湿する加湿器として機能する。なお、前述したように、湿度調整装置21の透過膜21cはガスの透過を阻止するので、第1流路21aの水素オフガス中の水素ガスが第2流路21bに透過することはなく、また、第2流路21bの空気オフガス中の酸素が第1流路21aに透過することもない。
【0027】
このようにして加湿された水素オフガスが水素オフガス循環流路20を通って水素ガス供給流路10に合流せしめられるので、燃料電池1のアノードに供給される水素ガスの湿度を上げることができ、その結果、アノード出口における水素ガスの湿度を上げることができる。
そして、湿度調整装置21の第2流路21bからは、水素オフガスに水分を奪われて湿度が下がった空気オフガスが湿調空気排出流路54に排出される。この湿度の低い空気オフガスは、第2切替弁42が前述のように切り替えられているので、湿調空気排出流路56を通って、圧力制御弁4よりも下流の空気オフガス流路32に排出される。
【0028】
一方、燃料電池1のアノード入口における水素ガスの湿度が過度である場合には、第1切替弁41の第1ポートと第2ポートを接続し第3ポートを遮断するように第1切替弁41を切り替え、第2切替弁42の第1ポートと第2ポートを接続し第3ポートを遮断するように第2切替弁42を切り替える。
【0029】
このように第1切替弁41を切り替えると、コンプレッサ2から圧送されたカソード加湿器3に導入される前の湿度の低い乾燥した空気が、湿調空気供給流路52,51を介して湿度調整装置21の第2流路21bに供給される。その結果、湿度調整装置21において、第1流路21aに湿度の高い水素オフガスが流れ、第2流路21bに湿度の低い乾燥した空気が流れるので、水素オフガス中の水分が透過膜21cを介して乾燥した空気へと移動し、水素オフガスを除湿する。すなわち、この場合には、湿度調整装置21は水素オフガスを除湿する除湿器として機能する。なお、前述したように、湿度調整装置21の透過膜21cはガスの透過を阻止するので、第1流路21aの水素オフガス中の水素ガスが第2流路21bに透過することはなく、また、第2流路21bの空気中の酸素が第1流路21aに透過することもない。
このようにして除湿された水素オフガスが水素オフガス循環流路20を通って水素ガス供給流路10に合流せしめられるので、燃料電池1のアノードに供給される水素ガスの湿度を下げることができ、その結果、アノード出口における水素ガスの湿度を下げることができる。
【0030】
そして、湿度調整装置21の第2流路21bからは、水素オフガスから水分を譲り受けて湿度が上がった空気が湿調空気排出流路54に排出される。この湿度の高い空気は、第2切替弁42が前述のように切り替えられているので、湿調空気排出流路55を通って、カソード加湿器3よりも下流の空気流路31に排出される。これにより、水素オフガスから奪った水分を含む湿度の高い空気を、カソード加湿器3で加湿された空気と合流させて、燃料電池1のカソードに供給することができる。その結果、燃料電池1のアノードの水分をカソードの加湿に利用することができ、カソードの加湿性能が向上する。
【0031】
このようにして燃料電池1のアノードに供給される水素ガスの湿度が適切に調整されるので、燃料電池1のアノードで水分が過多になったり過少になるのを防止することができる。したがって、燃料電池1の発電性能の低下を防止することができ、各セル電圧の低下を防止することができる。
しかも、水素ガスを放出することなくアノードに供給される水素ガスの湿度調整ができるので、水素タンク6から供給された水素ガスの総てを燃料電池1の発電に利用することができ、燃料電池システム全体としての燃費が向上する。
【0032】
〔第2の実施の形態〕
次に、この発明に係る燃料循環式燃料電池システムの第2の実施の形態を図3の図面を参照して説明する。第2の実施の形態の燃料循環式燃料電池システムが第1の実施の形態のものと相違する点は以下の通りである。
第2の実施の形態における燃料電池システムにおいては、第1の実施の形態における第1切替弁41および第2切替弁42と、湿調空気供給流路51〜53と、湿調空気排出流路54〜56を備えていない。
【0033】
また、第2の実施の形態における燃料電池システムでは、第1の実施の形態におけるカソード加湿器3に代えて、第1カソード加湿器3Aと第2カソード加湿器3Bが設けられている。コンプレッサ2で加圧された空気は、空気通路31を通って燃料電池1のカソード入口に到達するまでの間に、第1カソード加湿器3Aの加湿側と第2カソード加湿器3Bの加湿側を順に流通する。また、燃料電池1のカソードから排出された空気オフガスは空気オフガス流路32を通って圧力制御弁4に到達するまでの間に、第2カソード加湿器3Bの加湿媒体側と第1カソード加湿器3Aの加湿媒体側を順に流通する。
【0034】
さらに、第2の実施の形態における燃料電池システムでは、湿度調整装置21の第2流路21bの入口に、第1カソード加湿器3Aと第2カソード加湿器3Bの間の空気流路31から分岐され第1流量制御弁43を備えた湿調空気供給流路57が接続されており、第1カソード加湿器3Aで加湿された空気が所定流量で第2流路21bに供給されるようになっている。また、第2流路21bの出口は、湿調空気排出流路59を介して、第2カソード加湿器3Bよりも下流の空気流路31に接続されている。
その他の構成については第1の実施の形態のものと同じであるので、同一態様部分に同一符号を付して説明を省略する。
【0035】
この第2の実施の形態における燃料電池システムでは、アノード入口における水素ガスの目標湿度(以下、アノード入口目標湿度と略す)に基づいて、水素ガス供給流路10に合流する水素オフガスの目標湿度(以下、水素オフガス目標湿度と略す)を設定する。そして、第1カソード加湿器3Aで加湿された空気の湿度が、水素オフガス目標湿度と同じになるように、予め第1カソード加湿器3Aの加湿性能を設定しておく。
このように第1カソード加湿器3Aの加湿性能を設定すると、水素オフガス目標湿度と同じ湿度の空気が、湿調空気供給流路57を介して湿度調整装置21の第2流路21bに供給される。その結果、湿度調整装置21の第1流路21aに水素オフガス目標湿度よりも低い湿度の水素オフガスが流れている場合には、第1流路21aを流れる空気中の水分が透過膜21cを介して第2流路21bを流れる水素オフガスへと移動して水素オフガスを加湿し、逆に、湿度調整装置21の第1流路21aに水素オフガス目標湿度よりも高い湿度の水素オフガスが流れている場合には、第2流路21bを流れる水素オフガス中の水分が透過膜21cを介して第1流路21aを流れる空気へと移動して水素オフガスを除湿する。
したがって、水素オフガスの湿度を水素オフガス目標湿度に自動調整することができ、その結果、燃料電池1のアノード入口における水素ガスの湿度をアノード入口目標湿度に自動調整することができる。
【0036】
また、この第2の実施の形態の燃料電池システムでは、燃料電池1内において、カソード側に生じた生成水が固体高分子電解質膜を介してアノード側に逆拡散する量が少なくて、アノード側の水分が不足する場合には、カソードから排出される空気オフガス中の水分量が増えるので、第1カソード加湿器3Aによる空気への加湿量が増え、湿調空気供給流路57を介して湿度調整装置21の第2流路21bに供給される空気の湿度が上がって、第1流路21aを流れる水素オフガスへの加湿量が増えるという自己制御が期待できる。
その逆に、燃料電池1内において、カソード側に生じた生成水が固体高分子電解質膜を介してアノード側に逆拡散する量が多くて、アノード側の水分が余る場合には、カソードから排出される空気オフガス中の水分量が減るので、第1カソード加湿器3Aによる空気への加湿量が減り、湿調空気供給流路57を介して湿度調整装置21の第2流路21bに供給される空気の湿度が下がって、第1流路21aを流れる水素オフガスへの加湿量が減るという自己制御が期待できる。
【0037】
なお、第1流量制御弁43よりも下流の湿調空気供給流路57に、第1カソード加湿器3Aよりも上流の空気流路31から分岐された湿調空気供給流路58を接続し、この湿調空気供給流路58に第2流量制御弁44を設け、水素オフガスに対する加湿、除湿の要求に応じて、第1流量制御弁43と第2流量制御弁44の開度を調整して湿度調整装置21の第2流路21bに供給される空気の湿度を微調整することも可能である。
ただし、アノード入口目標湿度の許容範囲が大きい場合には、第2流路21bに供給される空気湿度の微調整も必要ないので、湿調空気供給流路58および第2流量制御弁44は必要ない。
【0038】
このように、第2の実施の形態の燃料電池システムの場合には、燃料電池1のアノード入口における水素ガスの湿度をアノード入口目標湿度に自動調整することができるので、燃料電池1のアノードで水分が過多になったり過少になるのを防止することができる。したがって、燃料電池1の発電性能の低下を防止することができ、各セル電圧の低下を防止することができる。
また、この第2の実施の形態においても、水素ガスを放出することなくアノードに供給される水素ガスの湿度調整ができるので、水素タンク6から供給された水素ガスの総てを燃料電池1の発電に利用することができ、燃料電池システム全体としての燃費が向上する。
【0039】
〔第3の実施の形態〕
次に、この発明に係る燃料循環式燃料電池システムの第3の実施の形態を図4の図面を参照して説明する。
第3の実施の形態が第1の実施の形態と相違する点は、第1切替弁41および第2切替弁42の切り替えと第2流路21bを流れる流体の流量を、燃料電池1の運転状態に応じて自動制御するという点だけである。
これを実現するために、第3の実施の形態では、第1切替弁41を流量制御も可能な切替弁とし、エゼクタ11と燃料電池1の間の水素ガス供給流路10と、燃料電池1と湿度調整装置21の間の水素オフガス循環流路20と、湿度調整装置21と水素ポンプ22の間の水素オフガス循環流路20のいずれかの流路に湿度センサを設けている。この実施の形態では、例として、エゼクタ11と燃料電池1の間の水素ガス供給流路10に湿度センサ61を設けた場合を示している。その他の構成については第1の実施の形態のものと同じであるので、同一態様部分に同一符号を付して説明を省略する。
【0040】
そして、湿度センサ61は湿度に応じた電気信号をECU100に出力し、ECU100は、湿度センサ61の出力信号に基づいて、燃料電池1のアノード入口における水素ガスの湿度を適切に保持すべく、第1切替弁41および第2切替弁42の切り替えを制御するとともに、第2流路21bへの空気供給流量を制御する。このようにすると、燃料電池1のアノード入口における水素ガスの湿度をより正確に目標値に制御することができる。
なお、湿度センサ61を設けずに、燃料電池1に設けられているセル電圧センサ(セル電圧検出手段)64の出力信号に基づいて、第1切替弁41および第2切替弁42の切り替えを制御するとともに、第2流路21bへの空気供給流量を制御して、燃料電池1のアノード入口における水素ガスの湿度を適切に保持することも可能である。
このようにセル電圧で水素ガス湿度を調整する場合、例えばセル電圧が時間経過に対しゆっくり下がるときには湿度不足と判断し、急激に下がる時には湿度過多と判断することで湿度調整ができる。
【0041】
〔第4の実施の形態〕
次に、この発明に係る燃料電池システムの第4の実施の形態を図5および図6の図面を参照して説明する。
第4の実施の形態の燃料電池システムでは、燃料電池が2つの燃料電池を直列に接続して構成されている。水素ガスは水素ガス供給流路10から第1燃料電池1Aのアノードに供給され、第1燃料電池1Aのアノードから排出された水素オフガスが水素オフガス流路23を介して第2燃料電池1Bのアノードに供給され、第2燃料電池1Bのアノードから排出された水素オフガスが水素オフガス循環流路20に排出されて湿度調整装置21の第1流路21aに供給されるようになっている。また、カソード加湿器3で加湿された空気は空気流路31から第2燃料電池1Bのカソードに供給され、第2燃料電池1Bのカソードから排出された空気オフガスが空気オフガス流路33を介して第1燃料電池1Aのカソードに供給され、第1燃料電池1Aのカソードから排出された空気オフガスが空気オフガス流路32に排出されてカソード加湿器3の加湿媒体側に供給されるようになっている。
【0042】
また、第1燃料電池1Aのアノード出口と第2燃料電池1Bのアノード入口を接続する水素オフガス流路23には、エゼクタ11よりも上流の水素ガス供給流路10から分岐され流量制御弁12を備えた水素ガス供給流路(補助燃料供給流路)13が接続されている。
そして、水素タンク6から放出された乾燥した水素ガスが水素ガス供給流路13を介して水素オフガス流路23に供給され、第2燃料電池1Bのアノードには、前記乾燥した水素ガスと第1燃料電池1Aから排出される水素オフガスとが混合されて供給されるようになっている。
なお、第1燃料電池1Aと第2燃料電池1Bをこれらを直列に接続してなる一つの燃料電池とみなした場合、水素ガス供給流路13は、水素オフガスが合流する前の水素ガスを、燃料電池内における水素ガス流路の途中に供給する流路ということができる。
【0043】
このように構成された第4の実施の形態の燃料電池システムによれば、第1の実施の形態の燃料電池システムにおける作用・効果を得ることができるだけでなく、さらに次のような作用・効果を得ることができる。
すなわち、第4の実施の形態の燃料電池システムでは、図6の湿度変化図に示すように、第1燃料電池1Aのアノード出口における水素ガスの湿度が上昇しても、第2燃料電池1Bのアノード入口における水素ガスの湿度を下げることができ、水素ガス供給流路13から乾燥した水素ガスを導入しないときよりも、第2燃料電池1Bのアノードガス流路内全体の水素ガスの湿度を下げることができる。なお、図6における破線は、水素ガス供給流路13から乾燥した水素ガスを導入せずに、第1燃料電池1Aから排出された水素オフガスを第2燃料電池1Bのアノードに供給したときの水素ガスの湿度変化を示している。
したがって、第4の実施の形態の燃料電池システムによれば、第2燃料電池1Bのアノードにおけるフラッディングをより確実に防止することができる。
なお、前述した第2の実施の形態あるいは第3の実施の形態の燃料電池システムに水素ガス供給流路13および流量制御弁12を設けた場合にも、同様の効果を得ることができる。
【0044】
なお、前述した各実施の形態の燃料電池システムにおいては、湿度調整装置21の第2流路21bに供給される湿度調整用流体として、燃料電池1のカソードに供給される空気や燃料電池1のカソードから排出される空気オフガスを用いているので、湿度調整用流体を別個に用意する必要がなく、システム構成が簡単になる。
【0045】
また、燃料電池1の発電性能はアノードの水分過多以外の要因で低下することも考えられる。例えば、水素オフガスの循環利用は水素以外の不純物(例えば、窒素)の濃度上昇を生じさせることがあり、この不純物濃度の上昇が燃料電池1の発電性能を低下させることが考えられる。
そこで、図1において破線で示すように、湿度調整装置21と水素ポンプ22を接続する水素オフガス流路20にパージ弁(パージ用バルブ)23を設けておき、燃料電池1の発電性能が低下したときに、アノード入口における水素ガスの湿度調整を行っても発電性能が回復しない場合に、パージ弁23を開放することにより発電性能を回復することができるようにすることも可能である。このようにパージ弁23を設けた場合であっても、従来よりは水素の放出を極めて少なくすることができる。なお、パージ弁23から排出される水素オフガスは水素処理器24によって希釈して排気する。
なお、第2〜第4の各実施の形態における燃料電池システムにおいても、同様にパージ弁23を設置可能である。
【0046】
〔他の実施の形態〕
尚、この発明は前述した実施の形態に限られるものではない。
例えば、燃料電池の燃料は純粋な水素ガスに限られるものではなく、例えば、炭化水素を含む液体燃料(ガソリンやメタノールなど)を改質して生成された水素を多く含む燃料ガスであってもよい。
なお、水素オフガス循環流路(循環流路)10にエゼクタ11や水素ポンプ22を設けなくても、本発明は成立する。
【0047】
【発明の効果】
以上説明するように、請求項1に記載した発明によれば、燃料を放出することなく燃料オフガスの湿度を所望に調整することができ、ひいいては、燃料電池に供給される燃料の湿度を所望に調整することができるので、発電性能の低下を防止することができるとともに、燃料電池に供給される燃料の総てを発電のために利用することができ、燃料電池システム全体としての燃費が向上するという優れた効果が奏される。また、システムの構成が簡単になるという効果がある。
【0048】
請求項または請求項に記載した発明によれば、湿度調整装置の除湿機能と加湿機能の切り替えが簡単にでき、システム構成が簡単になるという効果がある。
請求項に記載した発明によれば、湿度センサで検出される湿度に基づいて除湿と加湿のいずれが必要かを判断し、その判断結果に応じて第1の切り替え手段を切り替えることができるので、水素オフガスの湿度を確実に目標値に制御することができるという効果がある。
請求項に記載した発明によれば、セル電圧検出手段で検出されるセル電圧に基づいて除湿と加湿のいずれが必要かを判断し、その判断結果に応じて第1の切り替え手段を切り替えることができるので、水素オフガスの湿度を確実に目標値に制御することができるという効果がある。
【0049】
請求項に記載した発明によれば、湿度調整装置を除湿器として機能させているときに、第2の切り替え手段によって、湿度調整装置から排出される酸化剤または酸化剤オフガスを酸化剤に合流させる流路に流通するように切り替えると、燃料オフガスから除去した水分を酸化剤とともに燃料電池のカソードに供給することができるので、燃料電池のアノードの水分をカソードの加湿に利用することができ、カソードの加湿性能を向上させることができるという効果がある。
請求項に記載した発明によれば、湿度調整装置において燃料オフガスの湿度は予め所定に調整された前記酸化剤または酸化剤オフガスの湿度と平衡するので、燃料オフガスの湿度を所定の湿度に自動調整することができ、その結果、燃料電池に供給される燃料の湿度を前記目標湿度に自動調整することができるという効果がある。
【0050】
請求項に記載した発明によれば、第2燃料電池の入口において燃料の湿度を下げることができるので、燃料電池内におけるフラッディングをより確実に防止することができる。
請求項に記載した発明によれば、必要に応じてパージ用バルブを開放して燃料オフガスを放出することができるので、アノードの水分過多以外の要因によって燃料電池の発電性能が低下したときに、燃料オフガスを放出して発電性能の回復を図ることができるという効果がある。
【図面の簡単な説明】
【図1】 この発明に係る燃料循環式燃料電池システムの第1の実施の形態における概略構成図である。
【図2】 前記第1の実施の形態においてアノードガス流路内の湿度変化を示す図である。
【図3】 この発明に係る燃料循環式燃料電池システムの第2の実施の形態における概略構成図である。
【図4】 この発明に係る燃料循環式燃料電池システムの第3の実施の形態における概略構成図である。
【図5】 この発明に係る燃料循環式燃料電池システムの第4の実施の形態における概略構成図である。
【図6】 前記第4の実施の形態においてアノードガス流路内の湿度変化を示す図である。
【符号の説明】
1 燃料電池
3 カソード加湿器(膜加湿器)
10 水素ガス供給流路(燃料供給流路)
13 水素ガス供給流路(補助燃料供給流路)
20 水素オフガス循環流路(循環流路)
21 湿度調整装置(水透過膜式湿度調整装置)
23 パージ弁(パージ用バルブ)
41 第1切替弁(切り替え手段、第1の切り替え手段)
42 第2切替弁(第2の切り替え手段)
55 湿調空気排出流路(流路)
56 湿調空気排出流路(流路)
61 湿度センサ
64 セル電圧センサ(セル電圧検出手段)

Claims (9)

  1. 燃料および酸化剤を供給されて発電を行う燃料電池と、
    前記燃料電池に前記燃料を供給する燃料供給流路と、
    前記燃料電池から排出される燃料オフガスを前記燃料供給流路に合流させる循環流路と、を備えた燃料循環式燃料電池システムにおいて、
    前記循環流路および/または前記合流後の燃料供給流路の内部流体と前記酸化剤または前記燃料電池から排出される酸化剤オフガスとの間で水分を移動させることにより前記内部流体を加湿または除湿して該内部流体の湿度を所望に調整可能にする加湿機能と除湿機能とを有する水透過膜式湿度調整装置を、前記循環流路および/または前記合流後の燃料供給流路に備えることを特徴とする燃料循環式燃料電池システム。
  2. 前記湿度調整装置に供給される前記酸化剤または酸化剤オフガスとして、前記内部流体よりも低い湿度の流体と高い湿度の流体のいずれか一方を選択供給可能にする切り替え手段を備えることを特徴とする請求項1に記載の燃料循環式燃料電池システム。
  3. 前記燃料電池に供給される酸化剤は、前記酸化剤オフガスの水分を該酸化剤に移動可能な膜加湿器によって加湿されたのちに前記燃料電池に供給され、
    前記湿度調整装置に供給される前記酸化剤または酸化剤オフガスとして前記膜加湿器に導入される前の前記酸化剤と前記酸化剤オフガスのいずれか一方を選択供給可能にする第1の切り替え手段を備えることを特徴とする請求項1に記載の燃料循環式燃料電池システム。
  4. 前記燃料電池に供給される燃料の湿度を検出する湿度センサと前記燃料オフガスの湿度を検出する湿度センサの少なくとも一方の湿度センサを備え、この湿度センサで検出された湿度に基づいて前記第1の切り替え手段が切り替えられることを特徴とする請求項3に記載の燃料循環式燃料電池システム。
  5. 前記燃料電池のセル電圧を検出するセル電圧検出手段を備え、前記セル電圧検出手段で検出されたセル電圧に基づいて前記第1の切り替え手段が切り替えられることを特徴とする請求項3に記載の燃料循環式燃料電池システム。
  6. 前記湿度調整装置から排出される前記酸化剤または酸化剤オフガスを、前記酸化剤に合流させる流路と系外に排出させる流路のいずれか一方に選択的に流通可能にする第2の切り替え手段を備えることを特徴とする請求項3から請求項5のいずれかに記載の燃料循環式燃料電池システム。
  7. 前記湿度調整装置に供給される前記酸化剤または酸化剤オフガスの湿度は、前記燃料電池に供給される前記燃料の目標湿度に応じて予め調整されていることを特徴とする請求項1に記載の燃料循環式燃料電池システム。
  8. 前記燃料電池は第1燃料電池と第2燃料電池を直列に接続されてなり、前記第1燃料電池から排出される燃料オフガスが前記第2燃料電池に燃料として供給され、前記第2燃料電池から排出される酸化剤オフガスが前記第1燃料電池に酸化剤として供給され、
    前記燃料供給流路は前記第1燃料電池に接続され、
    前記循環流路は前記第2燃料電池から排出される燃料オフガスを前記燃料供給流路に合流させ、
    前記第2燃料電池から排出される前記燃料オフガスが合流する前の前記燃料を前記第1燃料電池から排出される燃料オフガスと合流させて第2燃料電池に燃料として供給する補助燃料供給流路を備えることを特徴とする請求項1から請求項7のいずれかに記載の燃料循環式燃料電池システム。
  9. 前記循環流路にはパージ用バルブが設けられていることを特徴とする請求項1から請求項8のいずれかに記載の燃料循環式燃料電池システム。
JP2002228938A 2002-08-06 2002-08-06 燃料循環式燃料電池システム Expired - Fee Related JP4028320B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228938A JP4028320B2 (ja) 2002-08-06 2002-08-06 燃料循環式燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002228938A JP4028320B2 (ja) 2002-08-06 2002-08-06 燃料循環式燃料電池システム

Publications (2)

Publication Number Publication Date
JP2004071349A JP2004071349A (ja) 2004-03-04
JP4028320B2 true JP4028320B2 (ja) 2007-12-26

Family

ID=32015498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228938A Expired - Fee Related JP4028320B2 (ja) 2002-08-06 2002-08-06 燃料循環式燃料電池システム

Country Status (1)

Country Link
JP (1) JP4028320B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4701624B2 (ja) * 2004-04-08 2011-06-15 トヨタ自動車株式会社 燃料電池システム
US7901815B2 (en) * 2004-07-14 2011-03-08 Honeywell International Inc. Fuel cell power generator utilizing substantially or completely closed water supply
KR101248254B1 (ko) * 2004-07-20 2013-03-27 폴 슈레 앙스띠뛰 전기 생산 장치
JP5000089B2 (ja) * 2004-12-24 2012-08-15 ダイハツ工業株式会社 燃料電池装置
JP4956930B2 (ja) * 2005-08-01 2012-06-20 トヨタ自動車株式会社 燃料電池システム
JP4961698B2 (ja) * 2005-09-01 2012-06-27 株式会社日立製作所 燃料電池システム
JP2008021458A (ja) * 2006-07-11 2008-01-31 Ngk Spark Plug Co Ltd 燃料電池、およびその制御方法
JP5217123B2 (ja) * 2006-07-12 2013-06-19 トヨタ自動車株式会社 燃料電池システム
JP5168847B2 (ja) * 2006-08-10 2013-03-27 株式会社エクォス・リサーチ 燃料電池システム
KR101028030B1 (ko) * 2007-09-06 2011-04-13 현대자동차주식회사 연료전지용 가습장치
JP6979626B2 (ja) * 2017-08-04 2021-12-15 パナソニックIpマネジメント株式会社 水素供給システム
JP7110913B2 (ja) * 2018-10-30 2022-08-02 トヨタ自動車株式会社 燃料電池システム
CN114744246B (zh) * 2022-04-13 2024-03-19 佛山仙湖实验室 一种燃料电池系统及其空气湿度调节方法

Also Published As

Publication number Publication date
JP2004071349A (ja) 2004-03-04

Similar Documents

Publication Publication Date Title
EP1805839B1 (en) Fuel cell system
JP4072707B2 (ja) 固体高分子電解質型燃料電池発電装置とその運転方法
KR101481244B1 (ko) 연료전지 시스템의 가습장치
JP4028320B2 (ja) 燃料循環式燃料電池システム
JP6133365B2 (ja) 燃料電池システムの運転方法
JP4961698B2 (ja) 燃料電池システム
JP5383737B2 (ja) 燃料電池システム及びその発電停止方法
JP2004031135A (ja) 燃料電池およびその制御方法
JP2013008664A (ja) 燃料電池システム
JP5872315B2 (ja) 燃料電池システムの起動方法および起動装置
JP5564315B2 (ja) 燃料電池システム
JP4790964B2 (ja) 除加湿装置付き燃料電池
JP4799953B2 (ja) 燃料電池システム
JP2007095450A (ja) 燃料電池システム
JP2009245818A (ja) 燃料電池装置
JP2007294359A (ja) 燃料電池システム
JP2005108698A (ja) 燃料電池システム
JP4397686B2 (ja) 燃料電池の反応ガス供給装置
JP2010192292A (ja) 燃料電池システム及びその運転方法
WO2004062016A1 (ja) 水素ガス湿度制御装置、燃料電池、水素ガス湿度制御方法および燃料電池の湿度制御方法
JP2004071348A (ja) 燃料循環式燃料電池システム
JP4675605B2 (ja) 燃料電池の酸化剤供給装置
JP2011154802A (ja) 燃料電池システム
JP2003157873A (ja) 燃料電池システム
JP2009134977A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees