JP2004158098A - システム・イン・パッケージ型半導体装置 - Google Patents
システム・イン・パッケージ型半導体装置 Download PDFInfo
- Publication number
- JP2004158098A JP2004158098A JP2002322321A JP2002322321A JP2004158098A JP 2004158098 A JP2004158098 A JP 2004158098A JP 2002322321 A JP2002322321 A JP 2002322321A JP 2002322321 A JP2002322321 A JP 2002322321A JP 2004158098 A JP2004158098 A JP 2004158098A
- Authority
- JP
- Japan
- Prior art keywords
- test
- circuit
- memory
- signal
- logic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/48—Arrangements in static stores specially adapted for testing by means external to the store, e.g. using direct memory access [DMA] or using auxiliary access paths
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C2029/0401—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals in embedded memories
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/48145—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
Landscapes
- For Increasing The Reliability Of Semiconductor Memories (AREA)
- Tests Of Electronic Circuits (AREA)
- Dram (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
【課題】外部から直接メモリチップの単独テストが行えるようにする。
【解決手段】ロジックチップ11に設けたテスト回路16は、外部接続端子から入力されるテスト信号18に含まれるモード信号が通常動作モードを示すときは、ロジック回路15がメモリ回路14へのアクセス経路(配線17)を使用可能とする一方、モード信号がテストモードを示すときは、アクセス経路17を使用してメモリ回路14をアクセスし、外部接続端子から入力されるテスト信号18の内容に従ってテストや寿命加速試験、マルチビットテストを実施する。また自己診断を実施する。
【選択図】 図2
【解決手段】ロジックチップ11に設けたテスト回路16は、外部接続端子から入力されるテスト信号18に含まれるモード信号が通常動作モードを示すときは、ロジック回路15がメモリ回路14へのアクセス経路(配線17)を使用可能とする一方、モード信号がテストモードを示すときは、アクセス経路17を使用してメモリ回路14をアクセスし、外部接続端子から入力されるテスト信号18の内容に従ってテストや寿命加速試験、マルチビットテストを実施する。また自己診断を実施する。
【選択図】 図2
Description
【0001】
【発明の属する技術分野】
この発明は、複数の半導体チップを互いに接続して1つのパッケージに封止したシステム・イン・パッケージ(System in a Package)型半導体装置(以下「SiP型半導体装置」という)に関するものである。
【0002】
【従来の技術】
SiP型半導体装置では、複数の半導体チップとして、ロジックチップと1以上のメモリチップ(例えばDRAMチップ、SRAMチップ、フラッシュメモリチップなど)とが互いに接続されて1つのパッケージに封止されている。そして、外部接続端子には、ロジックチップを接続し、メモリチップは、ロジックチップを介して外部接続端子に接続するようになっている(例えば特許文献1)。
【0003】
【特許文献1】
特開平10−283777号公報(0021、1図)
【0004】
【発明が解決しようとする課題】
ところで、半導体装置では、パッケージ状態でのテストや初期不良をスクリーニングするために、製品出荷時などにおいて寿命加速試験を行う必要がある。しかし、SiP型半導体装置では、メモリチップの入出力は、外部と直接行うことができず、必ずロジックチップを介して行わなければならないので、ロジックチップの単独テストは行えるが、メモリチップの単独テストが行えないという問題がある。
【0005】
この発明は、上記に鑑みてなされたもので、外部から直接メモリチップの単独テストが行えるテスト機能を備えたSiP型半導体装置を得ることを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、この発明にかかるシステム・イン・パッケージ型半導体装置は、メモリ回路を搭載するメモリチップと、前記メモリ回路と電気的に接続されるロジック回路を搭載するロジックチップとを、前記ロジック回路とパッケージの外部接続端子とを接続して封止する形式のシステム・イン・パッケージ型半導体装置において、前記ロジックチップと前記メモリチップとのいずれか一方に、前記外部接続端子に設けたモード端子から入力されるモード信号が通常動作モードを示すときは、前記ロジック回路が前記メモリ回路へのアクセス経路を使用可能とする一方、前記モード信号がテストモードを示すとき、または特別のときに前記アクセス経路を前記ロジック回路から取り上げて前記メモリ回路をアクセスし、各種のテストを実施するテスト回路を設けたことを特徴とする。
【0007】
この発明によれば、ロジックチップとメモリチップとのいずれか一方に設けたテスト回路は、外部接続端子から入力されるモード信号がテストモードを示すときは、メモリ回路へのアクセス経路をロジック回路から取り上げ、そのアクセス経路を使用して前記メモリ回路をアクセスし、メモリ回路の内部電圧を昇圧した状態での寿命加速試験や、テストデータを伸張処理してメモリ回路に書き込み、読み出したデータを縮退処理して良否判定を行うマルチビットテストを実施する。また、電源投入時やその後において、メモリ回路へのアクセス経路をロジック回路から取り上げ、そのアクセス経路を使用して前記メモリ回路をアクセスし、自己診断を実施する。
【0008】
【発明の実施の形態】
以下に添付図面を参照して、この発明にかかるSiP型半導体装置の好適な実施の形態を詳細に説明する。
【0009】
実施の形態1.
図1は、この発明を適用するSiP型半導体装置の一例を示す構成概念図である。この発明を適用するSiP型半導体装置は、例えば、図1に示すように、マイクロプロセッサなどのロジック回路が搭載されるロジックチップ1の上に、DRAMなどのメモリ回路が搭載されるメモリチップ2をチップ・オン・チップの構造で重ね合わせて配置した状態で1つのパッケージに封止されている。そして、メモリチップ2の入出端は、配線3によってロジックチップ1に接続され、ロジックチップ1の入出力端の一部として配線4によって外部接続端子に接続される構成となっている。なお、SiP型半導体装置としては、その他、例えば、ロジックチップ1とメモリチップ2とを平面上に横に並べて配置する構成もあるが、接続形態は同様である。
【0010】
この発明では、このようなSiP型半導体装置において、外部から直接メモリチップ2の単独テストが行えるテスト機能を種々の態様で組み込んだ構成例が示されている。但し、以下に示す各実施の形態では、説明の便宜から、ロジックチップとメモリチップとが平面上に横に並べて配置されるとしている。
【0011】
図2は、この発明の実施の形態1であるSiP型半導体装置の構成概念図である。図3は、図2に示すテスト回路の詳細構成を示すブロック図である。図2に示すSiP型半導体装置10は、ロジックチップ11とメモリチップ12とで構成されている。ロジックチップ11は、配線13によって外部接続端子に接続され、配線17によってメモリチップ12に接続されている。
【0012】
メモリチップ12には、メモリ回路14として例えばダイナミック・ランダム・アクセス・メモリ(DRAM)が搭載されている。一方、ロジックチップ11には、ロジック回路15の他、テスト回路16がロジック回路15とメモリ回路14との間に介在する形で搭載されている。
【0013】
すなわち、テスト回路16は、ロジックチップ11内で、ロジック回路15と電気的に接続されるとともに、配線13によってロジック回路15と共に外部接続端子に接続されている。また、テスト回路16は、配線17によってメモリチップ12上のメモリ回路14と接続されている。したがって、外部接続端子は、ロジック回路15に与える通常動作時の信号端子と、テスト回路16に与えるテストモード時のテスト信号18の端子とで構成されている。
【0014】
テスト回路16は、配線17をメモリ回路14への共通のアクセス経路として使用し、通常動作時は、ロジック回路15の出力信号等19を配線17上に出力し、テスト時は、テスト信号18に従って配線17上にテスト制御信号を出力する。
【0015】
テスト回路16は、図3に示すように、メモリテスト回路21と選択回路22とで構成されている。テスト信号18として、モード信号25とリード/ライトのアドレス信号26とテスト書込データ信号27と読み出したテストデータ信号28と判定結果信号29とアクセス制御信号24とが例示されている。
【0016】
選択回路22は、外部接続端子から入力されるモード信号25が、“テストモード”であるときは、メモリテスト回路21とメモリ回路14との間を配線17によって直接接続してメモリテスト回路21のメモリ回路14へのアクセスを可能にし、“通常動作モード”であるときは、ロジック回路15とメモリ回路14との間を配線17によって直接接続してロジック回路15のメモリ回路14へのアクセスを可能にするようになっている。
【0017】
メモリテスト回路21は、外部接続端子から入力されるモード信号25が“テストモード”であるときに、外部接続端子から入力されるリード/ライトのアドレス信号26とテスト書込データ信号27とアクセス制御信号とに基づき、選択回路22を介してメモリ回路14を配線17を使用してアクセスしたり、メモリ回路14の内部電圧を高くしてメモリ回路14にストレスを加えた状態にし、セルチェッカーと同様のリード/ライト動作を行って寿命加速試験を実施する。メモリテスト回路21は、そのテスト時に読み出したテストデータ信号28を外部接続端子に出力する。
【0018】
また、メモリテスト回路21は、外部接続端子から入力されるモード信号25が“マルチビットテストモード”であるときは、同様にメモリ回路14へのアクセス経路をロジック回路15から取り上げ、テストデータを伸張してメモリ回路14に書き込みを行い、読み出したデータを縮退し、良否判定を行い、判定結果信号29を読み出したテストデータ信号28と共に外部接続端子に出力する。
【0019】
また、メモリテスト回路21は、電源投入時に、またその後随時に、メモリ回路14へのアクセス経路をロジック回路15から取り上げ、各種のテストパターンを発生し、選択回路22を介してメモリ回路14に書き込みを行い、書込データと読み出しデータとを比較して不良ビットを検出する自己診断(BIST:built−in self−test)機能を備えている。
【0020】
そして、自己診断(BIST)機能を備える場合には、当該SiP型半導体装置10に第2のメモリチップを設け、この第2のメモリチップに搭載される第2のメモリ回路にBIST時に検出した不良ビットのアドレス情報を蓄積するようにする。このようにすれば、不良ビットを回避してスペア部をアクセスすることができるので、不良アドレスのヒューズを切るのと同様の操作が実現でき、不良ビットの救済が行える。なお、第2のメモリチップを設けずに、メモリ回路14の内部に不良ビットのアドレス情報を蓄積するようにしてもよい。
【0021】
また、このように第2のメモリチップを設ければ、製造工程が複雑にならず、またロジック回路15をメモリ回路14と第2のメモリ回路との共用とすることで第2のメモリチップのチップ面積が大きくならずに済む、つまり歩留まりを悪くせずに済むので、低コストで第2のメモリチップを内蔵することができる。なお、第2のメモリ回路としては、フラッシュメモリやDRAM、スタティック・ランダム・アクセス・メモリ(SRAM)を用いることができる。
【0022】
次に、図4〜図8を参照して、テスト回路16について具体的に説明する。なお、図4は、図2に示すメモリ回路14を構成するDRAMの構成例を示すブロック図である。図5と図6は、図4に示すDRAMへのリード/ライト動作を示すタイムチャートである。図7は、図2に示すテスト回路16の具体的な構成例を示すブロック図である。図8は、図7に示す寿命加速試験回路75の動作を説明するフローチャートである。図9は、図7に示す伸張回路73の動作を説明する図である。図10は、図7に示す縮退回路76の動作を説明する図である。なお、図7では、自己診断(BIST)機能については、省略されている。
【0023】
図4に示すメモリ回路14であるDRAMは、2個のメモリセルアレイ55,56を備えている。それぞれ、32メガバイト(Mb)の容量を持ち、一方のメモリセルアレイ55をバンク#0とし、他方のメモリセルアレイ56をバンク#1としている。
【0024】
このDRAMは、入出力端子として、アドレス信号A0−11の入力端子41と、バンク#0とバンク#1のいずれかを指定するバンク選択信号BA0の入力端子42と、動作クロックCLKの入力端子43と、動作クロックCLKの使用状態を切り替える制御信号CKEの入力端子44と、チップ選択信号ZCSの入力端子45と、行アドレスストローブ信号ZRASの入力端子46と、列アドレスストローブ信号ZCASの入力端子47と、書込イネーブル信号ZWEの入力端子48と、書込データ信号DQM0−15の入力端子49と、読み出しデータ信号DQ0−127の出力端子50とを備えている。なお、バンク選択信号BA0は、バンク#0の指定を示す。バンク#1を指定するときはBA1となる。
【0025】
そして、2個のメモリセルアレイ55,56の周辺回路として、クロックバッファ51と、アドレスバッファ52と、制御信号バッファ53と、制御回路54と、I/Oバッファ57とを備えている。
【0026】
クロックバッファ51は、入力端子43,44から入力される動作クロックCLK,制御信号CKEの双方の論理積を取った信号をアドレスバッファ52と制御信号バッファ53と制御回路54とに出力する。アドレスバッファ52は、入力端子41,42から入力されるアドレス信号A0−11,バンク選択信号BA0をクロックバッファ51の出力に従って制御回路54に出力する。
【0027】
制御信号バッファ53は、入力端子45〜49から入力されるチップ選択信号ZCS,行アドレスストローブ信号ZRAS,列アドレスストローブ信号ZCAS,書込イネーブル信号ZWE,書込データ信号DQM0−15をクロックバッファ51の出力に従って制御回路54に出力する。
【0028】
制御回路54は、クロックバッファ51の出力に従ってアドレスバッファ52および制御信号バッファ53の各出力信号を取り込み、それらに基づきメモリセルアレイ55,56への書き込みと読み出しを制御する。I/Oバッファ57は、メモリセルアレイ55,56の読み出しデータを出力端子50に出力する。
【0029】
次に、図5、図6において、活性化「ACT」やプリチャージ「PRE」などのコマンド(Command)は、次に示す信号の組合せで発行される。活性化「ACT」は、ZRAS=L、ZCAS=ZWE=Hの条件で発行される。読み出し「READ」は、ZRAS=H、ZCAS=L、ZWE=Hの条件で発行される。書き込み「Write」は、ZRAS=H、ZCAS=ZWE=Lの条件で発行される。プリチャージ「PRE」は、ZRAS=L、ZCAS=H、ZWE=Lの条件で発行される。
【0030】
図5では、図4に示すバンク#0についての活性化「ACT」とバンク#1についての活性化「ACT」とを行った後に、バンク#1から読み出し「READ」が行われ、読み出しデータDQ「Qb0,Qb1,Qb2,Qb3」が出力される。その過程で、バンク#0とバンク#1の双方についてプリチャージ「PRE」が行われ、バンク#0についての活性化「ACT」に移行する様子が示されている。
【0031】
図6では、図4に示すバンク#0についての活性化「ACT」を行った後に、バンク#0に書込データDQ「Qa0,Qa1,Qa2,Qa3」の書き込み「Write」が行われる。その後、バンク#0についてプリチャージ「PRE」が行われ、バンク#0についての活性化「ACT」に移行する様子が示されている。この図5と図6に示す動作は、通常動作モードにおいては、ロジック回路15との間で行われ、テストモードにおいては、テスト回路16との間で行われる。
【0032】
図7において、メモリ回路14であるDRAMは、図4に示した構成を持つが、4つのモニタ端子「TESTMODE」「FRCMONI1」「FRCMONI2」「VBB」が追加されている。また、図7では示されていないが、動作電源VDDや外部電源EXVDDが設けられている。
【0033】
図7に示すテスト回路では、ロジック回路15との入出力信号として、動作クロックCLK,制御信号CKE,チップ選択信号ZCS,行アドレスストローブ信号ZRAS,列アドレスストローブ信号ZCAS,書込イネーブル信号ZWE,読み出しデータDQ0−7,アドレス信号A0−11,書込データ信号DQM0−15,およびバンク選択信号BA0が示されている。
【0034】
そのうち、動作クロックCLKは、メモリ回路14であるDRAMと、フリップフロップ(以下「FF」という)で構成されるFF回路71,78と、寿命加速試験回路75と、縮退回路76と、デコード回路77とに入力される。残りの信号は全てセレクタ72に入力されている。
【0035】
また、図7に示すテスト回路では、外部接続端子との入出力信号として、テスト制御信号TSTCKE,テスト書込データTSTDQM0−15,テストチップ選択信号TSTZCS,テスト行アドレスストローブ信号TSTZRAS,テスト列アドレスストローブ信号TSTZCAS,テスト書込イネーブル信号TSTZWE,テスト書込データ信号TSTD0−7,テストアドレス信号TSTA0−11,テストバンク選択信号TSTBA0,テスト読み出しデータ信号TSTQ0−7,マルチビットテスト出力信号TSTMBTO,テストモード信号TSTMODEA,TSTMODEB,TSTMODE2,電圧フォースモニタ信号TSTFRCMONI1,TSTFRCMONI2およびVBBが示されている。
【0036】
そのうち、テスト制御信号TSTCKE,テスト書込データTSTDQM0−15,テストチップ選択信号TSTZCS,テスト行アドレスストローブ信号TSTZRAS,テスト列アドレスストローブ信号TSTZCAS,テスト書込イネーブル信号TSTZWE,テスト書込データ信号TSTD0−7,テストアドレス信号TSTA0−11,テストバンク選択信号TSTBA0,テスト読み出しデータ信号TSTQ0−7の各端子は、FF回路78に接続されている。
【0037】
FF回路78は、テスト制御信号TSTCKE,テスト書込データTSTDQM0−15,テストチップ選択信号TSTZCSの各信号をセレクタ72に出力する。また、FF回路78は、テスト行アドレスストローブ信号TSTZRAS,テスト列アドレスストローブ信号TSTZCAS,テスト書込イネーブル信号TSTZWE,テスト書込データ信号TSTD0−7,テストアドレス信号TSTA0−11,テストバンク選択信号TSTBA0の各信号をセレクタ74に出力する。また、FF回路78は、セレクタ74から入力されるテスト読み出しデータ信号DQ0−127を8ビットのテスト読み出しデータ信号TSTQ0−7毎に対応する端子に出力する。セレクタ74が出力するテスト読み出しデータ信号DQ0−127は、縮退回路76にも入力されている。
【0038】
マルチビットテスト出力信号TSTMBTOの端子は、縮退回路76の出力端に接続されている。テストモード信号TSTMODE2の端子は、メモリ回路14であるDRAMのテストモード端子TETMODEに接続されている。電圧フォースモニタ信号TSTFRCMONI1,TSTFRCMONI2,VBBの各端子は、メモリ回路14であるDRAMの対応するモニタ出力端子FRCMONI1,FRCMONI2,VBBにそれぞれ接続されている。
【0039】
テストモード信号TSTMODEA,TSTMODEBの各端子は、デコード回路77の入力端に接続されている。デコード回路77は、それらの信号から4つの信号80,81,82,83を発生する。信号80は、加速試験信号であり、寿命加速試験回路75とセレクタ74とに入力されている。信号81は、マルチビットテスト信号であり、縮退回路76と伸張回路73とセレクタ72とに入力されている。信号82は、テストを行うか否かを示す信号であり、セレクタ72に入力されている。信号83は、電圧モニタイネーブル信号であり、電圧フォースモニタ信号TSTFRCMONI1,TSTFRCMONI2,VBBの各端子をオン・オフするのに用いられている。
【0040】
寿命加速試験回路75は、加速試験信号80を受けて、加速試験に必要なアドレス信号やデータ信号、制御信号を発生し、セレクタ74に出力する。セレクタ74は、加速試験信号80を受けて、寿命加速試験回路75の出力をセレクタ72に選択出力する。また、セレクタ74は、セレクタ72が出力するテスト読み出しデータ信号DQ0−127を上記のように、FF回路78と縮退回路76とに与える。
【0041】
伸張回路73は、マルチビットテスト信号81を受けて、セレクタ74から入力するテスト書込データ信号TSTD0−7について伸張処理(図9参照)行いセレクタ72に出力する。縮退回路76は、マルチビットテスト信号81を受けて、セレクタ74から入力するテスト書込データ信号DQ0−127について縮退処理(図10参照)を行い、マルチビットテスト出力信号TSTMBTOとして対応する端子に出力する。
【0042】
FF回路71は、メモリ回路14であるDRAMとセレクタ72との間で、制御信号CKE,チップ選択信号ZCS,行アドレスストローブ信号ZRAS,列アドレスストローブ信号ZCAS,書込イネーブル信号ZWE,読み出しデータDQ0−127,アドレス信号A0−11,書込データ信号DQM0−15,およびバンク選択信号BA0の各信号の授受を制御する。
【0043】
セレクタ72は、テストを行うか否かを示す信号82が、テストを行わない、つまり通常動作モードを示す場合は、ロジック回路15の入力端とFF回路71とを接続し、テストを行う、つまりテストモードを示す場合は、FF回路78,セレクタ74および伸張回路73とFF回路71とを接続する。
【0044】
以上の構成において、寿命加速試験回路75の動作と、伸張回路73および縮退回路76の動作とを説明する。まず、寿命加速試験回路75の動作を図8を参照して説明する。
【0045】
図8において、ステップST1では、寿命加速試験回路75は、加速試験信号80を受けて、テストモードでの動作モード設定を行う期間を設定する。これは、チップ選択信号ZCS,行アドレスストローブ信号ZRAS,列アドレスストローブ信号ZCAS,書込イネーブル信号ZWE,アドレス信号A0−11,バンク選択信号BA0等が消滅した後の適宜時間後における動作クロックCLKの例えば1クロック周期が選ばれる。
【0046】
ステップST2では、DRAM内には、複数の内部電源が存在するが、寿命加速試験回路75は、DRAM内に設けてあるテストモードレジスタに内部電圧を昇圧(フォース)する動作モードを設定する。種々の動作モードが用意され、アドレス信号TSTA0−11,バンク選択信号TSTBA0などを用いて外部から任意の動作モードを設定することで、任意にフォースした各種の内部電圧が得られるようになっている。
【0047】
ここでは、1つのフォースした内部電圧を得る動作モードとして、例えば、全てのバンクを同時に動作させるモード信号TMRBIALLBNKと、伸張・縮退(マルチビットテスト)のモード信号TMBTBと、寿命加速試験時の特殊動作の1つであるモード信号TMRAB125と、メモリセルアレイ部の動作電圧を発生する基準電圧VREFSをフォースするモード信号TMVREFSFRCと、動作電源VDDと外部電源EXVDDとをDRAM内部でショートするモード信号TMVDDEXVDDとをこの順にテストモードレジスタに設定する。
【0048】
その結果、外部電源EXVDDから例えば3.65Vを与えると、ワード線電圧VPPは4.8Vとなり、メモリセルアレイ部の動作電圧VCCSと周辺回路の動作電圧VCCPとが共に3.75Vとなる。このようにフォースされた内部電圧の値が、電圧フォースモニタ信号TSTFRCMONI1,TSTFRCMONI2,VBBの各端子で監視できるようになっている。
【0049】
具体的には、電圧フォースモニタ信号VBBの端子では、通常、−1.0Vが観測される。電圧フォースモニタ信号TSTFRCMONI1の端子では、上記の基準電圧VREFSとセルプレート上に掛かる電圧VCPとが監視される。電圧フォースモニタ信号TSTFRCMONI2の端子では、周辺回路の動作電圧VCCPを発生する基準電圧VREFPと、ワード線電圧VPPを発生する基準電圧VREFDとビット線電圧VBLとが監視される。
【0050】
ステップST3では、メモリセルアレイの全面{<X、Y>=<0,0>〜<Xmax,Ymax>}にテストデータを書き込む。これは、最初に行アドレスを+1しつつアクセスし、行アドレスが一杯になると、ゼロに戻し、次に列アドレスを+1し、再度行アドレスを+1しつつアクセスすることを切り返すことによって実行される。なお、アドレス信号やデータ信号は、スクランブルが掛けられている。
【0051】
ステップST3では、メモリセルアレイの全面{<X、Y>=<0,0>〜<Xmax,Ymax>}からデータを読み出す。この読み出し動作も上記の書込動作と同様の手順で行われる。読み出されたデータは、テスト読み出しデータ信号TSTQ0−7の端子から出力され、セルチェッカーにて良否判定がなされる。
【0052】
ステップST4では、テストデータを論理反転し、ステップST3とステップST4とを繰り返す。そして、ストレスを掛けた状態を規定時間維持するため、ステップST3〜ST5を規定時間内繰り返す(ステップST6,ST7)。
【0053】
次に、図9において、伸張回路73では、セレクタ74から入力される8ビット単位のテストデータ信号DQ<7:0>をコピーして、16個の8ビット単位テストデータ信号DQ<7;0>〜DQ<127:120>をそれぞれ生成し、それらを並列に並べてセレクタ72に出力する。これは、DRAMの書込データ信号DQ0−127の端子に入力される。
【0054】
図10において、縮退回路76では、セレクタ74から入力される8ビット単位のテストデータ信号DQ<7:0>〜DQ<127:120>を順に受けて、先頭のテストデータ信号DQ<7:0>と後続する各テストデータ信号DQとを8ビット毎に排他的論理和を取って比較する。そして、8ビット全てが一致すればマルチビットテスト出力信号TSTMBOを“H”レベルにし、一致しなければ“L”レベルにする。
【0055】
つまり、縮退回路76では、16個の8ビット単位テストデータ信号DQ<7;0>〜DQ<127:120>を16ビットに縮退したマルチビットテスト出力信号TSTMBOが出力される。マルチビットテスト出力信号TSTMBOは、良否判定結果を示す信号となっている。
【0056】
このように、実施の形態1によれば、ロジックチップに、メモリチップ上のメモリ回路をアクセスする経路をロジック回路から取り上げ、自らメモリ回路をアクセスするテスト回路を設けたので、外部接続端子からテスト回路に指示を出すことによって、メモリのテストを行うことができる。さらに、メモリ回路であるDRAMの内部電圧を昇圧操作して寿命加速試験を実施し、またマルチビットテストを実施することができる。
【0057】
また、テスト回路は、電源投入時やその後における必要な時に、メモリチップ上のメモリ回路をアクセスする経路をロジック回路から取り上げ、自らメモリ回路をアクセスするように構成できるので、電源投入時やその後における必要な時に、自己診断(BIST)を実施してエラービット検出の機能を持たせることができる。なお、テストのために設ける外部接続端子は、少なくすることができる。
【0058】
実施の形態2.
図11は、この発明の実施の形態2であるSiP型半導体装置の構成概念図である。なお、図11では、図2に示した構成と同一ないしは同等である構成要素には同一の符号が付されている。ここでは、この実施の形態2に関わる部分を中心に説明する。
【0059】
図11に示すSiP型半導体装置101では、図2に示した構成において、ロジックチップ11に代えて、ロジックチップ102が設けられている。ロジックチップ102では、図2に示したロジック回路15が、本来のロジック回路103とメモリ回路14へのアクセスを制御するアクセス制御回路104とに分離されている。アクセス制御回路104は、外部から制御主体を切り替え得るように構成され、図2に示したテスト回路16の配置位置に配置されている。そして、外部接続端子からテスト信号18が入力されるテスト回路105がアクセス制御回路104の制御主体を切替制御できるように配置されている。
【0060】
すなわち、テスト回路105は、テスト信号18に含まれるモード信号が“通常動作モード”を示すときは、アクセス制御回路104の制御主体をロジック回路103に切り替えてロジック回路103からメモリ回路14へのアクセスを可能にする。
【0061】
一方、テスト回路105は、モード信号が“テストモード”を示すときは、アクセス制御回路104の制御主体を自テスト回路105に切り替える。そして、テスト回路105は、アクセス制御回路104を使用してメモリ回路14にアクセスし、実施の形態1で説明したテスト、および、寿命加速試験を実施する。
【0062】
すなわち、寿命加速試験の場合、テスト回路105は、アクセス制御回路104の制御主体を自テスト回路105に切り替えることを行い、アクセス制御回路104を使用して図8に示す処理を行う。
【0063】
また、テスト回路105は、モード信号が“マルチビットテストモード”であるときは、アクセス制御回路104の制御主体を自テスト回路105に切り替える。そして、伸張したテストデータをアクセス制御回路104を使用してメモリ回路14に書き込み、アクセス制御回路104を使用してメモリ回路14から読み出したテストデータを縮退し、良否判定を行い、判定結果信号を読み出したテストデータ信号と共に外部接続端子に出力する。
【0064】
また、テスト回路105は、電源投入時に、またその後随時に、アクセス制御回路104の制御主体を自テスト回路105に切り替え、各種のテストパターンを発生し、アクセス制御回路104を使用してメモリ回路14に書き込みを行い、書込データとアクセス制御回路104を使用して読み出したデータとを比較して不良ビットを検出する自己診断(BIST)を実施することができる。このBISTでは、良否判定を行い、判定結果信号を読み出したテストデータ信号と共に外部接続端子に出力する。
【0065】
そして、自己診断(BIST)機能を備える場合には、実施の形態1と同様に、例えば当該SiP型半導体装置101に第2のメモリチップを設け、この第2のメモリチップに搭載される第2のメモリ回路にBIST時に検出した不良ビットのアドレス情報を蓄積するようにする。
【0066】
このように、実施の形態2によれば、ロジックチップに、ロジック回路が備えるアクセス制御回路をテスト回路から制御主体の切り替え制御ができるように構成配置したので、通常動作時に用いるアクセス制御回路を使用して、実施の形態1と同様の各種のテストを実施することができる。
【0067】
実施の形態3.
図12は、この発明の実施の形態3であるSiP型半導体装置の構成概念図である。なお、図12では、図2に示した構成と同一ないしは同等である構成要素には同一の符号が付されている。ここでは、この実施の形態3に関わる部分を中心に説明する。
【0068】
図12に示すSiP型半導体装置110では、図2に示した構成において、ロジックチップ11に代えて、ロジックチップ111が設けられ、メモリチップ12に代えて、メモリチップ112が設けられている。
【0069】
ロジックチップ111では、図2に示したロジックチップ11において、テスト回路16に代えて、テスト回路113が設けられている。また、メモリチップ112では、図2に示したメモリ回路14に接続されるテスト回路114が設けられている。つまり、テスト回路114は、メモリチップ112をウエハ状態でテストする際に用いる回路に若干の機能を追加したものであるが、テスト回路113とメモリ回路14との間に介在する形で設けられている。したがって、テスト回路113とテスト回路114とは、配線17によって接続されている。
【0070】
テスト回路113は、テスト信号18に含まれるモード信号をテスト回路114にそのまま転送するとともに、そのモード信号に従った通常動作モード・テストモードの切替動作とメモリチップ112上のテスト回路114にテスト指示を出す動作とを行うようになっている。
【0071】
すなわち、テスト回路113は、テスト信号18に含まれるモード信号が“通常動作モード”であるときは、ロジック回路15と配線17とを直接接続し、ロジック回路15が出力信号等19を配線17上に送出できるようにする。
【0072】
一方、モード信号が“テストモード”“寿命加速試験”であるときは、テスト回路113は、内蔵する“テスト指示を出す制御回路”と配線17とを直接接続し、対応するテスト指示およびテストデータを配線17上に送出する。
【0073】
また、テスト回路113は、電源投入時に、またその後随時に、内蔵する“テスト指示を出す制御回路”と配線17とを直接接続し、“テスト指示を出す制御回路”から自己診断(BIST)の指示およびテストデータを配線17上に送出する。
【0074】
テスト回路114は、テスト回路113から送られてきたモード信号が“通常動作モード”であるときは、配線17とメモリ回路14とを直接接続する。その結果、ロジック回路15のメモリ回路14へのアクセスが可能となる。
【0075】
一方、テスト回路114は、テスト回路113から送られてきたモード信号が“テストモード”“寿命加速試験”であるときは、配線17からテスト回路113の“テスト指示を出す制御回路”が送出するテスト指示を取り込み、“テストモード”についてのテスト指示では、指示に従いメモリ回路14にアクセスし、実施の形態1で説明したテスト、および、寿命加速試験を実施し、結果データをテスト回路113の“テスト指示を出す制御回路”に出力する。
【0076】
“マルチビットテストモード”の指示では、テスト回路113の“テスト指示を出す制御回路”がテストデータを伸張して送ってくるので、それをメモリ回路14に書き込み、メモリ回路14から読み出してテスト回路113の“テスト指示を出す制御回路”に出力する。テスト回路113の“テスト指示を出す制御回路”では、受け取ったテストデータを縮退し、良否判定を行い、判定結果信号を読み出したテストデータ信号と共に外部接続端子に出力する。
【0077】
また、テスト回路114は、自己診断(BIST)の指示が入力されると、その都度、テスト回路113の“テスト指示を出す制御回路”から送られてくるテストパターンデータをメモリ回路14に書き込み、メモリ回路14から読み出してテスト回路113の“テスト指示を出す制御回路”に出力する。テスト回路113の“テスト指示を出す制御回路”では、受け取ったテストデータを送ったテストデータと比較して良否の判定を行い、判定結果信号を受け取ったテストデータ信号と共に外部接続端子に出力する。
【0078】
そして、自己診断(BIST)機能を備える場合には、実施の形態1と同様に、例えば当該SiP型半導体装置110に第2のメモリチップを設け、この第2のメモリチップに搭載される第2のメモリ回路にBIST時に検出した不良ビットのアドレス情報を蓄積するようにする。
【0079】
このように、実施の形態3によれば、テスト回路をロジックチップとメモリチップの双方に設けたので、メモリチップの単独テストが外部から直接行えるようになるのに加えて、メモリチップのテスト回路にて内部電圧を複数に変化させる設定や寿命加速試験後において良品状態が維持できているか否かの判定が行えるようになるので、一層、テストの精度を高めることができる。
【0080】
実施の形態4.
図13は、この発明の実施の形態4であるSiP型半導体装置の構成概念図である。なお、図13では、図2,図11,図12に示した構成と同一ないしは同等である構成要素には同一の符号が付されている。ここでは、この実施の形態4に関わる部分を中心に説明する。
【0081】
図13に示すSiP型半導体装置120は、ロジックチップ121と図12に示したメモリチップ112とで構成されている。ロジックチップ121では、図11に示した構成において、テスト回路105に代えて、テスト回路123が設けられている。メモリチップ112上のテスト回路114は、アクセス制御回路104と配線17によって接続されている。
【0082】
テスト回路123は、テスト信号18に含まれるモード信号をアクセス制御回路104を介してテスト回路114にそのまま転送するとともに、テスト信号18に含まれるモード信号が“通常動作モード”を示すときは、アクセス制御回路104の制御主体をロジック回路103に切り替える。ロジック回路103の出力信号等19がアクセス制御回路104から配線17上に送出できるようにする。
【0083】
一方、テスト回路123は、モード信号が“テストモード”“寿命加速試験”であるときは、アクセス制御回路104の制御主体を自テスト回路123に切り替える。そして、テスト回路123は、対応するテスト指示をアクセス制御回路104を使用して配線17上に送出にする。また、テスト回路123は、電源投入時に、またその後随時に、アクセス制御回路104の制御主体を自テスト回路123に切り替えて自己診断(BIST)の指示をアクセス制御回路104を使用して配線17上に送出する。
【0084】
テスト回路114は、アクセス制御回路104を介してテスト回路123から送られてきたモード信号が“通常動作モード”であるときは、配線17とメモリ回路14とを直接接続する。その結果、ロジック回路103のメモリ回路14へのアクセスが可能となる。
【0085】
一方、テスト回路114は、アクセス制御回路104を介してテスト回路123から送られてきたモード信号が“テストモード”“寿命加速試験”であるときは、配線17からアクセス制御回路104が送出するテスト指示を取り込み、“テストモード”についてのテスト指示では、指示に従いメモリ回路14にアクセスし、実施の形態1で説明したテスト、および、寿命加速試験を実施し、結果データをアクセス制御回路104を介してテスト回路123に出力する。
【0086】
“マルチビットテストモード”の指示では、テスト回路123がテストデータを伸張して送ってくるので、テスト回路114は、それをメモリ回路14に書き込み、メモリ回路14から読み出し、アクセス制御回路104を介してテスト回路123に出力する。テスト回路123では、受け取ったテストデータを縮退し、良否判定を行い、判定結果信号を読み出したテストデータ信号と共に外部接続端子に出力する。
【0087】
また、テスト回路114は、アクセス制御回路104を介してテスト回路123から自己診断(BIST)の指示が入力されると、その都度、アクセス制御回路104を介してテスト回路123から送られてくるテストパターンデータをメモリ回路14に書き込み、メモリ回路14から読み出し、アクセス制御回路104を介してテスト回路123に出力する。テスト回路123では、受け取ったテストデータを送ったテストデータとを比較して良否の判定を行い、判定結果信号を受け取ったテストデータ信号と共に外部接続端子に出力する。
【0088】
そして、自己診断(BIST)機能を備える場合には、実施の形態1と同様に、例えば当該SiP型半導体装置120に第2のメモリチップを設け、この第2のメモリチップに搭載される第2のメモリ回路にBIST時に検出した不良ビットのアドレス情報を蓄積するようにする。
【0089】
このように、実施の形態4によれば、実施の形態2と同様に、ロジック回路が備えるアクセス制御回路をテスト回路がロジック回路から取り上げて使用できるようにしたので、通常動作時に用いるアクセス制御回路を使用して、外部からメモリチップの単独テストを実施することができる。また、テストのために設ける外部接続端子は、少なくすることができる。
【0090】
このとき、実施の形態3と同様に、テスト回路をロジックチップとメモリチップの双方に設けたので、メモリチップのテスト回路にて内部電圧を複数に変化させる設定や寿命加速試験後において良品状態が維持できているか否かの判定が行えるようになるので、一層、テストの精度を高めることができる。
【0091】
なお、この実施の形態4では、自己診断(BIST)回路は、テスト回路123内に存在するとしたが、これに限定されるものではなく、テスト回路114内に設けても良いことは勿論である。
【0092】
実施の形態5.
図14は、この発明の実施の形態5であるSiP型半導体装置の構成概念図である。なお、図14では、図2に示した構成と同一ないしは同等である構成要素には同一の符号が付されている。ここでは、この実施の形態5に関わる部分を中心に説明する。
【0093】
図14に示すSiP型半導体装置130は、ロジックチップ131とメモリチップ132とで構成されている。ロジックチップ131は、図2に示したロジックチップ11において、テスト回路16を省略し、外部接続端子からのテスト信号18とロジック回路15の出力信号19とが直接配線17上に送出されるとしている。
【0094】
そして、メモリチップ132では、図2に示したメモリ回路14に接続されるテスト回路133が設けられ、配線17はテスト回路133を介してメモリ回路14に接続されている。
【0095】
テスト回路133は、図3に示した構成を有し、図2に示したテスト回路16と同様の動作を行うようになっている。すなわち、外部接続端子からのテスト信号18に含まれるモード信号が“通常動作モード”であるときは、ロジック回路15の出力信号19が直接メモリ回路14に供給されるようにする。
【0096】
一方、モード信号が“テストモード”“寿命加速試験”であるときは、図3に示したメモリテスト回路21とメモリ回路14とを接続し、テストや寿命加速試験、マルチビットテストを実施する。また、テスト回路133は、電源投入時に、またその後随時に、自己診断(BIST)を実施する。
【0097】
そして、自己診断(BIST)機能を備える場合には、実施の形態1と同様に、例えば当該SiP型半導体装置130に第2のメモリチップを設け、この第2のメモリチップに搭載される第2のメモリ回路にBIST時に検出した不良ビットのアドレス情報を蓄積するようにする点も実施の形態1と同様である。
【0098】
このように、実施の形態5によれば、メモリチップに、メモリ回路をアクセスする経路をロジック回路から取り上げ、自らメモリ回路をアクセスするテスト回路を設けたので、外部接続端子からテスト回路に指示を出すことによって、メモリ回路であるDRAMの内部電圧を昇圧操作して寿命加速試験を実施し、またマルチビットテストを実施することができる。加えて、テスト回路をメモリチップ側に設けたので、実施の形態1よりも一層詳細なテストが行えるようになり、一層、テストの精度を高めることができる。
【0099】
なお、各実施の形態では、メモリチップに搭載するメモリ回路として、DRAMを示したが、その他、例えばSRAMやフラッシュメモリを搭載するメモリチップとロジックチップとで構成されるSiP型半導体装置や、ロジックチップとロジックチップのSiP型半導体装置等、組合せに拘らず、様々な構成のSiP型半導体装置にも同様に適用できることは勿論である。SRAMやフラッシュメモリについては、少なくとも、マルチビットテストと自己診断(BIST)は、同様に実施することができる。
【0100】
【発明の効果】
以上説明したように、この発明によれば、ロジックチップとメモリチップの一方に、外部からの指示に従ってロジックチップ上のロジック回路がメモリチップ上のメモリ回路をアクセスする経路をロジック回路から取り上げ、そのアクセス経路を使用してメモリ回路にアクセスするテスト回路を設けたので、メモリチップのみについて、外部からテストや寿命加速試験、マルチビットテストを実行することができる。
【0101】
また、前記テスト回路は、電源投入時やその後において、ロジックチップ上のロジック回路がメモリチップ上のメモリ回路をアクセスする経路をロジック回路から取り上げ、そのアクセス経路を使用してメモリ回路にアクセスするように構成できるので、自己診断を実行することができる。
【図面の簡単な説明】
【図1】この発明を適用するSiP半導体装置の一例を示す構成概念図である。
【図2】この発明の実施の形態1であるSiP型半導体装置の構成概念図である。
【図3】図2に示すテスト回路の詳細構成を示すブロック図である。
【図4】図2に示すメモリ回路を構成するDRAMの構成例を示すブロック図である。
【図5】図4に示すDRAMへのリード動作を示すタイムチャートである。
【図6】図4に示すDRAMへのライト動作を示すタイムチャートである。
【図7】図2に示すテスト回路の具体的な構成例を示すブロック図である。
【図8】図7に示す寿命加速試験回路の動作を説明するフローチャートである。
【図9】図7に示す伸張回路の動作を説明する図である。
【図10】図7に示す縮退回路の動作を説明する図である。
【図11】この発明の実施の形態2であるSiP型半導体装置の構成概念図である。
【図12】この発明の実施の形態3であるSiP型半導体装置の構成概念図である。
【図13】この発明の実施の形態4であるSiP型半導体装置の構成概念図である。
【図14】この発明の実施の形態5であるSiP型半導体装置の構成概念図である。
【符号の説明】
10,101,110,120,130 システム・イン・パッケージ型半導体装置(SiP型半導体装置)、11,102,111,121 ロジックチップ、12,112,131 メモリチップ、13 外部接続端子への配線、14メモリ回路、15,ロジック回路、16,105,113,114,123,132 テスト回路、21 メモリテスト回路、22 選択回路、25 モード信号、26 リード/ライトのアドレス信号、27 テストデータ信号、28 読み出したテストデータ信号、29 判定結果信号、73 伸張回路、75 寿命加速試験回路、104,122 アクセス制御回路。
【発明の属する技術分野】
この発明は、複数の半導体チップを互いに接続して1つのパッケージに封止したシステム・イン・パッケージ(System in a Package)型半導体装置(以下「SiP型半導体装置」という)に関するものである。
【0002】
【従来の技術】
SiP型半導体装置では、複数の半導体チップとして、ロジックチップと1以上のメモリチップ(例えばDRAMチップ、SRAMチップ、フラッシュメモリチップなど)とが互いに接続されて1つのパッケージに封止されている。そして、外部接続端子には、ロジックチップを接続し、メモリチップは、ロジックチップを介して外部接続端子に接続するようになっている(例えば特許文献1)。
【0003】
【特許文献1】
特開平10−283777号公報(0021、1図)
【0004】
【発明が解決しようとする課題】
ところで、半導体装置では、パッケージ状態でのテストや初期不良をスクリーニングするために、製品出荷時などにおいて寿命加速試験を行う必要がある。しかし、SiP型半導体装置では、メモリチップの入出力は、外部と直接行うことができず、必ずロジックチップを介して行わなければならないので、ロジックチップの単独テストは行えるが、メモリチップの単独テストが行えないという問題がある。
【0005】
この発明は、上記に鑑みてなされたもので、外部から直接メモリチップの単独テストが行えるテスト機能を備えたSiP型半導体装置を得ることを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、この発明にかかるシステム・イン・パッケージ型半導体装置は、メモリ回路を搭載するメモリチップと、前記メモリ回路と電気的に接続されるロジック回路を搭載するロジックチップとを、前記ロジック回路とパッケージの外部接続端子とを接続して封止する形式のシステム・イン・パッケージ型半導体装置において、前記ロジックチップと前記メモリチップとのいずれか一方に、前記外部接続端子に設けたモード端子から入力されるモード信号が通常動作モードを示すときは、前記ロジック回路が前記メモリ回路へのアクセス経路を使用可能とする一方、前記モード信号がテストモードを示すとき、または特別のときに前記アクセス経路を前記ロジック回路から取り上げて前記メモリ回路をアクセスし、各種のテストを実施するテスト回路を設けたことを特徴とする。
【0007】
この発明によれば、ロジックチップとメモリチップとのいずれか一方に設けたテスト回路は、外部接続端子から入力されるモード信号がテストモードを示すときは、メモリ回路へのアクセス経路をロジック回路から取り上げ、そのアクセス経路を使用して前記メモリ回路をアクセスし、メモリ回路の内部電圧を昇圧した状態での寿命加速試験や、テストデータを伸張処理してメモリ回路に書き込み、読み出したデータを縮退処理して良否判定を行うマルチビットテストを実施する。また、電源投入時やその後において、メモリ回路へのアクセス経路をロジック回路から取り上げ、そのアクセス経路を使用して前記メモリ回路をアクセスし、自己診断を実施する。
【0008】
【発明の実施の形態】
以下に添付図面を参照して、この発明にかかるSiP型半導体装置の好適な実施の形態を詳細に説明する。
【0009】
実施の形態1.
図1は、この発明を適用するSiP型半導体装置の一例を示す構成概念図である。この発明を適用するSiP型半導体装置は、例えば、図1に示すように、マイクロプロセッサなどのロジック回路が搭載されるロジックチップ1の上に、DRAMなどのメモリ回路が搭載されるメモリチップ2をチップ・オン・チップの構造で重ね合わせて配置した状態で1つのパッケージに封止されている。そして、メモリチップ2の入出端は、配線3によってロジックチップ1に接続され、ロジックチップ1の入出力端の一部として配線4によって外部接続端子に接続される構成となっている。なお、SiP型半導体装置としては、その他、例えば、ロジックチップ1とメモリチップ2とを平面上に横に並べて配置する構成もあるが、接続形態は同様である。
【0010】
この発明では、このようなSiP型半導体装置において、外部から直接メモリチップ2の単独テストが行えるテスト機能を種々の態様で組み込んだ構成例が示されている。但し、以下に示す各実施の形態では、説明の便宜から、ロジックチップとメモリチップとが平面上に横に並べて配置されるとしている。
【0011】
図2は、この発明の実施の形態1であるSiP型半導体装置の構成概念図である。図3は、図2に示すテスト回路の詳細構成を示すブロック図である。図2に示すSiP型半導体装置10は、ロジックチップ11とメモリチップ12とで構成されている。ロジックチップ11は、配線13によって外部接続端子に接続され、配線17によってメモリチップ12に接続されている。
【0012】
メモリチップ12には、メモリ回路14として例えばダイナミック・ランダム・アクセス・メモリ(DRAM)が搭載されている。一方、ロジックチップ11には、ロジック回路15の他、テスト回路16がロジック回路15とメモリ回路14との間に介在する形で搭載されている。
【0013】
すなわち、テスト回路16は、ロジックチップ11内で、ロジック回路15と電気的に接続されるとともに、配線13によってロジック回路15と共に外部接続端子に接続されている。また、テスト回路16は、配線17によってメモリチップ12上のメモリ回路14と接続されている。したがって、外部接続端子は、ロジック回路15に与える通常動作時の信号端子と、テスト回路16に与えるテストモード時のテスト信号18の端子とで構成されている。
【0014】
テスト回路16は、配線17をメモリ回路14への共通のアクセス経路として使用し、通常動作時は、ロジック回路15の出力信号等19を配線17上に出力し、テスト時は、テスト信号18に従って配線17上にテスト制御信号を出力する。
【0015】
テスト回路16は、図3に示すように、メモリテスト回路21と選択回路22とで構成されている。テスト信号18として、モード信号25とリード/ライトのアドレス信号26とテスト書込データ信号27と読み出したテストデータ信号28と判定結果信号29とアクセス制御信号24とが例示されている。
【0016】
選択回路22は、外部接続端子から入力されるモード信号25が、“テストモード”であるときは、メモリテスト回路21とメモリ回路14との間を配線17によって直接接続してメモリテスト回路21のメモリ回路14へのアクセスを可能にし、“通常動作モード”であるときは、ロジック回路15とメモリ回路14との間を配線17によって直接接続してロジック回路15のメモリ回路14へのアクセスを可能にするようになっている。
【0017】
メモリテスト回路21は、外部接続端子から入力されるモード信号25が“テストモード”であるときに、外部接続端子から入力されるリード/ライトのアドレス信号26とテスト書込データ信号27とアクセス制御信号とに基づき、選択回路22を介してメモリ回路14を配線17を使用してアクセスしたり、メモリ回路14の内部電圧を高くしてメモリ回路14にストレスを加えた状態にし、セルチェッカーと同様のリード/ライト動作を行って寿命加速試験を実施する。メモリテスト回路21は、そのテスト時に読み出したテストデータ信号28を外部接続端子に出力する。
【0018】
また、メモリテスト回路21は、外部接続端子から入力されるモード信号25が“マルチビットテストモード”であるときは、同様にメモリ回路14へのアクセス経路をロジック回路15から取り上げ、テストデータを伸張してメモリ回路14に書き込みを行い、読み出したデータを縮退し、良否判定を行い、判定結果信号29を読み出したテストデータ信号28と共に外部接続端子に出力する。
【0019】
また、メモリテスト回路21は、電源投入時に、またその後随時に、メモリ回路14へのアクセス経路をロジック回路15から取り上げ、各種のテストパターンを発生し、選択回路22を介してメモリ回路14に書き込みを行い、書込データと読み出しデータとを比較して不良ビットを検出する自己診断(BIST:built−in self−test)機能を備えている。
【0020】
そして、自己診断(BIST)機能を備える場合には、当該SiP型半導体装置10に第2のメモリチップを設け、この第2のメモリチップに搭載される第2のメモリ回路にBIST時に検出した不良ビットのアドレス情報を蓄積するようにする。このようにすれば、不良ビットを回避してスペア部をアクセスすることができるので、不良アドレスのヒューズを切るのと同様の操作が実現でき、不良ビットの救済が行える。なお、第2のメモリチップを設けずに、メモリ回路14の内部に不良ビットのアドレス情報を蓄積するようにしてもよい。
【0021】
また、このように第2のメモリチップを設ければ、製造工程が複雑にならず、またロジック回路15をメモリ回路14と第2のメモリ回路との共用とすることで第2のメモリチップのチップ面積が大きくならずに済む、つまり歩留まりを悪くせずに済むので、低コストで第2のメモリチップを内蔵することができる。なお、第2のメモリ回路としては、フラッシュメモリやDRAM、スタティック・ランダム・アクセス・メモリ(SRAM)を用いることができる。
【0022】
次に、図4〜図8を参照して、テスト回路16について具体的に説明する。なお、図4は、図2に示すメモリ回路14を構成するDRAMの構成例を示すブロック図である。図5と図6は、図4に示すDRAMへのリード/ライト動作を示すタイムチャートである。図7は、図2に示すテスト回路16の具体的な構成例を示すブロック図である。図8は、図7に示す寿命加速試験回路75の動作を説明するフローチャートである。図9は、図7に示す伸張回路73の動作を説明する図である。図10は、図7に示す縮退回路76の動作を説明する図である。なお、図7では、自己診断(BIST)機能については、省略されている。
【0023】
図4に示すメモリ回路14であるDRAMは、2個のメモリセルアレイ55,56を備えている。それぞれ、32メガバイト(Mb)の容量を持ち、一方のメモリセルアレイ55をバンク#0とし、他方のメモリセルアレイ56をバンク#1としている。
【0024】
このDRAMは、入出力端子として、アドレス信号A0−11の入力端子41と、バンク#0とバンク#1のいずれかを指定するバンク選択信号BA0の入力端子42と、動作クロックCLKの入力端子43と、動作クロックCLKの使用状態を切り替える制御信号CKEの入力端子44と、チップ選択信号ZCSの入力端子45と、行アドレスストローブ信号ZRASの入力端子46と、列アドレスストローブ信号ZCASの入力端子47と、書込イネーブル信号ZWEの入力端子48と、書込データ信号DQM0−15の入力端子49と、読み出しデータ信号DQ0−127の出力端子50とを備えている。なお、バンク選択信号BA0は、バンク#0の指定を示す。バンク#1を指定するときはBA1となる。
【0025】
そして、2個のメモリセルアレイ55,56の周辺回路として、クロックバッファ51と、アドレスバッファ52と、制御信号バッファ53と、制御回路54と、I/Oバッファ57とを備えている。
【0026】
クロックバッファ51は、入力端子43,44から入力される動作クロックCLK,制御信号CKEの双方の論理積を取った信号をアドレスバッファ52と制御信号バッファ53と制御回路54とに出力する。アドレスバッファ52は、入力端子41,42から入力されるアドレス信号A0−11,バンク選択信号BA0をクロックバッファ51の出力に従って制御回路54に出力する。
【0027】
制御信号バッファ53は、入力端子45〜49から入力されるチップ選択信号ZCS,行アドレスストローブ信号ZRAS,列アドレスストローブ信号ZCAS,書込イネーブル信号ZWE,書込データ信号DQM0−15をクロックバッファ51の出力に従って制御回路54に出力する。
【0028】
制御回路54は、クロックバッファ51の出力に従ってアドレスバッファ52および制御信号バッファ53の各出力信号を取り込み、それらに基づきメモリセルアレイ55,56への書き込みと読み出しを制御する。I/Oバッファ57は、メモリセルアレイ55,56の読み出しデータを出力端子50に出力する。
【0029】
次に、図5、図6において、活性化「ACT」やプリチャージ「PRE」などのコマンド(Command)は、次に示す信号の組合せで発行される。活性化「ACT」は、ZRAS=L、ZCAS=ZWE=Hの条件で発行される。読み出し「READ」は、ZRAS=H、ZCAS=L、ZWE=Hの条件で発行される。書き込み「Write」は、ZRAS=H、ZCAS=ZWE=Lの条件で発行される。プリチャージ「PRE」は、ZRAS=L、ZCAS=H、ZWE=Lの条件で発行される。
【0030】
図5では、図4に示すバンク#0についての活性化「ACT」とバンク#1についての活性化「ACT」とを行った後に、バンク#1から読み出し「READ」が行われ、読み出しデータDQ「Qb0,Qb1,Qb2,Qb3」が出力される。その過程で、バンク#0とバンク#1の双方についてプリチャージ「PRE」が行われ、バンク#0についての活性化「ACT」に移行する様子が示されている。
【0031】
図6では、図4に示すバンク#0についての活性化「ACT」を行った後に、バンク#0に書込データDQ「Qa0,Qa1,Qa2,Qa3」の書き込み「Write」が行われる。その後、バンク#0についてプリチャージ「PRE」が行われ、バンク#0についての活性化「ACT」に移行する様子が示されている。この図5と図6に示す動作は、通常動作モードにおいては、ロジック回路15との間で行われ、テストモードにおいては、テスト回路16との間で行われる。
【0032】
図7において、メモリ回路14であるDRAMは、図4に示した構成を持つが、4つのモニタ端子「TESTMODE」「FRCMONI1」「FRCMONI2」「VBB」が追加されている。また、図7では示されていないが、動作電源VDDや外部電源EXVDDが設けられている。
【0033】
図7に示すテスト回路では、ロジック回路15との入出力信号として、動作クロックCLK,制御信号CKE,チップ選択信号ZCS,行アドレスストローブ信号ZRAS,列アドレスストローブ信号ZCAS,書込イネーブル信号ZWE,読み出しデータDQ0−7,アドレス信号A0−11,書込データ信号DQM0−15,およびバンク選択信号BA0が示されている。
【0034】
そのうち、動作クロックCLKは、メモリ回路14であるDRAMと、フリップフロップ(以下「FF」という)で構成されるFF回路71,78と、寿命加速試験回路75と、縮退回路76と、デコード回路77とに入力される。残りの信号は全てセレクタ72に入力されている。
【0035】
また、図7に示すテスト回路では、外部接続端子との入出力信号として、テスト制御信号TSTCKE,テスト書込データTSTDQM0−15,テストチップ選択信号TSTZCS,テスト行アドレスストローブ信号TSTZRAS,テスト列アドレスストローブ信号TSTZCAS,テスト書込イネーブル信号TSTZWE,テスト書込データ信号TSTD0−7,テストアドレス信号TSTA0−11,テストバンク選択信号TSTBA0,テスト読み出しデータ信号TSTQ0−7,マルチビットテスト出力信号TSTMBTO,テストモード信号TSTMODEA,TSTMODEB,TSTMODE2,電圧フォースモニタ信号TSTFRCMONI1,TSTFRCMONI2およびVBBが示されている。
【0036】
そのうち、テスト制御信号TSTCKE,テスト書込データTSTDQM0−15,テストチップ選択信号TSTZCS,テスト行アドレスストローブ信号TSTZRAS,テスト列アドレスストローブ信号TSTZCAS,テスト書込イネーブル信号TSTZWE,テスト書込データ信号TSTD0−7,テストアドレス信号TSTA0−11,テストバンク選択信号TSTBA0,テスト読み出しデータ信号TSTQ0−7の各端子は、FF回路78に接続されている。
【0037】
FF回路78は、テスト制御信号TSTCKE,テスト書込データTSTDQM0−15,テストチップ選択信号TSTZCSの各信号をセレクタ72に出力する。また、FF回路78は、テスト行アドレスストローブ信号TSTZRAS,テスト列アドレスストローブ信号TSTZCAS,テスト書込イネーブル信号TSTZWE,テスト書込データ信号TSTD0−7,テストアドレス信号TSTA0−11,テストバンク選択信号TSTBA0の各信号をセレクタ74に出力する。また、FF回路78は、セレクタ74から入力されるテスト読み出しデータ信号DQ0−127を8ビットのテスト読み出しデータ信号TSTQ0−7毎に対応する端子に出力する。セレクタ74が出力するテスト読み出しデータ信号DQ0−127は、縮退回路76にも入力されている。
【0038】
マルチビットテスト出力信号TSTMBTOの端子は、縮退回路76の出力端に接続されている。テストモード信号TSTMODE2の端子は、メモリ回路14であるDRAMのテストモード端子TETMODEに接続されている。電圧フォースモニタ信号TSTFRCMONI1,TSTFRCMONI2,VBBの各端子は、メモリ回路14であるDRAMの対応するモニタ出力端子FRCMONI1,FRCMONI2,VBBにそれぞれ接続されている。
【0039】
テストモード信号TSTMODEA,TSTMODEBの各端子は、デコード回路77の入力端に接続されている。デコード回路77は、それらの信号から4つの信号80,81,82,83を発生する。信号80は、加速試験信号であり、寿命加速試験回路75とセレクタ74とに入力されている。信号81は、マルチビットテスト信号であり、縮退回路76と伸張回路73とセレクタ72とに入力されている。信号82は、テストを行うか否かを示す信号であり、セレクタ72に入力されている。信号83は、電圧モニタイネーブル信号であり、電圧フォースモニタ信号TSTFRCMONI1,TSTFRCMONI2,VBBの各端子をオン・オフするのに用いられている。
【0040】
寿命加速試験回路75は、加速試験信号80を受けて、加速試験に必要なアドレス信号やデータ信号、制御信号を発生し、セレクタ74に出力する。セレクタ74は、加速試験信号80を受けて、寿命加速試験回路75の出力をセレクタ72に選択出力する。また、セレクタ74は、セレクタ72が出力するテスト読み出しデータ信号DQ0−127を上記のように、FF回路78と縮退回路76とに与える。
【0041】
伸張回路73は、マルチビットテスト信号81を受けて、セレクタ74から入力するテスト書込データ信号TSTD0−7について伸張処理(図9参照)行いセレクタ72に出力する。縮退回路76は、マルチビットテスト信号81を受けて、セレクタ74から入力するテスト書込データ信号DQ0−127について縮退処理(図10参照)を行い、マルチビットテスト出力信号TSTMBTOとして対応する端子に出力する。
【0042】
FF回路71は、メモリ回路14であるDRAMとセレクタ72との間で、制御信号CKE,チップ選択信号ZCS,行アドレスストローブ信号ZRAS,列アドレスストローブ信号ZCAS,書込イネーブル信号ZWE,読み出しデータDQ0−127,アドレス信号A0−11,書込データ信号DQM0−15,およびバンク選択信号BA0の各信号の授受を制御する。
【0043】
セレクタ72は、テストを行うか否かを示す信号82が、テストを行わない、つまり通常動作モードを示す場合は、ロジック回路15の入力端とFF回路71とを接続し、テストを行う、つまりテストモードを示す場合は、FF回路78,セレクタ74および伸張回路73とFF回路71とを接続する。
【0044】
以上の構成において、寿命加速試験回路75の動作と、伸張回路73および縮退回路76の動作とを説明する。まず、寿命加速試験回路75の動作を図8を参照して説明する。
【0045】
図8において、ステップST1では、寿命加速試験回路75は、加速試験信号80を受けて、テストモードでの動作モード設定を行う期間を設定する。これは、チップ選択信号ZCS,行アドレスストローブ信号ZRAS,列アドレスストローブ信号ZCAS,書込イネーブル信号ZWE,アドレス信号A0−11,バンク選択信号BA0等が消滅した後の適宜時間後における動作クロックCLKの例えば1クロック周期が選ばれる。
【0046】
ステップST2では、DRAM内には、複数の内部電源が存在するが、寿命加速試験回路75は、DRAM内に設けてあるテストモードレジスタに内部電圧を昇圧(フォース)する動作モードを設定する。種々の動作モードが用意され、アドレス信号TSTA0−11,バンク選択信号TSTBA0などを用いて外部から任意の動作モードを設定することで、任意にフォースした各種の内部電圧が得られるようになっている。
【0047】
ここでは、1つのフォースした内部電圧を得る動作モードとして、例えば、全てのバンクを同時に動作させるモード信号TMRBIALLBNKと、伸張・縮退(マルチビットテスト)のモード信号TMBTBと、寿命加速試験時の特殊動作の1つであるモード信号TMRAB125と、メモリセルアレイ部の動作電圧を発生する基準電圧VREFSをフォースするモード信号TMVREFSFRCと、動作電源VDDと外部電源EXVDDとをDRAM内部でショートするモード信号TMVDDEXVDDとをこの順にテストモードレジスタに設定する。
【0048】
その結果、外部電源EXVDDから例えば3.65Vを与えると、ワード線電圧VPPは4.8Vとなり、メモリセルアレイ部の動作電圧VCCSと周辺回路の動作電圧VCCPとが共に3.75Vとなる。このようにフォースされた内部電圧の値が、電圧フォースモニタ信号TSTFRCMONI1,TSTFRCMONI2,VBBの各端子で監視できるようになっている。
【0049】
具体的には、電圧フォースモニタ信号VBBの端子では、通常、−1.0Vが観測される。電圧フォースモニタ信号TSTFRCMONI1の端子では、上記の基準電圧VREFSとセルプレート上に掛かる電圧VCPとが監視される。電圧フォースモニタ信号TSTFRCMONI2の端子では、周辺回路の動作電圧VCCPを発生する基準電圧VREFPと、ワード線電圧VPPを発生する基準電圧VREFDとビット線電圧VBLとが監視される。
【0050】
ステップST3では、メモリセルアレイの全面{<X、Y>=<0,0>〜<Xmax,Ymax>}にテストデータを書き込む。これは、最初に行アドレスを+1しつつアクセスし、行アドレスが一杯になると、ゼロに戻し、次に列アドレスを+1し、再度行アドレスを+1しつつアクセスすることを切り返すことによって実行される。なお、アドレス信号やデータ信号は、スクランブルが掛けられている。
【0051】
ステップST3では、メモリセルアレイの全面{<X、Y>=<0,0>〜<Xmax,Ymax>}からデータを読み出す。この読み出し動作も上記の書込動作と同様の手順で行われる。読み出されたデータは、テスト読み出しデータ信号TSTQ0−7の端子から出力され、セルチェッカーにて良否判定がなされる。
【0052】
ステップST4では、テストデータを論理反転し、ステップST3とステップST4とを繰り返す。そして、ストレスを掛けた状態を規定時間維持するため、ステップST3〜ST5を規定時間内繰り返す(ステップST6,ST7)。
【0053】
次に、図9において、伸張回路73では、セレクタ74から入力される8ビット単位のテストデータ信号DQ<7:0>をコピーして、16個の8ビット単位テストデータ信号DQ<7;0>〜DQ<127:120>をそれぞれ生成し、それらを並列に並べてセレクタ72に出力する。これは、DRAMの書込データ信号DQ0−127の端子に入力される。
【0054】
図10において、縮退回路76では、セレクタ74から入力される8ビット単位のテストデータ信号DQ<7:0>〜DQ<127:120>を順に受けて、先頭のテストデータ信号DQ<7:0>と後続する各テストデータ信号DQとを8ビット毎に排他的論理和を取って比較する。そして、8ビット全てが一致すればマルチビットテスト出力信号TSTMBOを“H”レベルにし、一致しなければ“L”レベルにする。
【0055】
つまり、縮退回路76では、16個の8ビット単位テストデータ信号DQ<7;0>〜DQ<127:120>を16ビットに縮退したマルチビットテスト出力信号TSTMBOが出力される。マルチビットテスト出力信号TSTMBOは、良否判定結果を示す信号となっている。
【0056】
このように、実施の形態1によれば、ロジックチップに、メモリチップ上のメモリ回路をアクセスする経路をロジック回路から取り上げ、自らメモリ回路をアクセスするテスト回路を設けたので、外部接続端子からテスト回路に指示を出すことによって、メモリのテストを行うことができる。さらに、メモリ回路であるDRAMの内部電圧を昇圧操作して寿命加速試験を実施し、またマルチビットテストを実施することができる。
【0057】
また、テスト回路は、電源投入時やその後における必要な時に、メモリチップ上のメモリ回路をアクセスする経路をロジック回路から取り上げ、自らメモリ回路をアクセスするように構成できるので、電源投入時やその後における必要な時に、自己診断(BIST)を実施してエラービット検出の機能を持たせることができる。なお、テストのために設ける外部接続端子は、少なくすることができる。
【0058】
実施の形態2.
図11は、この発明の実施の形態2であるSiP型半導体装置の構成概念図である。なお、図11では、図2に示した構成と同一ないしは同等である構成要素には同一の符号が付されている。ここでは、この実施の形態2に関わる部分を中心に説明する。
【0059】
図11に示すSiP型半導体装置101では、図2に示した構成において、ロジックチップ11に代えて、ロジックチップ102が設けられている。ロジックチップ102では、図2に示したロジック回路15が、本来のロジック回路103とメモリ回路14へのアクセスを制御するアクセス制御回路104とに分離されている。アクセス制御回路104は、外部から制御主体を切り替え得るように構成され、図2に示したテスト回路16の配置位置に配置されている。そして、外部接続端子からテスト信号18が入力されるテスト回路105がアクセス制御回路104の制御主体を切替制御できるように配置されている。
【0060】
すなわち、テスト回路105は、テスト信号18に含まれるモード信号が“通常動作モード”を示すときは、アクセス制御回路104の制御主体をロジック回路103に切り替えてロジック回路103からメモリ回路14へのアクセスを可能にする。
【0061】
一方、テスト回路105は、モード信号が“テストモード”を示すときは、アクセス制御回路104の制御主体を自テスト回路105に切り替える。そして、テスト回路105は、アクセス制御回路104を使用してメモリ回路14にアクセスし、実施の形態1で説明したテスト、および、寿命加速試験を実施する。
【0062】
すなわち、寿命加速試験の場合、テスト回路105は、アクセス制御回路104の制御主体を自テスト回路105に切り替えることを行い、アクセス制御回路104を使用して図8に示す処理を行う。
【0063】
また、テスト回路105は、モード信号が“マルチビットテストモード”であるときは、アクセス制御回路104の制御主体を自テスト回路105に切り替える。そして、伸張したテストデータをアクセス制御回路104を使用してメモリ回路14に書き込み、アクセス制御回路104を使用してメモリ回路14から読み出したテストデータを縮退し、良否判定を行い、判定結果信号を読み出したテストデータ信号と共に外部接続端子に出力する。
【0064】
また、テスト回路105は、電源投入時に、またその後随時に、アクセス制御回路104の制御主体を自テスト回路105に切り替え、各種のテストパターンを発生し、アクセス制御回路104を使用してメモリ回路14に書き込みを行い、書込データとアクセス制御回路104を使用して読み出したデータとを比較して不良ビットを検出する自己診断(BIST)を実施することができる。このBISTでは、良否判定を行い、判定結果信号を読み出したテストデータ信号と共に外部接続端子に出力する。
【0065】
そして、自己診断(BIST)機能を備える場合には、実施の形態1と同様に、例えば当該SiP型半導体装置101に第2のメモリチップを設け、この第2のメモリチップに搭載される第2のメモリ回路にBIST時に検出した不良ビットのアドレス情報を蓄積するようにする。
【0066】
このように、実施の形態2によれば、ロジックチップに、ロジック回路が備えるアクセス制御回路をテスト回路から制御主体の切り替え制御ができるように構成配置したので、通常動作時に用いるアクセス制御回路を使用して、実施の形態1と同様の各種のテストを実施することができる。
【0067】
実施の形態3.
図12は、この発明の実施の形態3であるSiP型半導体装置の構成概念図である。なお、図12では、図2に示した構成と同一ないしは同等である構成要素には同一の符号が付されている。ここでは、この実施の形態3に関わる部分を中心に説明する。
【0068】
図12に示すSiP型半導体装置110では、図2に示した構成において、ロジックチップ11に代えて、ロジックチップ111が設けられ、メモリチップ12に代えて、メモリチップ112が設けられている。
【0069】
ロジックチップ111では、図2に示したロジックチップ11において、テスト回路16に代えて、テスト回路113が設けられている。また、メモリチップ112では、図2に示したメモリ回路14に接続されるテスト回路114が設けられている。つまり、テスト回路114は、メモリチップ112をウエハ状態でテストする際に用いる回路に若干の機能を追加したものであるが、テスト回路113とメモリ回路14との間に介在する形で設けられている。したがって、テスト回路113とテスト回路114とは、配線17によって接続されている。
【0070】
テスト回路113は、テスト信号18に含まれるモード信号をテスト回路114にそのまま転送するとともに、そのモード信号に従った通常動作モード・テストモードの切替動作とメモリチップ112上のテスト回路114にテスト指示を出す動作とを行うようになっている。
【0071】
すなわち、テスト回路113は、テスト信号18に含まれるモード信号が“通常動作モード”であるときは、ロジック回路15と配線17とを直接接続し、ロジック回路15が出力信号等19を配線17上に送出できるようにする。
【0072】
一方、モード信号が“テストモード”“寿命加速試験”であるときは、テスト回路113は、内蔵する“テスト指示を出す制御回路”と配線17とを直接接続し、対応するテスト指示およびテストデータを配線17上に送出する。
【0073】
また、テスト回路113は、電源投入時に、またその後随時に、内蔵する“テスト指示を出す制御回路”と配線17とを直接接続し、“テスト指示を出す制御回路”から自己診断(BIST)の指示およびテストデータを配線17上に送出する。
【0074】
テスト回路114は、テスト回路113から送られてきたモード信号が“通常動作モード”であるときは、配線17とメモリ回路14とを直接接続する。その結果、ロジック回路15のメモリ回路14へのアクセスが可能となる。
【0075】
一方、テスト回路114は、テスト回路113から送られてきたモード信号が“テストモード”“寿命加速試験”であるときは、配線17からテスト回路113の“テスト指示を出す制御回路”が送出するテスト指示を取り込み、“テストモード”についてのテスト指示では、指示に従いメモリ回路14にアクセスし、実施の形態1で説明したテスト、および、寿命加速試験を実施し、結果データをテスト回路113の“テスト指示を出す制御回路”に出力する。
【0076】
“マルチビットテストモード”の指示では、テスト回路113の“テスト指示を出す制御回路”がテストデータを伸張して送ってくるので、それをメモリ回路14に書き込み、メモリ回路14から読み出してテスト回路113の“テスト指示を出す制御回路”に出力する。テスト回路113の“テスト指示を出す制御回路”では、受け取ったテストデータを縮退し、良否判定を行い、判定結果信号を読み出したテストデータ信号と共に外部接続端子に出力する。
【0077】
また、テスト回路114は、自己診断(BIST)の指示が入力されると、その都度、テスト回路113の“テスト指示を出す制御回路”から送られてくるテストパターンデータをメモリ回路14に書き込み、メモリ回路14から読み出してテスト回路113の“テスト指示を出す制御回路”に出力する。テスト回路113の“テスト指示を出す制御回路”では、受け取ったテストデータを送ったテストデータと比較して良否の判定を行い、判定結果信号を受け取ったテストデータ信号と共に外部接続端子に出力する。
【0078】
そして、自己診断(BIST)機能を備える場合には、実施の形態1と同様に、例えば当該SiP型半導体装置110に第2のメモリチップを設け、この第2のメモリチップに搭載される第2のメモリ回路にBIST時に検出した不良ビットのアドレス情報を蓄積するようにする。
【0079】
このように、実施の形態3によれば、テスト回路をロジックチップとメモリチップの双方に設けたので、メモリチップの単独テストが外部から直接行えるようになるのに加えて、メモリチップのテスト回路にて内部電圧を複数に変化させる設定や寿命加速試験後において良品状態が維持できているか否かの判定が行えるようになるので、一層、テストの精度を高めることができる。
【0080】
実施の形態4.
図13は、この発明の実施の形態4であるSiP型半導体装置の構成概念図である。なお、図13では、図2,図11,図12に示した構成と同一ないしは同等である構成要素には同一の符号が付されている。ここでは、この実施の形態4に関わる部分を中心に説明する。
【0081】
図13に示すSiP型半導体装置120は、ロジックチップ121と図12に示したメモリチップ112とで構成されている。ロジックチップ121では、図11に示した構成において、テスト回路105に代えて、テスト回路123が設けられている。メモリチップ112上のテスト回路114は、アクセス制御回路104と配線17によって接続されている。
【0082】
テスト回路123は、テスト信号18に含まれるモード信号をアクセス制御回路104を介してテスト回路114にそのまま転送するとともに、テスト信号18に含まれるモード信号が“通常動作モード”を示すときは、アクセス制御回路104の制御主体をロジック回路103に切り替える。ロジック回路103の出力信号等19がアクセス制御回路104から配線17上に送出できるようにする。
【0083】
一方、テスト回路123は、モード信号が“テストモード”“寿命加速試験”であるときは、アクセス制御回路104の制御主体を自テスト回路123に切り替える。そして、テスト回路123は、対応するテスト指示をアクセス制御回路104を使用して配線17上に送出にする。また、テスト回路123は、電源投入時に、またその後随時に、アクセス制御回路104の制御主体を自テスト回路123に切り替えて自己診断(BIST)の指示をアクセス制御回路104を使用して配線17上に送出する。
【0084】
テスト回路114は、アクセス制御回路104を介してテスト回路123から送られてきたモード信号が“通常動作モード”であるときは、配線17とメモリ回路14とを直接接続する。その結果、ロジック回路103のメモリ回路14へのアクセスが可能となる。
【0085】
一方、テスト回路114は、アクセス制御回路104を介してテスト回路123から送られてきたモード信号が“テストモード”“寿命加速試験”であるときは、配線17からアクセス制御回路104が送出するテスト指示を取り込み、“テストモード”についてのテスト指示では、指示に従いメモリ回路14にアクセスし、実施の形態1で説明したテスト、および、寿命加速試験を実施し、結果データをアクセス制御回路104を介してテスト回路123に出力する。
【0086】
“マルチビットテストモード”の指示では、テスト回路123がテストデータを伸張して送ってくるので、テスト回路114は、それをメモリ回路14に書き込み、メモリ回路14から読み出し、アクセス制御回路104を介してテスト回路123に出力する。テスト回路123では、受け取ったテストデータを縮退し、良否判定を行い、判定結果信号を読み出したテストデータ信号と共に外部接続端子に出力する。
【0087】
また、テスト回路114は、アクセス制御回路104を介してテスト回路123から自己診断(BIST)の指示が入力されると、その都度、アクセス制御回路104を介してテスト回路123から送られてくるテストパターンデータをメモリ回路14に書き込み、メモリ回路14から読み出し、アクセス制御回路104を介してテスト回路123に出力する。テスト回路123では、受け取ったテストデータを送ったテストデータとを比較して良否の判定を行い、判定結果信号を受け取ったテストデータ信号と共に外部接続端子に出力する。
【0088】
そして、自己診断(BIST)機能を備える場合には、実施の形態1と同様に、例えば当該SiP型半導体装置120に第2のメモリチップを設け、この第2のメモリチップに搭載される第2のメモリ回路にBIST時に検出した不良ビットのアドレス情報を蓄積するようにする。
【0089】
このように、実施の形態4によれば、実施の形態2と同様に、ロジック回路が備えるアクセス制御回路をテスト回路がロジック回路から取り上げて使用できるようにしたので、通常動作時に用いるアクセス制御回路を使用して、外部からメモリチップの単独テストを実施することができる。また、テストのために設ける外部接続端子は、少なくすることができる。
【0090】
このとき、実施の形態3と同様に、テスト回路をロジックチップとメモリチップの双方に設けたので、メモリチップのテスト回路にて内部電圧を複数に変化させる設定や寿命加速試験後において良品状態が維持できているか否かの判定が行えるようになるので、一層、テストの精度を高めることができる。
【0091】
なお、この実施の形態4では、自己診断(BIST)回路は、テスト回路123内に存在するとしたが、これに限定されるものではなく、テスト回路114内に設けても良いことは勿論である。
【0092】
実施の形態5.
図14は、この発明の実施の形態5であるSiP型半導体装置の構成概念図である。なお、図14では、図2に示した構成と同一ないしは同等である構成要素には同一の符号が付されている。ここでは、この実施の形態5に関わる部分を中心に説明する。
【0093】
図14に示すSiP型半導体装置130は、ロジックチップ131とメモリチップ132とで構成されている。ロジックチップ131は、図2に示したロジックチップ11において、テスト回路16を省略し、外部接続端子からのテスト信号18とロジック回路15の出力信号19とが直接配線17上に送出されるとしている。
【0094】
そして、メモリチップ132では、図2に示したメモリ回路14に接続されるテスト回路133が設けられ、配線17はテスト回路133を介してメモリ回路14に接続されている。
【0095】
テスト回路133は、図3に示した構成を有し、図2に示したテスト回路16と同様の動作を行うようになっている。すなわち、外部接続端子からのテスト信号18に含まれるモード信号が“通常動作モード”であるときは、ロジック回路15の出力信号19が直接メモリ回路14に供給されるようにする。
【0096】
一方、モード信号が“テストモード”“寿命加速試験”であるときは、図3に示したメモリテスト回路21とメモリ回路14とを接続し、テストや寿命加速試験、マルチビットテストを実施する。また、テスト回路133は、電源投入時に、またその後随時に、自己診断(BIST)を実施する。
【0097】
そして、自己診断(BIST)機能を備える場合には、実施の形態1と同様に、例えば当該SiP型半導体装置130に第2のメモリチップを設け、この第2のメモリチップに搭載される第2のメモリ回路にBIST時に検出した不良ビットのアドレス情報を蓄積するようにする点も実施の形態1と同様である。
【0098】
このように、実施の形態5によれば、メモリチップに、メモリ回路をアクセスする経路をロジック回路から取り上げ、自らメモリ回路をアクセスするテスト回路を設けたので、外部接続端子からテスト回路に指示を出すことによって、メモリ回路であるDRAMの内部電圧を昇圧操作して寿命加速試験を実施し、またマルチビットテストを実施することができる。加えて、テスト回路をメモリチップ側に設けたので、実施の形態1よりも一層詳細なテストが行えるようになり、一層、テストの精度を高めることができる。
【0099】
なお、各実施の形態では、メモリチップに搭載するメモリ回路として、DRAMを示したが、その他、例えばSRAMやフラッシュメモリを搭載するメモリチップとロジックチップとで構成されるSiP型半導体装置や、ロジックチップとロジックチップのSiP型半導体装置等、組合せに拘らず、様々な構成のSiP型半導体装置にも同様に適用できることは勿論である。SRAMやフラッシュメモリについては、少なくとも、マルチビットテストと自己診断(BIST)は、同様に実施することができる。
【0100】
【発明の効果】
以上説明したように、この発明によれば、ロジックチップとメモリチップの一方に、外部からの指示に従ってロジックチップ上のロジック回路がメモリチップ上のメモリ回路をアクセスする経路をロジック回路から取り上げ、そのアクセス経路を使用してメモリ回路にアクセスするテスト回路を設けたので、メモリチップのみについて、外部からテストや寿命加速試験、マルチビットテストを実行することができる。
【0101】
また、前記テスト回路は、電源投入時やその後において、ロジックチップ上のロジック回路がメモリチップ上のメモリ回路をアクセスする経路をロジック回路から取り上げ、そのアクセス経路を使用してメモリ回路にアクセスするように構成できるので、自己診断を実行することができる。
【図面の簡単な説明】
【図1】この発明を適用するSiP半導体装置の一例を示す構成概念図である。
【図2】この発明の実施の形態1であるSiP型半導体装置の構成概念図である。
【図3】図2に示すテスト回路の詳細構成を示すブロック図である。
【図4】図2に示すメモリ回路を構成するDRAMの構成例を示すブロック図である。
【図5】図4に示すDRAMへのリード動作を示すタイムチャートである。
【図6】図4に示すDRAMへのライト動作を示すタイムチャートである。
【図7】図2に示すテスト回路の具体的な構成例を示すブロック図である。
【図8】図7に示す寿命加速試験回路の動作を説明するフローチャートである。
【図9】図7に示す伸張回路の動作を説明する図である。
【図10】図7に示す縮退回路の動作を説明する図である。
【図11】この発明の実施の形態2であるSiP型半導体装置の構成概念図である。
【図12】この発明の実施の形態3であるSiP型半導体装置の構成概念図である。
【図13】この発明の実施の形態4であるSiP型半導体装置の構成概念図である。
【図14】この発明の実施の形態5であるSiP型半導体装置の構成概念図である。
【符号の説明】
10,101,110,120,130 システム・イン・パッケージ型半導体装置(SiP型半導体装置)、11,102,111,121 ロジックチップ、12,112,131 メモリチップ、13 外部接続端子への配線、14メモリ回路、15,ロジック回路、16,105,113,114,123,132 テスト回路、21 メモリテスト回路、22 選択回路、25 モード信号、26 リード/ライトのアドレス信号、27 テストデータ信号、28 読み出したテストデータ信号、29 判定結果信号、73 伸張回路、75 寿命加速試験回路、104,122 アクセス制御回路。
Claims (7)
- メモリ回路を搭載するメモリチップと、前記メモリ回路と電気的に接続されるロジック回路を搭載するロジックチップとを、前記ロジック回路とパッケージの外部接続端子とを接続して封止する形式のシステム・イン・パッケージ型半導体装置において、
前記ロジックチップと前記メモリチップとのいずれか一方に、
前記外部接続端子に設けたモード端子から入力されるモード信号が通常動作モードを示すときは、前記ロジック回路が前記メモリ回路へのアクセス経路を使用可能とする一方、前記モード信号がテストモードを示すとき、または特別のときに前記アクセス経路を前記ロジック回路から取り上げて前記メモリ回路をアクセスし、各種のテストを実施するテスト回路を設けた、
ことを特徴とするシステム・イン・パッケージ型半導体装置。 - 前記テスト回路が前記ロジックチップに配置される場合において、前記ロジック回路に備える前記メモリ回路へのアクセスを制御するアクセス制御回路は、
前記ロジック回路が使用するか、前記テスト回路が使用するかを前記テスト回路が切替制御できるように構成されている、
ことを特徴とする請求項1に記載のシステム・イン・パッケージ型半導体装置。 - 前記テスト回路が前記ロジックチップに配置される場合において、
前記メモリチップに、
前記テスト回路からの指示に従って前記メモリ回路にアクセスするサブテスト回路を設けた、
ことを特徴とする請求項1または2に記載のシステム・イン・パッケージ型半導体装置。 - 前記テスト回路は、前記外部接続端子に設けたテスト端子から入力されるテストデータに基づき前記メモリ回路の内部電圧を昇圧する操作を行い、寿命加速試験を実施する機能を備えることを特徴とする請求項1〜3のいずれか一つに記載のシステム・イン・パッケージ型半導体装置。
- 前記テスト回路は、前記外部接続端子に設けたテスト端子から入力されるテストデータを伸張処理して前記メモリ回路に書き込み、読み出したデータを縮退処理して良否判定を行うマルチビットテストを実施する機能を備えることを特徴とする請求項1〜4のいずれか一つに記載のシステム・イン・パッケージ型半導体装置。
- 前記テスト回路は、電源投入時に、またその後随時になどの前記特別のときに、各種のテストパターンを発生し、前記メモリ回路に書き込み、書込データと読み出しデータとを比較して不良ビットを検出する自己診断を実施する機能を備えることを特徴とする請求項1〜5のいずれか一つに記載のシステム・イン・パッケージ型半導体装置。
- 前記自己診断にて検出された不良ビットのアドレスを記憶するメモリ回路を搭載する第2のメモリチップを備えたことを特徴とする請求項6に記載のシステム・イン・パッケージ型半導体装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002322321A JP2004158098A (ja) | 2002-11-06 | 2002-11-06 | システム・イン・パッケージ型半導体装置 |
TW092105456A TW588371B (en) | 2002-11-06 | 2003-03-13 | System-in-package type semiconductor device |
US10/411,271 US6925018B2 (en) | 2002-11-06 | 2003-04-11 | System-in-package type semiconductor device |
DE10321913A DE10321913A1 (de) | 2002-11-06 | 2003-05-15 | System-in-package-Halbleitervorrichtung |
KR10-2003-0046442A KR100515168B1 (ko) | 2002-11-06 | 2003-07-09 | 시스템·인·패키지형 반도체 장치 |
CNB031472427A CN1292481C (zh) | 2002-11-06 | 2003-07-10 | 系统组合型半导体装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002322321A JP2004158098A (ja) | 2002-11-06 | 2002-11-06 | システム・イン・パッケージ型半導体装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004158098A true JP2004158098A (ja) | 2004-06-03 |
Family
ID=32171333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002322321A Pending JP2004158098A (ja) | 2002-11-06 | 2002-11-06 | システム・イン・パッケージ型半導体装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US6925018B2 (ja) |
JP (1) | JP2004158098A (ja) |
KR (1) | KR100515168B1 (ja) |
CN (1) | CN1292481C (ja) |
DE (1) | DE10321913A1 (ja) |
TW (1) | TW588371B (ja) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005209239A (ja) * | 2004-01-20 | 2005-08-04 | Nec Electronics Corp | 半導体集積回路装置 |
JP2007287292A (ja) * | 2006-04-20 | 2007-11-01 | Renesas Technology Corp | 半導体集積回路装置 |
JP2007335809A (ja) * | 2006-06-19 | 2007-12-27 | Nec Electronics Corp | 半導体装置及び半導体装置の動作制御方法 |
JP2008065862A (ja) * | 2006-09-04 | 2008-03-21 | System Fabrication Technologies Inc | 半導体記憶装置 |
JP2008537999A (ja) * | 2005-03-18 | 2008-10-02 | イナパック テクノロジー インコーポレイテッド | 集積回路装置における試験のためのパターンの内部発生法 |
JP2008269669A (ja) * | 2007-04-17 | 2008-11-06 | Renesas Technology Corp | 半導体装置及びデータ処理システム |
KR100898352B1 (ko) | 2006-08-25 | 2009-05-20 | 후지쯔 마이크로일렉트로닉스 가부시키가이샤 | 반도체 집적 회로 및 반도체 집적 회로의 테스트 방법 |
JP2010182366A (ja) * | 2009-02-04 | 2010-08-19 | Toshiba Corp | 半導体装置 |
US7793174B2 (en) | 2006-03-22 | 2010-09-07 | Nec Electronics Corporation | Semiconductor apparatus and test method therefor |
US7793035B2 (en) | 2006-03-31 | 2010-09-07 | Kabushiki Kaisha Toshiba | Memory system and controller |
US7851898B2 (en) | 2005-03-22 | 2010-12-14 | Hitachi, Ltd. | Multichip package or system-in package |
US7937633B2 (en) | 2007-08-14 | 2011-05-03 | Reneas Electronics Corporation | Semiconductor device using logic chip |
US7965568B2 (en) | 2008-01-25 | 2011-06-21 | Renesas Electronics Corporation | Semiconductor integrated circuit device and method of testing same |
JP2011181174A (ja) * | 2011-04-25 | 2011-09-15 | Renesas Electronics Corp | 半導体装置及びそのテスト方法 |
JP2011232358A (ja) * | 2011-08-10 | 2011-11-17 | Taiyo Yuden Co Ltd | システムインパッケージ |
JP2012018173A (ja) * | 2011-08-10 | 2012-01-26 | Taiyo Yuden Co Ltd | システムインパッケージおよびソケット |
JP4980232B2 (ja) * | 2005-11-02 | 2012-07-18 | 太陽誘電株式会社 | システムインパッケージ |
JP2012517068A (ja) * | 2009-02-05 | 2012-07-26 | インディリンクス カンパニー リミテッド | メモリ装置、メモリ管理装置、およびメモリ管理方法 |
JP2016012693A (ja) * | 2014-06-30 | 2016-01-21 | 株式会社東芝 | 半導体装置 |
JPWO2016038709A1 (ja) * | 2014-09-11 | 2017-06-29 | ルネサスエレクトロニクス株式会社 | 半導体集積回路装置および半導体集積回路装置の製造方法 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7596372B2 (en) * | 2004-06-14 | 2009-09-29 | Warren Phillip D | Apparatuses and methods for measuring signal strengths of wireless networks |
US7786572B2 (en) * | 2005-09-13 | 2010-08-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | System in package (SIP) structure |
US7430145B2 (en) * | 2005-09-16 | 2008-09-30 | Hewlett-Packard Development Company, L.P. | System and method for avoiding attempts to access a defective portion of memory |
US8053853B2 (en) * | 2006-05-03 | 2011-11-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Color filter-embedded MSM image sensor |
KR100881622B1 (ko) * | 2006-11-14 | 2009-02-04 | 삼성전자주식회사 | 멀티칩 및 그것의 테스트 방법 |
US8054371B2 (en) * | 2007-02-19 | 2011-11-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Color filter for image sensor |
JP2009266258A (ja) | 2008-04-22 | 2009-11-12 | Hitachi Ltd | 半導体装置 |
JP5282649B2 (ja) * | 2008-09-25 | 2013-09-04 | 富士通株式会社 | レイアウト評価装置、レイアウト評価プログラム、ダミールール生成装置及びダミールール生成プログラム |
KR101548176B1 (ko) * | 2009-02-02 | 2015-08-31 | 삼성전자주식회사 | 메모리 시스템, 메모리 테스트 시스템 및 이의 테스트 방법 |
GB2472029B (en) * | 2009-07-22 | 2011-11-23 | Wolfson Microelectronics Plc | Integrated circuit package |
US8804428B2 (en) | 2011-08-16 | 2014-08-12 | Micron Technology, Inc. | Determining system lifetime characteristics |
JP5846679B2 (ja) * | 2012-03-30 | 2016-01-20 | インテル・コーポレーション | 積層メモリアーキテクチャのためのビルトインセルフテスト |
US8792288B1 (en) * | 2013-01-30 | 2014-07-29 | Texas Instruments Incorporation | Nonvolatile logic array with built-in test drivers |
JP6570809B2 (ja) | 2014-02-28 | 2019-09-04 | 三菱重工サーマルシステムズ株式会社 | 冷凍機制御装置、冷凍機、及び冷凍機の診断方法 |
KR102468792B1 (ko) | 2015-11-13 | 2022-11-18 | 삼성전자주식회사 | 인터페이스 보드, 그를 포함하는 mcp 테스트 시스템 및 이를 이용한 mcp 테스트 방법 |
JP2018092690A (ja) * | 2016-11-30 | 2018-06-14 | ルネサスエレクトロニクス株式会社 | 半導体装置および半導体集積システム |
KR20180113113A (ko) * | 2017-04-05 | 2018-10-15 | 에스케이하이닉스 주식회사 | 테스트 패드를 구비한 반도체 집적 회로 장치 |
KR102563424B1 (ko) | 2017-11-02 | 2023-08-07 | 주식회사 아모센스 | 반도체 패키지 및 모바일용 전자기기 |
CN110967614B (zh) * | 2018-09-28 | 2021-09-24 | 长鑫存储技术有限公司 | 芯片测试方法、芯片测试设备以及芯片 |
KR102634784B1 (ko) | 2019-04-26 | 2024-02-07 | 주식회사 아모센스 | 열차단부재를 구비한 반도체 소자 패키지 어셈블리 및 이를 포함하는 전자기기 |
CN113791338B (zh) * | 2021-11-17 | 2022-03-15 | 北京中科海芯科技有限公司 | 芯片测试方法和装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58166275A (ja) | 1982-03-26 | 1983-10-01 | Nec Corp | 集積回路装置 |
JPS6154550A (ja) | 1984-08-24 | 1986-03-18 | Hitachi Ltd | 集積回路装置 |
JPH0485848A (ja) | 1990-07-26 | 1992-03-18 | Matsushita Electron Corp | 半導体集積回路装置 |
JPH10283777A (ja) | 1997-04-04 | 1998-10-23 | Mitsubishi Electric Corp | Sdramコアと論理回路を単一チップ上に混載した半導体集積回路装置およびsdramコアのテスト方法 |
JPH11211794A (ja) | 1998-01-29 | 1999-08-06 | Matsushita Electric Ind Co Ltd | 半導体集積回路およびその検査方法 |
JP3582980B2 (ja) | 1998-02-27 | 2004-10-27 | 株式会社東芝 | メモリ混載半導体集積回路 |
JP3876095B2 (ja) | 1999-05-19 | 2007-01-31 | ローム株式会社 | マルチチップ型半導体装置 |
JP2001035200A (ja) | 1999-07-19 | 2001-02-09 | Mitsubishi Electric Corp | 集積回路 |
US6732304B1 (en) * | 2000-09-21 | 2004-05-04 | Inapac Technology, Inc. | Chip testing within a multi-chip semiconductor package |
JP2003059286A (ja) * | 2001-08-20 | 2003-02-28 | Mitsubishi Electric Corp | 半導体装置 |
US6961881B2 (en) * | 2001-09-14 | 2005-11-01 | Fujitsu Limited | Semiconductor device |
-
2002
- 2002-11-06 JP JP2002322321A patent/JP2004158098A/ja active Pending
-
2003
- 2003-03-13 TW TW092105456A patent/TW588371B/zh not_active IP Right Cessation
- 2003-04-11 US US10/411,271 patent/US6925018B2/en not_active Expired - Lifetime
- 2003-05-15 DE DE10321913A patent/DE10321913A1/de not_active Ceased
- 2003-07-09 KR KR10-2003-0046442A patent/KR100515168B1/ko not_active IP Right Cessation
- 2003-07-10 CN CNB031472427A patent/CN1292481C/zh not_active Expired - Fee Related
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005209239A (ja) * | 2004-01-20 | 2005-08-04 | Nec Electronics Corp | 半導体集積回路装置 |
JP2008537999A (ja) * | 2005-03-18 | 2008-10-02 | イナパック テクノロジー インコーポレイテッド | 集積回路装置における試験のためのパターンの内部発生法 |
US7851898B2 (en) | 2005-03-22 | 2010-12-14 | Hitachi, Ltd. | Multichip package or system-in package |
JP4980232B2 (ja) * | 2005-11-02 | 2012-07-18 | 太陽誘電株式会社 | システムインパッケージ |
US7793174B2 (en) | 2006-03-22 | 2010-09-07 | Nec Electronics Corporation | Semiconductor apparatus and test method therefor |
US8145831B2 (en) | 2006-03-31 | 2012-03-27 | Kabushiki Kaisha Toshiba | Memory system and controller with mode for direct access memory |
US7793035B2 (en) | 2006-03-31 | 2010-09-07 | Kabushiki Kaisha Toshiba | Memory system and controller |
JP2007287292A (ja) * | 2006-04-20 | 2007-11-01 | Renesas Technology Corp | 半導体集積回路装置 |
JP2007335809A (ja) * | 2006-06-19 | 2007-12-27 | Nec Electronics Corp | 半導体装置及び半導体装置の動作制御方法 |
KR100898352B1 (ko) | 2006-08-25 | 2009-05-20 | 후지쯔 마이크로일렉트로닉스 가부시키가이샤 | 반도체 집적 회로 및 반도체 집적 회로의 테스트 방법 |
JP2008065862A (ja) * | 2006-09-04 | 2008-03-21 | System Fabrication Technologies Inc | 半導体記憶装置 |
JP2008269669A (ja) * | 2007-04-17 | 2008-11-06 | Renesas Technology Corp | 半導体装置及びデータ処理システム |
US7937633B2 (en) | 2007-08-14 | 2011-05-03 | Reneas Electronics Corporation | Semiconductor device using logic chip |
US7965568B2 (en) | 2008-01-25 | 2011-06-21 | Renesas Electronics Corporation | Semiconductor integrated circuit device and method of testing same |
US8208325B2 (en) | 2009-02-04 | 2012-06-26 | Kabushiki Kaisha Toshiba | Semiconductor device, semiconductor package and memory repair method |
JP2010182366A (ja) * | 2009-02-04 | 2010-08-19 | Toshiba Corp | 半導体装置 |
JP2012517068A (ja) * | 2009-02-05 | 2012-07-26 | インディリンクス カンパニー リミテッド | メモリ装置、メモリ管理装置、およびメモリ管理方法 |
JP2011181174A (ja) * | 2011-04-25 | 2011-09-15 | Renesas Electronics Corp | 半導体装置及びそのテスト方法 |
JP2011232358A (ja) * | 2011-08-10 | 2011-11-17 | Taiyo Yuden Co Ltd | システムインパッケージ |
JP2012018173A (ja) * | 2011-08-10 | 2012-01-26 | Taiyo Yuden Co Ltd | システムインパッケージおよびソケット |
JP2016012693A (ja) * | 2014-06-30 | 2016-01-21 | 株式会社東芝 | 半導体装置 |
US10204661B2 (en) | 2014-06-30 | 2019-02-12 | Toshiba Memory Corporation | Semiconductor device |
JPWO2016038709A1 (ja) * | 2014-09-11 | 2017-06-29 | ルネサスエレクトロニクス株式会社 | 半導体集積回路装置および半導体集積回路装置の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN1292481C (zh) | 2006-12-27 |
DE10321913A1 (de) | 2004-05-27 |
TW588371B (en) | 2004-05-21 |
CN1499636A (zh) | 2004-05-26 |
KR20040040327A (ko) | 2004-05-12 |
US20040085796A1 (en) | 2004-05-06 |
KR100515168B1 (ko) | 2005-09-16 |
US6925018B2 (en) | 2005-08-02 |
TW200407899A (en) | 2004-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004158098A (ja) | システム・イン・パッケージ型半導体装置 | |
US6684356B2 (en) | Self-test ram using external synchronous clock | |
US7573778B2 (en) | Semiconductor memory device | |
US8724410B2 (en) | Semiconductor memory device and method for testing same | |
JP2011112411A (ja) | 半導体装置 | |
US20020031025A1 (en) | Semiconductor memory device performing redundancy repair based on operation test and semiconductor integrated circuit device having the same | |
US7017090B2 (en) | Semiconductor module including semiconductor memory device shiftable to test mode as well as semiconductor memory device used therein | |
US11232849B2 (en) | Memory device with a repair match mechanism and methods for operating the same | |
JP2004095156A (ja) | テストモードのために選択的にイネーブルされる出力回路を有するメモリ装置及びそのテスト方法 | |
US7808850B2 (en) | Semiconductor device and system | |
US7859938B2 (en) | Semiconductor memory device and test method thereof | |
JP2001210095A (ja) | メモリモジュール | |
KR19990007406A (ko) | 동기식 반도체 기억장치 | |
KR100474985B1 (ko) | 메모리로직복합반도체장치 | |
JP2001210099A (ja) | 半導体集積回路 | |
US7482830B2 (en) | Semiconductor device and method for testing semiconductor device | |
US11069426B1 (en) | Memory device with a row repair mechanism and methods for operating the same | |
JP2007323723A (ja) | 半導体記憶装置、メモリモジュール及びメモリモジュールの検査方法 | |
US7162663B2 (en) | Test system and method for testing memory circuits | |
US5202888A (en) | Semiconductor memory device having a multibit parallel test function and a method of testing the same | |
US20210280267A1 (en) | Configurable Soft Post-Package Repair (SPPR) Schemes | |
US7930465B2 (en) | Determining operation mode for semiconductor memory device | |
KR100587233B1 (ko) | 반도체 메모리소자의 번인테스트 방법 | |
JP5031393B2 (ja) | 半導体記憶装置 | |
KR100388976B1 (ko) | 메모리용 비아이에스티 회로 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050902 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080311 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080701 |