JP3832405B2 - 原動機の制御装置および原動機の制御方法 - Google Patents

原動機の制御装置および原動機の制御方法 Download PDF

Info

Publication number
JP3832405B2
JP3832405B2 JP2002251363A JP2002251363A JP3832405B2 JP 3832405 B2 JP3832405 B2 JP 3832405B2 JP 2002251363 A JP2002251363 A JP 2002251363A JP 2002251363 A JP2002251363 A JP 2002251363A JP 3832405 B2 JP3832405 B2 JP 3832405B2
Authority
JP
Japan
Prior art keywords
slip
torque
prime mover
motor
torque limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002251363A
Other languages
English (en)
Other versions
JP2004096823A (ja
Inventor
明 本美
清高 浜島
光博 灘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002251363A priority Critical patent/JP3832405B2/ja
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to US10/525,791 priority patent/US7230393B2/en
Priority to PCT/JP2003/008593 priority patent/WO2004022381A1/ja
Priority to CNB038205726A priority patent/CN100333940C/zh
Priority to EP03741238A priority patent/EP1552978B1/en
Priority to DE60320434T priority patent/DE60320434T2/de
Priority to KR1020057003366A priority patent/KR100632898B1/ko
Publication of JP2004096823A publication Critical patent/JP2004096823A/ja
Application granted granted Critical
Publication of JP3832405B2 publication Critical patent/JP3832405B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/28Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed without contact making and breaking, e.g. using a transductor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/102Indicating wheel slip ; Correction of wheel slip of individual wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原動機の制御装置および原動機の制御方法に関し、詳しくは、駆動輪に接続された駆動軸に動力を出力可能な原動機を備える車両における該原動機を制御する原動機の制御装置および原動機の制御方法に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
従来、この種の原動機の制御装置としては、原動機として例えばモータからのトルクの出力により駆動輪が空転してスリップが発生したときに、モータから駆動輪に出力するトルクを制限するものが提案されている(例えば、特許文献1参照)。この装置では、駆動輪の角加速度(角速度の時間変化率)が上昇してスリップが検出されたときにはモータから出力するトルクを制限し、トルク制限に伴ってスリップが停止したときにはモータのトルク制限を解除している。
【0003】
しかしながら、こうした装置では、トルクの制限を解除は、運転者の要求とは無関係に一律に行なわれているため、運転者によっては違和感を感じ、ドライバビリティを悪化させてしまう場合がある。
【0004】
本発明の原動機の制御装置および原動機の制御方法は、車両のスリップ制御におけるドライバビリティをより向上させることを目的の一つとする。また、本発明の原動機の制御装置および原動機の制御方法は、車両のスリップ制御において運転者の加速の要求を反映しつつ車両が過度にスリップした状態となるのを防止することを目的の一つとする。
【0005】
なお、出願人は、車両のスリップ制御を行なう際に、運転者により踏み込まれたアクセル開度に応じて、スリップが発生したときのトルク制限の度合いやスリップが停止したときのトルク制限の解除の度合いを調節する技術を開示している(特許文献2参照)。
【0006】
【特許文献1】
特開平10−304514号公報
【特許文献2】
特開2001−295676号公報
【0007】
【課題を解決するための手段およびその作用・効果】
本発明の原動機の制御装置および原動機の制御方法は、上述の目的の少なくとも一部を達成するために以下の手段を採った。
【0008】
本発明の原動機の制御装置は、
駆動輪に接続された駆動軸に動力を出力可能な原動機を備える車両における該原動機を制御する原動機の制御装置であって、
前記駆動輪の空転によるスリップを検出するスリップ検出手段と、
該スリップ検出手段によりスリップが検出されたとき、該スリップの抑制が可能となるようにトルク制限を行なって前記原動機を制御するトルク制限制御手段と、
少なくとも前記スリップが抑制の方向に向かったとき、運転者によるアクセル操作の変化量に基づいて前記トルク制限制御手段によるトルク制限を解除して前記原動機を制御するトルク制限解除制御手段と
を備えることを要旨とする。
【0009】
この本発明の原動機の制御装置では、駆動輪の空転によるスリップが検出されたとき、このスリップの抑制が可能となるようにトルク制限を行なって原動機を制御し、このトルクの制限により少なくともスリップが抑制の方向に向かったとき運転者によるアクセル操作の変化量に基づいてトルク制限を解除して原動機を制御する。これにより、スリップが収束してトルク制限を解除する際には運転者によるアクセル操作の変化量すなわち車両の加速要求が反映されるから、トルク制限の解除に運転者の要求が反映されないものに比して、スリップ制御の際のドライバビリティの向上を図ることができる。
【0010】
こうした本発明の原動機の制御装置において、前記アクセル操作の変化量は、前記スリップ検出手段によりスリップが検出された時点を基準とする変化量であるものとすることもできる。こうすれば、運転者の加速の要求をより適切に把握することができる。
【0011】
また、本発明の原動機の制御装置において、前記トルク制限解除制御手段は、前記トルク制限を時間の経過と共に段階的に解除する手段であるものとすることもできる。こうすれば、トルク制限を解除する際の再スリップの可能性を低減することができる。この態様の本発明の原動機の制御装置において、前記トルク制限解除制御手段は、前記アクセル操作の変化量としてアクセルペダルの踏み増し量が多いほど前記トルク制限の解除幅を大きくして前記原動機を制御する手段であるものとすることもできる。こうすれば、運転者が加速を要求していると考えられるときには、この要求に応じた解除幅でトルク制限を解除することができる。また、トルク制限を時間の経過と共に段階的に解除する態様の本発明の原動機の制御装置において、前記トルク制限解除制御手段は、前記アクセル操作の変化量としてアクセルペダルの踏み増し量が多いほど前記トルク制限の解除時間を短くして前記原動機を制御する手段であるものとすることもできる。こうすれば、運転者が加速を要求していると考えられるときには、その要求に応じた短い時間でトルク制限を解除することができる。
【0012】
さらに、本発明の原動機の制御装置において、前記駆動軸または前記原動機の回転軸の角加速度を検出する角加速度検出手段を備え、前記スリップ検出手段は、前記検出された角加速度と所定の閾値との比較によりスリップを検出する手段であり、前記トルク制限制御手段は、前記スリップが検出されたときに、前記角加速度検出手段により検出された角加速度に基づいて前記トルク制限の程度を変更して前記原動機を制御する手段であるものとすることもできる。こうすれば、角加速度に基づくスリップの程度に応じて効果的にトルク制限を実施でき、スリップを抑制することができる。
【0013】
あるいは、本発明の原動機の制御装置において、前記車両は、前記駆動輪に従動する従動輪を有する車両であり、前記駆動輪の回転速度を検出する駆動輪回転速度検出手段と、前記従動輪の回転速度を検出する従動輪回転速度検出手段とを備え、前記スリップ検出手段は、前記駆動輪回転速度検出手段により検出された回転速度と前記従動輪回転速度検出手段により検出された回転速度との回転速度差と所定の閾値との比較によりスリップを検出する手段であり、前記トルク制限制御手段は、前記スリップが検出されたときには、前記回転速度差に基づいて前記トルク制限の程度を変更して前記原動機を制御する手段であるものとすることもできる。こうすれば、駆動輪の回転速度と従動輪の回転速度との偏差に基づくスリップの程度に応じて効果的にトルク制限を実施でき、スリップを抑制することができる。
【0014】
また、本発明の原動機の制御装置において、前記トルク制限解除制御手段による前記原動機の制御に伴って前記スリップ検出手段により駆動輪の再スリップが検出されたときには、該再スリップの抑制が可能となるようにトルク再制限を行なって前記原動機を制御するトルク再制限制御手段を備えるものとすることもできる。こうすれば、運転者によるアクセル操作の変化量に基づいてトルク制限が解除されたときに再スリップが発生しても、その再スリップを抑制することができる。
【0015】
角加速度検出手段とトルク再制限制御手段とを備える態様の本発明の原動機の制御装置において、前記トルク再制限制御手段は、前記スリップ検出手段による再スリップの検出に伴って前記角加速度検出手段により検出された角加速度のピーク値に基づいて前記トルク再制限の程度を変更して前記原動機を制御する手段であるものとすることもできる。こうすれば、角加速度に基づく再スリップの程度に応じて効果的にトルクを再制限することができる。
【0016】
トルク再制限制御手段を備える態様の本発明の原動機の制御装置において、前記再スリップの状態に拘わらず、前記アクセル操作の変化量に応じた時間をもって前記トルク再制限制御手段によるトルク再制限を解除して前記原動機を制御するトルク再解除制御手段を備えるものとすることもできる。こうすれば、過剰な再スリップはある程度抑制しながらも運転者による加速要求に応答することができる。
【0017】
本発明の原動機の制御方法は、
駆動輪に接続された駆動軸に動力を出力可能な原動機を備える車両における該原動機を制御する原動機の制御方法であって、
(a)前記駆動輪の空転によるスリップを検出するステップと、
(b)前記ステップ(a)によりスリップが検出されたとき、該スリップの抑制が可能となるようにトルク制限を行なって前記原動機を制御するステップと、
(c)少なくとも前記スリップが抑制の方向に向かったとき、運転者によるアクセル操作の変化量に基づいて前記ステップ(b)によるトルク制限を解除して前記原動機を制御するステップと
を備えることを要旨とする。
【0018】
この本発明の原動機の制御方法では、駆動輪の空転によるスリップが検出されたとき、このスリップの抑制が可能となるようにトルク制限を行なって原動機を制御し、このトルクの制限により少なくともスリップが抑制の方向に向かったとき運転者によるアクセル操作の変化量に基づいてトルク制限を解除して原動機を制御する。これにより、スリップが収束してトルク制限を解除する際には運転者によるアクセル操作の変化量すなわち車両の加速要求が反映されるから、トルク制限の解除に運転者の要求が反映されないものに比して、スリップ制御の際のドライバビリティの向上を図ることができる。
【0019】
こうした本発明の原動機の制御方法において、前記アクセル操作の変化量は、前記ステップ(a)によりスリップが検出された時点を基準とした変化量であるものとすることもできる。
【0020】
また、本発明の原動機の制御方法において、前記ステップ(c)は、前記トルク制限を時間の経過と共に段階的に解除するものとすることもできる。この態様の本発明の原動機の制御方法において、前記ステップ(c)は、前記アクセル操作の変化量としてアクセルペダルの踏み増し量が多いほど前記トルク制限の解除幅を大きくして前記原動機を制御するものとすることもできる。また、トルク制限を時間の経過と共に段階的に解除する態様の本発明の原動機の制御方法において、前記ステップ(c)は、前記アクセル操作の変化量としてアクセルペダルの踏み増し量が多いほど前記トルク制限の解除時間を短くして前記原動機を制御するものとすることもできる。
【0021】
【発明の実施の形態】
次に、本発明の実施の形態を実施例を用いて説明する。図1は、本発明の一実施例である原動機の制御装置20を備える自動車10の構成の概略を示す構成図である。実施例の原動機の制御装置20は、図示するように、バッテリ16からインバータ回路14を介して供給された電力を用いて電気自動車10の駆動輪18a,18bに接続された駆動軸に動力の出力が可能なモータ12を駆動制御する装置として構成されており、モータ12の回転軸の回転角θを検出する回転角センサ22と、自動車10の走行速度を検出する車速センサ24と、駆動輪18a,18b(前輪)の車輪速と駆動輪18a,18bに従動して回転する従動輪19a,19b(後輪)の車輪速を検出する車輪速センサ26a,26b,28a,28bと、運転者からの各種操作を検出する各種センサ(例えば、シフトレバー31のポジションを検出するシフトポジションセンサ32や,アクセルペダル33の踏み込み量(アクセル開度)を検出するアクセルペダルポジションセンサ34,ブレーキペダル35の踏み込み量(ブレーキ開度)を検出するブレーキペダルポジションセンサ36など)と、装置全体をコントロールする電子制御ユニット40とを備える。
【0022】
モータ12は、例えば、電動機として機能すると共に発電機としても機能する周知の同期発電電動機として構成され、インバータ回路14は、バッテリ16からの電力をモータ12の駆動に適した電力に変換する複数のスイッチング素子により構成されている。こうしたモータ12やインバータ回路14の構成そのものは周知であり、本発明の中核をなさないから、これ以上の詳細な説明は省略する。
【0023】
電子制御ユニット40は、CPU42を中心としたマイクロプロセッサとして構成されており、CPU42の他に処理プログラムを記憶したROM44と、一時的にデータを記憶するRAM46と、入出力ポート(図示せず)とを備える。この電子制御ユニット40には、回転角センサ22により検出されたモータ12の回転軸の回転角θや、車速センサ24により検出された自動車10の車速V、車輪速センサ26a,26b,28a,28bにより検出された駆動輪18a,18bの車輪速Vf1,Vf2および従動輪19a,19bの車輪速Vr1,Vr2、シフトポジションセンサ32により検出されたシフトポジション、アクセルペダルポジションセンサ34により検出されたアクセル開度Acc、ブレーキペダルポジションセンサ36により検出されたブレーキ開度などが入力ポートを介して入力されている。また、電子制御ユニット40からは、モータ12を駆動制御するインバータ回路14のスイッチング素子へのスイッチング制御信号などが出力ポートを介して出力されている。
【0024】
こうして構成された原動機の制御装置20の動作、特に、自動車10の駆動輪18a,18bが空転してスリップが発生したときのモータ12の駆動制御について説明する。図2は、実施例の原動機の制御装置20の電子制御ユニット40により実行されるモータ駆動制御ルーチンの一例を示すフローチャートである。このルーチンは、所定時間毎(例えば、8msec毎)に繰り返し実行される。
【0025】
モータ駆動制御ルーチンが実行されると、電子制御ユニット40のCPU42は、まず、アクセルペダルポジションセンサ34からのアクセル開度Accや車速センサ24からの車速V、車輪速センサ26a,26b,28a,28bからの車輪速Vf,Vr、回転角センサ22の回転角θに基づいて算出されるモータ回転数Nmなどを入力する処理を行なう(ステップS100)。ここで、車輪速Vf,Vrは、実施例では、車輪速センサ26a,26bおよび車輪速センサ28a,28bにより各々検出される車輪速Vf1,Vf2および車輪速Vr1,Vr2の平均値を用いるものとした。また、車速Vについては、実施例では、車速センサ24により検出されたものを用いたが、車輪速センサ26a,26b,28a,28bにより検出される車輪速Vf1,Vf2,Vr1,Vr2から算出するものとしても構わない。
【0026】
次に、入力したアクセル開度Accと車速Vとに基づいてモータ12の要求トルクTm*を設定する(ステップS102)。モータ要求トルクTm*の設定は、実施例では、アクセル開度Accと車速Vとモータ要求トルクTm*との関係を予め求めてマップとしてROM44に記憶しておき、アクセル開度Accと車速Vとが与えられると、マップから対応するモータ要求トルクTm*を導出するものとした。このマップの一例を図3に示す。
【0027】
続いて、ステップS100で入力したモータ回転数Nmに基づいて角加速度αを計算する(ステップS104)。ここで、角加速度αの計算は、実施例では、今回のルーチンで入力された現回転数Nmから前回のルーチンで入力された前回回転数Nmを減じる(現回転数Nm−前回回転数Nm)ことにより行なうものとした。なお、角加速度αの単位は、回転数Nmの単位を1分間あたりの回転数[rpm]で示すと、実施例では、本ルーチンの実行時間間隔は8msecであるから、[rpm/8msec]となる。勿論、回転速度の時間変化率として示すことができれば、如何なる単位を採用するものとしても構わない。また、角加速度αは、誤差を小さくするために、それぞれ今回のルーチンから過去数回(例えば、3回)に亘って計算された角加速度の平均を用いるものとしても構わない。
【0028】
こうして角加速度αが計算されると、角加速度αに基づいて駆動輪18a,18bのスリップ状態を判定する処理を行ない(ステップS106)、判定結果に応じた処理(ステップS110〜S114)、即ち、スリップが発生していないと判定されたとき(後述するスリップ発生フラグF1およびスリップ収束フラグF2が共に値0のとき)にはグリップ時制御(ステップS110)、スリップが発生したと判定されたとき(フラグF1が値1でフラグF2が値0のとき)にはスリップ発生時制御(ステップS112)、発生したスリップが収束したと判定されたとき(フラグF1およびフラグF2が共に値1のとき)にはスリップ収束時制御(ステップS114)を行なって、本ルーチンを終了する。
【0029】
スリップ状態の判定は、図4のスリップ状態判定処理ルーチンに基づいて行なわれる。スリップ状態判定処理ルーチンが実行されると、電子制御ユニット40のCPU42は、図2のルーチンのステップS104で計算された角加速度αが、空転によるスリップが発生したとみなすことのできる閾値αslipを超えているか否かを判定する(ステップS130)。角加速度αが閾値αslipを超えていると判定されたときには、駆動輪18a,18bにスリップが発生したと判断して、スリップの発生を示すスリップ発生フラグF1を値1にセットして(ステップS132)、本ルーチンを終了する。一方、角加速度αが閾値αslipを超えていないと判定されたときには、次にスリップ発生フラグF1の値が値1であるか否かを判定する(ステップS134)。スリップ発生フラグF1が値1であると判定されたときには、角加速度αが所定時間以上連続して負の値となったか否かを判定し(ステップS136)、肯定的な判定がなされたときには駆動輪18a,18bに発生したスリップは収束したと判断してスリップ収束フラグF2を値1にセットして(ステップS138)、本ルーチンを終了する。一方、否定的な判定がなされたときには、発生したスリップは未だ収束していないと判断してそのまま本ルーチンを終了する。角加速度αが閾値αslipを超えておらず、スリップ発生フラグF1が値1ではないときには、スリップ発生フラグF1およびスリップ収束フラグF2を共に値0にセットして(ステップS140)、本ルーチンを終了する。以下、こうしてセットされたスリップ発生フラグF1およびスリップ収束フラグF2の値に応じて行なわれる前述のモータ12の各制御について詳細に説明する。
【0030】
グリップ時制御は、通常のモータ12の駆動制御であり、モータ要求トルクTm*に基づいてモータ12から要求トルクTm*に見合うトルクが出力されるようモータ12を駆動制御することにより行なわれる。
【0031】
スリップ発生時制御は、スリップにより角加速度αが上昇したときに上昇した角加速度αを低下させるために行なうモータ12の駆動制御であり、図5のスリップ発生時制御ルーチンに基づいて行なわれる。このルーチンが実行されると、電子制御ユニット40のCPU42は、まず、角加速度αがピーク値αpeakを超えているか否かを判定し(ステップS150)、角加速度αがピーク値αpeakを超えていると判定されたときにはピーク値αpeakの値を角加速度αに更新する処理を行なう(ステップS152)。ここで、ピーク値αpeakは、基本的には、スリップにより角加速度αが上昇してピークを示すときの角加速度の値であり、初期値として値0が設定されている。したがって、角加速度αが上昇してピークに達するまでの間はピーク値αpeakを角加速度αの値に順次更新していき、角加速度αがピークに達した時点でその角加速度αがピーク値αpeakとして固定されることになる。こうしてピーク値αpeakが設定されると、このピーク値αpeakに基づいてモータ12が出力できるトルクの上限であるトルク上限値Tmaxを設定する処理を行なう(ステップS154)。この処理は、実施例では、図6に例示するマップを用いて行なわれる。図6は、角加速度αとトルク上限値Tmaxとの関係を示すマップである。このマップでは、図示するように、角加速度αが大きくなるほどトルク上限値Tmaxは小さくなる特性を有している。したがって、角加速度αが上昇してピーク値αpeakが大きくなるほど、即ちスリップの程度が大きいほど、トルク上限値Tmaxとして小さな値が設定され、その分モータ12から出力されるトルクが制限されることになる。
【0032】
トルク上限値Tmaxが設定されると、モータ要求トルクTm*が、設定されたトルク上限値Tmaxを超えているか否かを判定し(ステップS156)、モータ要求トルクTm*がトルク上限値Tmaxを超えてると判定されたときにはモータ要求トルクTm*をトルク上限値Tmaxに修正する(ステップS158)。そして、トルクTm*を目標トルクとしてモータ12から目標トルクTm*に見合うトルクが出力されるようモータ12を駆動制御して(ステップS160)、本ルーチンを終了する。これにより、スリップ発生時においてモータ12から出力されるトルクは、スリップを抑制するための低いトルク(具体的には、図6のマップにおいて角加速度のピーク値αpeakに対応するトルク上限値Tmax)に制限されるので、スリップを効果的に抑制することができる。
【0033】
スリップ収束時制御は、スリップ発生時制御によるトルクの制限により角加速度αが低下してスリップが収束したときに制限したトルクを復帰させるために行なうモータ12の駆動制御であり、図7のスリップ収束時制御ルーチンに基づいて行なわれる。このルーチンが実行されると、電子制御ユニット40のCPU42は、まず、トルク制限量δ1およびトルク制限量δsafe(単位は、共に角加速度と同じ単位の[rpm/8msec])を入力する処理を行なう(ステップS170)。
【0034】
トルク制限量δ1は、前述のスリップ発生時制御において設定されたトルク上限値Tmaxを引き上げてトルク制限から復帰させる際の復帰の度合いを設定するために用いるパラメータであり、初期値はゼロに設定されている。このトルク制限量δ1は、図8のトルク制限量δ1設定処理ルーチンに基づいて設定される。以下、図8のトルク制限量δ1設定処理ルーチンの処理について説明する。このルーチンは、図4のスリップ状態判定処理ルーチンのステップS132の処理でスリップ発生フラグF1が値0から値1にセットされたとき(即ち、角加速度αが閾値αslipを超えたとき)に実行される。このルーチンが実行されると、電子制御ユニット40のCPU42は、まず、回転角センサ22により検出された回転角θに基づいて算出されたモータ回転数Nmを入力し(ステップS200)、入力したモータ回転数Nmに基づいてモータ12の角加速度αを計算し(ステップS202)、角加速度αが閾値αslipを超えた時点からの角加速度αの時間積分値αintを計算する(ステップS204)。角加速度αの時間積分値αintの計算は、実施例では、次式(1)を用いて行なうものとした。ここで、Δtは、後述するようにステップS200〜S204までの処理を繰り返し実行する際の時間間隔を意味し、実施例では、8msecとした。
【0035】
【数1】
αint←αint+(α−αslip)・Δt (1)
【0036】
そして、ステップS200〜S204までの処理を角加速度αが閾値αslip未満となるまで繰り返し、即ち角加速度αが閾値αslipを上回った時点から再び閾値αslipを下回った時点までを積分区間として積分計算して(ステップS196)、計算された時間積分値αintに所定の係数k1を乗じることによりトルク制限量δ1を設定する処理を行なって(ステップS208)、本ルーチンを終了する。なお、このルーチンでは、トルク制限量δ1は、所定の係数k1を用いて計算により求めたが、トルク制限量δ1と時間積分値αintとの関係を示すマップを用意しておき、計算された時間積分値αintからマップを適用して導出するものとしても構わない。また、トルク制限量δ1は、角加速度αの時間積分値に基づいて算出するものとしたが、スリップ発生時の角加速度αのピーク値(角加速度αの時間積分値dα/dtがゼロ近傍のときの角加速度αの値)に基づいて算出するものとしたり、角加速度αに関係なく所定値を設定するものとしても構わない。なお、トルク制限量δ1の設定は、具体的には、トルク制限量δ1の値をRAM46の所定領域に書き込むことにより行なわれる。
【0037】
トルク制限量δsafeは、図7のスリップ収束制御ルーチンが繰り返し実行されている間に再スリップが発生したときにこの再スリップを抑制するために設定されるパラメータであり、初期値はゼロに設定されている。このトルク制限量δ2についての詳細は後述する。以下、図7のスリップ収束時制御ルーチンの処理の説明に戻るが、便宜上、まず、この図7のルーチンが実行されている間に再スリップが発生していない場合の処理(トルク制限量δ2としてゼロが入力されたときの処理)について説明し、その後、再スリップが発生した場合の処理について説明する。
【0038】
トルク制限量δ1が入力されると、トルク制限量δ1を解除する解除要求を入力する処理を行ない(ステップS172)、解除要求があったか否かを判定する処理を行なう(ステップS174)。この処理は、前述のトルク上限値Tmaxを設定する際に用いるパラメータであるトルク制限量δ1を解除するための要求の入力があったか否かを判定する処理であり、解除要求の入力は、図9のトルク制限量δ1解除処理ルーチンの実行に伴ってRAM46の所定領域に書き込まれた解除要求を読み出すことにより行なわれる。以下、図9のトルク制限量δ1解除処理ルーチンについて説明する。このルーチンは、図7のスリップ収束時制御ルーチンが実行されている期間(スリップ収束フラグF2が値1の期間)に亘って所定時間毎(例えば、8msec毎)に繰り返し実行される。
【0039】
トルク制限量δ1解除処理ルーチンが実行されると、電子制御ユニット40のCPU42は、まず、スリップ時アクセル開度Accslipとアクセル開度Accを入力する処理を行なう(ステップS210)。ここで、スリップ時アクセル開度Accslipは、スリップが発生した時点でのアクセル開度であり、具体的にはスリップ発生フラグF1が値0から値1にセットされたときにアクセルペダルポジションセンサ34により検出されたアクセル開度である。このスリップ時アクセル開度Accslipの入力は、実施例では、スリップが発生した時にアクセルペダルポジションセンサ34により検出されてRAM46の所定領域に書き込まれたアクセル開度を読み出すことにより行なうものとした。続いて、アクセル開度Accからスリップ時アクセル開度Accslipを減じて、スリップが発生した時点からのアクセルペダル33の踏み増し量ΔAcc(=Acc−Accslip)を計算し(ステップS212)、計算したアクセル踏み増し量ΔAccとスリップ時アクセル開度Accslipとに基づいてトルク制限量δ1の解除時間tを設定する(ステップS214)。トルク制限量δ1の解除時間tの設定は、実施例では、アクセル踏み増し量ΔAccとスリップ時アクセル開度Accslipと解除時間tとの関係を予め求めてマップとして記憶しておき、アクセル踏み増し量ΔAccとスリップ時アクセル開度Accslipとが与えられると、マップから対応する解除時間tを導出するものとした。このマップの一例を図10に示す。図10に示すように、解除時間tは、アクセル踏み増し量ΔAccが多くなるほど短い時間が設定されるようになっている。これは、アクセル踏み増し量ΔAccが多いほど運転者は大きな加速を要求していると考えられるため、その要求に応じて短い時間でトルク制限量δ1によるトルク制限の解除を図るためである。解除時間tが設定されると、設定された解除時間tが経過するまで待ち(ステップS216)、解除時間tが経過したときにアクセル踏み増し量ΔAccとスリップ時アクセル開度Accslipとに基づいてトルク制限量δ1に対する解除量Δδ1の解除増分D1を設定する処理を行ない(ステップS218)、設定した解除増分D1だけ解除量Δδ1を増加させることにより解除量Δδ1を設定して(ステップS219)、本ルーチンを終了する。ここで、解除増分D1の設定は、実施例では、アクセル踏み増し量ΔAccとスリップ時アクセル開度Accslipと解除増分D1との関係を予め求めてマップとして記憶しておき、アクセル踏み増し量ΔAccとスリップ時アクセル開度Accslipとが与えられると、マップから対応する解除増分D1を導出するものとした。このマップの一例を図11に示す。図11に示すように、解除増分D1は、アクセル踏み増し量ΔAccが多くなるほど大きな値が設定されるようになっている。これは、アクセル踏み増し量ΔAccが多いほど運転者は大きな加速を要求していると考えられるため、その要求に応じた解除の度合いをもってトルク制限量δ1によるトルク制限の解除を図るためである。なお、解除量Δδ1の設定は、解除量Δδ1の値をRAM46の所定領域に書き込むことにより行なわれる。
【0040】
図7のルーチンに戻って、解除要求が有ると判定されると、ステップS170で入力したトルク制限量δ1から解除量Δδ1を減じてトルク制限量δ1を解除する処理を行なう(ステップS176)。解除要求が無いと判定されると、トルク制限量δ1の解除は行なわれない。すなわち、本ルーチンの実行が最初に開始されてから、前述の図9のルーチンのステップS216の処理における解除時間tが経過するまでは、トルク制限量δ1の解除は行なわれない。そして、図2のルーチンのステップS104の処理で計算された角加速度αがトルク制限量δ1とトルク制限量δsafeとの和よりも大きいか否かを判定する(ステップS178)。ここでは、再スリップが発生していない場合を考えているから、トルク制限量δsafeはゼロであり、また角加速度αはトルク制限量δ1とトルク制限量δsafe(ゼロ)との和以下であると判定されるから、トルク制限量δ1に基づいてモータ12が出力できるトルクの上限であるトルク上限値Tmaxを図6のマップを用いて設定する(ステップS180)。
【0041】
トルク上限値Tmaxが設定されると、モータ要求トルクTm*が、設定されたトルク上限値Tmaxを超えているか否かを判定し(ステップS184)、モータ要求トルクTm*がトルク上限値Tmaxを超えてると判定されたときにはモータ要求トルクTm*をトルク上限値Tmaxに修正する(ステップS186)。そして、トルクTm*を目標トルクとしてモータ12から目標トルクTm*に見合うトルクが出力されるようモータ12を駆動制御する(ステップS188)。このように、角加速度αの時間積分値に応じて設定されたトルク制限量δ1に基づいてモータ12のトルクを制御するのは、発生したスリップが収束したときに、発生したスリップの状況に応じて適切な量のトルクを復帰させるためである。即ち、角加速度αの時間積分値が大きく、再スリップが発生しやすい状況では、スリップが収束したときに復帰させるトルクを低くし、角加速度αの時間積分値が小さく、再スリップが発生しにくい状況では、スリップが収束したときに復帰させるトルクを高くすることにより、過剰なトルクの制限を伴うことなくより確実に再スリップの発生を防止することができるのである。こうしてモータ12を駆動制御した後には、トルク制限量δ1の値がゼロ以下、即ちトルク制限量δ1が完全に解除されたか否かを判定し(ステップS190)、完全に解除されたと判定されたときにはスリップ発生フラグF1,スリップ収束フラグF2を共に値0にリセットして(ステップS192)、本ルーチンを終了する。
【0042】
以上が、再スリップが発生していない場合のスリップ収束時制御である。続いて、このスリップ収束時制御ルーチンが繰り返し実行されている間に再スリップが発生した場合を考える。再スリップが発生した場合には、トルク制限量δsafeに基づいて再度トルクが制限される。このトルク制限量δsafeの設定は、図12のトルク制限量δsafe設定解除ルーチンに基づいて行なわれる。このルーチンは、図7のスリップ収束時制御ルーチンが繰り返し実行されている期間、即ちスリップ収束フラグF2が値1にセットされてから再び値0にリセットされるまでの期間において所定時間毎(例えば、8msec毎)に繰り返し実行される。
【0043】
トルク制限量δsafe設定解除ルーチンが実行されると、電子制御ユニット40のCPU42は、まず、モータ12の回転数Nmを入力し(ステップS220)、入力した回転数Nmに基づいて角加速度αを計算する(ステップS222)。そして、角加速度αが閾値αslipを超えているか否か、すなわち再スリップが発生したか否かを判定し(ステップS224)、再スリップは発生していないと判定されると、何もせずに本ルーチンを終了する。再スリップが発生したと判定されると、角加速度αの微分値dα/dtがゼロ近傍にあるか否か、すなわち角加速度αの値がピークに達したか否かを判定し(ステップS226)、角加速度αがピークに達したと判定されたときにはそのときの角加速度αをピーク値αpeakとして設定する(ステップS228)。角加速度αが未だピーク値αpeakに達していないと判定されたときには何もせずに本ルーチンを終了する。
【0044】
そして、設定されたピーク値αpeakに基づいて再スリップを抑制するためのトルク制限量δsafeを設定する(ステップS230)。トルク制限量δsafeの設定は、実施例では、ピーク値αpeakとトルク制限量δsafeとの関係を予め求めてマップとしてROM44に記憶しておき、ピーク値αpeakが与えられると、マップから対応するトルク制限量δsafeが導出されるものとした。このマップの一例を図13に示す。このマップは、図13に示すように、角加速度αのピーク値αpeakが大きくなるほどトルク制限量δsafeとして大きな値が設定される特性を有している。トルク制限量δsafeは、基本的には、運転者によりアクセルペダル33が踏み増しされて強制的にトルク制限量δ1が解除されたことにより発生した再スリップを抑制するために設定されるものであるから、実施例では、駆動輪18a,18bが過剰にスリップして自動車10が不安定な状態となるのを防止するのに十分な値となるように調整されるものとした。
【0045】
トルク制限量δsafeが設定されると、前述のスリップ時アクセル開度Accslipとアクセル開度Accを入力し(ステップS232)、アクセル踏み増し量ΔAcc(=Acc−Accslip)を計算する(ステップS234)。そして、計算したアクセル踏み増し量ΔAccとスリップ時アクセル開度Accslipとに基づいてトルク制限量δsafeの解除時間tを設定し(ステップS236)、設定した解除時間tが経過するまで待つ(ステップS238)。解除時間tの設定は、基本的には、図9のトルク制限量δ1解除処理ルーチンのステップS214の処理で用いる図10のマップと同様のマップを用いることができるが、過剰なスリップを解消できれば十分であるから図9のトルク制限量δ1の解除時間よりも短い時間に設定するのが好ましい。解除時間tが経過すると、トルク制限量δsafeを完全解除して(ステップS240)、本ルーチンを終了する。なお、トルク制限量δsafeの解除は一度に行なうものとしたが、時間の経過と共に徐々に解除を行なうものとしても構わない。こうしたトルク制限量δsafeの設定と解除は、具体的には、RAM46の所定領域にトルク制限量δsafeの値を書き込むことにより行なわれる。RAM46の所定領域に書き込まれたトルク制限量δsafeの値は、図7のスリップ収束時制御ルーチンの処理で読み込まれ、処理に供される。以下、再スリップが発生したときの図7のルーチンの処理を具体的に説明するが、再スリップが発生していないときの処理と重複する部分についての説明は省略する。
【0046】
再スリップが発生したときの図7のスリップ収束時制御ルーチンは、トルク制限量δsafeが設定されてから解除されるまでの期間において行なわれる。具体的には、トルク制限量δsafeが設定されると、トルク制限量δsafeが入力され(ステップS170)、トルク制限量δ1とトルク制限量δsafeとの和(δ1+δsafe)に基づいてトルク上限値Tmaxが設定される(ステップS182)。ここでは、運転者のアクセルペダル33の踏み増しによりトルク制限量δ1がある程度解除されており、トルク制限量δ1のみに基づいて設定されたトルク上限値Tmaxによりモータ12が制御されて再スリップが発生した状態であるから、トルク制限量δ1とトルク制限量δsafeとの和に基づいて図6のマップからトルク上限値Tmaxを設定しモータ12からのトルクを制限することにより、再スリップか過剰になるのを抑制することができる。なお、上記処理は、図7のステップS178の処理において角加速度αがトルク制限量δ1とトルク制限量δsafeとの和以下のときの比較的再スリップの程度が小さいときの処理であり(ステップS180)、再スリップの程度が大きく角加速度αがトルク制限量δ1とトルク制限量δsafeとの和を超えているときには、更にトルクが制限され、トルク制限量δ1とトルク制限量δsafeと角加速度αとの和(δ1+δsafe+α)に基づいてトルク上限値Tmaxが設定され(ステップS182)、このトルク上限値Tmaxに従ってモータ12が駆動制御されることになる。なお、再スリップの程度に拘わらず、トルク制限量δ1とトルク制限量δsafeとの和に基づいてトルク上限値Tmaxを設定しても構わないことは勿論である。
【0047】
図14は、トルク上限値Tm*が設定される様子を示す説明図である。図14に示すように、モータ12の回転軸の角加速度αが閾値αslipを上回っスリップが発生したと判定されたときには、マップに従って角加速度αに対応してトルク上限値Tmaxが徐々に低い値に設定され、角加速度αがピークに達した時点でそのピーク値αpeakに対応するトルク上限値Tmax(値T1)が設定される(図14(a)参照)。このとき設定されたトルク上限値Tmax(値T1)は、角加速度αが負の値となりスリップが収束したと判定されるまで維持される。スリップが収束したと判定されると、現角加速度αの値に拘わらず、角加速度αの時間積分値(スリップの状況)に応じて設定されたトルク制限量δ1に対応するトルク上限値Tmax(値T2)までトルクが復帰される(図14(b)参照)。このトルク復帰時のトルク制限量δ1による制限により再スリップが発生するのを防止する。その後、運転者によるアクセルペダル33のアクセル踏み増し量ΔAccに応じた解除時間が経過すると、アクセル踏み増し量ΔAccに応じた解除量だけトルク制限量δ1が解除され、そのときのトルク制限量δ1に対応するトルク上限値Tmax(値T3)までトルクが復帰される(図14(c)参照)。ここで、このトルクの復帰により再スリップが発生したときには、そのときのトルク制限量δ1と再スリップにより上昇した角加速度αのピーク値αpeakとの和に対応するトルク上限値Tmax(値T4)にまでトルクが再制限される(図)14(d)参照)。このとき、角加速度αのピーク値αpeakに基づいてトルク制限量δsafeが設定される。これにより、トルクの再制限により角加速度αが低下したときでも、トルク制限量δ1とトルク制限量δsafeとの和に対応するトルク上限値Tmax(値T5)にトルクの再復帰が制限される(図14(e)参照)。なお、トルク制限量δsafeは、アクセル踏み増し量ΔAccに応じて解除時間をもって解除され、再びトルク制限量δ1のみに対応するトルク上限値Tmax(値T6)にまでトルクが復帰される(図14(f)参照)。
【0048】
以上説明した実施例の原動機の制御装置20によれば、駆動輪18a,18bに空転によるスリップが発生したときにモータ12から出力されるトルクを制限すると共にスリップが抑制されたときに運転者のアクセルペダル33の踏み増し量ΔAccに応じてトルク制限の解除の程度(解除量と解除時間)を変更、すなわちアクセルペダル33の踏み増し量ΔAccが多いほどトルク制限の解除量を大きく設定すると共に解除時間を短く設定するから、駆動輪18a,18bのスリップを抑制しつつ運転者による加速の要求に対してある程度応答することができる。この結果、スリップ制御におけるドライバビリティを向上させることができる。しかも、アクセルペダル33の踏み増しによるトルク制限の解除により再スリップが発生したときには、発生した再スリップが過剰となるのを抑制するようにモータ12を制御するから、再スリップが過剰となり自動車10が不安定な状態となるのを防止しつつ運転者に再スリップを体感させてアクセルペダル33の踏み戻しを促すことができる。
【0049】
実施例の原動機の制御装置20では、図7のスリップ収束時制御ルーチンを繰り返し実行しているときに再スリップが発生したとき、すなわち角加速度αが閾値αslipを上回ったときには、角加速度αのピーク値αpeakに基づいて再スリップが過剰となるのを抑制するためのトルク制限量δsafeを設定し、設定されたトルク制限量δsafeを用いてトルクを再制限するものとしたが、再スリップが発生したときには、再び図5のスリップ発生時制御ルーチンを実行するものとしても構わない。この場合、図4のスリップ状態判定処理ルーチンのステップS130の処理において角加速度αが閾値αslipを上回ったと判定されたときにスリップ収束フラグF2を値1から値0にリセットする処理を設ければよい。こうすれば、スリップ発生フラグF1の値が値1となると共にスリップ収束フラグF2の値が値0となるからスリップ収束時制御ルーチンに代わってスリップ発生時制御ルーチンが実行されることになる。この場合には、トルク制限量δsafeに関する処理については設ける必要はないのは勿論である。
【0050】
次に第2実施例の原動機の制御装置について説明する。第2実施例の原動機の制御装置は、実施例の原動機の制御装置20と同一のハード構成により構成されており、電子制御ユニットにおける処理のみが異なる。したがって、第2実施例の原動機の制御装置のハード構成についての説明は省略する。実施例の原動機の制御装置20では、角加速度αに基づいてスリップを検出してモータ12を駆動制御するのに対して、第2実施例の原動機の制御装置では、駆動輪の車輪速Vfと従動輪の車輪速Vrとの偏差(車輪速差ΔV)に基づいてスリップを検出してモータを制御する。車輪速差ΔVに基づくスリップ状態の判定は、図15のスリップ状態判定処理ルーチンに基づいて行なわれる。
【0051】
図15のスリップ状態判定処理ルーチンが実行されると、電子制御ユニットのCPUは、まず、車輪速差ΔVが閾値Vslipを超えているか否かを判定し(ステップS270)、超えていると判定されると、スリップが発生したと判断され、スリップ判定フラグF3を値1にセットすると共に(ステップS272)、スリップ収束フラグF4を値0にリセットして(ステップS273)、本ルーチンを終了する。一方、車輪速差ΔVが閾値Vslipを超えていないと判定されると、スリップ判定フラグF3の値が値1であるか否かを判定し(ステップS274)、フラグF3が値1であると判定されると、スリップは収束したと判断されて、スリップ収束フラグF4を値1にセットして(ステップS276)、本ルーチンを終了する。フラグF3が値1ではないと判定されると、フラグF3,F4を共に値0にリセットして(ステップS278)、本ルーチンを終了する。
【0052】
このようにして判定されたスリップ状態に応じたモータの制御としては、フラグF3およびフラグF4が共に値0のときにはグリップ時制御、フラグF3が値1でフラグF4が値0のときにはスリップ発生時制御、フラグF3およびフラグF4が共に値1のときにはスリップ収束時制御が実行される。以下、各制御の詳細について説明する。なお、グリップ時制御は、実施例の原動機の制御装置20のグリップ時制御と同様の処理であるから説明は省略する。
【0053】
スリップ発生時制御は、スリップにより車輪速差ΔVが上昇したときに上昇した車輪速差ΔVを低下させるために行なうモータの駆動制御であり、図16のスリップ発生時制御ルーチンに基づいて行なわれる。スリップ発生時ルーチンが実行されると、電子制御ユニットのCPUは、まず、トルク制限量δ2を入力する処理を行なう(ステップS260)。ここで、トルク制限量δ2は、スリップを停止させるための後述するモータ12のトルク上限値Tmaxを設定する際に用いるパラメータであり、図17のトルク制限量δ2設定処理ルーチンにより設定される。以下、トルク制限量δ2設定処理について説明する。このルーチンは、図15のスリップ状態判定処理ルーチンのステップS272の処理によりスリップ発生フラグF3が値0から値1にセットされた時点からスリップ収束フラグF4が値0から値1にセットされる時点までの期間に亘って所定時間毎(例えば、8msec毎)に繰り返し実行される。トルク制限量δ2設定処理では、車輪速Vf,Vrを入力し(ステップS290)、入力した車輪速Vf,Vrの偏差により車輪速差ΔVを計算し(ステップS292)、車輪速差ΔVが閾値Vslipを超えた時点からの、計算した車輪速差ΔVの時間積分値Vintを計算する処理を行なう(ステップS294)。車輪速差ΔVの時間積分値Vintの計算は、実施例では、次式(2)を用いて行なうものとした。ここで、Δtは、本ルーチンの実行時間間隔である。
【0054】
【数2】
Vint←Vint+(ΔV−Vslip)・Δt (2)
【0055】
車輪速差ΔVの時間積分値Vintが計算されると、これに所定の係数k2を乗算することによりトルク制限量δ2を設定して(ステップS296)、本ルーチンを終了する。なお、このルーチンでは、トルク制限量δ2は、所定の係数k2を用いて計算により求めたが、トルク制限量δ2と時間積分値Vintとの関係を示すマップを用意しておき、計算された時間積分値Vintからマップを適用して導出するものとしても構わない。なお、設定されたトルク制限量δ2は、RAM46の所定領域に逐次書き込まれることにより更新され、図16のルーチンの処理に供される。なお、実施例では、トルク制限量δ2を、車輪速差ΔVの時間積分値に基づいて設定するものとしたが、車輪速差ΔVの値に基づいて設定するものとしたり、車輪速差ΔVの値に関係なく所定の値を設定するものとしても構わない。
【0056】
図16のルーチンに戻って、トルク制限量δ2が入力されると、入力されたトルク制限量δ2に基づいてモータ12が出力できるトルクの上限であるトルク上限値Tmaxを設定する(ステップS282)。トルク上限値Tmaxは、トルク制限量δ2に基づいて図6のマップを用いて設定される。トルク上限値Tmaxが設定されると、モータ要求トルクTm*が、設定されたトルク上限値Tmaxを超えているか否かを判定し(ステップS284)、モータ要求トルクTm*がトルク上限値Tmaxを超えてると判定されたときにはモータ要求トルクTm*をトルク上限値Tmaxに修正する(ステップS286)。そして、トルクTm*を目標トルクとしてモータ12から目標トルクTm*に見合うトルクが出力されるようモータ12を駆動制御して(ステップS288)、本ルーチンを終了する。これにより、スリップ発生時においてモータ12から出力されるトルクは、スリップを抑制するための低いトルク(具体的には、図6のマップにおいてトルク制限量δ2[rpm/8msec]に対応するトルク上限値Tmax)に制限されるので、スリップを効果的に抑制することができる。
【0057】
スリップ収束時制御は、スリップ発生時制御により車輪速差ΔVが低下したときに制限したトルクを復帰させるために行なうモータの駆動制御であり、図18のスリップ収束時制御ルーチンに基づいて行なわれる。スリップ収束時制御ルーチンが実行されると、電子制御ユニットのCPUは、まず、繰り返し実行された図17のトルク制限量δ2設定処理ルーチンの最後(スリップ収束フラグF4が値0から値1にセットされる直前)に設定されたトルク制限量δ2を入力する(ステップS300)。そして、入力したトルク制限量δ2を解除する解除要求を入力する処理を行ない(ステップS302)、解除要求があったか否かを判定する処理を行なう(ステップS304)。トルク制限量δ2の解除要求は、図19のトルク制限量δ2解除処理ルーチンに基づいて行なわれる。このルーチンは、基本的には、図9のトルク制限量δ1解除処理ルーチンと同様の処理であり、図18のスリップ収束時制御ルーチンが繰り返し実行されている間に所定時間毎(例えば、8msec毎)に繰り返し実行される。トルク制限量δ2解除処理ルーチンが実行されると、スリップ時アクセル開度Accslipとアクセル開度Accを入力し(ステップS320)、両者の偏差によりアクセル踏み増し量ΔAccを計算し(ステップS322)、アクセル踏み増し量ΔAccとスリップ時アクセル開度Accslipとに基づいてトルク制限量δ2の解除時間tを設定する(ステップS324)。この解除時間tは、図10のマップと同様の特性を有するマップを用いて設定することができる。解除時間tが設定されると、解除時間tが経過するまで待って(ステップS326)、解除時間tが経過したときにアクセル踏み増し量ΔAccとスリップ時アクセル開度Accslipとに基づいてトルク制限量δ2に対する解除量Δδ2の解除増分D2を設定し(ステップS328)、設定された解除増分D2だけ解除量Δδ2を増やして(ステップS330)、本ルーチンを終了する。なお、解除増分D2の設定も、図11のマップと同様の特性を有するマップを用いて設定することができる。また、設定された解除量Δδ2は、RAM46の所定領域に逐次書き込まれることにより更新されていき、図18のルーチンの処理に供される。
【0058】
図18のスリップ収束時制御ルーチンに戻って、解除量Δδ2が設定され、解除要求が有る(解除量Δδ2がゼロでない)と判定されると、ステップS230で入力したトルク制限量δ2から解除量Δδ2を減じてトルク制限量δ2を解除する処理を行なう(ステップS306)。解除要求が無いと判定されると、トルク制限量δ2の解除は行なわれない。すなわち本ルーチンの実行が最初に開始されてから図19のルーチンのステップS326の処理で設定された解除時間tが経過したと判定されるまでは、トルク制限量δ2の解除は行なわれない。そして、トルク制限量δ2に基づいてモータ12が出力できるトルクの上限であるトルク上限値Tmaxを図6のマップを用いて設定する(ステップS308)。トルク上限値Tmaxが設定されると、モータ要求トルクTm*が、設定されたトルク上限値Tmaxを超えているか否かを判定し(ステップS310)、モータ要求トルクTm*がトルク上限値Tmaxを超えてると判定されたときにはモータ要求トルクTm*をトルク上限値Tmaxに修正する(ステップS312)。そして、トルクTm*を目標トルクとしてモータ12から目標トルクTm*に見合うトルクが出力されるようモータ12を駆動制御する(ステップS314)。その後、トルク制限量δ2の値がゼロ以下、即ちトルク制限量δ2が完全に解除されたか否かを判定し(ステップS316)、完全に解除されたと判定されたときにはスリップ発生フラグF3およびスリップ収束フラグF4を共に値0にリセットして(ステップS318)、本ルーチンを終了する。なお、スリップが収束して(車輪速差ΔVが閾値Vslipを下回って)から図18のスリップ収束時制御ルーチンが繰り返し実行されている間に再スリップが発生した(車輪速差ΔVが閾値Vslipを上回った)ときには、図15のスリップ状態判定処理ルーチンのステップS273の処理においてスリップ収束フラグF4の値が値1から値0にリセットされるから、再び図18のスリップ発生時制御ルーチンが実行されることになり、発生した再スリップが抑制される。
【0059】
図20は、トルク上限値Tmaxが設定される様子を示す説明図である。図20に示すように、車輪速差ΔVが閾値Vslipを上回ってスリップが発生したと判定されたときには、角加速度αに拘わらず、車輪速差ΔVが閾値Vslipを下回るまでトルク制限量δ2が徐々に増加していき、これに対応してトルク上限値Tmaxが徐々に低い値に設定され、トルクが制限されていく(図20(a)〜(c)参照)。このとき、トルク制限量δ2の増加量は、車輪速差ΔVが閾値Vslipを上回った時点からの車輪速差ΔVの時間積分値に応じて設定される。車輪速差ΔVが閾値Vslipを下回ると、運転者によるアクセルペダル33の踏み増し量ΔAccに応じて設定される解除時間が経過したときに、同じくアクセルペダル33の踏み増し量ΔAccに応じて設定される解除量Δδ2だけトルク制限量δ2を解除してトルク上限値Tmax(値T4)までトルクが復帰され(図20(d)参照)、その後はトルク制限量δ2が段階的に解除されてトルクが徐々に復帰されていく。
【0060】
以上説明した第2実施例の原動機の制御装置によっても実施例の原動機の制御装置20と同様の効果、すなわち駆動輪18a,18bのスリップを抑制しつつ運転者による加速の要求に対してある程度応答することができ、スリップ制御におけるドライバビリティを向上させることができるという効果を奏することができる。
【0061】
第2実施例の原動機の制御装置では、車輪速差ΔVに基づくスリップの検出を、実施例の原動機の制御装置20における角加速度αに基づくスリップの検出とは独立して実施するものとしたが、車輪速差ΔVに基づくスリップの検出を、角加速度αではスリップが検出されなかったときに実施するものとしてもよいし、実角加速度αに基づくスリップの検出と並行して実施するものとしても構わない。この場合、角加速度αに基づいてスリップが検出されない微少なスリップが発生したときでも、車輪速差ΔVに基づいてその微少なスリップを検出できる点で有利である。なお、車輪速差ΔVに基づくスリップの検出と角加速度αに基づくスリップの検出とを並行して実施したときに、共にスリップが発生したと判定されたときには、スリップ発生時の制御では、図5のスリップ発生時制御ルーチンのステップS152の処理で設定された角加速度αのピーク値αpeak[rpm/8msec]と図16のスリップ発生時制御ルーチンのステップS280の処理で入力されたトルク制限量δ2[rpm/8msec]とを加算したものに基づいて図6のマップを用いてトルク上限値Tmaxを設定(Tmax←g(αpeak+δ2))してモータ12を制御するものとしたり、角加速度αのピーク値αpeakおよびトルク制限量δ2のうちのいずれか高い方に基づいてトルク上限値Tmaxを設定してモータ12を制御するものとしてもよい。また、スリップ収束時の制御では、スリップ発生時の制御と同様に、図7のスリップ収束時制御ルーチンのステップS176で設定(またはステップS170で入力)されたトルク制限量δ1とステップS170の処理で入力されたトルク制限量δsafeとの和(δ1+δsafe)あるいは角加速度αが値δ1+δsafeを超えているときには値δ1+δsafeと角加速度αとの和(δ1+δsafe+α)と、図18のスリップ収束時制御ルーチンのステップS306の処理で設定(またはステップS300の処理で入力)されたトルク制限量δ2とを加算したものに基づいて図6のマップを用いてトルク上限値Tmaxを設定(Tmax←g(δ1+δsafe+δ2)またはg(δ1+δsafe+δ2+α))するものとしたり、いずれか高い方に基づいてトルク上限値Tmaxを設定してモータ12を制御するものとしても構わない。
【0062】
実施例では、駆動輪18a,18bに接続された駆動軸に直接的に動力の出力が可能に機械的に接続されたモータ12を備える自動車10に対するモータ12の制御として説明したが、駆動軸に直接的に動力の出力が可能な電動機を備える車両であれば、如何なる構成の車両に適用するものとしても構わない。例えば、エンジンと、エンジンの出力軸に接続されたジェネレータと、ジェネレータからの発電電力を充電するバッテリと、駆動輪に接続された駆動軸に機械的に接続されバッテリからの電力の供給を受けて駆動するモータとを備えるいわゆるシリーズ型のハイブリッド自動車に適用するものとしてもよい。また、図21に示すように、エンジン111と、エンジン111に接続されたプラネタリギヤ117と、プラネタリギヤ117に接続された発電可能なモータ113と、同じくプラネタリギヤ117に接続されると共に駆動輪に接続された駆動軸に直接動力が出力可能に駆動軸に機械的に接続されたモータ112とを備えるいわゆる機械分配型のハイブリッド自動車110に適用することもできるし、図22に示すように、エンジンの211の出力軸に接続されたインナーロータ213aと駆動輪218a,218bに接続された駆動軸に取り付けられたアウターロータ213bとを有しインナーロータ213aとアウターロータ213bとの電磁的な作用により相対的に回転するモータ213と、駆動軸に直接動力が出力可能に駆動軸に機械的に接続されたモータ212と備えるいわゆる電気分配型のハイブリッド自動車210に適用することもできる。或いは、図23に示すように、駆動輪318a,318bに接続された駆動軸に変速機314(無段変速機や有段の自動変速機など)を介して接続されたエンジン311と、エンジン311の後段であって駆動軸に変速機314を介して接続されたモータ312(または駆動軸に直接接続されたモータ)とを備えるハイブリッド自動車310に適用することもできる。このとき、駆動輪にスリップが発生したときの制御としては、トルクの出力応答性などから主に駆動軸に機械的に接続されたモータを制御することにより駆動軸に出力されるトルクを制限するが、このモータの制御と協調して他のモータを制御したりエンジンを制御したりするものとしてもよい。
【0063】
以上、本発明の実施の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
【図面の簡単な説明】
【図1】本発明の一実施例である原動機の制御装置20を備える自動車10の構成の概略を示す構成図である。
【図2】実施例の原動機の制御装置20の電子制御ユニット40により実行されるモータ駆動制御ルーチンの一例を示すフローチャートである。
【図3】車速Vとアクセル開度Accとモータ要求トルクTm*との関係を示すマップである。
【図4】実施例の原動機の制御装置20の電子制御ユニット40により実行されるスリップ状態判定処理ルーチンの一例を示すフローチャートである。
【図5】実施例の原動機の制御装置20の電子制御ユニット40により実行されるスリップ発生時制御ルーチンの一例を示すフローチャートである。
【図6】モータ12の角加速度αとトルク上限Tmaxとの関係を示すマップである。
【図7】実施例の原動機の制御装置20の電子制御ユニット40により実行されるスリップ収束時制御ルーチンの一例を示すフローチャートである。
【図8】実施例の原動機の制御装置20の電子制御ユニット40により実行されるトルク制限量δ1設定処理ルーチンの一例を示すフローチャートである。
【図9】実施例の原動機の制御装置20の電子制御ユニット40により実行されるトルク制限量δ1解除処理ルーチンの一例を示すフローチャートである。
【図10】スリップ時アクセル開度Accslipとアクセル踏み増し量ΔAccと解除時間tとの関係を示すマップである。
【図11】スリップ時アクセル開度Accslipとアクセル踏み増し量ΔAccと解除増分D1との関係を示すマップである。
【図12】実施例の原動機の制御装置20の電子制御ユニット40により実行されるトルク制限量δsafe設定解除処理ルーチンの一例を示すフローチャートである。
【図13】角加速度αのピーク値αpeakとトルク制限量δsafeとの関係を示すマップである。
【図14】トルク上限値Tmaxが設定される様子を示す説明図である。
【図15】第2実施例の原動機の制御装置の電子制御ユニットにより実行されるスリップ状態判定処理ルーチンの一例を示すフローチャートである。
【図16】第2実施例の原動機の制御装置の電子制御ユニットにより実行されるスリップ発生時制御ルーチンの一例を示すフローチャートである。
【図17】第2実施例の原動機の制御装置の電子制御ユニットにより実行されるトルク制限量δ2設定処理ルーチンの一例を示すフローチャートである。
【図18】第2実施例の原動機の制御装置の電子制御ユニットにより実行されるスリップ収束時制御ルーチンの一例を示すフローチャートである。
【図19】第2実施例の原動機の制御装置の電子制御ユニットにより実行されるトルク制限量δ2解除処理ルーチンの一例を示すフローチャートである。
【図20】トルク上限値Tmaxが設定される様子を示す説明図である。
【図21】ハイブリッド自動車110の構成の概略を示す構成図である。
【図22】ハイブリッド自動車210の構成の概略を示す構成図である。
【図23】ハイブリッド自動車310の構成の概略を示す構成図である。
【符号の説明】
10,110,210,310 自動車、12,112,212,312 モータ、14,114 インバータ回路、16 バッテリ、18a,18b,118a,118b,218a,218b,318a,318b 駆動輪、19a,19b,119a,119b,219a,219b,319a,319b 従動輪、22 回転角センサ、24 車速センサ、26a,26b,28a,28b車輪速センサ、31 シフトレバー、32 シフトポジションセンサ、33 アクセルペダル、34 アクセルポジションセンサ、35 ブレーキペダル、36 ブレーキペダルポジションセンサ、40 電子制御ユニット、42 CPU、44 ROM、46 RAM、111,211,311 エンジン、113 モータ、117 プラネタリギア,213a インナーロータ、213b アウターロータ、213 モータ,314 変速機。

Claims (13)

  1. 駆動輪に接続された駆動軸に動力を出力可能な原動機を備える車両における該原動機を制御する原動機の制御装置であって、
    前記駆動輪の空転によるスリップを検出するスリップ検出手段と、
    該スリップ検出手段によりスリップが検出されたとき、該スリップの抑制が可能となるようにトルク制限を行なって前記原動機を制御するトルク制限制御手段と、
    少なくとも前記スリップが抑制の方向に向かったとき、前記スリップ検出手段によりスリップが検出された時点を基準とする運転者によるアクセル操作の変化量に基づいて前記トルク制限制御手段によるトルク制限を解除して前記原動機を制御するトルク制限解除制御手段と
    を備える原動機の制御装置。
  2. 請求項1記載の原動機の制御装置であって、
    前記トルク制限解除制御手段は、前記トルク制限を時間の経過と共に段階的に解除する手段である
    原動機の制御装置。
  3. 請求項2記載の原動機の制御装置であって、
    前記トルク制限解除制御手段は、前記アクセル操作の変化量としてアクセルペダルの踏み増し量が多いほど前記トルク制限の解除幅を大きくして前記原動機を制御する手段である
    原動機の制御装置。
  4. 請求項2または3記載の原動機の制御装置であって、
    前記トルク制限解除制御手段は、前記アクセル操作の変化量としてアクセルペダルの踏み増し量が多いほど前記トルク制限の解除時間を短くして前記原動機を制御する手段である
    原動機の制御装置。
  5. 請求項1ないし4いずれか記載の原動機の制御装置であって、
    前記駆動軸または前記原動機の回転軸の角加速度を検出する角加速度検出手段を備え、
    前記スリップ検出手段は、前記検出された角加速度と所定の閾値との比較によりスリップを検出する手段であり、
    前記トルク制限制御手段は、前記スリップが検出されたときに、前記角加速度検出手段により検出された角加速度に基づいて前記トルク制限の程度を変更して前記原動機を制御する手段である
    原動機の制御装置。
  6. 請求項1ないし5いずれか記載の原動機の制御装置であって、
    前記車両は、前記駆動輪に従動する従動輪を有する車両であり、
    前記駆動輪の回転速度を検出する駆動輪回転速度検出手段と、
    前記従動輪の回転速度を検出する従動輪回転速度検出手段とを備え、
    前記スリップ検出手段は、前記駆動輪回転速度検出手段により検出された回転速度と前記従動輪回転速度検出手段により検出された回転速度との回転速度差と所定の閾値との比較によりスリップを検出する手段であり、
    前記トルク制限制御手段は、前記スリップが検出されたときには、前記回転速度差に基づいて前記トルク制限の程度を変更して前記原動機を制御する手段である
    原動機の制御装置。
  7. 請求項1ないし6いずれか記載の原動機の制御装置であって、
    前記トルク制限解除制御手段による前記原動機の制御に伴って前記スリップ検出手段により駆動輪の再スリップが検出されたときには、該再スリップの抑制が可能となるようにトルク再制限を行なって前記原動機を制御するトルク再制限制御手段を備える
    原動機の制御装置。
  8. 請求項5記載の原動機の制御装置であって、
    前記トルク制限解除制御手段による前記原動機の制御に伴って前記スリップ検出手段により駆動輪の再スリップが検出されたときには、前記スリップ検出手段による再スリップの検出に伴って前記角加速度検出手段により検出された角加速度のピーク値に基づく程度の変更を伴って前記再スリップの抑制が可能となるようにトルク再制限を行なって前記原動機を制御するトルク再制限制御手段を備える
    原動機の制御装置。
  9. 請求項7または8記載の原動機の制御装置であって、
    前記再スリップの状態に拘わらず、前記アクセル操作の変化量に応じた時間をもって前記トルク再制限制御手段によるトルク再制限を解除して前記原動機を制御するトルク再解除制御手段を備える
    原動機の制御装置。
  10. 駆動輪に接続された駆動軸に動力を出力可能な原動機を備える車両における該原動機を制御する原動機の制御方法であって、
    (a)前記駆動輪の空転によるスリップを検出するステップと、
    (b)前記ステップ(a)によりスリップが検出されたとき、該スリップの抑制が可能となるようにトルク制限を行なって前記原動機を制御するステップと、
    (c)少なくとも前記スリップが抑制の方向に向かったとき、前記ステップ(a)によりスリップが検出された時点を基準とする運転者によるアクセル操作の変化量に基づいて前記ステップ(b)によるトルク制限を解除して前記原動機を制御するステップと
    を備える原動機の制御方法。
  11. 請求項10記載の原動機の制御方法であって、
    前記ステップ(c)は、前記トルク制限を時間の経過と共に段階的に解除する
    原動機の制御方法。
  12. 請求項11記載の原動機の制御方法であって、
    前記ステップ(c)は、前記アクセル操作の変化量としてアクセルペダルの踏み増し量が多いほど前記トルク制限の解除幅を大きくして前記原動機を制御する
    原動機の制御方法。
  13. 請求項11または12記載の原動機の制御方法であって、
    前記ステップ(c)は、前記アクセル操作の変化量としてアクセルペダルの踏み増し量が多いほど前記トルク制限の解除時間を短くして前記原動機を制御する
    原動機の制御方法。
JP2002251363A 2002-08-29 2002-08-29 原動機の制御装置および原動機の制御方法 Expired - Fee Related JP3832405B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002251363A JP3832405B2 (ja) 2002-08-29 2002-08-29 原動機の制御装置および原動機の制御方法
PCT/JP2003/008593 WO2004022381A1 (ja) 2002-08-29 2003-07-07 原動機の制御装置および原動機の制御方法
CNB038205726A CN100333940C (zh) 2002-08-29 2003-07-07 原动机控制装置和原动机控制方法
EP03741238A EP1552978B1 (en) 2002-08-29 2003-07-07 Device and method for controlling prime mover
US10/525,791 US7230393B2 (en) 2002-08-29 2003-07-07 Motor control apparatus and motor control method
DE60320434T DE60320434T2 (de) 2002-08-29 2003-07-07 Motorsteuerungsvorrichtung und Motorsteuerungsverfahren
KR1020057003366A KR100632898B1 (ko) 2002-08-29 2003-07-07 원동기의 제어장치 및 원동기의 제어방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002251363A JP3832405B2 (ja) 2002-08-29 2002-08-29 原動機の制御装置および原動機の制御方法

Publications (2)

Publication Number Publication Date
JP2004096823A JP2004096823A (ja) 2004-03-25
JP3832405B2 true JP3832405B2 (ja) 2006-10-11

Family

ID=31972678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002251363A Expired - Fee Related JP3832405B2 (ja) 2002-08-29 2002-08-29 原動機の制御装置および原動機の制御方法

Country Status (7)

Country Link
US (1) US7230393B2 (ja)
EP (1) EP1552978B1 (ja)
JP (1) JP3832405B2 (ja)
KR (1) KR100632898B1 (ja)
CN (1) CN100333940C (ja)
DE (1) DE60320434T2 (ja)
WO (1) WO2004022381A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3855886B2 (ja) * 2002-08-29 2006-12-13 トヨタ自動車株式会社 路面状態変化推定装置およびこれを搭載する自動車
CN100400331C (zh) * 2004-11-17 2008-07-09 丰田自动车株式会社 车辆以及车辆的控制方法
CN100400332C (zh) * 2004-11-17 2008-07-09 丰田自动车株式会社 车辆以及车辆的控制方法
JP4692331B2 (ja) * 2006-03-03 2011-06-01 トヨタ自動車株式会社 駆動装置
JP4483882B2 (ja) * 2007-03-20 2010-06-16 トヨタ自動車株式会社 ブレーキホールド制御装置
US7560881B2 (en) * 2007-06-18 2009-07-14 Honeywell International Inc. Electric drive fuel control system and method
JP4281838B1 (ja) 2007-12-27 2009-06-17 トヨタ自動車株式会社 車両のスリップ制御装置
EP2305554B1 (en) * 2009-09-23 2014-04-23 ABB Oy Method and arrangement for operating a ship ramp
JP5801551B2 (ja) * 2010-11-30 2015-10-28 ダイムラー・アクチェンゲゼルシャフトDaimler AG ハイブリッド電気自動車の制御装置
DE102011119207A1 (de) * 2011-11-23 2013-05-23 Audi Ag Verfahren zur Steuerung des Betriebs einer Anordnung von wenigstens zwei Elektromaschinen und Kraftfahrzeug
EP2792531A1 (en) * 2013-04-16 2014-10-22 ABB Oy Preventing of slip in an electrically powered vehicle
JP6167363B2 (ja) * 2013-09-12 2017-07-26 日立オートモティブシステムズ株式会社 電動車両の制御装置及び電動車両の制御方法
KR101683965B1 (ko) * 2014-06-05 2016-12-08 현대자동차주식회사 구동 모터의 토크 제어 장치 및 제어 방법
CN111086500B (zh) * 2020-03-23 2020-07-31 盛瑞传动股份有限公司 车辆的打滑保护方法及其系统、车辆
CN112758096B (zh) * 2021-02-19 2022-02-01 安徽安凯汽车股份有限公司 一种基于电机转矩控制的智能驱动防滑控制系统及方法
CN113060116B (zh) * 2021-04-19 2023-05-26 奇瑞商用车(安徽)有限公司 一种电动汽车驱动防滑控制方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075538A (en) * 1976-05-19 1978-02-21 General Electric Company Adaptive acceleration responsive system
JPH088728B2 (ja) * 1985-08-14 1996-01-29 株式会社日立製作所 電気車の再粘着制御装置
JP2724705B2 (ja) * 1986-09-20 1998-03-09 トヨタ自動車 株式会社 自動車用ブレーキの自動制御方法
JPS63101158A (ja) * 1986-10-17 1988-05-06 Nippon Denso Co Ltd アンチスキツド制御装置
JP2600756B2 (ja) * 1988-02-16 1997-04-16 トヨタ自動車株式会社 車両の加速スリップ制御装置
US4926333A (en) * 1988-04-20 1990-05-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Traction control apparatus
JP2504114B2 (ja) 1988-04-20 1996-06-05 三菱自動車工業株式会社 車両の加速スリップ防止装置
JPH0238150A (ja) 1988-07-29 1990-02-07 Mazda Motor Corp 自動車のスリップ制御装置
JP2934457B2 (ja) * 1989-08-28 1999-08-16 富士重工業株式会社 4輪駆動車の不等トルク配分制御装置
JP3324779B2 (ja) * 1991-07-02 2002-09-17 本田技研工業株式会社 車両のトラクション制御方法
US5362287A (en) * 1991-09-26 1994-11-08 Fuji Jukogyo Kabushiki Kaisha Control system for an automatic clutch of a motor vehicle
JPH05202951A (ja) 1991-09-26 1993-08-10 Fuji Heavy Ind Ltd 自動クラッチの制御装置
JPH05268706A (ja) * 1992-03-19 1993-10-15 Aqueous Res:Kk 電気自動車
JP3430555B2 (ja) * 1993-06-04 2003-07-28 アイシン精機株式会社 電気自動車の回生制動によるアンチスキッド制御
JP3304575B2 (ja) * 1993-12-17 2002-07-22 トヨタ自動車株式会社 アンチロック制御装置
JP3314540B2 (ja) 1994-08-08 2002-08-12 いすゞ自動車株式会社 スロットル制御装置
JPH08182119A (ja) * 1994-12-22 1996-07-12 Toyota Motor Corp 電気自動車用走行用モータの制御方法
JP3526675B2 (ja) * 1995-09-14 2004-05-17 日産ディーゼル工業株式会社 車輪の駆動トルク制御装置
JPH09228870A (ja) 1996-02-21 1997-09-02 Unisia Jecs Corp 車両用加速時スリップ防止装置
BR9702186A (pt) * 1996-04-29 1999-03-16 Bosch Gmbh Robert Processo e dispositivo para a decolagem de torque
JPH10304514A (ja) * 1997-04-24 1998-11-13 Toyota Motor Corp ハイブリッド車両の駆動力制御装置
US5951122A (en) * 1997-12-31 1999-09-14 The B.F. Goodrich Company Antiskid control and wheel lock protection differential reference controller
US6178370B1 (en) * 1998-02-12 2001-01-23 The B. F. Goodrich Company Deceleration based antiskid brake contoller with adaptive deceleration threshold
JP3983917B2 (ja) 1999-02-23 2007-09-26 本田技研工業株式会社 車両用電動式駆動装置
DE19913824B4 (de) * 1999-03-26 2010-04-01 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit
JP3371889B2 (ja) * 2000-04-17 2003-01-27 トヨタ自動車株式会社 車両のスリップ制御
JP4449166B2 (ja) 2000-05-23 2010-04-14 トヨタ自動車株式会社 無段変速機を備えた車両の制御装置
JP3772809B2 (ja) * 2002-08-29 2006-05-10 トヨタ自動車株式会社 原動機の制御装置および原動機の制御方法
JP3729165B2 (ja) * 2002-09-03 2005-12-21 トヨタ自動車株式会社 車両制御装置及びその制御方法
JP3772815B2 (ja) * 2002-09-20 2006-05-10 トヨタ自動車株式会社 車両のスリップ制御装置及びその制御方法
JP3964771B2 (ja) * 2002-10-11 2007-08-22 株式会社豊田中央研究所 路面状態推定装置、及び該装置を備えた車両の運動制御装置
US6885930B2 (en) * 2003-07-31 2005-04-26 Siemens Energy & Automation, Inc. System and method for slip slide control

Also Published As

Publication number Publication date
EP1552978A1 (en) 2005-07-13
KR100632898B1 (ko) 2006-10-11
EP1552978B1 (en) 2008-04-16
DE60320434D1 (de) 2008-05-29
CN100333940C (zh) 2007-08-29
WO2004022381A1 (ja) 2004-03-18
JP2004096823A (ja) 2004-03-25
US20060145644A1 (en) 2006-07-06
EP1552978A4 (en) 2006-06-07
DE60320434T2 (de) 2009-04-30
US7230393B2 (en) 2007-06-12
KR20050057003A (ko) 2005-06-16
CN1703336A (zh) 2005-11-30

Similar Documents

Publication Publication Date Title
JP3870878B2 (ja) 原動機の制御装置および原動機の制御方法
JP3772809B2 (ja) 原動機の制御装置および原動機の制御方法
JP3832405B2 (ja) 原動機の制御装置および原動機の制御方法
KR100614945B1 (ko) 차량 제어장치, 그것을 탑재한 자동차 및 그 제어방법
JP4120504B2 (ja) 車両および車両の制御方法
JP3976225B2 (ja) 前後輪駆動車両の制御装置
JP2006160238A (ja) 車両およびその制御方法
JP3855886B2 (ja) 路面状態変化推定装置およびこれを搭載する自動車
JP2008167624A (ja) 車両およびその制御方法
JP4103505B2 (ja) 電気自動車およびこれに搭載された電動機の制御方法
JP4970197B2 (ja) 車両の駆動力制御装置
JP4802643B2 (ja) 車両およびその制御方法
JP4254764B2 (ja) 自動車およびその制御方法
JP2004096939A (ja) 自動車および自動車の制御装置
JP4175207B2 (ja) 車両および車両の制御方法
JP6227465B2 (ja) エンジン制御装置及びハイブリッド自動車
JP4062199B2 (ja) 車両および車両の制御方法
JP5880404B2 (ja) ハイブリッド自動車
JP4241707B2 (ja) 車両およびその制御方法
JP5601246B2 (ja) ハイブリッド自動車

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060710

LAPS Cancellation because of no payment of annual fees