JP2005302131A - 磁気ヘッド及びそれを用いた磁気記録再生装置 - Google Patents

磁気ヘッド及びそれを用いた磁気記録再生装置 Download PDF

Info

Publication number
JP2005302131A
JP2005302131A JP2004115773A JP2004115773A JP2005302131A JP 2005302131 A JP2005302131 A JP 2005302131A JP 2004115773 A JP2004115773 A JP 2004115773A JP 2004115773 A JP2004115773 A JP 2004115773A JP 2005302131 A JP2005302131 A JP 2005302131A
Authority
JP
Japan
Prior art keywords
layer
magnetic
antiparallel
soft magnetic
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004115773A
Other languages
English (en)
Inventor
Hiroyuki Hoshiya
裕之 星屋
Katsumi Hoshino
勝美 星野
Masahiko Hataya
昌彦 幡谷
Kenichi Meguro
賢一 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Priority to JP2004115773A priority Critical patent/JP2005302131A/ja
Priority to US11/102,067 priority patent/US7440240B2/en
Publication of JP2005302131A publication Critical patent/JP2005302131A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3929Disposition of magnetic thin films not used for directly coupling magnetic flux from the track to the MR film or for shielding
    • G11B5/3932Magnetic biasing films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】狭トラックで再生出力の高さと安定性を両立させるスピンバルブ型磁気ヘッドを提供する。
【解決手段】磁区制御膜を磁気抵抗効果積層膜上に同一トラック幅で形成し、端部が結合して閉磁路を形成する構成を、軟磁性自由層13、単磁区化強磁性層45に加えて軟磁性反平行層132の三層の磁性層により、二重の閉磁路構造をとるように構成する。
【選択図】図1

Description

本発明は、磁気ヘッド及びそれを用いた磁気記録再生装置に関し、特に、磁気抵抗効果素子を備える磁気ヘッド及び磁気記録再生装置に関するものである。
磁気抵抗効果型磁気ヘッドは、ハードディスクを主体とする高記録密度磁気記録技術のなかで再生センサとして用いられ、磁気記録技術の性能を大きく作用する部分である。磁気記録再生装置の記録密度が急速に高まるなかで、従来の技術では、記録密度の充分に高い磁気記録再生装置、特にその再生部に外部磁界に対して十分な感度と出力で作用する磁気抵抗効果型磁気ヘッドを実現し、さらに十分に対称性の良い良好な特性を得ることが出来ず、記憶装置としての機能を実現することが困難であった。
近年、強磁性金属層を、非磁性金属層を介して積層した多層膜の磁気抵抗効果、いわゆる巨大磁気抵抗、が大きいことが知られている。巨大磁気抵抗効果は、非磁性中間層で隔てられた2枚の強磁性層の、磁化と磁化のなす角度によって電気抵抗が変化する現象である。この巨大磁気抵抗効果を磁気抵抗効果素子に利用する場合には、スピンバルブとよばれる構造が提唱されている。即ち、反強磁性膜/強磁性層/非磁性中間層/軟磁性自由層の構造を有し、反強磁性膜/強磁性層界面に発生する交換結合磁界によって反強磁性膜と密着した強磁性層の磁化を実質的に固定し、他方の軟磁性自由層が外部磁界によって磁化回転することで出力を得る。上記固定の効果を固定バイアス、この効果を生じる反強磁性膜を固定バイアス膜とよぶことにする。また、上記磁化が実質的に固定される強磁性層を固定層、もしくは強磁性固定層と呼ぶことにする。同様に外部磁場によって磁化回転する軟磁性膜を自由層もしくは軟磁性自由層と呼ぶことにする。
固定層は、感知すべき磁界に対して、実質的に磁化が固定されていることがその機能であり、反強磁性膜の代わりに硬磁性膜、すなわち比較的大きな磁界が加わらない限り磁化が変化しない材料で代換することもできる。硬磁性膜として、反平行結合した高保磁力膜、いわゆるセルフピンを用いることも知られている。最近、スペキュラー効果やあるいはSynthetic ferrimagnetと呼ばれるような強磁性固定層を多層構造にする構造も提唱されているが、非磁性中間層に直接接合する界面の強磁性層の磁化が実質的に固定されている点ではすべて同様である。また、上記基本構成はトンネル磁気抵抗効果、いわゆるTMRと呼ばれる垂直電流型の磁気抵抗効果素子についても同様である。
磁気抵抗効果型磁気ヘッドは、軟磁性自由層を単磁区化するための磁区制御構造を有する。この磁区制御構造は、軟磁性自由層を単磁区状態にし、感知すべき磁界に対してヒステリシスのない出力を持たせる機能を有する。代表的な磁区制御構造であるハードバイアスと呼ばれる構成は以下の構成を有する。感知領域の幅、すなわちトラック幅に形成した磁気抵抗効果膜の両端部に硬磁性膜を所定の厚さで配置する。硬磁性膜の磁化は着磁工程によってトラック幅方向に残留磁化を有するように設定され、その残留磁化によってトラック幅方向の端部に発生する磁荷が軟磁性自由層の端部に発生する磁荷と打ち消しあうことによって静磁エネルギーを下げ、軟磁性自由層を単磁区化するのである。
さらに、より高記録密度に対応した磁区制御構造として、積層型の磁区制御構造が提唱されている。磁気抵抗効果膜に積層して単磁区化強磁性層を磁区制御膜として配置し、およそ同一のトラック幅に形成することで位置のそろった端部を形成し、磁区制御を行う構造である。
米国特許第5,408,377号明細書 特開平11-259824号公報 米国特許第6,023,395号明細書 特開2002-025013公報 米国特許第6,473,279号明細書 特開2002-367124号公報 JOURNAL OF APPLIED PHYSICS VOLUME 92, 2646-2650 (2002), H. Yuasa, M. Yoshikawa, Y. Kamiguchi, K. Koi, H. Iwasaki, M. Takagishi, and M. Sahashi, "Output enhancement of spin-valve giant magnetoresistance in current-perpendicular-to-plane geometry"
上記積層型磁区制御構造による単磁区化において問題となるのは、磁気抵抗効果素子のトラック幅が狭くなったとき、具体的には0.1μm以下になった時に磁性膜端部の反磁界の影響が単磁区化効果以上に強くなり、感知すべき磁界に対する磁気抵抗効果素子の線形な出力を害することである。このような悪化を防止するには磁性膜端部の影響を極力低くすることが重要であるが、このためには積層する単磁区化強磁性層の外部磁界と反磁界に対する安定性を高める必要がある。具体的には、積層する単磁区化強磁性層の厚さを低減することで上記対策は可能であるが、単磁区化強磁性層の厚さ低減とともに、磁化量のバランスをとるために軟磁性自由層の磁化量を低減する必要がある。端部における積層部の磁荷を互いに打ち消しあって、閉磁路を形成しなければ、反磁界を低減することができないからである。このような磁化量の低減は、磁性膜の膜厚低減で行われるので、磁気抵抗効果が低下して再生素子としての機能を低下させてしまう。
従来、このような高感度と安定性の競合は、出力の得られる最低限の厚さを採用することで対応したわけであるが、トラック幅が狭小になるために、出力の得られるときの安定性が十分でなくなるという現象が生じるのである。積層型磁区制御の技術として従来知られている技術では上記問題を解決することができない。例えば、特許文献4、5、6において、磁区制御及び自由層に関する部分を3層にする提案が記載されているが、これらの提案は3層のユニットの成分において→、→、←、のように隣接した成分に順平行な部分が存在し、結果的に、単磁区化強磁性層の薄膜化による安定化と所定以上の厚さを有した自由層による磁気抵抗効果の出力維持とを両立することができない。上記のような安定性と出力の両立を達成するために、より安定な磁区制御用積層構造を実現する必要がある。しかしながら、従来型の磁区制御構造と磁気抵抗効果積層膜では、近年の狭小なトラック幅の磁気ヘッドに対してこれを実現することができなかった。
そこで本発明の目的は、積層型の磁区制御構造をもち、より高記録密度に対応して高い出力と安定な動作を両立させることが可能なスピンバルブ型磁気ヘッドを実現することである。
本発明では、高記録密度に対応した磁気ヘッドに搭載する磁気センサとしてスピンバルブ型の巨大磁気抵抗効果積層膜、すなわち、軟磁性自由層/非磁性中間層/強磁性固定層/反強磁性膜の積層構造を有する磁気抵抗効果素子を用いる。ここで反強磁性膜は、強磁性固定層の磁化を実質的に固定するための交換結合バイアスを印加するものであって、直接強磁性固定層に密着して形成しても、あるいは間接的に磁気的結合を経て効果をもたらしてもよい。あるいは反強磁性膜の代わりに他のバイアス印加手段、例えば、硬磁性膜の残留磁化を用いたり、電流バイアスを用いてもよい。
本発明では、高記録密度に対応した磁気センサ、磁気ヘッドを得るために、一例として、軟磁性自由層に反平行結合層を介して軟磁性反平行層を形成し、さらに弱反平行結合層を介して単磁区化強磁性層を形成する。反平行結合層は、軟磁性自由層と軟磁性反平行層との間に互いに反平行結合するような磁気的な結合を発生させる。上記反平行結合は感知すべき磁界に対して十分強く作製し、軟磁性自由層と軟磁性反平行層を感知すべき磁界に対して実質的に反平行配列した一対の磁化として回転させる。
弱反平行結合層は、単磁区化強磁性層と軟磁性反平行層の間に互いに反平行結合するような弱い磁気的な結合を発生させる。ここで、弱い結合とは、感知すべき磁界に対して同桁もしくは弱い反平行結合力を有することである。すなわち、磁界がゼロ近傍のとき、軟磁性反平行層と単磁区化強磁性層の互いの磁化は反平行になり、かつ、感知すべき外部磁界に対して、軟磁性反平行層と単磁区化強磁性層の互いの磁化のなす角度が変化する程度の結合力を有することである。具体的には、磁界の単位で表して数十から数百エルステッド程度の反平行結合磁界を有するよう構成する。弱反平行結合層は、隣接する2つの強磁性層間に層間の弱い磁気的な結合を生じせしめて両者の磁化が弱く反強磁性的に結合した、すなわちゼロ磁界で反平行の磁化配列状態をとらせる。弱反平行結合層としては、例えばRu0.8nmの層にCuを0.4nm程度を積層した構成などを用いると層間の交換結合を制御可能で弱い反強磁性的な交換結合として発生させることができる。あるいは弱反平行結合層としてTa1nmのような、隣接する層間に面内に磁気的な交換結合を発生しない材料を用いた場合にも、隣接する強磁性層の、素子端部での静磁気的結合力によって互いの磁化の間に制御可能な弱い反平行的な磁気結合を発生することができる。
また、本発明では、別の構成例として、軟磁性自由層に弱反平行結合層を介して軟磁性反平行層を形成し、さらに反平行結合層を介して単磁区化強磁性層を形成する。この場合には、感知すべき磁界に対して、軟磁性反平行層と単磁区化強磁性層が強く結合し、それに対して軟磁性自由層が回転する。
上述した反平行結合層及び弱反平行結合層の構成により、本発明の積層型磁区制御構成の磁化状態は、磁界がゼロ近傍のとき、単磁区化強磁性層、軟磁性反平行層、軟磁性自由層の磁区状態は、端的に記述すると、3層の磁性層の磁化が、右/左/右、のように隣接した互いの磁化が反平行の磁化状態を有するように作製できる。これにより単磁区化強磁性層、軟磁性反平行層、軟磁性自由層は二重の閉磁路構造を実現でき、磁気センサの安定性を向上することができる。
すなわち、本発明の本質は、閉磁路を形成して安定した磁区制御を行うべき磁性層の要素数を従来の2から3、ないしはそれ以上に増やし、その磁化量のバランスをより制御可能にした2重、ないしは3重の閉磁路構造による磁区制御を実現することにある。単磁区化強磁性層、非磁性分離層(反平行結合層、弱反平行結合層)及び軟磁性自由層は、ほぼ同一のトラック幅に加工形成されてほぼ同一位置の端部を有し、単磁区化強磁性層はトラック幅方向に残留磁化により磁荷を発生させ、トラック幅方向の端部で軟磁性自由層及び軟磁性反平行層の端部の磁荷を打ち消して単磁区化する効果を有する。単磁区化強磁性層と軟磁性自由層は、軟磁性反平行層と端部の磁荷を打ち消しあうように構成する。すなわち、単磁区化強磁性層と軟磁性自由層の磁化量の合計(磁束密度と膜厚の積の合計)を軟磁性反平行層の磁化量と略等しく構成する。これは単磁区化強磁性層と軟磁性反平行層、単磁区化強磁性層と軟磁性反平行層はゼロ磁界近傍で互いに反平行の磁化状態を有するように構成するからである。端部における磁荷の若干の損失を見込んで単磁区化強磁性層と軟磁性自由層の磁化量の合計を多少(20%程度)軟磁性反平行層の磁化量より大きくとってもよい。上記のような磁区制御構成によって、他の磁区制御構造、例えばハードバイアス構造がない状態において単磁区化の効果をより安定に得ることができる。
単磁区化強磁性層は、所定の大きさの磁荷をトラック幅方向に発生せしめるために強磁性体を含む構成とする。磁荷の発生方法としては、反強磁性膜を用いることができる。すなわち、反強磁性膜/強磁性層の構成として、強磁性層に反強磁性膜から交換結合磁界を発生せしめ、この交換結合磁界の方向をトラック幅方向とする。あるいは、単磁区化強磁性層を、硬磁性膜を用いて構成することもできる。硬磁性膜をトラック幅方向に着磁し、残留磁化によって単磁区化効果を得ることも原理的には可能である。
強磁性固定層の磁化は感知すべき磁界の方向と略平行に、また、単磁区化強磁性層の磁化は感知すべき磁界の方向と略垂直に方向付ける必要がある。これを着磁と称するが、それぞれの所定の方向への着磁は、製造プロセスで行う。着磁工程には常温で行う着磁工程と、熱処理炉やホットプレートなどで所定の温度に加熱、熱処理して行う着磁工程がある。上記それぞれの異なる方向への磁化の着磁は、常温での着磁工程と熱処理着磁工程を組み合わせるか、あるいは温度の異なる熱処理着磁工程を組み合わせることで達成できる。すなわち、強磁性固定層の固定バイアス印加手段と単磁区化強磁性層の磁化の固定手段とを同一の材料・手段で行うよりも、異なる材料・手段で行うことが望ましい。具体的には、強磁性固定層に硬磁性膜を用いて室温にて着磁処理を行う一方で、単磁区化強磁性層を反強磁性膜を用いて形成して着磁熱処理を行うことができる。あるいは、強磁性固定層に交換結合磁界が高温まで保持できるMnPt反強磁性膜を用いて250〜300℃程度の高い温度で着磁熱処理を行い、単磁区化強磁性層をMnIr反強磁性膜で固定した磁性膜で構成して200℃で異なる方向への着磁熱処理を行うことで、望ましい特性を得ることができる。
また、本発明の構成要素である反平行結合層は、反平行結合層を介して面で接する軟磁性自由層と軟磁性反平行層との間の面内の反強磁気的な結合を発生させる機能を実現するために、室温及び磁気ヘッドの動作温度において自発磁化を有さない材料を特定の厚さで形成することで実現する。Ru,Ir,Os,Re,Rhなどの材料ではCo/Ru/Coのようなサンドイッチ構造を特定のRuの厚さ、例えば0.3〜0.8nmで構成すると、Co膜間に面で結合した強い反強磁性的な結合が発生することが知られている。反強磁性的な結合の大きさは数キロエルステッド、すなわち、数百KA/mに達する。本発明の反平行結合層ではこのような強い反強磁性的な結合が望ましいから、非磁性分離層に上記のRuのような材料を0.3〜0.8nmのような所定の厚さで構成することが望ましい。
逆に、本発明の構成要素である弱反平行結合層は、上記の反平行結合層よりも弱い効果が望ましい。具体的には上記反平行結合層で望ましい材料、Ru,Ir,Os,Re,Rhなどの材料を、他の材料と合金化して希薄化するか、極薄い他の材料と積層して所定の弱さの反平行結合を実現することができる。上記他の材料としてはCu,Taなど一般的な材料を用いると費用的にみて有効である。
本発明の構成は、CPP−GMRと呼ばれる垂直電流型巨大磁気抵抗効果を用いた磁気センサ、磁気ヘッドの他、トンネル磁気抵抗効果、及び従来用いられているCIP(面内電流型)−GMRの磁気センサ、磁気ヘッドにも利用できる。
本発明によると、軟磁性反平行層を備えて、軟磁性自由層、単磁区化強磁性層と合わせて3層の磁性膜が互いに端部磁化を打ち消しあう2重の閉磁路構造を用いることで、高い出力と安定性を兼ね備えた磁気抵抗効果型磁気センサを実現することができる。そして、これを再生ヘッドとした磁気記録再生装置において、高記録密度、すなわち記録媒体上に記録される記録波長が短く、また、記録トラックの幅が狭い記録を実現して、十分な再生出力を得、記録を良好に保つことができる。
以下、図面を参照して本発明の実施の形態を説明する。理解を容易にするため、以下の図において、同じ機能部分には同じ符号を付して説明する。
本発明の巨大磁気抵抗効果積層膜を構成する薄膜は、高周波マグネトロンスパッタリング装置により以下のように作製した。アルゴン1〜6mTorrの雰囲気中にて、セラミックス基板に以下の材料を順次積層して作製した。スパッタリングターゲットとしてタンタル、ニッケル−20at%鉄合金、銅、コバルト、MnPt、ルテニウム、アルミナ、マグネタイト、MnIrの各ターゲットを用いた。Coターゲット上には、Feの1cm角のチップを適宜配置して組成を調整した。またCoターゲット上にPtチップを配置してCoPt膜を作製した。積層膜は、各ターゲットを配置したカソードに各々高周波電力を印加して装置内にプラズマを発生させておき、各カソードに配置されたシャッターを一つずつ開閉して順次各層を形成した。膜形成時には永久磁石を用いて基板に平行におよそ80エルステッドの磁界を印加して、一軸異方性をもたせた。
形成した膜を、真空中、磁場中で270℃、3時間の熱処理を行ってMnPt反強磁性膜を相変態させ、室温での磁気抵抗を測定して評価した。MnPt以外の反強磁性膜を併用する場合には異なる温度の着磁熱処理を併用した。また、硬磁性膜を用いた構成では熱処理後に室温で着磁処理を行った。基体上の素子の形成に当たっては、フォトレジスト工程によってパターニングした。その後、基体はスライダー加工し、磁気記録再生装置に搭載した。また、磁区制御構造の構成を評価するため、LLG(ランダウ−リフシッツ−ギルバート)法による磁化過程シミュレーションを行って、磁気ヘッドの安定性と出力について比較検討した。
図1は、本発明の巨大磁気抵抗効果型磁気ヘッドの構成例を示す図であり、磁気媒体に対向する対向面から眺めた模式図である。基体50上に下部磁気シールド35、下部導電性ギャップ膜711を形成し、その上に、磁気抵抗効果積層膜10が形成されてなり、さらに上部導電性ギャップ膜721、上部磁気シールド36を形成して、再生信号を検出する再生ギャップ43を形成してなる。本図では磁気抵抗効果積層膜10を、単磁区化強磁性層45を含んだものとして図示してある。これは便宜上であって、磁気抵抗効果積層膜10の境界を本図と異なる位置に定めても問題はない。図1では、下部導電性ギャップ膜711及び上部導電性ギャップ膜721が、磁気抵抗効果積層膜10の、膜厚方向の上下に接触して配置され、電極の一部として感知電流の印加と電気抵抗の変化の検出を行う。電極の形成方法及びその形状は、ここではいわゆるリフトオフ法によって作製した構造で記述してあるが、他にさまざまな方法が利用できる。例えばトラック幅方向の両端部に電極を配置して磁気抵抗効果積層膜10に面内に電流を印加した構造の磁気ヘッドとしてもよい。
磁気抵抗効果積層膜10は、下地膜14、反強磁性膜11、強磁性固定層15、非磁性中間層12、軟磁性自由層13、反平行結合層411、軟磁性反平行層132、弱反平行結合層416、単磁区化強磁性層45を連続して形成した構造を有する。保護膜37は耐食性等の向上に寄与するが、省略しても本発明の趣旨に反するものではない。同様に下地膜14は結晶性、抵抗変化率及び軟磁気特性の向上に寄与するが、省略しても本発明の趣旨に反するものではない。
この構成例では、強磁性固定層15は第一の強磁性層151と第二の強磁性層152、及び反平行結合層154の積層体からなる。反平行結合層154は第一の強磁性層151と第二の強磁性層152の磁化を互いに反平行に配列させる交換結合を印加して、強磁性固定層の実質的な磁化の量を第一の強磁性層151と第二の強磁性層152の磁化量の差分に制御する効果がある。ここで強磁性固定層15を単層の磁性体から形成したり、2層や4層以上の積層体から形成しても何ら本発明の趣旨に反するものではないが、本図の構成例は微細な磁気センサを実用に供する際に波形対称性を良好にする上で有効である。
また軟磁性自由層13は、単層の磁性体から形成したり、図中に記載はないが2層以上の積層体から形成しても、磁気的に一体の構造とみなせるので、何ら本発明の趣旨に反するものではない。特に、非磁性中間層12に近い側をCoもしくはCo合金、反対側をNiFe合金から形成すると、軟磁気特性と高い抵抗変化率を両立できてよい。
磁気抵抗効果積層膜10の軟磁性自由層13と、これに積層した軟磁性反平行層132及び単磁区化強磁性層45はほぼ同一のトラック幅方向のサイズを有する。単磁区化強磁性層45は、強磁性層412、反強磁性膜413からなり、強磁性層412は反平行結合層411と接する側に配置される。
反平行結合層411は軟磁性自由層13と軟磁性反平行層132の層間の磁気的な交換結合を生じせしめて軟磁性自由層13と軟磁性反平行層132の層の両者が反強磁性的に結合した、すなわち反平行の磁化配列状態をとる機能を発生させる。反平行結合層411としては例えばRu 0.4nm、あるいは0.8nmの層を用いることができる。材料と厚さを適切に選ぶことで、反平行結合層411を介した軟磁性自由層13と軟磁性反平行層132との反強磁性的な層間結合は数キロエルステッドにおよぶ十分強いものにすることができる。
弱反平行結合層416は、軟磁性反平行層132と単磁区化強磁性層45の層間に弱い磁気的な結合を生じせしめて軟磁性反平行層132と単磁区化強磁性層45の層の両者が弱く反強磁性的に結合した、すなわちゼロ磁界で反平行の磁化配列状態をとる機能を発生させる。弱反平行結合層416としては例えばRu 0.8nmの層にCuを0.4nm程度を積層した構成などを用いると軟磁性反平行層132と単磁区化強磁性層45の層間に制御可能な弱い反強磁性的な交換結合を発生することができる。あるいは弱反平行結合層416としてTa 1nmのような面内に磁気的な交換結合を発生しない材料を用いた場合にも、軟磁性自由層13と軟磁性反平行層132、及び単磁区化強磁性層45の磁化量をバランスよく設定しておけば、素子端部の静磁気的結合力によって軟磁性反平行層132と単磁区化強磁性層45の間に制御可能な弱い反平行的な磁気結合を発生することもできる。
材料と厚さ及び素子のサイズを適切に選ぶことで、弱反平行結合層416を介した軟磁性反平行層132と単磁区化強磁性層45との反強磁性的な結合は、感知すべき磁界に対して適切な値にすることができる。ここで感知すべき磁界に対して適切な値とは、センサとして感知すべき磁界に対して感応する程度には小さく、安定性が十分得られる程度に大きい値であり、現状のハードディスク装置においては数十から数百エルステッド程度と考えられる。
反強磁性膜413は、感知すべき磁界と略垂直なトラック幅方向に着磁され、強磁性層412に交換結合を印加して強磁性層412の磁化を感知すべき磁界がゼロの状態でトラック幅方向に設定する機能を有する。このような機能により、単磁区化強磁性層45の端部に所望の磁荷を発生することができる。磁気抵抗効果積層膜10の軟磁性自由層13に積層して軟磁性反平行層132及び単磁区化強磁性層45をそれぞれ所定の磁化量で配置し、ほぼ同一のトラック幅方向のサイズに形成することで、強磁性層412の磁化と軟磁性反平行層132、及び軟磁性反平行層132と軟磁性自由層13の磁化が互いに反平行になり、トラック幅方向の端部で静磁気的に結合した二重の閉磁路を形成して磁気センサの磁界を感知する部分、すなわち軟磁性自由層13を単磁区化する。軟磁性自由層13と強磁性層412の端部の距離が十分に近い場合、軟磁性反平行層132と軟磁性自由層13の磁化量との差、と強磁性層412の磁化量はほぼ同一でよい。両者の距離が離れると、強磁性層412の磁化量は、軟磁性自由層13および軟磁性反平行層132に達するまでに損失する分を加味して軟磁性反平行層132と軟磁性自由層13の磁化量との差、よりも多く設定することが有効で、0.2から0.5倍程度の増量することも可能である。しかしながら上記の増量は、単磁区化強磁性層45の磁化の固定力の負荷を増大させることになるので、極力少量にすることが望ましい。
図中矢印で示したように、軟磁性自由層13、軟磁性反平行層132、及び単磁区化強磁性層45の磁化は互いに反平行になり、感知すべき磁界がゼロの状態で略トラック幅の方向になるよう構成する。すなわち、磁気異方性、検知電流の大きさ、強磁性固定層15の磁化量、素子の奥行きのサイズである素子高さ、などによって、再生センサのバイアス特性が対称となるように微調整してもかまわない。
素子のトラック幅方向の両側の上下の磁気シールド間の間隔は、再生ギャップ43より狭く構成し、いわゆるサイドシールド構造として、感知すべき磁界の読みにじみを低減する機能を持たせることが望ましい。ただし、素子のトラック幅方向の両側の上下の磁気シールド間の間隔を再生ギャップ43より狭く構成しなくとも本発明の趣旨を損なうものではない。
図2は、本発明の磁気抵抗効果型磁気ヘッドの別の構成例を示す図であり、磁気媒体に対向する対向面から眺めた模式図である。基体50上に下部磁気シールド35、下部導電性ギャップ膜711を形成し、その上に、磁気抵抗効果積層膜10を形成し、さらに上部導電性ギャップ膜721、上部磁気シールド36を形成して、再生信号を検出する再生ギャップ43が形成される。構造の多くの部分は図1に示した例と共通なので、ここでは図1と異なる部分について詳細に述べる。
磁気抵抗効果積層膜10は、図2では、下地膜14、単磁区化強磁性層45、弱反平行結合層416、軟磁性反平行層132、反平行結合層411、軟磁性自由層13、非磁性中間層12、硬磁性固定層150、及び保護膜37を連続して形成してなる。この構成例では、硬磁性固定層150は第一の強磁性層151と第二の強磁性層152、及び反平行結合層154の積層体からなる。反平行結合層154は第一の強磁性層151と第二の強磁性層152の磁化を互いに反平行に配列させる交換結合を印加して、強磁性固定層の実質的な磁化の量を第一の強磁性層151と第二の強磁性層152の磁化量の差分に制御する効果がある。ここで硬磁性固定層150を単層の磁性体から形成したり、2層や4層以上の積層体から形成しても何ら本発明の趣旨に反するものではないが、第一の強磁性層151と第二の強磁性層152の磁化の量、すなわち磁束密度と膜厚の積を同程度にしておくことで外部磁界に対して磁化が安定した動作が得られるので、図1の構成例と異なり反強磁性膜を用いない図2の構成例でも高く安定な出力を得ることができる。
単磁区化強磁性層45、反平行結合層411、軟磁性自由層13、軟磁性反平行層132、弱反平行結合層416の機能と動作、構造は図1の場合と同様であり、ほぼ同一のトラック幅方向のサイズに形成することで、単磁区化強磁性層45と軟磁性反平行層132、軟磁性反平行層132と軟磁性自由層13の磁化が互いに反平行になり、トラック幅方向の端部で静磁気的に結合した、二重の閉磁路を形成して軟磁性自由層13を単磁区化する。
図3は、本発明による磁気抵抗効果型磁気ヘッドの磁区制御の原理と構成を示した図である。図3(a)は従来技術の積層型磁区制御を示し、図3(b)は本発明による二重閉磁路の積層型磁区制御例を示す。
従来型の積層磁区制御構造は、軟磁性自由層13と単磁区化強磁性層45を有し、それぞれの磁化量をM1及びM2とすると、M1とM2をほぼ等しく作製する。これは図3(a)の下に示したように軟磁性自由層13と単磁区化強磁性層45の磁化の方向が反平行であるため、端部での静磁気的な状態として一つの閉磁路を形成するために、M1−M2がおよそゼロとなるようにするからである。というのは、M1とM2に大きな差があれば、端部においては|M1−M2|分の磁荷が生じ、反磁界により軟磁性自由層13及び単磁区化強磁性層45の磁化を、特に端部において、所定の方向より逸脱させる作用が生じるからである。ここで、磁化の量とは、磁性膜の磁束密度かける厚さとして考えればよい。
一方、図3(b)に示した本発明の積層磁区制御構造では、軟磁性自由層13と単磁区化強磁性層45の磁化は順平行であり、これらの中央に配置した軟磁性反平行層132が軟磁性自由層13と単磁区化強磁性層45と反平行の磁化配列を持つよう構成される。この結果、端部では図3(b)の下に示したように、軟磁性自由層13と軟磁性反平行層132、及び軟磁性反平行層132と単磁区化強磁性層45の端部の磁荷は互いに打ち消しあって、それぞれに閉磁路を形成し、全体で二重の閉磁路を形成する。この二重閉磁路を形成する磁化の量の関係は、M1+M2がおよそM3と等しくなることである。従来技術の場合と類似となるが、|M1+M2−M3|がゼロでなければ、端部において磁荷が生じ、反磁界により軟磁性自由層13、軟磁性反平行層132及び単磁区化強磁性層45の磁化を、所望の方向より逸脱させる作用が生じる点は同様である。しかしながら、本発明の構造には、従来技術の場合より、M1,M2,M3の値のとりうる範囲が広がるという重要な利点が生まれる。
図4は、従来の磁区制御積層における構造について、磁性層の厚さと磁気抵抗積層膜の特性を示した図である。簡便のため、実験は現在最も一般的に応用されている面内電流での巨大磁気抵抗効果について行った。
ここで従来例1として示す構造は、以下のごときである。基体/Ni56Fe14Cr30下地膜4nm/Mn52Pt48反強磁性膜15nm/Co90Fe10強磁性固定層2nm/Ru反平行結合層0.8nm/Co90Fe10強磁性固定層3nm/Cu中間層2nm/Co90Fe10軟磁性自由層(tfree)/Cu/Ru弱反平行結合層1.2nm/Co90Fe10強磁性層(tDC)/Mn52Pt48反強磁性膜15nm/Ta保護層1nmである。ただし、交換結合磁界Hex及び保磁力Hcpの測定には、上記構造の一部分である、基体/Ni56Fe14Cr30下地膜4nm/Cu/Co90Fe10強磁性層(tDC)/Mn52Pt48反強磁性膜15nm/Ta保護層1nmの構造を用いて、反平行結合層の磁気的な影響がないようにして行った。
図4(a)は、単磁区化強磁性層の厚さ(tDC)と単磁区化強磁性層の強磁性層に反強磁性膜によって印加される交換結合磁界Hexについて調べた結果を示している。単磁区化強磁性層を3nmから1nmまで薄くしていくと交換結合磁界は増加していき、単磁区化強磁性層の保磁力Hcpはそれに伴って極大をとってその後低下する。さらに薄くすると交換結合磁界と保磁力は極端に低下してしまい、単磁区化強磁性層として機能しなくなってしまう。この結果は、単磁区化強磁性層の厚さを1〜1.5nm程度にすると、最も強く単磁区化強磁性層を所望の磁化状態に規定できることを示している。
一方で、図4(b)は、軟磁性自由層の厚さ(tfree)と抵抗変化率の関係を示した図である。単磁区化強磁性層の厚さ(tDC)は軟磁性自由層(tfree)と同じ厚さとした。軟磁性自由層の厚さを3nmより薄くしていくと抵抗変化率は低下することがわかる。従って高い再生性能、高出力を実現するためには軟磁性自由層の厚さをなるべく厚く、具体的には2nm以上にするとよいことがわかる。
そこで問題になるのは、従来型の積層型磁区制御構造では、図3(a)で説明したように、単磁区化強磁性層の磁化量と軟磁性自由層の磁化量をほぼ同一にしなければならない点である。図4(a)及び(b)の結果は単磁区化強磁性層及び軟磁性自由層共に磁束密度約1.8テスラのCoFe合金を用いているので、単磁区化強磁性層の厚さと軟磁性自由層の磁化量を合わせるには双方の厚さを同一にすることになる。しかしながら図4(a)及び(b)から明らかなように、単磁区化強磁性層の特性が良好になる厚さは1から1.5nmであるのに対し、軟磁性自由層について抵抗変化率が良好になる厚さは2nm以上である。従来技術の積層型磁区制御を用いる場合、抵抗変化率が低い膜厚で高い交換結合磁界の磁気ヘッドを用いるか、逆に抵抗変化率を高くして、交換結合磁界の低い磁気ヘッドを作製することしかできない。なお、図4(b)はCIP−GMRについて抵抗変化率の低下を示したが、TMRやCPP−GMRのような構成の異なる磁気抵抗効果センサの場合も同様と考えられる。例えば、JOURNAL OF APPLIED PHYSICS VOLUME 92, 2646-2650 (2002)に記載の”Output enhancement of spin-valve giant magnetoresistance in current-perpendicular-to-plane geometry”には、CPP−GMRについて、図4(b)に示したように磁性膜の厚さが薄いと抵抗変化量が低減する旨の報告がある。従って、単磁区化強磁性層の交換結合と磁気抵抗効果の両立の困難さはさまざまな磁気抵抗効果素子において共通の問題である。
抵抗変化率が低い構成で磁気ヘッドを作製した場合の問題は再生出力の低下であって、高い性能が得られない。本発明の構成を用いた場合には同等の磁区制御能力を達成した上で高い再生出力を実現できる。
図5に、従来技術及び本発明の構成を用いた場合の磁気抵抗効果を示す。本図では評価因子をコンダクタンス変化量ΔGで示した。この指標を用いると薄膜の構成による電流の効率の差異を無視することができ、従って磁気抵抗効果の大きさをより原理的に比較することができる。ここで、図5に従来技術として示した結果は、前記した従来例1の構造に対するものである。また、本発明例1として、基体/Ni56Fe14Cr30下地膜4nm/Mn52Pt48反強磁性膜15nm/Co90Fe10強磁性固定層3nm/Ru反平行結合層0.8nm/Co90Fe10強磁性固定層3nm/Cu中間層2nm/Co90Fe10軟磁性自由層(tfree)/Ru反平行結合層0.8nm/Co90Fe10反平行軟磁性層4nm/Cu/Ru弱反平行結合層1.2nm/Co90Fe10強磁性層(tDC)/Mn52Pt48反強磁性膜15nm/Ta保護層1nmを用いた。この構成により、Co90Fe10軟磁性自由層(tfree)/Ru反平行結合層0.8nm/Co90Fe10軟磁性反平行層taf=4nmの部分が反平行配列した磁化を有し、実質的に一体の軟磁性層として磁化過程を経る。
磁気ヘッドの特性の観点から、両者の技術を比較するには実質的な自由層の磁化の量もしくは厚さで比較するべきである。従って、図5において、従来技術では横軸を軟磁性自由層の厚さtfreeで示し、一方、本発明については横軸を軟磁性反平行層の厚さと軟磁性自由層の厚さの差、すなわち実効的な差分厚さtaf−tfreeで示した。図5を見ると明らかなように、従来技術では磁性層としてCoFeの厚さを薄くするとΔGが低下し、したがって積層型の磁区制御膜を薄くすると磁気抵抗の低下をもたらすのは図4について述べたのと同様である。これに対し、本発明の構成では、軟磁性反平行層の導入によって磁性膜の厚さをより厚くした上で、その差分を従来技術の磁性膜の厚さに相当させることで積層型の磁区制御を実現できるから、磁性膜の厚さの差分が低下しても磁気抵抗効果の低下をほとんどゼロにすることができることがわかる。
逆に、従来技術で磁気抵抗効果を高くし、一方で低い交換結合を有する構成にした場合の問題点は、図6に示すようになる。図6は、従来技術及び本発明の積層型磁区制御構造の単磁区化強磁性層の磁化状態を計算機シミュレーションした結果を示す図である。シミュレーションは、トラック幅50nm、再生ギャップ30nmとし、高記録密度対応の磁気ヘッドとして行った。
図6(a)に示す従来技術の場合、交換結合磁界が十分大きくない影響が単磁区化強磁性層の端部の磁化の乱れ、真横方向からの曲がりとして現れている。高記録密度に対応し、トラック幅が狭くなると磁性膜の反磁界の寄与が大きくなり、交換結合磁界が十分に大きくない影響が現れるのである。本発明の構成はこの問題を解決可能である。図3(b)に示したように、本発明の二重閉磁路構造では単磁区化強磁性層、軟磁性自由層に加えて軟磁性反平行層を含めた3層の磁化量のバランスで各層の磁化量、すなわち厚さを設定できる。例えば、図4に示された最適膜厚、単磁区化強磁性層が1〜1.5nm、軟磁性自由層の厚さが2〜3nmを設定することが可能であり、その場合、単純に軟磁性反平行層の厚さをM1+M2、すなわち1.5+3=4.5nmとすればよいのである。図6(b)に示した本発明の構成の単磁区化強磁性層の磁化状態のシミュレーション結果から、本発明の構成により、端部部分の磁化の曲がりがほとんど見られない状態が実現できていることがわかる。従って本発明の構成により、より細小な磁気ヘッドについて端部まで安定な磁化状態を実現できることがわかる。
図7は、同シミュレーションによる磁気ヘッドの再生特性の算出結果である。従来技術では図6(a)に見られた磁化の曲がりに対応した曲線の屈曲が見られるのに対し、本発明の構成では出力曲線は線形かつ連続で磁気ヘッドとしての特性として良好になることがわかる。
前述のシミュレーションによって従来技術及び本発明の構成の素子高さ依存性を調べた。図8は、従来技術及び本発明の積層型磁性制御構造を用いた場合の素子高さと再生利用率の関係を示した図である。
前述したように、素子高さとは再生ヘッドの媒体に対する対向面から奥行き方向への磁気抵抗効果素子部の長さのことである。また、再生利用率は、この場合、ある素子高さでの軟磁性自由層の感知すべき磁界に対する磁化の回転角度から平均で求まる値であり、回転量が多いと最大で1、感知すべき磁界に対して磁化の回転がゼロだと再生利用率はゼロである。図8からわかるように、従来技術、本発明双方とも素子高さが50nm以上になると再生利用率は低下している。これは感知すべき磁界が再生ギャップの中に入りにくくなるので、素子高さが大きくなると素子の再生利用率が低下するのである。しかしながら、その低下の程度は本発明と従来技術で異なっていることがわかる。従来技術に比べて本発明の磁気ヘッドは、大きな素子高さに対して再生利用率を高く保つことができる。これは本発明が軟磁性反平行層の導入により、軟磁性自由層及び磁区制御構造部分の厚さが増大したことで軟磁性自由層面内の交換結合力が増大し、軟磁性自由層が素子高さ方向まで均一に回ろうとする効果が大きくなるからと考えられる。
より大きな素子高さに対して本発明が有効であるメリットは、第一に磁気ヘッドの素子高さ方向の作製精度、特に加工精度に対して、素子高さ依存性を低減してマージンを拡大でき、磁気ヘッドの作製が容易になる。第二に素子高さを増大できることで磁気ヘッドのS/Nを向上することができる。
図9に、トンネル磁気抵抗効果ヘッドを想定したヘッドS/Nと素子高さの関係を示す。素子高さをトラック幅に対して、1倍、2倍、3倍とすると、図中に矢印で示したように、再生ヘッドの素子面積は素子高さに比例し、したがって素子高さの増大に伴って再生ヘッドのヘッド抵抗は低下する。従って所定のトンネル磁気抵抗効果膜を用いて、シグナルが一定になるよう同一電圧で駆動した場合においても、素子高さが大きいとノイズが低下し、結果としてS/Nが増大するのである。
図10は、素子高さ/トラック幅比とヘッドのS/Nの計算値である。本発明の構成では再生利用率をあまり低下させずに素子高さをトラック幅より大きくすることができ、このため従来技術の場合よりヘッドS/Nの高い磁気抵抗効果型ヘッドを得ることができる。
図11は、本発明の磁気抵抗効果型磁気ヘッドのまた別の構成例を示す図であり、磁気媒体に対向する対向面から眺めた模式図である。基体50上に下部磁気シールド35、下部導電性ギャップ膜711を形成し、その上に、磁気抵抗効果積層膜10が形成されてなり、さらに上部導電性ギャップ膜721、上部磁気シールド36を形成して、再生信号を検出する再生ギャップ43を形成してなる。構造の多くの部分は図1に示した例と共通なので、図1と異なる部分について以下に詳細に述べる。
磁気抵抗効果積層膜10は、下地膜14、反強磁性膜11、強磁性固定層15、非磁性中間層12、軟磁性自由層13、弱反平行結合層417、軟磁性反平行層133、反平行結合層414、単磁区化強磁性層46、及び保護膜37を連続して形成した構造を有する。
この構成例では、単磁区化強磁性層46は強磁性層412と反強磁性膜413の積層体からなる。反強磁性膜413は、強磁性層412と交換結合して強磁性層412の磁化を実質的にトラック幅方向に固定する効果を有する。反平行結合層414は、強磁性層412と軟磁性反平行層133の磁化を互いに反平行に配列させる交換結合を印加して、単磁区化強磁性層46の実質的な磁化の量を軟磁性反平行層133と強磁性層412の磁化量の差分に制御する効果がある。弱反平行結合層417は、軟磁性反平行層133と軟磁性自由層13を弱く反平行に磁化配列する効果を有する。従って、強磁性層412、軟磁性反平行層133及び軟磁性自由層13を、ほぼ同一のトラック幅方向のサイズに形成してなる構成とし、強磁性層412と軟磁性反平行層132、軟磁性反平行層132と軟磁性自由層13の磁化が外部磁界ゼロの状態で互いに反平行になり、トラック幅方向の端部で静磁気的に結合した、二重の閉磁路を形成して軟磁性自由層13を単磁区化するのである。強磁性固定層15、軟磁性自由層13の機能と動作、構造は図1に示した例の場合と同様である。
より具体的な構成例を以下に示す。本発明例2として、基体/Ni56Fe14Cr30下地膜4nm/Mn52Pt48反強磁性膜15nm/Co90Fe10強磁性固定層3nm/Ru反平行結合層0.8nm/Co90Fe10強磁性固定層3nm/Cu中間層2nm/Co90Fe10軟磁性自由層2nm/Cu/Ru弱反平行結合層1.2nm/Co90Fe10反平行軟磁性層3nm/Ru反平行結合層0.8nm/Co90Fe10強磁性層1nm/Mn52Pt48反強磁性膜15nm/Ta保護層1nmを用いた。
図12は、図11に示した構成の単磁区化強磁性層46、反平行結合層414及び軟磁性反平行層133からなる部分の磁気特性を示す図である。比較のため従来技術の強磁性層/反強磁性膜構成からなる単磁区化強磁性層の場合の磁気特性も示した。ここでは従来技術として前述の従来例1と比較した。
図12(b)は、従来技術の強磁性層/反強磁性膜の構成を、最も一般に用いられている材料と思われるCoFe/MnPt膜で作成した場合の代表的な磁化曲線である。図から明らかなように、従来技術による膜の磁化曲線には大きなヒステリシスが存在し、特に外部磁場ゼロの状態で大きく磁化状態の異なる状態が複数存在することがわかる。このようなヒステリシスは磁化状態を不安定にし、その結果、磁区制御構造としての機能を著しく損なう。これに対して、図12(a)に示した本発明例2の磁化曲線は、ヒステリシスが十分に低減されていることがわかる。このようなヒステリシスの少ない磁化状態は、本発明の構成の積層構成を用い、かつ、磁性膜の磁化量の配分と互いの結合の大きさを適切に制御することによって得られるもので、より具体的には磁性膜の厚さの配分、及び反平行結合層の結合力の強さを制御する材料、界面組成制御、さらには結晶性の制御技術によるものである。この技術を用いることによって、図12から明らかなような磁気特性の向上を得ることができ、安定な磁区制御を実現することができる。
図13は、本発明の磁気抵抗効果型磁気ヘッドの拡張された構成例を示す図であり、磁気媒体に対向する対向面から眺めた模式図である。本例は、4層の磁性層部分からなる3重の閉磁路構造をとる例である。基体50上に下部磁気シールド35、下部導電性ギャップ膜711を形成し、その上に、磁気抵抗効果積層膜10が形成されてなり、さらに上部導電性ギャップ膜721、上部磁気シールド36を形成して、再生信号を検出する再生ギャップ43を形成してなる。構造の多くの部分は図1に示した例と共通なので、図1と異なる部分について以下に詳細に述べる。
図13に示した磁気抵抗効果積層膜10は、下地膜14、反強磁性膜11、強磁性固定層15、非磁性中間層12、軟磁性自由層130、反平行結合層414、軟磁性反平行層131、弱反平行結合層418、軟磁性反平行層132、反平行結合層411、単磁区化強磁性層46、及び保護膜37を連続して形成した構造を有する。
この構成例では、軟磁性自由層130は、反平行結合層414を介して軟磁性反平行層131の磁化配列を実質的に反平行に配列させ、実質的に一体の軟磁性自由層として磁化過程を経るよう構成されている。軟磁性自由層130と軟磁性反平行層131との磁化量を適切な差分の値を持つように設定する。同様にこの構成例では、単磁区化強磁性層46は強磁性層412と反強磁性膜413の積層体からなる。反強磁性膜413は、強磁性層412と交換結合して強磁性層412の磁化を実質的にトラック幅方向に固定する効果を有する。さらに反平行結合膜411は、強磁性層412と軟磁性反平行層132の磁化を互いに反平行に配列させる交換結合を印加して、単磁区化強磁性層46と軟磁性反平行層132を実質的に一体の磁性膜のように機能させ、これらの部分の実質的な磁化の量を軟磁性反平行層132と強磁性層412の磁化量の差分に制御する。強磁性層412と軟磁性反平行層132の磁化量は適切な差分の値を持つように設定する。この磁化量の差分は、上記軟磁性自由層130及び軟磁性反平行層131の差分と同程度にして閉磁路構造を安定化する。弱反平行結合層418は、軟磁性反平行層132と軟磁性反平行層131を弱く反平行の磁化配列する効果を有する。
従って、強磁性層412、軟磁性反平行層132、軟磁性反平行層131及び軟磁性自由層130が、ほぼ同一のトラック幅方向のサイズに形成され、強磁性層412と軟磁性反平行層132、軟磁性反平行層131と軟磁性自由層130、及び軟磁性反平行層132と軟磁性反平行層131の磁化が外部磁界ゼロの状態で互いに反平行になり、トラック幅方向の端部で静磁気的に結合した、三重の閉磁路を形成して軟磁性自由層130を単磁区化する。
図14は、本発明の磁気抵抗効果型磁気ヘッドの拡張された別の構成例を示す図であり、磁気媒体に対向する対向面から眺めた模式図である。本例は、4層の磁性層部分からなる2重の閉磁路構造をとる例で、さらに磁区制御部に高保磁力積層膜を用いた構成例である。基体50上に下部磁気シールド35、下部導電性ギャップ膜711を形成し、その上に、磁気抵抗効果積層膜10が形成されてなり、さらに上部導電性ギャップ膜721、上部磁気シールド36を形成して、再生信号を検出する再生ギャップ43を形成してなる。構造の多くの部分は図1に示した例と共通なので、図1と異なる部分について以下に詳細に述べる。
図14に示した磁気抵抗効果積層膜10は、下地膜14、反強磁性膜11、強磁性固定層15、非磁性中間層12、軟磁性自由層130、弱反平行結合層419、軟磁性反平行層131、弱反平行結合層415、強磁性反平行層134、反平行結合層411、及び単磁区化強磁性層47を連続して形成した構造を有する。
この構成例では、弱反平行結合層419を介して軟磁性自由層130と軟磁性反平行層131の磁化配列を弱く反平行に結合せしめてなる。軟磁性自由層130と軟磁性反平行層131との磁化量を差分が実質的にゼロになるよう設定する。これは軟磁性自由層130と軟磁性反平行層131の磁化配列が反平行となったときにトラック幅方向の端部で静磁気的に結合した一つの閉磁路を形成せしめるためである。同様にこの構成例では、単磁区化強磁性層47は強磁性層412からなり、反平行結合層411を介して強磁性反平行層134と反強磁性的に結合してなる。反平行結合膜411は、強磁性層412と強磁性反平行層134の間に交換結合を印加して、両者の磁化を互いに反平行に配列させる機能を有する。強磁性層412と強磁性反平行層134の磁化量は実質的に差分の値がゼロとなるように設定する。この磁化量の差分をゼロにすることで強磁性層412と強磁性反平行層134の磁化配列をトラック幅方向の端部で互いに打ち消しあう閉磁路構造とすることができる。さらに、この磁化量の差分を実質的にゼロにし、かつ反平行結合層411で十分に強く反平行に結合した構成にすることで、本例の単磁区化強磁性層47を外部磁界に対して磁化しにくい高保磁力積層膜として機能させることができる。弱反平行結合層415は、強磁性反平行層134と軟磁性反平行層131を弱く反平行の磁化配列する効果を有する。
従って、本例の構成により、強磁性層412、強磁性反平行層132、反平行軟磁性第二軟磁性層131及び軟磁性自由層130が、ほぼ同一のトラック幅方向のサイズに形成してなり、強磁性層412と強磁性反平行層134、軟磁性反平行層131と軟磁性自由層130、及び軟磁性反平行層131と強磁性反平行層134の磁化が外部磁界ゼロの状態で互いに反平行になる。これによって磁化量の適切な配分によって、トラック幅方向の端部で静磁気的に結合した、軟磁性反平行層131と軟磁性自由層130、及び、強磁性層412と強磁性反平行層134がそれぞれ閉磁路構造を構成し、合計で二重、もしくは3重、の閉磁路を形成して軟磁性自由層130を単磁区化するのである。
図15は、本発明の磁気抵抗効果素子を搭載した記録再生分離型磁気ヘッドの概念図である。スライダーを兼ねる基体50上に磁気抵抗効果積層膜10、電極40、下部磁気シールド35、上部磁気シールド36、下部磁気コア84、コイル42、上部コア83を形成してなり、媒体対向面63を形成してなる。本図では上部磁気シールドと下部磁気コアを備えた構造になっているが、上部磁気シールドと下部磁気コアとを兼用した構造としても本発明の趣旨を損なうものではない。同様に本図では上部磁気シールドと下部磁気シールド、電極40を通じて膜厚方向に電流を通じる構造となっているが、そのほかの通電方式、通電方向にしても本発明の趣旨を損なうものではない。
図16は、本発明の磁気抵抗効果素子を搭載した垂直記録用記録再生分離型磁気ヘッドの概念図である。スライダーを兼ねる基体50上に下部磁気シールド35、電極40、磁気抵抗効果積層膜10、電極40、上部磁気シールド36、副磁極86、コイル42、主磁極85を形成してなり、媒体対向面63を形成してなる。本図では上部磁気シールドと下部磁気コアを備えた構造になっているが、上部磁気シールドと下部磁気コアとを兼用した構造としても本発明の趣旨を損なうものではない。
図17は、本発明による垂直磁気記録方式の磁気記録再生装置の構成例を示す模式図である。磁気的に情報を記録する記録媒体91を保持するディスク95をスピンドルモーター93にて回転させ、アクチュエーター92によってヘッドスライダー90をディスク95のトラック上に誘導する。即ち磁気ディスク装置においてはヘッドスライダー90上に形成した再生ヘッド、及び記録ヘッドがこの機構に依ってディスク95上の所定の記録位置に近接して相対運動し、信号を順次書き込み、及び読み取るのである。アクチュエーター92はロータリーアクチュエーターであることが望ましい。記録媒体91は、磁気記録層と軟磁性下地層を有する2層記録媒体である。また、ヘッドスライダー90上に形成した記録ヘッドは、図16に示したように、主磁極と副磁極を備える垂直磁気記録用の単磁極ヘッドである。
記録信号は信号処理系94を通じて記録ヘッドにて媒体上に記録し、再生ヘッドの出力を、信号処理系94を経て信号として得る。さらに再生ヘッドを所望の記録トラック上へ移動せしめるに際して、本再生ヘッドからの高感度な出力を用いてトラック上の位置を検出し、アクチュエーターを制御して、ヘッドスライダーの位置決めを行うことができる。本図ではヘッドスライダー90、ディスク95を各1個示したが、これらは複数であっても構わない。またディスク95は両面に記録媒体91を有して情報を記録してもよい。情報の記録がディスク両面の場合ヘッドスライダー90はディスクの両面に配置する。
上述したような構成について、本発明の磁気ヘッド及びこれを搭載した磁気記録再生装置を試験した結果、充分な出力と、良好なバイアス特性を示し、また動作の信頼性も良好であった。
本発明の磁気抵抗効果型磁気ヘッドの構成例を示す図である。 本発明の磁気抵抗効果型磁気ヘッドの構成例を示す図である。 従来技術及び本発明の積層磁区制御構造の概念図である。 従来技術の磁気抵抗効果型積層構成の特性例を示す図である。 従来技術及び本発明の磁気抵抗効果型積層構成の特性例を示す図である。 従来技術及び本発明の単磁区化強磁性層の磁化状態の算出結果を表した図である。 従来技術及び本発明の磁気抵抗効果センサの再生出力の算出結果を表した図である。 従来技術及び本発明の磁気抵抗効果型磁気ヘッドの再生利用率と素子高さの関係を表した図である。 従来技術及び本発明の磁気抵抗効果型磁気ヘッドのS/Nとヘッド抵抗、及び素子高さの関係を表した図である。 従来技術及び本発明の磁気抵抗効果型磁気ヘッドのS/Nと素子高さ/トラック幅比の関係を表した図である。 本発明の磁気抵抗効果型磁気ヘッドの構成例を示す図である。 本発明及び従来技術の単磁区化強磁性層の磁気特性を示す図である。 本発明の磁気抵抗効果型磁気ヘッドの構成例を示す図である。 本発明の磁気抵抗効果型磁気ヘッドの構成例を示す図である。 記録再生分離型磁気ヘッドの構成例を示す図である。 垂直記録用記録再生分離型磁気ヘッドの構成例を示す図である。 磁気記録再生装置の構成例を示す図である。
符号の説明
10 磁気抵抗効果積層膜
11 反強磁性膜
12 非磁性中間層
13 軟磁性自由層
130 軟磁性自由層
131 軟磁性反平行層
132 軟磁性反平行層
133 軟磁性反平行層
134 強磁性反平行層
14 下地膜
15 強磁性固定層
150 硬磁性固定層
151 第一の強磁性層
152 第二の強磁性層
154 反平行結合層
35 下部磁気シールド
36 上部磁気シールド
37 保護膜
40 電極
411 反平行結合層
412 強磁性層
413 反強磁性膜
414 反平行結合層
415 弱反平行結合層
416 弱反平行結合層
417 弱反平行結合層
418 弱反平行結合層
419 弱反平行結合層
42 コイル
43 再生ギャップ
45 単磁区化強磁性層
46 単磁区化強磁性層
47 単磁区化強磁性層
50 基体
63 対向面
711 下部導電性ギャップ膜
721 上部導電性ギャップ膜
83 上部磁気コア
84 下部磁気コア
85 主磁極
86 副磁極
90 ヘッドスライダー
91 記録媒体
92 アクチュエーター
93 スピンドル
94 信号処理系
95 磁気ディスク

Claims (16)

  1. 感知すべき磁界に対して実質的にその磁化方向が固定された強磁性固定層と、
    前記強磁性固定層に非磁性中間層を介して積層され、前記磁界に応じて磁化が回転する軟磁性自由層と、
    前記軟磁性自由層に反平行結合層を介して積層された軟磁性反平行層と、
    前記軟磁性反平行層に弱反平行結合層を介して積層され、前記磁界に対して略直交した方向に実質的に固定された磁化を有する単磁区化強磁性層とを備え、
    前記軟磁性自由層と前記軟磁性反平行層とは、前記反平行結合層を介して前記磁界に対して実質的に十分強い反強磁性的な結合を有し、
    前記軟磁性反平行層と前記単磁区化強磁性層とは、前記弱反平行結合層を介して前記磁界に対して実質的に同程度もしくはそれより弱い反強磁性的な結合を有することを特徴とする磁気ヘッド。
  2. 感知すべき磁界に対して磁界に対して実質的にその磁化方向が固定された強磁性固定層と、
    前記強磁性固定層に非磁性中間層を介して積層され、前記磁界に応じて磁化が回転する軟磁性自由層と、
    前記軟磁性自由層に弱反平行結合層を介して積層された軟磁性反平行層と、
    前記軟磁性反平行層に反平行結合層を介して積層され、前記磁界に対して略直交した方向に実質的に固定された磁化を有する単磁区化強磁性層とを備え、
    前記軟磁性自由層と前記軟磁性反平行層とは、前記弱反平行結合層を介して前記磁界に対して実質的に同程度もしくはそれより弱い反強磁性的な結合を有し、
    前記軟磁性反平行層と前記単磁区化強磁性層とは、前記反平行結合層を介して前記磁界に対して実質的に十分強い反強磁性的な結合を有することを特徴とする磁気ヘッド。
  3. 請求項1記載の磁気ヘッドにおいて、前記軟磁性自由層、前記軟磁性反平行層及び前記単磁区化強磁性層の磁化は、前記磁界がゼロの状態において互いに反平行であり、トラック幅端部で前記軟磁性自由層と前記軟磁性反平行層、前記単磁区化強磁性層と前記軟磁性反平行層について二重もしくは二重以上の閉磁路を形成して、互いの端部磁化を実質的に打ち消しあっていることを特徴とする磁気ヘッド。
  4. 請求項2記載の磁気ヘッドにおいて、前記軟磁性自由層、前記軟磁性反平行層及び前記単磁区化強磁性層の磁化は、前記磁界がゼロの状態において互いに反平行であり、トラック幅端部で前記軟磁性自由層と前記軟磁性反平行層、前記単磁区化強磁性層と前記軟磁性反平行層について二重もしくは二重以上の閉磁路を形成して、互いの端部磁化を実質的に打ち消しあっていることを特徴とする磁気ヘッド。
  5. 請求項1記載の磁気ヘッドにおいて、前記軟磁性自由層と前記単磁区化強磁性層の磁化量の和が前記軟磁性反平行層の磁化量とほぼ等しいことを特徴とする磁気ヘッド。
  6. 請求項2記載の磁気ヘッドにおいて、前記軟磁性自由層と前記単磁区化強磁性層の磁化量の和が前記軟磁性反平行層の磁化量とほぼ等しいことを特徴とする磁気ヘッド。
  7. 請求項1記載の磁気ヘッドにおいて、前記単磁区化強磁性層は、反強磁性膜と当該反強磁性膜と交換結合した強磁性層とからなり、前記反強磁性膜が感知すべき磁界に対して略直交した方向に着磁されていることを特徴とする磁気ヘッド。
  8. 請求項2記載の磁気ヘッドにおいて、前記単磁区化強磁性層は、反強磁性膜と当該反強磁性膜と交換結合した強磁性層とからなり、前記反強磁性膜が感知すべき磁界に対して略直交した方向に着磁されていることを特徴とする磁気ヘッド。
  9. 請求項1記載の磁気ヘッドにおいて、前記強磁性固定層は、反強磁性膜と当該反強磁性膜と交換結合した強磁性層とからなり、前記反強磁性膜が感知すべき磁界に対して略平行した方向に着磁されていることを特徴とする磁気ヘッド。
  10. 請求項2記載の磁気ヘッドにおいて、前記強磁性固定層は、反強磁性膜と当該反強磁性膜と交換結合した強磁性層とからなり、前記反強磁性膜が感知すべき磁界に対して略平行した方向に着磁されていることを特徴とする磁気ヘッド。
  11. 請求項1記載の磁気ヘッドにおいて、前記強磁性固定層は、硬磁性膜あるいは実質的に外部磁界に対して大きな抗磁力を示す磁性膜からなり、前記硬磁性膜もしくは磁性膜が感知すべき磁界に対して略平行な方向に着磁されていることを特徴とする磁気ヘッド。
  12. 請求項2記載の磁気ヘッドにおいて、前記強磁性固定層は、硬磁性膜あるいは実質的に外部磁界に対して大きな抗磁力を示す磁性膜からなり、前記硬磁性膜もしくは磁性膜が感知すべき磁界に対して略平行な方向に着磁されていることを特徴とする磁気ヘッド。
  13. 請求項1記載の磁気ヘッドにおいて、媒体対向面からの素子高さがトラック幅の1.5〜3倍であることを特徴とする磁気ヘッド。
  14. 請求項2記載の磁気ヘッドにおいて、媒体対向面からの素子高さがトラック幅の1.5〜3倍であることを特徴とする磁気ヘッド。
  15. 磁気記録媒体と、前記磁気記録媒体を駆動する媒体駆動部と、前記磁気記録媒体に対して情報の記録及び再生を行う磁気ヘッドと、前記磁気ヘッドを前記磁気記録媒体に対して相対的に駆動するヘッド駆動部とを含む磁気記録再生装置において、
    前記磁気ヘッドは、感知すべき磁界に対して実質的にその磁化方向が固定された強磁性固定層と、前記強磁性固定層に非磁性中間層を介して積層され、前記磁界に応じて磁化が回転する軟磁性自由層と、前記軟磁性自由層に反平行結合層を介して積層された軟磁性反平行層と、前記軟磁性反平行層に弱反平行結合層を介して積層され、前記磁界に対して略直交した方向に実質的に固定された磁化を有する単磁区化強磁性層とを備え、前記軟磁性自由層と前記軟磁性反平行層とは、前記反平行結合層を介して前記磁界に対して実質的に十分強い反強磁性的な結合を有し、前記軟磁性反平行層と前記単磁区化強磁性層とは、前記弱反平行結合層を介して前記磁界に対して実質的に同程度もしくはそれより弱い反強磁性的な結合を有することを特徴とする磁気記録再生装置。
  16. 磁気記録媒体と、前記磁気記録媒体を駆動する媒体駆動部と、前記磁気記録媒体に対して情報の記録及び再生を行う磁気ヘッドと、前記磁気ヘッドを前記磁気記録媒体に対して相対的に駆動するヘッド駆動部とを含む磁気記録再生装置において、
    前記磁気ヘッドは、感知すべき磁界に対して磁界に対して実質的にその磁化方向が固定された強磁性固定層と、前記強磁性固定層に非磁性中間層を介して積層され、前記磁界に応じて磁化が回転する軟磁性自由層と、前記軟磁性自由層に弱反平行結合層を介して積層された軟磁性反平行層と、前記軟磁性反平行層に反平行結合層を介して積層され、前記磁界に対して略直交した方向に実質的に固定された磁化を有する単磁区化強磁性層とを備え、前記軟磁性自由層と前記軟磁性反平行層とは、前記弱反平行結合層を介して前記磁界に対して実質的に同程度もしくはそれより弱い反強磁性的な結合を有し、前記軟磁性反平行層と前記単磁区化強磁性層とは、前記反平行結合層を介して前記磁界に対して実質的に十分強い反強磁性的な結合を有することを特徴とする磁気記録再生装置。
JP2004115773A 2004-04-09 2004-04-09 磁気ヘッド及びそれを用いた磁気記録再生装置 Pending JP2005302131A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004115773A JP2005302131A (ja) 2004-04-09 2004-04-09 磁気ヘッド及びそれを用いた磁気記録再生装置
US11/102,067 US7440240B2 (en) 2004-04-09 2005-04-08 Magnetic head with domain stabilization and magnetic recording/reproducing apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004115773A JP2005302131A (ja) 2004-04-09 2004-04-09 磁気ヘッド及びそれを用いた磁気記録再生装置

Publications (1)

Publication Number Publication Date
JP2005302131A true JP2005302131A (ja) 2005-10-27

Family

ID=35060279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004115773A Pending JP2005302131A (ja) 2004-04-09 2004-04-09 磁気ヘッド及びそれを用いた磁気記録再生装置

Country Status (2)

Country Link
US (1) US7440240B2 (ja)
JP (1) JP2005302131A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150159A (ja) * 2005-11-30 2007-06-14 Renesas Technology Corp 不揮発性記憶装置
US7456758B2 (en) 2006-09-19 2008-11-25 Hitachi Metals, Ltd. Magnetic encoder apparatus
JP2013232274A (ja) * 2012-04-30 2013-11-14 Seagate Technology Llc スタック、およびそれを有する装置
JP2014501040A (ja) * 2010-11-13 2014-01-16 インターナショナル・ビジネス・マシーンズ・コーポレーション 磁気トンネル接合において磁界を制御するための装置、方法、メモリ・セル
JP2021052050A (ja) * 2019-09-24 2021-04-01 スピンセンシングファクトリー株式会社 磁気センサ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8252367B2 (en) * 2007-12-19 2012-08-28 Hitachi Global Storage Technologies Netherlands B.V. Methods and apparatus to fabricate soft magnetic film with preferred uniaxial anisotropy for perpendicular recording
US8216703B2 (en) * 2008-02-21 2012-07-10 Everspin Technologies, Inc. Magnetic tunnel junction device
US20120063034A1 (en) * 2010-09-13 2012-03-15 Hitachi Global Storage Technologies Netherlands B.V. Current-perpendicular-to-the-plane (cpp) magnetoresistive (mr) sensor with improved insulating structure
US8873203B2 (en) 2012-12-21 2014-10-28 HGST Netherlands B.V. Magnetic head having a soft magnetic layer formed behind a tunneling magnetoresistance (TMR) sensor in an element height direction
US9030786B2 (en) * 2013-07-23 2015-05-12 HGST Netherlands B.V. Magnetic head having a soft magnetic layer with a close-packed plane thereof being parallel or oblique to an air bearing surface
JP6885797B2 (ja) * 2017-06-12 2021-06-16 昭和電工株式会社 磁気センサ及び磁気センサの製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408377A (en) * 1993-10-15 1995-04-18 International Business Machines Corporation Magnetoresistive sensor with improved ferromagnetic sensing layer and magnetic recording system using the sensor
JPH11259824A (ja) 1998-03-13 1999-09-24 Hitachi Ltd 磁気記録再生装置及びそれに用いる磁気抵抗効果型磁気ヘッド
US6023395A (en) * 1998-05-29 2000-02-08 International Business Machines Corporation Magnetic tunnel junction magnetoresistive sensor with in-stack biasing
JP4177954B2 (ja) 2000-06-30 2008-11-05 株式会社日立グローバルストレージテクノロジーズ 磁気トンネル接合積層型ヘッド及びその製法
US6473279B2 (en) * 2001-01-04 2002-10-29 International Business Machines Corporation In-stack single-domain stabilization of free layers for CIP and CPP spin-valve or tunnel-valve read heads
US6704175B2 (en) * 2001-03-28 2004-03-09 Tdk Corporation Current perpendicular-to-the-plane magnetoresistance read head
JP2002367124A (ja) * 2001-06-13 2002-12-20 Hitachi Ltd スピンバルブ型磁気ヘッド
JP3958947B2 (ja) * 2001-09-14 2007-08-15 アルプス電気株式会社 磁気検出素子及びその製造方法
US6765770B2 (en) * 2001-10-11 2004-07-20 Storage Technology Corporation Apparatus and method of making a stabilized MR/GMR spin valve read element using longitudinal ferromagnetic exchange interactions
US7023670B2 (en) * 2001-11-19 2006-04-04 Alps Electric Co., Ltd. Magnetic sensing element with in-stack biasing using ferromagnetic sublayers
JP3793725B2 (ja) * 2002-01-25 2006-07-05 アルプス電気株式会社 磁気検出素子及びその製造方法並びに前記磁気検出素子を用いた磁気検出装置
US6856493B2 (en) * 2002-03-21 2005-02-15 International Business Machines Corporation Spin valve sensor with in-stack biased free layer and antiparallel (AP) pinned layer pinned without a pinning layer
JP2003309305A (ja) * 2002-04-17 2003-10-31 Alps Electric Co Ltd 磁気検出素子
US6831816B2 (en) * 2002-07-15 2004-12-14 International Business Machines Corporation CPP sensor with in-stack biased free layer
US6947264B2 (en) * 2002-12-06 2005-09-20 International Business Machines Corporation Self-pinned in-stack bias structure for magnetoresistive read heads
US6829161B2 (en) * 2003-01-10 2004-12-07 Grandis, Inc. Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US7245463B2 (en) * 2003-07-25 2007-07-17 Hitachi Global Storage Technologies Netherlands B.V. Apparatus for extended self-pinned layer for a current perpendicular to plane head
US7199984B2 (en) * 2004-03-16 2007-04-03 Hitachi Global Storage Technologies Netherlands B.V. Current-perpendicular-to-plane magnetoresistive sensor with free layer stabilized by in-stack orthogonal magnetic coupling
US7180716B2 (en) * 2004-03-30 2007-02-20 Headway Technologies, Inc. Fabrication method for an in-stack stabilized synthetic stitched CPP GMR head
US7280325B1 (en) * 2004-03-31 2007-10-09 Western Digital (Fremont), Llc Ferromagnetic structure including a first section separated from a ferromagnetic layer by an electrically conductive nonmagnetic spacer and a second section elongated relative to the first section in at least one dimension
US7242556B2 (en) * 2004-06-21 2007-07-10 Hitachi Global Storage Technologies Netherlands B.V. CPP differential GMR sensor having antiparallel stabilized free layers for perpendicular recording

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150159A (ja) * 2005-11-30 2007-06-14 Renesas Technology Corp 不揮発性記憶装置
US7456758B2 (en) 2006-09-19 2008-11-25 Hitachi Metals, Ltd. Magnetic encoder apparatus
JP2014501040A (ja) * 2010-11-13 2014-01-16 インターナショナル・ビジネス・マシーンズ・コーポレーション 磁気トンネル接合において磁界を制御するための装置、方法、メモリ・セル
JP2013232274A (ja) * 2012-04-30 2013-11-14 Seagate Technology Llc スタック、およびそれを有する装置
JP2021052050A (ja) * 2019-09-24 2021-04-01 スピンセンシングファクトリー株式会社 磁気センサ

Also Published As

Publication number Publication date
US7440240B2 (en) 2008-10-21
US20050225907A1 (en) 2005-10-13

Similar Documents

Publication Publication Date Title
US8174799B2 (en) Differential magnetoresistive magnetic head
US8873204B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor structure with multiple stacked sensors and center shield with CoFeB insertion layer
JP3291208B2 (ja) 磁気抵抗効果型センサおよびその製造方法とそのセンサを備えた磁気ヘッド
US7265948B2 (en) Magnetoresistive element with oxide magnetic layers and metal magnetic films deposited thereon
US6947264B2 (en) Self-pinned in-stack bias structure for magnetoresistive read heads
US7298597B2 (en) Magnetoresistive sensor based on spin accumulation effect with free layer stabilized by in-stack orthogonal magnetic coupling
JP3657875B2 (ja) トンネル磁気抵抗効果素子
JP3623418B2 (ja) スピンバルブ型磁気抵抗効果素子及びそれを備えた薄膜磁気へッドとそれらの製造方法
US7440240B2 (en) Magnetic head with domain stabilization and magnetic recording/reproducing apparatus using the same
US6937449B2 (en) Spin-valve head containing closed-flux-structure domain control films
JP2003069109A (ja) 磁気抵抗効果型磁気センサ、磁気抵抗効果型磁気ヘッド、磁気再生装置と、磁気抵抗効果型磁気センサおよび磁気抵抗効果型磁気ヘッドの製造方法
JP4296180B2 (ja) 磁気抵抗効果素子,磁気ヘッド,磁気再生装置,および磁気抵抗素子の製造方法
US6603643B2 (en) Magnetoresistive head containing oxide layer
JPH09266334A (ja) 磁気抵抗効果素子
JP3269999B2 (ja) 薄膜磁気ヘッドの製造方法
US20090080125A1 (en) Magnetic head
JP2008186496A (ja) 磁気ヘッド
JP2004146480A (ja) ホイスラー磁性層と体心立方構造の非磁性中間層を積層した磁気抵抗効果素子および磁気ヘッド
JP2002009365A (ja) スピンバルブ型薄膜磁気素子及びその製造方法並びにこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
JP2008243920A (ja) 磁気抵抗効果再生素子、磁気ヘッド、および磁気再生装置
JP2008041163A (ja) 垂直通電型磁気抵抗効果型ヘッド
JP2001307308A (ja) 磁気抵抗効果型ヘッドおよび情報再生装置
JPH11273034A (ja) 磁気センサ、薄膜磁気ヘッド及び該薄膜磁気ヘッドの製造方法
KR100363462B1 (ko) 스핀밸브형 자기저항 효과소자와 그 제조방법
JP3575672B2 (ja) 磁気抵抗効果膜及び磁気抵抗効果素子