JP4064042B2 - 前後輪駆動車両の駆動力制御装置 - Google Patents

前後輪駆動車両の駆動力制御装置 Download PDF

Info

Publication number
JP4064042B2
JP4064042B2 JP2000219408A JP2000219408A JP4064042B2 JP 4064042 B2 JP4064042 B2 JP 4064042B2 JP 2000219408 A JP2000219408 A JP 2000219408A JP 2000219408 A JP2000219408 A JP 2000219408A JP 4064042 B2 JP4064042 B2 JP 4064042B2
Authority
JP
Japan
Prior art keywords
driving force
target
engine
rotational speed
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000219408A
Other languages
English (en)
Other versions
JP2002030952A (ja
Inventor
和彦 喜多野
俊彦 福田
尚弘 米倉
直樹 内山
健司 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000219408A priority Critical patent/JP4064042B2/ja
Priority to US09/906,054 priority patent/US6528959B2/en
Priority to DE10135192A priority patent/DE10135192A1/de
Publication of JP2002030952A publication Critical patent/JP2002030952A/ja
Application granted granted Critical
Publication of JP4064042B2 publication Critical patent/JP4064042B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、前輪および後輪の一方をエンジンで駆動し、他方を電気モータで駆動するタイプの前後輪駆動車両の駆動力制御装置に関する。
【0002】
【従来の技術】
従来のこの種の駆動力制御装置として、例えば特開2000−79831号公報に開示されたものが知られている。この前後輪駆動車両は、前輪をエンジンで駆動し、後輪をモータで駆動するタイプのものである。この制御装置では、雪道などの低摩擦路での発進時などにおいて前輪がスリップしたときには、そのスリップ制御を行うために、前輪の駆動力が低減される。また、このような前輪スリップの制御中に、車速などから車両の前進が可能であると予想される走行状態と判定されたときに、モータの作動が禁止されるようになっており、それによって省エネルギを図るようにしている。
【0003】
【発明が解決しようとする課題】
しかし、この従来の駆動力制御装置では、前輪スリップ制御中に、車両が前進可能と判定されたときに、モータの作動を単純に禁止して、それによるアシストを完全に停止するので、車両全体としての駆動力が不足がちになるとともに、前輪スリップが増加しやすくなる。また、車両が前進可能か否かの判定を、そのときの車速などからの予測によって行っているにすぎないので、その後のアクセルペダルの操作状況などによっては、前輪スリップが過大になる場合があるなど、前輪を最適なスリップ状態に維持できず、その結果、低摩擦路などでの安定した走行性を確保できないという問題がある。
【0004】
本発明は、このような課題を解決するためになされたものであり、エンジンにより駆動される駆動輪がスリップした場合に、電気モータによるアシストを停止することなく、エンジンの駆動力を適切に制御することにより、低摩擦路においても、駆動輪を最適なスリップ状態に維持でき、それにより、安定した走行性を確保することができる前後輪駆動車両の駆動力制御装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
この目的を達成するため、本発明の請求項1に係る発明は、前後の駆動輪の一方(実施形態における(以下、本項において同じ)前輪WFL、WFR)をエンジン3で駆動し、他方(後輪WRL、WRR)を電気モータ4で駆動する前後輪駆動車両の駆動力制御装置であって、アクセル開度θAPを検出するアクセル開度検出手段(アクセル開度センサ16)と、車速Vcarを検出する車速検出手段(車輪回転数センサ12、ECU11)と、検出されたアクセル開度θAPおよび車速Vcarに基づいて車両2の目標駆動力FCMDを算出する目標駆動力算出手段(ECU11、図3のステップ31)と、目標駆動力FCMDに基づいて電気モータ4の目標駆動力(後輪目標駆動力FCMD_MOT)を算出するモータ目標駆動力算出手段(ECU11、図3のステップ33)と、目標駆動力FCMDおよびモータ目標駆動力に基づいてエンジン3の目標駆動力(前輪目標駆動力FCMD_ENG)を算出するエンジン目標駆動力算出手段(ECU11、図12のステップ69)と、モータ目標駆動力に基づいて電気モータ4を駆動制御するモータ駆動制御手段(モータドライバー10)と、エンジン目標駆動力に基づいてエンジン3を駆動制御するエンジン駆動制御手段(アクチュエータ24)と、前後の駆動輪WFL、WFR、WRL、WRR間の差回転数(前後輪差回転数N_SPLT_wheel、N_SPLT_mot)を検出する差回転数検出手段(車輪回転数センサ12、カウンタシャフト回転数センサ14、モータ回転数センサ15、ECU11)と、車両2の走行状態を表すパラメータに基づいて目標差回転数(目標前後輪差回転数DN_F_R)を設定する目標差回転数設定手段(ECU11、図6のステップ48、52)と、検出された差回転数および目標差回転数に基づいてエンジン3側の駆動輪(前輪WFL、WFR)のスリップ状態を判定するスリップ判定手段(ECU11、図6のステップ51、55、56)と、スリップ判定手段によりエンジン3側の駆動輪にスリップが発生していると判定されたときに、差回転数を目標差回転数に維持するようにエンジン目標駆動力を減少補正するための補正値(前輪目標駆動力補正量FCMD_ENG_TCS)を、積分項(I項KIFSLP)を含むフィードバック制御量(PID制御量KFSLPMAIN)を用いて算出するエンジン駆動力補正手段(ECU11、図13のステップ81、86、87)と、差回転数の変化量(前後輪差回転数変化量dEN_F_R)を検出する差回転数変化量検出手段(ECU11、図12のステップ74、75)と、を備え、エンジン駆動力補正手段は、検出された差回転数変化量に基づいて、フィードバック制御量の積分項を算出する(図12のステップ76)ことを特徴とする。
【0006】
この前後輪駆動車両の駆動力制御装置によれば、検出されたアクセル開度および車速に基づいて、車両の目標駆動力が算出され、この目標駆動力に基づいて電気モータの目標駆動力が算出されるとともに、さらに、これらの目標駆動力およびモータ目標駆動力に基づいて、エンジンの目標駆動力が算出される。また、前後の駆動輪間の差回転数を検出するとともに、車両の走行状態を表すパラメータに基づいて目標差回転数を設定する。そして、検出された差回転数と目標差回転数に基づいてエンジン側の駆動輪のスリップ状態を判定するとともに、スリップが発生したと判定されたときに、差回転数を目標差回転数に維持するようにエンジン目標駆動力を減少補正する。
【0007】
このように、本発明によれば、エンジン側の駆動輪がスリップしているか否かを、前後の駆動輪間の実際の差回転数と目標差回転数に基づいて判定するとともに、このエンジン側の駆動輪のスリップ中、エンジン駆動力を減少補正することによって、実際の差回転数を目標差回転数に維持する。すなわち、エンジン側の駆動輪がスリップした場合に、電気モータによるアシストを停止することなく、前後の差回転数を目標差回転数に維持するようにエンジン駆動力が適切に制御されるので、低摩擦路においても、エンジン側の駆動輪を最適なスリップ状態に維持でき、したがって、安定した走行性を確保することができる。また、スリップ発生中におけるエンジン目標駆動力の減少補正のための補正値を、積分項を含むフィードバック制御量を用いて算出するとともに、この積分項を、検出された差回転数と目標差回転数との偏差ではなく、前後の駆動輪間の差回転数変化量に基づいて算出するので、目標差回転数への差回転数の収束性を高めることができる。
また、請求項2に係る発明は、請求項1の駆動力制御装置において、フィードバック制御量は比例項(P項KPFSLP)を含み、エンジン駆動力補正手段は、差回転数と目標差回転数との偏差(実/目標前後輪差回転数偏差EN_F_R)に基づいて比例項を算出する(図6のステップ51、55、図13のステップ81)ことを特徴とする。
この構成では、フィードバック制御量の積分項が前後の差回転数変化量に基づいて算出されるのに対し、比例項は、差回転数と目標差回転数との偏差に基づいて算出される。
【0008】
請求項に係る発明は、請求項1または2の駆動力制御装置において、走行状態を表すパラメータは、路面勾配(登坂角SLOPE_ANG)、操舵角θSTR、車速Vcarおよびアクセル開度θAPの少なくとも1つを含むことを特徴とする。
【0009】
この構成によれば、目標差回転数を、車両の実際の走行状態や運転者の意志に応じて、適切に設定することができる。
【0010】
また、前記目的を達成するため、本発明の請求項4に係る発明は、前後の駆動輪の一方(前輪WFL、WFR)をエンジン3で駆動し、他方(後輪WRL、WRR)を電気モータ4で駆動する前後輪駆動車両の駆動力制御装置であって、アクセル開度θAPを検出するアクセル開度検出手段(アクセル開度センサ16)と、車速Vcarを検出する車速検出手段(車輪回転数センサ12、ECU11)と、検出されたアクセル開度θAPおよび車速Vcarに基づいて車両2の目標駆動力FCMDを算出する目標駆動力算出手段(ECU11、図3のステップ31)と、目標駆動力FCMDに基づいて電気モータ4の目標駆動力(後輪目標駆動力FCMD_MOT)を算出するモータ目標駆動力算出手段(ECU11、図3のステップ33)と、目標駆動力FCMDおよびモータ目標駆動力に基づいてエンジン3の目標駆動力(前輪目標駆動力FCMD_ENG)を算出するエンジン目標駆動力算出手段(ECU11、図12のステップ69)と、モータ目標駆動力に基づいて電気モータ4を駆動制御するモータ駆動制御手段(モータドライバー10)と、エンジン目標駆動力に基づいてエンジン3を駆動制御するエンジン駆動制御手段(アクチュエータ24)と、前後の駆動輪WFL、WFR、WRL、WRR間の差回転数(前後輪差回転数N_SPLT_wheel、N_SPLT_mot)を検出する差回転数検出手段(車輪回転数センサ12、カウンタシャフト回転数センサ14、モータ回転数センサ15、ECU11)と、車両2の走行状態を表すパラメータに基づいて目標差回転数(目標前後輪差回転数DN_F_R)を設定する目標差回転数設定手段(ECU11、図6のステップ48、52)と、検出された差回転数および目標差回転数に基づいてエンジン3側の駆動輪(前輪WFL、WFR)のスリップ状態を判定するスリップ判定手段(ECU11、図6のステップ51、55、56)と、スリップ判定手段によりエンジン3側の駆動輪にスリップが発生していると判定されたときに、差回転数を目標差回転数に維持するようにエンジン目標駆動力を減少補正するエンジン駆動力補正手段と、を備え、車両の走行状態を表すパラメータは操舵角θSTRを含み、目標差回転数設定手段は、操舵角θSTRが値0を含む所定範囲にあるときには、操舵角θSTRが大きいほど、目標差回転数をより小さな値に設定し、操舵角θSTRが所定範囲にないときには、操舵角θSTRが大きいほど、目標差回転数をより大きな値に設定する(図5のステップ45、図6のステップ48、52、図9)ことを特徴とする。
【0011】
この構成によれば、請求項1と同様、エンジン側の駆動輪がスリップしているか否かを、前後の駆動輪間の実際の差回転数と目標差回転数に基づいて判定するとともに、このエンジン側の駆動輪のスリップ中、エンジン駆動力を減少補正することによって、実際の差回転数を目標差回転数に維持する。すなわち、エンジン側の駆動輪がスリップした場合に、電気モータによるアシストを停止することなく、前後の差回転数を目標差回転数に維持するようにエンジン駆動力が適切に制御されるので、低摩擦路においても、エンジン側の駆動輪を最適なスリップ状態に維持でき、安定した走行性を確保することができる。また、上述した目標差回転数は、操舵角が値0を含む所定範囲にあるときには、操舵角が大きいほど、より小さな値に設定される。これは、直進走行の場合には、多少のスリップは許容できるのに対し、ハンドルが切られている状態でスリップが発生すると、タイヤの横力が減少するので、目標前後輪差回転数をより小さな値に設定することで、タイヤの横力を確保するためである。さらに、目標差回転数は、操舵角が所定範囲にないときには、操舵角が大きいほど、より大きな値に設定される。これは、そのような大きな操舵角が現れるのは、運転者が雪道などでタイヤを路面にグリップさせようとしているのではなく、むしろ意図的にハンドルを大きく操作している状況と推定されるので、その意志を尊重するためである。
【0012】
さらに、請求項に係る発明は、請求項1ないし4のいずれかの駆動力制御装置において、スリップ判定手段によりエンジン3側の駆動輪にスリップが発生していると判定されたときに、モータ目標駆動力FCMD_MOTを増大補正するモータ駆動力補正手段(ECU11)をさらに備えていることを特徴とする。
【0013】
この構成によれば、エンジン側の駆動輪のスリップ発生中、エンジン目標駆動力が減少補正されるのと並行して、モータ目標駆動力が増大補正されるので、前後の差回転数を目標差回転数に早期に収束させることができる。
【0014】
【発明の実施の形態】
以下、図面を参照しながら、本発明の好ましい実施形態を説明する。図1は、本発明による駆動力制御装置1を適用した前後輪駆動車両(以下「車両」という)2の概略構成を示している。同図に示すように、この車両2は、左右の前輪WFL、WFRをエンジン3で駆動するとともに、左右の後輪WRL、WRRを電気モータ(以下「モータ」という)4で駆動するものである。
【0015】
エンジン3は、車両2の前部に横置きに搭載されており、トルクコンバータ5aを有する自動変速機5、および減速ギヤ(図示せず)を有するフロントディファレンシャル6を介して、前輪WFL、WFRに接続されている。
【0016】
モータ4は、その駆動源であるバッテリ7に接続されるとともに、電磁クラッチ8、および減速ギヤ(図示せず)を有するリヤディファレンシャル9を介して、後輪WRL、WRRに接続されている。モータ4がバッテリ7で駆動されており(駆動モード)、かつ電磁クラッチ8が接続されているときに、後輪WRL、WRRが駆動され、このとき、車両2は四輪駆動状態になる。なお、モータ4の出力は、最大12kWの範囲内で任意に変更することが可能である。一方、モータ4は、車両2の制動エネルギにより回転駆動されているとき(回生モード)に発電を行い、発電した電力(回生エネルギ)をバッテリ7に充電するジェネレータとしての機能を有している。このバッテリ7の充電残量SOCは、検出されたバッテリ7の電流・電圧値に基づき、後述するECU11によって算出される。
【0017】
モータ4は、モータドライバー10を介して、後述するECU11に接続されており、モータ4の駆動モードおよび回生モードの切換え、駆動モード時における最大出力の設定や駆動トルク、ならびに回生モード時における回生量などは、ECU11で制御されるモータドライバー10によって、制御される。電磁クラッチ8の接続・遮断もまた、そのソレノイド(図示せず)への電流の供給・停止がECU11で制御されることによって、制御される。
【0018】
左右の前輪WFL、WFRおよび後輪WRL、WRRには、磁気ピックアップ式の車輪回転数センサ12がそれぞれ設けられており、これらの車輪回転数センサ12から、各車輪回転数N_FL、N_FR、N_RL、N_RRを表すパルス信号がECU11にそれぞれ出力される。ECU11は、これらのパルス信号から、左右前輪回転数平均値N_Fwheel、左右後輪回転数平均値N_Rwheelや、車速Vcarなどを算出する。また、エンジン3のクランクシャフト(図示せず)には、所定のクランク角ごとにクランクパルス信号CRKを出力するクランク角センサ13が、自動変速機5のメインシャフト5bおよびカウンタシャフト(図示せず)には、それらの回転数Nm、Ncounterを表すパルス信号を出力する磁気ピックアップ式のメイン・カウンタシャフト回転数センサ14a、14bが、それぞれ設けられており、これらの信号もまた、ECU11に出力される。ECU11は、クランクパルス信号CRKに基づいてエンジン回転数NEを算出するとともに、このエンジン回転数NEとメインシャフト回転数Nmから、トルクコンバータ5aの速度比eを算出する(e=Nm/NE)。また、モータ4にはその回転数Nmotを表すパルス信号を出力するレゾルバによるモータ回転数センサ15が設けられており、この信号もECU11に出力される。
【0019】
また、ECU11には、アクセル開度センサ16からアクセルペダル17のON/OFFを含む開度(アクセル開度)θAPを表す検出信号が、充電量センサ18からバッテリ7の充電残量SOCを表す検出信号が、それぞれ入力される。ECU11にはさらに、ブレーキのマスタシリンダ(図示せず)に取り付けたブレーキ圧センサ19からブレーキ圧PBRを表す検出信号が、操舵角センサ20からハンドル(図示せず)の操舵角θSTRを表す検出信号が、シフト位置センサ21から自動変速機5のシフトレバー位置POSIを表す検出信号が、加速度センサ22、23から前後の車輪の加速度GF、GRを表す検出信号が、それぞれ入力される。
【0020】
上記ECU11は、RAM、ROM、CPUおよびI/Oインターフェースなどからなるマイクロコンピュータ(いずれも図示せず)で構成されている。ECU11は、上述した各種センサからの検出信号に基づいて、車両2の走行状態を検出し、制御モードを判定するとともに、その結果に基づいて、車両2の目標駆動力FCMD、前輪目標駆動力FCMD_ENGおよび後輪目標駆動力FCMD_MOTを算出する。そして、算出した前輪目標駆動力FCMD_ENGに基づく駆動信号DBW_THを、DBW式のアクチュエータ24に出力することで、スロットル弁25の開度(スロットル弁開度θTH)を制御し、エンジン3の駆動力を制御する。また、後輪目標駆動力FCMD_MOTに基づくモータ要求トルク信号TRQ_MOTをモータドライバー10に出力することで、モータ4の駆動力を制御する。
【0021】
図2は、ECU11で実行される制御処理のメインフローを示すフローチャートである。このプログラムは、所定時間(例えば10ms)ごとに実行される。この制御処理ではまず、ステップ21(「S21」と図示。以下同じ)において車両2の状態を検出する。具体的には、前述した各種センサで検出されたパラメータ信号を読み込み、これらに基づき、車速Vcarの算出や登坂角SLOPE_ANGの推定などの所定の演算を行うとともに、車両2が前進、後退および停止のいずれの走行状態にあるかを判定する。また、各車輪回転数センサ12からの車速パルス信号などに基づき、前後輪差回転数N_SPLT_Wheelやその目標差回転数DN_F_Rなどを後述するようにして算出し、これらに基づき、後述する前輪WFL、WFRのスリップ状態を判定するとともに、その判定結果に従って、モータ4の出力特性の算出などを行う。
【0022】
次いで、ステップ21で検出された、自動変速機5のシフトレバー位置POSIおよびアクセルペダル(以下「AP」という)17のON/OFF状態、ならびに車両2の走行状態から、車両2の制御モードを判定する(ステップ22)。具体的には、制御モードを、車両2が前進状態でかつAP17がONのときには前進駆動モードと判定し、車両2が前進状態でかつAP17がOFFのときには前進回生モードと判定し、車両2が停止状態のときには停止モードと判定し、車両2が後退状態でかつAP17がONのときおよびOFFのときには、後退駆動モードおよび後退回生モードとそれぞれ判定する。
【0023】
次に、ステップ22で判定された制御モードに応じて、車両2全体の目標駆動力FCMD、前輪目標駆動力FCMD_ENGおよび後輪目標駆動力FCMD_MOTを算出する(ステップ23)。これについては後述する。
【0024】
次いで、電磁クラッチ8のON/OFF制御を実行する(ステップ24)。具体的には、車速Vcar、およびモータ4と後輪WRL、WRRとの差回転数に基づいて、電磁クラッチ8をONまたはOFFするかを判定するとともに、その判定結果に基づいて電磁クラッチ8をON/OFF制御する。
【0025】
次に、ステップ23で算出した後輪目標駆動力FCMD_MOTと、ステップ24で制御した電磁クラッチ8のON/OFF状態に基づいて、モータ4の要求トルクTRQ_MOTを算出し(ステップ25)、これに基づく駆動信号をモータドライバー10に出力して、モータ4の駆動力を制御する。
【0026】
次いで、ステップ23で算出した前輪目標駆動力FCMD_ENGに基づいて、アクチュエータ出力値DBW_THを算出し(ステップ26)、これに基づく駆動信号をアクチュエータ24に出力し、スロットル弁開度θTHを制御することで、エンジン3の駆動力を制御し、本プログラムを終了する。
【0027】
図3は、図2のステップ23で実行される駆動力算出サブルーチンを示す。この制御処理ではまず、判定された制御モードに従い、駆動モードおよび回生モードにおける車両2全体の目標駆動力FCMDを演算する(ステップ31)。
【0028】
駆動モード時の目標駆動力FCMDは、検出された車速VcarおよびAP開度θAPに応じ、図4に一例を示すテーブルを検索することによって、算出される。図4には、AP開度θAPが0deg、5degおよび80degのときのテーブル値が代表的に示されており、目標駆動力FCMDは、アクセル開度θTHが大きいほど大きく、また車速Vcarが大きいほど小さくなるように設定されている。なお、AP開度θAP=0degのときのテーブル値は、シフトレバー位置がD4相当のラインを表しており、この場合、目標駆動力FCMDは、負値として設定される。
【0029】
また、回生モード時の目標駆動力FCMDは、車速Vcar、その変化量、ブレーキ圧PBR、操舵角θSTR、および電磁クラッチ8の接続状態に基づき、計算によって求められる。
【0030】
次に、充電モード要求判定を実行する(ステップ32)。具体的には、車速Vcarおよびバッテリ7の充電残量SOCに応じて、充電走行の基準駆動力を求めるとともに、この基準駆動力とステップ31で算出した目標駆動力FCMDとの関係から、バッテリ7を充電する発電走行を行うべきか否かを判定し、その判定結果が肯定のときに、制御モードが充電モードとされる。
【0031】
次いで、後輪目標駆動力FCMD_MOTを演算する(ステップ33)。この演算は、図2のステップ22および上記ステップ32で判定された制御モード(駆動、回生、充電および停止のいずれか)に従い、制御モード別に行われる。例えば、駆動モード時(アシスト時)の後輪目標駆動力FCMD_MOTは、次のようにして算出される。まず、駆動力の前後輪配分を、車両停止時の重量配分(例えば、前輪側57%:後輪側43%)と登坂角SLOPE_ANGに基づいて、算出する。なお、この登坂角SLOPE_ANGは、前後輪の車輪回転数N_FL、N_FRおよびN_RL、N_RRがともに値0で、かつブレーキペダルが操作されている場合に、次式(1)により、前後の加速度センサ22、23の出力を積分することによって算出・推定される。
Figure 0004064042
【0032】
次いで、駆動モード時の後輪目標駆動力FCMD_MOTを、次式(2)により算出する。
Figure 0004064042
なお、モータ引きずり分はモータ4の回転抵抗である。また、算出された後輪目標駆動力FCMD_MOTが、モータ4の最大出力によって定まる上限トルクを上回る場合、後輪目標駆動力FCMD_MOTはこの上限値に設定される。
【0033】
次に、ステップ34に進み、上記ステップ33で算出した後輪目標駆動力FCMD_MOTに所定のフィルタ処理を施した後、ステップ35において、前輪目標駆動力FCMD_ENGを演算し、本プログラムを終了する。後述するように、この前輪目標駆動力FCMD_ENGは、基本的には、目標駆動力FCMDから後輪目標駆動力FCMD_MOTを差し引いた値として設定される。また、前輪スリップが発生している場合には、前輪目標駆動力FCMD_ENGは、実際の前後輪差回転数と目標差回転数DN_F_Rなどに基づき、後述するようにしてフィードバック制御により減少補正される。
【0034】
図5および図6は、図2のステップ21で実行される前輪スリップの判定サブルーチンを示している。この制御処理では、まず車両2の制御モードが駆動モードであるか否かを判別する(ステップ41)。この答がNO、すなわち駆動モード以外のときには、前輪スリップフラグF_frontSLPを「0」にセットし(ステップ42)、本プログラムを終了する。
【0035】
前記ステップ41の答はYES、すなわち制御モードが駆動モードのときには、ステップ43〜46において、目標前後輪差回転数DN_F_Rを設定するためのパラメータ値を、それぞれのテーブルを検索することによって求める。なお、後述するように、これらのパラメータ値のうち、目標スリップ率DRV_Slip_ratioは、目標前後輪差回転数DN_F_Rの基本値であり、他のパラメータ値は、目標スリップ率DRV_Slip_ratioに乗算される補正係数である。
【0036】
まず、ステップ43では、登坂角SLOPE_ANGに応じて目標スリップ率DRV_Slip_ratioを検索する。図7は、目標スリップ率テーブルの一例を示しており、このテーブルでは、目標スリップ率DRV_Slip_ratioは、登坂角SLOPE_ANGが5deg以上25deg以下の範囲では、SLOPE_ANG値が大きいほど、より小さくなるように設定されている。これは、勾配が急になるほど、車両2の重量が後輪WRL、WRR側に加わり、前輪WFL、WFRが滑りやすくなるので、目標スリップ率DRV_Slip_ratioをより小さな値に設定することで、前輪WFL、WFRのスリップを早期に抑制し、登坂しやすくするためである。
【0037】
次に、車速Vcarに応じて車速補正係数KVSlipを検索する(ステップ44)。図8は、車速補正係数テーブルの一例を示しており、このテーブルでは、車速補正係数KVSlipは、車速Vcarが所定の低車速以上のときに値1.0に設定され、この低車速未満では、車速Vcarが小さいほどより小さい、1.0未満の値として設定されている。これは、車速Vcarが小さい発進時には、目標前後輪差回転数DN_F_Rを若干、減少補正することで、スリップを抑制する一方、車速Vcarが上昇した場合には、多少のスリップは許容できるとともに、車両2がすでに動いていることから、減少補正を停止することで、運転者の意志に反しないようにするためである。
【0038】
次いで、操舵角θSTRに応じて操舵角補正係数KSTR_Slipを検索する(ステップ45)。図9は、操舵角補正係数テーブルの一例を示しており、このテーブルでは、操舵角補正係数KSTR_Slipは、操舵角θSTRが値0、すなわち直進走行時には値1.0に設定され、操舵角θSTRが所定の低舵角までの範囲では、操舵角θSTRが大きいほど、より小さな値になるように設定されている。これは、直進走行の場合には、多少のスリップは許容できるのに対し、ハンドルが切られている状態でスリップが発生すると、タイヤの横力が減少するので、目標前後輪差回転数DN_F_Rを減少補正することで、タイヤの横力を確保するためである。また、操舵角補正係数KSTR_Slipは、操舵角θSTRが所定の低舵角以上の範囲では、それが大きくなるにつれて、漸増するように設定されている。これは、このような大きな操舵角θSTRが現れるのは、運転者が雪道などでタイヤを路面にグリップさせようとしているのではなく、むしろ意図的にハンドルを大きく操作している状況と推定されるので、その意志を尊重するためである。
【0039】
次に、AP開度θAPに応じてAP開度補正係数KAP_Slipを検索する(ステップ46)。図10は、AP開度補正係数テーブルの一例を示しており、このテーブルでは、AP開度補正係数KAP_Slipは、AP開度θAPが20deg以下では値1.0に設定され、20degと50degの間では、AP開度θAPが大きくなるにつれて漸増するように設定されるとともに、50deg以上では1.0よりも大きな所定値5に設定されている。これは、AP開度θAPが大きい場合には、運転者が意図的にスリップを許容していると推定されるので、目標前後輪差回転数DN_F_Rを増大補正することで、その意志を尊重するためである。
【0040】
次いで、図6のステップ47に進み、左右前輪回転数平均値N_Fwheelおよび左右後輪回転数平均値N_Rwheelのいずれもが、第1切換回転数Vn_change1(例えば車速10km/h相当)よりも大きいか否かを判別する。この判別は、次に実行する前後輪差回転数の算出に用いるパラメータを、車速Vcarの大小に応じて、車輪回転数センサ12で検出される車輪パルス系と、カウンタシャフト回転数センサ14およびモータ回転数センサ15で検出されるモータ回転パルス系とに切り換えるためのものである。これは、これらのセンサ12、14、15が、いずれも磁気ピックアップ式のもので構成されていて、低回転域では回転数を正確に検出できないという特性を有することから、車速Vcarが小さい場合には、減速される前の、より高回転のモータ回転パルス系を用いる一方、車速Vcarが大きい場合には、互いに同じ入力周期の車輪パルス系を用いることで、差回転数の算出精度を高めるためである。なお、モータ回転パルス系を用いる場合、カウンタシャフト回転数Ncounterおよびモータ回転数Nmotは、それぞれの減速比に応じて車輪回転数に換算される。
【0041】
したがって、ステップ47の答がYES、すなわちN_Fwheel値およびN_Rwheel値がいずれも、第1切換回転数Vn_change1よりも大きいときには、後輪回転数として左右後輪回転数平均値N_Rwheelを用いるとともに、前記ステップ43〜46で求めたパラメータ値を用い、次式(3)によって目標前後輪差回転数DN_F_Rを算出する。
Figure 0004064042
ここで、Slip_ratio_zeroは、前輪と後輪のタイヤ径が異なる場合などにこれを補正するための後輪スリップ率零点補正値であり、例えば、発進時に検出され、ECU11に記憶されているものである。
【0042】
次に、上記ステップ48で算出した目標前後輪差回転数DN_F_Rが、その第1下限値DN_F_R_MIN1(例えば車速1km/h相当)以下であるか否かを判別する(ステップ49)。この答がYESのときには、目標前後輪差回転数DN_F_Rを第1下限値DN_F_R_MIN1に設定する(ステップ50)一方、NOのときにはステップ50をスキップすることで、目標前後輪差回転数DN_F_Rを保持した後、ステップ51に進む。
【0043】
このステップ51では、実際の前後輪差回転数N_SPLT_wheelと上記目標前後輪差回転数DN_F_Rとの偏差(N_SPLT_wheel−DN_F_R)を、実/目標前後輪差回転数偏差EN_F_Rとして算出し、後述するステップ56に進む。ここで、前後輪差回転数N_SPLT_wheelは、左右前輪回転数平均値N_Fwheelと左右後輪回転数平均値N_Rwheelとの差(=N_Fwheel−N_Rwheel)である。
【0044】
一方、前記ステップ47の答がNO、すなわちN_Fwheel値またはN_Rwheel値のいずれかが第1切換回転数Vn_change1以下のときには、モータ回転パルス系を用いて、前記ステップ48〜51と同様の演算を行う。すなわち、まず前記式(3)において、後輪回転数として、左右後輪回転数平均値N_Rwheelに代えてモータ回転数Nmotを用いることによって、目標前後輪差回転数DN_F_Rを算出する(ステップ52)。次いで、算出した目標前後輪差回転数DN_F_Rが、前記DN_F_R_MIN1よりも大きな第2下限値DN_F_R_MIN2(例えば車速3km/h相当)以下であるか否かを判別する(ステップ53)。
【0045】
この答がYESのときには、目標前後輪差回転数DN_F_Rを第2下限値DN_F_R_MIN2に設定する(ステップ54)一方、NOのときにはステップ54をスキップすることで、目標前後輪差回転数DN_F_Rを保持する。次いで、ステップ55において、実際の前後輪差回転数としてN_SPLT_motを用い、上記目標前後輪差回転数DN_F_Rとの偏差(N_SPLT_mot−DN_F_R)を、実/目標前後輪差回転数偏差EN_F_Rとして算出し、ステップ56に進む。ここで、前後輪差回転数N_SPLT_motは、カウンタシャフト回転数Ncounterとモータ回転数Nmotとの差(=Ncounter−Nmot)である。
【0046】
次いで、ステップ56において、前記ステップ51またはステップ55で算出した実/目標前後輪差回転数偏差EN_F_Rが0未満であるか否かを判別する。この答がYES、すなわちEN_F_R<0であって、実際の前後輪差回転数(N_SPLT_wheelまたはN_SPLT_mot)が目標前後輪差回転数DN_F_Rよりも小さいときには、前輪スリップが発生していないとして、前輪スリップフラグF_frontを「0」にセットし(ステップ57)、本プログラムを終了する。
【0047】
一方、ステップ56の答がNO、すなわちEN_F_R≧0であって、実際の前後輪差回転数が目標前後輪差回転数DN_F_R以上のときには、前輪スリップが発生しているとして、前輪スリップフラグF_frontを「1」にセットし(ステップ58)、本プログラムを終了する。
【0048】
このように前輪スリップの発生が検出されると、モータ4の最大出力が4kWから8kWに増大されるとともに、モータ4により後輪WRL、WRRを駆動(アシスト)する駆動モードが実行される。また、以下に述べるように、前輪目標駆動力FCMD_ENGが、実際の前後輪差回転数と目標前後輪差回転数DN_F_Rなどに基づき、フィードバック制御により減少補正される。
【0049】
図11〜図13は、図3のステップ35で実行される前輪目標駆動力FCMD_ENGの算出サブルーチンを示す。この制御処理ではまず、車両2の制御モードが回生モードまたは停止モードであるか否かを判別する(ステップ61)。この答がNOのときには、前輪目標駆動力計算値FCMD_ENG_calを、エンジン引きずり分FENG_OFF(D4相当、負値)に設定する(ステップ62)とともに、このFCMD_ENG_cal値を前輪目標駆動力FCMD_ENGとして決定する(ステップ63)。次いで、後述するフィードバック制御時に用いられる制御ゲイン(FR_TCSゲイン)、具体的にはP項、I項、D項およびPID制御量を、値0にリセットし(ステップ64)、本プログラムを終了する。
【0050】
一方、前記ステップ61の答がNO、すなわち制御モードが駆動モードまたは充電モードのときには、そのうちの充電モードであるか否を判別する(ステップ65)。充電モードのときには、前記ステップ31およびステップ33でそれぞれ算出した目標駆動力FCMD、後輪目標駆動力FCMD_MOTを用い、次式(4)によって、前輪目標駆動力計算値FCMD_ENG_calを算出する(ステップ66)。
Figure 0004064042
前述したように、エンジン引きずり分FENG_OFFは、それ自体は負値であることから、式(4)で減算項として用いられることで、その分が駆動力に加算されることになる。次いで、前記ステップ63、64と同様、このFCMD_ENG_cal値を前輪目標駆動力FCMD_ENGとして決定する(ステップ67)とともに、FR_TCSゲインを値0にリセットし(ステップ68)、本プログラムを終了する。
【0051】
一方、前記ステップ65の答がNO、すなわち制御モードが駆動モードであるときには、ステップ69以降において、駆動モード時用の前輪目標駆動力FCMD_ENGを算出する。まず、前記ステップ67と同様、前輪目標駆動力計算値FCMD_ENG_calを、式(4)によって算出する(ステップ69)。次いで、前輪スリップフラグF_frontSLPが「0」であるか否かを判別する(ステップ70)。この答がYES、すなわち前輪スリップが発生していないときには、ステップ69で算出した前輪目標駆動力計算値FCMD_ENG_calを、そのまま前輪目標駆動力FCMD_ENGとして決定した(ステップ71)後、FR_TCSゲインを値0にリセットし(ステップ72)、本プログラムを終了する。このように、前輪スリップが発生していない場合、駆動モード時の前輪目標駆動力FCMD_ENGは、基本的に、目標駆動力FCMDから後輪目標駆動力FCMD_MOTを差し引いた値として決定される。
【0052】
一方、前記ステップ70の答がNO、すなわちF_frontSLP=1であって、前輪スリップが発生しているときには、次のステップ73以降で、前輪目標駆動力FCMD_ENGを、PIDフィードバック制御によって算出する。まず、左右前輪回転数平均値N_Fwheelおよび左右後輪回転数平均値N_Rwheelのいずれもが、前記ステップ47で用いた第1切換回転数Vn_change1よりも大きな第2切換回転数Vn_change2(例えば車速15km/h相当)よりも大きいか否かを判別する(ステップ73)。この判別もまた、前述したステップ47の判別と同じ理由から、次に実行する前後輪差回転数変化量の算出に用いるパラメータを、車速Vcarの大小に応じて、車輪パルス系とモータ回転パルス系に切り換えるためのものである。また、第2切換回転数Vn_change2が第1切換回転数Vn_change1よりも大きな値に設定されるのは、前後輪差回転数の変化量を算出する関係上、その範囲をより大きくするためである。
【0053】
したがって、上記ステップ73の答がYES、すなわちN_Fwheel値およびN_Rwheel値がいずれも、第2切換回転数Vn_change2よりも大きいときには、車輪パルス系を用い、図6のステップ51で算出した前後輪差回転数N_SPLT_wheelの今回値と前回値との差dN_SPLT_wheelを求め、この値を前後輪差回転数変化量dEN_F_Rとして設定する(ステップ74)。一方、ステップ73の答がNOのときには、モータ回転パルス系を用い、図6のステップ55で算出した前後輪差回転数N_SPLT_motの今回値と前回値との差dN_SPLT_motを求め、この値を前後輪差回転数変化量dEN_F_Rとして設定する(ステップ75)。
【0054】
次に、ステップ74またはステップ75で算出した前後輪差回転数変化量dEN_F_Rを用い、次式(5)によってI(積分)項KIFSLPを算出する(ステップ76)。
KIFSLP=KIFSLP−dEN_F_R*KIFSLPK・・・(5)
ここで、右辺のKIFSLPはI項前回値、KIFSLPKはI項係数である。
【0055】
このように、このPIDフィードバック制御では、I項KIFSLPが、実/目標前後輪差回転数偏差EN_F_Rではなく、前後輪差回転数変化量dEN_F_Rに基づいて算出される。これは、このPIDフィードバック制御が、前輪スリップが発生している場合のみ、すなわち実際の前後輪差回転数が目標前後輪差回転数DN_F_Rよりも大きい場合にのみ、実行されることから、I項KIFSLPを実/目標前後輪差回転数偏差EN_F_Rに基づいて算出すると、I項KIFSLPが増える一方となって過成長するとともに、前輪スリップ制御の解除時に、過成長したI項が急に無くなってしまうことで、前輪駆動力が急激に変化することから、そのような事態を回避するためである。また、I項KIFSLPを、前後輪差回転数変化量dEN_F_Rに基づいて算出することによって、フィードバック制御の収束性を向上させることができる。
【0056】
次に、ステップ77〜80において、上記のように算出したI項KIFSLPのリミット処理を行う。すなわち、I項KIFSLPがその上限値である値0よりも大きいか否かを判別し(ステップ77)、KIFSLP>0のときには、I項KIFSLPを値0に設定する(ステップ78)。また、ステップ77の答がNOのときには、I項KIFSLPがその下限値KIFSLPLMTL(例えば−300kgf)よりも小さいか否かを判別し(ステップ79)、KIFSLP<KIFSLPLMTLのときには、I項KIFSLPをに設定する(ステップ80)。ステップ79の答がNOのとき、すなわちKIFSLPLMTL≦KIFSLP≦0のときには、I項KIFSLPを保持する。以上のリミット処理により、I項KIFSLPは、下限値KIFSLPLMTLで規定される0以下の値として設定される。
【0057】
次いで、ステップ81に進み、P(比例)項KPFSLPおよびD(微分)項KDFSLPを、次式(6)(7)でそれぞれ算出する。
KPFSLP= −EN_F_R*KPFSLPK ・・・(6)
KDFSLP=−dEN_F_R*KDFSLPK ・・・(7)
ここで、KPFSLPK、KDFSLPKは、それぞれP項係数、D項係数である。また、次式(8)により、これらのP項KPFSLPおよびD項KDFSLPとI項KIFSLPを加算することによって、PID制御量KFSLPMAINを算出する。
KFSLPMAIN=KPFSLP+KIFSLP+KDFSLP・・・(8)
【0058】
次に、ステップ82〜85において、上記のようにして算出したPID制御量KFSLPMAINのリミット処理を行う。すなわち、PID制御量KFSLPMAINがその上限値である値0よりも大きいか否かを判別し(ステップ82)、この答がYESのときには、PID制御量KFSLPMAINを値0に設定する(ステップ83)。また、ステップ82の答がNO、すなわちKFSLPMAIN≦0のときには、PID制御量KFSLPMAINが、前記ステップ69で算出した前輪目標駆動力計算値FCMD_ENG_cal×(−1)に制御量制限値KFSLPLMT(例えば150kgf)を加算した値(−FCMD_ENG_cal+KFSLPLMT)よりも小さいか否かを判別し(ステップ84)、小さいときには、この値をPID制御量KFSLPMAINとして設定する(ステップ85)。ステップ84の答がNOのときには、PID制御量KFSLPMAINを保持する。以上のリミット処理により、PID制御量KFSLPMAINは、0以下の値として設定される。
【0059】
次いで、上記のようにして算出したPID制御量KFSLPMAINを、前輪目標駆動力補正量FCMD_ENG_TCSとして決定する(ステップ86)。そして、この前輪目標駆動力補正量FCMD_ENG_TCSを前輪目標駆動力計算値FCMD_ENG_calに加算した値を、前輪スリップ中の前輪目標駆動力FCMD_ENGとして決定し(ステップ87)、本プログラムを終了する。これまでの演算処理内容から明らかなように、前輪目標駆動力補正量FCMD_ENG_TCSは、値0または負値として設定されるので、この値の分だけ、前輪スリップ中の前輪目標駆動力FCMD_ENGは、前輪目標駆動力計算値FCMD_ENGに対して減少補正された値となる。また、この場合の前輪目標駆動力FCMD_ENGは、制御量制限値KFSLPLMT以上の値に設定される。
【0060】
以上のようにして算出された前輪目標駆動力FCMD_ENGは、図2のステップ26において、例えば図14に示すDBW_THテーブルを検索することにより、車速Vcarに応じたアクチュエータ出力値DBW_THに換算される。そして、これに基づく駆動信号がアクチュエータ24に出力され、スロットル弁開度θTHが制御されることで、エンジン3の駆動力が制御される。
【0061】
以上のように、本実施形態によれば、前輪WFL、WFRのスリップの発生を、実際の前後輪差回転数が目標前後輪差回転数DN_F_Rを超えているか否かによって判定するとともに、この前輪WFL、WFRのスリップ中、前輪目標駆動力FCMD_ENGを、前後輪差回転数が目標前後輪差回転数DN_F_Rになるように、PIDフィードバック制御により減少補正する。したがって、前輪がスリップした場合に、前後輪差回転数を目標差回転数DN_F_Rに維持するように前輪目標駆動力FCMD_ENGを適切に制御できるので、低摩擦路においても、前輪WFL、WFRを最適なスリップ状態に維持でき、安定した走行性を確保することができる。また、前輪スリップが発生した場合には、前輪目標駆動力FCMD_ENGの減少補正と並行して、モータ4によるアシストが行われるので、前後輪差回転数を目標前後輪差回転数DN_F_Rに早期に収束させることができる。
【0062】
また、この目標前後輪差回転数DN_F_Rは、登坂角SLOPE_ANG、操舵角θSTR、車速Vcarおよびアクセル開度θAPをパラメータとして決定されるので、車両2の実際の走行状態や運転者の意志に応じて、これを適切に設定することができる。さらに、前輪目標駆動力FCMD_ENGのPIDフィードバック制御において、I項KIFSLPを、実/目標前後輪差回転数偏差EN_F_Rではなく、前後輪差回転数変化量dEN_F_Rに基づいて算出するので、フィードバック制御の収束性を向上させることができる。また、I項KIFSLPの過成長を回避できるとともに、その過成長に起因する、前輪スリップ制御の解除時における前輪目標駆動力FCMD_ENGの急激な変化を防止することができる。
【0063】
なお、本発明は、説明した実施形態に限定されることなく、種々の態様で実施することができる。例えば、実施形態では、モータ4と後輪WRL、WRRの間を接続・遮断するクラッチとして、電磁クラッチ8を用いているが、伝達容量を制御可能なクラッチであればよく、例えば油圧式多板クラッチを採用してもよい。また、実施形態は、前輪をエンジンで駆動し、後輪をモータで駆動するタイプの前後輪駆動車両に、本発明を適用した例であるが、本発明は、これに限らず、エンジンおよびモータによる駆動を前後輪逆に行う車両にも、同様に適用することが可能である。
【0064】
【発明の効果】
以上のように、本発明の前後輪駆動車両の駆動力制御装置によれば、エンジン側の駆動輪がスリップした場合に、前後の差回転数を目標差回転数に維持するようにエンジン目標駆動力が減少補正され、適切に制御されるので、低摩擦路においても、エンジン側の駆動輪を最適なスリップ状態に維持でき、安定した走行性を確保することができる。また、エンジン目標駆動力の減少補正と並行して、モータ目標駆動力が増大補正されるので、前後の差回転数を目標差回転数に早期に収束させることができる。さらに、エンジン目標駆動力の減少補正を、前後の差回転数変化量に応じて行うので、目標差回転数への差回転数の収束性を高めることができる。また、路面勾配、操舵角、車速およびアクセル開度の少なくとも1つを含む走行状態を表すパラメータに応じて、目標差回転数を設定するので、目標回転数を、車両の実際の走行状態や運転者の意志に応じて、適切に設定することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態による駆動力制御装置を適用した前後輪駆動車両の概略構成図である。
【図2】駆動力制御のメインフローを示すフローチャートである。
【図3】駆動力算出サブルーチンのフローチャートである。
【図4】目標駆動力テーブルの一例を示す図である。
【図5】前輪スリップの判定サブルーチンのフローチャートである。
【図6】図5の判定サブルーチンの残りの部分を示すフローチャートである。
【図7】目標スリップ率テーブルの一例を示す図である。
【図8】車速補正係数テーブルの一例を示す図である。
【図9】操舵角補正係数テーブルの一例を示す図である。
【図10】AP開度補正係数テーブルの一例を示す図である。
【図11】前輪目標駆動力の算出サブルーチンのフローチャートである。
【図12】図11の算出サブルーチンの続きの部分を示すフローチャートである。
【図13】図11および図12の算出サブルーチンの残りの部分を示すフローチャートである。
【図14】アクチュエータ出力値テーブルの一例を示す図である。
【符号の説明】
1 駆動力制御装置
2 車両(前後輪駆動車両)
3 エンジン
4 電気モータ
11 ECU(車速検出手段、目標駆動力算出手段、モータ目標駆動力算出手段、エンジン目標駆動力算出手段、差回転数検出手段、目標差回転数設定手段、スリップ判定手段、エンジン駆動力補正手段、モータ駆動力補正手段、差回転数変化量検出手段)
12 車輪回転数センサ(車速検出手段)
14 カウンタシャフト回転数センサ(差回転数検出手段)
15 モータ回転数センサ(差回転数検出手段)
16 アクセル開度センサ(アクセル開度検出手段)
WFL、WFR 前輪
WRL、WRR 後輪
θAP アクセル開度
Vcar 車速
SLOPE_ANG 登坂角(路面勾配)
θSTR 操舵角
FCMD 目標駆動力
FCMD_MOT 後輪目標駆動力(モータ目標駆動力)
FCMD_ENG 前輪目標駆動力(エンジン目標駆動力)
N_SPLT_wheel 前後輪差回転数(差回転数)
N_SPLT_mot 前後輪差回転数(差回転数)
DN_F_R 目標前後輪差回転数(目標差回転数)
dEN_F_R 前後輪差回転数変化量(差回転数変化量)

Claims (5)

  1. 前後の駆動輪の一方をエンジンで駆動し、他方を電気モータで駆動する前後輪駆動車両の駆動力制御装置であって、
    アクセル開度を検出するアクセル開度検出手段と、
    車速を検出する車速検出手段と、
    前記検出されたアクセル開度および車速に基づいて前記車両の目標駆動力を算出する目標駆動力算出手段と、
    前記目標駆動力に基づいて前記電気モータの目標駆動力を算出するモータ目標駆動力算出手段と、
    前記目標駆動力および前記モータ目標駆動力に基づいて前記エンジンの目標駆動力を算出するエンジン目標駆動力算出手段と、
    前記モータ目標駆動力に基づいて前記電気モータを駆動制御するモータ駆動制御手段と、
    前記エンジン目標駆動力に基づいて前記エンジンを駆動制御するエンジン駆動制御手段と、
    前記前後の駆動輪間の差回転数を検出する差回転数検出手段と、
    前記車両の走行状態を表すパラメータに基づいて目標差回転数を設定する目標差回転数設定手段と、
    前記検出された差回転数および前記目標差回転数に基づいて前記エンジン側の駆動輪のスリップ状態を判定するスリップ判定手段と、
    当該スリップ判定手段により前記エンジン側の駆動輪にスリップが発生していると判定されたときに、前記差回転数を前記目標差回転数に維持するように前記エンジン目標駆動力を減少補正するための補正値を、積分項を含むフィードバック制御量を用いて算出するエンジン駆動力補正手段と、
    前記差回転数の変化量を検出する差回転数変化量検出手段と、を備え、
    前記エンジン駆動力補正手段は、前記検出された差回転数変化量に基づいて、前記フィードバック制御量の前記積分項を算出することを特徴とする前後輪駆動車両の駆動力制御装置。
  2. 前記フィードバック制御量は比例項を含み、前記エンジン駆動力補正手段は、前記差回転数と前記目標差回転数との偏差に基づいて前記比例項を算出することを特徴とする、請求項1に記載の前後輪駆動車両の駆動力制御装置。
  3. 前記走行状態を表すパラメータは、路面勾配、操舵角、車速およびアクセル開度の少なくとも1つを含むことを特徴とする、請求項1または2に記載の前後輪駆動車両の駆動力制御装置。
  4. 前後の駆動輪の一方をエンジンで駆動し、他方を電気モータで駆動する前後輪駆動車両の駆動力制御装置であって、
    アクセル開度を検出するアクセル開度検出手段と、
    車速を検出する車速検出手段と、
    前記検出されたアクセル開度および車速に基づいて前記車両の目標駆動力を算出する目標駆動力算出手段と、
    前記目標駆動力に基づいて前記電気モータの目標駆動力を算出するモータ目標駆動力算出手段と、
    前記目標駆動力および前記モータ目標駆動力に基づいて前記エンジンの目標駆動力を算出するエンジン目標駆動力算出手段と、
    前記モータ目標駆動力に基づいて前記電気モータを駆動制御するモータ駆動制御手段と、
    前記エンジン目標駆動力に基づいて前記エンジンを駆動制御するエンジン駆動制御手段と、
    前記前後の駆動輪間の差回転数を検出する差回転数検出手段と、
    前記車両の走行状態を表すパラメータに基づいて目標差回転数を設定する目標差回転数 設定手段と、
    前記検出された差回転数および前記目標差回転数に基づいて前記エンジン側の駆動輪のスリップ状態を判定するスリップ判定手段と、
    当該スリップ判定手段により前記エンジン側の駆動輪にスリップが発生していると判定されたときに、前記差回転数を前記目標差回転数に維持するように前記エンジン目標駆動力を減少補正するエンジン駆動力補正手段と、を備え、
    前記車両の走行状態を表すパラメータは操舵角を含み
    前記目標差回転数設定手段は、前記操舵角が値0を含む所定範囲にあるときには、当該操舵角が大きいほど、前記目標差回転数をより小さな値に設定し、前記操舵角が前記所定範囲にないときには、当該操舵角が大きいほど、前記目標差回転数をより大きな値に設定することを特徴とする前後輪駆動車両の駆動力制御装置。
  5. 前記スリップ判定手段により前記エンジン側の駆動輪にスリップが発生していると判定されたときに、前記モータ目標駆動力を増大補正するモータ駆動力補正手段をさらに備えていることを特徴とする、請求項1ないし4のいずれかに記載の前後輪駆動車両の駆動力制御装置。
JP2000219408A 2000-07-19 2000-07-19 前後輪駆動車両の駆動力制御装置 Expired - Fee Related JP4064042B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000219408A JP4064042B2 (ja) 2000-07-19 2000-07-19 前後輪駆動車両の駆動力制御装置
US09/906,054 US6528959B2 (en) 2000-07-19 2001-07-17 Driving force control system for front-and-rear wheel drive vehicles
DE10135192A DE10135192A1 (de) 2000-07-19 2001-07-19 Antriebskraftregelungssystem für Allradantrieb-Fahrzeuge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000219408A JP4064042B2 (ja) 2000-07-19 2000-07-19 前後輪駆動車両の駆動力制御装置

Publications (2)

Publication Number Publication Date
JP2002030952A JP2002030952A (ja) 2002-01-31
JP4064042B2 true JP4064042B2 (ja) 2008-03-19

Family

ID=18714201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000219408A Expired - Fee Related JP4064042B2 (ja) 2000-07-19 2000-07-19 前後輪駆動車両の駆動力制御装置

Country Status (1)

Country Link
JP (1) JP4064042B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3729165B2 (ja) 2002-09-03 2005-12-21 トヨタ自動車株式会社 車両制御装置及びその制御方法
US7222014B2 (en) * 2004-05-14 2007-05-22 General Motors Corporation Method for automatic traction control in a hybrid electric vehicle
JP4640044B2 (ja) 2005-06-01 2011-03-02 トヨタ自動車株式会社 自動車およびその制御方法
JP5136221B2 (ja) * 2008-05-30 2013-02-06 株式会社エクォス・リサーチ 車両用制御装置
JP5250540B2 (ja) * 2009-12-21 2013-07-31 三菱自動車工業株式会社 ハイブリッド自動車の差動制限制御装置
JP5250541B2 (ja) * 2009-12-21 2013-07-31 三菱自動車工業株式会社 電動車両の差動制限制御装置
US20130253749A1 (en) * 2010-12-27 2013-09-26 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
US9242642B2 (en) 2011-10-27 2016-01-26 Toyota Jidosha Kabushiki Kaisha Electrically-powered vehicle and method of controlling the same
JP2013169818A (ja) * 2012-02-17 2013-09-02 Mitsubishi Motors Corp 電動車両
JP5966428B2 (ja) * 2012-02-27 2016-08-10 日産自動車株式会社 車両用駆動制御装置、車両用駆動制御方法
JP2013173529A (ja) * 2013-04-11 2013-09-05 Mitsubishi Motors Corp ハイブリッド自動車の差動制限制御装置
JP2013192446A (ja) * 2013-04-11 2013-09-26 Mitsubishi Motors Corp 電動車両の差動制限制御装置
DE102017114494A1 (de) * 2017-06-29 2019-01-03 Thyssenkrupp Ag Steer-by-Wire-Lenksystem mit Torque-Vectoring und integrierter Anti-Schlupf-Regelung
US10988170B2 (en) * 2018-12-11 2021-04-27 Continental Automotive Systems, Inc. Driver steer recommendation upon loss of one brake circuit of a diagonal spilt layout
JP7200910B2 (ja) * 2019-11-05 2023-01-10 トヨタ自動車株式会社 車両の駆動力制御装置

Also Published As

Publication number Publication date
JP2002030952A (ja) 2002-01-31

Similar Documents

Publication Publication Date Title
US6575870B2 (en) Driving force control system for front-and-rear wheel drive vehicles
US6528959B2 (en) Driving force control system for front-and-rear wheel drive vehicles
JP3536838B2 (ja) 車両の駆動力制御装置
JP3948453B2 (ja) 車両の駆動力制御装置
JP4064042B2 (ja) 前後輪駆動車両の駆動力制御装置
JP4371270B2 (ja) 車両駆動力装置
JP3536844B2 (ja) 車両の駆動力制御装置
JP3563314B2 (ja) ハイブリッド車両のオートクルーズ制御装置
US20030037977A1 (en) Drive force distribution apparatus for hybrid vehicle
US20030010559A1 (en) Driving force controlling apparatus and method for four-wheel drive vehicle
US20050228554A1 (en) Control apparatus for hybrid vehicle
KR100623126B1 (ko) 차량 구동력 제어 장치
US11952009B2 (en) Driving force control system for vehicle
JP2004090695A (ja) 路面状態変化推定装置およびこれを搭載する自動車
JP3857144B2 (ja) ハイブリッド車両の制御装置
JP4089608B2 (ja) 自動車
JP3937124B2 (ja) 車両のモータトルク制御装置
JP2002152905A (ja) 前後輪駆動車両
JP3891166B2 (ja) 車両の駆動力制御装置
JP4108258B2 (ja) 前後輪駆動車両の駆動力制御装置
JP4073611B2 (ja) 前後輪駆動車両の駆動制御装置
JP2012222859A (ja) 電動車両
JP4242045B2 (ja) 前後輪駆動車両の駆動力制御装置
JP4172676B2 (ja) 前後輪駆動車両の駆動力制御装置
JP4165487B2 (ja) 車両の駆動力制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees