JP2004146866A - 発振回路 - Google Patents

発振回路 Download PDF

Info

Publication number
JP2004146866A
JP2004146866A JP2002306085A JP2002306085A JP2004146866A JP 2004146866 A JP2004146866 A JP 2004146866A JP 2002306085 A JP2002306085 A JP 2002306085A JP 2002306085 A JP2002306085 A JP 2002306085A JP 2004146866 A JP2004146866 A JP 2004146866A
Authority
JP
Japan
Prior art keywords
resistor
inverter
circuit
capacitor
resistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002306085A
Other languages
English (en)
Inventor
Masanori Aoyama
青山 正紀
Toshikazu Itakura
板倉 敏和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002306085A priority Critical patent/JP2004146866A/ja
Priority to US10/678,132 priority patent/US7129798B2/en
Priority to DE10348364.0A priority patent/DE10348364B4/de
Publication of JP2004146866A publication Critical patent/JP2004146866A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits
    • H03K3/0315Ring oscillators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/011Modifications of generator to compensate for variations in physical values, e.g. voltage, temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/023Generators characterised by the type of circuit or by the means used for producing pulses by the use of differential amplifiers or comparators, with internal or external positive feedback
    • H03K3/0231Astable circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only

Abstract

【課題】簡単な構成にて、発振周波数に関する温度依存性を改善することができる発振回路を提供する。
【解決手段】インバータ1,2,3が直列に接続され、インバータ3の出力端子からインバータ1の入力端子に抵抗5を介して帰還がかけるとともに、インバータ2の出力端子からコンデンサ4を介してインバータ1の入力端子に帰還がかけられている。インバータ2の出力端子からインバータ1の入力端子へのコンデンサ4を介した帰還経路に、抵抗5の温度係数よりも大きな温度係数を有する抵抗6が配置され、コンデンサ4の充放電開始電圧および充放電時間を調整している。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は発振回路に関するものである。
【0002】
【従来の技術】
発振回路において、図18に示す回路構成とするのが一般的である。図18においてインバータ100,101,102が直列に接続され、インバータ101の出力側とインバータ100の入力側とがコンデンサ103を介して接続されている。また、インバータ102の出力側とインバータ100の入力側とが抵抗104を介して接続されている。図19において実線にて室温時におけるインバータ100の入力側(A)と、インバータ100の出力側(B)およびインバータ102の出力側(Fout)と、インバータ101の出力側(C)におけるそれぞれの波形を示す。
【0003】
ここで、発振周波数f1を決定するのは、抵抗104とコンデンサ103の充放電の時定数であり、f1値は抵抗104での抵抗値R11とコンデンサ103の容量C11との関係において次式で表される。
【0004】
f1=1/(k・R11・C11)
ただし、kは定数であり、約2.2の値をとる。
この場合、半導体で構成することを前提に考えると、抵抗104は拡散抵抗またはポリシリコン抵抗を利用し、また、コンデンサ103は、ポリシリコン層間膜やトランジスタのゲート酸化膜を利用したものがほとんどである。
【0005】
ここで、発振周波数に関する温度依存性(温度特性)を考察すると、抵抗104とコンデンサ103で決定される充放電の時定数のうち抵抗104の温度依存性(温度特性)が主要因であり、その値は、拡散抵抗を用いたもので10〜40%(125℃/室温比)、ポリシリコン抵抗を用いたもので4〜10%程度の変化量がみられる。より詳しくは、抵抗104として温度係数の小さなものを用いるとともにコンデンサ103として層間膜コンデンサを用いた場合において、室温時に比べ低温時および高温時には図19で破線および一点鎖線で示すようにズレが生じ、抵抗の温度依存性(温度特性)により発振周波数が温度依存性を持つ。
【0006】
システム上、高精度な発振周波数を要求される場合においては水晶やセラロックなどの発振子を用いることが多いが、その部品代や実装代がかかるためコストアップを招いてしまう。
【0007】
また、半導体チップ上にて周波数を一定に制御する方法として、図20のような構成がある。図20においてコンパレータ110の一方の入力端子に抵抗111とコンデンサ112よりなるCR回路を介して帰還がかけられている。一方、コンパレータ110の他方の入力端子は、抵抗113内の接続点(分圧用接続点)にスイッチ群114とスイッチ115を介して接続されるとともに、抵抗113内の接続点(分圧用接続点)にスイッチ群116とスイッチ117を介して接続されている。スイッチ115,117はコンパレータ110の出力に基づき交互にオンする。また、感温素子118とメモリ119が設けられ、感温素子118による温度測定結果に基づいてメモリ119がスイッチ群114,116のうちの所定のスイッチをオンする。つまり、スイッチ群114の中のいずれかのスイッチ、また、スイッチ群116の中のいずれかのスイッチを選択してオンする。これにより、コンパレータ110の入力端子に温度に応じた閾値電圧が印加される。つまり、感温素子118の出力と予めプログラムされたメモリ119からの信号をもとに、発振周波数を決定するコンパレータ110の閾値電圧を変化させて周波数を一定に制御する。
【0008】
この場合も、制御に要する回路部分が大きくなってしまうためコストアップを招いてしまうという問題がある。
【0009】
【発明が解決しようとする課題】
本発明はこのような背景の下になされたものであり、その目的は、簡単な構成にて、発振周波数に関する温度依存性を改善することができる発振回路を提供することにある。
【0010】
【課題を解決するための手段】
請求項1に記載の発明は、CR回路を構成する抵抗の温度係数よりも大きな温度係数を有する抵抗を、CR回路のコンデンサの充放電開始電圧および充放電時間を調整するための抵抗として組み込んだことを特徴としている。よって、CR回路を構成する抵抗の温度係数よりも大きな温度係数を有する抵抗を用いて、CR回路のコンデンサの充放電開始電圧および充放電時間が調整され、簡単な構成にて、発振周波数に関する温度依存性を改善することができるようになる。
【0011】
請求項2に記載の発明は、インバータ群のうちの偶数番目のインバータの出力端子から第1番目のインバータの入力端子へのコンデンサを介した帰還経路に、奇数番目のインバータの出力端子からの帰還用抵抗の温度係数よりも大きな温度係数を有する抵抗を配したことを特徴としている。この構成によってコンデンサの充放電開始電圧および充放電時間を調整することにより、簡単な構成にて、発振周波数に関する温度依存性を改善することができる。
【0012】
請求項3に記載の発明は、分圧のための複数の抵抗のうちの一部の抵抗の温度係数を、他の分圧のための抵抗およびCR回路を構成する抵抗の温度係数よりも大きなものとしたことを特徴としている。この構成によってコンデンサの充放電開始電圧および充放電時間を調整することにより、簡単な構成にて、発振周波数に関する温度依存性を改善することができる。
【0013】
請求項4に記載のように、前記抵抗は半導体抵抗素子であり、請求項5に記載のように、半導体抵抗素子の不純物濃度を異ならせることにより抵抗の温度係数を異ならせることができる。また、請求項6に記載のように、半導体抵抗素子は不純物ドープトポリシリコン抵抗もしくは拡散抵抗であるとよい。
【0014】
請求項7に記載のように、請求項1〜6のいずれか1項に記載の発明において、ワンチップ内に集積化するとよい。
【0015】
【発明の実施の形態】
(第1の実施の形態)
以下、この発明を具体化した第1の実施の形態を図面に従って説明する。
【0016】
図1に、本実施形態における発振回路の構成図を示す。本実施形態における発振回路は、ワンチップ内に集積化されている。即ち、IC化されている。
図1において、インバータ1,2,3が直列に接続されている。インバータ2の出力側とインバータ1の入力側との間においてコンデンサ4と抵抗6が直列に接続されている。また、インバータ3の出力側とインバータ1の入力側とが抵抗5を介して接続されている。
【0017】
図1における抵抗5,6は、図2に示すような不純物ドープトポリシリコン抵抗あるいは図3に示すような拡散抵抗を用いている。
図2において、p型シリコン基板10の上にはシリコン酸化膜11を介して不純物ドープトポリシリコン膜12が形成されている。不純物ドープトポリシリコン膜12の上にはシリコン酸化膜13を介してアルミ配線14,15が形成されている。アルミ配線14はコンタクトホールを通して不純物ドープトポリシリコン膜12の一端と電気的に接続されるとともに、アルミ配線15はコンタクトホールを通して不純物ドープトポリシリコン膜12の他端と電気的に接続されている。
【0018】
図3において、p型シリコン基板20の表層部にはn型領域21が形成されるとともに、n型領域21の表層部にはp領域22が形成されている。p型シリコン基板20の上にはシリコン酸化膜23を介してアルミ配線24,25が形成されている。アルミ配線24はコンタクトホールを通してp領域22の一端側と電気的に接続されるとともに、アルミ配線25はコンタクトホールを通してp領域22の他端側と電気的に接続されている。
【0019】
より具体的には、図1の抵抗5(第1の抵抗)には、図2に示す不純物ドープトポリシリコン抵抗を使用するとともに、図1の抵抗6(第2の抵抗)には、図3に示すp拡散抵抗を使用している。
【0020】
図1のコンデンサ4は、図4に示すように、ポリシリコン膜32,34の間にシリコン酸化膜33を挟んだ構造をしている。
図4において、p型シリコン基板30の上にはシリコン酸化膜31を介してポリシリコン膜32が形成されるとともに、その上にはシリコン酸化膜33を介してポリシリコン膜34が形成されている。ここで、一層目のポリシリコン膜32と二層目のポリシリコン膜34とはシリコン酸化膜33を挟んで対向して(重なるように)配置されている。ポリシリコン膜34の上にはシリコン酸化膜35を介してアルミ配線36,37が形成されている。アルミ配線36はコンタクトホールを通してポリシリコン膜32と電気的に接続されるとともに、アルミ配線37はコンタクトホールを通してポリシリコン膜34と電気的に接続されている。
【0021】
このように、図1のコンデンサ4には、図4に示すごとく、ポリシリコン層間膜を利用している。
図1の抵抗5(第1の抵抗)には図2に示す不純物ドープトポリシリコン抵抗を使用するとともに図1の抵抗6(第2の抵抗)には図3に示すp拡散抵抗を使用したが、これに代わり次のようにしてもよい。
【0022】
その1として、図1の抵抗5(第1の抵抗)には図2に示す不純物ドープトポリシリコン抵抗を使用するとともに図1の抵抗6(第2の抵抗)には図5に示すpウエル拡散抵抗を使用する。
【0023】
図5において、n型シリコン基板40の表層部にはpウエル領域41が形成されるとともに、pウエル領域41の表層部にはp領域42,43が離間して形成されている。n型シリコン基板40の上にはシリコン酸化膜44を介してアルミ配線45,46が形成されている。アルミ配線45はコンタクトホールを通してp領域42と電気的に接続されるとともに、アルミ配線46はコンタクトホールを通してp領域43と電気的に接続されている。
【0024】
その2として、図1の抵抗5(第1の抵抗)には図3に示すp拡散抵抗を使用するとともに図1の抵抗6(第2の抵抗)には図5に示すpウエル拡散抵抗を使用する。
【0025】
また、図5に示すpウエル拡散抵抗の代わりに、図6に示すnウエル拡散抵抗を使用してもよい。
図6において、p型シリコン基板50の表層部にはnウエル領域51が形成されるとともに、nウエル領域51の表層部にはn領域52,53が離間して形成されている。p型シリコン基板50の上にはシリコン酸化膜54を介してアルミ配線55,56が形成されている。アルミ配線55はコンタクトホールを通してn領域52と電気的に接続されるとともに、アルミ配線56はコンタクトホールを通してn領域53と電気的に接続されている。
【0026】
また、図1のコンデンサ4として、図4に示すポリシリコン膜32,34の間にシリコン酸化膜33を挟んだ構造のものを用いたが、これに代わり、図7に示す薄膜シリコン酸化膜63を利用したものを用いてもよい。
【0027】
図7において、p型シリコン基板60の表層部にはn型領域61が形成されるとともに、n型領域61の表層部にはn領域62が形成されている。p型シリコン基板60の上には薄いシリコン酸化膜63を介してアルミ配線64,65が形成されている。ここで、シリコン酸化膜63を挟んでn領域(第1の電極材)62とアルミ配線(第2の電極材)64とが対向している。アルミ配線65はコンタクトホールを通してn領域62と電気的に接続されている。
【0028】
図8には、図1の第1の抵抗5の温度特性R1(T)と、図1の第2の抵抗6の温度特性R2(T)を示す。図8において横軸には温度Tをとり、縦軸には抵抗値をとっている。縦軸の抵抗値は室温時の値との比であり、室温では「1」となる。
【0029】
図8において、第1の抵抗5の温度特性R1(T)、即ち、各温度での抵抗値は破線で表し、第2の抵抗6の温度特性R2(T)、即ち、各温度での抵抗値は実線で表している。温度特性R1(T),R2(T)は共に一次関数であり、傾きθ1,θ2が共に正であるが、傾きθ1,θ2が異なっている。詳しくは、抵抗6の温度特性R2(T)における傾き(温度係数)θ2が、抵抗5の温度特性R1(T)における傾き(温度係数)θ1よりも大きい(θ2>θ1)。つまり、高温時THにおいては、室温時に比べ抵抗値R1がΔ1だけ大きいとともに、抵抗値R2がΔ2だけ大きく、かつΔ2はΔ1より大きい(Δ2>Δ1)。一方、低温時TLにおいては、室温時に比べ抵抗値R1がΔ11だけ小さいとともに、抵抗値R2がΔ12だけ小さく、かつΔ12はΔ11より大きい(Δ12>Δ11)。
【0030】
図9には、高温時、室温時、低温時における、図1のインバータ1の入力側(A)と、インバータ1の出力側(B)と、インバータ2の出力側(C)と、抵抗6・コンデンサ4間(D)と、インバータ3の出力側(Fout)におけるそれぞれの波形を示す。
【0031】
インバータ1の入力側(A)での波形において、高温時、室温時、低温時において傾き(充放電時の傾き)が異なっている。これを図10の拡大図を用いて説明する。
【0032】
第1の抵抗5の抵抗値をR1(T)、抵抗6の抵抗値をR2(T)、コンデンサ4の容量をC1とする。
図10において、充放電の時定数は、
k・{R1(T)+R2(T)}・C1
で表される。
【0033】
よって、充放電の時定数は、室温時に比べ低温時に小さくなり、高温時に大きくなり、充放電時間は低温時に短くなり高温時に長くなる。
また、充放電開始電圧(動作点)は、
Vdd・R1(T)/{R1(T)+R2(T)}
で表される。ただし、Vddは駆動電圧である(図9の場合、Vdd=5V)。
【0034】
よって、充放電開始電圧(動作点)は、室温時に比べ低温時に高く、高温時に低くなる。
このように、発振周波数を決定する抵抗5,6での抵抗値R1(T),R2(T)は、図8のように、高温時には大きくなるので、充放電の時定数は大きくなり図10に示すように充放電時間は長くなる。低温時はその逆であり、図8に示すように抵抗値R1(T),R2(T)は小さくなるので、充放電の時定数は小さくなり図10に示すように充放電時間は短くなる。
【0035】
ここで、抵抗5,6での抵抗値R1(T),R2(T)が温度依存性(温度特性)を持っていても、発振周波数を一定にすべく、充放電開始電圧(動作点)および充放電時間を調整している。具体的には、不純物ドープトポリシリコン抵抗もしくは拡散抵抗における不純物濃度を最適化してコンデンサ4の充放電開始電圧(図1における2つの抵抗5,6による分圧電圧値)および充放電時間を調整し発振周波数が一定になるようにしている。
【0036】
即ち、不純物濃度をコントロールして、高温時においては充放電の時定数が大きくなる分だけ充放電開始電圧(動作点)を所定量(図10のdV1だけ)下げることで、発振周波数(充放電時間)を一定にする。また、低温時においては、充放電の時定数が小さくなる分だけ充放電開始電圧(動作点)を所定量(図10のdV2だけ)上げることで、発振周波数(充放電時間)を一定にする。このように、充放電時間を決定するとともに充放電開始電圧(動作点)を決定するための抵抗5,6に関して発振周波数を一定にできるような特性に調整し、発振周波数の温度特性を補償している。
【0037】
なお、コンデンサ4の充放電開始電圧および充放電時間の調整方法としては、抵抗5,6として、構造の異なる抵抗を用いたり、同じ構造の抵抗を用い、かつ、その不純物濃度を異ならせたり、構造が異なる抵抗を用い、かつ、その不純物濃度を異ならせることにより、行うことができる。
【0038】
以上のように、図18に示す従来の回路構成に対し抵抗素子(図1の抵抗6)を一つ追加するのみで、温度が変化しても高精度に発振周波数を一定に保つことができ、かつ小型のため、LSI内蔵が容易にできる。つまり、図20に示すメモリ119などの大規模回路を用いずにシンプルで小型な回路構成にて発振周波数を一定に保つことができる。即ち、ICチップ上に構成される発振回路に関し、発振周波数についての温度依存性(温度特性)のうち抵抗の温度依存性(温度特性)が主要因であるので、この温度依存性(温度特性)を、メモリなどの大規模回路を用いずにシンプルで小型な回路構成にて補償することができる。
【0039】
以上説明してきたように本実施形態は下記の特徴を有する。
(イ)図1に示すように、能動回路(1,2,3)の帰還回路としてCR回路を用いた発振回路において、CR回路を構成する抵抗5の温度係数θ1(図8参照)よりも大きな温度係数θ2(>θ1)を有する抵抗6を、CR回路のコンデンサ4の充放電開始電圧および充放電時間を調整するための抵抗として組み込んだ。
(ロ)より詳しくは、インバータ1,2,3を直列に接続し、インバータ3の出力端子からインバータ1の入力端子に抵抗5を介して帰還をかけるとともに、インバータ2の出力端子からコンデンサ4を介してインバータ1の入力端子に帰還をかけた発振回路において、インバータ2の出力端子からインバータ1の入力端子へのコンデンサ4を介した帰還経路に、抵抗5の温度係数θ1よりも大きな温度係数θ2(>θ1)を有する抵抗6を配した。広義には、インバータを3以上直列に接続し、このインバータ群(1〜3)のうちの奇数番目のインバータの出力端子から第1番目のインバータ1の入力端子に抵抗5を介して帰還をかけるとともに、少なくともいずれかのインバータの出力端子からコンデンサ4を介して第1番目のインバータ1の入力端子に帰還をかけた発振回路において、インバータ群(1〜3)のうちの偶数番目のインバータの出力端子から第1番目のインバータ1の入力端子へのコンデンサ4を介した帰還経路に、抵抗5の温度係数θ1よりも大きな温度係数θ2(>θ1)を有する抵抗6を配した。
【0040】
よって、(イ)においては、CR回路を構成する抵抗5の温度係数よりも大きな温度係数を有する抵抗6を用いて、CR回路のコンデンサ4の充放電開始電圧および充放電時間が調整され、簡単な構成にて、発振周波数に関する温度依存性を改善することができる。(ロ)の構成によってコンデンサ4の充放電開始電圧および充放電時間を調整することにより、簡単な構成にて、発振周波数に関する温度依存性を改善することができる。
(ハ)より具体的には、抵抗5,6は半導体抵抗素子であり、半導体抵抗素子の不純物濃度を異ならせることにより抵抗5,6の温度係数を異ならせることができる。また、半導体抵抗素子は、不純物ドープトポリシリコン抵抗もしくは拡散抵抗を用いるとよい。
【0041】
図1に代わる構成として、図11,12,13,14に示す構成としてもよい。
図11において、3つのインバータ1,2,3を直列に接続し、第3番目のインバータ3の出力端子から第1番目のインバータ1の入力端子に抵抗5aおよびコンデンサ4を介して帰還をかけるとともに、インバータ3の出力端子からインバータ1の入力端子に抵抗5bを介して帰還をかけている。また、第2番目のインバータ2の出力端子から第1番目のインバータ1の入力端子へのコンデンサ4を介した帰還経路に、抵抗5a,5bの温度係数よりも大きな温度係数を有する抵抗6を配している。
【0042】
図12の回路は図11の回路と等価である。図12において、3つのインバータ1,2,3を直列に接続し、第1番目のインバータ1の出力端子から第1番目のインバータ1の入力端子に抵抗5aおよびコンデンサ4を介して帰還をかけるとともに、第3番目のインバータ3の出力端子からインバータ1の入力端子に抵抗5bを介して帰還をかけている。また、第2番目のインバータ2の出力端子から第1番目のインバータ1の入力端子へのコンデンサ4を介した帰還経路に、抵抗5a,5bの温度係数よりも大きな温度係数を有する抵抗6を配している。
【0043】
図13において、5つのインバータ71,72,73,74,75を直列に接続し、第3番目のインバータ73の出力端子から第1番目のインバータ71の入力端子に抵抗5aおよびコンデンサ4を介して帰還をかけている。また、第5番目のインバータ75の出力端子からインバータ71の入力端子に抵抗5bを介して帰還をかけている。さらに、第4番目のインバータ74の出力端子から第1番目のインバータ71の入力端子へのコンデンサ4を介した帰還経路に、抵抗5a,5bの温度係数よりも大きな温度係数を有する抵抗6を配している。
【0044】
図14において、5つのインバータ71,72,73,74,75を直列に接続し、第1番目のインバータ71の出力端子から第1番目のインバータ71の入力端子に抵抗5aおよびコンデンサ4を介して帰還をかけている。また、第5番目のインバータ75の出力端子からインバータ71の入力端子に抵抗5bを介して帰還をかけている。さらに、第4番目のインバータ74の出力端子から第1番目のインバータ71の入力端子へのコンデンサ4を介した帰還経路に、抵抗5a,5bの温度係数よりも大きな温度係数を有する抵抗6を配している。
(第2の実施の形態)
次に、第2の実施の形態を説明する。
【0045】
図15に、本実施形態における発振回路の構成図を示す。本実施形態における発振回路もワンチップ内に集積化されている。即ち、IC化されている。
図15において、能動素子としてのコンパレータ80を具備している。また、抵抗81とコンデンサ82を帰還回路として用いている。この帰還回路(CR回路)にてコンパレータ80の一方の入力端子(第1の入力端子)に帰還がかけられている。また、電源端子(Vdd)とグランド間において3つの抵抗83,84,85が直列に接続されている。抵抗83と抵抗84との間がスイッチ86を介してコンパレータ80の他方の入力端子(第2の入力端子)と接続されている。そして、抵抗83と抵抗84との間の電位にて高圧側の閾値電圧VtHが規定される。また、抵抗84と抵抗85との間がスイッチ87を介してコンパレータ80の他方の入力端子(第2の入力端子)と接続されている。そして、抵抗84と抵抗85との間の電位にて低圧側の閾値電圧VtLが規定される。このようにして、コンパレータ80の他方の入力端子(第2の入力端子)に3つの抵抗83,84,85により分圧した電圧が印加される。また、コンパレータ80の出力によりスイッチ86,87が交互にオンされ、コンパレータ80の入力端子(第2の入力端子)に高圧側閾値電圧VtHと低圧側閾値電圧VtLが交互に印加される。
【0046】
ここで、抵抗83,85の温度係数を、抵抗84およびCR回路を構成する抵抗81の温度係数よりも大きくしている。詳しくは、抵抗83,84,85,81は、図2に示したような不純物ドープトポリシリコン抵抗もしくは図3,5,6で示したような拡散抵抗であり、抵抗83,85の不純物濃度を、抵抗84および抵抗81の不純物濃度と異ならせることにより、抵抗83,85の温度係数を、抵抗84および抵抗81の温度係数よりも大きくしている。
【0047】
これにより、図16に示す高温時においては高圧側閾値電圧VtHと低圧側閾値電圧VtLの幅を狭くし、図17に示す低温時においては高圧側閾値電圧VtHと低圧側閾値電圧VtLの幅を広くし、発振周波数(充放電時間)を一定に制御している。このようにして、図15のコンデンサ82による充放電動作時の充放電時間および充放電開始電圧を調整している。
【0048】
なお、コンデンサ82の充放電開始電圧および充放電時間の調整方法としては、抵抗81,83,84,85として、構造の異なる抵抗を用いたり、同じ構造の抵抗を用い、かつ、その不純物濃度を異ならせたり、構造が異なる抵抗を用い、かつ、その不純物濃度を異ならせることにより、行うことができる。
【0049】
このように、図20の改良型として、感温素子118やメモリ119を必要とせず、小型で、温度が変化しても発振周波数を一定に保つことができる。
以上説明してきたように本実施形態は下記の特徴を有する。
(イ)図15に示すように、能動素子としてのコンパレータ80の帰還回路としてCR回路を用いた発振回路において、CR回路を構成する抵抗81の温度係数よりも大きな温度係数を有する抵抗83,85を、CR回路のコンデンサ82の充放電開始電圧(VtH,VtL)および充放電時間を調整するための抵抗として組み込んだ。
(ロ)より詳しくは、コンパレータ80の一方の入力端子に対しコンデンサ82と抵抗81よりなるCR回路を介して帰還をかけるとともに、コンパレータ80の他方の入力端子に対し複数の抵抗83,84,85により分圧した電圧を印加する発振回路において、分圧のための複数の抵抗83,84,85のうちの一部の抵抗83,85の温度係数を、他の分圧のための抵抗84およびCR回路を構成する抵抗81の温度係数よりも大きなものとした。
【0050】
よって、(イ)においては、CR回路を構成する抵抗81の温度係数よりも大きな温度係数を有する抵抗83,85を用いて、CR回路のコンデンサ82の充放電開始電圧および充放電時間が調整され、簡単な構成にて、発振周波数に関する温度依存性を改善することができる。(ロ)の構成によってコンデンサ82の充放電開始電圧および充放電時間を調整することにより、簡単な構成にて、発振周波数に関する温度依存性を改善することができる。
【0051】
本実施形態においても、抵抗81,83,84,85は半導体抵抗素子であり、半導体抵抗素子の不純物濃度を異ならせることにより抵抗81,84と抵抗83,85の温度係数を異ならせることができる。また、半導体抵抗素子は、不純物ドープトポリシリコン抵抗もしくは拡散抵抗を用いるとよい。
【図面の簡単な説明】
【図1】第1の実施の形態における発振回路の構成図。
【図2】不純物ドープトポリシリコン抵抗を示す縦断面図。
【図3】p拡散抵抗を示す縦断面図。
【図4】コンデンサを示す縦断面図。
【図5】pウエル拡散抵抗を示す縦断面図。
【図6】nウエル拡散抵抗を示す縦断面図。
【図7】コンデンサを示す縦断面図。
【図8】温度特性を示す図。
【図9】各部位での波形を示す図。
【図10】波形の一部を拡大した図。
【図11】別例の発振回路の構成図。
【図12】別例の発振回路の構成図。
【図13】別例の発振回路の構成図。
【図14】別例の発振回路の構成図。
【図15】第2の実施の形態における発振回路の構成図。
【図16】波形を示す図。
【図17】波形を示す図。
【図18】従来技術を説明するための発振回路の構成図。
【図19】各部位での波形を示す図。
【図20】従来技術を説明するための発振回路の構成図。
【符号の説明】
1…インバータ、2…インバータ、3…インバータ、4…コンデンサ、5…抵抗、5a…抵抗、5b…抵抗、6…抵抗、71…インバータ、72…インバータ、73…インバータ、74…インバータ、75…インバータ、80…コンパレータ、81…抵抗、82…コンデンサ、83…抵抗、84…抵抗、85…抵抗。

Claims (7)

  1. 能動回路(1〜3,71〜75)あるいは能動素子(80)の帰還回路としてCR回路を用いた発振回路において、
    前記CR回路を構成する抵抗(5,5a,5b,81)の温度係数よりも大きな温度係数を有する抵抗(6,83,85)を、前記CR回路のコンデンサ(4,82)の充放電開始電圧および充放電時間を調整するための抵抗として組み込んだことを特徴とする発振回路。
  2. インバータを3つ以上直列に接続し、このインバータ群(1〜3,71〜75)のうちの奇数番目のインバータの出力端子から第1番目のインバータ(1,71)の入力端子に抵抗(5,5a,5b)を介して帰還をかけるとともに、少なくともいずれかのインバータの出力端子からコンデンサ(4)を介して前記第1番目のインバータ(1,71)の入力端子に帰還をかけた発振回路において、
    インバータ群(1〜3,71〜75)のうちの偶数番目のインバータの出力端子から第1番目のインバータ(1,71)の入力端子への前記コンデンサ(4)を介した帰還経路に、前記抵抗(5,5a,5b)の温度係数よりも大きな温度係数を有する抵抗(6)を配したことを特徴とする発振回路。
  3. コンパレータ(80)の一方の入力端子に対しコンデンサ(82)と抵抗(81)よりなるCR回路を介して帰還をかけるとともに、コンパレータ(80)の他方の入力端子に対し複数の抵抗(83,84,85)により分圧した電圧を印加する発振回路において、
    前記分圧のための複数の抵抗(83,84,85)のうちの一部の抵抗(83,85)の温度係数を、他の分圧のための抵抗(84)および前記CR回路を構成する抵抗(81)の温度係数よりも大きなものとしたことを特徴とする発振回路。
  4. 前記抵抗(5,5a,5b,6,81,83,84,85)は半導体抵抗素子である請求項1〜3のいずれか1項に記載の発振回路。
  5. 前記半導体抵抗素子の不純物濃度を異ならせることにより抵抗(5,5a,5b,6,81,83,84,85)の温度係数を異ならせたことを特徴とする請求項4に記載の発振回路。
  6. 前記半導体抵抗素子は、不純物ドープトポリシリコン抵抗もしくは拡散抵抗であることを特徴とする請求項4または5に記載の発振回路。
  7. ワンチップ内に集積化したことを特徴とする請求項1〜6のいずれか1項に記載の発振回路。
JP2002306085A 2002-10-21 2002-10-21 発振回路 Pending JP2004146866A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002306085A JP2004146866A (ja) 2002-10-21 2002-10-21 発振回路
US10/678,132 US7129798B2 (en) 2002-10-21 2003-10-06 Oscillator circuit having stable frequency
DE10348364.0A DE10348364B4 (de) 2002-10-21 2003-10-17 Oszillatorschaltung mit stabiler Frequenz

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002306085A JP2004146866A (ja) 2002-10-21 2002-10-21 発振回路

Publications (1)

Publication Number Publication Date
JP2004146866A true JP2004146866A (ja) 2004-05-20

Family

ID=32064289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002306085A Pending JP2004146866A (ja) 2002-10-21 2002-10-21 発振回路

Country Status (3)

Country Link
US (1) US7129798B2 (ja)
JP (1) JP2004146866A (ja)
DE (1) DE10348364B4 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199622A (ja) * 2011-03-18 2012-10-18 Denso Corp 発振周波数補正装置
WO2013099121A1 (ja) * 2011-12-28 2013-07-04 株式会社デンソー Cr発振回路

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165512A (ja) * 2004-11-10 2006-06-22 Matsushita Electric Ind Co Ltd Cr発振回路
KR100688533B1 (ko) * 2005-02-15 2007-03-02 삼성전자주식회사 공정산포,전압 및 온도에 덜민감한 저항-커패시터 발진회로
US8203392B2 (en) * 2007-08-24 2012-06-19 Standard Microsystems Corporation Oscillator stabilized for temperature and power supply variations
US7907003B2 (en) * 2009-01-14 2011-03-15 Standard Microsystems Corporation Method for improving power-supply rejection
US9106378B2 (en) 2009-06-10 2015-08-11 Qualcomm Incorporated Systems, apparatus and methods for communicating downlink information
US9144037B2 (en) 2009-08-11 2015-09-22 Qualcomm Incorporated Interference mitigation by puncturing transmission of interfering cells
US8724563B2 (en) * 2009-08-24 2014-05-13 Qualcomm Incorporated Method and apparatus that facilitates detecting system information blocks in a heterogeneous network
US9277566B2 (en) 2009-09-14 2016-03-01 Qualcomm Incorporated Cross-subframe control channel design
US8942192B2 (en) 2009-09-15 2015-01-27 Qualcomm Incorporated Methods and apparatus for subframe interlacing in heterogeneous networks
US9226288B2 (en) 2010-04-13 2015-12-29 Qualcomm Incorporated Method and apparatus for supporting communications in a heterogeneous network
US9125072B2 (en) 2010-04-13 2015-09-01 Qualcomm Incorporated Heterogeneous network (HetNet) user equipment (UE) radio resource management (RRM) measurements
US9271167B2 (en) 2010-04-13 2016-02-23 Qualcomm Incorporated Determination of radio link failure with enhanced interference coordination and cancellation
US9392608B2 (en) 2010-04-13 2016-07-12 Qualcomm Incorporated Resource partitioning information for enhanced interference coordination
US8886190B2 (en) 2010-10-08 2014-11-11 Qualcomm Incorporated Method and apparatus for measuring cells in the presence of interference
US8638131B2 (en) * 2011-02-23 2014-01-28 Qualcomm Incorporated Dynamic feedback-controlled output driver with minimum slew rate variation from process, temperature and supply
KR101896412B1 (ko) * 2011-08-01 2018-09-07 페어차일드코리아반도체 주식회사 폴리 실리콘 저항, 이를 포함하는 기준 전압 회로, 및 폴리 실리콘 저항 제조 방법
US8531249B2 (en) * 2011-12-16 2013-09-10 Issc Technologies Corp. Oscillator for generating output signal with adjustable frequency
KR20130139103A (ko) * 2012-06-12 2013-12-20 페어차일드코리아반도체 주식회사 저항 소자 및 그 제조 방법
US9461623B2 (en) * 2014-05-15 2016-10-04 Macronix International Co., Ltd. Method and circuit for temperature dependence reduction of a RC clock circuit
US10234336B2 (en) * 2015-08-06 2019-03-19 Sandisk Technologies Llc Ring oscillators for temperature detection in wideband supply noise environments
CN110071704A (zh) * 2019-04-26 2019-07-30 成都锐成芯微科技股份有限公司 一种环形rc振荡器电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54181853U (ja) * 1978-06-12 1979-12-22
JPS5817723A (ja) * 1981-07-23 1983-02-02 Toshiba Corp 発振回路
JPH06338721A (ja) * 1993-05-31 1994-12-06 Oki Lsi Tekunoroji Kansai:Kk Cr発振回路
JP2000106521A (ja) * 1998-09-29 2000-04-11 Oki Micro Design Co Ltd 発振回路
JP2001102866A (ja) * 1999-09-30 2001-04-13 Denso Corp Cr発振回路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906391A (en) * 1974-06-14 1975-09-16 Westinghouse Electric Corp Linear period thermistor temperature oscillator
JPS5797218A (en) * 1980-12-08 1982-06-16 Citizen Watch Co Ltd Cmos ring oscillator
JPH0810816B2 (ja) * 1986-06-18 1996-01-31 日本電装株式会社 発振回路
JP2545568B2 (ja) 1988-01-26 1996-10-23 日本電波工業株式会社 圧電発振器
EP0379180B1 (en) 1989-01-18 1996-11-20 Nippondenso Co., Ltd. Magnetic detection device and physical quantity detection device using same
JPH06169237A (ja) 1991-09-13 1994-06-14 Mitsubishi Electric Corp リングオシレータ回路
JP2784118B2 (ja) 1992-02-28 1998-08-06 京セラ株式会社 温度補償型水晶発振器
JPH07122064A (ja) * 1993-10-22 1995-05-12 Toshiba Corp 半導体装置
KR100347349B1 (ko) * 2000-05-23 2002-12-26 삼성전자 주식회사 마이크로파워 저항-캐패시터 발진기
JP2003283307A (ja) * 2002-03-26 2003-10-03 Oki Electric Ind Co Ltd Cr発振回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54181853U (ja) * 1978-06-12 1979-12-22
JPS5817723A (ja) * 1981-07-23 1983-02-02 Toshiba Corp 発振回路
JPH06338721A (ja) * 1993-05-31 1994-12-06 Oki Lsi Tekunoroji Kansai:Kk Cr発振回路
JP2000106521A (ja) * 1998-09-29 2000-04-11 Oki Micro Design Co Ltd 発振回路
JP2001102866A (ja) * 1999-09-30 2001-04-13 Denso Corp Cr発振回路

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199622A (ja) * 2011-03-18 2012-10-18 Denso Corp 発振周波数補正装置
WO2013099121A1 (ja) * 2011-12-28 2013-07-04 株式会社デンソー Cr発振回路
JP2013153407A (ja) * 2011-12-28 2013-08-08 Denso Corp Cr発振回路
CN104054262A (zh) * 2011-12-28 2014-09-17 株式会社电装 Cr振荡电路
CN104054262B (zh) * 2011-12-28 2016-10-05 株式会社电装 Cr振荡电路

Also Published As

Publication number Publication date
US7129798B2 (en) 2006-10-31
US20040075507A1 (en) 2004-04-22
DE10348364A1 (de) 2004-04-29
DE10348364B4 (de) 2014-05-15

Similar Documents

Publication Publication Date Title
JP2004146866A (ja) 発振回路
JP3928837B2 (ja) 半導体集積回路装置
JP3850580B2 (ja) 半導体装置
US9300245B2 (en) Semiconductor device
JP2003133428A (ja) 半導体素子の駆動方法
US7271670B2 (en) CR oscillation circuit
JP3993473B2 (ja) 半導体集積回路装置
US7154324B1 (en) Integrated circuit delay chains
JP4055948B2 (ja) 遅延回路及び半導体集積回路装置
JP2009049872A (ja) 電圧制御発振器
JPS5833708B2 (ja) 集積回路装置
US7492208B2 (en) MOSFET circuit having reduced output voltage oscillations during a switch-off operation
KR100954021B1 (ko) 압전발진기
JP2005286237A (ja) 集積回路装置
JPH02147828A (ja) 温度検出回路
JP3868131B2 (ja) バックバイアス回路
JP5656760B2 (ja) 半導体集積回路装置
JP4574734B2 (ja) 半導体集積回路装置
KR100779108B1 (ko) 발진 주파수 조절이 가능한 발진회로
JP3641345B2 (ja) 基板バイアス効果を利用した遅延回路
JPH11308089A (ja) 広い電圧許容範囲を有する入出力回路
JPH04247653A (ja) 半導体集積回路装置の遅延補正装置
JP2002313927A (ja) 半導体装置
JPH10160768A (ja) 電圧レベル検出装置
JP3012563B2 (ja) 半導体集積回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051025