JP2003064042A - アセトニトリルを安定に増産する方法 - Google Patents

アセトニトリルを安定に増産する方法

Info

Publication number
JP2003064042A
JP2003064042A JP2001258918A JP2001258918A JP2003064042A JP 2003064042 A JP2003064042 A JP 2003064042A JP 2001258918 A JP2001258918 A JP 2001258918A JP 2001258918 A JP2001258918 A JP 2001258918A JP 2003064042 A JP2003064042 A JP 2003064042A
Authority
JP
Japan
Prior art keywords
yield
propylene
acetonitrile
reaction
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001258918A
Other languages
English (en)
Other versions
JP4854149B2 (ja
Inventor
Hideo Midorikawa
英雄 緑川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001258918A priority Critical patent/JP4854149B2/ja
Publication of JP2003064042A publication Critical patent/JP2003064042A/ja
Application granted granted Critical
Publication of JP4854149B2 publication Critical patent/JP4854149B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】 (修正有) 【課題】 プロピレンのアンモ酸化反応によってアクリ
ロニトリルを製造する際に、アセトニトリルを安定に増
産する方法、およびアクリロニトリルの収率低下を抑制
し長期間にわたって安定に反応を継続する方法を提供す
る。 【解決手段】 シリカに担持された酸化物組成物が一般
式1の触媒を用い、エタノール、エチルエーテル、酢
酸、無水酢酸、酢酸エチルなどの中から選ばれた1種以
上の化合物をプロピレンに対して炭素ベースで0.00
5〜0.2の比率で反応器に供給し、反応器出口ガス中
の酸素濃度0.1〜1.5容量%にしてアンモ酸化反応
を行う。 MOy Bip Feg a b c d e ……(1) (Aはニッケル、コバルト Bはカリウム、ルビシウム、セシウム、Cはマグネシウ
ム、亜鉛、Dは希土類を示す。)

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、プロピレンとアン
モニアと酸素をアンモ酸化反応させてアクリロニトリル
を製造するに際して、アセトニトリルを安定に増産する
方法に関するものである。更に詳しくは、プロピレンと
アンモニアと酸素を流動層反応器において組成が特定さ
れた触媒の存在下にアンモ酸化反応させてアクリロニト
リルを製造するに際して、エタノ−ル、ジエチルエ−テ
ル、蟻酸エチル、酢酸、無水酢酸、酢酸エチル、エチレ
ングリコ−ルジエチルエ−テル、エチレン、アセトアル
デヒド及びグリコ−ル酸の中から選ばれる1種以上の化
合物を反応器に供給することを特徴とするアセトニトリ
ルを安定に増産する方法に関するものである。
【0002】
【従来の技術】アセトニトリルは医薬、農薬、香料等の
各種化学製品の合成原料や溶剤として用いられる工業的
価値が高い化合物であり、主としてプロピレンのアンモ
酸化反応によってアクリロニトリルを製造する際の副生
物として製造されている。しかしながら、近年において
は、プロピレンのアンモ酸化反応に用いる触媒の改良に
より副生物であるアセトニトリルの収率は低下している
のが現状である。このような背景の中で、プロピレンの
アンモ酸化反応によってアクリロニトリルを製造する際
に、アセトニトリルを増産する方法について検討がなさ
れている。例えば、反応系内にアセトン又はエタノ−ル
を共存させることによりアセトニトリルを増産する方法
が特開平3−246269号公報に開示されている。ま
た、メタノ−ルに加えてエタノ−ルとプロパノ−ルから
選ばれた1種以上のアルコ−ルを反応系に供給してアセ
トニトリルと青酸を増産する方法が米国特許第6,20
4,407号明細書に開示されている。これらの方法で
は短期において目的生成物であるアセトニトリルを増産
することが可能であるが、触媒の性能を維持し、長期間
にわたって安定に青酸を増産する方法に関しては何ら開
示が成されていない。
【0003】
【発明が解決しようとする課題】本発明は、プロピレン
のアンモ酸化反応によってアクリロニトリルを製造する
際に、アセトニトリルを安定に増産する方法を提供する
ものである。更に、触媒の性能を維持することにより、
アクリロニトリルの収率の低下も抑制し、長期間にわた
って安定に反応を継続する方法を提供するものである。
【0004】
【課題を解決するための手段】本発明者は上記の課題を
達成するための方法について鋭意検討した結果、使用す
る触媒、反応器に供給する原料とその比率及び反応器の
出口ガス中の酸素濃度を規定することにより、プロピレ
ンのアンモ酸化反応によってアクリロニトリルを製造す
る際に、アセトニトリルを安定に増産することに加え
て、触媒の性能を維持することにより、アクリロニトリ
ルの収率の低下も抑制し、長期間にわたって安定に反応
を継続する方法を見出した。
【0005】即ち、本発明は、プロピレンとアンモニア
と酸素を流動層反応器において触媒の存在下にアンモ酸
化反応させてアクリロニトリルを製造するに際して、触
媒として、シリカに担持された酸化物組成が下記一般式
(1) Moy Bip Feq a b c d e ・・・・(1) (上記一般式(1)中、Moはモリブデン、Biはビス
マス、Feは鉄、Aはニッケル及びコバルトから選ばれ
る1種以上の元素、Bはカリウム、ルビジウム及びセシ
ウムから選ばれる1種以上の元素、Cはマグネシウム及
び亜鉛から選ばれる1種以上の元素、Dは希土類元素か
ら選ばれる1種以上の元素、Oは酸素を表し、yはアン
モ酸化反応中のモリブデンの原子比であり、y=1.0
2x〜1.12x、但し、xはx=1.5p+q+a+
c+1.5dである。p 、q 、a 、b 、c 、d 及びe は
それぞれビスマス、鉄、A、B、C、D及び酸素の原子
比を表し、p =0.01〜5.0、q =0.1〜5、a
=4〜10、b =0.01〜2、c=0〜5、d=0〜
5、e は存在する他の元素の原子価要求を満足させるた
めに必要な酸素の原子数である。)で表される触媒を用
い、エタノ−ル、ジエチルエ−テル、蟻酸エチル、酢
酸、無水酢酸、酢酸エチル、エチレングリコ−ルジエチ
ルエ−テル、エチレン、アセトアルデヒド及びグリコ−
ル酸エチルの中から選ばれる1種以上の化合物をプロピ
レンに対して炭素ベ−スで0.005〜0.2の比率で
反応器に供給し、且つ、反応器の出口ガス中の酸素濃度
を0.1〜1.5容量%に制御することを特徴とするア
セトニトリルを安定に増産する方法である。
【0006】
【発明の実施の形態】本発明について詳細に説明する。
本発明において使用する触媒は、シリカに担持された酸
化物組成が下記一般式(1) Moy Bip Feq a b c d e ・・・・(1) (上記一般式(1)中、Moはモリブデン、Biはビス
マス、Feは鉄、Aはニッケル及びコバルトから選ばれ
る1種以上の元素、Bはカリウム、ルビジウム及びセシ
ウムから選ばれる1種以上の元素、Cはマグネシウム及
び亜鉛から選ばれる1種以上の元素、Dは希土類元素か
ら選ばれる1種以上の元素、Oは酸素を表し、yはアン
モ酸化反応中のモリブデンの原子比であり、y=1.0
2x〜1.12x、但し、xはx=1.5p+q+a+
c+1.5dである。p 、q 、a 、b 、c 、d 及びe は
それぞれビスマス、鉄、A、B、C、D及び酸素の原子
比を表し、p =0.01〜5.0、q =0.1〜5、a
=4〜10、b =0.01〜2、c=0〜5、d=0〜
5、e は存在する他の元素の原子価要求を満足させるた
めに必要な酸素の原子数である。)で表される触媒を用
いる。
【0007】より好ましい酸化物組成としては、下記一
般式(2): Moy Bip Feq a b c d e ・・・・(2) (上記一般式(2)中、Moはモリブデン、Biはビス
マス、Feは鉄、Aはニッケル及びコバルトから選ばれ
る1種以上の元素、Bはカリウム、ルビジウム及びセシ
ウムから選ばれる1種以上の元素、Cはマグネシウム及
び亜鉛から選ばれる1種以上の元素、Dはイットリウ
ム、ランタン、セリウム、プラセオジム、ネオジム及び
サマリウムから選ばれる1種以上の元素、Oは酸素を表
し、yはアンモ酸化反応中のモリブデンの原子比であ
り、y=1.02x〜1.12x、但し、xはx=1.
5p+q+a+c+1.5dである。p 、q 、a 、b 、
c 、d 及びe はそれぞれビスマス、鉄、A、B、C、D
及び酸素の原子比を表し、p +d=0.5〜2.0、d
/(p+d)=0.6〜0.8、q =0.1〜3、a =
4〜10、b =0.01〜2、c=0〜3、e は存在す
る他の元素の原子価要求を満足させるために必要な酸素
の原子数である。)で表される。
【0008】更に好ましい酸化物組成としては、下記一
般式(3): Moy Bip Feq a b c d e ・・・・(3) (上記一般式(3)中、Moはモリブデン、Biはビス
マス、Feは鉄、Aはニッケル、Bはカリウム、ルビジ
ウム及びセシウムから選ばれる1種以上の元素、Cはマ
グネシウム、Dはセリウム、Oは酸素を表し、yはアン
モ酸化反応中のモリブデンの原子比であり、y=1.0
2x〜1.12x、但し、xはx=1.5p+q+a+
c+1.5dである。p 、q 、a 、b 、c 、d 及びe は
それぞれビスマス、鉄、A、B、C、D及び酸素の原子
比を表し、p +d=0.5〜2.0、d/(p+d)=
0.6〜0.8、q =0.1〜3、a =4〜10、b =
0.01〜2、c=0〜3、e は存在する他の元素の原
子価要求を満足させるために必要な酸素の原子数であ
る。)で表される。
【0009】本発明の触媒の反応中における酸化物組成
のモリブデンの原子比yは、y=1.02x〜1.12
xの範囲に、好ましくはy=1.05x〜1.09xの
範囲に制御することが好ましい。このモリブデンの原子
比を制御する方法としては、本発明の反応条件下で酸化
モリブデンに変換し得る、担体に担持されていないモリ
ブデン化合物を賦活剤として反応器に添加する方法や、
Y=0.9x〜1.2xの初期原子比Yで調製した酸化
物組成の触媒を反応器に添加する方法により行うことが
できる。前者の賦活剤としてのモリブデン化合物として
は、三酸化モリブデン(MoO3 )、モリブデン酸(H
2 MoO4 、H2 MoO4 ・H2 O)、モリブデン酸ア
ンモニウム((NH4 2 MoO4 )、パラモリブデン
酸アンモニウム((NH4 6 Mo7 24・4H2 O)
を用いることが好ましく、この中でパラモリブデン酸ア
ンモニウムを用いることがより好ましい。この賦活剤の
添加は、1回当たり0.006x以下に相当する量、好
ましくは0.004x以下に相当する量で行うことが良
い。添加する頻度は、1〜30日に1回以上、好ましく
は1/2〜15日に1回以上、更に好ましくは1/3〜
7日に1回以上であることが良い。触媒の組成は、蛍光
X線分析、原子吸光分析、誘導結合プラズマ発光分析
(ICP)等の方法で分析することができる。
【0010】本発明において、使用前の触媒の酸化物組
成のモリブデンの原子比(初期原子比)Yについては、
アンモ酸化反応に用いることによってモリブデンの原子
比(反応中原子比)yが上記y=1.02x〜1.12
xの関係を満たす限り、初期原子比Yの範囲には特に制
限はない。Yの好ましい範囲はY=0.9x〜1.2x
であり、より好ましくはY=1.02x〜1.12xで
ある。触媒の酸化物組成の構成元素及び該元素の原子比
を上記の条件を満たすように選択することで、触媒に対
して還元劣化に対する耐性を付与することができ、ま
た、アクリロニトリルの収率を高い値に維持できること
に加えて、プロセスにおける詰まりや精製系における青
酸の損失の原因となるアクロレインの収率を低くおさえ
ることができ、本発明に対して良好に用いることができ
る。本発明に用いる触媒は、モリブデン12原子に対し
て0.5原子以下の少量であれば、さらに、リン、アン
チモン、タングステン、バナジウム、テルル、パラジウ
ム、ニオブ、タンタル、レニウム、銀等の元素を含むこ
ともできる。
【0011】本発明の触媒はシリカ担持触媒として使用
する。シリカは流動層反応器で使用するために必要な流
動性、耐磨耗性等の物性を触媒に付与する。シリカは上
記酸化物とシリカの合計に対して30〜70重量%、好
ましくは40〜60重量%の範囲で用いる。シリカが3
0重量%未満の場合は触媒の機械的強度が十分ではな
く、また、シリカが70重量%を越える場合はアクリロ
ニトリルの収率自体が低下する。
【0012】本発明の触媒は、特開平7−48334号
公報、特開平7−289901号公報、特開平7−30
3836号公報及び特開平7−328441号公報等に
記載された公知の方法で調製することができる。例え
ば、触媒原料を調合して得られた調合液を噴霧乾燥し、
該乾燥品を焼成することによって調製することができ
る。触媒原料の調合にあたっては、シリカの原料として
はシリカゾルが、モリブデンの原料としてはパラモリブ
デン酸アンモニウム塩が、他の成分の原料としては硝酸
塩が好ましく用いられる。調製した調合液の噴霧乾燥に
おいて、噴霧化は遠心方式により行うことが好ましい。
乾燥温度は100〜400℃、好ましくは150〜30
0℃である。乾燥品の焼成は、必要に応じて150〜5
00℃で前焼成をした後、500〜750℃、好ましく
は550〜700℃の温度範囲で1〜20時間行う。
【0013】本発明においてアセトニトリルを増産する
ために反応器に供給する化合物(以下、単に「M」又は
「化合物M」と言うことがある。)としては、エタノ−
ル、ジエチルエ−テル、蟻酸エチル、酢酸、無水酢酸、
酢酸エチル、エチレングリコ−ルジエチルエ−テル、エ
チレン、アセトアルデヒド及びグリコ−ル酸が挙げられ
る。これらの化合物の中で好ましい化合物としては、エ
タノ−ル、ジエチルエ−テル、酢酸、無水酢酸及び酢酸
エチルが挙げられる。更に好ましい化合物としては、エ
タノ−ル、酢酸及び酢酸エチルが挙げられる。
【0014】これらの化合物のプロピレンに対する供給
比率は、炭素ベ−スで0.005〜0.2であり、好ま
しくは0.01〜0.15であり、更に好ましくは0.
015〜0.1である。例えば、酢酸を0.1の比率で
供給することは、プロピレン1モルに対して酢酸0.1
5モルを供給することを意味する。反応器に供給するこ
れらの化合物の供給比率が0.005未満ではアセトニ
トリルの増産が十分ではなく、また、この比率が0.2
を越える場合は、プロピレンに対するこれらの化合物の
反応活性が高いために触媒の還元劣化やプロピレンのア
ンモ酸化反応によるアクリロニトリルの生成に影響を与
えるので好ましくない。
【0015】本発明に用いるこれらの化合物は単独で
も、また、2種以上の化合物の混合物でも供給すること
ができる。また、これらの化合物の純度には特に制限が
なく、水や他の有機化合物等の不純物を含んでいても差
し支えなく、特に、水は高い濃度で含まれていても問題
なく、原料の精製にかかる作業と費用を低減することが
できる。本発明に用いるこれらの化合物の流動層反応器
への供給には特に制限はないが、これらの化合物が十分
に反応する位置に供給することが好ましい。具体的に
は、流動層反応器の濃厚層へ供給することが、より好ま
しくは濃厚層の下部へ供給することが良い。これらの化
合物を供給するために新規に原料ガス分散管を設置する
こともできるが、プロピレン及びアンモニアを供給する
ための分散管を使用して供給することが好ましい。
【0016】本発明において反応器の出口ガス中の酸素
濃度は0.1〜1.5容量%に、好ましくは0.15〜
1.0容量%に、更に好ましくは0.2〜0.7容量%
の範囲に制御することにより、アセトニトリルを安定に
増産することに加えて、アクリロニトリルの収率の低下
を抑制し、また、触媒の性能劣化を抑制することによ
り、長期間にわたって安定に反応を継続することができ
る。反応器の出口ガス中の酸素濃度が0.1容量%未満
の場合には、触媒の還元劣化や炭素質成分の付着などに
より経時的に活性が低下する。そのために、触媒の賦活
操作や反応器への触媒の追加や反応器へ供給するガス量
を減少させて転化率を維持する等の煩雑な操作が必要と
なる。また、反応器の出口ガス中の酸素濃度が1.5容
量%を越える場合には、アンモ酸化反応で生成するアク
リロニトリルの二次分解が顕著になってアクリロニトリ
ルの収率が低下するために好ましくない。
【0017】反応器の出口ガス中の酸素濃度を本発明の
範囲に制御する方法としては、反応器に供給する酸素供
給源となるガス、例えば、空気の量を制御することや、
反応温度を変える、圧力を変える、触媒量を変える、反
応器に供給する全ガス量を変える、等の方法により行う
ことができるが、好ましくは、反応器に供給する酸素供
給源となるガス、例えば、空気の量を制御することで行
うことができる。反応器の出口ガス中の酸素濃度を測定
する方法としては、ガスクロマトグラフィ−による分
析、磁気式酸素測定装置による分析、質量分析、等の方
法を用いて行うことができる。本発明のアンモ酸化反応
に用いるプロピレン、アンモニアは必ずしも高純度であ
る必要はなく、工業グレ−ドのものを使用することがで
きる。また、酸素源としては、空気を用いることが好ま
しいが、酸素を空気と混合するなどして酸素濃度を高め
たガスを用いることもできる。
【0018】本発明において供給する原料ガスの組成
は、アセトニトリルを増産するために反応器に供給する
化合物をMとして、プロピレン/M/アンモニア/空気
=1/0.005〜0.2/0.9〜1.8/8.5〜
14であり、好ましくはプロピレン/M/アンモニア/
空気=1/0.01〜0.15/0.95〜1.6/
8.6〜13であり、更に好ましくはプロピレン/M/
アンモニア/空気=1/0.015〜0.10/1.0
〜1.4/8.7〜12である。但し、Mのプロピレン
に対する比率は前述した様に炭素ベ−スの比率であり、
その他はプロピレンに対するモル比率である。
【0019】また、酸素濃度を高めたガスを用いる場合
は、上記の空気中の酸素濃度との比で供給するガスの比
を算出できる。反応温度は400〜470℃、好ましく
は420〜460℃である。反応圧力は絶対圧として9
0〜400kPa、好ましくは100〜300kPaで
ある。原料ガスと触媒との接触時間は0.5〜20se
c・g/ml、好ましくは1〜10sec・g/mlで
ある。但し、接触時間は次式で定義される。 接触時間(sec・g/ml)=(W/F)×273/
(273+T)×P/101 ここで、Wは触媒量(g)、Fは供給するガス量(ml
/sec:NTP換算)、Tは反応温度(℃)、Pは反
応圧力(kPa:絶対圧)である。
【0020】
【実施例】以下に内径83mmのSUS304製流動層
反応装置を用いて行った実施例および比較例について詳
細に説明するが、本発明はこれらの例により限定される
ものではない。尚、実施例及び比較例において反応成績
を表すために用いたプロピレンの転化率(%)、化合物
Mの転化率(%)、アクリロニトリルの収率(%)、ア
セトニトリルの収率(%)、アクロレインの収率
(%)、アセトニトリルの収量増加率(%)は次式で定
義される。
【0021】プロピレンの転化率(%)=(反応したプ
ロピレンのモル数)/(供給したプロピレンのモル数)
×100 化合物Mの転化率(%)=(反応した化合物Mのモル
数)/(供給した化合物Mのモル数)×100 アクリロニトリルの収率(%)=(生成したアクリロニ
トリルのモル数)/(供給したプロピレンのモル数)×
100 アクロレインの収率(%)=(生成したアクロレインの
モル数)/(供給したプロピロピレンのモル数)×10
0 アセトニトリルの収率(%)=2/3×(生成したアセ
トニトリルのモル数)/(供給したプロピレンのモル
数)×100 アセトニトリルの収量増加率(%)=(A−B)/B×
100 但し、A及びBは下記で定義される。 A:化合物Mを供給した時のアセトニリトルの収率 B:化合物Mを供給しない時のアセトニトリルの収率 反応後のガスはガスクロマトグラフィ−により分析を行
った。
【0022】(触媒調製例)組成がMo11.8Bi0.45
0.90Fe1.8 Ni5.0 Mg2.0 0.09Rb0.05 e
表される酸化物触媒を、50重量%のシリカに担持した
触媒を次の様にして調製した。この触媒のxは10.8
であり、モリブデンの原子比yは1.09xであった。
30重量%のSiO2 を含むシリカゾル3,333gを
とり、水1641gに814.5gのパラモリブデン酸
アンモニウム〔(NH4 6 Mo7 24・4H 2 O〕を
溶解させた液を加え、最後に、16.6重量%の硝酸8
11.0gに85.3gの硝酸ビスマス〔Bi(N
3 3 ・5H2 O〕、152.8gの硝酸セリウム
〔Ce(NO3 3 ・6H2 O〕、284.3gの硝酸
鉄〔Fe(NO 3 3 ・9H2 O〕、568.5gの硝
酸ニッケル〔Ni(NO3 2 ・6H2O〕、200.
4gの硝酸マグネシウム〔Mg(NO3 2 ・6H
2 O〕、3.56gの硝酸カリウム〔KNO3 〕及び、
2.88gの硝酸ルビジウム〔RbNO3 〕を溶解させ
た液を加えた。ここに得られた原料調合液を並流式の噴
霧乾燥器に送り、約200℃で乾燥させた。該調合液の
噴霧化は乾燥器上部中央に設置された皿型回転子を備え
た噴霧化装置を用いて行った。得られた粉体は電気炉を
用いて400℃で1時間の前焼成の後、610℃で2時
間焼成して触媒を調製した。
【0023】(参考例)上記触媒調製例で得られた触媒
1,200gを用い、反応温度430℃、反応圧力は絶
対圧として150kPa、プロピレン/アンモニア/空
気のモル比が1/1.15/9.0の原料ガスを供給
し、接触時間5.7sec・g/mlでプロピレンのア
ンモ酸化反応を行った。反応開始から100時間後のプ
ロピレンの転化率は99.1%、アクリロニトリルの収
率は82.5%、アセトニトリルの収率は2.0%、ア
クロレインの収率は0.2%、出口酸素濃度は0.1容
量%であった。
【0024】
【実施例1】プロピレンに対する炭素ベ−スでのエタノ
−ルの供給比率を0.01とし、原料ガスの組成をプロ
ピレン/アンモニア/空気のモル比を1/1.17/
9.2の原料ガスを供給し、接触時間6.0sec・g
/mlとした以外は参考例と同じ条件で反応を行った。
反応開始から100時間後のプロピレンの転化率は9
9.1%、エタノ−ルの転化率は100%、アクリロニ
トリルの収率は82.6%、アクロレインの収率は0.
2%、アセトニトリルの収率は2.5%、出口酸素濃度
は0.3容量%であり、アセトニトリルの増産率は25
%であった。更に、出口酸素濃度が0.3容量%になる
ように原料ガスの供給量を微調整しながら運転を継続し
たが、700時間後の反応成績はプロピレンの転化率は
99.0%、エタノ−ルの転化率は100%、アクリロ
ニトリルの収率は82.4%、アクロレインの収率は
0.3%、アセトニトリルの収率は2.5%、アセトニ
トリルの増産率は25%であり、安定に運転を継続でき
た。
【0025】
【実施例2】プロピレンに対する炭素ベ−スでのジエチ
ルエ−テルの供給比率を0.05とし、原料ガスの組成
をプロピレン/アンモニア/空気のモル比を1/1.2
1/9.7の原料ガスを供給し、接触時間6.0sec
・g/mlとした以外は参考例と同じ条件で反応を行っ
た。反応開始から100時間後のプロピレンの転化率は
99.0%、ジエチルエ−テルの転化率は100%、ア
クリロニトリルの収率は82.5%、アクロレインの収
率は0.2%、アセトニトリルの収率は4.4%、出口
酸素濃度は0.2容量%であり、アセトニトリルの増産
率は120%であった。更に、出口酸素濃度が0.2容
量%になるように原料ガスの供給量を微調整しながら運
転を継続したが、700時間後の反応成績はプロピレン
の転化率は99.0%、メジエチルエ−テルの転化率は
100%、アクリロニトリルの収率は82.3%、アク
ロレインの収率は0.2%、アセトニトリルの収率は
4.4%、アセトニトリルの増産率は120%であり、
安定に運転を継続できた。
【0026】
【実施例3】プロピレンに対する炭素ベ−スでの酢酸の
供給比率を0.1とし、原料ガスの組成をプロピレン/
アンモニア/空気のモル比を1/1.26/10.0の
原料ガスを供給し、接触時間6.3sec・g/mlと
した以外は参考例と同じ条件で反応を行った。反応開始
から100時間後のプロピレンの転化率は99.2%、
酢酸の転化率は100%、アクリロニトリルの収率は8
2.2%、アクロレインの収率は0.3%、アセトニト
リルの収率は6.7%、出口酸素濃度は0.6容量%で
あり、アセトニトリルの増産率は235%であった。更
に、出口酸素濃度が0.6容量%になるように原料ガス
の供給量を微調整しながら運転を継続したが、700時
間後の反応成績はプロピレンの転化率は99.0%、酢
酸の転化率は100%、アクリロニトリルの収率は8
2.0%、アクロレインの収率は0.3%、アセトニト
リルの収率は6.7%、アセトニトリルの増産率は23
5%であり、安定に運転を継続できた。
【0027】
【実施例4】プロピレンに対する炭素ベ−スでの酢酸エ
チルの供給比率を0.2とし、原料ガスの組成をプロピ
レン/アンモニア/空気のモル比を1/1.36/1
2.0の原料ガスを供給し、接触時間6.5sec・g
/mlとした以外は参考例と同じ条件で反応を行った。
反応開始から100時間後のプロピレンの転化率は9
9.1%、酢酸エチルの転化率は100%、アクリロニ
トリルの収率は81.2%、アクロレインの収率は0.
3%、アセトニトリルの収率は11.5%、出口酸素濃
度は1.3容量%であり、アセトニトリルの増産率は4
75%であった。更に、出口酸素濃度が1.3容量%に
なるように原料ガスの供給量を微調整しながら運転を継
続したが、700時間後の反応成績はプロピレンの転化
率は99.0%、酢酸エチルの転化率は100%、アク
リロニトリルの収率は81.1%、アクロレインの収率
は0.3%、アセトニトリルの収率は11.5%、アセ
トニトリルの増産率は475%であり、安定に運転を継
続できた。
【0028】
【実施例5】焼成温度を590℃とした以外は触媒調製
例と同様にして、組成がMo11.9Bi0.20Ce0.40Fe
2.0 Ni5.6 Mg2.2 0.07Cs0.04Oeで表される酸
化物触媒を、50重量%のシリカに担持した触媒として
調製した。この触媒のxは10.7であり、モリブデン
の原子比yは1.11xであった。得られた触媒1,2
00gを用い、反応温度430℃、反応圧力は絶対圧と
して150kPa、プロピレン/アンモニア/空気のモ
ル比が1/1.15/9.1の原料ガスを供給し、接触
時間4.8sec・g/mlでプロピレンのアンモ酸化
反応を行った。反応開始から100時間後のプロピレン
の転化率は99.3%、アクリロニトリルの収率は8
1.2%、アクロレインの収率は0.3%、アセトニト
リルの収率は2.0%、出口酸素濃度は0.1容量%で
あった。
【0029】次に、プロピレンに対する炭素ベ−スでの
エタノ−ルの供給比率を0.01とし、原料ガスの組成
をプロピレン/アンモニア/空気のモル比を1/1.1
7/9.4の原料ガスを供給し、接触時間5.1sec
・g/mlとして反応を行った。反応開始から100時
間後のプロピレンの転化率は99.2%、エタノ−ルの
転化率は100%、アクリロニトリルの収率は81.1
%、アクロレインの収率は0.3%、アセトニトリルの
収率は2.5%、出口酸素濃度は0.4容量%であり、
アセトニトリルの増産率は25%であった。更に、出口
酸素濃度が0.4容量%になるように原料ガスの供給量
を微調整しながら運転を継続したが、700時間後の反
応成績はプロピレンの転化率は99.1%、エタノ−ル
の転化率は100%、アクリロニトリルの収率は81.
0%、アクロレインの収率は0.3%、アセトニトリル
の収率は2.5%、アセトニトリルの増産率は25%で
あり、安定に運転を継続できた。
【0030】
【実施例6】焼成温度を590℃とした以外は触媒調製
例と同様にして、組成がMo12.0Bi0.60Ce1.20Fe
1.6 Ni4.8 Mg1.9 0.11Rb0.05Oeで表される酸
化物触媒を、50重量%のシリカに担持した触媒として
調製した。この触媒のxは11.0であり、モリブデン
の原子比yは1.09xであった。得られた触媒1,2
00gを用い、反応温度430℃、反応圧力は絶対圧と
して150kPa、プロピレン/アンモニア/空気のモ
ル比が1/1.15/9.0の原料ガスを供給し、接触
時間4.8sec・g/mlでプロピレンのアンモ酸化
反応を行った。反応開始から100時間後のプロピレン
の転化率は99.2%、アクリロニトリルの収率は8
2.0%、アクロレインの収率は0.2%、アセトニト
リルの収率は2.1%、出口酸素濃度は0.1容量%で
あった。
【0031】次に、プロピレンに対する炭素ベ−スでの
エタノ−ルの供給比率を0.01とし、原料ガスの組成
をプロピレン/アンモニア/空気のモル比を1/1.1
8/9.3の原料ガスを供給し、接触時間5.1sec
・g/mlとして反応を行った。反応開始から100時
間後のプロピレンの転化率は99.0%、エタノ−ルの
転化率は100%、アクリロニトリルの収率は82.0
%、アクロレインの収率は0.2%、アセトニトリルの
収率は2.5%、出口酸素濃度は0.4容量%であり、
アセトニトリルの増産率は19%であった。更に、出口
酸素濃度が0.4容量%になるように原料ガスの供給量
を微調整しながら運転を継続したが、700時間後の反
応成績はプロピレンの転化率は99.0%、エタノ−ル
の転化率は100%、アクリロニトリルの収率は81.
9%、アクロレインの収率は0.3%、アセトニトリル
の収率は2.5%、アセトニトリルの増産率は19%で
あり、安定に運転を継続できた。
【0032】
【実施例7】焼成温度を580℃とした以外は触媒調製
例と同様にして、組成がMo12.0Bi0.300.60Fe
2.0 Ni5.4 Mg2.1 0.09Rb0.05Oeで表される酸
化物触媒を、50重量%のシリカに担持した触媒として
調製した。この触媒のxは10.9であり、モリブデン
の原子比yは1.11xであった。得られた触媒1,2
00gを用い、反応温度430℃、反応圧力は絶対圧と
して150kPa、プロピレン/アンモニア/空気のモ
ル比が1/1.15/9.1の原料ガスを供給し、接触
時間5.4sec・g/mlでプロピレンのアンモ酸化
反応を行った。反応開始から100時間後のプロピレン
の転化率は99.1%、アクリロニトリルの収率は8
1.3%、アクロレインの収率は0.3%、アセトニト
リルの収率は2.0%、出口酸素濃度は0.2容量%で
あった。
【0033】次に、プロピレンに対する炭素ベ−スでの
エタノ−ルの供給比率を0.01とし、原料ガスの組成
をプロピレン/アンモニア/空気のモル比を1/1.1
7/9.3の原料ガスを供給し、接触時間5.7sec
・g/mlとして反応を行った。反応開始から100時
間後のプロピレンの転化率は99.1%、エタノ−ルの
転化率は100%、アクリロニトリルの収率は81.2
%、アクロレインの収率は0.3%、アセトニトリルの
収率は2.5%、出口酸素濃度は0.3容量%であり、
アセトニトリルの増産率は25%であった。更に、出口
酸素濃度が0.3容量%になるように原料ガスの供給量
を微調整しながら運転を継続したが、700時間後の反
応成績はプロピレンの転化率は99.0%、エタノ−ル
の転化率は100%、アクリロニトリルの収率は81.
1%、アクロレインの収率は0.3%、アセトニトリル
の収率は2.5%、アセトニトリルの増産率は25%で
あり、安定に運転を継続できた。
【0034】
【実施例8】焼成温度を590℃とした以外は触媒調製
例と同様にして、組成がMo12.0Bi0.30La0.60Fe
2.0 Ni5.4 Mg2.1 0.09Rb0.05Oeで表される酸
化物触媒を、50重量%のシリカに担持した触媒として
調製した。この触媒のxは10.9であり、モリブデン
の原子比yは1.11xであった。得られた触媒1,2
00gを用い、反応温度430℃、反応圧力は絶対圧と
して150kPa、プロピレン/アンモニア/空気のモ
ル比が1/1.15/9.1の原料ガスを供給し、接触
時間5.1sec・g/mlでプロピレンのアンモ酸化
反応を行った。反応開始から100時間後のプロピレン
の転化率は99.1%、アクリロニトリルの収率は8
1.0%、アクロレインの収率は0.2%、アセトニト
リルの収率は2.1%、出口酸素濃度は0.1容量%で
あった。
【0035】次に、プロピレンに対する炭素ベ−スでの
エタノ−ルの供給比率を0.01とし、原料ガスの組成
をプロピレン/アンモニア/空気のモル比を1/1.1
7/9.4の原料ガスを供給し、接触時間5.4sec
・g/mlとして反応を行った。反応開始から100時
間後のプロピレンの転化率は99.0%、エタノ−ルの
転化率は100%、アクリロニトリルの収率は80.9
%、アクロレインの収率は0.3%、アセトニトリルの
収率は2.6%、出口酸素濃度は0.3容量%であり、
アセトニトリルの増産率は24%であった。更に、出口
酸素濃度が0.3容量%になるように原料ガスの供給量
を微調整しながら運転を継続したが、700時間後の反
応成績はプロピレンの転化率は99.0%、エタノ−ル
の転化率は100%、アクリロニトリルの収率は80.
9%、アクロレインの収率は0.3%、アセトニトリル
の収率は2.6%、アセトニトリルの増産率は24%で
あり、安定に運転を継続できた。
【0036】
【実施例9】焼成温度を590℃とした以外は触媒調製
例と同様にして、組成がMo12.0Bi0.30Pr0.13Nd
0.47Fe2.0 Ni5.4 Mg2.1 0.09Rb0.05Oeで表
される酸化物触媒を、50重量%のシリカに担持した触
媒として調製した。この触媒のxは10.9であり、モ
リブデンの原子比yは1.11xであった。得られた触
媒1,200gを用い、反応温度430℃、反応圧力は
絶対圧として150kPa、プロピレン/アンモニア/
空気のモル比が1/1.15/9.0の原料ガスを供給
し、接触時間5.6sec・g/mlでプロピレンのア
ンモ酸化反応を行った。反応開始から100時間後のプ
ロピレンの転化率は99.2%、アクリロニトリルの収
率は81.9%、アクロレインの収率は0.3%、アセ
トニトリルの収率は2.0%、出口酸素濃度は0.1容
量%であった。
【0037】次に、プロピレンに対する炭素ベ−スでの
エタノ−ルの供給比率を0.01とし、原料ガスの組成
をプロピレン/アンモニア/空気のモル比を1/1.1
7/9.3の原料ガスを供給し、接触時間5.9sec
・g/mlとして反応を行った。反応開始から100時
間後のプロピレンの転化率は99.1%、エタノ−ルの
転化率は100%、アクリロニトリルの収率は81.9
%、アクロレインの収率は0.3%、アセトニトリルの
収率は2.5%、出口酸素濃度は0.4容量%であり、
アセトニトリルの増産率は25%であった。更に、出口
酸素濃度が0.4容量%になるように原料ガスの供給量
を微調整しながら運転を継続したが、700時間後の反
応成績はプロピレンの転化率は99.0%、エタノ−ル
の転化率は100%、アクリロニトリルの収率は81.
8%、アクロレインの収率は0.3%、アセトニトリル
の収率は2.5%、アセトニトリルの増産率は25%で
あり、安定に運転を継続できた。
【0038】
【実施例10】焼成温度を610℃とした以外は触媒調
製例と同様にして、組成がMo12.0Bi0.30Sm0.60
2.0 Ni5.4 Mg2.1 0.09Rb0.05Oeで表される
酸化物触媒を、50重量%のシリカに担持した触媒とし
て調製した。この触媒のxは10.9であり、モリブデ
ンの原子比yは1.11xであった。得られた触媒1,
200gを用い、反応温度430℃、反応圧力は絶対圧
として150kPa、プロピレン/アンモニア/空気の
モル比が1/1.15/9.1の原料ガスを供給し、接
触時間5.7sec・g/mlでプロピレンのアンモ酸
化反応を行った。反応開始から100時間後のプロピレ
ンの転化率は99.1%、アクリロニトリルの収率は8
1.5%、アクロレインの収率は0.3%、アセトニト
リルの収率は1.9%、出口酸素濃度は0.2容量%で
あった。
【0039】次に、プロピレンに対する炭素ベ−スでの
エタノ−ルの供給比率を0.01とし、原料ガスの組成
をプロピレン/アンモニア/空気のモル比を1/1.1
7/9.3の原料ガスを供給し、接触時間6.0sec
・g/mlとして反応を行った。反応開始から100時
間後のプロピレンの転化率は99.1%、エタノ−ルの
転化率は100%、アクリロニトリルの収率は81.5
%、アクロレインの収率は0.2%、アセトニトリルの
収率は2.5%、出口酸素濃度は0.3容量%であり、
アセトニトリルの増産率は32%であった。更に、出口
酸素濃度が0.3容量%になるように原料ガスの供給量
を微調整しながら運転を継続したが、700時間後の反
応成績はプロピレンの転化率は99.0%、エタノ−ル
の転化率は100%、アクリロニトリルの収率は81.
4%、アクロレインの収率は0.3%、アセトニトリル
の収率は2.5%、アセトニトリルの増産率は32%で
あり、安定に運転を継続できた。
【0040】
【実施例11】焼成温度を570℃とした以外は触媒調
製例と同様にして、組成がMo12.0Bi0.45Ce0.90
1.8 Co7.0 Rb0.14Oeで表される酸化物触媒を、
50重量%のシリカに担持した触媒として調製した。こ
の触媒のxは10.8であり、モリブデンの原子比yは
1.11xであった。得られた触媒1,200gを用
い、反応温度430℃、反応圧力は絶対圧として150
kPa、プロピレン/アンモニア/空気のモル比が1/
1.15/8.9の原料ガスを供給し、接触時間5.6
sec・g/mlでプロピレンのアンモ酸化反応を行っ
た。反応開始から100時間後のプロピレンの転化率は
99.1%、アクリロニトリルの収率は82.4%、ア
クロレインの収率は0.2%、アセトニトリルの収率は
2.1%、出口酸素濃度は0.1容量%であった。
【0041】次に、プロピレンに対する炭素ベ−スでの
エタノ−ルの供給比率を0.01とし、原料ガスの組成
をプロピレン/アンモニア/空気のモル比を1/1.1
6/9.2の原料ガスを供給し、接触時間5.9sec
・g/mlとして反応を行った。反応開始から100時
間後のプロピレンの転化率は99.1%、エタノ−ルの
転化率は100%、アクリロニトリルの収率は82.4
%、アクロレインの収率は0.2%、アセトニトリルの
収率は2.6%、出口酸素濃度は0.3容量%であり、
アセトニトリルの増産率は24%であった。更に、出口
酸素濃度が0.3容量%になるように原料ガスの供給量
を微調整しながら運転を継続したが、700時間後の反
応成績はプロピレンの転化率は99.0%、エタノ−ル
の転化率は100%、アクリロニトリルの収率は82.
4%、アクロレインの収率は0.3%、アセトニトリル
の収率は2.7%、アセトニトリルの増産率は29%で
あり、安定に運転を継続できた。
【0042】
【実施例12】焼成温度を570℃とした以外は触媒調
製例と同様にして、組成がMo12.0Bi0.54Ce0.81
1.8 Co5.0 Zn2.0 Cs0.10Oeで表される酸化物
触媒を、50重量%のシリカに担持した触媒として調製
した。この触媒のxは10.8であり、モリブデンの原
子比yは1.11xであった。得られた触媒1,200
gを用い、反応温度430℃、反応圧力は絶対圧として
150kPa、プロピレン/アンモニア/空気のモル比
が1/1.14/9.0の原料ガスを供給し、接触時間
5.8sec・g/mlでプロピレンのアンモ酸化反応
を行った。反応開始から100時間後のプロピレンの転
化率は99.1%、アクリロニトリルの収率は81.5
%、アクロレインの収率は0.3%、アセトニトリルの
収率は2.0%、出口酸素濃度は0.1容量%であっ
た。
【0043】次に、プロピレンに対する炭素ベ−スでの
エタノ−ルの供給比率を0.01とし、原料ガスの組成
をプロピレン/アンモニア/空気のモル比を1/1.1
5/9.2の原料ガスを供給し、接触時間6.1sec
・g/mlとして反応を行った。反応開始から100時
間後のプロピレンの転化率は99.1%、エタノ−ルの
転化率は100%、アクリロニトリルの収率は81.4
%、アクロレインの収率は0.3%、アセトニトリルの
収率は2.6%、出口酸素濃度は0.2容量%であり、
アセトニトリルの増産率は30%であった。更に、出口
酸素濃度が0.2容量%になるように原料ガスの供給量
を微調整しながら運転を継続したが、700時間後の反
応成績はプロピレンの転化率は99.0%、エタノ−ル
の転化率は100%、アクリロニトリルの収率は81.
3%、アクロレインの収率は0.4%、アセトニトリル
の収率は2.7%、アセトニトリルの増産率は35%で
あり、安定に運転を継続できた。
【0044】
【実施例13】焼成温度を600℃とした以外は触媒調
製例と同様にして、組成がMo12.0Bi0.39Ce0.96
1.8 Co3.5 Ni3.5 0.09Rb0.05Oeで表される
酸化物触媒を、50重量%のシリカに担持した触媒とし
て調製した。この触媒のxは10.8であり、モリブデ
ンの原子比yは1.11xであった。得られた触媒1,
200gを用い、反応温度430℃、反応圧力は絶対圧
として150kPa、プロピレン/アンモニア/空気の
モル比が1/1.14/9.0の原料ガスを供給し、接
触時間5.7sec・g/mlでプロピレンのアンモ酸
化反応を行った。反応開始から100時間後のプロピレ
ンの転化率は99.2%、アクリロニトリルの収率は8
2.3%、アクロレインの収率は0.2%、アセトニト
リルの収率は2.0%、出口酸素濃度は0.2容量%で
あった。
【0045】次に、プロピレンに対する炭素ベ−スでの
エタノ−ルの供給比率を0.01とし、原料ガスの組成
をプロピレン/アンモニア/空気のモル比を1/1.1
6/9.2の原料ガスを供給し、接触時間6.0sec
・g/mlとして反応を行った。反応開始から100時
間後のプロピレンの転化率は99.1%、エタノ−ルの
転化率は100%、アクリロニトリルの収率は82.2
%、アクロレインの収率は0.2%、アセトニトリルの
収率は2.5%、出口酸素濃度は0.3容量%であり、
アセトニトリルの増産率は25%であった。更に、出口
酸素濃度が0.3容量%になるように原料ガスの供給量
を微調整しながら運転を継続したが、700時間後の反
応成績はプロピレンの転化率は99.0%、エタノ−ル
の転化率は100%、アクリロニトリルの収率は82.
2%、アクロレインの収率は0.3%、アセトニトリル
の収率は2.6%、アセトニトリルの増産率は30%で
あり、安定に運転を継続できた。
【0046】
【実施例14】焼成温度を670℃とした以外は触媒調
製例と同様にして、組成がMo11.7Bi0.20Ce0.10
2.3 Ni5.5 Mg2.3 0.10Rb0.05Oeで表される
酸化物触媒を、50重量%のシリカに担持した触媒とし
て調製した。この触媒のxは10.6であり、モリブデ
ンの原子比yは1.11xであった。得られた触媒1,
200gを用い、反応温度430℃、反応圧力は絶対圧
として150kPa、プロピレン/アンモニア/空気の
モル比が1/1.16/9.0の原料ガスを供給し、接
触時間5.4sec・g/mlでプロピレンのアンモ酸
化反応を行った。反応開始から100時間後のプロピレ
ンの転化率は99.0%、アクリロニトリルの収率は8
2.7%、アクロレインの収率は0.2%、アセトニト
リルの収率は1.9%、出口酸素濃度は0.2容量%で
あった。
【0047】次に、プロピレンに対する炭素ベ−スでの
エタノ−ルの供給比率を0.01とし、原料ガスの組成
をプロピレン/アンモニア/空気のモル比を1/1.1
8/9.2の原料ガスを供給し、接触時間5.7sec
・g/mlとして反応を行った。反応開始から100時
間後のプロピレンの転化率は99.1%、エタノ−ルの
転化率は100%、アクリロニトリルの収率は82.7
%、アクロレインの収率は0.2%、アセトニトリルの
収率は2.5%、出口酸素濃度は0.3容量%であり、
アセトニトリルの増産率は32%であった。更に、出口
酸素濃度が0.3容量%になるように原料ガスの供給量
を微調整しながら運転を継続したが、700時間後の反
応成績はプロピレンの転化率は99.0%、エタノ−ル
の転化率は100%、アクリロニトリルの収率は82.
6%、アクロレインの収率は0.2%、アセトニトリル
の収率は2.6%、アセトニトリルの増産率は37%で
あり、安定に運転を継続できた。
【0048】
【実施例15】焼成温度を660℃とした以外は触媒調
製例と同様にして、組成がMo11.9Bi0.3 Fe2.4
6.7 Mg1.5 0.10Cs0.07Oeで表される酸化物触
媒を、50重量%のシリカに担持した触媒として調製し
た。この触媒のxは11.1であり、モリブデンの原子
比yは1.08xであった。得られた触媒1,200g
を用い、反応温度430℃、反応圧力は絶対圧として1
50kPa、プロピレン/アンモニア/空気のモル比が
1/1.16/9.0の原料ガスを供給し、接触時間
5.7sec・g/mlでプロピレンのアンモ酸化反応
を行った。反応開始から100時間後のプロピレンの転
化率は99.2%、アクリロニトリルの収率は82.7
%、アクロレインの収率は0.3%、アセトニトリルの
収率は1.9%、出口酸素濃度は0.2容量%であっ
た。
【0049】次に、プロピレンに対する炭素ベ−スでの
エタノ−ルの供給比率を0.01とし、原料ガスの組成
をプロピレン/アンモニア/空気のモル比を1/1.1
8/9.3の原料ガスを供給し、接触時間6.0sec
・g/mlとして反応を行った。反応開始から100時
間後のプロピレンの転化率は99.1%、エタノ−ルの
転化率は100%、アクリロニトリルの収率は82.7
%、アクロレインの収率は0.2%、アセトニトリルの
収率は2.4%、出口酸素濃度は0.4容量%であり、
アセトニトリルの増産率は26%であった。更に、出口
酸素濃度が0.4容量%になるように原料ガスの供給量
を微調整しながら運転を継続したが、700時間後の反
応成績はプロピレンの転化率は99.0%、エタノ−ル
の転化率は100%、アクリロニトリルの収率は82.
6%、アクロレインの収率は0.2%、アセトニトリル
の収率は2.5%、アセトニトリルの増産率は32%で
あり、安定に運転を継続できた。
【0050】
【比較例1】原料ガスの組成をプロピレン/アンモニア
/空気のモル比を1/1.26/9.6(空気のモル比
過少)とした以外は実施例3と同じ条件で反応を行っ
た。反応開始から100時間後のプロピレンの転化率は
98.8%、酢酸の転化率は100%、アクリロニトリ
ルの収率は82.7%、アクロレインの収率は0.6
%、アセトニトリルの収率は7.2%、出口酸素濃度は
0.06容量%であり、アセトニトリルの増産率は26
0%であった。更に、出口酸素濃度が0.06容量%に
なるように原料ガスの供給量を微調整しながら運転を継
続したが、プロピレンの転化率が経時的に低下するため
に300時間で反応を停止した。抜き出した触媒を分析
した結果、5500ppmの炭素が付着していることが
判った。
【0051】
【比較例2】原料ガスの組成をプロピレン/アンモニア
/空気のモル比を1/1.26/11.2(空気のモル
比過大)とした以外は実施例3と同じ条件で反応を行っ
た。反応開始から100時間後のプロピレンの転化率は
99.3%、酢酸の転化率は100%、アクリロニトリ
ルの収率は80.2%、アクロレインの収率は0.2
%、アセトニトリルの収率は6.8%、出口酸素濃度は
2.0容量%であり、アセトニトリルの増産率は240
%であったが、アクリロニトリルの収率が低いために反
応を停止した。
【0052】
【比較例3】プロピレンに対する炭素ベ−スでの酢酸の
供給比率を0.25(供給比率過大)とし、原料ガスの
組成をプロピレン/アンモニア/空気のモル比を1/
1.38/10.9の原料ガスを供給し、接触時間6.
5sec・g/mlとした以外は参考例と同じ条件で反
応を行った。反応開始から100時間後のプロピレンの
転化率は99.0%、酢酸の転化率は100%、アクリ
ロニトリルの収率は79.7%、アクロレインの収率は
0.3%、アセトニトリルの収率は14.3%、出口酸
素濃度は0.3容量%であり、アセトニトリルの増産率
は615%であったが、アクリロニトリルの収率が低い
ために反応を停止した。
【0053】
【比較例4】特公昭53−35232号公報の実施例7
に記載されている、50重量%のシリカに担持された酸
化物組成がMo12Bi5.76Fe6.24Na1.2 1.2
0.072e で表される触媒を、特許記載内容を参考にし
て調製した。尚、焼成は400℃で1時間の前焼成を行
った後、690℃で2時間焼成した。得られた触媒14
00gを用いて、反応温度460℃、反応圧力は絶対圧
として150kPa、プロピレン/アンモニア/空気の
モル比が1/1.10/8.9の原料ガスを供給し、接
触時間6.0sec・g/mlでプロピレンのアンモ酸
化反応を行った。反応開始から100時間後のプロピレ
ンの転化率は99.4%、アクリロニトリルの収率は7
9.0%、アクロレインの収率は1.5%、アセトニト
リルの収率は2.3%、出口酸素濃度は0.2容量%で
あった。
【0054】次に、実施例3と同様にプロピレンに対す
る炭素ベ−スでの酢酸の供給比率を0.1とし、原料ガ
スの組成をプロピレン/アンモニア/空気のモル比を1
/1.17/9.7の原料ガスを供給して反応を行った
ところ、プロピレンの転化率は99.1%、酢酸の転化
率は100%、アクリロニトリルの収率は76.5%、
アクロレインの収率は2.2%、アセトニトリルの収率
は4.8%、出口酸素濃度は0.2容量%であり、アセ
トニトリルの増産率は109%であったが、アクリロニ
トリルの収率の低下とアクロレインの収率の増加が大き
いために反応を停止した。
【0055】
【発明の効果】プロピレンのアンモ酸化反応によってア
クリロニトリルを製造する際に、使用する触媒、反応器
に供給する原料とその比率及び反応器の出口ガス中の酸
素濃度を規定することにより、アセトニトリルを安定に
増産することに加えて、アクリロニトリルの収率の低下
も抑制し、長期間にわたって安定に反応を継続すること
ができる。
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G069 AA03 AA08 BA02A BA02B BC03B BC05B BC10B BC25B BC43B BC59B BC66B BC68B CB07 CB53 CB54 FB63 4H006 AA02 AC54 BA02 BA04 BA06 BA07 BA08 BA13 BA14 BA19 BA20 BA21 BA30 BA55 BC31 BC37 BD20 BE14 BE30 QN24 4H039 CA70 CL50

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 プロピレンとアンモニアと酸素を流動層
    反応器において触媒の存在下にアンモ酸化反応させてア
    クリロニトリルを製造するに際して、触媒として、シリ
    カに担持された酸化物組成が下記一般式(1) Moy Bip Feq a b c d e ・・・・(1) (上記一般式(1)中、Moはモリブデン、Biはビス
    マス、Feは鉄、Aはニッケル及びコバルトから選ばれ
    る1種以上の元素、Bはカリウム、ルビジウム及びセシ
    ウムから選ばれる1種以上の元素、Cはマグネシウム及
    び亜鉛から選ばれる1種以上の元素、Dは希土類元素か
    ら選ばれる1種以上の元素、Oは酸素を表し、yはアン
    モ酸化反応中のモリブデンの原子比であり、y=1.0
    2x〜1.12x、但し、xはx=1.5p+q+a+
    c+1.5dである。p 、q 、a 、b 、c 、d 及びe は
    それぞれビスマス、鉄、A、B、C、D及び酸素の原子
    比を表し、p =0.01〜5.0、q =0.1〜5、a
    =4〜10、b =0.01〜2、c=0〜5、d=0〜
    5、e は存在する他の元素の原子価要求を満足させるた
    めに必要な酸素の原子数である。)で表される触媒を用
    い、エタノ−ル、ジエチルエ−テル、蟻酸エチル、酢
    酸、無水酢酸、酢酸エチル、エチレングリコ−ルジエチ
    ルエ−テル、エチレン、アセトアルデヒド及びグリコ−
    ル酸エチルの中から選ばれる1種以上の化合物をプロピ
    レンに対して炭素ベ−スで0.005〜0.2の比率で
    反応器に供給し、且つ、反応器の出口ガス中の酸素濃度
    を0.1〜1.5容量%に制御することを特徴とするア
    セトニトリルの増産方法。
  2. 【請求項2】 反応器に供給する化合物が、エタノ−
    ル、ジエチルエ−テル、酢酸、無水酢酸及び酢酸エチル
    の中から選ばれた1種以上の化合物であることを特徴と
    する請求項1記載の方法。
JP2001258918A 2001-08-29 2001-08-29 アセトニトリルを安定に増産する方法 Expired - Lifetime JP4854149B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001258918A JP4854149B2 (ja) 2001-08-29 2001-08-29 アセトニトリルを安定に増産する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001258918A JP4854149B2 (ja) 2001-08-29 2001-08-29 アセトニトリルを安定に増産する方法

Publications (2)

Publication Number Publication Date
JP2003064042A true JP2003064042A (ja) 2003-03-05
JP4854149B2 JP4854149B2 (ja) 2012-01-18

Family

ID=19086359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001258918A Expired - Lifetime JP4854149B2 (ja) 2001-08-29 2001-08-29 アセトニトリルを安定に増産する方法

Country Status (1)

Country Link
JP (1) JP4854149B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097583A1 (en) * 2002-05-16 2003-11-27 The Standard Oil Company Ammoxidation of carboxylic acids to a mixture of nitriles
WO2004091776A1 (ja) * 2003-04-18 2004-10-28 Dia-Nitrix Co., Ltd. アクリロニトリル合成用触媒
CN100358629C (zh) * 2004-09-24 2008-01-02 中国石油化工股份有限公司 制备乙腈的流化床催化剂
JP2012061394A (ja) * 2010-09-14 2012-03-29 Tokyo Metropolitan Univ ニトリル合成用触媒組成物およびそれを用いたニトリルの製造方法
CN110498749A (zh) * 2019-09-25 2019-11-26 中国天辰工程有限公司 一种提高丙烯或丙烷氨氧化副产乙腈和氢氰酸的方法
US11827585B2 (en) 2018-03-28 2023-11-28 Asahi Kasei Kabushiki Kaisha Method for producing acrylonitrile

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246269A (ja) * 1990-02-21 1991-11-01 Asahi Chem Ind Co Ltd アセトニトリルの増収方法
JPH07289901A (ja) * 1994-04-25 1995-11-07 Asahi Chem Ind Co Ltd アンモ酸化触媒組成物および製造方法
JPH07303836A (ja) * 1994-05-12 1995-11-21 Asahi Chem Ind Co Ltd アンモ酸化用触媒組成物及びこれを用いたアクリロニトリルまたはメタクリロニトリルの製造方法
JPH07328441A (ja) * 1993-08-10 1995-12-19 Asahi Chem Ind Co Ltd アンモ酸化に用いる触媒組成物及びこれを用いたアクリロニトリルまたはメタクリロニトリルの製造方法
JP2000344724A (ja) * 1999-03-26 2000-12-12 Mitsubishi Rayon Co Ltd 不飽和ニトリル製造法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246269A (ja) * 1990-02-21 1991-11-01 Asahi Chem Ind Co Ltd アセトニトリルの増収方法
JPH07328441A (ja) * 1993-08-10 1995-12-19 Asahi Chem Ind Co Ltd アンモ酸化に用いる触媒組成物及びこれを用いたアクリロニトリルまたはメタクリロニトリルの製造方法
JPH07289901A (ja) * 1994-04-25 1995-11-07 Asahi Chem Ind Co Ltd アンモ酸化触媒組成物および製造方法
JPH07303836A (ja) * 1994-05-12 1995-11-21 Asahi Chem Ind Co Ltd アンモ酸化用触媒組成物及びこれを用いたアクリロニトリルまたはメタクリロニトリルの製造方法
JP2000344724A (ja) * 1999-03-26 2000-12-12 Mitsubishi Rayon Co Ltd 不飽和ニトリル製造法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097583A1 (en) * 2002-05-16 2003-11-27 The Standard Oil Company Ammoxidation of carboxylic acids to a mixture of nitriles
US6982342B2 (en) 2002-05-16 2006-01-03 Standard Oil Company Ammoxidation of carboxylic acids to a mixture of nitriles
WO2004091776A1 (ja) * 2003-04-18 2004-10-28 Dia-Nitrix Co., Ltd. アクリロニトリル合成用触媒
US7807600B2 (en) 2003-04-18 2010-10-05 Dia-Nitrix Co., Ltd. Catalyst for acrylonitrile synthesis
KR101043880B1 (ko) * 2003-04-18 2011-06-22 다이야니트릭스 가부시키가이샤 아크릴로니트릴 합성용 촉매
CN100358629C (zh) * 2004-09-24 2008-01-02 中国石油化工股份有限公司 制备乙腈的流化床催化剂
JP2012061394A (ja) * 2010-09-14 2012-03-29 Tokyo Metropolitan Univ ニトリル合成用触媒組成物およびそれを用いたニトリルの製造方法
US11827585B2 (en) 2018-03-28 2023-11-28 Asahi Kasei Kabushiki Kaisha Method for producing acrylonitrile
CN110498749A (zh) * 2019-09-25 2019-11-26 中国天辰工程有限公司 一种提高丙烯或丙烷氨氧化副产乙腈和氢氰酸的方法

Also Published As

Publication number Publication date
JP4854149B2 (ja) 2012-01-18

Similar Documents

Publication Publication Date Title
EP2550099B1 (en) Process for preparing improved mixed metal oxide ammoxidation catalysts
US6642405B1 (en) Method for producing acrylonitrile, catalyst for use therein and method for preparing the same
JP3819192B2 (ja) アクリロニトリルの製造法
JP4691359B2 (ja) メタクリル酸製造用触媒の製造方法
US8034737B2 (en) Catalyst for producing acrylonitrile and process for producing acrylonitrile
JP3497558B2 (ja) アンモ酸化用触媒組成物及びこれを用いたアクリロニトリルまたはメタクリロニトリルの製造方法
US6084119A (en) Process for producing unsaturated nitrile
JPH0813332B2 (ja) メタクロレイン及びメタクリル酸の製造用触媒の調製法
JP4925415B2 (ja) メタクリル酸製造用触媒の製造方法
US10626082B2 (en) Ammoxidation catalyst with selective co-product HCN production
JP4854150B2 (ja) 青酸を安定に増産する方法
JP4854151B2 (ja) アセトニトリル及び青酸を安定に増産する方法
JP4854149B2 (ja) アセトニトリルを安定に増産する方法
US20040073062A1 (en) Process for producing methacrylic acid
JP3751043B2 (ja) アンモ酸化用触媒組成物およびこれを用いたニトリル化合物の製造方法
JP2001187771A (ja) アクリロニトリルの製造方法
JP4766610B2 (ja) メタクリル酸製造用触媒の製造方法
JP4454009B2 (ja) アンモ酸化反応の選択性改善方法およびこれを用いる不飽和ニトリルの製造方法
JP3796132B2 (ja) 気相アンモ酸化反応用複合酸化物触媒の調製法
JP2002097017A (ja) シアン化水素の製造方法
KR970011453B1 (ko) 아크릴로니트릴의 제조방법
JP2003002870A (ja) 不飽和ニトリル製造時における青酸の併産方法
JP3505547B2 (ja) アクリロニトリルの製造方法
JP3490133B2 (ja) シアン化水素の製造方法
JP4447374B2 (ja) プロピレンのアンモ酸化方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4854149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term