JP2003031867A - 酸化物磁性層と金属磁性膜を積層した磁気抵抗効果素子 - Google Patents

酸化物磁性層と金属磁性膜を積層した磁気抵抗効果素子

Info

Publication number
JP2003031867A
JP2003031867A JP2001216125A JP2001216125A JP2003031867A JP 2003031867 A JP2003031867 A JP 2003031867A JP 2001216125 A JP2001216125 A JP 2001216125A JP 2001216125 A JP2001216125 A JP 2001216125A JP 2003031867 A JP2003031867 A JP 2003031867A
Authority
JP
Japan
Prior art keywords
layer
ferromagnetic
film
magnetoresistive effect
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001216125A
Other languages
English (en)
Inventor
Hiroyuki Hoshiya
裕之 星屋
Susumu Soeya
進 添谷
Kenichi Meguro
賢一 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001216125A priority Critical patent/JP2003031867A/ja
Priority to US10/194,308 priority patent/US20030016475A1/en
Priority to CNB021529124A priority patent/CN100435372C/zh
Publication of JP2003031867A publication Critical patent/JP2003031867A/ja
Priority to US11/267,186 priority patent/US7265948B2/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/193Magnetic semiconductor compounds
    • H01F10/1936Half-metallic, e.g. epitaxial CrO2 or NiMnSb films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3295Spin-exchange coupled multilayers wherein the magnetic pinned or free layers are laminated without anti-parallel coupling within the pinned and free layers

Abstract

(57)【要約】 【課題】従来の金属磁性膜からなる磁気抵抗効果積層膜
では十分な再生出力が得られなかった。 【解決手段】非磁性層中間層界面に接して10nm以下
の厚さの高分極率層を、FeリッチなFe―O層として
形成し、熱処理によって強磁性Fe−O層の積層膜と
し、これによって高い磁気抵抗効果を有する磁気抵抗効
果素子を得る。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は磁気記録再生に関
し、特に高記録密度の磁気記録再生装置に好適な磁気ヘ
ッドおよびそれに用いる磁気抵抗効果素子ならびにその
製造方法に関するものである。
【0002】
【従来の技術】特開平9−16920には積層逆平行ピ
ン止め層と反強磁性交換バイアス層を用いたスピンバル
ブ磁気抵抗センサの記載がある。特開平7−16902
6には反強磁性的結合膜を用いたスピンバルブセンサの
記載がある。特開2000−156530には磁化が実
質的に固定された第2の磁性層に酸化物などの第3の層
を含んだ磁気抵抗効果素子の記述がある。
【0003】また、日本応用磁気学会第23回学術講演
概要集6aA−5に極薄酸化層を含んだ磁化固着層を有
するスピンバルブ膜の記載がある。ダイジェスツ オブ
インターマグ(Digests of Interm
ag)2000、FA−08には薄い酸化物も用いた巨
大磁気抵抗効果(GMR)膜の記載がある。同じくFA
−07には酸化物の保護膜を自由層に積層したGMR膜
の記載がある。同じくBQ−12には酸化物の保護膜を
自由層に積層したGMR膜の記載がある。同じくFA−
09には磁性酸化層を用いたスピンバルブ膜の記載があ
る。また、Digests of Intermag1
999、DB−01には酸化層を挿入した固定層を用い
たスピンバルブ膜の記載がある。
【0004】特開2000−340859には磁性層に
スピン分極率の高い酸化物を用い、膜面に垂直に電流を
流す磁気抵抗効果型ヘッドの記載がある。特開2000
−150985には高分極率膜を用いたトンネル磁気抵
抗効果素子の記載がある。特許第3050189号(特
開平11−135857)にはトンネルバリア層側に高
分極率膜を用いた磁気抵抗効果素子の記載がある。特開
平11−289115には非磁性層を介して強磁性体と
半導体あるいはハーフメタルを接続したスピン偏極素子
の記載がある。
【0005】アプライドフィジックスレターズ誌第73
巻1008〜1010項(Appl.Phys.Let
t. 73,1008(1998))にはハーフメタル
としてLaSrMnOを用いた強磁性トンネル結合に
関する記載がある。アプライドフィジックスレターズ誌
第74巻4017〜4019項(Appl.Phys.
Lett. 74,4017(1999))には鉄酸化
物とCoを用いた強磁性トンネル磁気抵抗効果の記載が
ある。
【0006】特開平11−97766にはハーフメタル
酸化物層を用いた強磁性トンネル接合素子の記載があ
る。特表平8−504303にはFe3O4などの半金
属材料を用いた磁気抵抗デバイスの記載がある。特開平
6−267742にはハーフメタルから成る磁性層を用
いた磁気抵抗効果素子の記載がある。特開2000−3
48935には酸化物薄層を含んだスピンバルブセンサ
の記載がある。
【0007】
【発明が解決しようとする課題】従来の技術では、特に
その再生部に外部磁界に対して十分な感度と出力で作用
する磁気抵抗効果素子を実現し、さらに十分に対称性の
よい良好な特性を得ることができず、記録密度の充分に
高い磁気記録装置としての機能を実現することが困難で
あった。
【0008】非磁性金属層を介して強磁性金属層を積層
した多層膜による巨大磁気抵抗効果が知られている。こ
の場合、磁気抵抗効果は、非磁性層で隔てられた強磁性
層の磁化と磁化のなす角度によって電気抵抗が変化す
る。この巨大磁気抵抗効果を磁気抵抗効果素子として用
いる場合には、スピンバルブとよばれる構造が提唱され
ている。すなわち、反強磁性膜/強磁性金属層/非磁性
金属層/軟磁性金属層の構造を有し、反強磁性膜/強磁
性金属層界面に発生する交換結合磁界によって反強磁性
膜と密着した強磁性金属層の磁化を実質的に固定し、他
方の軟磁性金属層が外部磁界によって磁化回転すること
で出力を得ることができる。
【0009】ここで、以下の記述において、上記磁化固
定の効果を固定バイアス、この効果を生じる反強磁性膜
を固定バイアス膜とよぶ。また、上記磁化が実質的に固
定される強磁性金属層を固定層もしくは強磁性固定層と
よぶ。同様に外部磁場によって磁化回転する軟磁性金属
膜を自由層もしくは軟磁性自由層とよぶ。
【0010】上記固定層は、感知すべき磁界に対して、
実質的に磁化が固定されていることがその機能であり、
反強磁性膜の代わりに硬磁性膜、すなわち比較的大きな
磁界が加わらない限り磁化が変化しない材料で代替する
こともできる。
【0011】上記のようなスピンバルブ型磁気抵抗効果
積層膜を用いた磁気ヘッドでは、強磁性層/非磁性層/
軟磁性層の部分がその磁気抵抗効果の大きさを決定する
部分である。軟磁性金属層も強磁性金属層の一種である
から、強磁性金属層/非磁性金属層の界面が上記効果の
本質を担うことになる。公知の技術で強磁性金属層に酸
化物を挿入したり、強磁性金属層の一部を酸化したりす
ることで抵抗変化率を向上できることが知られている。
しかしながらこの場合にも、酸化物層の挿入位置は強磁
性金属層の中間であって、強磁性金属層/非磁性金属層
の界面に所定の厚さの酸化物層を配置して構成すること
はなかった。これは酸化物が一般に強磁性でない上に、
電子を透過しないため、磁気抵抗効果の重大な阻害要因
になるからである。
【0012】また、一方で高分極率材料の適用によって
磁気抵抗効果を増大せしめることも提唱されているが、
実際に強磁性金属層などの金属薄膜層と、高分極率を有
する酸化物などの化合物層とを積層して磁気抵抗効果素
子を実現することはきわめて困難であった。これは、高
分極率材料がもっぱら酸化物などの化合物からなるため
に、金属層と積層すると金属層と反応し、あるいは化合
物成分が金属層に拡散して非化学量論組成となって、特
性を悪化させるためである。
【0013】さらに、通常の成膜工程で作製するとアモ
ルファスや微結晶、もしくは異なる結晶構造が形成され
るという問題がある。例えばハーフメタル材料として知
られるマグネタイトFeの場合、マグネタイトの
ターゲットを用いて室温にてスパッタリング法により作
製した薄膜は、バルクのマグネタイトの磁化の物性であ
る0.6テスラの1/3から半分程度しか示さない。良
好な結晶性のマグネタイト薄膜を得るには基板温度を5
00℃程度にあげる必要があるが、そのような高い基板
温度での成膜は他の金属層の連続形成を困難にし、また
極薄い金属層の平坦な形成を妨げるだけでなく、高分極
率層と他の金属層、例えばCoFe層との反応をきわめ
て促進し、やはり良好な高分極率層の形成を妨げてしま
うことから、高分極率層と金属層を積層した磁気抵抗効
果膜の積層は、実用上非常に困難であった。
【0014】本発明の目的は高密度記録に対応した長期
信頼性の高い磁気記録装置もしくは磁気抵抗効果素子を
用いた磁気ヘッドを提供することにある。より具体的に
は、高分極率を有する酸化物などの強磁性化合物層を非
磁性中間層との界面に有する抵抗変化率の高いスピンバ
ルブ型磁気抵抗効果素子を提供し、これを磁気ヘッドに
用いた磁気記録再生装置を提供することにある。
【0015】
【課題を解決するための手段】本発明では高記録密度に
対応した巨大磁気抵抗効果を用いた磁気抵抗効果素子を
磁気ヘッドに搭載した磁気記録装置を提供するために、
上記磁気抵抗効果素子として用いるスピンバルブ型の巨
大磁気抵抗効果積層膜、すなわち軟磁性自由層/非磁性
中間層/強磁性固定層/反強磁性膜の積層構造を有する
磁気抵抗効果素子を用いる。
【0016】ここで反強磁性膜は強磁性固定層の磁化を
実質的に固定するための交換結合バイアスを印加するも
のであって、直接強磁性固定層に密着して形成するか、
あるいは間接的に磁気的結合を経て効果をもたらしても
よい。あるいは反強磁性膜の代わりに他のバイアス印加
手段、例えば硬磁性膜の残留磁化を用いたり、電流バイ
アスを用いてもよい。
【0017】本発明では課題を解決して高記録密度に対
応した磁気抵抗効果素子、磁気ヘッドを搭載した磁気記
録再生装置を得るために、上記強磁性固定層の少なくと
も非磁性中間層との界面に高分極率層を配置する。また
は軟磁性自由層の少なくとも非磁性中間層との界面に高
分極率層を配置する。強磁性固定層と軟磁性自由層の双
方の非磁性中間層側の界面に高分極率層を配置してもよ
い。軟磁気特性や磁歪の適正化の観点から、強磁性固定
層に用いるのが容易である。第1の強磁性層/非磁性挿
入層/第2の強磁性層の積層体として形成した構成を採
用する。
【0018】高分極率層は、非磁性中間層に接する界面
に配置されるが、ハーフメタルなどの強磁性化合物もし
くは強磁性化合物と金属の混合体であって、特に、Fe
−O層で形成するとよい。Fe−O層はスパッタリング
などの手段で室温もしくは200℃以下の基板温度で他
の金属層と連続積層して形成し、その後熱処理を行って
Fe−O層中にFeまたはFe4−xを析出
させて形成する。ここでFe−O層とは、酸素原子を固
溶したFe、あるいはマグネタイトなどの強磁性鉄酸化
物、マグネタイトなどの強磁性鉄酸化物とFeの混合
物、またはFe4−x(xは0から3、望ましくは
2から3)であって、特にマグネタイトFeの化
学量論組成よりも酸素が欠乏した組成に形成するとよ
い。
【0019】Fe−O層は、成膜時にはアモルファスあ
るいは微結晶状態で、もっぱらFe中に酸素が固溶した
ような結晶構造となっているが、200℃から400℃
程度の適切な熱処理を行うことでFe−O二元系の平衡
状態に近い組成、すなわちFe−Fe二相に近づ
く方向に結晶の析出現象を生じて磁気抵抗変化率を発生
せしめるための高分極率を有する相を層中に形成するこ
とができる。このような作製手段と構成によって、結晶
性の良好な高分極率層、特にマグネタイト含有層を形成
し、かつ強磁性固定層と軟磁性自由層の間の強磁性的な
結合磁界、いわゆる層間結合磁界を低減することができ
る。
【0020】また、高分極率層は上記組成のFeを一部
Ni、Co、Mn、Cr、Mnなどで置き換えた、いわ
ゆるフェライト組成を主成分としてもよい。高分極率層
は強磁性を示し、強磁性固定層または軟磁性自由層を高
分極率層単体で構成してもよいが、高分極率層と金属強
磁性体などと積層して、例えば強磁性固定層としては高
分極率層/CoFe層/Ru層/CoFe層/反強磁性
層のような構成とすることで、高い抵抗変化率と高い交
換結合磁界および適切な波形対称性を実現することがで
きる。また、軟磁性自由層としては、高分極率層/Co
Fe層/NiFe層とすることで、高い抵抗変化率と軟
磁気特性を実現することができる。
【0021】上記高分極層の厚さは、0.5nm以上と
することで抵抗変化率を向上することができ、また5n
m以下とすると軟磁気特性を良好とすることができ、か
つ層間結合磁界を低減する効果が得られる。特に1nm
から3nmの厚さとすると、高い抵抗変化率と層間結合
磁界の低減を両立できるので好ましい。
【0022】非磁性中間層としてはCuが望ましいが、
Au、Ag、Al、Pt、Pd、Pt、Os、Re、R
u、Rhなどの導電性金属を適宜用いるか、合金化して
もよい。
【0023】積層構成からなる磁気抵抗効果素子には、
電流を印加して出力を感知する少なくとも一対の電極を
配置する。上記電流は、積層構成の層構造に平行に電流
を流して界面散乱による巨大磁気抵抗効果を感知する。
あるいは上記電流は積層構成の層構造に垂直に電流を流
して、高分極率層の分極した電子が界面を透過して磁気
抵抗を生じるようにして磁気抵抗効果を感知する。
【0024】磁気抵抗効果素子は軟磁性自由層を単磁区
化してノイズの発生を防止するための単磁区化構成を有
するとよい。例えば磁気抵抗効果素子の膜面方向でかつ
感知すべき磁界の方向に垂直な両端部に残留磁化を有す
る硬磁性膜などを配置する。あるいは磁気抵抗効果素子
の膜厚方向に隣接して配置した残留磁化を有する硬磁性
膜などを配置して、磁気抵抗効果素子の積層構成と硬磁
性膜を同一形状の端部を有するようにして端部の静磁気
結合により単磁区化を実現してもよい。
【0025】本発明ではこのような材料、構成を用いた
磁気抵抗効果素子と、これを再生部とした磁気記録再生
装置において、高記録密度、すなわち記録媒体上に記録
される記録波長が短く、かつ記録トラックの幅が狭い記
録を実現し、十分な再生出力を得、記録を良好に保つこ
とができる。
【0026】
【発明の実施の形態】(実施例1)本発明の巨大磁気抵
抗積層膜を構成する薄膜は高周波マグネトロンスパッタ
リング装置により以下のように作製した。アルゴン1か
ら6ミリトールの雰囲気中にて、厚さ1ミリのセラミッ
クス基板に以下の材料を順次積層して作製した。スパッ
タリングターゲットとしてタンタル、ニッケル−20a
t%鉄合金、銅、コバルト、MnPt、ルテニウム、F
(マグネタイト)の各ターゲットを用いた。C
oターゲット上には、FeおよびNiの1センチ角のチ
ップを適宜配置して組成を調整した。同様にマグネタイ
トターゲット上にはFeなどの1センチ角のチップを適
宜配置して組成を調整した。
【0027】以下、Fe−O層の設定組成はマグネタイ
トFeにFeを加えた量で表記し、例えばFe−
O層においてFe10at%の表記はFe90a
t%−Fe10at%を意味するものとする。
【0028】積層膜は、各ターゲットを配置したカソー
ドに各々高周波電力を印加して装置内にプラズマを発生
させておき、各カソードごとに配置されたシャッターを
一つずつ開閉して順次各層を形成した。膜形成時には永
久磁石を用いて基板に平行におよそ80エルステッドの
磁界を印加し、一軸異方性をもたせた。形成した膜を、
真空中、磁場中で270℃、3時間の熱処理を行って反
強磁性膜を相変態させるとともにFe−O層中に高分極
率化合物相を析出させ、室温での磁気抵抗を測定して評
価した。基体上の素子の形成はフォトレジスト工程によ
ってパターニングした。その後、基体はスライダー加工
し、磁気記録装置に搭載した。
【0029】図1は本発明の磁気抵抗効果素子に用いる
磁気抵抗効果積層膜の構成例である。図中の表記におい
て、例えば、「Ta3」は、積層構成の例としての構成
材料と、その厚さをnmで示したものである。
【0030】すなわち図1の実施例において磁気抵抗効
果積層膜10は、基体50上に下地膜14、反強磁性膜
11、強磁性固定層15、非磁性中間層12、軟磁性自
由層13、保護膜37を連続して形成してなる。上記積
層構成は、巨大磁気抵抗効果もしくはトンネル磁気抵抗
効果として、強磁性固定層15の磁化の方向と、軟磁性
自由層13の磁化の方向の互いのなす角度に応じて電気
抵抗が変化する。
【0031】上記磁気抵抗効果積層膜10において、下
地膜14は、磁気抵抗効果積層膜10の、下地膜14上
の部分の結晶性を向上させ、また結晶配向性を高める効
果がある。下地膜14はここではTa/NiFeの構成
を有するが、他の構成であってもよい。また下地膜14
を省略した構成としても本発明の主旨に反するものでは
ない。
【0032】図1の構成例で最も重要な主旨は、軟磁性
自由層13の構成にある。図1では軟磁性自由層13を
高分極率層16、第1の軟磁性膜131および第2の軟
磁性膜132の積層体として示した。これは、例えば図
中に示したように、非磁性中間層12に接する高分極率
層16によって高い抵抗変化率を得、高分極率層16に
接する側にある第1の軟磁性膜を比較的薄いCo合金、
例えばCo90Fe 合金やCo80FeNi12
合金などから形成して高分極率層16と第2の軟磁性膜
132の拡散、混合を抑制し、非磁性中間層12の側に
ある第2の軟磁性膜を比較的厚いNiFe合金などから
形成して、より軟磁気特性のよい、抵抗変化率の高い積
層膜を実現するために適用する。
【0033】上記積層体は磁気的に結合するように形成
され、同一の方向をむいた磁化状態を取って磁気的に一
体として扱える。上記のような磁化状態を実現するに
は、軟磁性自由層13を形成する高分極率層16、第1
の軟磁性膜132と、第2の軟磁性膜131を、何ら介
在物を形成しないで直接積層形成するか、間に何らかの
層がある場合にはその層の厚さを適当な値、特に1nm
以下に薄く形成するなどの方法がある。また、本図の例
と異なって第2の軟磁性膜を用いずに軟磁性自由層13
を高分極率層16/第1の軟磁性幕131の積層体から
構成したり、逆に第1の強磁性膜、第2の強磁性膜に加
えて第3、あるいはそれ以上の層の積層体から形成して
も何ら本発明の趣旨に反するものではない。軟磁性自由
層13の磁化の方向は、感知すべき磁界がゼロの状態
で、略トラック幅の方向になるよう磁気異方性の大きさ
などを設定する。高分極率層16は高分極率をもつハー
フメタルなどの化合物、例えばFeから構成する
とよいが、特にFeよりもFeリッチ、もしくは
酸素欠損とした組成のFe−O膜とするとよく、さらに
FeをMn、Cr、Ni、Coなどで一部置換してもよ
い。さらに高分極率層16はその厚さを10nm以下、
特に0.5nmから3nmとすると磁気特性に優れ、非
磁性中間層12を介して軟磁性自由層13と強磁性固定
層15の間の層間結合を低減し、高い抵抗変化率を示
す。
【0034】強磁性固定層15は非磁性中間層12に接
する側の第1の強磁性膜151と、反強磁性膜11に代
表される固定バイアス印加手段と接する側の第2の強磁
性膜152、および第1および第2の強磁性膜の膜間に
挿入して成る反平行結合層154から形成し、さらに反
平行結合層154を介して第1の強磁性膜151と第2
の強磁性膜152が反強磁性的に、すなわち反平行の方
向の磁化を持つように結合させている。上記構成は強磁
性固定層のパターニングした端部から出る静磁界の量を
調整し、磁気ヘッドとしては再生波形対称性を良好にす
る効果がある。したがって上記強磁性固定層の反平行結
合層を含む構成は磁気ヘッドへの適用に効果的であっ
て、他の構成および用途に用いる場合は反平行結合層を
含まない構成であっても本発明の主旨に反するものでは
ない。 (実施例2)同様に、図2は本発明の磁気抵抗効果素子
に用いる磁気抵抗効果積層膜の別の構成例である。図中
の表記は図1に準ずる。磁気抵抗効果積層膜10は、基
体50上に下地膜14、反強磁性膜11、強磁性固定層
15、非磁性中間層12、軟磁性自由層13、保護膜3
7を連続して形成してなる。上記積層構成は、巨大磁気
抵抗効果もしくはトンネル磁気抵抗効果として、強磁性
固定層15の磁化の方向と、軟磁性自由層13の磁化の
方向の互いのなす角度に応じて電気抵抗が変化する。下
地膜14、軟磁性自由層13等の構成と効果については
図1と同様であるので説明を省略する。下地膜14、軟
磁性自由層13等の構成が本図と若干異なっていても本
発明の主旨に反するものではない。
【0035】本発明のこの構成例で最も重要な主旨は、
強磁性固定層15の構成に酸化物挿入層155を含む点
にある。図中に示したように、強磁性固定層15を、非
磁性中間層12に接する第3の強磁性膜、反強磁性膜1
1に代表される固定バイアス印加手段と接する側の第2
の強磁性膜152、第2の強磁性膜と反平行結合膜15
4を介して反強磁性的に結合した第1の強磁性膜15
1、および第1の強磁性膜151と第3の強磁性膜との
間に挿入されて第3の強磁性膜の結晶性を高めて抵抗変
化率を増大させる効果を有する酸化物挿入層155から
構成する。
【0036】上記強磁性固定層の反平行結合層を含む構
成は磁気ヘッドへの適用に効果的であって、他の構成お
よび用途に用いる場合は反平行結合層を含まない構成で
あっても本発明の主旨に反するものではない。
【0037】酸化物挿入層155は、厚さを1nm程度
以下に保って、第3の強磁性膜153と第1の強磁性膜
151の間を酸化物挿入層155を介して強磁性的に結
合させ、第3の強磁性膜153と第1の強磁性膜151
を一体の磁性膜として機能せしめる。上記酸化物挿入層
155を含む構成を、高分極率層16を非磁性中間層1
2との界面に有する軟磁性自由層13と組み合わせるこ
とによって、結晶性の改善と、高い分極率の効果を有効
に用いて、高い抵抗変化率を得ることができる。 (実施例3)図3は本発明の磁気抵抗効果素子に用いる
磁気抵抗効果積層膜のさらに別の構成例である。図中の
表記は図1に準ずる。磁気抵抗効果積層膜10は、基体
50上に下地膜14、反強磁性膜11、強磁性固定層1
5、非磁性中間層12、軟磁性自由層13、保護膜37
を連続して形成してなる。
【0038】上記積層構成は、巨大磁気抵抗効果もしく
はトンネル磁気抵抗効果として、強磁性固定層15の磁
化の方向と、軟磁性自由層13の磁化の方向の互いのな
す角度に応じて電気抵抗が変化する。下地膜14等の構
成と効果については図1と同様であるので説明を省略す
る。下地膜14等の構成が本図と若干異なっていても本
発明の主旨に反するものではない。
【0039】本発明のこの構成例で最も重要な主旨は、
軟磁性自由層13および強磁性固定層15の構成にそれ
ぞれ高分極率層162および161を含む点にある。図
中に示したように、強磁性固定層15を、非磁性中間層
12に接する第3の強磁性膜、反強磁性膜11に代表さ
れる固定バイアス印加手段と接する側の第2の強磁性膜
152、第2の強磁性膜と反平行結合膜154を介して
反強磁性的に結合した第1の強磁性膜151、および非
磁性中間層12と界面で接する高分極率層161から構
成する。上記強磁性固定層の反平行結合層を含む構成
は、磁気ヘッドへの適用に効果的であって、他の構成お
よび用途に用いる場合は反平行結合層を含まない構成で
あっても本発明の主旨に反するものではない。
【0040】上記の積層構成からなる軟磁性自由層13
は、一体の磁性膜として磁化過程を実現するよう強磁性
的に結合する連続積層構成である。同様に軟磁性自由層
13を非磁性中間層12と界面で接する高分極率層16
2、第1の軟磁性膜131および第2の軟磁性膜132
の積層体から構成する。第2の軟磁性膜132を用いず
に省略してもよい。二つの高分極率層161および16
2は非磁性中間層12を介して隣接し、磁気抵抗効果を
発生せしめる。高分極率層161および162は1から
2nm程度に薄く形成すると特に層間結合磁界を低減す
る効果がある。 (実施例4)図4は本発明の磁気抵抗効果素子に用いる
磁気抵抗効果積層膜のさらに別の構成例である。図中の
表記は図1に準ずる。磁気抵抗効果積層膜10は、基体
50上に下地膜14、軟磁性自由層13、非磁性中間層
12、強磁性固定層15、反強磁性膜11、保護膜37
を連続して形成している。上記積層構成は、巨大磁気抵
抗効果もしくはトンネル磁気抵抗効果として、強磁性固
定層15の磁化の方向と、軟磁性自由層13の磁化の方
向の互いのなす角度に応じて電気抵抗が変化する。下地
膜14等の構成と効果については図1と同様であるので
説明を省略する。下地膜14等の構成が本図と若干異な
っていても本発明の主旨に反するものではない。
【0041】本発明のこの構成例で重要な主旨は、強磁
性固定層15の構成に高分極率層16を含む点にある。
図中に示したように、強磁性固定層15を、非磁性中間
層12に接する高分極率層16、反強磁性膜11に代表
される固定バイアス印加手段と接する側の第2の強磁性
膜152、上記第2の強磁性膜152と反平行結合膜1
54を介して反強磁性的に結合した第1の強磁性膜15
1から構成する。上記強磁性固定層15に反平行結合層
154を含む構成は、磁気ヘッドへの適用に効果的であ
って、他の構成および用途に用いる場合は反平行結合層
154を含まない構成であっても本発明の主旨に反する
ものではない。
【0042】上記の積層構成からなる軟磁性自由層13
は一体の磁性膜として磁化過程を実現するよう、強磁性
的に結合する連続積層構成である。軟磁性自由層13と
下地膜14との間に磁歪、磁気特性および結晶性を改善
するための挿入層を含んでもよい。高分極率層16は非
磁性中間層12を介して軟磁性自由層13、特に第1の
軟磁性膜131と隣接し、磁気抵抗効果を発生せしめ
る。この高分極率層16は、1から2nm程度に薄く形
成すると特に層間結合磁界を低減する効果がある。 (実施例5)図5は本発明の磁気抵抗効果積層膜を用い
た磁気抵抗効果型磁気ヘッドの構成例を、磁気媒体との
対向面から見た断面で示している。紙面で左右方向が磁
気ヘッドにおけるトラック幅方向、紙面奥行きが素子高
さ方向である。
【0043】本実施例の磁気ヘッドは、基体50上に下
部磁気シールド35、下部ギャップ膜71を形成し、そ
の上に、磁気抵抗効果積層膜10および磁区制御膜45
が形成されてなり、さらに上部ギャップ膜72、上部磁
気シールド36を形成して、再生信号を検出する再生ギ
ャップ43を形成している。電極40は磁気抵抗効果積
層膜10に接触して配置され、感知電流の印加および電
気抵抗の変化の検出を行う。磁区制御膜45は、硬磁性
膜あるいは反強磁性膜と交換結合して残留磁化を有する
磁性膜などから形成して磁気抵抗効果積層膜10にわず
かに乖離して積層配置し、磁気抵抗効果積層膜10に単
磁区化のためのバイアス効果を及ぼす機能を有する。
【0044】上記において、磁気抵抗効果積層膜10は
前記実施例1から実施例4までの構成例と同様でよい
が、磁区制御膜45を積層配置する積層面側に軟磁性自
由層が配置される構成とすることが望ましい。再生磁気
ギャップ43は磁気抵抗効果積層膜10をおよそギャッ
プの中央部に保持し、磁気的信号が再生磁気ギャップ4
3に漏入する部分の高分解能な再生を可能にする。 (実施例6)図6は本発明の磁気抵抗効果積層膜を用い
た磁気抵抗効果型磁気ヘッドの別の構成例を、磁気媒体
との対向面から見た断面で示している。図5と同様に、
紙面で左右方向が磁気ヘッドにおけるトラック幅方向、
紙面奥行きが素子高さ方向である。
【0045】本実施例の磁気ヘッドは、基体50上に下
部磁気シールド35、下部導電ギャップ膜73を形成
し、その上に磁気抵抗効果積層膜10および磁区制御膜
45が形成され、さらに上部導電ギャップ膜74、上部
磁気シールド36を形成して、再生信号を検出する再生
ギャップ43が形成されている。電極40は磁気抵抗効
果積層膜10および磁区制御膜45に接触して配置さ
れ、感知電流を磁気抵抗効果積層膜10の膜厚方向に印
加し、その電気抵抗の変化を検出する。
【0046】ここで、磁区制御膜45は、硬磁性膜ある
いは反強磁性膜と交換結合して残留磁化を有する磁性膜
などから形成して、磁気抵抗効果積層膜10にわずかに
乖離して積層配置し、磁気抵抗効果積層膜10に単磁区
化のためのバイアス効果を及ぼす機能を有する。
【0047】磁気抵抗効果積層膜10は、実施例1から
実施例4までの構成例と同様でよいが、磁区制御膜45
を積層配置する積層面側に軟磁性自由層が配置される構
成とすることが望ましい。図中、反強磁性膜11を磁気
抵抗効果積層膜10の他の部分と同じ幅で構成した例を
記載してあるが、反強磁性膜11を別のサイズに構成し
て電流が反強磁性膜11を迂回して流れたりする構成と
してもよい。再生磁気ギャップ43は磁気抵抗効果積層
膜10を、およそギャップの中央部に保持し、磁気的信
号が再生磁気ギャップ43に漏入する部分の高分解能な
再生を可能にする。 (実施例7)図7は本発明の磁気抵抗効果積層膜を用い
た磁気抵抗効果型磁気ヘッドのさらに別の構成例を、磁
気媒体との対向面から見た断面で示している。図5と同
様に、紙面で左右方向が磁気ヘッドにおけるトラック幅
方向、紙面奥行きが素子高さ方向である。
【0048】本実施例の磁気ヘッドは、基体50上に下
部磁気シールド35、下部導電ギャップ膜73を形成
し、その上に、磁気抵抗効果積層膜10が形成され、さ
らに上部導電ギャップ膜74、上部磁気シールド36を
形成して、再生信号を検出する再生ギャップ43が形成
されている。電極40は、磁気抵抗効果積層膜10に接
触して配置し、感知電流の印加と電気抵抗の変化の検出
を行う。磁区制御膜45は、硬磁性膜あるいは反強磁性
膜と交換結合して残留磁化を有する磁性膜などから形成
して、トラック幅方向にパターニングされた磁気抵抗効
果積層膜10の左右に端部がおよそ接するように配置
し、磁気抵抗効果積層膜10に単磁区化のためのバイア
ス効果を及ぼす機能を有する。再生磁気ギャップ43は
磁気抵抗効果積層膜10をおよそギャップの中央部に保
持し、磁気的信号が再生磁気ギャップ43に漏入する部
分の高分解能な再生を可能にしている。
【0049】図8はFe−O膜の組成と飽和磁束密度の
関係を示した図である。Fe−O層は測定のため0.3
μm程度の単層膜として形成した。マグネタイトFe
ターゲットを用いてスパッタ法で作製したFeを添
加しないFe−O膜の飽和磁束密度は成膜時に0.2テ
スラ、270℃、3時間の熱処理後でも0.3テスラ以
下で、バルクのマグネタイトFeの飽和磁化、
0.6テスラの半分以下である。これに対して、Feを
30at%程度加えたFe−O膜では熱処理前で0.5
テスラ、熱処理後では0.7テスラ以上となった。この
時の磁化はFeの磁化の可能性がある。
【0050】図9にFe31at%を添加したFe−O
膜の成膜後(a)および熱処理後(b)のX線回折曲線
を示す。結果は、熱処理前後で構造が異なることを示し
ている。成膜後(熱処理前)では通常のFe(110)
より面間隔の広いブロードなピークが観察され、Fe−
O膜は酸素を固溶させたFeに近い構造であることがわ
かる。したがって磁化の多くはFe相というより
も金属Feの寄与であることが推測される。一方、熱処
理後では面間隔が狭い側にシフトしたFe(110)に
近いピークと、Fe(220)(311)に対応
するピークが明瞭に観察される。このことから、Fe−
O膜の熱処理によってFeが析出し、Feもしく
は酸素を固溶したFeとFeの混合膜になってい
ることがわかる。
【0051】図10にFe31at%を添加したFe−
O膜の成膜後(a)および熱処理後(b)の磁化曲線を
示す。成膜後の磁化曲線は保磁力が低く、垂直磁化的な
ループとなっており、非磁性母相中に強磁性のFeもし
くはFe−O粒子が分散しているためと考えられる。こ
れに対し、熱処理後の磁化曲線は500Oe程度の保磁
力を示しており、熱処理によって析出したマグネタイト
Feの結晶磁気異方性を反映していると考えられ
る。
【0052】これらのFe−O膜の電気抵抗は膜厚依存
性があるが、ここで示した約0.3μmの膜では成膜後
1224μΩcm、熱処理後566μΩcmであった。
【0053】図11はFe31at%を添加したFe−
O層を軟磁性自由層に用いた場合および強磁性固定層に
用いた場合のスピンバルブ膜の磁化曲線および磁気抵抗
曲線である。Fe−O層の厚さはそれぞれ20nmおよ
び10nmである。磁気抵抗曲線の測定はスピンバルブ
膜に面内に電流を通じる、いわゆるCIP測定で行っ
た。
【0054】Fe−O層を軟磁性自由層に用いた場合、
磁化曲線はCu非磁性中間層が10nmと厚いにもかか
わらず、強磁性固定層の磁化曲線と軟磁性自由層の磁化
曲線が明確には分離していないことがわかる。これは強
磁性固定層と軟磁性自由層の間の層間結合が大きいため
である。ただし、磁化曲線の磁化量からは軟磁性自由層
に用いたFe−O層が十分に強磁性であることがわか
る。したがって磁気抵抗曲線は1%以下の低い抵抗変化
率を示している。
【0055】同様にFe−O層を強磁性固定層に用いた
場合も、磁化曲線はCu非磁性中間層が10nmと厚い
にもかかわらず、強磁性固定層の磁化曲線と軟磁性自由
層の磁化曲線が明確には分離していない。このため磁気
抵抗曲線は1%以下の低い抵抗変化率を示している。た
だし、磁化曲線の磁化量からは強磁性固定層に用いたF
e−O層が十分に強磁性であることがわかり、また、強
磁性固定層をFe−O層/CoFe層の積層としてMn
Pt反強磁性膜と接した構成としたことで交換結合が得
られていることがわかる。
【0056】図12にFe−O層の厚さとスピンバルブ
膜の磁化量、シート抵抗、および抵抗変化率を示す。図
11と同様にFe−O層を軟磁性自由層および強磁性固
定層に用いている。磁化量については比較のためFe−
O単層膜の厚さと磁化量の関係も示した。
【0057】Fe−O単層膜の磁化量はおよそ0.8テ
スラに対応する直線に沿って低下しているが、厚さが1
0nm以下になると磁化量がほぼゼロになってしまうこ
とがわかる。これに対してスピンバルブ膜にFe−O層
を用いた場合には強磁性固定層、軟磁性自由層いずれの
場合でも、およそ1テスラの直線に乗っており、強磁性
固定層の場合では1nmまで、軟磁性自由層の場合でも
1nmまで直線的であることがわかる。すなわち、Fe
−O単層膜とは異なり、スピンバルブ膜中のFe−O層
は1から2nm程度に薄い層としてもおよそ1テスラの
高い磁化を保っていることがわかる。これはスピンバル
ブ膜の下地効果およびCoFe、Cuなどの金属膜上に
Fe−O層を形成したことにより、結晶性が改善されて
いるためと考えられる。
【0058】シート抵抗はFe−O層の厚さにあまり依
存していない。これはFe−O層が他の金属層に比べて
電気抵抗が高いためである。抵抗変化率は強磁性固定層
と軟磁性自由層との場合で厚さ依存性が異なっている。
Fe−O層を軟磁性自由層に用いた場合、Fe−O層が
2nmより薄いと低下する。これはFe−O層を軟磁性
自由層に用いた場合に磁化量が1nmでは直線から外れ
ており、磁化が低減していることに対応していると考え
られる。しかしながらFe−O層が2〜20nmでは、
Fe−O層が薄いほど抵抗変化率が増加している。これ
は層間結合磁界が、Fe−O層が薄いほど小さいことに
対応している。一方、Fe−O層を強磁性固定層に用い
た場合では、Fe−O層が10nmより薄いとむしろ抵
抗変化率が低下している。これはCu層がFe−O層上
に形成されることから、十分厚いFe−O層上ではCu
層が下地効果を受けるためと考えられる。さらに3nm
より薄い領域では、再び抵抗変化率が向上し、Fe−O
層が1nmで高い抵抗変化率が得られている。これは、
Fe−O層が薄いと、層間結合磁界が低減していること
に対応している。また、強磁性固定層中のFe−O層の
磁化量が1nmでも良好であることに対応している。
【0059】これらの結果で、強磁性固定層では軟磁性
自由層よりもさらに薄く1nmでも良好な特性を示して
いる。これは強磁性固定層、軟磁性自由層という問題と
いうよりも、Fe−O層が強磁性金属CoFe層と接し
た構成の方が、より薄いFe−O層の特性を向上してい
るものと考えられる。
【0060】図13はFe−O層のFe添加量、Cu非
磁性中間層の厚さとスピンバルブ膜の特性を示した図で
ある。抵抗変化率はCu層が薄いほど増加するが、Cu
層が薄くなり層間結合磁界が大きくなると低下する。C
u層が10nmではどの組成でもほぼ同じ抵抗変化率を
示すが、Fe添加量20at%ではCu7nmで抵抗変
化率が低下し始め、以下、Fe添加量が増加するほど厚
いCu層で抵抗変化率が低下していることがわかる。抵
抗変化率が最も高くなるのはFe添加量が40at%
で、Fe添加量30〜55at%で高い抵抗変化率が得
られることがわかった。この組成はすなわち、Fe−F
e−O層のFe添加量を20から55%まで増加させる
と、20、30、40at%と抵抗変化率が向上してい
ることがわかる。一方で、シート抵抗はFe組成に依ら
ず、Cu層の厚さで変化するのみであった。
【0061】図14はFe−O層を用いたさまざまな構
成のスピンバルブ膜のCu層の厚さと抵抗変化率および
シート抵抗の関係を示した図である。タイプA、B、C
は軟磁性自由層にFe−O層のみを用いた構成、タイプ
D、Eは軟磁性自由層にFe−O層/CoFe層の積層
体を用いた構成である。また、タイプB、C、Eは強磁
性固定層に酸化物挿入層を形成した構成である。タイプ
BとタイプCの違いはFe−O層の厚さが3nmと2n
mで異なる点である。
【0062】タイプAの構成ではCu層が7nmより薄
くなっても抵抗変化率は増加しないが、タイプBはCu
層の厚さが3〜5nmであっても抵抗変化率の低下がな
い。さらにタイプC〜EではCu層の厚さが3もしくは
2nmまで抵抗変化率が増加し、5から7%の高い抵抗
変化率が得られている。このように、Fe−O層の厚さ
を低減し、また、1nm程度まで薄くしたFe−O層を
CoFe層などとの積層体として機能させること、さら
には固定層に酸化物層を挿入することで、高い抵抗変化
率を得ることができる。
【0063】また、シート抵抗については、固定層やF
e−O層とCoFe層の組み合わせによらずCu層が薄
いほど高い抵抗を示していることがわかる。
【0064】図15は本発明の磁気抵抗効果素子を搭載
した磁気ヘッドの概念図である。基体50上に磁気抵抗
効果積層膜10、磁区制御膜(図示せず)、電極40、
下部シールド35、上部シールド36、下部磁気コア8
4、コイル42、上部コア83を形成している。本図で
は上部磁気シールド36と下部磁気コア84を備えた構
造になっているが、上部磁気シールドと下部磁気コアと
を同一部材で兼用した構造としても本発明の主旨を損な
うものではない。
【0065】図16は本発明の磁気記録再生装置の構成
例である。磁気的に情報を記録する記録媒体91を保持
するディスク95をスピンドルモーター93にて回転さ
せ、アクチュエーター92によって、図15に示す磁気
ヘッドが取り付けられたヘッドスライダー90をディス
ク95のトラック上に誘導する。すなわち磁気ディスク
装置においてはヘッドスライダー90上に形成した再生
ヘッド、および記録ヘッドがこの機構に依ってディスク
95上の所定の記録位置に近接して相対運動し、信号の
書き込みあるいは読み取りがなされる。アクチュエータ
ー92はロータリーアクチュエーターであることが望ま
しい。
【0066】記録信号は信号処理系94を通じて記録ヘ
ッドにて媒体上に記録され、再生ヘッドの出力は、信号
処理系94を経て再生信号としされる。さらに、再生ヘ
ッドを所望の記録トラック上へ移動せしめるに際して、
本再生ヘッドからの高感度な出力を用いてトラック上の
位置を検出し、アクチュエーターを制御してヘッドスラ
イダーの位置決めを行うことができる。本図ではヘッド
スライダー90、ディスク95を各1個示したが、これ
らは複数であっても構わない。またディスク95は両面
に記録媒体91を有して情報を記録してもよい。情報の
記録がディスク両面の場合ヘッドスライダー90はディ
スクの両面に配置する。
【0067】上述したような構成について、本発明の磁
気ヘッドおよびこれを搭載した磁気記録再生装置を試験
した結果、充分な出力と、良好なバイアス特性を示し、
また動作の信頼性も良好であった。
【0068】
【発明の効果】以上詳述したように、本発明によれば良
好なバイアス特性と、出力の高い磁気抵抗効果素子と、
これを用いた磁気ヘッドが得られ、特に高い記録密度に
おいて良好な再生出力とバイアス特性を有する磁気ヘッ
ドおよび高密度磁気記録再生装置を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施例の磁気抵抗効果積層膜の積層
構成を示す断面図。
【図2】本発明の一実施例の磁気抵抗効果積層膜の積層
構成を示す断面図。
【図3】本発明の一実施例の磁気抵抗効果積層膜の積層
構成を示す断面図。
【図4】本発明の一実施例の磁気抵抗効果積層膜の積層
構成を示す断面図。
【図5】本発明の一実施例の磁気抵抗効果型磁気ヘッド
の要部断面図。
【図6】本発明の一実施例の磁気抵抗効果型磁気ヘッド
の要部断面図。
【図7】本発明の一実施例の磁気抵抗効果型磁気ヘッド
の要部断面図。
【図8】Fe−O膜の組成と飽和磁束密度の関係を示し
た特性図。
【図9】Fe31at%を添加したFe−O膜の成膜後
および熱処理後のX線回折スペクトル。
【図10】Fe31at%を添加したFe−O膜の成膜
後および熱処理後の磁化曲線を示す特性図。
【図11】Fe31at%を添加したFe−O層を用い
たスピンバルブ膜の磁化曲線および磁気抵抗曲線を示す
特性図。
【図12】Fe−O層の厚さとスピンバルブ膜の磁化
量、シート抵抗、および抵抗変化率を示す特性図。
【図13】Cu非磁性中間層の厚さとスピンバルブ膜の
抵抗変化率およびシート抵抗の関係を示す特性図。
【図14】Fe−O層を用いたさまざまな構成のスピン
バルブ膜のCu層の厚さと抵抗変化率およびシート抵抗
の関係を示しす特性図。
【図15】本発明の磁気抵抗効果素子を搭載した磁気ヘ
ッドの概念図。
【図16】本発明の磁気記録再生装置の構成例を示すブ
ロック図。
【符号の説明】
10…磁気抵抗効果積層膜、11…反強磁性膜、12…
非磁性中間層、13…軟磁性自由層、131…第1の軟
磁性膜、132…第2の軟磁性膜、14…下地膜、15
…強磁性固定層、151…第1の強磁性膜、152…第
2の強磁性膜、153…第3の強磁性膜、154…反平
行結合層、155…酸化物挿入層、16、161、16
2…高分極率層、17…磁歪制御下地膜、30…保護
膜、35…下部磁気シールド、36…上部シールド、3
7…保護膜、40…電極、42…コイル、43…再生ギ
ャップ、44…記録トラック、45…磁区制御膜、50
…基体、63…対向面、71…下部ギャップ膜、72…
上部ギャップ膜、73…ギャップ膜、83…上部磁気コ
ア、84…下部磁気コア、90…ヘッドスライダー、9
1…記録媒体、92…アクチュエーター、93…スピン
ドル、94…信号処理系、95…磁気ディスク。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 43/12 G01R 33/06 R (72)発明者 目黒 賢一 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 2G017 AA01 AD55 AD65 5D034 BA03 BA04 BA08 CA08 DA07 5E049 AA01 AA04 AA07 AC00 AC05 BA06 CB02 DB12 GC01

Claims (15)

    【特許請求の範囲】
  1. 【請求項1】非磁性中間層を介して分離した少なくとも
    二層の強磁性層による強磁性層/非磁性中間層/強磁性
    層の積層構成を有し、外部の磁界に応じて上記強磁性層
    の互いの磁化の相対角度が変わって上記積層構成が磁気
    抵抗効果を生じる部材と、上記抵抗変化を検出するため
    の少なくとも一対の電極を有する磁気抵抗効果素子にお
    いて、少なくとも一方の強磁性層が高分極率層からな
    り、少なくとも一方の非磁性中間層/強磁性層界面が非
    磁性中間層/高分極率層の構成を有していて、上記高分
    極率層が主にハーフメタルなどの強磁性化合物もしくは
    強磁性化合物と金属の混合体からなることを特徴とする
    磁気抵抗効果素子。
  2. 【請求項2】非磁性中間層を介して分離した少なくとも
    二層の強磁性層による強磁性層/非磁性中間層/強磁性
    層の積層構成を有し、外部の磁界に応じて上記強磁性層
    の互いの磁化の相対角度が変わって上記積層構成が磁気
    抵抗効果を生じる部材と、上記抵抗変化を検出するため
    の少なくとも一対の電極を有する磁気抵抗効果素子にお
    いて、少なくとも一方の強磁性層が高分極率層と強磁性
    金属層の積層体からなり、少なくとも一方の非磁性中間
    層/強磁性層界面が非磁性中間層/高分極率層/強磁性
    金属層の構成を有していて、上記高分極率層が主にハー
    フメタルなどの強磁性化合物もしくは強磁性化合物と金
    属の混合体であることを特徴とする磁気抵抗効果素子。
  3. 【請求項3】非磁性中間層を介して分離した少なくとも
    二層の強磁性層による強磁性層/非磁性中間層/強磁性
    層の積層構成を有し、外部の磁界に応じて上記強磁性層
    の互いの磁化の相対角度が変わって上記積層構成が磁気
    抵抗効果を生じる部材と、上記抵抗変化を検出するため
    の少なくとも一対の電極を有する磁気抵抗効果素子にお
    いて、少なくとも一方の強磁性層が、強磁性化合物もし
    くは強磁性化合物を含有する高分極率層と強磁性金属層
    の積層体からなり、少なくとも一方の非磁性中間層/強
    磁性層界面が非磁性中間層/高分極率層/強磁性金属層
    の構成を有していて、上記高分極率層が主にマグネタイ
    トまたはFe4−x(xは0から3、望ましくは2
    から3)、またはMFe4−x(M=Fe、Co、
    Ni、Mn、Cr、Zn、xは0から3、望ましくは2
    から3)の組成からなる強磁性酸化物、あるいは上記強
    磁性酸化物とFeとの混合体、あるいは上記強磁性酸化
    物とFe、Co、Niなどを含む強磁性金属との混合体
    であることを特徴とする磁気抵抗効果素子。
  4. 【請求項4】上記強磁性層/非磁性中間層/強磁性層の
    積層構成のいずれか一方の強磁性層が、反強磁性膜と直
    接全面に積層した交換結合などの固定手段により、感知
    すべき磁界に対して実質的にその磁化方向が固定されて
    なることを特徴とする前記請求項ないし3のいずれか記
    載の磁気抵抗効果素子。
  5. 【請求項5】第1の強磁性金属層/非磁性中間層/第2
    の強磁性層/反平行結合層/第3の強磁性金属層/反強
    磁性膜の積層構成を有し、上記反強磁性膜による交換結
    合力で上記反強磁性膜と直接全面に積層した交換結合で
    上記第3の強磁性層の磁化が感知すべき磁界に対して実
    質的にその磁化方向が固定され、上記反平行結合層によ
    る交換結合力で上記第2の強磁性層の磁化が上記第3の
    強磁性層の磁化に対して反平行に固定され、その結果上
    記第2の強磁性金属層の磁化が感知すべき磁界に対して
    実質的にその磁化方向が固定され、外部の磁界に応じて
    上記第1の強磁性層と第2の強磁性層の相対角度が変わ
    って上記積層構成が磁気抵抗効果を生じる部材と、上記
    抵抗変化を検出するための少なくとも一対の電極を有す
    る磁気抵抗効果素子において、上記第2の強磁性層が強
    磁性酸化物もしくは高分極率を有する強磁性酸化物と強
    磁性金属の混合体である高分極率層と、強磁性金属層と
    の積層体からなり、第1の強磁性層/非磁性中間層/高
    分極率層/強磁性金属層の構成を有することを特徴とす
    る磁気抵抗効果素子。
  6. 【請求項6】第1の強磁性金属層/非磁性中間層/第2
    の強磁性層/反平行結合層/第3の強磁性金属層/反強
    磁性膜の積層構成を有し、上記反強磁性膜による交換結
    合力で上記反強磁性膜と直接全面に積層した交換結合で
    上記第3の強磁性層の磁化が感知すべき磁界に対して実
    質的にその磁化方向が固定され、上記反平行結合層によ
    る交換結合力で上記第2の強磁性層の磁化が上記第3の
    強磁性層の磁化に対して反平行に固定され、その結果上
    記第2の強磁性金属層の磁化が感知すべき磁界に対して
    実質的にその磁化方向が固定され、外部の磁界に応じて
    上記第1の強磁性層と第2の強磁性層の相対角度が変わ
    って上記積層構成が磁気抵抗効果を生じる部材と、上記
    抵抗変化を検出するための少なくとも一対の電極を有す
    る磁気抵抗効果素子において、上記第1の強磁性層およ
    び第2の強磁性層が強磁性酸化物もしくは高分極率を有
    する強磁性酸化物と強磁性金属の混合体である高分極率
    層と強磁性金属層との積層体からなり、第1の強磁性金
    属層/第1の高分極率層/非磁性中間層/第2の高分極
    率層/第2の強磁性金属層の構成を有することを特徴と
    する磁気抵抗効果素子。
  7. 【請求項7】上記高分極層が0.5nmから5nm、好
    ましくは1nmから3nmの厚さであることを特徴とす
    る請求項1ないし6のいずれか記載の磁気抵抗効果素
    子。
  8. 【請求項8】上記非磁性中間層がCuあるいはAu、A
    g、Al、Pt、Pd、Pt、Os、Re、Ru、Rh
    などの導電性金属からなることを特徴とする請求項1な
    いし7のいずれか記載の磁気抵抗効果素子。
  9. 【請求項9】上記非磁性中間層がアルミナなどの絶縁膜
    からなり、上記磁気抵抗効果がトンネル磁気抵抗効果で
    あることを特徴とする請求項1ないし7のいずれか記載
    の磁気抵抗効果素子。
  10. 【請求項10】上記強磁性層が、電子反射層、拡散制御
    層、もしくは結晶性改善層のいずれかの機能を有する酸
    化物挿入層を含み、強磁性金属層/酸化物挿入層/強磁
    性金属層の構成を有することを特徴とする請求項1ない
    し9のいずれか記載の磁気抵抗効果素子。
  11. 【請求項11】上記電極が上記積層構成の積層面に平行
    な方向に電流を印加する構造となっていることを特徴と
    する請求項1ないし10のいずれか記載の磁気抵抗効果
    素子。
  12. 【請求項12】上記電極が上記積層構成の膜厚方向に電
    流を印加する構造となっていることを特徴とする請求項
    1ないし10のいずれか記載の磁気抵抗効果素子。
  13. 【請求項13】上記高分極率層が、Co、Fe、Ni、
    Mn、Crの酸化物あるいはこれらの混合の酸化物と、
    Co、Fe、Ni、Mn、Crの金属またはこれらの合
    金を同時蒸着などの真空薄膜形成手段で混合形成し、2
    00℃から400℃の熱処理を行って形成することを特
    徴とする請求項1ないし7のいずれか記載の磁気抵抗効
    果素子の製造方法。
  14. 【請求項14】金属薄膜層を形成し、上記金属薄膜層を
    酸素等の反応性気体雰囲気中に暴露して酸化あるいは化
    合せしめて、上記高分極率層を形成したことを特徴とす
    る請求項1ないし7のいずれか記載の磁気抵抗効果素子
    の製造方法。
  15. 【請求項15】請求項1ないし12のいずれか記載の磁
    気抵抗効果素子を感磁部に用いた磁気ヘッド。
JP2001216125A 2001-07-17 2001-07-17 酸化物磁性層と金属磁性膜を積層した磁気抵抗効果素子 Pending JP2003031867A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001216125A JP2003031867A (ja) 2001-07-17 2001-07-17 酸化物磁性層と金属磁性膜を積層した磁気抵抗効果素子
US10/194,308 US20030016475A1 (en) 2001-07-17 2002-07-15 Magnetoresistive element with oxide magnetic layers and metal magnetic films deposited thereon
CNB021529124A CN100435372C (zh) 2001-07-17 2002-07-17 沉积有氧化物磁性层和金属磁性膜的磁致电阻元件
US11/267,186 US7265948B2 (en) 2001-07-17 2005-11-07 Magnetoresistive element with oxide magnetic layers and metal magnetic films deposited thereon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001216125A JP2003031867A (ja) 2001-07-17 2001-07-17 酸化物磁性層と金属磁性膜を積層した磁気抵抗効果素子

Publications (1)

Publication Number Publication Date
JP2003031867A true JP2003031867A (ja) 2003-01-31

Family

ID=19050639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001216125A Pending JP2003031867A (ja) 2001-07-17 2001-07-17 酸化物磁性層と金属磁性膜を積層した磁気抵抗効果素子

Country Status (3)

Country Link
US (2) US20030016475A1 (ja)
JP (1) JP2003031867A (ja)
CN (1) CN100435372C (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003196A1 (ja) * 2003-07-08 2005-01-13 Tokyo Ohka Kogyo Co., Ltd. ポジ型レジスト組成物用樹脂、およびこれを用いたポジ型レジスト組成物、積層体並びにレジストパターンの形成方法
JP2005123334A (ja) * 2003-10-15 2005-05-12 Yamaha Corp 磁気抵抗効果膜の製造方法
US7268983B2 (en) 2004-06-21 2007-09-11 Alps Electric Co., Ltd. Magnetic sensing device with multilayered pinned magnetic layer having magnetostriction-enhancing layer
US7268984B2 (en) 2004-06-21 2007-09-11 Alps Electric Co., Ltd. Magnetic detecting element having a self-pinned layer
US7268978B2 (en) 2004-06-21 2007-09-11 Alps Electric Co., Ltd. Self-pinned magnetic detecting element
US7310208B2 (en) 2004-06-21 2007-12-18 Alps Electric Co., Ltd. Magnetoresistive sensor containing self-pinned layer containing a plurality of magnetic sublayers with magnetostriction-enhancing layer made of a nonmagnetic material
JP2009182129A (ja) * 2008-01-30 2009-08-13 Toshiba Corp 磁気抵抗効果素子およびその製造方法
JP2009212480A (ja) * 2008-03-04 2009-09-17 Res Inst Electric Magnetic Alloys 強磁性薄膜材料とその製造方法
US7898776B2 (en) 2006-08-03 2011-03-01 Tdk Corporation Tunneling magnetic sensing element including enhancing layer having high Fe concentration in the vicinity of barrier layer
US9028909B2 (en) 2008-01-30 2015-05-12 Kabushiki Kaisha Toshiba Magnetoresistive element and method of manufacturing the same
KR20160009136A (ko) * 2014-07-15 2016-01-26 한양대학교 산학협력단 자기터널접합을 위한 구조 및 그를 포함하는 자기터널접합과 자기 메모리
JP2020085766A (ja) * 2018-11-29 2020-06-04 昭和電工株式会社 磁気センサおよび磁気センサの製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6801412B2 (en) * 2002-04-19 2004-10-05 International Business Machines Corporation Method and apparatus for improved pinning strength for self-pinned giant magnetoresistive heads
US6977801B2 (en) * 2003-02-24 2005-12-20 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive device with exchange-coupled structure having half-metallic ferromagnetic Heusler alloy in the pinned layer
US7390529B2 (en) * 2004-05-26 2008-06-24 Headway Technologies, Inc. Free layer for CPP GMR having iron rich NiFe
JP4693450B2 (ja) * 2005-03-22 2011-06-01 株式会社東芝 磁気抵抗効果素子および磁気メモリ
JP2007194457A (ja) * 2006-01-20 2007-08-02 Alps Electric Co Ltd トンネル型磁気検出素子及びその製造方法
US7821747B2 (en) * 2006-02-10 2010-10-26 Hitachi Global Storage Technologies Netherlands B.V. Method and apparatus for providing improved pinning structure for tunneling magnetoresistive sensor
US7663848B1 (en) * 2006-07-14 2010-02-16 Grandis, Inc. Magnetic memories utilizing a magnetic element having an engineered free layer
CN101409134B (zh) * 2008-07-24 2011-03-23 复旦大学 一种可提高交换偏置场大小和增强交换偏置稳定性的合金薄膜及其制备方法
JP5518896B2 (ja) 2009-11-27 2014-06-11 株式会社東芝 磁気抵抗効果素子、及び磁気記録再生装置
TWI440236B (zh) * 2009-12-28 2014-06-01 Canon Anelva Corp Method for manufacturing magnetoresistive elements
JP4991901B2 (ja) * 2010-04-21 2012-08-08 株式会社東芝 磁気抵抗効果素子及び磁気記録再生装置
US8373947B1 (en) * 2011-09-29 2013-02-12 Tdk Corporation Magnetic head slider including protective film for head-to-medium spacing detecting element
US10272782B2 (en) * 2016-01-22 2019-04-30 Yazaki Corporation Vehicle display device
US11719772B2 (en) 2020-04-01 2023-08-08 Analog Devices International Unlimited Company AMR (XMR) sensor with increased linear range

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3516404B2 (ja) 1993-03-12 2004-04-05 株式会社東芝 磁気抵抗効果素子
SG55066A1 (en) 1993-10-06 1999-06-22 Koninkl Philips Electronics Nv Magneto-resistance device and magnetic head employing such a device
US5465185A (en) 1993-10-15 1995-11-07 International Business Machines Corporation Magnetoresistive spin valve sensor with improved pinned ferromagnetic layer and magnetic recording system using the sensor
SG46731A1 (en) 1995-06-30 1998-02-20 Ibm Spin valve magnetoresistive sensor with antiparallel pinned layer and improved exchange bias layer and magnetic recording system using the senor
US5862021A (en) * 1996-06-17 1999-01-19 Sharp Kabushiki Kaisha Magnetoresistive effect device utilizing an oxide layer adjacent one of the magnetic layers
JPH1197766A (ja) 1997-09-17 1999-04-09 Res Inst Electric Magnetic Alloys 強磁性トンネル接合素子
JP3050189B2 (ja) * 1997-10-30 2000-06-12 日本電気株式会社 磁気抵抗効果素子及びその製造方法
JP3206582B2 (ja) 1998-01-27 2001-09-10 松下電器産業株式会社 スピン偏極素子
JP4409656B2 (ja) 1998-03-20 2010-02-03 株式会社東芝 磁気抵抗効果素子及び磁気再生装置
JP2000195021A (ja) * 1998-12-28 2000-07-14 Alps Electric Co Ltd 磁気抵抗効果素子
JP2000150985A (ja) 1999-01-01 2000-05-30 Nec Corp 磁気抵抗効果素子
US6277505B1 (en) 1999-01-21 2001-08-21 Read-Rite Corporation Read sensor with improved thermal stability and manufacturing method therefor
US6567246B1 (en) * 1999-03-02 2003-05-20 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect element and method for producing the same, and magnetoresistance effect type head, magnetic recording apparatus, and magnetoresistance effect memory element
JP4572434B2 (ja) 1999-03-23 2010-11-04 パナソニック株式会社 磁気抵抗効果素子、磁気抵抗効果型ヘッド、及びメモリ−素子
US6407890B1 (en) * 2000-02-08 2002-06-18 International Business Machines Corporation Dual spin valve sensor read head with a specular reflector film embedded in each antiparallel (AP) pinned layer next to a spacer layer
US6501626B1 (en) * 2000-05-03 2002-12-31 International Business Machines Corporation Read head with a combined second read gap and pinning layer for a top spin valve sensor
US6580589B1 (en) * 2000-10-06 2003-06-17 International Business Machines Corporation Pinned layer structure for a spin valve sensor having cobalt iron (CoFe) and cobalt iron oxide (CoFeO) laminated layers
US6700757B2 (en) * 2001-01-02 2004-03-02 Hitachi Global Storage Technologies Netherlands B.V. Enhanced free layer for a spin valve sensor
US6624986B2 (en) * 2001-03-08 2003-09-23 International Business Machines Corporation Free layer structure for a spin valve sensor with a specular reflecting layer composed of ferromagnetic oxide
US6693776B2 (en) * 2001-03-08 2004-02-17 Hitachi Global Storage Technologies Netherlands B.V. Spin valve sensor with a spin filter and specular reflector layer
US6661626B2 (en) * 2001-03-20 2003-12-09 International Business Machines Corporation Tunnel valve sensor having a pinned layer structure with an iron oxide (Fe3O4) layer
US6654211B2 (en) * 2001-04-06 2003-11-25 International Business Machines Corporation Read head including a spin valve sensor with a specular reflecting cap layer structure

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7422839B2 (en) 2003-07-08 2008-09-09 Tokyo Ohka Kogyo Co., Ltd. Resin for positive resist composition, and positive resist composition using the same, laminate and method for forming resist pattern
WO2005003196A1 (ja) * 2003-07-08 2005-01-13 Tokyo Ohka Kogyo Co., Ltd. ポジ型レジスト組成物用樹脂、およびこれを用いたポジ型レジスト組成物、積層体並びにレジストパターンの形成方法
JP4572524B2 (ja) * 2003-10-15 2010-11-04 ヤマハ株式会社 磁気抵抗効果膜の製造方法
JP2005123334A (ja) * 2003-10-15 2005-05-12 Yamaha Corp 磁気抵抗効果膜の製造方法
US7268983B2 (en) 2004-06-21 2007-09-11 Alps Electric Co., Ltd. Magnetic sensing device with multilayered pinned magnetic layer having magnetostriction-enhancing layer
US7268984B2 (en) 2004-06-21 2007-09-11 Alps Electric Co., Ltd. Magnetic detecting element having a self-pinned layer
US7268978B2 (en) 2004-06-21 2007-09-11 Alps Electric Co., Ltd. Self-pinned magnetic detecting element
US7310208B2 (en) 2004-06-21 2007-12-18 Alps Electric Co., Ltd. Magnetoresistive sensor containing self-pinned layer containing a plurality of magnetic sublayers with magnetostriction-enhancing layer made of a nonmagnetic material
US7898776B2 (en) 2006-08-03 2011-03-01 Tdk Corporation Tunneling magnetic sensing element including enhancing layer having high Fe concentration in the vicinity of barrier layer
US9028909B2 (en) 2008-01-30 2015-05-12 Kabushiki Kaisha Toshiba Magnetoresistive element and method of manufacturing the same
US8184408B2 (en) 2008-01-30 2012-05-22 Kabushiki Kaisha Toshiba Magnetoresistive element and method of manufacturing the same
JP2009182129A (ja) * 2008-01-30 2009-08-13 Toshiba Corp 磁気抵抗効果素子およびその製造方法
JP2009212480A (ja) * 2008-03-04 2009-09-17 Res Inst Electric Magnetic Alloys 強磁性薄膜材料とその製造方法
KR20160009136A (ko) * 2014-07-15 2016-01-26 한양대학교 산학협력단 자기터널접합을 위한 구조 및 그를 포함하는 자기터널접합과 자기 메모리
KR101596584B1 (ko) * 2014-07-15 2016-02-24 한양대학교 산학협력단 자기터널접합을 위한 구조 및 그를 포함하는 자기터널접합과 자기 메모리
JP2020085766A (ja) * 2018-11-29 2020-06-04 昭和電工株式会社 磁気センサおよび磁気センサの製造方法
JP7259293B2 (ja) 2018-11-29 2023-04-18 株式会社レゾナック 磁気センサおよび磁気センサの製造方法

Also Published As

Publication number Publication date
CN1409297A (zh) 2003-04-09
US7265948B2 (en) 2007-09-04
US20060061914A1 (en) 2006-03-23
CN100435372C (zh) 2008-11-19
US20030016475A1 (en) 2003-01-23

Similar Documents

Publication Publication Date Title
US7265948B2 (en) Magnetoresistive element with oxide magnetic layers and metal magnetic films deposited thereon
JP3291208B2 (ja) 磁気抵抗効果型センサおよびその製造方法とそのセンサを備えた磁気ヘッド
US6387550B1 (en) Giant magnetoresistive material film, method of producing the same and magnetic head using the same
JP3327375B2 (ja) 磁気抵抗効果型トランスデューサ、その製造方法及び磁気記録装置
KR100372984B1 (ko) 자기저항효과형자기헤드및자기기록재생장치
JP3890893B2 (ja) スピントンネル磁気抵抗効果膜及び素子及びそれを用いた磁気抵抗センサー、及び磁気装置及びその製造方法
JP3255872B2 (ja) スピンバルブ型薄膜素子及びその製造方法
JP2003318461A (ja) 磁気抵抗効果素子とこれを用いた磁気ヘッドおよび磁気メモリならびに磁気記録装置
JP2000215414A (ja) 磁気センサ―
US6603643B2 (en) Magnetoresistive head containing oxide layer
KR20020095037A (ko) 폐자로 자구 제어막을 포함하는 스핀 밸브 헤드
JP3198265B2 (ja) 磁気抵抗効果素子
JP2004146480A (ja) ホイスラー磁性層と体心立方構造の非磁性中間層を積層した磁気抵抗効果素子および磁気ヘッド
JP2006139886A (ja) 磁気抵抗効果型磁気ヘッド及びその製造方法
JP2001352112A (ja) 磁気抵抗効果素子及び磁気抵抗効果型ヘッド
JP2005019484A (ja) 磁気抵抗効果素子及び磁気ヘッド
JP3817399B2 (ja) 磁気抵抗センサー
KR100833260B1 (ko) 스핀 밸브 구조의 제조방법
JP2005302131A (ja) 磁気ヘッド及びそれを用いた磁気記録再生装置
JP2003318462A (ja) 磁気抵抗効果素子とこれを用いた磁気ヘッドおよび磁気メモリ
JP2003006818A (ja) 反平行に結合した2枚の強磁性膜を用いた磁気抵抗再生ヘッド
JPH10320717A (ja) 磁気センサ
JP3212565B2 (ja) スピンバルブ型薄膜素子およびこれを備えた薄膜磁気ヘッド
JP2002261351A (ja) スピンバルブ型薄膜磁気素子及びこれを用いた薄膜磁気ヘッド
JPH10198922A (ja) 磁気センサおよびそれを用いた磁気記録再生装置