JP2004090695A - 路面状態変化推定装置およびこれを搭載する自動車 - Google Patents

路面状態変化推定装置およびこれを搭載する自動車 Download PDF

Info

Publication number
JP2004090695A
JP2004090695A JP2002251361A JP2002251361A JP2004090695A JP 2004090695 A JP2004090695 A JP 2004090695A JP 2002251361 A JP2002251361 A JP 2002251361A JP 2002251361 A JP2002251361 A JP 2002251361A JP 2004090695 A JP2004090695 A JP 2004090695A
Authority
JP
Japan
Prior art keywords
road surface
change
angular acceleration
surface state
estimating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002251361A
Other languages
English (en)
Other versions
JP3855886B2 (ja
Inventor
Akira Motomi
本美 明
Kiyotaka Hamashima
浜島 清高
Mitsuhiro Nada
灘 光博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002251361A priority Critical patent/JP3855886B2/ja
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to CN2006101375819A priority patent/CN1931630B/zh
Priority to DE10393181T priority patent/DE10393181B4/de
Priority to PCT/JP2003/007919 priority patent/WO2004022378A1/ja
Priority to CNB038200805A priority patent/CN100364803C/zh
Priority to US10/525,871 priority patent/US20050246087A1/en
Priority to AU2003243949A priority patent/AU2003243949A1/en
Publication of JP2004090695A publication Critical patent/JP2004090695A/ja
Application granted granted Critical
Publication of JP3855886B2 publication Critical patent/JP3855886B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/102Indicating wheel slip ; Correction of wheel slip of individual wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/10Detection or estimation of road conditions
    • B60T2210/12Friction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

【課題】走行中の路面状態の変化を推定すると共に路面状態の変化に対応する。
【解決手段】駆動輪の車軸に接続された駆動軸に直接トルクを出力するモータの回転角加速度αが空転によるスリップの発生を検出可能な閾値αslipを超えた後、第1ピークに至った第1ピーク角加速度α1と次の負の第2ピークに至った値に−1を乗じた第2ピーク角加速度α2とを検出し(S110〜S116)、第2ピーク角加速度α2が閾値αref以上のときや第2ピーク角加速度α2が閾値αref未満でも第2ピーク角加速度α2が定数kを乗じた第1ピーク角加速度α1より大きいときに路面状態の変化(低μ路から高μ路への変化)を判定する(S118〜S124)。路面状態の変化を判定したときには、所定時間に亘ってモータから駆動軸に出力するトルクを制限する(S126)。
【選択図】    図2

Description

【0001】
【発明の属する技術分野】
本発明は、路面状態変化推定装置およびこれを搭載する自動車並びに路面状態変化推定方法に関し、詳しくは、自動車に搭載されて走行している路面の状態の変化を推定する路面状態変化推定装置およびこれを搭載する自動車並びに路面状態変化推定方法に関する。
【0002】
【従来の技術】
従来、走行中の路面の状態の変化を推定する装置としては、制動時にブレーキ油圧をパルス状に変化させたときに検出される車輪速度の振動成分に基づいて路面の摩擦係数を推定するもの(例えば、特許文献1参照)や、車両の制動時に制動トルク勾配を推定して目標値との偏差を演算すると共にこの偏差が打ち消されるよう制御する装置において、偏差が一定値以上所定時間継続したときに路面の摩擦係数が変化したのを推定するもの(例えば、特許文献2参照)、駆動輪速度と従動輪速度との偏差に基づいて悪路や駆動系の振動を判定するもの(例えば、特許文献3参照)など種々提案されている。
【0003】
また、路面状態や運転状態に基づいてスリップやロックした際に対応する自動車としては、スリップやロックが判定されたときには、その状態が収束するまで駆動軸に出力されるトルクの変化を禁止するものが提案されている(例えば、特許文献4参照)。
【0004】
【特許文献1】
特開2000−313327号公報
【特許文献2】
特開平11−321617号公報
【特許文献3】
特開平11−38034号公報
【特許文献4】
特開平7−143618号公報
【0005】
【発明が解決しようとする課題】
走行中の路面状態の変化を推定することは、推定した結果を路面状態の変化に伴って生じ得る駆動輪の空転や駆動輪又は従動輪のロックを抑止する制御に用いることによって走行のより高い安定性を確保することに繋がるため、より精度の高い推定手法が望まれている。
【0006】
本発明の路面状態変化推定装置および路面状態変化推定方法は、上述した手法とは異なる手法を用いて走行中の路面状態の変化を推定することを目的の一つとする。また、本発明の路面状態変化推定装置および路面状態変化推定方法は、路面の摩擦係数の急増を推定することを目的の一つとする。本発明の自動車は、走行中の路面状態の変化に対処することを目的とする。
【0007】
【課題を解決するための手段およびその作用・効果】
本発明の路面状態変化推定装置およびこれを搭載する自動車並びに路面状態変化推定方法は、上述の目的の少なくとも一部を達成するために以下の手段を採った。
【0008】
本発明の路面状態変化推定装置は、
自動車に搭載されて該自動車が走行している路面の状態の変化を推定する路面状態変化推定装置であって、
前記車両の駆動輪に機械的に接続された駆動軸の回転角加速度を検出する回転角加速度検出手段と、
該検出された回転角加速度の変化に基づいて路面状態の変化を推定する状態変化推定手段と
を備えることを要旨とする。
【0009】
この本発明の路面状態変化推定装置では、車両の駆動輪に機械的に接続された駆動軸の回転角加速度の変化に基づいて路面状態の変化を推定することができる。路面状態の変化に伴う駆動輪の空転は、路面状態の変化の程度や駆動輪に作用するトルクに対応して車輪速の変化として現われる。したがって、車輪速の変化に対応する駆動軸の回転角加速度の変化の様子を解析することにより路面状態の変化を推定することができる。ここで、「駆動輪に機械的に接続された駆動軸」には、単一の駆動輪に直接接続された車軸が含まれる他、デファレンシャルギヤなどの機械部品を介して一対の駆動輪に接続された回転軸などの軸も含まれる。また、「回転角加速度検出手段」には、直接回転角加速度を検出するものが含まれる他、駆動軸の回転角速度を検出すると共に検出された回転角速度に基づいて駆動軸の回転角加速度を演算するものも含まれる。
【0010】
こうした本発明の路面状態変化推定装置において、前記状態変化推定手段は、前記検出された回転角加速度が所定値以上に至った際の該回転角加速度の時間変化における周期の変化に基づいて路面状態の変化を推定する手段であるものとすることもできる。回転角加速度の時間変化における周期は、路面状態に変化がなければ若干の変化はあるものの急変は生じないが、路面状態に変化が生じると急変する。回転角加速度の時間変化における周期の変化に基づいて路面状態の変化を推定することができるのは、こうした現象の考察に基づく。
【0011】
この回転角加速度の時間変化における周期の変化に基づいて路面状態の変化を推定する態様の本発明の路面状態変化推定装置において、前記状態変化推定手段は、前記回転角加速度の時間変化における周期が所定割合以上変化したときに路面状態が変化したと推定する手段であるものとすることもできる。この態様の本発明の路面状態変化推定装置において、前記状態変化推定手段は、前記検出された回転角加速度が所定値以上に至った後に最初に検出されるピークの際の周期に対して該ピークの次に検出される反対側のピークの際の周期が前記所定割合以上短いときに路面の摩擦係数が急増したと推定する手段であるものとすることもできる。こうすれば、周期の変化に基づいて路面状態の変化として路面の摩擦係数の急増、即ち低μ路から高μ路への変化を推定することができる。
【0012】
また、本発明の路面状態変化推定装置において、前記状態変化推定手段は、前記検出された回転角加速度が所定値以上に至った後に最初に検出される第1ピーク値と該第1ピーク値の次に検出される反対側の第2ピーク値とに基づいて路面状態の変化を推定する手段であるものとすることもできる。低μ路で駆動輪が空転した場合、第1ピークは空転開始直後のピークとなり、第2ピークは空転の収束の際のピークとなる。路面状態に変化がなければ空転の収束の際に通常生じるピーク値は路面状態(摩擦係数)や車両にもよるが一定の範囲内となるが、路面状態に変化が生じたとき、即ち低μ路から高μ路に変化したときには、こうした空転の収束の際のピーク値がその範囲を超える。第1ピーク値と第2ピーク値とに基づいて路面状態の変化を推定することができるのは、こうした現象の考察に基づく。
【0013】
この第1ピーク値と第2ピーク値とに基づいて路面状態の変化を推定する態様の本発明の路面状態変化推定装置において、前記状態変化推定手段は、前記第1ピーク値に対して前記第2ピーク値の絶対値が所定割合以上変化したときに路面状態が変化したと推定する手段であるものとすることもできる。この態様の本発明の路面状態変化推定装置において、前記状態変化推定手段は、前記第1ピーク値に対して前記第2ピーク値の絶対値が前記所定割合以上大きいときに路面の摩擦係数が急増したと推定する手段であるものとすることもできる。こうすれば、第1ピーク値と第2ピーク値とに基づいて路面状態の変化として路面の摩擦係数の急増、即ち低μ路から高μ路への変化を推定することができる。
【0014】
本発明の路面状態変化推定装置において、前記状態変化推定手段は、前記検出された回転角加速度が所定値以上に至った後に検出される2番目のピーク値に基づいて路面状態の変化を推定する手段であるものとすることもできる。前述したように、低μ路で駆動輪が空転した場合、2番目のピークは空転の収束の際のピークとなり、このピーク値は、路面状態に変化がなければ一定の範囲内となるが、路面状態に変化が生じたときにはその範囲を超える。第2ピーク値に基づいて路面状態の変化を推定することができるのは、こうした現象の考察に基づく。この態様の本発明の路面状態変化推定装置において、前記状態変化推定手段は、前記2番目のピーク値の絶対値が所定値以上のときに路面の摩擦係数が急増したと推定する手段であるものとすることもできる。こうすれば、2番目のピーク値に基づいて路面状態の変化としての路面の摩擦係数の急増、即ち低μ路から高μ路への変化を推定することができる。
【0015】
本発明の自動車は、
上述のいずれかの態様の本発明の路面状態変化推定装置を搭載し、
前記駆動軸に動力を出力可能な原動機と、
運転者の操作と車両の走行状態に基づいたトルクが前記駆動軸に出力されるよう前記原動機を駆動制御する駆動制御手段と
を備え、
前記駆動制御手段は、前記路面状態変化推定装置により路面状態の変化が推定されたときには、前記駆動軸に出力されるトルクが所定時間制限されるよう前記原動機を駆動制御する手段である
ことを要旨とする。
【0016】
この本発明の自動車では、路面状態変化推定装置により路面状態の変化が推定されたときには、運転者の操作と車両の走行状態に基づいたトルクが駆動軸に出力されるよう駆動制御されている原動機を駆動軸に出力されるトルクが所定時間制限されるよう駆動制御する。このように駆動軸に出力されるトルクが制限されるから、路面状態の変化に伴って車両に生じ得るトルク脈動(回転角加速度の脈動などを含む)を抑制することができる。なお、「原動機」としては、制御における応答性が速い電動機または電動発電機が好ましい。
【0017】
こうした本発明の自動車において、前記駆動制御手段は、前記路面状態変化推定装置により路面状態の変化が推定されたときには、該路面状態の変化の推定の際に前記回転角加速度により検出された回転角加速度のピーク値に基づいて設定されるトルク制限値を用いて前記駆動軸に出力されるトルクが制限されるよう駆動制御する手段であるものとすることもできる。路面状態の変化の推定の際の回転角加速度のピーク値は、路面状態の変化の程度をある程度反映するものと考えられるから、このピーク値に基づいてトルク制限値を設定することによりより適正なトルク制限を実行することができる。なお、こうした態様では、ピーク値が大きいほどトルク制限値が大きくなる傾向でトルク制限値を設定することもできる。
【0018】
本発明の第1の路面状態変化推定方法は、
自動車が走行している路面の状態の変化を推定する路面状態変化推定方法であって、
(a)前記車両の駆動輪に機械的に接続された駆動軸の回転角加速度を検出し、
(b)該検出された回転角加速度が所定値以上に至った際の該回転角加速度の時間変化における周期が所定割合以上変化したときに路面状態が変化したと推定する
ことを要旨とする。
【0019】
この本発明の第1の路面状態変化推定方法によれば、駆動軸の回転角加速度が所定値以上に至った際の回転角加速度の時間変化における周期が所定割合以上変化したことにより路面状態の変化を推定する。このように駆動軸の回転角加速度の時間変化における周期の変化に基づいて路面状態の変化を推定することができるのは、上述したように、駆動軸の回転角加速度の時間変化における周期は、路面状態に変化がなければ若干の変化はあるものの急変は生じないが、路面状態に変化が生じると急変することに基づく。
【0020】
本発明の第2の路面状態変化推定方法は、
自動車が走行している路面の状態の変化を推定する路面状態変化推定方法であって、
(a)前記車両の駆動輪に機械的に接続された駆動軸の回転角加速度を検出し、
(b)該検出された回転角加速度が所定値以上に至った後に最初に検出される第1ピーク値に対して該第1ピーク値の次に検出される反対側の第2ピーク値の絶対値が所定割合以上変化したときに路面状態が変化したと推定する
ことを要旨とする。
【0021】
この本発明の第2の路面状態変化推定方法によれば、駆動軸の回転角加速度が所定値以上に至った後に最初に検出される第1ピーク値に対してこの第1ピーク値の次に検出される反対側の第2ピーク値の絶対値が所定割合以上変化したことにより路面状態の変化を推定する。このように駆動軸の回転角加速度の第1ピーク値と第2ピーク値とに基づいて路面状態の変化を推定することができるのは、前述したように、路面状態の変化が生じると、駆動輪の空転開始直後の回転角加速度の第1ピーク値に対する空転の収束の際の第2ピーク値が大きく変化することに基づく。
【0022】
本発明の第3の路面状態変化推定方法は、
自動車が走行している路面の状態の変化を推定する路面状態変化推定方法であって、
(a)前記車両の駆動輪に機械的に接続された駆動軸の回転角加速度を検出し、
(b)該検出された回転角加速度が所定値以上に至った後に検出される2番目のピーク値の絶対値が所定値以上のときに路面状態が変化したと推定する
ことを要旨とする。
【0023】
この本発明の第3の路面状態変化推定方法によれば、駆動軸の回転角加速度が所定値以上に至った後に検出される2番目のピーク値の絶対値が所定値以上となることにより路面状態の変化を推定する。このように駆動軸の回転角加速度の2番目のピーク値に基づいて路面状態の変化を推定することができるのは、前述しように、路面状態の変化が生じると、2番目のピーク値が路面状態の変化が生じていないときに比して大きく現われることに基づく。
【0024】
【発明の実施の形態】
次に、本発明の実施の形態を実施例を用いて説明する。図1は、本発明の一実施例である路面状態変化推定装置として機能するモータ12の制御装置20を備える電気自動車10の構成の概略を示す構成図である。実施例のモータ12の制御装置20は、図示するように、バッテリ16からインバータ回路14を介して供給された電力を用いて電気自動車10の駆動輪18a,18bに接続された駆動軸に動力の出力が可能なモータ12を駆動制御する装置として構成されており、モータ12の回転軸の回転角θを検出する回転角センサ22と、電気自動車10の走行速度を検出する車速センサ24と、駆動輪18a,18b(前輪)の車輪速と駆動輪18a,18bに従動して回転する従動輪19a,19b(後輪)の車輪速を検出する車輪速センサ26a,26b,28a,28bと、運転者からの各種操作を検出する各種センサ(例えば、シフトレバー31のポジションを検出するシフトポジションセンサ32や,アクセルペダル33の踏み込み量(アクセル開度)を検出するアクセルペダルポジションセンサ34,ブレーキペダル35の踏み込み量(ブレーキ開度)を検出するブレーキペダルポジションセンサ36など)と、装置全体をコントロールする電子制御ユニット40とを備える。
【0025】
モータ12は、例えば、電動機として機能すると共に発電機としても機能する周知の同期発電電動機として構成され、インバータ回路14は、バッテリ16からの電力をモータ12の駆動に適した電力に変換する複数のスイッチング素子により構成されている。こうしたモータ12やインバータ回路14の構成そのものは周知であり、本発明の中核をなさないから、これ以上の詳細な説明は省略する。
【0026】
電子制御ユニット40は、CPU42を中心としたマイクロプロセッサとして構成されており、CPU42の他に処理プログラムを記憶したROM44と、一時的にデータを記憶するRAM46と、入出力ポート(図示せず)とを備える。この電子制御ユニット40には、回転角センサ22により検出されたモータ12の回転軸の回転角θや、車速センサ24により検出された電気自動車10の車速V、車輪速センサ26a,26b,28a,28bにより検出された駆動輪18a,18bの車輪速Vf1,Vf2および従動輪19a,19bの車輪速Vr1,Vr2、シフトポジションセンサ32により検出されたシフトポジション、アクセルペダルポジションセンサ34により検出されたアクセル開度Acc、ブレーキペダルポジションセンサ36により検出されたブレーキ開度などが入力ポートを介して入力されている。また、電子制御ユニット40からは、モータ12を駆動制御するインバータ回路14のスイッチング素子へのスイッチング制御信号などが出力ポートを介して出力されている。
【0027】
次に、こうして構成されたモータ12の制御装置20の動作、特に、走行中の路面状態の変化を推定する際の動作と、この路面状態の変化の推定結果を用いて行なわれる電気自動車10の駆動輪18a,18bが空転してスリップした際のモータ12の駆動制御とについて説明する。まず、路面状態の変化を推定する処理について説明し、その後にモータ12の駆動制御について説明する。
【0028】
図2は、実施例の電子制御ユニット40により実行される路面状態変化推定処理の一例を示すフローチャートである。この処理は、所定時間毎(例えば、8msec毎)に繰り返し実行される。路面状態変化推定処理が実行されると、電子制御ユニット40のCPU42は、まず、回転角センサ22の回転角θに基づいて算出されるモータ回転数Nmを入力すると共に(ステップS100)、入力したモータ回転数Nmに基づいて回転角加速度αを計算する(ステップS102)。
ここで、回転角加速度αの計算は、実施例では、今回の処理で入力した現回転数Nmから前回の処理で入力した前回回転数Nmを減じる(現回転数Nm−前回回転数Nm)ことにより行なうものとした。なお、回転角加速度αの単位は、回転数Nmの単位を1分間あたりの回転数[rpm]で示すと、実施例では、本処理の実行時間間隔は8msecであるから、[rpm/8msec]となる。勿論、回転速度の時間変化率として示すことができれば、如何なる単位を採用するものとしても構わない。また、回転角加速度αおよび車輪速差ΔVは、誤差を小さくするために、それぞれ今回のルーチンから過去数回(例えば、3回)に亘って計算された回転角加速度の平均および車輪速差の平均を用いるものとしても構わない。
【0029】
次に、路面状態変化判定フラグFCの値を調べる(ステップS104)。路面状態変化判定フラグFCは、次のステップS106の回転角加速度αが駆動輪18a,18bの空転によるスリップが生じていると判定するための閾値αslipを超えたときに路面状態の変化を判定する条件に至ったとして値1が設定される(ステップS108)。即ち、路面状態変化判定フラグFCが値0のときには計算した回転角加速度αを閾値αslipと比較して(ステップS106)、回転角加速度αが閾値αslip以下のときには本処理を終了し、回転角加速度αが閾値αslipより大きいときには路面状態変化判定フラグFCに値1をセットする(ステップS108)。
【0030】
こうして路面状態変化判定フラグFCに値1がセットされるかステップS104で路面状態変化判定フラグFCが値1であると判定されると、回転角加速度αが第1ピークに至ったか否かを判定し(ステップS110)、第1ピークに至ったときには、そのときの回転角加速度αを第1ピーク角加速度α1としてセットする(ステップS112)。回転角加速度αの第1ピークは、回転角加速度αが閾値αslipを超えてから回転角加速度αの時間微分値が正から負に至るときである。第1ピーク角加速度α1をセットすると、回転角加速度αが第2ピークに至ったか否かを判定し(ステップS114)、第2ピークに至ったときには、そのときの回転角加速度αに−1を乗じたものを第2ピーク角加速度α2としてセットする(ステップS116)。ここで第2ピークは、第1ピークの直後に生じる負側のピークを意味する。したがって、第2ピーク角加速度α2をセットするのに回転角加速度αに−1を乗じるのは第1ピーク角加速度α1と符号を揃えるためである。
【0031】
第1ピーク角加速度α1と第2ピーク角加速度α2とがセットされると、第2ピーク角加速度α2と閾値αrefとを比較すると共に(ステップS118)、第2ピーク角加速度α2と定数kを乗じた第1ピーク角加速度α1とを比較する(ステップS120)。ここで、閾値refは、空転によるスリップが生じたときの第1ピーク角加速度α1にセットされ得る通常範囲の値により大きな値として設定されている。例えば、対象となる電気自動車10を低μ路で空転によるスリップを生じさせる実験を行なったときに第1ピーク角加速度α1にセットされ得る最大の値が100[rpm/8msec]であったときには、閾値αrefには120や140などの値を用いることができる。また、定数kは、値1以上の値として設定されており、例えば、1.2や1.4などのように設定することもできる。
【0032】
第2ピーク角加速度α2が閾値αref未満のときで第2ピーク角加速度α2が定数kを乗じた第1ピーク角加速度α1以下のときには、路面状態の変化は推定されないとして路面状態変化判定フラグFCに値0をセットし(ステップS122)、この路面状態変化推定処理を終了し、第2ピーク角加速度α2が閾値αref以上のときや第2ピーク角加速度α2が閾値αref未満であっても第2ピーク角加速度α2が定数kを乗じた第1ピーク角加速度α1より大きいときには、路面状態の変化、即ち低μ路から高μ路へ移行したと判定する(ステップS124)。低μ路で駆動輪18a,18bが空転した場合、第1ピークは空転開始直後のピークとなり、第2ピークは空転の収束の際のピークとなる。路面状態に変化がなければ空転の収束の際に通常生じる第2ピークの値は路面状態(摩擦係数)や車両にもよるが一定の範囲内となるが、路面状態に変化が生じたとき、即ち低μ路から高μ路に変化したときには、こうした空転の収束の際の第2ピーク角加速度α2がその範囲を超える。したがって、第2ピーク角加速度α2が空転によるスリップが生じたときの第1ピーク角加速度α1にセットされ得る通常範囲の値により大きな値として設定された閾値αref以上のときには、路面状態の変化(低μ路から高μ路への移行)を判定することができるのである。また、第2ピーク角加速度α2が閾値αref未満であっても第2ピーク角加速度α2が定数kを乗じた第1ピーク角加速度α1より大きいときに路面状態の変化を推定できるのは、路面状態に変化がなければ空転の収束の際に通常生じる第2ピークの値は第1ピークの値以下となるのが通常であることが実験により確かめられたことに基づく。
【0033】
図3に路面状態に変化が生じなかったときの回転角加速度αの時間変化と路面状態に変化が生じたときの回転角加速度αの時間変化との一例を示す。図示するように、路面状態に変化が生じなかったときには、第2ピーク角加速度α2は閾値αrefより小さいだけでなく第1ピーク角加速度α1より小さくなるが、路面状態に変化が生じたとき(低μ路から高μ路へ移行したとき)には、急峻な回転角加速度αの負側への変化が認められると共に第2ピーク角加速度α2は第1ピーク角加速度α1に比較して大きくなるだけでなく場合によっては閾値αrefより大きくなる。実施例では、路面状態の変化、即ち空転におけるスリップ中に低μ路から高μ路へ移行した状態変化を第2ピーク角加速度α2と閾値αrefとの比較によって推定すると共に第2ピーク角加速度α2が閾値αref未満のときには第2ピーク角加速度α2と値1以上の定数kを乗じた第1ピーク角加速度α1との比較によって推定するのである。
【0034】
こうして路面状態の変化が推定されたときには、所定時間に亘ってモータ12から出力されるトルクを制限して(ステップS126)、路面状態変化推定処理を終了する。トルクの制限は、実施例では、第2ピーク角加速度α2に基づいて例えば図4に例示するトルク制限量設定マップによりトルク制限量δchangeを設定し、このトルク制限量δchangeに基づいて図5に例示するトルク上限値設定マップによりトルク上限値Tmaxを導いて行なわれる。トルク制限量δchangeは、図4に示すように、第2ピーク角加速度α2が大きいほど大きくなるよう設定され、トルク上限値Tmaxは、図5に例示するように、トルク制限量δchangeが大きいほど小さくなるよう設定されているから、第2ピーク角加速度α2が大きくなるほど小さなトルク上限値Tmaxが設定されることになる。こうしたトルク上限値Tmaxでモータ12からのトルクを制限するトルク制限を所定時間に亘って行なうのは、路面状態の変化に伴って生じ得る回転角加速度αの振動、即ち車両の前後方向の振動を抑制するためである。所定時間は、こうした路面状態の変化を伴う実験を行なって振動が収束する時間を計測して設定することができる。図3の路面状態に変化が生じたときの回転角加速度αの時間変化における破線は、こうした所定時間に亘るトルク制限を行なわなかったときの回転角加速度αの時間変化を示す。
【0035】
次に、この路面状態の変化の推定結果を用いて行なわれるモータ12の駆動制御の一例について説明する。図6は、電子制御ユニット40により実行されるモータ駆動制御ルーチンの一例を示すフローチャートである。このルーチンは、所定時間毎(例えば、8msec毎)に繰り返し実行される。
【0036】
モータ駆動制御ルーチンが実行されると、電子制御ユニット40のCPU42は、まず、アクセルペダルポジションセンサ34からのアクセル開度Accや車速センサ24からの車速V、車輪速センサ26a,26b,28a,28bからの車輪速Vf,Vr、回転角センサ22の回転角θに基づいて算出されるモータ回転数Nmなどを入力する処理を行なう(ステップS200)。ここで、車輪速Vf,Vrは、実施例では、車輪速センサ26a,26bおよび車輪速センサ28a,28bにより各々検出される車輪速Vf1,Vf2および車輪速Vr1,Vr2の平均値を用いるものとした。また、車速Vについては、実施例では、車速センサ24により検出されたものを用いたが、車輪速センサ26a,26b,28a,28bにより検出される車輪速Vf1,Vf2,Vr1,Vr2から算出するものとしても構わない。
【0037】
次に、入力したアクセル開度Accと車速Vとに基づいてモータ12の要求トルクTm*を設定する(ステップS202)。モータ要求トルクTm*の設定は、実施例では、アクセル開度Accと車速Vとモータ要求トルクTm*との関係を予め求めて要求トルク設定マップとしてROM44に記憶しておき、アクセル開度Accと車速Vとが与えられると、マップから対応するモータ要求トルクTm*を導出するものとした。このマップの一例を図7に示す。
【0038】
続いて、ステップS200で入力したモータ回転数Nmに基づいて回転角加速度αを計算し(ステップS204)、計算した回転角加速度αに基づいて駆動輪18a,18bのスリップ状態を判定する(ステップS206)。このスリップ状態の判定は、図8のスリップ状態判定処理ルーチンに基づいて行なわれる。以下、図6のモータ駆動制御ルーチンの処理の説明を一旦中断し、図8のスリップ状態判定処理ルーチンの処理を説明する。スリップ状態判定処理ルーチンが実行されると、電子制御ユニット40のCPU42は、図6のルーチンのステップS204で計算された回転角加速度αが、空転によるスリップが発生したとみなすことのできる閾値αslipを超えているか否かを判定する(ステップS220)。回転角加速度αが閾値αslipを超えていると判定されたときには、駆動輪18a,18bにスリップが発生したと判断して、スリップの発生を示すスリップ発生フラグF1を値1にセットして(ステップS222)、本ルーチンを終了する。一方、回転角加速度αが閾値αslipを超えていないと判定されたときには、次にスリップ発生フラグF1の値を調べる(ステップS224)。スリップ発生フラグF1が値1のときには、回転角加速度αが負の値であり且つそれが所定時間継続しているか否かを判定し(ステップS226)、回転角加速度αが負の値であり且つそれが所定時間継続したと判定されたときには駆動輪18a,18bに発生したスリップは収束したと判断してスリップ収束フラグF2に値1をセットして(ステップS228)、本ルーチンを終了する。スリップ発生フラグF1が値1であって、回転角加速度αが負の値でないと判定されたり、回転角加速度αが負の値であってもそれが所定時間継続していないと判定されたときには、発生したスリップは未だ収束していないと判断してそのまま本ルーチンを終了する。
【0039】
図6のモータ駆動制御ルーチンに戻って、こうした図8のスリップ状態判定処理ルーチンによりスリップ発生時やスリップ収束時が判定されると、判定結果に応じた処理(ステップS210,S212)、即ち、スリップ発生フラグF1が値1でスリップ収束フラグF2が値0のスリップ発生時と判定されたときにはスリップ発生時処理(ステップS210)、スリップ発生フラグF1とスリップ収束フラグF2とが共に値1の発生したスリップが収束していると判定されたときにはスリップ収束時処理(ステップS212)を行なう。これらの処理については後述する。
【0040】
そして、図2の路面状態変化推定処理により所定時間のトルク制限の実行が指示されているか否か、即ちトルク制限量δchangeが設定されているかを判定し(ステップS214)、トルク制限量δchangeが設定されていないときには、グリップ時にはステップS202で設定されたモータ要求トルクTm*を用いてモータ12を駆動制御して(ステップS220)、このルーチンを終了する。トルク制限量δchangeが設定されているときには、トルク制限量δchangeと図5のトルク上限値設定マップとにより導き出される制限値でモータ要求トルクTm*を制限して(ステップS216,S218)、制限されたモータ要求トルクTm*を用いてモータ12を駆動制御して(ステップS220)、このルーチンを終了する。こうしたトルク制限により、上述したように、路面状態の変化に伴って生じ得る回転角加速度αの振動、即ち車両の前後方向の振動を抑制することができる。
【0041】
ステップS210のスリップ発生時処理は、図9に例示するスリップ発生時制御ルーチンにより行なわれる。このルーチンが実行されると、まず、回転角加速度αがピーク値αpeakを超えているか否かを判定し(ステップS230)、回転角加速度αがピーク値αpeakを超えていると判定されたときにはピーク値αpeakの値を回転角加速度αに更新する処理を行なう(ステップS232)。ここで、ピーク値αpeakは、基本的には、スリップにより回転角加速度αが上昇してピークを示すときの回転角加速度の値であり、初期値として値0が設定されている。したがって、回転角加速度αが上昇してピークに達するまでの間はピーク値αpeakを回転角加速度αの値に順次更新していき、回転角加速度αがピークに達した時点でその回転角加速度αがピーク値αpeakとして固定されることになる。こうしてピーク値αpeakが設定されると、このピーク値αpeakに基づいてモータ12が出力できるトルクの上限であるトルク上限値Tmaxを設定する処理を行なう(ステップS234)。この処理は、実施例では、図5に例示するトルク上限値設定マップの横軸を回転角加速度αに置き換えて用いることにより行なった。このマップでは、図示するように、回転角加速度αが大きくなるほどトルク上限値Tmaxは小さくなる特性を有している。したがって、回転角加速度αが上昇してピーク値αpeakが大きくなるほど、即ちスリップの程度が大きいほど、トルク上限値Tmaxとして小さな値が設定され、その分モータ12から出力されるトルクが制限されることになる。トルク上限値Tmaxが設定されると、モータ要求トルクTm*を設定したトルク上限値Tmaxで制限して(ステップS236,S238)、本ルーチンを終了する。こうした処理により、スリップ発生時においてモータ12から出力されるトルクは、スリップを抑制するための低いトルク(具体的には、図5のマップにおいて回転角加速度のピーク値αpeakに対応するトルク上限値Tmax)に制限されるから、スリップを効果的に抑制することができる。
【0042】
ステップS212のスリップ収束時処理は、図10に例示するスリップ収束時制御ルーチンにより行なわれる。このルーチンが実行されると、まず、トルク制限量δ1(単位は、回転角加速度と同じ単位の[rpm/8msec])を入力する処理を行なう(ステップS240)。ここで、トルク制限量δ1は、スリップ発生時制御において回転角加速度のピーク値αpeakに対応して設定されたトルク上限値Tmaxを引き上げてトルク制限から復帰させる際の復帰の度合いを設定するために用いるパラメータであり、図11のトルク制限量設定処理ルーチンに基づいて設定される。このトルク制御量設定処理ルーチンは、図8に例示するスリップ状態判定処理ルーチンのステップS222でスリップ発生フラグF1に値1がセットされたとき(即ち、回転角加速度αが閾値αslipを超えたとき)に実行される。このルーチンでは、回転角センサ22により検出された回転角θに基づいて算出されたモータ回転数Nmを入力し、入力したモータ回転数Nmに基づいて回転角加速度αを計算し、回転角加速度αが閾値αslipを超えた時点からの回転角加速度αの時間積分値αintを計算する処理を回転角加速度αが閾値αslip未満になるまで繰り返す(ステップS260〜S264)。回転角加速度αの時間積分値αintの計算は、実施例では、次式(1)を用いて行なうものとした。ここで、Δtは本ルーチンのステップS260〜S266の繰り返しの実行時間間隔であり、実施例では8msecである。
【0043】
【数1】
αint←αint+(α−αslip)・Δt  (1)
【0044】
そして、回転角加速度αが閾値αslip未満となると、計算した時間積分値αintに所定の係数k1を乗じてトルク制限量δ1を設定して(ステップS268)、本ルーチンを終了する。なお、このルーチンでは、トルク制限量δ1は、所定の係数k1を用いて計算により求めたが、トルク上限値Tmaxと時間積分値αintとの関係を示すマップを用意しておき、計算された時間積分値αintからマップを適用して導出するものとしても構わない。
【0045】
図10のスリップ収束時制御ルーチンに戻って、こうして設定されたトルク制限量δ1を入力すると、トルク制限量δ1を解除する解除要求を入力し(ステップS242)、解除要求があったか否かを判定する(ステップS244)。この処理は、トルク制限からの復帰の度合いを設定する際に用いるパラメータであるトルク制限量δ1を解除(復帰の度合いを徐々に大きく)するための要求の入力があったか否かを判定する処理であり、実施例では、本ルーチンが最初に実行されてから所定の待機期間が経過する度にゼロから一定の増加量だけ増加していくように設定される解除量Δδ1による解除の要求が入力されるものとした。なお、この待機期間や解除量Δδ1の増加量は、運転者自らによる解除の要求、例えば、運転者が欲するトルクの出力要求を表わすアクセル開度の大きさに応じて変更するものとしても構わない。解除要求が判定されると、ステップS240で入力したトルク制限量δ1から解除量Δδ1を減じてトルク制限量δ1を解除する(ステップS246)。解除要求が無いと判定されたとき、即ち本ルーチンの実行が開始されてから前述の所定の待機期間が経過するまでは、トルク制限量δ1の解除は行なわれない。
【0046】
続いて、トルク制限量δ1に基づいてモータ12が出力できるトルクの上限であるトルク上限値Tmaxを図5のトルク上限値設定マップを用いて設定し(ステップS248)、設定したトルク上限値Tmaxでモータ要求トルクTm*を制限する(ステップS250,S252)。そして、トルク制限量δ1の値0以下に解除されたか否かを判定し(ステップS254)、値0以下に解除されたときにはスリップ発生フラグF1とスリップ収束フラグF2とを値0にリセットして(ステップS256)、本ルーチンを終了する。このように、回転角加速度αの時間積分値に応じて設定されたトルク制限量δ1に基づいてモータ12のトルクを制御するのは、発生したスリップが収束したときに、発生したスリップの状況に応じて適切な量のトルクを復帰させるためである。即ち、回転角加速度αの時間積分値が大きく、再スリップが発生しやすい状況では、スリップが収束したときに復帰させるトルクを低くし、回転角加速度αの時間積分値が小さく、再スリップが発生しにくい状況では、スリップが収束したときに復帰させるトルクを高くすることにより、過剰なトルクの制限を伴うことなくより確実に再スリップの発生を防止することができるのである。
【0047】
こうしたステップS210のスリップ発生時処理やステップS212のスリップ収束時処理によりモータ12のモータ要求トルクTm*が制限されても、図6のステップS214〜S218で明らかなように、路面状態の変化が推定されたときには、制限されたモータ要求トルクTm*は路面状態の変化の推定の結果により設定されたトルク制限量δchangeに基づくトルク上限値よる制限も受けることになる。この結果、スリップ発生時やスリップ収束時に拘わらず、路面状態が変化したときに生じ得る回転角加速度αの振動、即ち車両の前後方向の振動を抑制することができる。
【0048】
以上説明した実施例の電気自動車10によれば、空転によるスリップが生じた際の駆動輪18a,18bの車軸に接続された駆動軸の回転角加速度αの第2ピーク角加速度α2だけに基づいて或いは第1ピーク角加速度α1と第2ピーク角加速度α2とに基づいて路面状態の変化を推定することができる。また、実施例の電気自動車10によれば、路面状態の変化が推定されたときには、所定時間に亘ってモータ12から出力されるトルクを制限するから、路面状態が変化したときに生じ得る回転角加速度αの振動(車両の前後方向の振動)を抑制することができる。
【0049】
実施例の電気自動車10では、第2ピーク角加速度α2が閾値αref以上のときと第2ピーク角加速度α2が閾値αref未満でも第2ピーク角加速度α2が定数kを乗じた第1ピーク角加速度α1より大きいときに路面状態の変化を推定するものとしたが、第2ピーク角加速度α2が閾値αref以上のときだけを路面状態が変化したと推定するものとしたり、第2ピーク角加速度α2の大きさに拘わらず、第2ピーク角加速度α2が定数kを乗じた第1ピーク角加速度α1より大きいときに路面状態が変化したと推定するものとしてもよい。
【0050】
実施例の電気自動車10では、第2ピーク角加速度α2や第1ピーク角加速度α1に基づいて路面状態の変化を推定したが、図3に示すように、第1ピーク角加速度α1を含む回転角加速度αの時間変化における第1の周期と第2ピーク角加速度α2を含む回転角加速度αの時間変化における第2の周期とが異なることに基づいて路面状態の変化を推定するものとしてもよい。例えば、第2の周期が値1より小さな定数rを乗じた第1の周期より小さいときに低μ路から高μ路へ移行したと推定するものとしてもよい。
【0051】
実施例の電気自動車10では、路面状態の変化が推定されたときには、第2ピーク角加速度α2とトルク制限量設定マップとを用いてトルク制限量δchangeを設定し、設定したトルク制限量δchangeとトルク上限値設定マップを用いてトルク上限値Tmaxを導き出してモータ12のトルク制限を行なうものとしたが、第2ピーク角加速度α2からトルク上限値Tmaxを直接導き出すマップを作成してトルク上限値Tmaxを導き出してモータ12のトルク制限を行なうものとしてもよい。
【0052】
実施例の電気自動車10では、路面状態の変化が推定されたときには、第2ピーク角加速度α2に基づいてトルク上限値Tmaxを導き出すものとしたが、第1ピーク角加速度α1と第2ピーク角加速度α2の偏差や第1ピーク角加速度α1と第2ピーク角加速度α2との割合,第1ピーク角加速度α1を含む回転角加速度αの時間変化における周期と第2ピーク角加速度α2を含む回転角加速度αの時間変化における周期との割合などに基づいてトルク上限値Tmaxを導き出すものとしても差し支えない。
【0053】
実施例では、駆動輪18a,18bに接続された駆動軸に直接的に動力の出力が可能に機械的に接続されたモータ12を備える自動車10におけるモータ12の制御として説明したが、駆動軸や車軸に直接的に動力の出力が可能な電動機を備える車両であれば、如何なる構成の車両に適用するものとしても構わない。例えば、エンジンと、エンジンの出力軸に接続されたジェネレータと、ジェネレータからの発電電力を充電するバッテリと、駆動輪に接続された駆動軸に機械的に接続されバッテリからの電力の供給を受けて駆動するモータとを備えるいわゆるシリーズ型のハイブリッド自動車に適用するものとしてもよい。この場合、モータは駆動軸に取り付けられる必要はなく、車軸に取り付けるものとしてもよいし、いわゆるホイールインモータのように駆動輪に直接取り付けるものとしてもよい。また、図12に示すように、エンジン111と、エンジン111に接続されたプラネタリギヤ117と、プラネタリギヤ117に接続された発電可能なモータ113と、同じくプラネタリギヤ117に接続されると共に駆動輪に接続された駆動軸に直接動力が出力可能に駆動軸に機械的に接続されたモータ112とを備えるいわゆる機械分配型のハイブリッド自動車110に適用することもできるし、図13に示すように、エンジンの211の出力軸に接続されたインナーロータ213aと駆動輪218a,218bに接続された駆動軸に取り付けられたアウターロータ213bとを有しインナーロータ213aとアウターロータ213bとの電磁的な作用により相対的に回転するモータ213と、駆動軸に直接動力が出力可能に駆動軸に機械的に接続されたモータ212と備えるいわゆる電気分配型のハイブリッド自動車210に適用することもできる。あるいは、図14に示すように、駆動輪318a,318bに接続された駆動軸に変速機314(無段変速機や有段の自動変速機など)を介して接続されたエンジン311と、エンジン311の後段であって駆動軸に変速機314を介して接続されたモータ312(または駆動軸に直接接続されたモータ)とを備えるハイブリッド自動車310に適用することもできる。このとき、駆動輪にスリップが発生したときの制御としては、トルクの出力応答性などから主に駆動軸に機械的に接続されたモータを制御することにより駆動軸に出力されるトルクを制限するが、このモータの制御と協調して他のモータを制御したりエンジンを制御したりするものとしてもよい。
【0054】
実施例では、走行中の路面状態の変化を推定する路面状態変化推定装置として機能する制御装置20の形態として説明したが、走行中の路面状態の変化を推定する路面状態変化推定方法の形態としてもよい。
【0055】
以上、本発明の実施の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
【図面の簡単な説明】
【図1】本発明の一実施例である路面状態変化推定装置として機能するモータ12の制御装置20を備える電気自動車10の構成の概略を示す構成図である。
【図2】実施例の電子制御ユニット40により実行される路面状態変化推定処理の一例を示すフローチャートである。
【図3】路面状態に変化が生じなかったときの回転角加速度αの時間変化と路面状態に変化が生じたときの回転角加速度αの時間変化との一例を示す説明図である。
【図4】トルク制限量設定マップの一例を示す説明図である。
【図5】トルク上限値設定マップの一例を示す説明図である。
【図6】電子制御ユニット40により実行されるモータ駆動制御ルーチンの一例を示すフローチャートである。
【図7】要求トルク設定マップの一例を示す説明図である。
【図8】電子制御ユニット40により実行されるスリップ状態判定処理ルーチンの一例を示すフローチャートである。
【図9】電子制御ユニット40により実行されるスリップ発生時制御ルーチンの一例を示すフローチャートである。
【図10】電子制御ユニット40により実行されるスリップ収束時制御ルーチンの一例を示すフローチャートである。
【図11】電子制御ユニット40により実行されるトルク制限量設定処理ルーチンの一例を示すフローチャートである。
【図12】ハイブリッド型の自動車110の構成の概略を示す構成図である。
【図13】ハイブリッド型の自動車210の構成の概略を示す構成図である。
【図14】ハイブリッド型の自動車310の構成の概略を示す構成図である。
【符号の説明】
10,110,210,310 自動車、12,112,212,312 モータ、14,114 インバータ回路、16 バッテリ、18a,18b,118a,118b,218a,218b,318a,318b 駆動輪、19a,19b,119a,119b,219a,219b,319a,319b 従動輪、22 回転角センサ、24 車速センサ、26a,26b,28a,28b車輪速センサ、31 シフトレバー、32 シフトポジションセンサ、33 アクセルペダル、34 アクセルポジションセンサ、35 ブレーキペダル、36 ブレーキペダルポジションセンサ、40 電子制御ユニット、42 CPU、44 ROM、46 RAM、111,211,311 エンジン、113 モータ、117 プラネタリギア,213a インナーロータ、213b アウターロータ、213 モータ、314 変速機。

Claims (14)

  1. 自動車に搭載されて該自動車が走行している路面の状態の変化を推定する路面状態変化推定装置であって、
    前記車両の駆動輪に機械的に接続された駆動軸の回転角加速度を検出する回転角加速度検出手段と、
    該検出された回転角加速度の変化に基づいて路面状態の変化を推定する状態変化推定手段と
    を備える路面状態変化推定装置。
  2. 前記状態変化推定手段は、前記検出された回転角加速度が所定値以上に至った際の該回転角加速度の時間変化における周期の変化に基づいて路面状態の変化を推定する手段である請求項1記載の路面状態変化推定装置。
  3. 前記状態変化推定手段は、前記回転角加速度の時間変化における周期が所定割合以上変化したときに路面状態が変化したと推定する手段である請求項2記載の路面状態変化推定装置。
  4. 前記状態変化推定手段は、前記検出された回転角加速度が所定値以上に至った後に最初に検出されるピークの際の周期に対して該ピークの次に検出される反対側のピークの際の周期が前記所定割合以上短いときに路面の摩擦係数が急増したと推定する手段である請求項3記載の路面状態変化推定装置。
  5. 前記状態変化推定手段は、前記検出された回転角加速度が所定値以上に至った後に最初に検出される第1ピーク値と該第1ピーク値の次に検出される反対側の第2ピーク値とに基づいて路面状態の変化を推定する手段である請求項1記載の路面状態変化推定装置。
  6. 前記状態変化推定手段は、前記第1ピーク値に対して前記第2ピーク値の絶対値が所定割合以上変化したときに路面状態が変化したと推定する手段である請求項5記載の路面状態変化推定装置。
  7. 前記状態変化推定手段は、前記第1ピーク値に対して前記第2ピーク値の絶対値が前記所定割合以上大きいときに路面の摩擦係数が急増したと推定する手段である請求項6記載の路面状態変化推定装置。
  8. 前記状態変化推定手段は、前記検出された回転角加速度が所定値以上に至った後に検出される2番目のピーク値に基づいて路面状態の変化を推定する手段である請求項1記載の路面状態変化推定装置。
  9. 前記状態変化推定手段は、前記2番目のピーク値の絶対値が所定値以上のときに路面の摩擦係数が急増したと推定する手段である請求項8記載の路面状態変化推定装置。
  10. 請求項1ないし9いずれか記載の路面状態変化推定装置を搭載する自動車であって、
    前記駆動軸に動力を出力可能な原動機と、
    運転者の操作と車両の走行状態に基づいたトルクが前記駆動軸に出力されるよう前記原動機を駆動制御する駆動制御手段と
    を備え、
    前記駆動制御手段は、前記路面状態変化推定装置により路面状態の変化が推定されたときには、前記駆動軸に出力されるトルクが所定時間制限されるよう前記原動機を駆動制御する手段である
    自動車。
  11. 前記駆動制御手段は、前記路面状態変化推定装置により路面状態の変化が推定されたときには、該路面状態の変化の推定の際に前記回転角加速度により検出された回転角加速度のピーク値に基づいて設定されるトルク制限値を用いて前記駆動軸に出力されるトルクが制限されるよう駆動制御する手段である請求項10記載の自動車。
  12. 自動車が走行している路面の状態の変化を推定する路面状態変化推定方法であって、
    (a)前記車両の駆動輪に機械的に接続された駆動軸の回転角加速度を検出し、
    (b)該検出された回転角加速度が所定値以上に至った際の該回転角加速度の時間変化における周期が所定割合以上変化したときに路面状態が変化したと推定する
    路面状態変化推定方法。
  13. 自動車が走行している路面の状態の変化を推定する路面状態変化推定方法であって、
    (a)前記車両の駆動輪に機械的に接続された駆動軸の回転角加速度を検出し、
    (b)該検出された回転角加速度が所定値以上に至った後に最初に検出される第1ピーク値に対して該第1ピーク値の次に検出される反対側の第2ピーク値の絶対値が所定割合以上変化したときに路面状態が変化したと推定する
    路面状態変化推定方法。
  14. 自動車が走行している路面の状態の変化を推定する路面状態変化推定方法であって、
    (a)前記車両の駆動輪に機械的に接続された駆動軸の回転角加速度を検出し、
    (b)該検出された回転角加速度が所定値以上に至った後に検出される2番目のピーク値の絶対値が所定値以上のときに路面状態が変化したと推定する
    路面状態変化推定方法。
JP2002251361A 2002-08-29 2002-08-29 路面状態変化推定装置およびこれを搭載する自動車 Expired - Lifetime JP3855886B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002251361A JP3855886B2 (ja) 2002-08-29 2002-08-29 路面状態変化推定装置およびこれを搭載する自動車
DE10393181T DE10393181B4 (de) 2002-08-29 2003-06-23 Vorrichtung zum Abschätzen einer Strassenoberflächen-Zustandsänderung, entsprechendes Verfahren sowie Kraftfahrzeug mit dieser Vorrichtung
PCT/JP2003/007919 WO2004022378A1 (ja) 2002-08-29 2003-06-23 路面状態の変化を推定する装置や方法および自動車
CNB038200805A CN100364803C (zh) 2002-08-29 2003-06-23 路面状态变化推定装置、方法及具有该装置的汽车
CN2006101375819A CN1931630B (zh) 2002-08-29 2003-06-23 具有路面状态变化推定装置的汽车
US10/525,871 US20050246087A1 (en) 2002-08-29 2003-06-23 Device, method, and car for estimating variation of state of road surface
AU2003243949A AU2003243949A1 (en) 2002-08-29 2003-06-23 Device, method, and car for estimating variation of state of road surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002251361A JP3855886B2 (ja) 2002-08-29 2002-08-29 路面状態変化推定装置およびこれを搭載する自動車

Publications (2)

Publication Number Publication Date
JP2004090695A true JP2004090695A (ja) 2004-03-25
JP3855886B2 JP3855886B2 (ja) 2006-12-13

Family

ID=31972676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002251361A Expired - Lifetime JP3855886B2 (ja) 2002-08-29 2002-08-29 路面状態変化推定装置およびこれを搭載する自動車

Country Status (6)

Country Link
US (1) US20050246087A1 (ja)
JP (1) JP3855886B2 (ja)
CN (2) CN100364803C (ja)
AU (1) AU2003243949A1 (ja)
DE (1) DE10393181B4 (ja)
WO (1) WO2004022378A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124741A (ja) * 2005-10-25 2007-05-17 Toyota Motor Corp 車輌の駆動力制御装置
WO2009093531A1 (ja) * 2008-01-22 2009-07-30 Toyota Jidosha Kabushiki Kaisha 車両の車体速度演算装置
JP2011217516A (ja) * 2010-03-31 2011-10-27 Toyota Motor Corp 車両の制御装置
KR20210057872A (ko) * 2019-11-12 2021-05-24 현대자동차주식회사 친환경 차량 및 그 모터 토크 제어 방법
JP7449128B2 (ja) 2020-03-11 2024-03-13 株式会社Subaru 車両用制御装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100400331C (zh) * 2004-11-17 2008-07-09 丰田自动车株式会社 车辆以及车辆的控制方法
IL174061A0 (en) * 2006-03-02 2006-08-01 Amihud Rabin Safety control system for electric vehicle
US7957881B2 (en) * 2006-10-04 2011-06-07 Toyota Jidosha Kabushiki Kaisha Vehicle and method of controlling driving force for the vehicle based on detected slip of the drive wheel
DE102010030346A1 (de) * 2010-06-22 2011-12-22 Zf Friedrichshafen Ag Verfahren zur Fahrbetriebssteuerung eines Kraftfahrzeugs
DE102011100814A1 (de) 2011-05-06 2012-11-08 Audi Ag Einrichtung zur Antriebsschlupfregelung für ein Fahrzeug mit elektromotorischem Fahrzeugantrieb
JP5990946B2 (ja) * 2012-03-13 2016-09-14 日産自動車株式会社 エンジン制御装置
JP5979246B2 (ja) * 2012-12-11 2016-08-24 トヨタ自動車株式会社 車両の状態検出装置
ITMI20130983A1 (it) 2013-06-14 2014-12-15 Pirelli Metodo e sistema per stimare l'attrito potenziale tra un pneumatico per veicoli ed una superficie di rotolamento
DE102014225085A1 (de) * 2014-12-08 2016-06-09 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Ermittlung des Reibwertes einer Fahrbahnoberfläche
CN105946826B (zh) * 2016-05-10 2018-07-06 南京理工大学 无需轮速信息的车辆防滑控制方法、控制系统以及车辆
JP6673766B2 (ja) * 2016-06-30 2020-03-25 株式会社ブリヂストン 路面状態判別方法
US20230184563A1 (en) * 2021-12-14 2023-06-15 GM Global Technology Operations LLC Connected vehicle-based road surface quality determination

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3674320A (en) * 1970-07-15 1972-07-04 Bendix Corp Adaptive braking control system
JPS60596A (ja) * 1983-06-16 1985-01-05 株式会社デンソー 路面状態識別装置
US4837727A (en) * 1985-03-04 1989-06-06 Nippon Soken, Inc. Road surface detecting device for vehicle
JPH01138034A (ja) * 1987-11-25 1989-05-30 Honda Motor Co Ltd 段付中空ギアの製造方法
JP2591082B2 (ja) * 1988-07-07 1997-03-19 株式会社デンソー 車両のスリップ制御装置
JPH0238174A (ja) * 1988-07-29 1990-02-07 Aisin Seiki Co Ltd 路面状態検出装置および車上制御装置
JP2902059B2 (ja) * 1990-06-21 1999-06-07 マツダ株式会社 車両のトラクション制御装置
JPH06130078A (ja) * 1992-10-20 1994-05-13 Mitsubishi Motors Corp 車輪加速度検出方法及び路面判定方法
EP0630786B1 (de) * 1993-06-22 1996-10-09 Siemens Aktiengesellschaft Verfahren und Schaltungsanordnung zum Ermitteln des Reibwerts
JPH07143618A (ja) * 1993-11-18 1995-06-02 Nissan Motor Co Ltd 電気自動車の動力制御装置
JP3304575B2 (ja) * 1993-12-17 2002-07-22 トヨタ自動車株式会社 アンチロック制御装置
JPH0920223A (ja) * 1995-07-07 1997-01-21 Nippondenso Co Ltd 路面状態識別装置
JP3526675B2 (ja) * 1995-09-14 2004-05-17 日産ディーゼル工業株式会社 車輪の駆動トルク制御装置
JP3196686B2 (ja) * 1997-04-28 2001-08-06 三菱自動車工業株式会社 路面摩擦係数推定装置
JP3535347B2 (ja) * 1997-06-27 2004-06-07 日野自動車株式会社 路面摩擦係数推定装置および方法
EP0887241A3 (en) * 1997-06-27 1999-12-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Road surface condition estimating apparatus and variation reduction processing apparatus
JP3331310B2 (ja) * 1997-09-25 2002-10-07 富士重工業株式会社 路面摩擦係数検出装置
JPH11321617A (ja) * 1998-05-14 1999-11-24 Toyota Central Res & Dev Lab Inc Abs用路面適応装置
US6308115B1 (en) * 1998-07-29 2001-10-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Vehicle running condition judgement device
DE19933389A1 (de) * 1998-07-29 2000-02-03 Continental Teves Ag & Co Ohg Verfahren und Vorrichtung zur Erkennung einer Fahrstrecke eines Fahrzeugs als Schlechtweg sowie zur Geschwindigkeitsregelung
JP2000190836A (ja) * 1998-12-25 2000-07-11 Aisin Seiki Co Ltd 摩擦係数ピ―ク推定装置、及び該推定装置を備えたアンチスキッド制御装置
JP2000313327A (ja) * 1999-04-28 2000-11-14 Toyota Central Res & Dev Lab Inc 路面状態推定装置
JP2001163202A (ja) * 1999-12-08 2001-06-19 Sumitomo Rubber Ind Ltd 路面摩擦係数判定装置および方法
JP4414547B2 (ja) * 2000-03-03 2010-02-10 住友ゴム工業株式会社 路面摩擦係数判定装置および方法
JP4496598B2 (ja) * 2000-04-06 2010-07-07 株式会社デンソー 路面状態識別装置
JP3371889B2 (ja) * 2000-04-17 2003-01-27 トヨタ自動車株式会社 車両のスリップ制御
JP4153688B2 (ja) * 2001-10-16 2008-09-24 住友ゴム工業株式会社 路面状態判定方法および装置、ならびに路面状態の判定のしきい値設定プログラム
JP3870878B2 (ja) * 2002-08-29 2007-01-24 トヨタ自動車株式会社 原動機の制御装置および原動機の制御方法
JP3832405B2 (ja) * 2002-08-29 2006-10-11 トヨタ自動車株式会社 原動機の制御装置および原動機の制御方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124741A (ja) * 2005-10-25 2007-05-17 Toyota Motor Corp 車輌の駆動力制御装置
JP4626481B2 (ja) * 2005-10-25 2011-02-09 トヨタ自動車株式会社 車輌の駆動力制御装置
WO2009093531A1 (ja) * 2008-01-22 2009-07-30 Toyota Jidosha Kabushiki Kaisha 車両の車体速度演算装置
JP2009173092A (ja) * 2008-01-22 2009-08-06 Advics Co Ltd 車両の車体速度演算装置
US8406947B2 (en) 2008-01-22 2013-03-26 Toyota Jidosha Kabushiki Kaisha Vehicle body speed calculation device
JP2011217516A (ja) * 2010-03-31 2011-10-27 Toyota Motor Corp 車両の制御装置
KR20210057872A (ko) * 2019-11-12 2021-05-24 현대자동차주식회사 친환경 차량 및 그 모터 토크 제어 방법
KR102689881B1 (ko) * 2019-11-12 2024-08-01 현대자동차주식회사 친환경 차량 및 그 모터 토크 제어 방법
JP7449128B2 (ja) 2020-03-11 2024-03-13 株式会社Subaru 車両用制御装置

Also Published As

Publication number Publication date
WO2004022378A1 (ja) 2004-03-18
CN1931630A (zh) 2007-03-21
JP3855886B2 (ja) 2006-12-13
CN100364803C (zh) 2008-01-30
AU2003243949A1 (en) 2004-03-29
US20050246087A1 (en) 2005-11-03
DE10393181T5 (de) 2005-09-01
CN1931630B (zh) 2010-12-22
DE10393181B4 (de) 2007-06-28
CN1678472A (zh) 2005-10-05

Similar Documents

Publication Publication Date Title
JP3772809B2 (ja) 原動機の制御装置および原動機の制御方法
JP4239725B2 (ja) 車両および車両の制御方法
US9783182B2 (en) Control method for front and rear wheel torque distribution of electric 4 wheel drive hybrid electric vehicle
JP3855886B2 (ja) 路面状態変化推定装置およびこれを搭載する自動車
JP3870878B2 (ja) 原動機の制御装置および原動機の制御方法
JP4120504B2 (ja) 車両および車両の制御方法
JP2008167624A (ja) 車両およびその制御方法
JP2019088093A (ja) 自動車
JP4064042B2 (ja) 前後輪駆動車両の駆動力制御装置
JP4089608B2 (ja) 自動車
JP4103505B2 (ja) 電気自動車およびこれに搭載された電動機の制御方法
JP3536284B2 (ja) 前後輪駆動車両
JP4443582B2 (ja) アンダーステア抑制装置
JP3924540B2 (ja) ハイブリッド車両の駆動制御装置
JP5887985B2 (ja) 車両の駆動輪に働く駆動力を制限する駆動力制限装置
JP2004096939A (ja) 自動車および自動車の制御装置
JP4062199B2 (ja) 車両および車両の制御方法
JPH11125129A (ja) 車 輌
JP4175207B2 (ja) 車両および車両の制御方法
JP2006129584A (ja) トラクション制御装置
JP3686626B2 (ja) 車両用電動機の制御装置
JP4959502B2 (ja) 路面摩擦係数推定装置
JP5437093B2 (ja) 回生制動制御装置
KR100696727B1 (ko) 차량의 슬립 제어장치, 그것을 탑재한 자동차 및 그제어방법
JP2006242144A (ja) 車両の駆動力制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6