JP2002284599A - 炭化珪素単結晶の成長方法 - Google Patents

炭化珪素単結晶の成長方法

Info

Publication number
JP2002284599A
JP2002284599A JP2001089544A JP2001089544A JP2002284599A JP 2002284599 A JP2002284599 A JP 2002284599A JP 2001089544 A JP2001089544 A JP 2001089544A JP 2001089544 A JP2001089544 A JP 2001089544A JP 2002284599 A JP2002284599 A JP 2002284599A
Authority
JP
Japan
Prior art keywords
silicon carbide
crystal
single crystal
temperature
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001089544A
Other languages
English (en)
Other versions
JP4830073B2 (ja
Inventor
Kazuo Arai
和雄 荒井
Shinichi Nishizawa
伸一 西澤
Naoki Koyanagi
直樹 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Resonac Holdings Corp
Original Assignee
Showa Denko KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical Showa Denko KK
Priority to JP2001089544A priority Critical patent/JP4830073B2/ja
Publication of JP2002284599A publication Critical patent/JP2002284599A/ja
Application granted granted Critical
Publication of JP4830073B2 publication Critical patent/JP4830073B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】 【課題】 炭化珪素粉末を原料とし、マイクロパイプと
呼ばれる空洞状の欠陥の発生がなく、螺旋転位の極めて
少ない高品質な単結晶の成長方法の開発の提供。 【解決手段】 不活性雰囲気において、圧力を100〜
300Torrの範囲内の条件下において原料を225
0℃から2400℃、種単結晶基板を原料の温度より3
0〜100℃低い2200〜2300℃に加熱し、かつ
単結晶基板の成長速度を70μm/h以下に調整して成
長させる炭化珪素単結晶の成長方法および不活性雰囲気
において、初期の結晶基板温度を2250から2350
℃、成長圧力を100〜300Torrとして初期成長
層を形成した後、基板温度および成長圧力を減じながら
最終的に成長圧力1〜20Torr、温度2200〜2
250℃まで徐々に減じながら結晶を成長させる炭化珪
素単結晶の成長方法。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は高耐圧、大電力用半
導体素子等に使用される炭化珪素単結晶を昇華法により
結晶成長させる際に,特に高品質単結晶を成長させるた
めの結晶成長方法に関する。
【0002】
【従来の技術】炭化珪素は、高い伝熱係数、低い誘電率
を有し、熱的、化学的に安定でかつエネルギーバンドギ
ャップが広い特徴を持つ材料であり、他の半導体材料に
比し高温下でも使用可能な耐環境素子材料、耐放射線素
子材料、電力制御用パワー素子材料、短波長発光素子材
料として利用できる。またこれを用いたデバイスはシリ
コン(Si)など現在使用されている半導体材料から製
造したデバイスよりも高温度でかつ高い放射線密度の環
境下で作動できるものと予期される。この炭化珪素単結
晶を製造する方法としては、通常炭化珪素粉末を原料と
して高温下での昇華法が用いられている。
【0003】炭化珪素単結晶の昇華法による製造におい
ては、不活性ガス雰囲気中で炭化珪素原料粉末を充填し
た種結晶基板を設置したるつぼを減圧し、装置全体を1
800〜2400℃に昇温する。昇温に伴い原料炭化珪
素からは結晶成長に寄与するSi、Si2C、SiC2
SiCなどの蒸気が発生し、同時に原料などに含まれる
不純物の微粒子、結晶性の妨害微粒子等もるつぼ内に浮
遊することになる。るつぼ内の原料炭化珪素層に対向さ
せて設けた種結晶基板の成長する単結晶表面に、これら
不純物微粒子などが付着することにより単結晶としてエ
ピタキシャルに成長する結晶にマイクロパイプの発生、
結晶転位の原因となっているといわれている。
【0004】一方、炭化珪素単結晶から種結晶基板を作
製するため、研削、洗浄、薬品処理などにより成形加工
が行われるが、この種結晶基板表面には加工時に生じた
変質層等の外乱が残存している。この加工変質層は炭化
珪素が化学的に安定であるため適切なエッチャントが無
く除去することが困難となっている。このため通常の昇
華法では、マイクロパイプや螺旋転位等といった結晶欠
陥が種結晶基板表面から数多く発生してくる。また、従
来の昇華法では自然発生的な核形成により結晶が成長す
るため結晶の形および結晶面の制御が困難なものとなっ
ていた。
【0005】これを解決するために、成長初期に数十k
Paの成長圧力下で高品質の結晶を成長させた後、その
圧力を0.13〜1.3kPaまで漸減させ成長させて
いる(特開昭59−35099号公報)。またこの改良
特許として特開平11−60390号公報においては圧
力を漸減させる方法として複数段階による減圧方法が提
案されている。これらの成長初期結晶成長速度を低く抑
える方法によって種結晶に由来する結晶欠陥を抑制し、
初期成長層を高品質な炭化珪素単結晶とし、それ以後成
長する結晶の高品質化を計っている。
【0006】しかしながら、いずれの方法も成長速度の
遅い成長初期には高品質な結晶が得られているものの、
圧力を低くし成長速度を増した時点で螺旋転位等の結晶
欠陥が発生してきている。また、結晶の成長とともに結
晶表面温度が変化するためか成長表面の過飽和度も同様
に変化し、このため、安定な結晶成長にならずこの外乱
に伴って結晶欠陥や多形が混在しやすくなっている。
【0007】
【発明が解決しようとする課題】本発明は、炭化珪素粉
末を原料とし、マイクロパイプと呼ばれる空洞状の欠陥
の発生がなく、螺旋転位の極めて少ない高品質な単結晶
の成長方法の開発を目的とするものである。
【0008】
【課題を解決するための手段】本発明は、[1] 不活
性雰囲気において、圧力を13.3〜40kPaの範囲
内の一定の条件下において炭化珪素粉末原料を2250
℃〜2400℃、炭化珪素の種結晶基板を炭化珪素粉末
原料の温度より30〜100℃低い2200〜2300
℃に加熱し、かつ炭化珪素単結晶の成長速度を70μm
/h以下に調整して成長させることを特徴とする炭化珪
素単結晶の成長方法、[2] 不活性雰囲気において、
初期の炭化珪素の種結晶基板温度を2250〜2350
℃、成長圧力を13.3〜40kPaとして初期成長層
を形成した後、基板温度および成長圧力を最終的に成長
圧力0.13〜2.7kPa、基板温度2200〜22
50℃まで徐々に減じながら炭化珪素単結晶を成長させ
ることを特徴とする炭化珪素単結晶の成長方法、および
[3] 初期成長層の厚さが70〜300μmである請
求項2に記載の炭化珪素単結晶の成長方法、を開発する
ことにより上記の課題を解決した。
【0009】
【発明の実施の形態】本発明の炭化珪素単結晶の成長に
使用する装置としては、例えば真空容器内に断熱材で保
温され、外部より高周波などにより加熱可能とした黒鉛
製のるつぼを使用する。加熱装置は炭化珪素原料粉末を
充填したるつぼ底面を主として加熱し、それに対向した
蓋面下部に設けられた炭化珪素の種結晶基板と熱勾配を
調整できるように設けられている。
【0010】結晶の成長に際し、炭化珪素の熱分解を防
ぐためるつぼ内の雰囲気はアルゴン、ヘリウムなどの不
活性ガス雰囲気下で行うことが必要である。コストおよ
び効果の点から見てアルゴンが最もバランスしたガスで
ある。るつぼ内の雰囲気は、原料、、種結晶をセットし
た後、一旦ほぼ完全に真空にし、次に高純度アルゴンを
数十kPaまで再充填し、さらに必要ならばこれを繰り
返して十分ガス置換を行い、必要とする雰囲気の圧力に
調整することにより不活性雰囲気とする。
【0011】炭化珪素粉末原料は、高品質の炭化珪素単
結晶を作成するためには当然のことながら高純度のもの
が好ましい。原料中に不純物が多いときは炭化珪素原料
の昇華ガスとともに原料炭化珪素に含まれるFe、Ti
等の不純物や、その他高品質の結晶の成長を妨げる妨害
微小粒子がるつぼ内に多量浮遊することになるので、結
晶形は問わないが高純度の炭化珪素であることが好まし
い。
【0012】先に記載したように、種結晶基板とする炭
化珪素基板は、炭化珪素単結晶から作製することが必要
である。必要とする結晶形の高品質の炭化珪素単結晶を
切削、研磨して種結晶として必要な形状とする。ついで
表面にある切削、研磨による外乱を含む結晶形の乱れた
変質層をできるだけ除くため、例えば熱濃硫酸で洗浄
し、ついでアンモニア水と過酸化水素の混合物で洗浄
し、脱イオン水で洗浄し、酸素雰囲気下で1200℃程
度の高温で焼鈍した後、酸化膜を除去するためフッ化水
素酸で洗浄することにより外乱を除去して種結晶とす
る。このようにしてもまだ完全に外乱は除去されていな
いので、初期成長においてこれらの外乱を消す(小さく
する)様な条件とすることが必要となる。
【0013】一般に炭化珪素の種結晶基板加熱部が22
00℃以上においては、成長温度を高くするほど成長速
度が大きくなる反面、結晶の空洞状欠陥の発生や螺旋転
位の生成も増加の傾向にあるが、2200℃以下になっ
てもさほど空洞状欠陥の発生の抑制や螺旋転位の生成の
現象はさほど明確には表れない。従って生産性を考慮す
るときは炭化珪素の種結晶基板加熱部温度を2200℃
以上とすることが好ましい。
【0014】単結晶の成長速度は、成長温度が高いほど
成長速度が大きくなる。また雰囲気の圧力が低いほど成
長速度は大きくなる。さらに一般的には成長速度が大き
いほど結晶の品位は低下する。
【0015】前記[1]の発明においては、圧力13.
3〜40kPa、炭化珪素粉末原料温度2250〜24
00℃、炭化珪素の種結晶基板をこれより30〜100
℃低い温度に保持した一定条件下、成長速度を70μm
/hr以下に調整して炭化珪素単結晶を成長させる方法
である。かかる単結晶の成長を行うときは、種結晶の若
干の外乱が残っていたときでも、高品質の炭化珪素単結
晶を製造できる。なお単結晶の成長速度は直接測定不可
能であるので、あらかじめ圧力、温度の関係を検量して
おき所定の成長速度に調整することが必要である。
【0016】前記[2]の発明の炭化珪素単結晶の成長
方法において、初期の炭化珪素の種結晶基板温度が22
50〜2350℃、圧力を13.3〜40kPaとして
初期成長層(厚さとして約70〜300μm、好ましく
は100〜200μm)を形成した後、温度および圧力
を最終的に圧力0.13〜2.7kPa、基板温度22
00〜2250℃まで徐々に減じながら結晶を成長させ
る時は、空洞状欠陥の発生の抑制や螺旋転位の生成は大
きく押さえることができ、高品質の単結晶を製造でき
る。
【0017】特に本発明の前記[2]の発明において
は、成長工程における炭化珪素原料加熱部と炭化珪素の
種結晶加熱部間の温度勾配を約20〜60℃/cmにす
るときは、驚くべきことには成長速度が大きくともマイ
クロパイプの発生がなく、また結晶転位の発生を大きく
減少できるので好ましい温度勾配である。この結果、比
較的大きい成長速度でもって高品質の炭化珪素単結晶を
製造することが可能となった。
【0018】炭化珪素単結晶の成長において、炭化珪素
の種結晶基板温度を炭化珪素原料温度よりも30〜10
0℃低くかつ2200℃以上の高温を維持する時は、基
板表面に付着した原料分子の表面マイグレーションが活
発になり、不要な2次核発生を抑制するだけでなく、単
結晶基板表面の昇華再結晶化も活発になり表面の乱れた
部分が再構成される。これらの作用により従来単結晶基
板表面から発生していた螺旋転位等に代表される結晶欠
陥は抑制される。この時、過飽和度が過度にならないよ
う周囲の圧力を13.3kPa以上にし、成長速度とし
て70μm/h以下にする必要がある。 また初期成長
層を形成した後、成長速度を数百μm/hにする場合に
は徐々に周囲の圧力を下げる。この時、結晶成長に伴い
結晶表面の温度が高くなる。過度に温度が高くなる場合
には、結晶表面の昇華作用が強くなり結晶がダメージを
受ける。これを緩和するために種単結晶基板温度を調節
しながら同時に減圧を行うことにより、結晶中に発生す
る欠陥を抑制することが出来る。これにより数十〜数百
個/cm2あったマイクロパイプと呼ばれる空洞状の欠
陥の発生はなく螺旋転位も105〜106個/cm2から
103〜104個/cm2に大幅に低減されている。
【0019】
【実施例】(実施例1)本発明による結晶成長装置の一
例を図1に示す。黒鉛からなる内径50mm深さ95m
mのるつぼに炭化珪素原料粉末(昭和電工製#240)
を高さ60mmになるよう充填した。黒鉛製るつぼ蓋下
面にはレーリー法で作成された約1cm2の6H−炭化
珪素単結晶を種結晶基板(6H−炭化珪素単結晶(S
i)面、10mm径、厚さ0.5mm)として貼り付け
保持した。この蓋をるつぼ開口部に配置し、この黒鉛る
つぼを断熱材で包み高周波加熱炉内の反応管にセットし
た。ガス排出口8より反応管内を6.7×10-7kPa
に減圧後、不活性ガス導入口7よりアルゴンガスを常圧
まで充填した後、再度ガス排出口より6.7×10-7
Paまで減圧し反応間内の空気を追い出した。そして不
活性ガス導入口よりアルゴンガスを再度93kPaまで
充填し、炭化珪素粉末原料温度を2250℃、種結晶基
板温度を2200℃になるまで昇温する。
【0020】その後ガス排出口よりガスを排出し、アル
ゴン雰囲気圧力を13.3kPaに減圧した状態で炭化
珪素単結晶の成長を72時間行い、成長層として長さ3
mmの炭化珪素単結晶を得た。成長速度は3mm/72
h≒40μm/hであった。この場合基板温度2200
℃、原料温度2250℃でその差は50℃であり、原料
粉末面と種結晶基板との間隔は2.5cmとしたので温
度勾配は20℃/cmであった。この結晶を成長方向に
対して垂直に切断、鏡面研磨し、透過偏光顕微鏡で観察
したところマイクロパイプは発生していなかった。ま
た、500℃の溶融KOHに10分間浸し、エッチピッ
ト観察をしたところ、エッチピット密度が4×103
/cm2という高品質な結晶が得られた。また、X線回
折により多形結晶が混在していないことを確認した。
【0021】(実施例2)実施例1において、不活性ガ
ス導入口よりアルゴンガスを再度93kPaまで充填し
た後、初期成長層の成長条件として炭化珪素粉末原料温
度2400℃、種結晶基板温度2300℃、成長圧力1
3.3kPaに条件調整を行い、その条件で3時間結晶
成長を行った。その後ガス排出口よりガスを排出しなが
ら、基板温度および圧力を徐々に減じながら20時間成
長を行った。最終的な基板温度は2200℃(炭化珪素
粉末原料温度2300℃)、成長圧力は0.13kPa
であった。基板温度および圧力を変化させ始めたところ
で成長雰囲気ガスに窒素ガスを混入して炭化珪素結晶を
着色し、成長条件を変化した位置が分かるようにした。
【0022】その結果、初期成長では約200μmの長
さの炭化珪素単結晶を得た。成長速度は200μm/3
h=約67μm/hである。また基板温度および成長圧
力を減じ始めてからは、20時間で2.8mmの単結晶
を成長させた。平均の成長速度は2.8mm/20h=
140μm/hであった。またこの際の基板温度と原料
温度の差は100℃であり、原料と種結晶との間の間隔
は2.5cmとしたので温度勾配は40℃/cmであっ
た。この結晶を成長方向に対して垂直に切断、鏡面研磨
し、透過偏光顕微鏡で観察したところマイクロパイプは
発生していなかった。また、500℃の溶融KOHに1
0分間浸し、エッチピット観察をしたところ、エッチピ
ット密度が6×10 3個/cm2という高品質な結晶が得
られた。また、X線トポグラフにおいても転位密度が小
さくなっていることを確認した。
【0023】
【発明の効果】本発明により,種結晶基板表面に存在す
る結晶の乱れや汚れに影響されること無く、また結晶成
長中も安定な成長を続けることが可能となり成長過程に
おける転位等の結晶欠陥が炭化珪素単結晶中に導入され
にくくなる。これにより従来ではマイクロパイプと呼ば
れる空洞状欠陥が数十から数百個/cm2発生していた
のに対し本発明においてはマイクロパイプの発生はなく
なる。また、螺旋転位と呼ばれる半導体素子特性に影響
する欠陥も欠陥密度で105〜106個/cm2から103
〜104個/cm2に改善することができる。
【図面の簡単な説明】
【図1】実施例に使用した装置の断面図。
【図2】本発明による成長結晶のトポグラフ。
【図3】従来法による成長結晶のトポグラフ。
【符号の説明】
1 真空容器 2 断熱材 3 高周波コイル 4 成長結晶 5 炭化珪素原料粉 6 黒鉛るつぼ 7 ガス導入口 8 ガス排出口 9 放射温度計
───────────────────────────────────────────────────── フロントページの続き (72)発明者 西澤 伸一 茨城県つくば市梅園1丁目1番4 経済産 業省産業技術総合研究所電子技術総合研究 所内 (72)発明者 小柳 直樹 千葉県千葉市緑区大野台1丁目1番1号 昭和電工株式会社総合研究所内 Fターム(参考) 4G077 AA02 BE08 DA18 EA02 EA05 ED06 SA01 SA04 SA07 SA08

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 不活性雰囲気において、圧力を13.3
    〜40kPaの範囲内の一定の条件下において炭化珪素
    粉末原料を2250〜2400℃、炭化珪素の種結晶基
    板を炭化珪素粉末原料の温度より30〜100℃低い2
    200〜2300℃に加熱し、かつ炭化珪素単結晶の成
    長速度を70μm/h以下に調整して成長させることを
    特徴とする炭化珪素単結晶の成長方法。
  2. 【請求項2】 不活性雰囲気において、初期の炭化珪素
    の種結晶基板温度を2250〜2350℃、成長圧力を
    13.3〜40kPaとして初期成長層を形成した後、
    基板温度および成長圧力を最終的に成長圧力0.13〜
    2.7kPa、基板温度2200〜2250℃まで徐々
    に減じながら炭化珪素単結晶を成長させることを特徴と
    する炭化珪素単結晶の成長方法。
  3. 【請求項3】 初期成長層の厚さが70〜300μmで
    ある請求項2に記載の炭化珪素単結晶の成長方法。
JP2001089544A 2001-03-27 2001-03-27 炭化珪素単結晶の成長方法 Expired - Fee Related JP4830073B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001089544A JP4830073B2 (ja) 2001-03-27 2001-03-27 炭化珪素単結晶の成長方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001089544A JP4830073B2 (ja) 2001-03-27 2001-03-27 炭化珪素単結晶の成長方法

Publications (2)

Publication Number Publication Date
JP2002284599A true JP2002284599A (ja) 2002-10-03
JP4830073B2 JP4830073B2 (ja) 2011-12-07

Family

ID=18944460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001089544A Expired - Fee Related JP4830073B2 (ja) 2001-03-27 2001-03-27 炭化珪素単結晶の成長方法

Country Status (1)

Country Link
JP (1) JP4830073B2 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004111318A1 (en) * 2003-06-16 2004-12-23 Showa Denko K.K. Method for growth of silicon carbide single crystal, silicon carbide seed crystal, and silicon carbide single crystal
JP2005029459A (ja) * 2003-06-16 2005-02-03 Showa Denko Kk 炭化珪素単結晶の成長方法、炭化珪素種結晶および炭化珪素単結晶
JP2010514648A (ja) * 2006-09-14 2010-05-06 クリー インコーポレイテッド マイクロパイプ・フリーの炭化ケイ素およびその製造方法
EP2471981A1 (en) * 2009-08-27 2012-07-04 Sumitomo Metal Industries, Ltd. Sic single crystal wafer and process for production thereof
JP2013047159A (ja) * 2011-08-29 2013-03-07 Nippon Steel & Sumitomo Metal Corp 炭化珪素単結晶の製造方法、炭化珪素単結晶インゴット、及び炭化珪素単結晶基板
WO2013031856A1 (ja) 2011-08-29 2013-03-07 新日鐵住金株式会社 炭化珪素単結晶基板及びその製造方法
JP2013529590A (ja) * 2010-12-31 2013-07-22 中國科學院物理研究所 半絶縁炭化珪素単結晶及びその成長方法
RU2495163C2 (ru) * 2007-12-12 2013-10-10 Доу Корнинг Корпорейшн Способ получения больших однородных кристаллов карбида кремния с использованием процессов возгонки и конденсации
JP2014040333A (ja) * 2012-08-21 2014-03-06 Sumitomo Electric Ind Ltd 炭化珪素基板の製造方法
WO2014077368A1 (ja) 2012-11-15 2014-05-22 新日鐵住金株式会社 炭化珪素単結晶基板およびその製法
JP2014208590A (ja) * 2006-09-27 2014-11-06 トゥー‐シックス・インコーポレイテッド 低転位密度のSiC単結晶ブール及びその形成方法
JP2015013761A (ja) * 2013-07-03 2015-01-22 住友電気工業株式会社 炭化珪素単結晶基板およびその製造方法
WO2016051485A1 (ja) 2014-09-30 2016-04-07 新日鉄住金マテリアルズ株式会社 炭化珪素単結晶ウェハ、及び炭化珪素単結晶インゴットの製造方法
KR101819140B1 (ko) * 2016-12-20 2018-01-16 에스케이씨 주식회사 고품질의 탄화규소 단결정 잉곳의 성장 방법
JP2018140903A (ja) * 2017-02-28 2018-09-13 昭和電工株式会社 炭化珪素単結晶インゴットの製造方法
CN110592672A (zh) * 2018-12-14 2019-12-20 北京天科合达半导体股份有限公司 一种低基面位错密度的碳化硅晶体生长方法
JP2020011900A (ja) * 2019-10-29 2020-01-23 住友電気工業株式会社 炭化珪素単結晶の製造方法
CN113445128A (zh) * 2021-09-01 2021-09-28 浙江大学杭州国际科创中心 低微管密度碳化硅单晶制备方法及碳化硅单晶
CN115261976A (zh) * 2022-07-29 2022-11-01 中电化合物半导体有限公司 降低碳化硅晶体生长过程中bpd缺陷的装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935099A (ja) * 1982-08-17 1984-02-25 Agency Of Ind Science & Technol 炭化けい素結晶成長法
JPH06340498A (ja) * 1993-03-16 1994-12-13 Nippon Steel Corp SiC単結晶の成長方法
JPH10297997A (ja) * 1997-04-24 1998-11-10 Denso Corp 炭化珪素単結晶の製造方法
JPH1160390A (ja) * 1997-08-07 1999-03-02 Denso Corp 炭化珪素単結晶の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935099A (ja) * 1982-08-17 1984-02-25 Agency Of Ind Science & Technol 炭化けい素結晶成長法
JPH06340498A (ja) * 1993-03-16 1994-12-13 Nippon Steel Corp SiC単結晶の成長方法
JPH10297997A (ja) * 1997-04-24 1998-11-10 Denso Corp 炭化珪素単結晶の製造方法
JPH1160390A (ja) * 1997-08-07 1999-03-02 Denso Corp 炭化珪素単結晶の製造方法

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004111318A1 (en) * 2003-06-16 2004-12-23 Showa Denko K.K. Method for growth of silicon carbide single crystal, silicon carbide seed crystal, and silicon carbide single crystal
JP2005029459A (ja) * 2003-06-16 2005-02-03 Showa Denko Kk 炭化珪素単結晶の成長方法、炭化珪素種結晶および炭化珪素単結晶
EP1639158A1 (en) * 2003-06-16 2006-03-29 Showa Denko K.K. Method for growth of silicon carbide single crystal, silicon carbide seed crystal, and silicon carbide single crystal
US7455730B2 (en) 2003-06-16 2008-11-25 Showa Denko K.K. Method for growth of silicon carbide single crystal, silicon carbide seed crystal, and silicon carbide single crystal
EP1639158A4 (en) * 2003-06-16 2009-01-14 Showa Denko Kk METHOD OF PULLING SILICON CARBIDE CRYSTAL, SILICON CARBIDE IMPF CRYSTAL AND SILICON CARBIDE CRYSTAL
US8410488B2 (en) 2006-09-14 2013-04-02 Cree, Inc. Micropipe-free silicon carbide and related method of manufacture
US9099377B2 (en) 2006-09-14 2015-08-04 Cree, Inc. Micropipe-free silicon carbide and related method of manufacture
JP2010514648A (ja) * 2006-09-14 2010-05-06 クリー インコーポレイテッド マイクロパイプ・フリーの炭化ケイ素およびその製造方法
JP2014208590A (ja) * 2006-09-27 2014-11-06 トゥー‐シックス・インコーポレイテッド 低転位密度のSiC単結晶ブール及びその形成方法
RU2495163C2 (ru) * 2007-12-12 2013-10-10 Доу Корнинг Корпорейшн Способ получения больших однородных кристаллов карбида кремния с использованием процессов возгонки и конденсации
EP2471981A1 (en) * 2009-08-27 2012-07-04 Sumitomo Metal Industries, Ltd. Sic single crystal wafer and process for production thereof
US9222198B2 (en) 2009-08-27 2015-12-29 Nippon Steel & Sumitomo Metal Corporation SiC single crystal wafer and process for production thereof
EP2471981A4 (en) * 2009-08-27 2013-04-17 Nippon Steel & Sumitomo Metal Corp SIC MONOCRYSTAL WAFER AND METHOD FOR MANUFACTURING THE SAME
JP2013529590A (ja) * 2010-12-31 2013-07-22 中國科學院物理研究所 半絶縁炭化珪素単結晶及びその成長方法
US9893152B2 (en) 2010-12-31 2018-02-13 Institute Of Physics, Chinese Academy Of Sciences Semi-insulating silicon carbide monocrystal and method of growing the same
CN103620095A (zh) * 2011-08-29 2014-03-05 新日铁住金株式会社 碳化硅单晶基板及其制造方法
JP2013047159A (ja) * 2011-08-29 2013-03-07 Nippon Steel & Sumitomo Metal Corp 炭化珪素単結晶の製造方法、炭化珪素単結晶インゴット、及び炭化珪素単結晶基板
JP5506954B2 (ja) * 2011-08-29 2014-05-28 新日鐵住金株式会社 炭化珪素単結晶基板
EP2752508A1 (en) * 2011-08-29 2014-07-09 Nippon Steel & Sumitomo Metal Corporation Silicon carbide single crystal wafer and manufacturing method for same
CN103620095B (zh) * 2011-08-29 2017-02-15 新日铁住金株式会社 碳化硅单晶基板及其制造方法
JP2014028757A (ja) * 2011-08-29 2014-02-13 Nippon Steel & Sumitomo Metal 炭化珪素単結晶インゴット及びそれから切り出した基板
EP2752508A4 (en) * 2011-08-29 2015-02-25 Nippon Steel & Sumitomo Metal Corp SILICON CARBIDE CRYSTAL WAFERS AND MANUFACTURING METHOD THEREFOR
US9234297B2 (en) 2011-08-29 2016-01-12 Nippon Steel & Sumitomo Metal Corporation Silicon carbide single crystal wafer and manufacturing method for same
KR101530057B1 (ko) * 2011-08-29 2015-06-18 신닛테츠스미킨 카부시키카이샤 탄화규소 단결정 기판 및 그 제조 방법
WO2013031856A1 (ja) 2011-08-29 2013-03-07 新日鐵住金株式会社 炭化珪素単結晶基板及びその製造方法
JP2014040333A (ja) * 2012-08-21 2014-03-06 Sumitomo Electric Ind Ltd 炭化珪素基板の製造方法
JP5692466B2 (ja) * 2012-11-15 2015-04-01 新日鐵住金株式会社 炭化珪素単結晶の製造方法
US10119200B2 (en) 2012-11-15 2018-11-06 Showa Denko K.K. Silicon carbide single crystal substrate and process for producing same
JPWO2014077368A1 (ja) * 2012-11-15 2017-01-05 新日鐵住金株式会社 炭化珪素単結晶の製造方法
WO2014077368A1 (ja) 2012-11-15 2014-05-22 新日鐵住金株式会社 炭化珪素単結晶基板およびその製法
JP2015013761A (ja) * 2013-07-03 2015-01-22 住友電気工業株式会社 炭化珪素単結晶基板およびその製造方法
KR20180010344A (ko) 2014-09-30 2018-01-30 신닛테츠스미킹 마테리알즈 가부시키가이샤 탄화규소 단결정 웨이퍼
WO2016051485A1 (ja) 2014-09-30 2016-04-07 新日鉄住金マテリアルズ株式会社 炭化珪素単結晶ウェハ、及び炭化珪素単結晶インゴットの製造方法
US10202706B2 (en) 2014-09-30 2019-02-12 Showa Denko K.K. Silicon carbide single crystal wafer and method of manufacturing a silicon carbide single crystal ingot
KR101819140B1 (ko) * 2016-12-20 2018-01-16 에스케이씨 주식회사 고품질의 탄화규소 단결정 잉곳의 성장 방법
JP2018140903A (ja) * 2017-02-28 2018-09-13 昭和電工株式会社 炭化珪素単結晶インゴットの製造方法
CN110592672A (zh) * 2018-12-14 2019-12-20 北京天科合达半导体股份有限公司 一种低基面位错密度的碳化硅晶体生长方法
CN110592672B (zh) * 2018-12-14 2020-09-18 北京天科合达半导体股份有限公司 一种低基面位错密度的碳化硅晶体生长方法
JP2020011900A (ja) * 2019-10-29 2020-01-23 住友電気工業株式会社 炭化珪素単結晶の製造方法
CN113445128A (zh) * 2021-09-01 2021-09-28 浙江大学杭州国际科创中心 低微管密度碳化硅单晶制备方法及碳化硅单晶
CN115261976A (zh) * 2022-07-29 2022-11-01 中电化合物半导体有限公司 降低碳化硅晶体生长过程中bpd缺陷的装置及方法

Also Published As

Publication number Publication date
JP4830073B2 (ja) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4830073B2 (ja) 炭化珪素単結晶の成長方法
CN110396717B (zh) 高质量高纯半绝缘碳化硅单晶、衬底及其制备方法
US7520930B2 (en) Silicon carbide single crystal and a method for its production
JP2010095397A (ja) 炭化珪素単結晶及び炭化珪素単結晶ウェハ
JP2007119273A (ja) 炭化珪素単結晶の成長方法
JP6813779B2 (ja) 単結晶製造装置及び単結晶製造方法
WO2008044744A1 (fr) Procédé de production d'un monocristal de carbure de silicium
JP2007204309A (ja) 単結晶成長装置及び単結晶成長方法
KR100955887B1 (ko) 실리콘 단결정의 육성 방법 및 실리콘 웨이퍼의 제조 방법
JP2004099340A (ja) 炭化珪素単結晶育成用種結晶と炭化珪素単結晶インゴット及びその製造方法
JP4830973B2 (ja) 炭化珪素単結晶の製造方法
JP2006347865A (ja) 化合物半導体単結晶成長用容器、化合物半導体単結晶、および化合物半導体単結晶の製造方法
JP5614387B2 (ja) 炭化珪素単結晶の製造方法、及び炭化珪素単結晶インゴット
KR101081598B1 (ko) 종자정 처리 방법 및 단결정 성장 방법
US7455730B2 (en) Method for growth of silicon carbide single crystal, silicon carbide seed crystal, and silicon carbide single crystal
JP3500921B2 (ja) 炭化珪素単結晶の製造方法
JP2018095490A (ja) シリコン単結晶製造方法、シリコン単結晶、及びシリコン単結晶ウェーハ
Korostelin et al. Seeded vapour-phase free growth of ZnSe single crystals in the< 1 0 0> direction
EP1498518B1 (en) Method for the production of silicon carbide single crystal
JP2008280206A (ja) 単結晶成長装置
KR100749938B1 (ko) 고품질 실리콘 단결정 잉곳 성장장치 및 성장방법
JP2000302599A (ja) シリコンカーバイドのエピタキシャル成長方法
KR100714215B1 (ko) 고품질 실리콘 단결정 잉곳 및 그로부터 제조된 고 품질 실리콘 웨이퍼
JP2010052997A (ja) 炭化ケイ素単結晶成長用種結晶の製造方法及び炭化ケイ素単結晶の製造方法
JP2005029459A (ja) 炭化珪素単結晶の成長方法、炭化珪素種結晶および炭化珪素単結晶

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

R150 Certificate of patent or registration of utility model

Ref document number: 4830073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees